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Abstract

Human communication is often an audio-visual experience. Indeed, while peo-

ple hear words uttered by speakers, they can see facial movements and other

gestures which convey speech information. However, speech communication can

be negatively affected by background noises and artifacts, which are very common

in real environments. Restoring clean speech from degraded audio sources is cru-

cial for many applications, e.g., automatic speech recognition and hearing aids.

Neuroscience research proved that looking at a talking face enhances the human

capability to focus auditory attention on a particular stimulus while muting ex-

ternal noisy sources. This dissertation is an attempt to exploit the bi-modal, i.e.,

audio-visual, nature of speech for speech enhancement, automatic speech recogni-

tion and speech inpainting.

We start by presenting a novel approach to solve the problem of extracting

the speech of a speaker of interest in a cocktail party scenario. Contrary to most

previous work, we exploit a pre-trained face landmark detector and use facial

landmarks motion as visual features in a deep learning model. In that way, we

relieve our models from the task of learning useful visual features from raw pixels.

We train and test our models on two widely used limited size datasets and we

achieve speaker-independent speech enhancement in a multi-talker setting.

Motivated by these results, we study how audio-visual speech enhancement

can help to perform automatic speech recognition exploiting a multi-task learning

framework. Then, we design a strategy where speech enhancement training phase
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is alternated with speech recognition phase. We observe that, in general, the joint

optimization of the two phases shows a remarkable improvement of speech recog-

nition compared to audio-visual baseline models trained only to perform speech

recognition.

Finally, we explore if visual information can be useful for speech inpainting, i.e.,

the task of restoring missing parts of an acoustic speech signal from uncorrupted

audio context. We design a system that is able to inpaint variable-length missing

time gaps in a speech signal. We test our system with time gaps ranging from

100 ms to 1600 ms to investigate the contribution that vision can provide for time

gaps of different duration. Experiments show that the performance of audio-only

baseline models degrades rapidly when time gaps get large, while the proposed

audio-visual approach is still able to plausibly restore missing information.
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Sommario

Spesso la comunicazione tra persone è un’esperienza audio-visiva. Infatti, una

persona ascolta le parole pronunciate da un interlocutore e contemporaneamente

può anche vedere i movimenti faciali ed altri segni che possono trasmettere in-

formazioni sul parlato. Tuttavia, la comunicazione attraverso la lingua parlata

può essere influenzata negativamente da rumori di sottofondo ed artefatti, i quali

sono molto comuni in ambienti reali. Recuperare il parlato ripulito a partire da

sorgenti sonore degradate è fondamentale per molte applicazioni, ad esempio per

il riconoscimento vocale automatico oppure per gli apparecchi acustici. La ricerca

nell’ambito delle neuroscienze ha dimostrato che guardare il volto di una persona

mentre sta parlando migliora la capacità umana di focalizzare l’attenzione su uno

stimolo sonoro specifico, silenziando sorgenti rumorose esterne. Questa tesi ha

l’obiettivo di provare a sfruttare la natura bi-modale, ovvero audio-visiva, del par-

lato per eseguire lo speech enhancement, il riconoscimento vocale automatico e lo

speech inpainting.

Iniziamo presentando un nuovo approccio per risolvere il problema di estrazione

della voce di un interlocutore di interesse in uno scenario cocktail party. A dif-

ferenza della grande maggioranza dei lavori precedenti, noi sfruttiamo un rilevatore

pre-allenato di punti salienti facciali ed usiamo il movimento di tali punti come

input video in un modello di apprendimento profondo. In questo modo, sollevi-
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amo i nostri modelli dal compito di imparare le caratteristiche visive direttamente

dai pixel contenuti nei fotogrammi dei video. I nostri modelli sono allenati e

testati su due dataset largamente utilizzati e di dimensione limitata, e sono in

grado di eseguire lo speech enhancement in presenza di più interlocutori che par-

lano contemporaneamente, ed anche per persone che non sono osservate durante

l’addestramento.

Motivati da questi risultati, analizziamo in che modo lo speech enhancement

audio-visivo può aiutare il riconoscimento vocale automatico, sfruttando un’archi-

tettura di apprendimento multi-task. Quindi, abbiamo ideato una strategia in cui

la fase di addestramento dello speech enhancement è alternata con la fase di ri-

conoscimento vocale. Osserviamo che, in generale, l’ottimizzazione congiunta delle

due fasi fornisce un notevole miglioramento dell’accuratezza del riconoscimento vo-

cale rispetto ai modelli baseline audio-visivi addestrati solamente per eseguire il

riconoscimento vocale.

Infine, indaghiamo se l’informazione visiva può essere utile per lo speech in-

painting, ovvero il ripristino di parti mancanti di un segnale acustico a partire dalle

parti integre del segnale. Progettiamo un sistema in grado di ripristinare intervalli

multipli mancanti e di lunghezza variabile all’interno di un segnale contenente il

parlato. Il nostro sistema è testato con intervalli da 100 ms fino a 1600 ms per

analizzare il contributo che la visione artificiale può fornire per intervalli mancanti

di durate differenti. Gli esperimenti mostrano che le prestazioni dei modelli base-

line basati solo sull’audio peggiorano rapidamente con l’aumentare della durata

degli intervalli, mentre l’approccio audio-visivo proposto è comunque in grado di

ripristinare l’informazione mancante con segnali plausibili.

VI



“Two things fill the mind with ever new and increasing admiration and awe,
the more often and steadily we reflect upon them: the starry heavens above me and
the moral law within me.”

I. Kant, Critique of Practical Reason

“A pair of wings, a different mode of breathing, which would enable us to tra-
verse infinite space, would in no way help us, for, if we visited Mars or Venus
keeping the same senses, they would clothe in the same aspect as the things of
the Earth everything that we should be capable of seeing. The only true voyage of
discovery, the only fountain of Eternal Youth, would be not to visit strange lands
but to possess other eyes, to behold the universe through the eyes of another, of
a hundred others, to behold the hundred universes that each of them beholds, that
each of them is; and this we can contrive with an Elstir, with a Vinteuil; with men
like these we do really fly from star to star.”

M. Proust, Remembrance of Things Past, Vol. 5: The Prisoner
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Chapter 1

Introduction

1.1 Motivation

When I was writing this dissertation, most of us had to stay at home due to the

outbreak of the COVID-19 pandemic. During this time, our private and working

relationships were mainly depending on voice or video conference platforms, where

speech was the major tool for communication. Indeed, speech is the most natural

way for human interaction. Without it, people are not able to share ideas, thoughts

and feelings efficiently.

However, in real world environments, speech is often corrupted by background

noises originated by various sound sources like other speakers’ speech, TV, wind,

street noises, and so on. Despite the presence of disturbing sources, humans are

very good at focusing to words uttered by a speaker they are interested in, while

muting other concurrent sounds [12, 113]. This phenomenon is well-known and is

referred to as cocktail party effect [21, 82] (Fig. 1.1).

On the other hand, hearing impaired listeners can experiment huge degrada-

tions of speech intelligibility and quality in such challenging conditions, especially

when the Signal-to-Noise Ratio (SNR) is less than or equal to +10 dB [51, 53].
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Figure 1.1: Cocktail party effect.

Additionally, many speech processing tasks, like Automatic Speech Recognition

(ASR) and speaker recognition, performed poorly under these adverse noisy con-

ditions [6, 72]. For these reasons, designing a computer system capable to extract

the speech of interest in a cocktail party scenario is of great importance.

Humans can exploit additional cues to enhance a specific sound source. For

instance, having two ears is beneficial, since it enables the detection of the di-

rection of arrival of a sound. Other cues can be facial movements of the target

speaker. Facial movements include the motion of lips, jaw, tongue and eyes, and

also the entire head. Listeners often use these visual cues in addition to the audio

to improve speech understanding. Neuroscience research proved that looking at a

talking face enhances the human capability to focus auditory attention on a par-

ticular stimulus [43]. The visual stream becomes more important when the SNR is

low because the audio stream is very susceptible to acoustic noise, while the visual

stream is not affected by background noises. Sumby and Pollack [116] demon-

strated that by carrying out experiments on several subjects. They presented to

subjects Audio-Only (AO) and Audio-Visual (AV) signals of words contaminated

by noise. The subjects had to select the words they perceived from a given vocabu-

lary list. The work showed that the relative contribution of the visual stream, over

the AO stream, to the word recognition performance was independent of the SNR
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and the absolute contribution was higher at lower SNR. McGurk and MacDonald

[83] showed that vision can affect speech perception even when disturbing noises

are absent. In particular, when a listener was presented with a mismatch between

the audio and visual information, he tended to perceive an intermediate sound

between the audio and video modalities. This phenomenon is known as McGurk

effect.

These findings demonstrated that speech perception is essentially an AV pro-

cess. Since vision plays an important role, in this dissertation we attempt to

develop deep learning models that are able to exploit the AV nature of speech

for several tasks, like Speech Enhancement (SE), Automatic Speech Recognition

(ASR), and Speech Inpainting (SI).

1.2 Objectives

In this dissertation, we aim at developing speech processing systems that use

vision to improve performance over AO systems in very adverse environments.

Specifically, we address the following tasks and aspects:

� Background noises removal is crucial for development of successful speech

processing applications. In particular, multi-talker environments are a very

challenging scenario. The target and noisy sources consist of speech signals,

generating mixtures of both acoustic and linguistic information. Moreover,

if we deal with mixed-speech single channel recordings, the problem of ex-

tracting the speech of a target speaker is ill-posed. Indeed, many differ-

ent hypotheses about what the target speaker says are consistent with the

mixture signal. We try to address this issue by exploiting face movements

of the target speaker to condition our Audio-Visual Speech Enhancement

(AV-SE) system. The majority of previous works relied on Deep Neural
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Networks (DNNs) to extract visual features. Otherwise, we propose the use

of face landmarks [63] motion extracted with a pre-trained system. In this

way, our models do not require to learn useful visual features from raw pix-

els. Based on these observations, we aim at achieving speaker-independent

single-channel AV-SE using limited size datasets, which is a very common

scenario in real-world applications.

� Some robust ASR systems process the audio signal through a speech en-

hancement or separation stage before passing it to a speech recognizer. We

propose to add a preliminary AV-SE pre-processing step to analyze whether

it helps in performing phone recognition in multi-talker scenarios. We ex-

periment with a Multi-Task Learning (MTL) [15] approach, where SE and

phone recognition tasks are trained together in a deep learning framework.

Our main aim is to study the interaction between the two tasks, and under-

stand how it is advantageous to train them jointly.

