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1. Introduction
In this supplementary material, we report architectural

details of the proposed method in Section 2, followed by
an analysis of the computational performance in Section 3.
In section 4, we present additional ablation studies, includ-
ing the impact of pre-training and foreground mask quality;
an analysis of the meanshape learning process; the use of
a different number of meanshapes on CUB; a study on the
unsupervised shape selection module, in terms of classifica-
tion accuracy and average meanshape weight. Finally, ad-
ditional qualitative results and failure cases are reported in
Section 5.

2. Architectural details
In this section, we firstly describe the architectural de-

tails of our method. Then, we report the weights used to
balance the losses during the training process.

2.1. Network

Here, we report the implementation details of each mod-
ule of the proposed framework.
Feature extraction. We use ResNet-18 [4] as visual en-
coder, replacing the classification layer with an additional
convolutional layer with kernel size k = 4, stride s = 2, and
256 filters. Taking as input an RGB image I ∈ R3×256×256,
the encoder outputs a feature map ftex ∈ R256×4×4. These
features are then flattened and given as input to a 256-d
fully connected layer with batch normalization and a leaky
ReLU activation function, obtaining a 256-d feature vector
fshape. The visual encoder is pre-trained on ImageNet [1].
We investigate the impact of pre-training on the unsuper-
vised shape selection in Section 4.1.
Unsupervised shape selection. The unsupervised shape se-
lection module is a network that smoothly approximates the
argmax function over the N meanshapes. It is composed of
two fully-connected layers: (i) a 64-d layer with batch nor-
malization and leaky ReLU, (ii) a N -d layer followed by

* Equal contribution.

Dataset λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Pascal3D+ 100.0 6.0 1.8 0.05 20.0 2.0 0.03 0.05 0.8

CUB 20.0 1.2 0.18 0.005 2.0 0.1 0.12 0.02 3.2

Table 1: Loss weights on Pascal3D+ [10] and CUB [9].

Method Params (M) Memory (GB) Inference (ms)

CMR [5] 84.25 2.28 3.56± 0.14

U-CMR [2] 19.89 3.38 5.10± 2.91

Ours 20.10 3.74 4.43± 0.19

Table 2: Performance analysis of our multi-category ap-
proach against open-sourced single-category competitors.

a softmax activation function that outputs the N weighting
scores. The input of the module are the features fshape.
Vertex deformation. Inspired by the work of Park et al. [7],
the vertex deformation network is composed of four 512-d
fully connected layers with weight normalization, random
dropout of 0.2, and the ReLU activation function. An addi-
tional 3-d fully connected layer with a tanh activation func-
tion outputs the displacement ∆vj = (∆x,∆y,∆z) of the
vertex vj , which is given as input along with the features
fshape and the weighting scores of the previous module. The
input features (i.e. vertex location, fshape, and weighting
scores) are also concatenated to the output of the second
layer, before applying the third one.
3D pose regression. The prediction of the object viewpoint
is tackled as a regression problem using two fully connected
layers: (i) a 64-d layer with batch normalization, random
dropout of 0.5, and leaky ReLU, (ii) a 7-d layer that outputs
the object pose π̂ = (ŝ, t̂, q̂) ∈ (R1,R2,R4). The input of
the module are the features fshape.
Texture prediction. Inspired by the decoder of the SPADE
architecture proposed by Park et al. [8], our texture decoder
is composed of 6 upsampling steps with bilinear interpola-
tion, in order to output a texture image Itex ∈ R3×256×256.
Differently from the original implementation, we use only



Training classes Segmentation Number of 3D IoU ↑ Mask IoU ↑ Texture metrics
Method meanshapes Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

aeroplane, car Mask R-CNN 2 0.556 0.648 0.699 0.739 0.064 350.12

aeroplane, car PointRend 2 0.552 0.671 0.702 0.737 0.062 344.80

bicycle, bus, car, motorbike Mask R-CNN 4 0.530 0.677 0.756 0.605 0.098 390.55

bicycle, bus, car, motorbike PointRend 4 0.543 0.711 0.759 0.607 0.094 380.15

Table 3: Evaluation on Pascal3D+ [10] using segmentation masks obtained with Mask R-CNN [3] or PointRend [6].
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Figure 1: Meanshapes learned by our method trained on
aeroplanes and cars, and on 4 automotive classes of Pas-
cal3D+ [10] without encoder pre-training on ImageNet.

the convolutional layers with skip connections and leaky
ReLU activation functions. We test different types of nor-
malization (e.g. batch, instance), but we obtain the best re-
sults without it. The decoder takes as input the features ftex
and the output is finally passed through a sigmoid activation
function in order to obtain valid RGB color values.

