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Abstract

The investigation of visual categorization has recently been aided by the introduction of deep con-
volutional neural networks (CNNs), which achieve unprecedented accuracy in picture classification
after extensive training. Even if the architecture of CNNs is inspired by the organization of the visual
brain, the similarity between CNN and human visual processing remains unclear. Here, we inves-
tigated this issue by engaging humans and CNNs in a two-class visual categorization task. To this
end, pictures containing animals or vehicles were modified to contain only low/high spatial frequency
(HSF) information, or were scrambled in the phase of the spatial frequency spectrum. For all types of
degradation, accuracy increased as degradation was reduced for both humans and CNNs; however, the
thresholds for accurate categorization varied between humans and CNNs. More remarkable differences
were observed for HSF information compared to the other two types of degradation, both in terms of
overall accuracy and image-level agreement between humans and CNNs. The difficulty with which
the CNNs were shown to categorize high-passed natural scenes was reduced by picture whitening, a
procedure which is inspired by how visual systems process natural images. The results are discussed
concerning the adaptation to regularities in the visual environment (scene statistics); if the visual char-
acteristics of the environment are not learned by CNNs, their visual categorization may depend only
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on a subset of the visual information on which humans rely, for example, on low spatial frequency
information.

Keywords: Visual categorization; Convolutional neural networks; Spatial frequencies

1. Introduction

Making sense of the world and taking appropriate decisions is essential for adaptive behav-
ior and survival. Concerning vision, this means making sense of the light and shade which is
projected onto the retina. Despite overwhelming visual variety (due to viewpoint, illumina-
tion, and so on), in most cases, humans and other animals can make sense of the outer world.
Moreover, vision is acquired early in phylogenetic development (Gehring, 2014), and visual
understanding is learned early in the development of individuals (Bernstein, Loftus, & Melt-
zoff, 2005). How visual understanding is achieved is the object of study in diverse disciplines,
such as general psychology, visual neuroscience, and computer science. Recently, these dis-
ciplines have shown a converging interest in artificial simulations of vision, namely deep
convolutional neural networks (CNNs), which compete with humans in terms of capability
to classify visual scenes (e.g., He, Zhang, Ren, & Sun, 2016). However, a similarly accu-
rate performance can depend on different underlying processes, and an active line of studies
investigates the degree of similarity between human and artificial vision (Dodge & Karam,
2019; Geirhos et al., 2018; Rajalingham et al., 2018; Tadros, Cullen, Greene, & Cooper,
2019). Here, we address the functional similarity between CNN and human vision, and, more
specifically, investigate whether humans and CNNs use the same visual information for the
categorization of natural scenes.

Categorizing natural scenes consists of classifying real-world views into separate prede-
fined classes. A vast body of literature has examined the types of categorization that can be
carried out, for example, distinguishing basic, superordinate, and subordinate levels of cate-
gorization (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Previous studies observed
that superordinate categorization (e.g., distinguishing “animals” from “vehicles”) can be per-
formed efficiently with briefly presented stimuli (De Cesarei, Codispoti, Schupp, & Stegagno,
2006; Rousselet, Macé, Thorpe, & Fabre-Thorpe, 2007; Thorpe, Fize, & Marlot, 1996; Van-
Rullen & Thorpe, 2001), engages high-order visual areas (Codispoti, Ferrari, Junghöfer, &
Schupp, 2006; De Cesarei, Cavicchi, Micucci, & Codispoti, 2019; Fize et al., 2000), and has
electrocortical correlates that include both an earlier component which is related to the pro-
cessing of stimulus-driven scene statistics, and a later component which is independent from
the bottom-up differences and reflects a more task-related semantic analysis (De Cesarei et al.,
2019; Rousselet et al., 2007; VanRullen & Thorpe, 2001).

Visual information is represented on several spatial scales, ranging from gross silhouettes
to fine details, and these scales can be exploited for the task at hand; some tasks may rely
on coarse shapes, while others may require the analysis of fine details (De Cesarei & Loftus,
2011; De Cesarei et al., 2019; Navon, 1977; Schyns & Oliva, 1994). Spatial scales are best
described by spatial frequencies (Field, 1987; Shulman & Wilson, 1987), which are one of the
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Fig. 1. Example of an intact picture, and of degraded versions of the same picture. In this example, low-pass
filtering, high-pass filtering, and phase scrambling are applied by transforming pictures from the image space (how
they appear) to the frequency space (how they are composed) using Fourier transforms. If the spatial frequency
space is altered, either by filtering some frequencies (e.g., low or high) or by manipulating the phase, and then the
picture is transformed back from the frequency to the image space, a degraded version of the original picture is
obtained

organizing factors in the columnar architecture of the visual cortex (Blakemore & Campbell,
1969). Spatial frequencies measure the relationship between the visual area which is occupied
by an element compared to a reference area (e.g., the whole scene), and can be used to select
a specific scale of visual information (e.g., high spatial frequencies [HSFs] for tiny details).
The visual system can understand the meaning of a scene based on several spatial frequen-
cies. In the example in Figure 1, we can understand that there is a cat both when we focus
on the dark silhouette against the wall (low spatial frequencies, LSFs; e.g., Sanocki, 1993),
and when we focus on the finer contours of the animal (HSFs; Berman, Golomb, & Walther,
2017). A vast amount of literature has examined the relative use over time of low and high
spatial frequencies, showing that global (operationalized as LSF) elements of a scene are pro-
cessed before, and interfere with the processing of, local (operationalized as HSF) elements
of a scene (De Cesarei & Loftus, 2011; Kimchi, 1992; Navon, 1977; Sanocki, 1993; Schyns
& Oliva, 1994). Finally, while the amplitude of spatial frequencies measures the presence
of sized elements in the visual input, the composition of an image is also described by its
spatial frequency phase, which provides information as to the relative position of sized ele-
ments within the visual input and is related to the presence of higher-order regularities in the
appearance of a visual stimulus (Field, 1987). While categorization performance is relatively
robust to changes in spatial frequency amplitude, disruption of phase leads to an increase in
computational load and in a severe dampening of image understanding (Arsenault, Yoonessi,
& Baker, 2011; Codispoti, Micucci, & De Cesarei, 2021; De Cesarei, Peverato, Mastria, &
Codispoti, 2015; Joubert, Rousselet, Fabre-Thorpe, & Fize, 2009; VanRullen, 2011).