� In addition to disturbing sound sources, audio signals are often corrupted

by accidental distortions. Impulsive noises, clicks and even transmission er-

rors might wipe out audio intervals. The task of restoring the lost speech

segments from context information is known as Speech Inpainting (SI). Pre-

vious work only exploited audio signals as context information. We aim at

addressing the problem of Audio-Visual Speech Inpainting (AV-SI), where

visual features are used with acoustic features to reconstruct missing speech

segments. We study the contribution of vision for various lengths of missing

information. Besides, we explore whether it is beneficial for AV-SI to add a

phone recognition task in a MTL learning framework.

Our main work regards both the speech enhancement (SE) and speech separa-

tion (SS) tasks. Since SE and SS terms are used in previous work with different
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meanings, let us clarify these terms to avoid potential confusion. From now on,

with SE we refer to as the process of estimating the speech of a target speaker

from noisy input, regardless of the types of the disturbing sources. When all sound

sources in the mixture have to be estimated, the task is denoted with SS.

1.3 Organization

The rest of this dissertation is organized as follows.

The next chapter reviews related works about AV-SE, robust ASR and SI. In

particular we focus on deep learning methods.

Chapter 3 presents several AV-SE models which exploit face landmarks motion

to extract the target speaker audio from mixed-speech recordings.

In order to investigate how AV-SE can help to decrease phone recognition

error, Chapter 4 presents an end-to-end joint SE and phone recognition system.

We analyze several training strategies based on MTL that reveal some interesting

and unexpected behaviours.

In Chapter 5 we present our AV-SI system and we discuss how performances

are affected by duration of missing segments.

Chapter 6 summarizes the contribution of this dissertation and presents future

research directions.





Chapter 2

Background

In this chapter, we present related previous work about speech enhancement and

separation, robust automatic speech recognition and speech inpainting. We re-

view both single-channel AO and AV methods, especially the ones based on deep

learning which are the most related to this dissertation.

2.1 Speech Enhancement and Separation

Several signal processing techniques have been developed to perform speech en-

hancement (SE), which is the task of recovering the clean speech of a target speaker

in a noisy environment. If the noisy environment consists of speech from concur-

rent speakers the task is also denoted as target speaker extraction. On the other

hand, some applications require the estimation of multiple target signals. In that

case, the task is known as source separation or speech separation (SS), when the

target signals are all speech signals.

Traditional SE and SS algorithms leveraged on the knowledge of statistical

characteristics of the signals involved to attempt to estimate the target speech

signals (cf. [76, 125] and references therein). Spectral subtraction [11, 75], Wiener
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filtering [81], and short-term spectral amplitude estimation [29] were some of the

earliest algorithms to perform noise reduction. Since these approaches depended

on strong statistical assumptions, the enhancement became problematic when such

assumptions did not hold under more complex noisy conditions. The generaliza-

tion problem was recently addressed by several methods based on deep learning

which reached impressive results compared to knowledge-based models, especially

for SS [19, 60, 68, 77]. SE and SS were transformed in supervised learning problems

[126], allowing the use of a plethora of model architectures and training strategies

that were proven to be very successful for other contexts, such as computer vision

and natural language processing. Hershey et al. [54, 60] were the first to address

speaker-independent multi-talker SS in the DNN framework. They proposed the

deep clustering method, which combined DNN-based feature learning and spectral

clustering. The DNN was trained to assign similar embeddings to Time-Frequency

(TF) bins that belonged to the same speaker. During inference, the K-means al-

gorithm was applied to cluster the TF bins into speaker clusters, according to

the distance between embeddings. Finally, the speaker clusters were converted to

binary TF masks, which were employed to extract the clean spectrograms of the

speakers involved in the mixture. Chen et al. [19] proposed the deep attractor net-

work, which was an improved version of the deep clustering technique. Similarly

to deep clustering, high-dimensional embeddings for TF bins were learned by using

DNNs. The system created attractor points for each speaker in order to pull TF

bins dominated by different speakers to their corresponding attractors. Then, bi-

nary TF masks were generated by comparing embedded points and each attractor.

These approaches were not able to estimate the target sources directly with DNNs,

since a clustering step was required. This problem was solved by Yu et al. [68,

134], who proposed the Permutation-Invariant Training (PIT) criterion. A DNN

was trained to output S TF masks, each of which was applied to mixed-speech
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to produce a source estimate. The Mean Squared Error (MSE) cost function was

dynamically computed during training for each of the S! possible assignments be-

tween the target and estimated sources. The assignment with the lower MSE was

chosen and the neural network was trained to minimize the corresponding MSE.

This strategy matched the SS results obtained with deep clustering, although it

was much simpler.

We refer to the techniques mentioned above as Audio-Only Speech Enhance-

ment (AO-SE) and Audio-Only Speech Separation (AO-SS), since they only con-

sidered acoustic information. However, speech perception is multimodal. Indeed,

having two ears is beneficial to detect the direction of arrival of target speech and

we can also see locations and movements of articulatory organs (e.g., lips, jaw,

tongue) which convey speech information. Neuroscience [43] and speech perception

[116] research showed that watching speaker’s talking face could dramatically im-

prove human ability to focus auditory attention on a particular acoustic stimulus.

These findings motivated the development of the first Audio-Visual SE (AV-SE)

[40] and Audio-Visual SS (AV-SS) [26] systems. Similarly to AO approaches, clas-

sical statistical systems were outperformed by deep learning methods. Extensive

overviews on traditional AV-SS and deep-learning-based AV-SE/AV-SS were pro-

vided in [85] and [105], respectively. Here we focus on the deep learning methods

that are the most related to this dissertation.

The first works that investigated to solve the AV-SE task with deep learning

were presented in [56] and [133]. Wu et al. [133] proposed to use a Convolutional

Neural Network (CNN) and a Multi-Layer Perceptron (MLP) to extract visual and

acoustic features, respectively. These features were concatenated and fed into a

Bi-directional Long-Short Term Memory (BLSTM) which outputted the estimated

log power spectrum of the clean speech signal. Hou et al. [56] showed that using

information about lip positions could help to improve SE. A video feature vector
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was obtained computing pair-wise distances between 18 landmark points of the

speaker’s mouth. Then, the visual features were concatenated with noisy acoustic

features and used as input to a MLP to obtain the mel-scaled spectrogram of the

denoised speech.

However, mere concatenation of AV feature vectors did not allow to control

the multi-modal fusion process. AV-SE models might not be able to fully exploit

visual information and might be dominated by audio, or vice versa. Several solu-

tions were proposed to mitigate this problem. For example, in [57] the system was

trained to output visual frames of speaker’s mouth, in addition to acoustic output.

In this way, they forced the network to exploit visual information, since it was

much easier to reconstruct visual frames by using video input rather than audio.

They also used the multi-style training strategy [22, 91], where one of the input

modalities was removed to ensure that an input did not dominate over other ones.

Another strategy tried to use a mixture of speech signals from the same speaker

as input [36]. It was effective because the only way to extract the target speech

was by exploiting vision. Nowadays, state-of-the-art approaches to fuse AV fea-

tures are attention-based methods [23, 49]. Each input speech frame can contain

silence, target speech only, interfering speech only, and overlapped speech. Atten-

tion mechanisms updated the importance of audio and visual modalities according

to the characteristics of each frame. Weights referred to audio and video were dy-

namically computed and multiplied with plain audio and visual features to obtain

their corresponding weighted features. Finally, the AV fusion was performed by

concatenating the weighted features.

The availability of large-scale AV datasets enabled a clear breakthrough for

AV-SE over the previous systems in the last few years [4, 31, 93, 94]. These AV

corpora consisted of recordings from thousands of speakers in real-world scenarios

which were exploited to achieve speaker-independent AV-SE. Indeed, these systems
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were able to extract speech of target speakers unseen at training time. Afouras

et al. [4] proposed a CNN-based architecture that consisted of two modules: a

magnitude sub-network and a phase sub-network. The first sub-network was fed

with the noisy spectrogram and the speaker video, and estimated the enhanced

spectrogram. Then, the enhanced spectrogram and the noisy phase were passed

to the phase sub-network to estimate the enhanced phase. Ephrat et al. [31]

exploited a network pre-trained on face recognition to extract face embeddings.

The face embeddings of each speaker involved in the mixture and the Short-Time

Fourier Transform (STFT) of the noisy audio were processed by a deep learning

model that outputted complex-valued TF masks. Ochiai et al. [93] also used

similar face embedding features and, additionally, an enrollment utterance of the

target speaker. They proposed an additive attention framework inspired by [9] to

emphasize the most informative speaker cue at each frame.

All the mentioned deep learning-based approaches were generally trained to

learn a mapping between synthetic noisy speech signals and target speech signals in

a supervised learning framework. On the other hand, Sadeghi et al. [108] proposed

an unsupervised learning approach based on Variational Auto-Encoders (VAEs).

VAEs were exploited to learn a prior probability distribution over clean speech sig-

nals. In particular, they developed a conditional VAE where the speech generative

process was conditioned by visual information. At inference time, the AV speech

generation model was used with a noise variance model based on Non-negative

Matrix Factorization (NMF) to perform SE. Contrary to supervised methods, the

training process did not require neither clean and noisy speech pairs, nor multiple

noise types and levels to ensure good generalization.
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2.2 Joint Speech Enhancement and Recognition

Although state-of-the-art speech recognition systems have reached very high accu-

racy, their performance drops significantly when the signal is recorded in challeng-

ing conditions (e.g., mismatched noises, low SNR, reverberation, multiple voices).

Classical robust ASR systems processed the audio signal through a noise re-

moval stage before passing it to the recognizer. Since SE (or SS) and ASR mod-

ules were trained independently, a channel mismatch between denoised features

and ASR inputs was introduced. Narayanan et al. [89] addressed this problem

introducing a learnable non-linear function that mapped the denoised features to

their clean counterparts. Alternative approaches [90, 130] proposed DNN-based

frameworks that unified denoising and acoustic modeling via joint adaptive train-

ing. The unification of the two modules was done by inserting between them

appropriate layers with fixed weigths and by tuning all the trainable weights for a

few additional epochs. The fixed layers included logarithmic compression, feature

normalization, delta calculation, and feature splicing. Such pre-processing steps

generated a better input representation for acoustic models. All these methods

exploited some kind of TF masking technique to perform SE.

Multi-Task Learning (MTL) is another way to improve noise-robustness of

ASR systems. Indeed, it is well known that simultaneously learning multiple

related tasks from data can be more advantageous rather than learning these

tasks independently [15, 137]. Several speech processing applications are tightly

related, then MTL methods can improve performance and reduce generalization

error. In particular, robust ASR models showed better accuracy when they were

trained with other tasks [20, 119]. Chen et al. [20] developed a LSTM-based model

trained with a weighted sum of ASR and SE losses. It consisted of several shared

hidden layers and performed ASR and SE in two different output layers. Tang et

al. [119] proposed a multi-task recurrent network to perform speech and speaker
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recognition simultaneously. In particular, the output of the ASR sub-model at

the current frame was used as auxiliary information by the speaker recognition

sub-model when processing the next frame, and vice-versa.

