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ABSTRACT

Previous sequence-stratigraphic work has 
emphasized the key role of paleosols and 
asso ciated sand-dominated fluvial bodies as 
key features for interpreting alluvial archi-
tecture. The temporal resolution of the an-
cient record is, however, insufficient to fully 
explain the complex relationship between 
soil formation and the evolution of fluvial 
systems under changing sea-level and cli-
mate conditions. In this paper, we present a 
detailed record of paleosol–channel belt rela-
tionships reconstructed from the subsurface 
of a rapidly subsiding region (Po Plain, Italy) 
that spans almost all of the last glacial-inter-
glacial cycle (~120 k.y.). The studied succes-
sion preserves a systematic bipartite zonation 
into a thick paleosol-bearing segment close 
to the basin margin and a sand-dominated 
interval, with vertically amalgamated chan-
nel belts, in an axial position. Individual 
paleosols are weakly developed and repre-
sent key stratigraphic markers that can be 
traced basinwide into adjacent, essentially 
contemporaneous, unconfined channel-belt 
deposits. Unlike conventional models of late 
Quaternary alluvial–coastal plain systems, 
no persistent incised valley was established 
in the Po system during the last glacial-inter-
glacial cycle. Continuous accommodation 
was the key depositional control on alluvial 
stratigraphy during the prolonged (~90 k.y.) 
phase of late Pleistocene sea-level fall, which 
led to the deposition of a thick, dominantly 
aggradational alluvial succession. The devel-
opment of shallowly incised, short-lived val-
ley systems took place only at the transition 
to glacial stages associated with substantial 
sea-level drop (marine oxygen isotope stage 

[MIS] 3-2 transition, and possibly MIS 5-4 
transition). This study shows that in rapidly 
subsiding settings with high rates of sedimen-
tation, incised valley systems may be replaced 
by aggradationally stacked, essentially non-
incised fluvial bodies. In these cases, over-
bank packages bounded by immature paleo-
sols represent the most likely alternative 
to the highly weathered interfluve paleosol 
predicted by classic sequence-stratigraphic 
models. Fourth-order sequence boundaries 
and lower-rank erosional surfaces may be 
easily confused at the ~100 k.y. scale, and 
transgressive surfaces, defining the onset of 
retrogradation, may become the most readily 
identifiable sequence-stratigraphic surfaces.

INTRODUCTION

The development of an integrated model 
that includes paleosols, fluvial facies, and as-
sociated bounding surfaces is crucial to predic-
tion of nonmarine stratigraphic architecture. In 
sequence-stratigraphic studies, integration of 
paleopedological data with regional sedimento-
logical and stratigraphic information has resulted 
in a powerful approach to the genetic interpre-
tation of interfluve surfaces and their associated 
paleovalley systems (McCarthy and Plint, 1998; 
McCarthy et al., 1999).

Previous work from the ancient record has 
documented paleosol–channel belt relationships 
from superbly exposed outcrops, including the 
Eocene Willwood Formation (Bown and Kraus, 
1981; Kraus and Bown, 1993; Kraus, 2002), 
the Cenomanian Dunvegan Formation (Mc-
Carthy et al., 1999; McCarthy and Plint, 2003), 
the Jurassic Morrison Formation (Demko et al., 
2004), the Triassic Chinle Formation (Cleveland 
et al., 2007; Dubiel and Hasiotis, 2011; Trendell 
et al., 2012), and the Carboniferous cyclothems 
of Nova Scotia (Gibling and Bird, 1994; Tan-

don and Gibling, 1994, 1997). However, when 
charged with predicting the extent to which 
sea-level or climate changes will affect regional 
configuration and stratigraphic architecture on 
time scales typically attributed to autogenic 
processes (on the order of few thousand years), 
these models suffer from poor chronologic reso-
lution and may yield a range of possible inter-
pretations (Wright and Marriott, 1993; Kraus 
and Aslan, 1999; Atchley et al., 2004).

Recent stratigraphic studies have focused 
on Quaternary depositional systems because 
of their high-resolution climatic and eustatic 
records (Blum and Törnqvist, 2000). The Qua-
ternary, for which dense, high-resolution sea-
level and climate data are available, represents 
an interval of time where process controls are 
well established. In this regard, well-constrained 
Quaternary systems, especially in close tempo-
ral proximity to the Holocene, can be used to de-
velop reliable predictive models in ancient rocks 
(Blum et al., 2013).