Recently, deep neural networks (DNNs; Hinton & Salakhutdinov, 2006; Krizhevsky,
Sutskever, & Hinton, 2012; LeCun, Bottou, Bengio, & Haffner, 1998; Rumelhart, Hinton,
& Williams, 1986; Zhao, Zheng, Xu, & Wu, 2019) have gained popularity among artificial
models of vision, partially due to their extremely high accuracy in visual tasks. DNNs acquire
information from an input layer and generate a decision (e.g., an animal/vehicle prediction
value) from an output layer; moreover, several layers exist between the input and output lay-
ers. In deep CNNs, these layers constrain the massive input information through progressively
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more restricted layers, until a single output is generated. Each layer contains units which are
connected to each other according to certain weights, which are adjusted through learning. In
turn, several training schedules exist, for example, unsupervised, reinforcement-based, semi-
supervised, or supervised. The training phase is meant to allow the network to learn those
regularities which are present in the training dataset, such as natural scenes; further learning
can be achieved later, for example, by fine-tuning the network to a more specialized task.
When the network is tested with new stimuli, the accuracy of the CNN is often close to that
of humans (e.g., Krizhevsky et al., 2012). Studies which directly compared visual representa-
tions in humans and CNNs indicated a similarity between the hierarchical analysis of visual
information in hidden CNN layers and the sequence of stages of visual processing in the
human brain (Cadieu et al., 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Groen
et al., 2018; Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Yamins &
Di Carlo, 2016; Yamins, Hong, Cadieu, & DiCarlo, 2013). These similarities suggest that
CNNs are useful tools not only for solving practical engineering tasks, but also for model-
ing biological vision (VanRullen, 2017; Wardle & Baker, 2020). However, this brings in the
issue of the comparison between CNN and human visual processing, for both theoretical and
applied reasons. On the applied side, an artificial system which can replicate both the suc-
cesses and errors of humans might be used to examine the likelihood of accurate perception
when visual conditions are degraded, for example, in the fog or dust, in peripheral vision, or
in low-contrast conditions. On the theoretical side, the modeling of mental operations by arti-
ficial algorithms has long been used as a tool for understanding human cognition, eliminating
“hidden elements of the anthropomorphically subjective” (Hull, 1943, p. 27) and allowing
for “simulation of behavior” (e.g., Abelson & Carroll, 1965), and more recently for compu-
tational accounts of visual processing (e.g., Deco & Rolls, 2002). In this line, CNNs proved
themselves to be useful models for computational simulation of vision, both in terms of cor-
tical activity (e.g., Wardle & Baker, 2020) and understanding the representation of stimulus
dimensions (e.g., Kubilius, Bracci, & Op de Beeck, 2016).

However, differences in visual processing have also been observed between humans and
CNNs. For instance, CNNs can be “fooled” to categorize meaningless textures as real objects
with high confidence (Nguyen, Yosinski, & Clune, 2015). Moreover, adding visual noise
which does not impact human categorization prevented CNNs from correctly recognizing
intact images (Szegedy et al., 2014). More specifically, in these studies, “adversarial images”
are presented to CNNs, and these images contain noise which is imperceptible to humans,
but alters the CNN visual representation enough to lead it to an incorrect classification. How-
ever, these previous studies lacked a quantitative comparison between humans and CNNs.
Recently, some studies have directly compared visual processing in humans and CNNs, focus-
ing on the final performance achieved by the classificator rather than on the internal (brain
or layers) visual input representation that is achieved (Dodge & Karam, 2019; Geirhos et al.,
2018; Kubilius, Bracci, & Op de Beeck, 2016; Rajalingham et al., 2018; Tadros et al., 2019).
When directly comparing humans and CNNs, Dodge and Karam (2019) and Tadros et al.
(2019) observed that while CNN visual classification of intact stimuli is on a par with that of
human participants, it drops significantly with degraded pictures, and that CNN errors have
little correlation with human ones. A similar result was observed by Geirhos et al. (2018),
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who additionally observed that, while retraining the CNN on the distortion type it would be
tested on ameliorated its performance, this improvement did not generalize to other distortion
types. Moreover, Rajalingham and colleagues (2018) observed low image-level agreement
between humans and CNNs. Altogether, these previous results suggest that functional simi-
larities between human and CNN vision may be restricted to some types of visual information.

1.1. The research problem

Here, we examine the use of visual information by humans and CNNs, focusing specifically
on the amplitude and phase of the image spatial frequency spectrum. The task, for a sample
of human participants and a total of four CNNs, was to categorize pictures as representing
animals or vehicles (superordinate categorization). We chose two categories (animals and
vehicles), which were used in the previous literature (De Cesarei et al., 2019; Thorpe et al.,
1996; VanRullen & Thorpe, 2001), and are familiar to human participants. Pictures could be
intact or degraded through low-pass filtering, high-pass filtering, or phase-scrambling. High-
and low-pass filters remove global shapes and sharp details, respectively, and were used here
to examine the role of spatial scales (ranging continuously from high to low) in performance
accuracy. Moreover, several studies indicate that not only the amplitude, but also the phase
of the spatial frequency spectrum is important for picture understanding (Codispoti et al.,
2021; De Cesarei et al., 2015; Joubert et al., 2009). Specifically, if the phase of an image is
altered, its spatial frequency components are displaced even if their amplitude is not altered;
surprisingly, no study exists, to our knowledge, that has manipulated the phase of the spatial
frequency spectrum while assessing categorization by CNNs. In all conditions (amplitude
filtering; phase scrambling), we reasoned that if the sources of information for accurate visual
categorization in humans and CNNs are similar, then comparable dampening of performance
should be observed as visual information is similarly degraded.

2. General method

2.1. Task

In all experiments, humans and CNNs categorized pictures as containing animals or vehi-
cles. Scene understanding was dampened by degrading the picture through high-pass filtering
(HSF), low-pass filtering (LSF), or phase scrambling.

2.2. Pictures

2.2.1. Test stimuli
A total of 576 pictures were selected from the Internet to test the categorization of natural

scenes by humans and CNNs. Pictures portrayed one or more foreground objects in real-
world environments. In half of the pictures, the foreground objects were animals, whereas in
the other half, they were vehicles. Pictures were in color and were balanced for brightness
and contrast (pixel intensity M = 128, SD = 72.11). Each picture was resized to 431×323
pixels before being degraded.
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2.2.2. Fine-tuning of CNNs
For the fine-tuning phase of the CNNs, a set of 3130 color pictures was obtained from the

two synsets Animals (1571 images) and Vehicles (1559 images) in the ImageNet database
(Deng et al., 2009). These pictures were also resized to 431×323 pixels, and balanced for
brightness and contrast as for test pictures.