Several recent studies showed significant advancements in target speaker ex-

traction from mixed-speech [128, 141], and SS [19, 60, 68, 77]. Many of these SS

methods were exploited to perform target speaker ASR [27, 129] and end-to-end

multi-speaker ASR, which aimed at recognizing all the utterances from a mixture

of multiple speakers’ speech [16, 103, 111]. Qian et al. [103] presented a vari-

ant of the PIT [134] technique to estimate senone posterior probabilities with a

joint optimization scheme. The architecture consisted of two PIT-based modules.

Firstly, a front-end SS module was optimized with a MSE loss, then a back-end

recognition module was trained with cross entropy loss while the weights of the SS

module were frozen. Finally the parameters of both modules were jointly tuned

to minimize the cross entropy ASR loss. However, this method still required a

single-speaker ASR system to obtain the senone alignment labels. Chang et al.

[16], and Seki et al. [111] solved this drawback by unifying SS and ASR models

in an end-to-end architecture that combined an attention-based encoder-decoder

network with the Connectionist Temporal Classification (CTC) [46] objective func-

tion. The attention mechanism and the CTC were both used to align input speech

features to reference character labels. Additionally, the CTC loss was used to

find the correct output-label permutation. Therefore, the models only required

the speech mixture and corresponding transcriptions of each speaker at training

time. Note that in all PIT-based systems the targets of all speakers involved in

the scene were needed at training time. Moreover, the use of PIT imposed an

upper bound on the maximum number of speakers in the mixture. Delcroix et

al. [27] addressed this issue by using a speaker extraction and recognition neural

network, “SpeakerBeam”, that was independent of the number of the sources in
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the mixture. They employed a speaker adaptation layer that was used to inform

the extraction network about which speaker to extract. This approach required

enrollment utterances of the target speaker which were exploited to adjust the

parameters of the speaker adaptation layer.

In Section 2.1 we have reviewed many AV-SE and AV-SS deep learning-based

approaches which outperformed their AO counterparts in extremely challenging

scenarios. Vision can also be used to boost ASR performances [88, 92]. Chung

et at. [22] were the first to propose an end-to-end AV-ASR system based on an

encoder-decoder architecture. Petridis et al. [98] used two different streams for fea-

ture extraction from raw images and waveforms. The streams were concatenated

and fed to a bi-directional Recurrent Neural Network (RNN) that processed the

fused representation and emitted word labels. Afouras et al. [3] proposed a com-

bination of a sequence-to-sequence (seq2seq) [117] and a transformer self-attention

[122] model. All these systems were trained and tested with general environmen-

tal noises. The first attempt to deal with overlapping speech was reported in

[18]. They experimented with several combinations of audio, visual, and speaker

identity information as input to a DNN-Hidden Markov Model (DNN-HMM). The

AV model showed a large improvement over the AO baseline when it was tested

on 2-speakers mixtures. A very recent work [135] outperformed [3] on clean and

overlapped speech using a hybrid architecture. The input features were processed

by a Time-Delay Neural Network (TDNN) which emitted the aligned grapheme-

state units. The entire model was trained to optimize the Lattice Free-Maximum

Mutual Information (LF-MMI) [100] discriminative criterion.



2.3 Speech Inpainting 15

2.3 Speech Inpainting

In real life applications, audio signals frequently suffer from undesired localized

corruptions. These corruptions can be originated by packet-loss in transmission,

clicks, issues during the recording, scratched CDs, and so on. The process of

restoring the lost information from the audio context is known as audio inpainting

[2], regardless of the causes of the loss. In the literature, this restoration is also

denoted as audio interpolation [34], audio extrapolation [61], or waveform substi-

tution [44]. When applied to speech signals, we refer to it as Speech Inpainting

(SI).

Generally, previous work assumed that the distorted data was missing and their

location was known. Moreover, the most studied problem regarded the restoration

of time gaps in audio signals. The system presented in Chapter 5 also follows this

setting. The number and the duration of time gaps can vary a lot. For instance,

corruptions can be frequent in presence of clicks, but their duration is usually

very short, e.g., a few milliseconds or less. This case is referred as inpainting

of short gaps. On the other hand, we can experiment very long missing gaps,

e.g., hundreds of milliseconds, or seconds. Lost connections in audio transmission,

damaged physical media, unwanted high noises might last for seconds. We refer

to this situation as inpainting of long gaps.

The first audio inpainting works aimed at restoring short gaps by exploiting

traditional signal processing techniques. Adler et al. [2] proposed an algorithm

based on Orthogonal Matching Pursuit (OMP), which exploited sparse represen-

tations to efficiently model audio signals. This work inspired a lot of research on

sparsity-based audio inpainting [1, 74, 86, 120]. Other works used TF representa-

tions in a regression model [132], or in a NMF model [70, 114]. Although these

methods obtained good performance for short gaps, they did not extend well for

longer gaps.
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For inpainting long gaps several methods have been proposed. In general, early

solutions leveraged repetitions and stationarity of signals to find the most suited

missing segment extracted from uncorrupted audio context. In that case, the

objective was to output a plausible solution rather than a perfect reconstruction.

For example, Bahat et al. [8] tried to fill missing gaps using pre-recorded speech

examples from the same speaker. Perraudin et al. [97] exploited self-similarity

graphs within audio signals. However, the first approach required a different model

for each speaker, and the second one was less suitable for speech, since it could only

inpaint stationary signals. Prablanc et al. [101] proposed a text-informed solution

to inpaint missing speech combining speech synthesis and voice conversion models.

Recently, several researchers attempted to solve audio inpainting using deep

learning. In [79] a CNN model was used to inpaint missing audio from adja-

cent context. Other works exploited Generative Adversarial Networks (GANs)

to generate sharper TF representations [28, 78]. Zhou et al. [138] demonstrated

that exploiting visual cues improved inpainting performance. However, these ap-

proaches only restored music signals, which usually have longer time dependencies

than speech. Chang et al. [17], and Kegler et al. [64] both tried to generate speech

from masked signals with convolutional encoder-decoder architectures. A very re-

cent work proposed a two-stage enhancement network where binary masking of a

noisy speech spectrogram was followed by inpainting of TF bins affected by severe

noise [50].

At the best of our knowledge, there are no works that address the problem

Audio-Visual Speech Inpainting (AV-SI), i.e., the task of restoring the missing

parts of an acoustic speech signal using audio context and visual information.

However, when missing time gaps are very long, i.e., one second or more, the

contribution of vision to the reconstruction should be predominant. Therefore,

the task of speech reconstruction (or synthesis) from silent videos is very related



2.3 Speech Inpainting 17

to ours. Indeed, we can see this task as a particular case of AV-SI when the

acoustic context is missing. Le Cornu and Milner [69] developed the first speech

synthesis system only using the silent video of a speaker’s frontal face. They based

their system on STRAIGHT vocoder [62], which was able to generate speech from

several parameters. Only the spectral envelope parameter was estimated with a

neural network model, while the other vocoder parameters were artificially pro-

duced without considering visual information. Ephrat and Peleg [32] proposed to

solve the video-to-speech task with a DNN-based regressor. Their model mapped

raw pixels to linear predictive coding (LPC) coefficients computed from the tar-

get audio signal. They improved their system in a follow-up work [30], where a

CNN model estimated the mel-scale spectrogram from video frames and optical

flow. Another work [5] employed an autoencoder to extract bottleneck features

from the auditory spectrogram. Subsequently, the bottleneck features were used

as targets in the main video-to-speech synthesis neural network.

The main limitation of the previous systems was that they were speaker-

dependent, meaning that they needed different models for each speaker. Pra-

jwal et al. [102] developed a sequence-to-sequence system inspired by Tacotron

2 [112], a state-of-the-art text-to-speech model. They mainly aimed at recon-

structing speech of specific speakers in unconstrained settings. However, they also

proposed a multi-speaker approach. Speaker embeddings were extracted from ref-

erence signals of the speakers and were used to condition the system. We can not

consider this method as speaker-independent as it needs prior information about

the speaker. The first pure speaker-independent system was proposed in [124],

where a GAN was exploited to estimate directly time-domain speech from video

frames. Although this model was able to reconstruct intelligible speech of speakers

unseen at training time, speech quality was lower than speaker-dependent meth-

ods mentioned above. Michelsanti et al. [84] tried to improve speech quality by
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using vocoder features as training targets in place of raw waveforms. They used

the WORLD vocoder [87] to synthesize waveforms from parameters estimated by

a deep learning model. In addition, they proposed a MTL approach where a visual

speech recognition task was learned together with the estimation of the vocoder

parameters. The results showed that the MTL approach was beneficial both for

speech intelligibility and quality.



Chapter 3

Audio-Visual Speech

Enhancement at the Cocktail

Party

This chapter addresses the problem of enhancing the speech of a speaker of interest

in a cocktail party scenario when visual information, i.e., face landmarks motion, is

available. The work described in this chapter has been presented at the 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

[A] 1.

3.1 Introduction

SE aims at extracting the voice of a target speaker. When two or more speakers

are involved in the input mixture, all the utterances spoken by each speaker can be

treated as valid outputs. This problem can be solved by exploiting some additional

1Code and demos of our AV-SE models are available at https://dr-pato.github.io/audio_
visual_speech_enhancement/.

https://dr-pato.github.io/audio_visual_speech_enhancement/
https://dr-pato.github.io/audio_visual_speech_enhancement/
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information associated to the speaker of interest to guide the SE model to output

the utterance of the target speaker. We attempt to use video of the target speaker’s

talking face as additional information.

The majority of AV-SE systems exploit DNN architectures to extract visual

features from raw pixels [85]. In general, in most previous work visual features are

learned directly during SE training through backpropagation [36, 42, 57]. Other

systems extract visual features from a hidden layer of DNN models trained for

other tasks like face recognition [31, 93] and visual speech recognition [4, 108].

Instead, Hou et al. [56] show that using information about facial landmarks

positions can help to improve SE. Landmarks are salient points on the face such

as the corners of the mouth, the eyebrows, the eyes, the nose, and the jaw (see

Fig. 3.1). The video feature vector is obtained computing pair-wise distances

between any mouth landmarks. In this chapter, we also use face landmarks as

video inputs. Contrary to our approach, they use position-based features while

we use motion features of the whole face that in our experiments turn out to be

much more effective than positional features. Finally, in [56] the system is only

evaluated in a speaker-dependent setting.

We extract the face landmarks employing an efficient pre-trained landmark

extractor available from Dlib [65]. By using face landmarks as input, we relieve

our AV-SE models from learning useful visual features from raw pixels. That

aspect is particularly relevant when the training AV datasets are small.

In this chapter we aim at exploring different ways of mapping such visual fea-

tures into TF masks, which are exploited to clean the acoustic noisy spectrogram.