The use of soil in mapping Quaternary sedi-
ments is a well-established methodology (Morri-
son, 1978). Quaternary pedostratigraphy, how-
ever, has focused predominantly on paleosols 
developed on fluvial terraces (Bestland, 1997; 
Ufnar, 2007; Eppes et al., 2008) or parts of loess-
paleosol sequences (Kemp et al., 1995; Zhisheng 
and Porter, 1997; Berger et al., 2002), with the 
aim being to reconstruct pedosedimentary pro-
cesses, climate change, or landscape evolution 
(Mahaney et  al., 1993; Feng and Wang, 2005; 
Kemp et  al., 2006; Schellenberger and Veit, 
2006; Sheldon and Tabor, 2009).

Owing to the laterally limited extent of core 
and well-log information, and subsequent prob-
lems with correlation, high-resolution stratigra-
phy of Quaternary paleosol-bearing successions 
has seldom been applied to alluvial deposits in 
the subsurface and to core analysis, with few ex-
ceptions (Wallinga et al., 2004; Srivastava et al., †alessandro .amorosi@ unibo .it













clearly shown by CPTU parameters. Silty sand 
to fine sand, coarsening-upward deposits with 
gradational lower boundaries and sharp tops, on 
the other hand, are inferred to represent splay 
deposits. Heterolithic sand-silt layers (facies 2), 
reflecting traction plus fallout deposition, are 
interpreted as proximal levee deposits, while 
silt-clay couplets are interpreted to be distal 
 levee facies.

Bioturbated and Oxidized Silt and Clay 
(Well-Drained Floodplain Deposits)

Description
This facies association is characterized by 

a succession of thoroughly bioturbated and 
mottled silts and clays, up to several tens of 
meters thick. Carbonate nodules, roots, and 
plant fragments are common accessory materi-
als. Sedimentary structures are rare and include 
faint horizontal lamination. Yellow to brown 
clay variegation due to Fe and Mn oxides is 
very common (Fig. 5B). Intercalated with this 
muddy succession, there are thin layers of very 
fine sand with sharp base. Weakly developed 
paleosols are commonly intercalated with this 
facies association. Compressive strength values 
from PP tests are commonly in the range of 1.8 
and 2.5 kg/cm2, and cone tip resistance values 
(qt) from CPTU tests are narrowly constrained 
between 1.2 and 2.5 MPa. Pore-water pressure 
values are >>u0 (Table 1).

Interpretation
Bioturbated and oxidized mud commonly 

associated with pedogenically modified hori-
zons is interpreted to reflect deposition in 
low-energy freshwater environments, prone to 
subaerial exposure, such as well-drained flood-

plains. Thin sandy layers are identified as distal 
fringes of crevasse splays or levees. Compres-
sive strength and cone tip resistance values are 
typical for floodplain sediments (Amorosi and 
Marchi, 1999; Sarti et al., 2012). Pore pressure 
shows positive values due to the presence of 
massive clay, which represents a barrier to fluid 
circulation.

Homogeneous Gray Clay to Silty Clay 
(Poorly Drained Floodplain Deposits)

Description
This facies association, generally <5 m thick, 

consists of bioturbated, gray to dark-gray clay 
and silty clay deposits, with faint horizontal 
lamination, abundant organic matter, and sparse 
carbonate nodules (Fig. 5C). Plant fragments 
are also common. Compared to the well-drained 
floodplain facies association, this muddy de-
posit is softer, has homogeneous color, has 
a higher clay proportion, and typically lacks 
paleo sols and Fe-Mn oxides. Cone resistance 
values from CPTU generally range between 0.8 
and 1.2 MPa, with pore pressure typically >>u0, 
while the compressive strength registered from 
PP varies between 1.2 and 1.8 kg/cm2 (Table 1).

Interpretation
The absence of soil features and the varie-

gated colors suggest that deposition of this 
facies association took place in a low-energy, 
low-elevation topographic setting with occa-
sional subaerial exposure, probably under 
conditions of high water table. Carbonate nod-
ules were likely formed through evaporation 
of groundwater, at or above the water table. 
This facies asso ciation is likely to represent 
a poorly drained floodplain, at the transition 

between well-drained and almost permanently 
sub merged environments. CPTU tests and PP 
values also record intermediate values between 
subaerially exposed floodplain deposits and 
swamp facies (Table 1).