2.2.3. Picture degradation
Different versions of each picture were created by manipulating the amplitude or the phase

of the spatial frequency spectrum. Spatial frequency filtering was carried out using Matlab
routines (De Cesarei, Mastria, & Codispoti, 2013; Loftus & Harley, 2005), and different ver-
sions of the same picture were created by applying a low- or high-pass spatial frequency filter,
varying in filter threshold. These filters pass all spatial frequencies up to a frequency value of
F0, when spectral amplitude begins to be attenuated with a parabolic falloff. Spectral ampli-
tude is completely filtered out when an F1 level is reached, and this happens three octaves
above or below the F0 parameter in the case of LSF and HSF filters, respectively. Hereafter,
we report F1, which is the value at which spectral amplitude is totally filtered out. For human
participants, four degradation levels were created for each filtering condition, and the filter-
ing thresholds were decided based on the previous research (De Cesarei & Codispoti, 2011;
De Cesarei & Loftus, 2011) and on pilot data on a separate sample of participants, with the
aim of identifying values that sampled the rising part of the psychometric function. For the
HSF condition, F1 values were 120.68, 85.33, 60.34, and 10.67 cpi. For the LSF condition,
F1 values were 5.66, 9.19, 14.93, and 64 cpi. For the phase scrambling condition, we used
a weighted mean phase algorithm (Dakin, Hess, Ledgeway, & Achtman, 2002). Specifically,
the phase spectrum of the original image was combined with the phase of random noise, and
the relative weight of the original and the random phase ranged from 0% (original picture)
to 100% (only noise). Then, the weighted phase and the original amplitude spectrum were
recombined to obtain the final phase-scrambled image that was used in the experiments. The
phase weighting parameters were 70%, 65%, 60%, and 40% for human participants. Each
degraded picture was then adjusted in brightness and contrast, in order to span the entire
0–255 brightness range.

For CNNs, 15 degradation levels were used, which were chosen to cover the full accuracy
degradation function, four of which matched the levels seen by human participants. There-
fore, for the HSF condition, we used 170.67, 120.68, 85.33, 60.34, 42.67, 30.17, 21.33, 15.09,
10.67, 7.54, 5.33, 3.77, 2.67, 1.89, and 1.33 cpi as F1 values. For the LSF condition, we used
2.14, 3.48, 5.66, 9.19, 14.93, 24.25, 39.40, 64.00, 103.97, 168.90, 274.37, 445.72, 724.08,
1176.27, and 1910.85 cpi as F1 values. Phase weighting parameters were 85%, 80%, 75%,
70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, and 15%. With these degrada-
tion parameters, we had four conditions in which human and artificial degradation parameters
matched, and were therefore comparable (for HSF: 120.68, 85.33, 60.34, and 10.67 cpi; for
LSF: 5.66, 9.19, 14.93, and 64 cpi; for phase scrambling: 70%, 65%, 60%, and 40%). For
comparison with previous studies, the filter thresholds in cycles per degree in the human
experiment were 10.40, 7.36, 5.20, and 0.92 cpd (for high-pass filter) and 0.49, 0.79, 1.29,
and 5.52 cpd (for low-pass filter).
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2.3. Human participants and artificial networks

2.3.1. Human participants
A total of 14 participants (six females) took part in the human experiment (age M =

26.21, SD = 3.28). All participants had normal or corrected-to-normal vision, and none of
them reported neurological or psychopathological problems. All participants provided writ-
ten informed consent. The experimental protocol conforms to the declaration of Helsinki and
was approved by the Bioethical Committee of the University of Bologna.

2.3.1.1. Stimuli and apparatus. Stimuli were selected and degraded as indicated in the
General method section. Moreover, a total of nine additional pictures were selected and
degraded for an initial practice phase, to allow participants to familiarize themselves with
the filters used in the study. The experiment was programmed using OpenSesame (Mathôt,
Schreij, & Theeuwes, 2012), and presented on an 11.6” monitor with a 1280×720 resolution,
placed 50 cm away from the participant, yielding a visual angle of 14.8° (horizontal) x 11.6°
(vertical).

2.3.1.2. Procedure. The experiment consisted of a single block of 576 trials. Each trial
began with the presentation of a picture that remained on the screen for 800 ms. After picture
offset, a question appeared, asking participants whether the picture they observed portrayed an
animal or a vehicle; this question remained on the screen until the participant responded. Par-
ticipants could respond by pressing one of two alternative keys (n, for the “animal” response
or m, for the “vehicle” response) on a computer keyboard. The instructions encouraged partic-
ipants to give accurate rather than fast responses. No feedback was given regarding the accu-
racy of the response. Subsequently, participants had to rate their confidence in their response,
using a scale from 1 (not confident at all) to 5 (absolutely confident). Confidence data closely
replicated the pattern which was observed for accuracy, and are not reported here. After
500 ms of blank screen, the following trial began.

Each participant saw each picture only once, in only one degradation condition. Across
participants, each picture was seen in each combination of type and level of degradation. The
order of pictures was pseudorandomized, to avoid repetition of the same category of pictures
for more than six consecutive trials. Each combination of type and level of degradation (e.g.,
highest level of phase scrambling) was presented for a maximum of five consecutive trials.

2.3.2. Artificial networks
Here, we used CNNs which are widely used in the computer vision and neuroscience lit-

erature: AlexNet, VGG-16, ResNet-50, and DenseNet-201. For each of these nets, we used
specific implementations that had been pretrained using the ImageNet database, a very large
(more than 14 million images) set of semantically labeled pictures. Each CNN is described
in the following paragraphs. For all the considered architectures, we adopted the following
experimental setup, which is customary in computer vision applications that exploit pretrained
architectures (Oquab et al., 2014). We removed the top fully connected layer of each network,
plugging a new fully connected layer with 128 neurons on top, and adding a final layer with
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a single neuron, as the aim was to perform binary classification. Between the last two layers,
a dropout equal to 0.5 was applied, as it has become customary to improve the generaliza-
tion capabilities of the networks (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014). For each training example given in input, the backpropagation algorithm (Rumelhart
et al., 1986) compares the target of the prediction with the value computed by the network,
and it back-propagates the information from the output nodes to the input nodes of the net-
work by adjusting the weights, so as to move the predicted output closer to the desired value.
We first trained the newly introduced layer only, for three epochs, with the Adam optimizer
(Kingma & Ba, 2017) with an initial learning rate equal to 0.00005. Then, we fine-tuned the
whole architecture for an additional three epochs, with a slightly larger learning rate, namely
0.0001. Only for AlexNet, a few more epochs were necessary (up to 15) until the learning
curve stopped improving. For all the networks except for AlexNet, we used the Keras imple-
mentation with Tensorflow as backend (version 2.4.3 for Keras, version 2.2.0 for Tensorflow).
For AlexNet, which is a more dated model, and is not present in the Keras suite, we used an
external library (https://github.com/heuritech/convnets-keras) that works with Theano (ver-
sion 1.0.4) as backend. The code used in the experiments is freely available for research
purposes at the following repository: https://github.com/marcolippi83/cnns-animals-vehicles.

2.3.2.1. AlexNet. The first CNN tested was AlexNet (Krizhevsky et al., 2012), which was
introduced in 2012 in the context of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), yielding a remarkably high-level performance. This net contains a total of eight
layers, comprising layers doing convolution and max pooling, and fully connected layers,
and ending with a final softmax layer. This net has a very large number of parameters (about
61M).

2.3.2.2. VGG-16. The second CNN we used is VGG-16 (Zhang, Zou, He, & Sun, 2015).
This CNN has a deeper structure compared with AlexNet (16 vs. 8 layers); these layers con-
tain two initial convolutional layers, which are followed by a single max pooling layer, and
then a sequence of fully connected layers, until a final SoftMax layer outputs the classifica-
tion. This net has a larger number of parameters compared with AlexNet (138M).