Additionally, we propose to substitute the visual pipeline implemented with

traditional frame-based sensors with an equivalent pipeline based on the Event-

Driven Cameras (EDCs) [96]. EDCs are a novel type of vision sensors that asyn-

chronously measure the brightness change for each pixel. These features enable
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Figure 3.1: Example of a face bounding box (blue square) and face landmarks (red
crosses) extracted with Dlib.

the extraction of motion at lower computational cost and latency.

The chapter is organized as follows. The problem formulation is presented in

Section 3.2. The description of the overall system and of the AV-SE models is

provided in Section 3.3. Experimental setup and evaluations are given in Section

3.4 and Section 3.5, respectively. We provide a short overview of the EDC-based

approach in Section 3.6. Finally, we conclude this chapter in Section 3.7.

3.2 Problem Formulation

Let x[n] and d[n] denote the target clean speech signal and the noise signal, re-

spectively, where n indicates a discrete-time index. We can model the observed

noisy speech signal, y[n], as:

y[n] = x[n] + d[n]. (3.1)

We define the problem of monaural, or single-channel, AO-SE as the task of
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finding a function, Fa−se, that estimates x[n] from y[n]. The estimated clean signal

is denoted by x̂[n]. In Eq. 3.1 we only consider additive noise signals, although SE

generally deals also with non-additive noises and distortions, e.g., reverberation.

In the case of AV-SE, the function Fav−se has to estimate x[n] from y[n] and an

additional visual signal, v[m]. m is a discrete-time index typically different from

n, since visual and acoustic signals are generally sampled at different rates.

The Eq. 3.1 can also be expressed in the TF domain as:

Y (k, l) = X(k, l) +D(k, l), (3.2)

where k and l are a frequency bin index and a time frame index, respectively,

while Y (k, l), X(k, l) and D(k, l) represent the Short-Time Fourier Transform

(STFT) coefficients of the noisy speech, target clean speech and noise signals,

respectively. As above, the problem of SE is finding a function that provides

an estimate, X̂(k, l), of X(k, l). The STFT coefficients are complex-valued, then

both real and imaginary parts have to be estimated or, equivalently, the magni-

tude, |X(k, l)|, and the phase, ∠X(k, l). Logarithmic or power-law compression

is usually applied to STFT magnitude to obtain a spectrogram, Xs(k, l), which

is often used as acoustic input to speech processing algorithms. The majority

of SE systems only estimate the STFT magnitude or the spectrogram, since the

target STFT phase is considered less important [38, 127]. In that case, noisy

phase, ∠Y (k, l), is exploited to apply inverse STFT, which reconstructs the time-

domain signal. In this dissertation we follow this approach. However, recent AV-SE

work propose alternative solutions that attempt to estimate the target phase [4],

∠X(k, l), the STFT complex-valued coefficients [31], X(k, l), or the time-domain

signal [59], x[n], directly.

In general, SE aims at extracting the voice of a single target speaker from

signals affected by background noise and other artifacts. In some situations the



3.3 System Overview 23

noisy signal may consist of two or more speech signals. In the two-speakers mixture

case, the observed acoustic signal can be modelled as:

y[n] = x1[n] + x2[n]. (3.3)

In that case, the task of estimating the speech of the target speaker, x1[n] or

x2[n], is also denoted as target speaker extraction, and it is the scenario we address

in this chapter and in Chapter 4. On the other hand, the task of estimating all

the target speech signals, x1[n] and x2[n], in the mixture is known as AO-SS. If

visual signals are provided then the task is denoted as AV-SS.

3.3 System Overview

Noisy speech

Video

ACOUSTIC 
FEATURES 

EXTRACTION

VISUAL
FEATURES 

EXTRACTION

AUDIO-VISUAL 
FUSION

SPEECH 
ENHANCEMENT 

MODULE

Enhanced speech

Figure 3.2: Schematic diagram of the general architecture of our AV-SE systems.

The general architecture of our AV-SE algorithms is depicted in Fig. 3.2. The

architecture consists of four building blocks: acoustic features extraction, visual

features extraction, audio-visual fusion and speech enhancement module. In the

following subsection we describe the audio-visual fusion and the speech enhance-

ment module. The details about the acoustic features extraction and the visual

features extraction are provided in Subsections 3.4.3 and 3.4.4, respectively.
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3.3.1 Model Architectures

We experiment with four models. All models receive in input the target speaker’s

landmark motion vectors and the power-law compressed spectrogram of the single-

channel mixed-speech signal. All of them perform some kind of TF masking op-

eration. Generally, the TF mask is element-wise multiplied with the noisy spec-

trogram to obtain the estimated clean spectrogram. The analysis of landmark-

dependent masking strategies is motivated by the fact that SE mediated by explicit

masking is often more effective than mask-free enhancement [136].

Video-Landmark to Mask

STACKED 
BLSTM

M̂(k,l)

X̂ 
m(k,l)

V(p,l)

Ys(k,l)

s

Figure 3.3: VL2M model.

At each time frame, the Video-Landmark to Mask (VL2M) model (Fig. 3.3)

estimates a TF mask, M(k, l), from visual features of the target speaker, V (p, l),

without considering acoustic information. More formally, VL2M performs a func-

tion Fvl2m(V (p, l)) = M̂(k, l), where M̂(k, l) is the estimated mask, and p, k and

l are a visual feature index, a frequency bin index and a time frame index, respec-

tively.

The training objective for VL2M is a Target Binary Mask (TBM) [7, 67], com-

puted using the spectrogram of the target speaker only. This is motivated by our

goal of extracting the speech of a target speaker as much as possible independently
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of the concurrent speakers. An additional motivation is that the model takes as

only input the visual features of the target speaker, and a target TBM that only

depends on the target speaker allows VL2M to learn an one-to-one mapping func-

tion. This condition is not met by masks dependent on background noisy sources.
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Figure 3.4: Example of a thresholding function based on the LTASS of a male
speaker.

Given a clean speech spectrogram of a target speaker i, Xs(k, l), the TBM is

defined by comparing, for each frequency bin index k ∈ [1, K], the target speaker

value Xs(k, l) vs. a reference threshold τ i(k). This threshold indicates if a TF

unit is generated by the speaker or refers to silence or noise. As in [35], we use a

function of Long-Term Average Speech Spectrum (LTASS) as reference threshold

(see Fig. 3.4). The LTASS provides a means of viewing the energy distribution

across frequencies in continuous speech. In our case, the LTASS is computed

separately for each speaker.

The process to compute the LTASS and TBMs from the spectrograms of the

speaker i is as follows:

1. The mean, µi
s(k), and the standard deviation, σi

s(k), along the time axis, are
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(a) Spectrogram.
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(b) Target Binary Mask (TBM).

Figure 3.5: Example of a spectrogram and the corresponding Target Binary Mask
(TBM).

computed for all frequency bin indices of spectrograms included in training

data and belonging to the speaker i.

2. The threshold, τ i(k), is defined as τ i(k) = µi
s(k) + 0.6 · σi

s(k), where 0.6 is a

value selected by manual inspection of several spectrogram-TBM pairs.

3. The threshold is applied to every speaker’s speech spectrogram, Xs(k, l).

M(k, l) =

 1, if Xs(k, l) ≥ τ i(k),

0, otherwise.

The mapping Fvl2m(·) is carried out by a stacked BLSTM network [47]. The

outputs of the last BLSTM are then forced to lay within the [0, 1] range using the

sigmoid activation function. Finally, the estimated TBM, M̂(k, l), and the noisy

spectrogram, Ys(k, l), are element-wise multiplied to obtain the estimated clean

spectrogram X̂m
s (k, l) = M̂(k, l)� Ys(k, l).
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The model parameters are estimated to minimize the binary cross-entropy loss:

Jvl2m =
K∑
k=1

L∑
l=1

−M(k, l) · log(M̂(k, l))− (1−M(k, l)) · log(1− M̂(k, l)). (3.4)

VL2M-ref model

VL2M generates TF masks that are independent of the acoustic context. We may

want to refine the masking by including such context.

V(p,l) VL2M M̂(k,l)

Ys(k,l) BLSTM

BLSTM

Fusion layer

BLSTM P̂(k,l)

X̂s(k,l)
Ry(j,l)

Rm(j,l)

H(j,l)

Figure 3.6: Vl2M-ref model.

This is what the novel VL2M-ref does (Fig. 3.6). The estimated TBM, M̂(k, l),

and the noisy spectrogram, Ys(k, l), are the input to a function that outputs an

Ideal Amplitude Mask (IAM), P (k, l) (known as FFT-MASK in [136]). Unlike

TBM, IAM allows perfect recovery of the target spectrogram. Given the target

clean spectrogram, Xs(k, l), and the noisy spectrogram, Ys(k, l), the IAM is defined

as:

P (k, l) =
Xs(k, l)

Ys(k, l)
. (3.5)

Note that IAM computation only uses the target and mixed-speech spectro-

grams, unlike several widely used masks, e.g., Ideal Binary Mask (IBM), and Ideal

Ratio Mask (IRM), which also require the spectrogram of interfering sources.

The target speaker’s spectrogram, Xs(k, l), is reconstructed by multiplying the
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input spectrogram with the estimated IAM. Since the IAM is not upper bounded,

values greater than 10 are clipped to 10 in order to obtain better numerical stability

as suggested in [136].
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(a) Clean spectrogram.
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(b) Noisy spectrogram.

0 50 100 150 200 250 300
TIME FRAME INDEX

0

1000

2000

3000

4000

5000

6000

7000

8000

FR
EQ

UE
NC

Y 
(H

z)

(c) IAM.

Figure 3.7: Example of a clean spectrogram, a noisy spectrogram and the corre-
sponding Ideal Amplitude Mask (IAM).

The model performs a function Fmr(V (p, l), Ys(k, l)) = P̂ (k, l) that consists of

a VL2M component plus three different BLSTMs Gm, Gy, and H.

Gm(Fvl2m(V (k, l)) = Rm(j, l) receives the VL2M mask as input, and Gy(Ys(k, l)) =

Ry(j, l) is fed with the noisy spectrogram. Their outputs, Rm(j, l) and Ry(j, l),

can be treated as matrices, where the lth column represents an intermediate vec-
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tor representation at the time frame l, and j indicates an index of a value in the

vector. We apply a linear combination of Rm(j, l) and Ry(j, l) to obtain H(j, l),

which can be regarded as a joint AV representation:

H(j, l) = Whm ·Rm(j, l) + Why ·Ry(j, l) + bh, (3.6)

where Whm, Why and bh are the first weight matrix, the second weight matrix

and the bias of the linear layer, respectively. H(j, l) is the input of the third

BLSTM H(H(j, l)) = P̂ (k, l), where P̂ (k, l) lays in the [0,10] range.