2.2. Loss weights

In the following, we reintroduce the losses used during
training in order to show their weighting parameters, whose
values are reported in Table 1. We select different weights
for each dataset, exploiting their validation set.

For the shape prediction, the loss is defined by:

Lshape = λ1Lmask + λ2LM̂
smooth + λ3L∆V

smooth + λ4Ldef (1)

where the smoothness prior is applied to both the vertices
of deformed shape M̂ and the predicted deformations ∆V .
For the pose regression, the loss is defined as:

Lcam = λ5Lpose + λ6Lpose reg (2)

while the texture prediction loss is represented by:

Ltex = λ7Lcolor + λ8Lstyle + λ9Lpercept (3)
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Figure 2: Some of the meanshapes learned by our method
trained on CUB [9], using 14 meanshapes, without encoder
pre-training on ImageNet.

3. Computational Performance
In this section, we assess the computational requirements

of our method and some open-sourced competitors. Com-
pared to previous category-specific methods, our approach
does not require an initial shape classifier and the training
on N independent models, thus being faster and requiring
less memory during inference. Indeed, our multi-category
method has comparable network size, memory usage, and
inference time with respect to the single-category competi-
tors, as reported in Table 2. Their evaluation is conducted
on a workstation with an Intel Core i7-7700K and a Nvidia
GeForce GTX 1080 Ti.

4. Additional ablation studies
In this section, we present further experiments on the

datasets Pascal3D+ and CUB.

4.1. Impact of pre-training on shape selection

Since our model exploits a visual encoder pre-trained on
ImageNet [1], we investigate the impact of using pre-trained
weights or training the encoder from scratch, with a par-
ticular focus on the unsupervised shape selection module.
Indeed, we aim to verify that the proposed method is capa-



Training classes ImageNet Number of 3D IoU ↑ Mask IoU ↑ Texture metrics
pre-train meanshapes Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

aeroplane, car 4 2 0.550 0.639 0.700 0.732 0.066 353.61

aeroplane, car 2 0.541 0.599 0.675 0.728 0.069 357.47

bicycle, bus, car, motorbike 4 4 0.543 0.711 0.759 0.607 0.094 380.15

bicycle, bus, car, motorbike 4 0.534 0.632 0.727 0.580 0.111 392.71

Table 4: Evaluation on Pascal3D+ [10] using a ResNet-18 encoder with or without pre-trained weights on ImageNet [1]
(segmentation masks obtained with PointRend [6]).

Imagenet Mask IoU ↑ Texture metrics
pre-train Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

4 0.642 0.723 0.715 0.065 231.95

0.563 0.699 0.693 0.077 259.36

Table 5: Evaluation on CUB [9] using a ResNet-18 encoder
with or without pre-trained weights on ImagetNet [1].

ble of learning meaningful meanshapes even without a pre-
trained feature extractor. Quantitative results and learned
meanshapes are reported (i) in Table 4 and Figure 1 for Pas-
cal3D+ and (ii) in Table 5 and Figure 2 for the CUB dataset.
IoU and texture metrics show that the pre-trained version
obtains better scores in every setting. However, it is worth
noting that the framework is capable of obtaining satisfac-
tory results and learning meaningful meanshapes even with-
out any pre-training of the encoder network, confirming the
effectiveness of the proposed shape selection module.

4.2. Impact of finer foreground masks

In this section, we compare the scores obtained on
Pascal3D+ using rough foreground masks, provided by
Mask R-CNN [3], or more precise masks, obtained with
PointRend [6]. Results are reported in Table 3. As expected,
there is a clear advantage in using finer masks in the setting
with 4 automotive classes. Indeed, PointRend produces ac-
curate masks, which present fine details and sharp edges,
that are leveraged by the framework during the training pro-
cess. On the other hand, a relatively small improvement can
be observed when training on just aeroplanes and cars. This
may be due to a different quality of the aeroplane masks
between Mask R-CNN and PointRend.

4.3. Meanshape learning during training

In order to evaluate the unsupervised learning of multi-
ple meanshapes during the training process, we report the
learned shapes at different epochs in Figure 3 (Pascal3D+)
and in Figure 4 (CUB). These results show that the method
distinguishes different object categories within the first few
epochs and then progressively optimize each meanshape ac-
cordingly. While the classes are clearly disentangled in just
tens of epochs on Pascal3D+, the same process requires

Number of Mask IoU ↑ Texture metrics
meanshapes Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

1 0.658 0.721 0.717 0.064 227.24

10 0.657 0.721 0.720 0.063 232.84

14 0.642 0.723 0.715 0.065 231.95

18 0.648 0.724 0.715 0.065 228.24

Table 6: Evaluation on CUB [9] using different numbers of
meanshapes (1, 10, 14, 18).

more epochs on CUB. We believe that this difference is due
to the class type: classes of different entities on Pascal3D+,
different classes of the same entity “bird” on CUB. Never-
theless, the method progressively learns meaningful mean-
shapes in both settings.