2.3.2.3. ResNet-50. The third CNN we used is ResNet, a deep architecture that is widely
employed in computer vision applications (He et al., 2016). ResNet50 contains 49 convolu-
tional layers and one fully connected layer. Moreover, residual networks, such as ResNet-50,
contain shortcut connections that skip one or more layers. These shortcut connections allow
the network to be trained based on the value of residuals; the core idea of this architecture is
that optimizing the residual mapping is easier than optimizing the original. Specifically, if the
desired mapping for a layer is H(x), a different mapping F(x) = H(x) − x is employed, while
later the input is summed back to F(x) to obtain H(x). Compared with VGG-16, this net has a
smaller number of parameters (25.5M).

2.3.2.4. DenseNet-201. Finally, we examined the performance of DenseNet (Huang,
Liu, Maaten, & Weinberger, 2017), which is also widely employed in computer vision
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applications, and characterized by the presence of long-range feedforward connections. In
DenseNet, shortcut connections link each layer to all the other upper layers in the neural
architecture. The architecture of DenseNet allows for an accurate classification with a
relatively small number of parameters (20M).

2.3.3. CNN fine-tuning and test
First, we proceeded to fine-tune the networks for the task at hand. Pretrained models can

be further fine-tuned for any other classification task, with the advantage of exploiting the
weights of the lower layers, that have been learned on very large image collections (“transfer
learning”; Oquab et al., 2014). Lower-level and mid-level layers in deep visual architectures,
in fact, typically capture features that are independent of the task, such as edges, corners, or
simple shapes.

Each CNN was fine-tuned on a set of 3130 images, obtained from the two synsets Animals
and Vehicles in the ImageNet database. To prevent overfitting, we performed early stopping
by using 10% of the images for the validation set. Moreover, 10 slightly different versions
of the same picture were used in order to increase the number of images in the fine-tuning
phase; this is a procedure which is often used to increase the learning that can be achieved
by a CNN, without repeating exactly the same stimuli (Perez & Wang, 2017; Shorten, &
Khoshgoftaar, 2019). To this end, we cropped 80% of each picture, beginning from the top
left corner and moving the cropping window by 10% (vertically) and 6–10% (horizontally).
Pictures that were used in the fine-tuning phase were not used in the test phase. For each CNN,
we performed 10 different fine-tuning sessions with different random weight initializations
for the newly introduced layers.

For the categorization test, each CNN was tested with the same pictures that were used for
human participants. Therefore, each network was tested with 576 (pictures) × 3 (degrada-
tion) × 15 (levels) visual stimuli. For the analysis, we took the average of the categorization
results for the 10 CNNs with randomized fine-tuning weights as a group measure of CNN
categorization accuracy. Each CNN test produced a total of 25,920 predictions, each one with
a value ranging from 0 (label predicted vehicle) to 1 (label predicted animal). These values
were rounded to the nearest integer (zero or one), in order to obtain a binary decision, which
was used to compute accuracy and agreement with human categorization.

2.4. Data analysis

The aim of the data analysis was to describe the psychometric properties of the degradation-
accuracy functions, and to compute the agreement between humans and CNNs, in a cate-
gorization task. First, all data were fitted by a Weibull function, and the threshold of each
function (80% accuracy) was computed. Confidence intervals (95%) for these parameters
were obtained through a bootstrapping procedure, which resampled the estimated Weibull
function 2000 times, each time combining original responses with flip coin (accurate/not
accurate) results (Wichmann & Hill, 2001). Based on these bootstrapped distributions, 95%
CIs were computed.

Then, we proceeded to compare the relative accuracy between artificial and human per-
formance, and to analyze the level of agreement (or confusion) at the image-level between
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humans and CNNs. In order to compare accuracy, we followed the approach suggested by
Tadros et al. (2019). First, human and CNN accuracy data were aggregated per type and level
of degradation. Then, for each of the reference cutoff levels to which both humans and CNNs
contributed, the accuracy ratio was calculated as the ratio between artificial and human accu-
racy.

Accuracy Ratio =
(

kc

nc

)/(
kh

nh

)

where k indicates the number of accurate trials and n is the number of total trials, for artificial
classifiers (c) and human participants (h). A value of 1 indicates equal accuracy by humans
and CNNs, while a value larger than 1 indicates better accuracy for CNNs, and a value smaller
than 1 indicates a better performance for humans. Following Tadros et al. (2019), and using
the log method described in Katz, Baptista, Azen, and Pike (1978) and Koopman (1984),
we calculated standard deviation and p-values, corrected (Bonferroni method) for four mul-
tiple comparisons, corresponding to the four degradation levels, which were used for each
degradation type.

Additionally, we calculated the agreement in the image-level responses between humans
and CNNs. This analysis asks whether each image was categorized similarly by humans and
CNNs, and outputs a value indicating the degree of agreement or disagreement. Clearly,
if both systems have a close to full accuracy, high agreement will follow as a conse-
quence (Tadros et al., 2019). Therefore, we calculated agreement as the relationship between
observed (image-level match) and expected (relationship between accuracies) agreement.
Agreement calculation was done in three steps. First, for each human participant, type, and
level of manipulation, we computed the observed agreement between the participant’s deci-
sion for each individual picture and the decision of the CNN regarding the same picture.
Then, we computed the expected agreement between humans and CNNs, following Tadros
et al. (2019).

Expected Agreement = nh

((
kc

nc

) (
kh

nh

)
+

(
wc

nc

) (
wh

nh

))

where k, w, and n stand for correct responses, wrong responses, and total number of trials,
respectively, and h and c stand for human and artificial. With this approach, expected agree-
ment is calculated as the product of the correct human and artificial responses plus the prod-
uct of incorrect artificial and human responses, and thus depends on the respective accuracy
level of the two classificators (human and artificial). In a third and final step, observed and
expected agreement are compared as a ratio, using the same approach as that used for accu-
racy (Tadros et al., 2019). Ratio values close to 1 indicate chance agreement between humans
and CNNs. Values lower than 1 indicate that observed image-level agreement is lower than
expected based on accuracy, for example, in the case of systematic disagreement, while val-
ues higher than 1 are expected if the two classificators (human and artificial) agree on image
categorization more than expected based on categorization accuracy.
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Fig. 2. a) Degradation-accuracy function for each CNN. The straight black line represents the Weibull fit to the
human data. Error bars for human data represent confidence intervals. (b) Examples of the degraded images for
six levels which are representative of the degradation range, in each of the degraded conditions.