As training objective, we use an indirect mapping scheme [131], which mini-

mizes the MSE loss between the target and estimated spectrogram with an implicit

masking:

Jmr =
1

KL

K∑
k=1

L∑
l=1

(P̂ (k, l)� Ys(k, l)−Xs(k, l))
2. (3.7)

Audio-Visual Concat

V(p,l)

Ys(k,l)

P̂(k,l)
STACKED 

BLSTM

X̂s(k,l)

Figure 3.8: AV Concat model.

The third model (Fig. 3.8) performs early fusion of AV features. The fusion

is made by concatenating the audio and video along the feature axis. The model

consists of a single stacked BLSTM that computes the IAM, P̂ (k, l), from the

fused representation. The training loss is the same Jmr (Eq. 3.7) used to train



30 AV-SE at the Cocktail Party

VL2M-ref. This model can be regarded as a simplification of VL2M-ref, where the

VL2M operation is not performed.

Audio-Visual Concat-ref

Ys(k,l)

P̂(k,l)
STACKED 

BLSTM

X̂s(k,l)

V(p,l) VL2M M̂(k,l)

X̂ m(k,l)s

Figure 3.9: AV Concat-ref model.

The fourth model (Fig. 3.9) is an improved version of the AV Concat model.

The only difference is the input of the stacked BLSTM that is replaced by the

concatenation of the noisy spectrogram, Ys(k, l), and the denoised spectrogram

returned by VL2M operation, X̂m
s (k, l). This architecture introduces a second-

stage enhancement network to refine the target speech estimation, similarly to

[60].

3.4 Experimental Setup

3.4.1 Datasets

All experiments are carried out using the GRID [24] and TCD-TIMIT [52] AV

datasets, which consist of frontal face recordings. For each of them, we create a

mixed-speech version.

The GRID corpus consists of AV recordings from 33 speakers (one has to be

discarded), each of them uttering 1000 sentences. The sentences are drawn from

the following simple syntax: command(4) + color(4) + preposition(4) + letter(25) +

digit(10) + adverb(4), where the number denotes how many word choices there are
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for each of the 6 word categories. Each recording is 3 s long with an audio sample

rate of 50 kHz and a video frame rate of 25 fps. For each speaker, who is denoted

as target speaker, we first randomly select 200 utterances (out of 1000). Then,

for each utterance, we create 3 different audio-mixed samples. Each audio-mixed

sample is created by mixing at the same volume level the chosen utterance with

one utterance from a different speaker. That results in 600 audio-mixed samples

per target speaker. Audio-mixed samples and videos of target speakers are used as

inputs of our models. Our systems are evaluated in a speaker-independent setting,

with 25 speakers (s1-20, s22-25, s28) used for training, 4 speakers (s26-27, s29,

s31) for validation, and 4 speakers (s30, s32-34) for testing. Each set consists of

the same number of male and female speakers, except for the training set which

contains 13 males and 12 females.

In addition, we create a speaker-dependent version of the GRID corpus to

compare our systems with other studies which are only evaluated in a speaker-

dependent setting [35, 36]. We split the utterances of speaker 2 and 3 into disjoint

sets of 600/200/200 utterances for training/test/validation, respectively. Similarly

to the speaker-independent case, each utterance of one speaker is mixed with

another utterance from the other speaker in the same set.

The TCD-TIMIT corpus consists of 59 speakers (we exclude 3 professionally-

trained lipspeakers) and 98 utterances per speaker. The speakers are recorded

saying various sentences from the TIMIT dataset [37]. The audio sample rate is

of 48 kHz and the video frame rate is of 29.97 fps. The mixed-speech version is

created following the same procedure as for GRID, with one difference. Contrary

to GRID, TCD-TIMIT utterances have different duration. Thus two utterances

are mixed only if their duration difference does not exceed 2 seconds. For each

utterance pair, we force the non-target speaker’s utterance to match the duration

of the target speaker utterance. If it is longer, the utterance is cut at its end,
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whereas if it is shorter, silence samples are equally added at its start and end.

The resulting dataset is split into disjoint sets of 51 (s1-50), 4 (s51, s53-55), and 4

(s56-59) speakers for training, validation and testing, respectively.

3.4.2 Optimization

In all experiments, the models are trained using the Adam optimizer [66]. The

learning rate is set to 0.0001 for VL2M, and to 0.001 for the other models. Early

stopping is applied when the error on the validation set does not decrease over 5

consecutive epochs.

VL2M, AV Concat and AV Concat-ref have 5, 3 and 3 stacked BLSTM layers,

respectively. All BLSTMs have 250 units. Hyper-parameters selection is performed

by using random search with a limited number of samples, therefore all the reported

results may improve through a deeper hyper-parameters validation phase.

VL2M-ref and AV Concat-ref training is performed in 2 steps. We first dis-

card the VL2M module and use the oracle TBM to train the systems. This step

improves stability of gradients and reduce training times. Then we substitute the

oracle masks with the pre-trained VL2M component. We freeze the parameters of

the VL2M module and apply fine-tuning to obtain the final parameters.

Additionally, we employ an AO-SS model based on the utterance-level Per-

mutation Invariant Training (uPIT) objective function [68] as baseline system. It

is fed with the mixed-speech spectrogram and estimates two IAMs that are used

to recover the two sources in the mixture. The architecture consists of 3 stacked

BLSTMs with 250 hidden units.
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(b) Spectrogram.

Figure 3.10: Speech representations.

3.4.3 Audio Processing

As acoustic features we use a TF representation of input speech signals, that is

a very common choice in both AO and AV speech enhancement and separation

systems [85, 126].

The original waveform, x[n], is resampled to 16 kHz. STFT, Y (k, l), is com-

puted using FFT size of 512, Hann window of length 25 ms (400 samples) and

hop length of 10 ms (160 samples). The spectrogram, Ys(k, l), is obtained taking

the STFT magnitude and performing power-law compression to simulate human

loudness perception. Finally, we apply standard normalization using speaker-wise

mean and standard deviation to obtain the normalized input features, Y s(k, l).

More formally:

Y s(k, l) =
|Y (k, l)|p − µi

s(k)

σi
s(k)

, (3.8)

where p = 0.3, while µi
s(k) and σi

s(k) are speaker-wise mean and standard de-

viation, respectively. They are obtained by taking every spectrogram of a speaker

i, and by computing the mean and standard deviation of TF bins over the time

axis:
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µi
s(k) =

1∑Ni

n=1 L
n
i

Ni∑
n=1

Ln
i∑

l=1

Y n
s (k, l), (3.9)

σi
s(k) =

√√√√ 1∑Ni

n=1 L
n
i

Ni∑
n=1

Ln
i∑

l=1

(Y n
s (k, l)− µi

s(k))2, (3.10)

where Ni is the total number of samples of the speaker i, and Ln
i is the number

of audio time frames in the nth spectrogram of the speaker i. Fig. 3.10 shows an

example of the waveform of a speech signal and its associated spectrogram.

In the post-processing stage, the enhanced waveform generated by the SE mod-

els is reconstructed by applying the inverse STFT to the estimated clean spectro-

gram and using the phase of the noisy input signal.

3.4.4 Visual Features Extraction

The face landmarks are extracted using a pre-trained algorithm available in Dlib

framework [65]. The algorithm consists of two phases: face detection and face

landmarks estimation. The face detector uses the classic Histogram of Gradients

(HOGs) [25] features combined with a linear classifier, an image pyramid, and

sliding window detection scheme. The face landmarks estimator implementation

is based on an ensemble of regression trees [63] and is trained on the iBUG 300-W

face landmark dataset [109], which contains 600 annotated faces. The pipeline

outputs 68 2D points, for an overall of 136 values.

The video frame rate is upsampled from 25/29.97 fps (GRID/TCD-TIMIT) to

100 fps to match the audio spectrogram frame rate. Upsampling is carried out

through linear interpolation over time. The motion vectors of face landmarks are

computed by simply subtracting every frame with the previous one. The motion

vector of the first frame is set to zero. Similarly to audio features, we perform
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speaker-wise normalization using mean and standard deviation to obtain the input

visual feature vectors.

3.5 Evaluation Results

3.5.1 Evaluation Metrics

Our AV-SE models are designed to separate the speech of a target speaker from

interfering speech sources. This task is very related to SS, which aims at estimating

all the sources involved in the mixture. Therefore, we evaluate the performance of

the proposed models using both SE and SS metrics. Specifically, we measure the

capability of separating the target utterance from the concurrent utterances with

the Source-to-Distortion Ratio (SDR) [104, 123]. The quality of estimated target

speech is measured with the Perceptual Evaluation of Speech Quality (PESQ)

[106] and the Virtual Speech Quality Objective Listener (ViSQOL) [55] metrics.

For PESQ we use the narrow band mode, while for ViSQOL we use the wide band

mode. For every metric, higher values correspond to better performance. The

metrics are only computed on target speakers’ speech to assure that each speaker

provides the same contribution to the overall evaluation.

3.5.2 Results

As a very first experiment we compare face landmark position features vs. land-

mark motion features vectors. It turns out that landmark positions perform poorly,

thus all results reported here refer to landmark motion feature vectors only.

We then carry out some speaker-dependent experiments to compare our models

with previous studies as, to the best of our knowledge when we published this

study [A], there were no reported results of speaker-independent systems trained
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SDR PESQ ViSQOL

Noisy −1.06 1.81 2.11
VL2M 3.17 1.51 1.16
VL2M-ref 6.50 2.58 2.99
AV Concat 6.31 2.49 2.83
AV Concat-ref 6.17 2.58 2.96

Table 3.1: GRID results - speaker-dependent. The “Noisy” row refers to the
evaluation values of the input mixed-speech signal.

2 Speakers 3 Speakers
SDR PESQ ViSQOL SDR PESQ ViSQOL

Noisy 0.21 1.94 2.58 −5.34 1.43 1.62
AO uPIT 7.39 2.59 3.00 Not Available
VL2M 3.02 1.81 1.70 −2.03 1.43 1.25
VL2M-ref 6.52 2.53 3.02 2.83 2.19 2.53
AV Concat 7.37 2.65 3.03 3.02 2.24 2.49
AV Concat-ref 8.05 2.70 3.07 4.02 2.33 2.64

Table 3.2: GRID results - speaker-independent.

and tested on GRID and TCD-TIMIT to compare with. Table 3.1 reports the test

set evaluation of speaker-dependent models on the GRID corpus with landmark

motion vectors. Results are comparable with previous state-of-the-art studies in

an almost identical setting [35, 36].

Table 3.2 and 3.3 show speaker-independent test set results on the GRID and

TCD-TIMIT datasets, respectively. V2ML performs significantly worse than the

other three models indicating that a successful mask generation has to depend

on the acoustic context. The performance of the three models in the speaker-

independent setting is comparable to that in the speaker-dependent setting.