Organic-Matter–Rich Clay and 
Peat (Inner-Estuary and Coastal-
Swamp Deposits)

Description
This facies association, up to 15 m thick, has 

a characteristic wedge-shaped geometry and 
includes a succession of bioturbated, dark-gray 
to black, very soft clays with subordinate silts 
and sandy silts. Undecomposed organic mat-
ter, such as plant fragments, wood, root traces, 
and peat layers up to 0.5 m thick, is commonly 
encountered (Fig. 5D). Thin sand layers with a 
fining-upward tendency and sharp base display 
flat lamination. This facies association is typi-
fied by a lack of Fe and Mn oxides. Freshwater 
ostracods, such as Candona spp., are commonly 
encountered. CPTU tests show a linear cone 
response, invariably below 0.8 MPa. Pore pres-
sure increases linearly with the depth, reflecting 
a uniform lithology. Small peaks in cone resis-
tance are generally associated with higher peaks 
in sleeve friction, in pore pressure, and in the 
friction ratio (FR = fs/qt) column. Pocket pene-
trometer values are almost invariably lower than 
1.2 kg/cm2 (Table 1).

Interpretation
Dark-gray clay associated with abundant 

peat, undecomposed organic matter, and fresh-
water fossils, coupled with a lack of oxide 
variegation, is inferred to represent deposition 
in topo graphically depressed interfluvial areas 

TABLE 1. SUMMARY CHART OF THE VARIOUS FACIES ASSOCIATIONS IDENTIFIED IN THIS WORK

Facies association Lithology Color Sedimentary features
Accessory
material

PP values 
(kg/cm2) qt (MPa) fs (MPa) u

Fluvial channel Coarse to 
fine sand

Yellow to gray Sharp base, sharp or gradational top, 
fining-upward trend, cross-lamination, 
flat lamination

Wood fragments, 
no invertebrate fossils

3–20 0.02–0.1 <0

Crevasse channel 
and splay

Medium to 
very fine sand

Yellow to gray Sharp base and top, fining-upward trend 
(channel), gradational base, sharp top, 
coarsening-upward trend (splay)

Wood fragments, 
no invertebrate fossils

3–10 ≈0.05 ≤u0, <0

Levee Silty sand, 
silt, and clay

Yellow to gray Silt-sand/clay-silt alternations Bioturbation 3–8 ≈0.05 >>u0, <u0

Well-drained 
floodplain

Silt and clay Yellow to gray No grain-size trend, subtle lamination, 
mottles

Bioturbation, roots, 
and plant fragments

1.8–2.5 1.2–2.5 0.02–0.05 >>u0

Paleosol Silt and clay Black to gray Very stiff, dark A horizon, carbonate-rich 
Bk horizon

Organic matter, 
carbonate concretions

2.5–4.5 2–4 0.05–0.20 <u0

Poorly drained 
floodplain

Clay and silt Gray to 
dark gray

No grain-size trend, subtle lamination Organic matter 1.2–1.8 0.8–1.2 0.02–0.05 >>u0

Inner estuary/
coastal swamp

Clay Dark gray 
to black

No grain-size trend, subtle lamination Peat, wood, and 
plant fragments, 
freshwater fossils

<1.2 0.1–0.8 <0.05 >>u0

Outer estuary/
lagoon

Clay Gray to 
dark gray

No grain-size trend, subtle lamination, 
sand intercalations

Rare plant fragments, 
brackish fossils

<1.2 0.1–0.8 <0.05 >>u0, <0

Note: PP—pocket penetrometer; qt—cone resistance; fs—sleeve friction; u—pore pressure.











Based on the age of the LGM paleosol and 
its coeval, shallow paleovalley system (Fig. 10), 
we hypothesize with reasonable confidence that 
fluvial incision took place in response to rapid 
climate change at the culminating regressive 
phase of the MIS 3-2 transition, which saw the 
onset of fully glacial conditions (Lambeck et al., 
2002; Siddall et al., 2003). However, at that time, 
the shoreline position was ~300  km from the 
modern shoreline, so an overprint by sea-level 
lowering along the low-gradient Adriatic shelf 
cannot be ruled out. A relative fall in sea level of 
33 m, from –74 to –107 m, was associated with 
the MIS 3-2 transition (Cutler et al., 2003), and 
such a sea-level fall might have enhanced the 
amount of fluvial incision. Channel entrench-
ment between 30 and 24 k.y. B.P. has also been 
reported in a detailed study of the Rhine-Meuse 
system (Busschers et al., 2005, 2007), and from 
other coeval incised-valley systems around the 
world (Dabrio et al., 2000; Wellner and Bartek, 
2003; Anderson et al., 2004; Blum et al., 2008; 
Kasse et  al., 2010; Amorosi et  al., 2013), re-
inforcing the hypothesis of an external forcing 
on LGM paleosol development.