Table 1
Psychometric threshold for the degradation-accuracy function for normal pictures

Low pass High pass Phase scrambling

Mean –CI +CI Mean –CI +CI Mean –CI +CI

Human 3.43 3.22 3.61 6.02 5.81 6.16 58.44 53.43 60.40
VGG-16 4.38 4.14 4.60 3.83 3.62 4.06 37.04 35.45 38.87
ResNet-50 4.33 4.14 4.55 3.49 3.30 3.69 41.87 40.33 43.16
DenseNet-201 4.14 3.89 4.37 3.73 3.59 3.91 43.12 41.97 44.57
AlexNet 5.12 4.78 5.44 3.45 3.17 3.74 33.70 31.66 35.77

3. Results

Results for humans and CNNs are reported in Figure 2. Both human and CNN data fol-
lowed Weibull psychometric functions, the threshold parameters of which are reported in
Table 1. For low-passed pictures, all CNNs showed a psychometric function, which was
shifted toward higher low-pass cutoffs compared with human participants, indicating that
less degraded pictures were needed in order to achieve a similarly good categorization perfor-
mance. Corroborating this visual impression, the threshold parameter for all CNNs was out-
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Fig. 3. Agreement ratio in each of the experimental conditions, for all considered CNNs. * = significance at the
.05 level. Error bars represent confidence intervals

side 95% of human CI. Concerning high-passed pictures and phase-scrambled ones, threshold
parameters deviated even more substantially from human data.

Next, we proceeded to analyze the relative accuracy between CNN and human catego-
rization performance, for each of the degradation levels, which were common to both humans
and CNNs. For LSF pictures, significantly lower performance was observed for CNNs, specif-
ically in all levels for AlexNet, in the three most degraded levels for VGG-16 and ResNet,
and in the two intermediate levels for DenseNet, corrected ps < .042, and for all levels for
DenseNet p = .032. For HSF scenes, CNN categorization performance was significantly
less accurate in all three least degraded levels, corrected ps < .001. For phase-scrambled
scenes, categorization accuracy of all CNNs was lower compared to humans in the three least
degraded levels, corrected ps < .001.

Finally, we analyzed the agreement between humans and CNNs as indicated in the Method.
In doing so, we computed the ratio between the observed and the expected agreement between
humans and CNNs (Figure 3). For all CNNs, above chance agreement with humans was
observed in the two most degraded levels of the low-passed and phase scrambling conditions
(corrected ps < .001), whereas significant disagreement was observed for all CNNs in the
second least degraded level of the high-passed condition (corrected ps < .05). No deviation
from chance agreement was observed for the least degraded pictures; this apparently surpris-
ing result is a direct consequence of the definition of agreement that, as already discussed,
tends to 1 in case of trivial tasks, that is, with ∼100% accuracy for both classifiers (a similar
effect is seen in Tadros et al., 2019).

4. Discussion

The results of the first set of experiments indicated that, for all tested CNNs, accuracy
was high for intact pictures but decreased rapidly with degradation. Similarly to humans,
the decrease in accuracy followed a psychometric function, which, however, was shifted in
the direction of less accurate categorization by CNNs than by humans. Additionally, humans
and CNNs differed both in absolute accuracy and psychometric threshold, and systematic
disagreement was observed in one HSF condition. Thus, humans and CNNs did not pro-
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cess visual information similarly, and more extreme differences between humans and CNNs
were observed for high-passed, compared with low-passed or phase-scrambled stimuli. These
results suggest that the CNNs examined may show a functional HSF deficit, which ultimately
affects their categorization performance and agreement with humans. Concerning phase-
scrambled scenes, the pattern of results followed that of low-passed scenes, with a lower
accuracy than humans on most levels, but a systematic agreement on the image-level catego-
rization in the two least degraded levels.

Importantly, the HSF deficit observed does not seem to depend on the depth of the tested
CNN, as was observed with AlexNet (8 layers), VGG (16 layers), ResNet (50 layers), and
DenseNet (201 layers), nor on the number of long-range connections or convolutional struc-
ture, which also varied considerably among the examined CNNs. On the other hand, several
alternative factors may contribute to the observed HSF deficit. First, CNNs may suppress
fine-grained information as pixel information is convoluted across the CNN’s layers. If this
is the case, then the observed HSF deficit should be a general characteristic of CNNs, and
fine-grained detail should not be expected to be sufficiently well processed in any condition.
One consequence of this possibility would be that CNNs might aspire to be good models of
human LSF processing, but less so for HSF processing, limiting their usefulness in the study
of visual processing.

Alternatively, the observed HSF deficit may result from the statistical structure of visual
stimuli. In real-world scenes, the amplitude of LSFs is higher than the amplitude of HSFs by
a function of 1/f (Burton & Moorhead, 1987; Field, 1987; Tolhurst, Tadmor, & Chao, 1992).
In the image space, this amplitude–frequency relationship results in second-order correlations
between the intensities of pairs of pixels, increasing the redundancy in the visual input (Atick,
1992; Barlow, 1961, 2001; Shannon & Weaver, 1949; Field, 1987; Simoncelli & Olshausen,
2001). The visual system is adapted to these regularities, and it has been suggested that the
organization of receptive fields at the earliest levels of the visual processing stream (retinal
ganglion cells and lateral geniculate nucleus) serves the purpose of efficiently processing the
visual input. One of the mechanisms suggested to increase coding efficiency is image decor-
relation or whitening, implemented through the flattening of the spatial frequency spectrum
in the retina and the lateral geniculate nucleus (Atick & Redlich, 1992; Croner & Kaplan,
1995; Graham, Chandler, & Field, 2006; Tan & Yao, 2009). Model and physiological data
suggest that the sensitivity function of retinal ganglion cells increases with spatial frequency
(Croner & Kaplan, 1995; Field & Brady, 1997; Graham et al., 2006). When a natural image,
whose spatial frequency amplitude declines with a 1/frequency falloff, is convolved with an
increasing sensitivity function, a flat spatial frequency amplitude is obtained; with a flat spa-
tial frequency spectrum, second-order correlations between pairs of points in the visual input
are reduced (although not completely eliminated, as correlated firing still allows for plasticity
phenomena to occur, e.g., in visual development; Graham et al., 2006; Wong, 2000).

In the next set of experiments, we investigated the possibility that image whitening, defined
as the flattening of the spatial frequency spectrum, results in a more balanced use of low and
high spatial frequency information in CNNs. More specifically, based on previous studies, we
assume that the human visual system whitens natural pictures (such as the ones presented in
the experiments described so far) at the outset, and, therefore, that further visual processing
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Fig. 4. Example of an original (left) and whitened (right) picture

stages operate on a whitened visual input. If this reasoning also holds for CNNs, then pre-
processing the visual input through whitening (Simoncelli & Olshausen, 2001) should deter-
mine a network performance that is more similar to that of human participants. Additionally,
phase scrambling (which manipulates degradation without affecting spectral amplitude) may
serve as a control for secondary effects of whitening on performance accuracy. If whiten-
ing determines an unspecific change in image categorizability, then its effects should not be
restricted to (high and low) spatial frequency manipulation, but should also be evident on
phase-scrambled images.