AV Concat-ref outperforms V2ML-ref and AV Concat in both datasets. This

supports the utility of a refinement strategy and suggests that the refinement is

more effective when it directly refines the estimated clean spectrogram, rather than
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2 Speakers 3 Speakers
SDR PESQ ViSQOL SDR PESQ ViSQOL

Noisy 0.21 2.22 2.74 −3.42 1.92 2.04
VL2M 2.88 2.25 2.62 −0.51 1.99 1.98
VL2M-ref 9.24 2.81 3.09 5.27 2.44 2.54
AV Concat 9.56 2.80 3.09 5.15 2.41 2.52
AV C-ref 10.55 3.03 3.21 5.37 2.45 2.58

Table 3.3: TCD-TIMIT results - speaker-independent.

refining the estimated mask.

Additionally, in order to assess the importance of masking, we create a modified

version of the AV Concat model that reconstructs the target speaker spectrogram

without going through any mask operation. During training, we observed a very

unstable behaviour of the loss function and a SDR value just above 5 on the GRID

test-set.

Regarding the AO baseline, we only report the results of the model trained on

GRID for the two-speakers’ case. The loss function tends to diverge rapidly when

the training is carried out on TCD-TIMIT, as it has more acoustic complexity and

does not contain enough audio data to solve the AO-SS task. As expected, the

separation performance (SDR) is good, since PIT exploits all the clean sources

during training. However, it is still lower than the best AV model. In general,

compared to the AO baseline, AV approaches tend to favor speech quality (PESQ

and ViSQOL), which is better for AV Concat and AV Concat-ref, and in par for

VL2M-ref, although the last shows poorer separation capability.

Finally, we evaluate the systems in a more challenging testing condition where

the target utterance is mixed with 2 utterances from 2 competing speakers. Even

though the model is trained with mixtures of two speakers, the decrease of perfor-

mance is not dramatic.
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3.6 Event-Driven Camera Approach

So far we have demonstrated that face landmarks motion features are very effective

for AV-SE task. Although our systems does not require huge AV datasets at

training time, they need to acquire and process every pixel in each frame. However,

a large number of pixels does not change throughout the scene and does not carry

any information. This leads to a waste of computational resources. In order to

overcome this limitation, we propose to use Event-Driven Cameras (EDCs) [96].

EDCs asynchronously measure the brightness change for each pixel, featuring

a temporal resolution as high as 1 µs, extremely low latency, and data compression

(as only active pixels communicate data). With such sensor, the visual features can

be sampled with the same temporal discretization of the auditory pipeline (about

10 ms), removing the need of artificial upsampling which can generate distortions.

All these features are desirable to pave the way towards online embedded AV

speech processing.

Event-driven vision sensors were already widely used for object tracking [14,

41], detection [58] and segmentation [115], and for gesture recognition [80]. Re-

cently, they were applied for speech processing tasks. In [110] lip movements

detected by EDCs were used together with audio features to enable AV voice ac-

tivity detection. Li et al. [73] proposed to use EDCs for visual speech recognition,

i.e., lip-reading, using a DNN architecture.

We present an AV target speaker extraction system on multi-talker environ-

ments using event-driven sensors. We substitute the visual pipeline implemented

with traditional frame-based cameras, face tracking and extraction of face land-

marks motion with an equivalent pipeline based on EDCs, which compute motion

at lower latency and computational cost. The work presented in this section has

been accepted at the 2021 IEEE International Symposium on Circuits and Systems

(ISCAS) [C].
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3.6.1 Methods and Experimental Setup

Since we aim at analyzing the contribution of the new EDC-based processing

pipeline, we follow the architecture and the experimental setup of the AV Concat

model described in Subsection 3.3.1.

Event-Driven Motion Features Extraction

EDCs output asynchronous events whenever a pixel detects changes in log intensity

larger than a threshold. Each event has an associated timestamp, a 2D pixel

position, and a polarity (log intensity increase or decrease). The events are emitted

with high temporal resolution and low latency, only when there is relative motion

between the camera and the scene. Fig. 3.11 shows a graphical reconstruction of

a snapshot of a talking face. Only the motion of the person generate events, in

particular his mouth and eyes, leading to a low amount of information to process.

The different data structure and content from EDCs require specific algorithms

for optical flow estimation, that can rely on the precise timing of each event and

the continuous observation of the events produced by contrast edges moving from

one pixel to its neighbors. State-of-the-art optical flow estimation from event-

based data streams is based on deep learning [139]. However, lips and other

facial landmarks move mostly horizontally and vertically, then we do not need an

extremely complex optical flow estimator. For that reason, we employ another

temporally and computationally efficient algorithm that works well in absence of

motion in depth [10].

Dataset

We generate an event-driven version of the mixed-speech GRID dataset described

in Subsection 3.4.1. The videos are upscaled to 60 fps to have more temporal

information and avoid artifacts in the generation of events. The event-based data
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Figure 3.11: Reconstruction of a snapshot of a person talking in front of an EDC.

stream is generated by pointing the ATIS EDC [99] towards a high definition

LED monitor while the upscaled videos are played. Due to the low quality of the

original videos (360× 288 pixels resolution) and in order to preserve the details of

lip movements, we crop the mouth area over 100×50 pixels from the event stream.

Video Pre-Processing

To align the visual features to the audio frame rate, we accumulate events every 10

ms and compute the optical flow with the method explained in [10]. The optical

flow estimator outputs 2D motion vectors for each event. Therefore, the number of

pixels that generates optical flow in each frame can change, originating a different

number of video features. Since the BLSTM accepts inputs of the same size for

each time step, we apply a transformation that converts the event-based optical

flow into fixed-sized regions across the 100× 50 pixels.

For each region, we compute three values: the mean of the horizontal (x) and
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Figure 3.12: Optical flow representation when using regions of 10× 10 pixels.

of the vertical (y) components of optical flow, and the event-rate. The event-rate

is the total number of events on each region at each frame. Fig. 3.12 shows an

example of the x and y components of the optical flow for a specific frame.

Optimization

The AV target speaker enhancement model consists of 5 stacked BLSTM layers,

with 250 hidden units in each layer. The inputs of the model are the concatenation

of the power-law compressed noisy spectrogram and the extracted event-based

visual features. The output of the network is the IAM (Eq. 3.5) and the loss

function is Jmr (Eq. 3.7).

We train the model using the Adam optimizer [66] and 20% of dropout to avoid
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overfitting. The model is trained up to 500 epochs and early stopping is applied

on the validation set when the loss does not decrease for 5 epochs.

3.6.2 Results

We use the SDR [123] and PESQ [106] metrics to measure the separation and the

speech quality performance, respectively.

Table 3.4 shows the results from three different models. In the first model we

extract visual features using regions of 10 × 10 pixels. In this case, we obtain 50

regions. Each region produces 3 values, resulting in a total of 150 video features.

The model performs on par with the approach based on face landmarks and con-

ventional cameras on PESQ metric, while the SDR is slightly worse, although the

separation capability is still good. It is noteworthy that our dataset is not recorded

live with subjects, but obtained by recording a movie played back on a high reso-

lution monitor. That results in low quality video and can generate noisy artificial

events. Nevertheless, the event-based approach reaches similar performance as the

frame-based approach.

In the next experiment we decrease the size of each region to 5 × 5 in order

to have more localized video features. However, the number of input features in-

creases enormously. For that reason, we only use x and y components of the optical

flow obtaining 400 video features. Although the results are decent, they are not

close to those achieved with 150 input features. Additionally, the computational

time increases due to higher input dimensionality.

The main drawback of BLSTMs used in previous experiments is that they need

to pass all the features forward and backward before giving a prediction. They

can only work in offline scenarios and have higher latency. We implement a causal

system using unidirectional LSTM layers with the 150 video features used in the

first model. In causal systems the output only depends on past and current inputs,
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SDR PESQ

Noisy 0.21 1.94
Frame-based approach (face landmarks) 7.37 2.65
Event-based approach (150 features) 7.03 2.65
Event-based approach (400 features) 6.58 2.59
Event-based causal approach (150 features) 3.79 2.22

Table 3.4: GRID results - Event-based approach.

allowing real-time processing. We employ the 150 video features used in the first

model. However, the performance of deep forward LSTM is far from that yielded

by the BLSTM-based models. This finding suggests that LSTMs are not able to

learn powerful AV representations only from past information. Forward LSTMs

with look-ahead [121] can be a solution to reduce the gap with BLSTMs, although

look-ahead causes a small processing latency. Additionally, other neural network

architectures should be investigated to perform online processing.

As a final esperiment, we compare the computation time of the visual features

extraction pipelines based on face landmarks and event-driven approaches 2. The

computation of the face landmarks movements for each video file (each video is 3 s

long) using Dlib [65] takes 2.980 s on average with 0.825 s standard deviation. On

the other hand, for the event-based approach with frame size of 10 ms and 10×10

regions the mean is 1.126 s with 0.212 s standard deviation, almost three times

less than the frame-based approach. The computation time of the event-based

approach is divided as follows: 0.679 s for optical flow computation and 0.447 s for

optical flow-regions mapping. In Fig. 3.13 the computation time of optical flow for

different frame sizes is shown. For all the cases the computation time is lower than

the frame size by a large margin, leaving enough time to generate visual features,

e.g., frame-based optical flow regions, before the next frame arrives without leaks.

2Measurements are made with an Intel® Core� i7-7500U CPU @ 2.70GHz x 4 CPU.
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Figure 3.13: Computation time of optical flow for different frame sizes.

3.7 Concluding Remarks

Choosing suitable visual features is of great importance for AV speech processing

tasks. In this chapter, we propose the use of face landmarks motion vectors for

AV-SE in a single-channel multi-talker scenario. We explore different ways to

map face landmarks motion vectors and noisy spectrograms to TF masks that are

employed to extract the denoised spectrogram.

Since face landmarks are extracted with an efficient pre-trained model, we re-

lieve our systems to learn useful visual features from huge AV datasets. Indeed,

we carry out experiments on two limited size datasets, GRID and TCD-TIMIT.

Experiments show that a masking method independent of the acoustic context

(VL2M) performs significantly worse than the other approaches (VL2M-ref, AV

Concat, AV Concat-ref). The acoustic-aware approaches are able to perform AV-

SE in a speaker-independent scenario. In particular, we obtain the best perfor-
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mance with the AV Concat-ref model. It employs a two-stage enhancement where

the clean spectrogram estimated from VL2M is further refined by exploiting the

acoustic context.

Additionally, in Section 3.6 we propose to substitute the traditional frame-

based visual feature extraction pipeline with one based on event-driven signals.

The model trained on the event-driven GRID with the new features is almost on

par with the one trained with native frame-based features. Besides, experiments

demonstrate that event-driven features extraction requires one third of the time

compared to face landmarks motion computation. To the best of our knowledge,

this is the first study that use event-driven cameras for target speaker enhance-

ment. Our results are very promising and can pave the way towards online AV-SE

in embedded devices.