A significantly different interpretation is 
offered for the more immature YD paleosol, 
which developed at the Pleistocene-Holocene 
boundary (with no associated sea-level change), 
and for which changes in climate and sediment 
supply appear to have been the driving factors. 
The shorter term over which the YD paleosol 
was formed, coincident with the YD cold re-
versal, is consistent with subsurface stratigra-
phy, which shows a generally narrower YD Po 
channel-belt sand body compared to the LGM 
channel belt (Figs. 6–10). Increased erosion 
and sediment flux in response to the YD cold 
event have been reported from several coastal 
systems (Abdulah et al., 2004; Anderson et al., 
2004; Berné et al., 2007; Pellegrini et al., 2015; 
Amorosi et  al., 2016). In the central Adriatic, 
this period of extreme climatic instability led to 
the accumulation of a >10-m-thick prograding 
wedge recognized through high-resolution seis-
mic profiles (middle transgressive systems tract 
[TST] unit of Cattaneo and Trincardi, 1999; 
Maselli et al., 2011), which is interpreted as the 
marine equivalent of the YD channel belt.

Concerning the pre-LGM portion of the 
stratigraphic record, this sedimentary succes-
sion is associated with large chronologic un-
certainties that render comparisons of soil de-
velopment with sea-level and climate changes 
uncertain. Based on 14C dating, the MIS 3-2 
(LGM) paleosol is underlain by a series of im-
mature paleosols that formed during MIS 3 and 
older periods, possibly starting with the MIS 
5-4 transition (see Törnqvist et al., 2003). These
paleosols, which are evenly spaced and which

developed during short intervals of time (a few 
thousand years), might represent the effect of 
multiple climatic variations, with successive, 
short-lived episodes of soil development punc-
tuated by aggradation phases. A corollary of this 
interpretation is that climate oscillations such as 
Dansgaard-Oeschger (D-O) events could have 
affected fluvial sedimentation during MIS 4 
and MIS 3, giving rise to a sedimentary record 
highly punctuated by paleosol-bearing cycles 
(Wallinga et al., 2004). A definitive test for this 
hypothesis, however, requires refinement with a 
larger (chronologic and geochemical) data set 
than the one available at present.

IMPLICATIONS FOR SEQUENCE 
STRATIGRAPHY

The ability to identify a conformable deposi-
tional sequence is dependent on the resolution 
of the data presented, and very high-resolution 
data sets, such as those presented here, may af-
fect the sequence-stratigraphic hierarchy and 
the recognition of the key bounding surfaces 
(Neal and Abreu, 2009). In this regard, the late 
Quaternary depositional sequence of the Po 
Plain, developed on a time scale of a few tens of 
thousands of years, represents an end member 
for temporal resolution in sequence stratigraphy.

For the late Quaternary, it is well established 
that 100 k.y. glacio-eustatic fluctuations were 
markedly asymmetric, with long phases of rela-
tive sea-level fall followed by short periods of 
stabilization and rise (Chappell and Shackle-
ton, 1986). In particular, the creation of thick 
ice sheets caused a worldwide, late Pleistocene 
(post–120 k.y. B.P.) sea-level drop of ~120  m 
in 90 k.y., and the transition from interglacial 
to glacial conditions occurred in a stepwise 
fashion, with three distinct phases of sea-level 
fall, at the MIS 5e-5d, MIS 5-4, and MIS 3-2 
transitions (Fig. 10), respectively (Waelbroeck 
et al., 2002). This higher-resolution view of the 
late Pleistocene depositional sequence (fourth-
order sequence of Wornardt and Vail, 1991) 
implies that at least three separate stratigraphic 
unconformities might have formed during the 
glacial to interglacial transition, each having 
the significance of a sequence boundary (see the 
aggradational-degradational rhythms of Gibling 
et al., 2011).

The documented presence of several inter-
nal unconformities within the late Pleistocene 
depositional sequence provides the path to turn 
a low-resolution stratigraphic framework into 
a high-resolution one (Neal and Abreu, 2009). 
Particularly, evidence of degradational stacking 
at the MIS 3-2 transition supports interpretation 
of the prominent LGM paleosol (and associated 
bounding surface of the LGM channel belt) as 

the sequence boundary of a higher-resolution 
(fifth-order) depositional sequence (“Stage 2 
sequence boundary” of Anderson et  al., 2004; 
Fig. 10 herein). The “LGM depositional se-
quence” spans less than 30 k.y., which is prob-
ably the shortest time interval stratigraphically 
equivalent to a depositional sequence (Neal and 
Abreu, 2009).

On a basin scale, the amalgamated, sheet-
like fluvial bodies that overlie the LGM uncon-
formity represent the proximal feeder system 
of the thick prograding delta that developed in 
the mid-Adriatic shelf under sea-level lowstand 
conditions (Amorosi et al., 2016).