5. CNN simulations with whitened pictures

5.1. Methods

In the second set of experiments, all pictures were preprocessed in a whitening stage prior
to CNN fine-tuning and testing. This was achieved by multiplying the frequency amplitude
spectrum by a function (increasing with spatial frequency up to the Nyquist frequency), which
balanced the relative amplitude of low and high spatial frequency and flattened the spatial fre-
quency spectrum of the image while avoiding high-frequency noise (Atick, 1992). An exam-
ple of an original and filtered picture is reported in Figure 4.

5.2. Results

Results for whitened pictures are reported in Table 2 and Figure 5. The data can be summa-
rized as follows: for HSF, adding a whitening stage determined accuracy functions that were
closer to those of humans, and increased agreement. For LSF, whitening decreased categoriza-
tion accuracy, albeit to a smaller extent compared with the HSF increase. For phase-scrambled
pictures, psychometric functions for whitened pictures were little or no different from func-
tions for nonwhitened scenes. To facilitate the visual comparison between the experiments
with normal and whitened pictures, Figure 6 visually summarizes the psychometric thresh-
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Table 2
Threshold of the psychometric functions for whitened pictures

Low pass High pass Phase scrambling

Mean –CI +CI Mean –CI +CI Mean –CI +CI

Human 3.43 3.22 3.61 6.02 5.81 6.16 58.44 53.43 60.40
VGG-16 4.66 4.46 4.87 5.17 4.90 5.45 36.68 34.76 38.70
ResNet-50 5.09 4.86 5.34 5.24 4.99 5.52 39.47 37.66 40.90
DenseNet-201 4.59 4.41 4.77 5.25 5.00 5.46 42.34 40.79 43.88
AlexNet 6.37 5.89 6.78 4.43 4.02 4.92 29.28 26.80 31.61

Fig. 5. (a) Degradation-accuracy functions for each of the considered CNNs and conditions. The straight black
line represents the Weibull fit to the human data. Error bars for human data represent confidence intervals. (b)
Examples of whitened pictures, for each degradation condition

olds reported in Tables 1 (threshold for normal pictures, bold filled symbols) and 2 (thresholds
for whitened pictures, light empty symbols).

Accuracy results followed those observed during the analysis of psychometric functions.
Concerning low-passed scenes, significantly lower accuracy for all CNNs compared with
humans was observed in all levels, corrected ps < .016, except for the least degraded level
in which VGG-16 categorization did not differ from humans, corrected p = .704. With high-
passed pictures, lower accuracy of all CNNs compared with humans was restricted to the
second least degraded level, corrected ps < .001, to the least degraded level for AlexNet,
corrected p < .001, and exhibited a trend for DenseNet, corrected p = .057. On the other hand,
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Fig. 6. Psychometric threshold for all conditions, for normal pictures (filled symbols) and whitened stimuli (white
symbols). Error bars represent confidence intervals

significantly better performance of CNNs compared with humans was observed in the most
degraded level for VGG-16 and ResNet, corrected ps < .001. Concerning phase-scrambled
pictures, significantly lower accuracy was observed for all CNNs compared with humans in
the three least degraded levels, corrected ps < .001.

To obtain a direct measure of the impact of whitening on each CNN, we carried out a fur-
ther analysis comparing the categorization accuracy of each CNN when processing whitened
versus nonwhitened pictures. For low-passed pictures, a generally worse performance for
whitened pictures compared with normal pictures was observed for all CNNs in the second
least degraded level, corrected ps < .001, for the least degraded level for ResNet and the
second most degraded level for DenseNet, ps < .001; additionally, a trend was observed in
the same direction for the least degraded level and the DenseNet network, corrected p =
.08. Concerning high-passed scenes, whitening determined a better accuracy for all levels
for DenseNet and VGG, for the three least degraded levels for ResNet, and for the two least
degraded levels for AlexNet, all ps < .005. Finally, concerning phase-scrambled pictures,
whitening determined a worse performance for ResNet in the least degraded level, corrected
p = .02.

As whitening determined opposite effects on the categorization of HSF and LSF pictures
(Figures 5 and 6), we standardized psychometric thresholds in z-points, to understand the
difference between CNN and humans with normal and whitened pictures, and the change
that was determined by whitening. For normal pictures, the overall difference compared to
humans was 37.27 z-points, which were reduced to 31.1 by picture whitening; this pattern
was present for all CNNs except for AlexNet, which showed a modest effect in the opposite
direction. This analysis is reported in Table 3, where for all CNNs a larger difference in
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Table 3
Absolute difference (in z points) between threshold parameters for humans and CNNs, in all experimental condi-
tions

Phase
LPF HPF scrambling Total

VGG-16 Normal 6.97 20.73 7.47 35.17
Whitened 11.39 6.19 7.96 25.54
Whitened–Normal –4.42 14.54 –0.48 9.64

ResNet-50 Normal 6.65 23.89 5.79 36.33
Whitened 11.53 7.33 6.97 25.83
Whitened–Normal –4.88 16.56 –1.18 10.5

DenseNet-201 Normal 5.25 21.62 5.35 32.22
Whitened 11.05 9.32 5.89 26.26
Whitened–Normal –5.80 12.30 –0.54 5.96

AlexNet Normal 12.37 24.34 8.64 45.35
Whitened 21.52 15.06 10.19 46.77
Whitened–Normal –9.16 9.27 –1.54 –1.43

Total Normal 7.81 22.65 6.81 37.27
Whitened 13.87 9.48 7.75 31.10
Whitened–Normal –6.07 13.17 –0.94 6.17

Note: For each condition, the Whitened–Normal subtraction is reported, which indicates the extent to which
whitened thresholds are closer to humans (positive values) or further away (negative values), compared with
thresholds for normal pictures.

Fig. 7. Agreement ratio in each of the experimental conditions, for all considered CNNs. * = significance lower
than the .05 level. Error bars represent confidence intervals

comparison to humans is observed for HSF than for LSF original pictures. The pattern is
reversed for whitened scenes, and the difference between the whitened and normal pictures is
that whitening determined a closer to human performance of 13.17 z-points for HSF scenes,
a further away performance of 6.07 z-points for LSF and 0.94 for phase-scrambled scenes.

Concerning image-level agreement between humans and CNNs (Figure 7), the pattern of
results for low-passed and phase-scrambled scenes was identical to that observed with non-
whitened images, and systematic agreement was observed in the two most degraded levels,
corrected ps < .001. For high-passed scenes, no systematic disagreement was observed in any
condition, corrected ps > .26.
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5.3. Discussion

The most important result of the second set of experiments is that the HSF deficit which was
originally observed with normal pictures disappeared with whitened pictures. Performance
for HSF scenes was close to that of human participants, while performance for LSF scenes
showed a slight decrease compared to accuracy for nonwhitened pictures; this decrease was
not as pronounced as the performance increase for HSF (Table 3). Moreover, analysis at the
image level paralleled that at the group level: agreement between humans and CNNs with
HSF scenes increased when the visual input was whitened.