Chapter 4

Joint Audio-Visual Speech

Enhancement and Recognition

In this chapter we analyze how the AV-SE models described in Chapter 3 can help

to perform the ASR task in a cocktail party scenario. We have presented this

study at the 2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) [B].

4.1 Introduction

Robust ASR aims at recognizing speech in adverse conditions, where the per-

formance of classical ASR systems can drop significantly. The first robust ASR

systems attempt to tackle the problem by processing the input noisy signal through

SE phase and passing it to the speech recognizer [89]. Other works follow a multi-

task approach where SE/SS and ASR modules are concatenated and jointly trained

[20, 90, 130].

The aforementioned works only deal with non-speech environmental noises.

Recognizing the speech of a target speaker in multi-talker environments is an even
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more challenging task. Indeed, it is an ill-posed problem since many different

hypotheses about what the target speaker says are consistent with the mixture.

Similarly to SE in multi-talker setting, some additional information about the

target speaker is needed. Delcroix et al. [27] exploit a reference utterance of the

target speaker which is used to inform a DNN-based model about which speaker to

extract. Chao et al. [18] and Yu et al. [135] use video as additional information in

neural network architectures and obtain large improvements over AO counterparts

with overlapped speech input.

We also address this problem by exploiting the visual information, i.e., face

landmarks motion, associated to the speaker of interest in order to extract her

speech from input mixed-speech signal. The extracted speech is then used as input

to a speech recognizer to obtain the phonetic transcription. This task is slightly

different from the classic ASR, which aims at generating a word-level transcription.

In this chapter, we use the terms ASR and phone recognition interchangeably to

denote the same task.

We consider two simple end-to-end LSTM-based models that perform single-

channel AV-SE and phone recognition tasks, respectively. In contrast to [18] and

[135], we study the interaction between the two tasks and analyze how it is advan-

tageous to train them jointly within a MTL framework [15]. We propose several

training strategies that reveal some interesting and unexpected behaviors.

Our systems are applied to a limited data scenarios, which are very common

in real-world AV processing applications.

The rest of this chapter is organized as follows. In Section 4.2 we present the

joint AV-SE and ASR model, and the different training strategies. The experimen-

tal setup is described in Section 4.3. Evaluation results are provided in Section

4.4. We conclude the chapter in Section 4.5.
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4.2 System Overview

In this section we present the models used to analyze and study how AV-SE and

ASR tasks can be combined to perform phone recognition in a cocktail party

scenario. We aim at performing a fair analysis between different training strate-

gies. Therefore, we use very simple and common model architectures based on

deep BLSTM. These models are fed with the mixed-speech spectrogram, Ys(k, l),

and/or the motion vectors computed from face landmarks of the speaker of inter-

est, V (p, l).

4.2.1 AV-SE Model

The AV-SE model is developed with the goal of extracting the speech of the target

speaker, given the mixed-speech and the visual information of the target speaker.

We use an architecture very similar to the AV Concat model described in Subsec-

tion 3.3.1.

We denote this model as a function, Fav−se(Ys(k, l), V (p, l)) = X̂s(k, l), where

X̂s(k, l) is the estimated target spectrogram. The model consists of a stacked

BLSTM and a final Fully Connected (FC) layer that projects the output onto RK .

In order to obtain values in a scale comparable to the SE target, a sigmoid layer

is applied and the output is multiplied by k ·d, where k is a constant and d ∈ RK

is a vector that contains the standard deviations of each output feature.

The model is trained using the MSE loss, JSE(Xs(k, l), X̂s(k, l)), between the

target and the estimated spectrogram.

4.2.2 ASR Model

Similarly to [47], our ASR models consist of end-to-end LSTM-based architectures.

All the models are trained with the CTC method [46] which allows direct mapping
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from acoustic/visual to phonetic sequences. We develop three different versions of

the ASR models that differ by the features used as input. We denote the input

features as Iasr(f, l), with f and l indicating a generic feature index and a time

frame index, respectively.

The first version only uses audio input. As acoustic features we employ the

mel-scale filter bank representation, Ymel(j, l), derived from the input spectrogram,

Ys(k, l):

Ymel(j, l) = Wmel · Ys(k, l), (4.1)

where Wmel ∈ RJ×K is the matrix that warps the spectrogram to the mel-filter

banks representation.

The second version uses both audio and visual features. In that case, Iasr(f, l)

consists of a frame-by-frame concatenation of Ymel(j, l) and V (p, l).

The last version of the ASR models is only fed with face landmark motion

vectors, V (p, l).

All the models employ the CTC training scheme [46] to map the input, Iasr(f, l),

to a phone label sequence, whose length is usually different from the number of in-

put time frames. We indicate the generic ASR model as a function, Fasr(I
asr(f, l)),

and the process to obtain the phone label sequence is as follows. We feed the

input, Iasr(f, l), to a stacked BLSTM. The output of the last BLSTM layer is

projected onto RD using a FC layer, where D is the size of the phone dictionary.

Finally, we apply a softmax layer to obtain a CTC probability mass function,

l̂ = [p1(d), . . . ,pP (d)], where P is the number of phone labels in the utterance.

We use the CTC loss function, JASR(l, l̂), to optimize the phone recognition

task. The phone transcription is generated using a beam search decoder [45] with

a beam width of 5.
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4.2.3 Joint AV-SE and ASR Model
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Figure 4.1: Diagram of the joint AV-SE and ASR architecture.

The joint AV-SE and ASR system, Fjoint(Ys(k, l), V (p, l)), is depicted in Fig. 4.1.

The two models are connected by using the output of the AV-SE model (Subsection

4.2.1) as the input of the ASR model (4.2.2). More formally:

l̂ , Fjoint(Ys(k, l), V (p, l))

= Fasr(W
mel · Fav−se(Ys(k, l), V (p, l))).

(4.2)

In this architecture the visual information is only exploited by the AV-SE

module, Fav−se(·, ·), while the ASR module, Fasr(·), is fed with the mel-scaled

spectrogram, X̂mel(j, l) = Wmel · X̂s(k, l), estimated by the AV-SE. The joint

model is trained with different MTL schemes, which employ both the JSE(·, ·) and

the JASR(·, ·) losses. We present the training strategies in the following subsection.
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4.2.4 Training Strategies

Our aim is to explore and study the behaviors of the two losses, JSE(·, ·) and

JASR(·, ·). Therefore, we explore different training techniques to analyze how the

losses interact.

The first training technique, henceforth referred to as joint loss, attempts to

minimize a weighted sum of JSE(·, ·) and JASR(·, ·):

Jjoint(Xs, X̂s, l, l̂) = λ · JSE(Xs, X̂s) + JASR(l, l̂), (4.3)

where λ ∈ R is a hyperparameter that defines the weight of the SE task.

During training we observe that the ratio of the two losses significantly changes.

To keep both the two losses at the same order of magnitude we do an additional

experiment using an adaptive coefficient,

λada = 10blog10(JASR)c−blog10(JSE)c, (4.4)

where the exponent, blog10(JASR)c − blog10(JSE)c, is the difference between the

orders of magnitude of the two losses. Therefore, λada 6= 1 only when the two

losses do not have the same order of magnitude. This formulation is particularly

beneficial in the case one of the two losses, e.g., the CTC loss, has large fluctuations

in first training steps, before reaching values comparable to the other loss.

The second training method, alternated training, consists of alternation of the

SE and ASR training phases. This training procedure performs a few steps of

each phase several times. The SE phase uses JSE(·, ·) as loss function. In that

case, only the parameters of the function Fav−se(·, ·) are updated. On the other

hand, during the ASR phase the loss function is JASR(·, ·). A particular case of

the alternated training is the alternated two full phases training, where the two

phases are performed one time each for a large number of epochs.
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In alternated training and alternated two full phases training, the ASR phase

updates the parameters of both the Fav−se(·, ·) and the Fasr(·) functions. This

configuration can generate many fluctuations in the parameters of the AV-SE

model, penalizing the subsequent SE optimization phase. Therefore, for both

techniques we develop a weight freezing version that minimizes JASR(·, ·) by only

updating the parameters of the ASR model.

4.3 Experimental Setup

4.3.1 Datasets

All experiments are carried out using the GRID [24] and TCD-TIMIT [52] AV

datasets. We use the mixed-speech speaker-independent versions of these two

datasets introduced in Subsection 3.4.1. For each utterance, we add the phone

transcription for the target speaker.

For both datasets, the provided text transcriptions are converted to phone

sequences using the standard TIMIT [37] phone dictionary, which consists of 61

phones. However, only 33 phones are present in the GRID corpus because of

its limited vocabulary. In the TCD-TIMIT corpus all the 61 TIMIT phones are

present. Similarly to what is usually done with TIMIT, we apply a mapping

operation to the original 61 phones after decoding, and before computing the

Phone Error Rate (PER). This operation maps similar phones in the same category,

generating a final set of 39 phones.

We follow the same pipelines for audio and video processing described in Sub-

section 3.4.3 and Subsection 3.4.4, respectively.
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4.3.2 Optimization

We train 4 different baseline ASR models, each of them fed with a different input:

(i) clean mel-scaled spectrogram, Xmel(j, l); (ii) mixed-speech mel-scaled spec-

trogram, Ymel(j, l); (iii) frame-by-frame concatenation of mixed-speech mel-scaled

spectrogram, Ymel(j, l), and visual features, V (p, l); (iv) visual features, V (p, l).

All the ASR models consist of 2 stacked BLSTM layers with 250 units and are

trained using Back-Propagation Through Time (BPTT).

For what concerns the joint model, we use 2 BLSTM for both AV-SE and ASR

modules. Each layer consists of 250 hidden units with hyperbolic tangent (tanh)

activation function. We employ the same set of hyperparameters used by the ASR

models in order to carry out a fair evaluation of the benefits of the AV-SE stage.

We perform a limited random search-based hyperparameter tuning, therefore all

reported results may be slightly improved.

In addition, we create a robust AO baseline. We substitute the AV-SE model

with an AO-SS model trained with an utterance-level PIT (uPIT) [68] MSE loss.

Since the AO-SS model outputs all the sources in the mixture, we only pass to the

ASR model the source with the lowest MSE compared to the target speech.