4.4. Number of meanshapes on CUB

The CUB dataset contains images of the same category
“bird”. However, the dataset can be split in many sub-
categories, for instance using the annotated bird type (200
different values) or one of the other annotated categorical at-
tributes (e.g. the “has shape” one provides 14 different val-
ues, including duck-like, gull-like, hummingbird-like, long-
legged-like). Thus, in the paper we empirically set the num-
ber of meanshapes as the number of the “has shape” at-
tribute values. Here, we analyze the impact of using dif-
ferent numbers of meanshapes, testing the framework with
1, 10, 14, and 18 meanshapes and reporting the results in
Table 6. Differently from the training on Pascal3D+, in this
case there are no clear advantages, in terms of mask IoU and
texture scores, in using a single or multiple meanshapes.
However, as clearly shown in the paper and in Figure 4,
the method can exploit the available meanshapes to learn
meaningful base shapes in an unsupervised manner. These
base shapes can then be used as representative shapes for
the whole dataset or as bird templates in other tasks. In ad-
dition, we did not find an explicit pattern in using different
numbers of meanshapes. This shows that the initialization
of this hyper-parameter is not crucial for the learning pro-
cess, in particular when the class division is not perfectly
clear.
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Figure 3: Meanshapes learned during different epochs of the training procedure on aeroplanes and cars (rows 1-2), and on 4
automotive classes (rows 3-6) of Pascal3D+ [10].
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Figure 4: Some of the meanshapes learned during different epochs of the training procedure on CUB [9], using 14 mean-
shapes.

4.5. Unsupervised shape classification

In this section, we investigate the usage of the unsu-
pervised shape selection module as classifier on the Pas-
cal3D+ dataset. In particular, we evaluate whether the most
weighted meanshape represents the object category. In the
2-class setting (aeroplane, car), the obtained classification
accuracy is 98.82%; in the 4-class setting (bicycle, bus, car,
motorbike), the classification accuracy is 93.45%. In the
latter case, the classes bicycle and motorbike are consid-
ered a single class, given that the method learned a single
meanshape that represents both.

4.6. Average meanshape weights

To evaluate the importance of each meanshape on the
predicted shape, we compute the average meanshape weight
predicted by the unsupervised shape selection module. Re-
sults are reported in Figure 5 for all the meanshapes of
the experiments with aeroplanes (Pascal3D+) and birds
(CUB). While we acknowledge that there are few learned
meanshapes that do not correspond to a clear object cat-
egory, these meanshapes have a marginal impact on the
weighted meanshape. On the contrary, the most represen-
tative meanshapes have, on average, a major contribution
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Figure 5: Average meanshape weights for Pascal3D+ (aeroplane class, 8 meanshapes) and CUB (14 meanshapes) ordered
from the most weighted to the least one.

on the weighted one.

5. Additional qualitative results
We report additional qualitative results for the CUB

dataset in Figure 6 and for experiments on Pascal3D+ in
Figure 7 (all 12 classes), Figure 8 (4 automotive classes)
and Figure 9 (aeroplane, car).

5.1. Failure cases

In Figure 10, we report some failure cases of our method
trained on 4 automotive classes of Pascal3D+. First of
all, we identified some rare cases in which the predicted
meanshape is incorrect. For instance, bicycles with large
wheels are sometimes mistaken for motorbikes while cars
with roofboxes are confused with buses (Fig. 10, rows 1-
3). Moreover, we detected that the method sometimes out-
puts wrong deformations, causing the objects to be skewed,
when the viewpoint is very close to the object (Fig. 10, rows
4-5). Finally, in some cases the method can not predict cor-
rect deformations of articulated parts (Fig. 10, rows 6).
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Figure 6: Additional qualitative results of our method trained on CUB [9], using 14 meanshapes.
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Figure 7: Additional qualitative results of our method trained jointly on all 12 classes of Pascal3D+ [10].
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Figure 8: Additional qualitative results of our method trained jointly on 4 automotive classes (bicycle, bus, car, motorbike)
of Pascal3D+ [10].
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Figure 9: Additional qualitative results of our method trained jointly on aeroplanes and cars of Pascal3D+ [10].
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Figure 10: Some failure cases of our method trained jointly on 4 automotive classes (bicycle, bus, car, motorbike) of Pas-
cal3D+ [10].