The YD paleosol has very high correlation 
potential, being marked by the sharp contrast 
between well-drained floodplain deposits and 
extensive, organic-rich, paludal and estuarine 
facies (Figs. 7–9). This hiatal surface, marking 
the base of a retrogradationally stacked stratal 
succession (Fig. 10), virtually coincides with 
the transgressive surface (Amorosi et al., 2016). 
Above the YD paleosol, fluvial channels be-
come isolated in a mud-prone Holocene unit, 
with poor channel-belt development. This strati-
graphic motif is interpreted to reflect increased 
accommodation rate during rapidly rising sea 
level (Bruno et  al., 2016), and it corresponds 
to the classic transgressive and highstand sys-
tems tracts.

CONCLUSIONS

We applied the principles of pedostratigra-
phy to a large sector of the Po Plain to construct 
a realistic subsurface model of paleosol–chan-
nel belt sand body relationships from a rapidly 
subsiding basin. To this purpose, we selected 
the late Pleistocene to Holocene stratigraphic 
record of the southern Po Plain as a chronologi-
cally well-constrained example of non marine 
architecture. Since paleosol characteristics 
may vary depending on their paleolandscape 
position, we used an allostratigraphic approach 
built primarily on stratigraphic position of 
paleo sols, rather than on individual soil fea-
tures. The  major outcomes of this work can be 
summarized as follows.

(1) The stratigraphic architecture of the
late Pleistocene fluvial succession in the rap-
idly subsiding Po Basin consists of a series of 
aggra dationally stacked, locally amalgamated 
channel- belt sand bodies in lieu of a well-defined 
paleovalley system underlain by a composite 
valley-fill unconformity. Channel bodies are fo-
cused beneath the modern Po River and provide 
a nearly continuous record of falling-stage and 
lowstand fluvial sedimentation spanning the en-
tire glacial interval (MIS 4 to MIS 2), with poor 
evidence of degradational architecture.



(2) A set of regionally mappable, weakly de-
veloped paleosols (Inceptisols) was identified 
and traced for tens of kilometers across a wide 
portion of the Po Plain, from the modern Po 
River to the Apennine margin. The most promi-
nent paleosol developed at the onset of the LGM, 
i.e., during a period of abrupt climate cooling 
asso ciated with significant sea-level drop. The 
YD paleosol is less developed than the LGM 
paleosol, and its evolution was mainly driven by 
climate forcing.

(3) Basin-scale correlations permit an un-
equivocal link to be established between paleo-
sol development and generation of channel-belt 
sand bodies. No mature paleosol (the interfluve 
sequence boundary of classic sequence-strati-
graphic models) was observed in cored inter-
vals. Cumulative paleosols (such as the LGM 
paleosol), made up of vertically stacked, weakly 
developed paleosols separated by thin, non-
pedogenized intervals, are invariably coupled 
to the largest channel-belt sand bodies, reflect-
ing sedimentation in shallowly incised valleys, 
whereas paleosols with simple soil profiles (e.g., 
the YD paleosol) correlate with narrower chan-
nel belts, formed over shorter periods of time, 
and are not associated with significant fluvial 
incision.

(4) This paper shows that in a high-accommo-
dation fluvial setting, sea-level fall may result in 
very minor or no degradation. In the Po system, 
updip of the Holocene estuarine-deltaic sedi-
ment wedge, where the long-valley (“equilib-
rium”) profile of the fluvial system extends and 
under conditions of high sediment flux, the sys-
tem could be expected not to degrade or incise.

(5) In the late Quaternary record, weakly
developed paleosols delineate stratigraphic sur-
faces that approximate time lines and may al-
low continuous, high-resolution reconstruction 
of alluvial architecture. Owing to their distinc-
tive engineering properties, unconsolidated suc-
cessions of paleosols can readily be delineated 
based on CPTU and PP tests inferred from 
conventional core descriptions, thus facilitating 
stratigraphic correlation based on continuous 
core analysis.

(6) Through a chronologically well-con-
strained case study related to the last 40 k.y., this 
paper contributes new data to a surprisingly poor 
database on paleosol–channel belt relationships 
of late Quaternary deposits. Weakly developed 
paleosols are traditionally neglected in sequence 
stratigraphy, but they represent stratigraphic 
markers that may help disentangle subsurface 
alluvial architecture of unconsolidated deposits 
with unprecedented fidelity and level of detail, 
representing possible modern analogs for the 
interpretation of ancient successions. We expect 
that the stratigraphic approach to mapping of 

weakly developed paleosols will open up a new 
area of application to the sequence stratigraphy 
of buried Quaternary nonmarine successions.
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