6. General discussion

Here, we observed that the four CNNs tested approximated human two-class categoriza-
tion most accurately when they operated on whitened visual input. CNN categorization relied
more on LSF, but only when the input followed the usual 1/f amplitude–frequency relationship
(Field, 1987), and this was reflected both by performance accuracy and image-level agree-
ment with human decision. With whitened pictures, accuracy increased for HSF scenes and
decreased for LSF scenes, and the overall difference compared to human performance was
reduced; the effects of phase scrambling were altered very little, or not at all, by whitening.

CNNs, like other visual systems, need to adapt to the regularities of the visual world in
which they operate. Here, the best match between CNN and human two-class categorization
was observed with whitened scenes. Whitening is a form of adaptation of visual systems to
the statistical regularity in the 1/f amplitude–frequency relationship in the visual input (Field,
1987; Simoncelli & Olshausen, 2001). Consistently, a previous study (Cichy et al., 2016)
indicated that significant spatio-temporal hierarchical relationships between a CNN and the
visual brain were only observed when the CNN was trained using natural scenes, but not
when it was trained with unecological scenes, with noise, or when it was untrained (i.e., ini-
tialized with random weights). Similarly, a previous study reported that unsupervised training
of a deep convolutional network with whitened natural images resulted in internal receptive
fields, which responded to letter symbols (Testolin, Stoianov, & Zorzi, 2017). This result was
taken as suggestive that the choice of letter primitives that constitute human written languages
may be a result of the adaptation to the visual world in which humans operate, and that this
process can be replicated in a DNN framework. Moreover, another study indicated that con-
volutional networks which were trained using natural images developed sensitivity not only to
physical (pixel-wise) stimulus features, but also to perceptual features and higher-order cat-
egory memberships (Kubilius et al., 2016). When degraded stimuli were taken into account,
previous studies observed that fine-tuning or training CNNs with degraded, rather than intact,
pictures, resulted in a better performance with pictures of the same degradation type (Dodge
& Karam 2019; Geirhos et al., 2018; Vasiljevic, Chakrabarti, & Shakhnarovich, 2016; Zhou,
Song, & Cheung, 2017). However, here, we observed a more general result, namely that a
general preprocessing stage which was inspired by the primate and human visual processing
resulted in a more balanced use of visual information, that is, a more efficient use of HSF, a
small decrease in accuracy with LSFs, and almost no change for phase-scrambled pictures.
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6.1. Use of information in visual categorization

Concerning the use of information in the present task, here we examined human perfor-
mance in a two-class superordinate categorization task. While some studies have suggested
that LSFs drive the analysis of the visual input (Sanocki, 1993), others have emphasized
the role of high-frequency elements (Berman et al., 2017).1 For instance, several studies
that examined emotional reactions suggested that emotional responses are driven by low-
frequency information that matches prelearned (in some cases, innate) survival-critical rep-
resentations (Vuilleumier, Armony, Driver, & Dolan, 2003; but see De Cesarei & Codispoti,
2013 and Pessoa & Adolphs, 2010, for critical reviews). However, when not only the physical
availability of high and low spatial frequency information but also the semantic understanding
of visual scenes was considered, no difference was observed between HSF and LSF stimuli
in terms of emotional modulation of electrocortical activity (De Cesarei & Codispoti, 2011).
Similarly, Berman and colleagues (2017) adopted a decoding approach to brain responses to
visual scenes, filtered using low or high-pass filters and scaled using contrast-enhancing tech-
niques (z-score contrast scaling, compared to whole-range scaling as used here and in previ-
ous studies; e.g., Loftus & Harley, 2005); it was observed that decoding from HSF stimuli was
more accurate than from LSF and complete stimuli (Berman et al., 2017). Consistently, the
present data emphasize the importance not only of low-frequency, but also of high-frequency
visual information for human categorization. Moreover, by using a gradient of filter cutoffs
which varied from extremely degraded to extremely clear, we observed that the human use
of visual information, expressed as the increase in accuracy as a function of filter cutoff,
increased similarly for high- and low- passed frequency.

Concerning CNNs, we observed that when keeping the same task and pictures as for human
participants, the use of spatial frequencies varied according to the type of preprocessing
(whitened or normal) that was carried out. In the first set of studies in which original pic-
tures were presented to CNNs, we observed that CNN performance, and agreement with
humans, for HSF pictures was inferior to that for LSFs, leading us to ask whether poor HSF
visual processing reflects intrinsic limitations in CNNs. In contrast, the results of the sec-
ond set of studies indicate that good accuracy and agreement with humans for HSF pictures
can be achieved if pictures are whitened, demonstrating that HSF processing is not bound by
intrinsic limitation of the examined CNNs. All in all, whitening did not increase the catego-
rization accuracy by CNNs for intact scenes, but reduced the imbalance between the use of
low and high spatial frequencies for categorization; this result seems to suggest that whiten-
ing can increase the classification accuracy of CNNs when flexibility is required, for example,
when the perceptual appearance of an object may be unpredictably degraded by one of sev-
eral types of degradation. A previous study suggests a possible reason for the difficulty of
CNNs with high-passed pictures, and for the better performance when whitened rather than
nonwhitened HSF pictures are presented. In a recent study (Yosinski, Clune, Nguyen, Fuchs,
& Lipson, 2015), visual representations in the internal layers of CNNs were examined, and
it was observed that when no regularization was applied, internal representations were dom-
inated by HSF noise, which was neither realistic nor interpretable (Yosinski, Clune, Nguyen,
Fuchs, & Lipson et al., 2015; Nguyen et al., 2015). So, while internal HSF activation is
produced, it is not diagnostic to the task at hand. In the experiments with nonwhitened
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pictures examined here, we focus on the performance of CNNs, and observe that in most HSF
conditions, accuracy is considerably lower than that of humans, and that the difference com-
pared to humans is larger for HSF than for LSF. It could be that the difficulty that CNNs show
in achieving a good performance depends on the degree of internal HSF noise (Yosinski et al.,
2015). This internal HSF noise has been suggested to be a consequence of the 1/f amplitude–
frequency relationship of the pictures used for fine-tuning (Yosinski et al., 2015, S1). Thus,
it is possible that when whitening attenuates the 1/f slope, the internal HSF noise is reduced,
yielding better performance for high-passed whitened, compared with nonwhitened, pictures.

The effects of whitening were specific to the processing of the spectral amplitude,
and whitening did not affect categorization of phase-scrambled scenes. If whitening had
determined an overall change in difficulty, then we would also have expected a change in
performance in all conditions following image whitening. This, however, was not observed,
suggesting that the effects of whitening on accuracy were specifically consequent to its
effects on spectral amplitude, and not to changes in overall difficulty.

Here, we observed that humans and CNNs rely on different sources of information for
the two-class categorization task which was examined here. Moreover, we observed that dif-
ferences between humans and CNNs were not restricted to overall accuracy, but extended
to image-level (dis)agreement with humans. More specifically, systematic agreement was
observed for the most degraded LSF and phase-scrambled levels for both normal and
whitened pictures, suggesting that CNN performance in these conditions may draw on similar
information as for human participants. Compared with previous results (Rajalingham et al.,
2018), the present results indicate that, for some types of visual information, namely LSFs,
significant image-level agreement between human and CNNs can be observed. However, sys-
tematic disagreement for an HSF condition was observed with normal pictures, and this dis-
agreement was eliminated by whitening. Recent studies investigated the bottom-up (sensory
and perceptual) and higher-order semantic factors that can be a potential source of differ-
ences in the visual processing of humans and CNNs. When the texture and shape of faces
and objects were manipulated, CNNs were more sensitive to changes in texture than in shape,
while humans showed the opposite pattern (Baker, Lu, Erlikhman, & Kellman, 2018; Xu et al.,
2018). Moreover, a recent study (Groen et al., 2018) indicated that human behavioral catego-
rization depended both on perceptual factors, which could be modeled in hidden CNN layers
(Cichy et al., 2016; Yamins et al., 2014), but also on other information which was not available
to CNNs (i.e., object function, e.g., the fact that a bike can be used for transportation).

6.2. CNN architecture

The present study examined the performance of four CNNs (AlexNet, VGG, ResNet,
and DenseNet) in the two-class categorization of natural scenes. The results of the first
experiments, using normal (nonwhitened) pictures, seemed to suggest that the considered
CNNs exhibited a bias against HSFs (HSF deficit), perhaps because of a loss of fine-grained
details in the convolutional process. However, the experiments done using the same task
and whitened stimuli argue against this possibility, as performance for HSF scenes was even
better than for LSF pictures, in terms of difference compared to human thresholds (Table 3).
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This similar behavior was observed for networks varying in the number of total layers (from
the 8 layers of AlexNet to the 201 layers of DenseNet), and in the organization of internal
connections, supporting the idea that these kinds of networks learn similar sets of features
(Oquab et al., 2014, Yosinski, Clune, Bengio, & Lipson, 2014, Zeiler & Fergus, 2013).
On the other hand, these networks have important architectural similarities (convolution,
max pooling, and regularization), and possibly also share similar limitations. Moreover, the
organization of connections in the human brain is much more complex than the CNNs which
were used here; for instance, feedback and lateral connections are present in the human
brain, but are not present in the CNN models used here. Recently, it has been shown that
the addition of feedback and lateral connections in recurrent convolution neural networks
(RCNNs) resulted in superior performance compared with feedforward CNNs, in terms of
overall performance and performance when to-be-recognized objects were occluded (Spo-
erer, McClure, & Kriegeskorte, 2017). Therefore, the present approach may be extended in
future studies in order to compare the use of categorization by humans and RCNNs provided
with lateral and top-down (feedback) connections.

6.3. Limitations and further directions

In addition to the bottom-up sensory and perceptual input, other factors may also play a
role in shaping the similarity between the use of visual information by humans and CNNs.
For instance, it is debated whether top-down factors (e.g., attentional or emotional) can mod-
ulate early stages of perceptual processing (e.g., Morrison & Schyns, 2001; Schyns, 1998).
In a previous study that examined this issue (De Cesarei & Loftus, 2011), we observed that
human participants similarly used spatial frequencies over time while carrying out differ-
ent versions of a categorization task (decision, forced choice, or confidence rating). Sim-
ilarly, Loftus and Harley (2005) observed similar visual magnitude transfer functions when
manipulating cognitive variables, such as priming, perceptual interference, and hindsight bias.
However, other studies observed an advantage for basic categorization with long exposure
times, and an advantage for superordinate categorization with short exposure times (Mack &
Palmeri, 2015), and other studies observed a different use of spatial frequency information
in different categorization tasks (categorization of emotional expression vs. expressiveness
decision; Schyns & Oliva, 1999). Therefore, another promising avenue of research may gen-
eralize the present results, which describe the two-class categorization of objects in natural
scenes, to other categorization contexts, for instance, concerning subordinate categorization,
object labeling or naming, or face processing.

In addition to the theoretical modeling of human vision, being able to simulate the suc-
cesses and errors of human vision would be fruitful in several applied domains. For instance,
it may be used in the design of urban or interior environments, to make safety signs visible
even under degraded conditions, such as in smoke or night vision. These conditions may be
simulated, for example, by phase scrambling or reducing the contrast of a virtual simulation
of the environment, and a CNN may try to estimate the accuracy with which a sign is seen.
In this respect, the research presented here provides a framework with which to test not only
the overall accuracy of a CNN, but also its capability to simulate both correct and incorrect
human perceptual decisions under specific visual conditions.
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6.4. Conclusion

In a categorization task, performance accuracy of CNNs and humans increased accord-
ing to a similar psychometric function; however, significant differences were also observed
concerning the threshold parameters and the agreement between humans and CNNs. These
differences were generally reduced when natural scene statistics (1/f amplitude–frequency
relationship; Field, 1987) were considered. Vision does not only depend on the processing of
shapes and contours, but also on the detection of statistical regularities, for example, clutter
(De Cesarei, Loftus, Mastria, & Codispoti, 2017; Felsen & Dan, 2005; Greene & Oliva, 2009;
Groen, Silson, & Baker, 2017; Scholte, Ghebreab, Waldorp, Smeulders, & Lamme, 2009; Tor-
ralba & Oliva, 2003). For humans and CNNs, visual regularities of the environment determine
the development of internal representations (e.g., from receptive fields to more complex rep-
resentations), which are selective for visual elements found in the environment, and these
learned representations might transfer to novel visual stimuli, such as abstract symbols and
letters (Kubilius et al., 2016; Testolin et al., 2017). At both a theoretical and practical level,
adapting to natural scene statistics by whitening the visual input seems critical if a CNN is to
be used as a model of human visual processing, and not only of the processing of some types
of visual information (e.g., LSFs).

Note

1 In addition to the spatial properties examined here, human vision also exhibits clear spa-
tiotemporal properties. In studies presenting competing global and local information,
temporal and functional precedence is observed for low spatial frequencies compared
to high spatial frequencies (Schyns & Oliva, 1994; De Cesarei & Loftus, 2011; Kim-
chi, 1992; Navon, 1977). A critical variable in these studies was exposure time, which
favored low spatial frequencies at short exposures (e.g., 100 ms or less followed by back-
ward masking), and high spatial frequencies at long exposures (e.g., 1000 ms). Here,
however, stimuli did not contain competing information (i.e., HSF and LSF informa-
tion portrayed the same scene), and were presented for an intermediate time (800 ms),
therefore, global precedence effects were neither expected nor observed. Moreover, in
humans, eye and head movements bring the proximal projections of salient elements to
the fovea. In CNNs, these spatial and temporal properties are often not modeled, and all
visual information is presented at maximum resolution at the same time. In the future,
other CNNs (e.g., recurrent convolutional neural networks) may help to improve current
models by integrating known spatiotemporal properties of human vision.
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