In all experiments, the models are trained using the Adam optimizer [66],

setting the initial learning rate to 0.001. Early stopping is applied when the error

on the validation set does not decrease over 5 consecutive epochs.
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GRID TCD-TIMIT
Training Method PER PER-61 PER-39

ASR Model
- Noisy Audio 0.494 0.784 0.713
- Noisy Audio + Video 0.499 0.772 0.709
- Video 0.294 0.786 0.747

Joint AV-SE/ASR Model
- Joint loss 0.154 0.531 0.477
- Alternated two full 0.160 0.456 0.412
- Alternated two full w. freezing 0.187 0.443 0.400
- Alternated 0.139 0.449 0.406
- Alternated w. freezing 0.181 0.613 0.555
- Alternated AO uPIT 0.433 0.671 0.624

Table 4.1: PER scores on GRID and TCD-TIMIT datasets. For the joint loss
strategy, the reported results are obtained by using λ = 1 for GRID, and the λada
for TCD-TIMIT. The ASR baseline model trained and tested on clean audio of
GRID reaches a PER of 0.058. For TCD-TIMIT, the PER scores are 0.467 (61
phones) and 0.406 (39 phones).

4.4 Evaluation Results

4.4.1 Results

Table 4.1 reports PER of all baseline models and of the joint models with different

training strategies. For PER metric, lower values correspond to better perfor-

mance.

The results reveal that performing the ASR task on TCD-TIMIT is much more

challenging compared to GRID. This behavior can be explained by several factors.

The GRID corpus has a smaller vocabulary size (52 words) and its sentences are

more constrained. Additionally, TCD-TIMIT consists of variable-length utter-

ances, while in GRID all utterances are 3 s long. The lower complexity of the

GRID dataset is confirmed by the good performance of the ASR baseline model

trained on clean speech, which reaches a PER of 0.058 on the clean test set. Unlike



56 Joint AV-SE and ASR

GRID, the ASR model trained and tested on the clean samples of TCD-TIMIT

performs significantly worse, obtaining a PER score of 0.467 and 0.406 on evalua-

tions with 61 and 39 phones, respectively.

In both datasets, the joint models significantly outperform the ASR baselines

models trained with noisy speech and/or visual inputs. In particular, the alternated

training reaches the best results in GRID, while in TCD-TIMIT it is slightly

outperformed by the alternated two full phases training with weight freezing.

Finally, we observe that the performance of the joint model with the AO uPIT

separation module is far behind the best joint AV-SE and ASR approaches. This

result confirms that vision provides an important contribution in recognizing the

speech of a speaker of interest with mixed-speech input.

4.4.2 Training Analysis

In this subsection, we analyze the trends of the JSE(·, ·) and JASR(·, ·) losses during

training. The loss curves computed on the validation set of the GRID dataset are

depicted in Fig. 4.3, 4.2, and 4.4. We observe similar trends in TCD-TIMIT.

Fig. 4.2 shows the trends of the two losses when the system is trained with the

joint loss method. We experiment with different λ values and the adaptive λada

(see Eq. 4.4). In general, when the training starts the two losses both decrease,

and subsequently the ASR loss tends to increase. For higher values of λ, which

favor the AV-SE task, the ASR loss diverges rapidly. The use of the adaptive

λada relieves us from tuning manually the λ value. However, this approach does

not always lead to the best performance. Indeed, the best performing models on

the test set of GRID are obtained with λ = 1. The joint loss training shows the

interesting property of obtaining good results for both the SE and ASR metrics.

Nevertheless, its ASR capability, which is the main objective of our models, turns

out to be lower compared to the alternated training methods.
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Figure 4.2: Trend of the two losses during training by using the joint loss with
different λ values.

The first diagram in Fig. 4.3 shows the curves of the alternated two full phases

training. Initially, this method optimizes the AV-SE model using the JSE(·, ·) loss,

until it reaches a plateau. The minimization of the ASR model starts from epoch

90, and involves the parameters of both AV-SE and ASR models. We observe that

the SE loss remarkably diverges in few epochs. Therefore, the enhanced repre-

sentation obtained by the AV-SE is not optimal to perform the phone recognition

task. The alternated two full phases training with weight freezing confirms this

result. In that case, the parameters of the AV-SE model are forced to not change

during the ASR training phase. Although the JSE(·, ·) loss does not diverge, the

JASR(·, ·) loss is higher than the previous case. The second diagram in Fig. 4.3



58 Joint AV-SE and ASR

Figure 4.3: Trend of the two losses during training with and without weight freezing
by using the alternated two full phases training and alternate training.

demonstrates that we can draw similar conclusions when we alternate the AV-SE

and ASR phases every 20 epochs. This behavior is also reported in previous work

[20, 90, 130]. However, we do not expect such divergence when we switch from

AV-SE to ASR phases.

Experimental results obtained by the alternated training with different numbers

of epochs per phase are showed in Fig. 4.4. In all cases, the decrease of the

JASR(·, ·) loss coincides with a large increase of the value of JSE(·, ·), and vice

versa. Moreover, every repetition of the two phases gradually reduces the ASR

loss. This finding suggests that the interaction between the two losses can be

explored to get better performance. Finally, we analyze the alternated training
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Figure 4.4: Trend of the two losses with alternated training, by using different
number of epochs per phase.

with the AO uPIT-based enhancement. Contrary to AV methods, the uPIT loss

significantly diverges in the first ASR phase and does not decrease anymore during

the subsequent SE phases.

4.5 Concluding Remarks

In this chapter we study how single-channel AV-SE can help phone recognition

when several people are talking simultaneously. The AV-SE and the phone recog-

nition tasks are implemented using two end-to-end LSTM-based models. Addi-

tionally, we experiment with the limited size GRID and TCD-TIMIT datasets.
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The analysis unveils that jointly minimizing the SE loss and the ASR loss may

not the best strategy to improve ASR. Then we explore the trends of the loss

functions when the training strategy consists of an alternation of the SE and ASR

training phases. We observe that the loss function that is not considered for the

training phase tends to diverge.

Finally, we find that the interaction between the two loss functions can be

exploited in order to obtain better results. In particular, the alternated training

method shows that PER can be gradually reduced by wisely alternating the two

training phases.



Chapter 5

Audio-Visual Speech Inpainting

This chapter presents a deep learning-based framework for Audio-Visual Speech

Inpainting (AV-SI), i.e., the task of restoring the missing time gaps of a speech sig-

nal from uncorrupted audio context and visual information. The study described

in this chapter will be presented at the 2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) [D] 3.

5.1 Introduction

In Chapter 3 we have dealt with the problem of extracting the speech of a tar-

get speaker from an input signal degraded by concurrent speakers’ speech. One

drawback of the proposed models it that they are not able to recover the target

speech when the input information is completely lost. However, the use of vision

might be useful in restoring the missing parts of an acoustic speech signal. Visual

information has been successfully used in many speech-related tasks, such as ASR,

SE, SS, etc. (cf. [85, 140] and references therein), but it has not been adopted for

SI yet.

3Some testing examples of our SI models are available at https://dr-pato.github.io/

audio-visual-speech-inpainting/.

https://dr-pato.github.io/audio-visual-speech-inpainting/
https://dr-pato.github.io/audio-visual-speech-inpainting/
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Previous work try to solve the audio inpainting task both with traditional

methods [2, 8, 97, 114, 132] and deep learning models [17, 28, 64, 78, 79]. In

particular, the first deep learning-based SI systems are proposed by Chang et al.

[17] and Kegler et al. [64]. They use convolutional encoder-decoder architectures

to generate speech from masked speech signals. Zhou et al. [138] show that visual

cues improve inpainting of music signals, but their models are not evaluated on

speech data.

In this chapter we propose a first attempt to inpaint lost speech information

by exploiting visual features, i.e., the face landmarks motion features presented in

Chapter 3. We only focus on the case of restoring entire missing time segments

because it is the most general case, and the one that has a direct use-case appli-

cation, i.e., packet-loss. Indeed, other kinds of information loss, e.g., masking of

irregular TF regions, do not occur frequently in real-world scenarios.

Our AV-SI systems are based on RNN architectures. They are able to generate

new information and are designed to fill arbitrarily long missing gaps with coherent

and plausible signals. In addition, we present a MTL [15] strategy where a phone

recognition task is learned together with SI. The motivation of the MTL approach

lies in previous work, which show that ASR can improve not only SE [33], but also

speech reconstruction from silent videos [84].

The rest of the chapter is organized as follows. We first provide a formulation

of the SI task in Section 5.2. The proposed algorithms are described in Section 5.3.

Then the experimental setup is introduced in Section 5.4. In Section 5.5 results

and comparisons are presented. We conclude the chapter in Section 5.6.
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5.2 Problem Formulation

As done in previous work [2], we assume to know a priori the location of uncor-

rupted and lost data, and we use this information in the signal reconstruction

stage. This scenario is referred to as informed SI.

Let Ys(k, l) denote the spectrogram of an observed acoustic speech signal, i.e.,

speech signal with missing parts. The information about the location of missing

portions of the signal is encoded in a binary mask, I(k, l), which indicates whether a

TF bin of the spectrogram of the observed signal is lost, I(k, l) = 1, or uncorrupted,

I(k, l) = 0. We assume that Ys(k, l) = 0 if I(k, l) = 1.

We define the problem of Audio-Only Speech Inpainting (AO-SI) as the task

of finding a function, Fa−si, that estimates the spectrogram of the ground-truth

speech signal, Xs(k, l), from I(k, l) and Ys(k, l).

When visual features, V (p, l), are available, the task is denoted as AV-SI. In

that case, the function Fav−si has to estimate Xs(k, l) given I(k, l), Ys(k, l), and

V (p, l).

5.3 System Overview

Fig. 5.1 shows the architecture of the proposed AV-SI system. The general system

is described in the following subsection, while the MTL extension is presented in

Subsection 5.3.2.

5.3.1 Model Architecture

We use a neural network architecture, indicated as a function, Fav−si(·, ·, ·), to

estimate the original spectrogram, Xs(k, l). As audio and video input features

we use audio context spectrogram, Ys(k, l), and face landmarks motion vectors,
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Figure 5.1: Overall architecture of the AV-SI system.

V (p, l), respectively. The AV features are concatenated frame-by-frame and used

as input of a stacked BLSTM that models the sequential nature of the data [47].

Then, a Fully Connected (FC) layer is fed with the output of the stacked BLSTM

and outputs the inpainted spectrogram Os(k, l). To extract the inpainted spec-

trogram within the time gaps, Os(k, l) is element-wise multiplied with the input

mask, I(k, l). Finally, the fully restored spectrogram, X̂s(k, l), is obtained by

an element-wise sum between the observed input spectrogram, Ys(k, l), and the

inpainted spectrogram. More formally:

X̂s(k, l) , Fav(I(k, l), Ys(k, l), V (p, l))

= Os(k, l)� I(k, l) + Ys(k, l),
(5.1)

where � is the element-wise product.

The model is trained to minimize the MSE loss, Jmse(·, ·), between the inpainted

spectrogram, X̂s(k, l), and the ground-truth spectrogram, Xs(k, l):
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Jmse(Xs, X̂s) =
1

N

K∑
k=1

L∑
l=1

(X̂s(k, l)−Xs(k, l))
2, (5.2)

where N is the number of missing TF bins.

5.3.2 Multi-Task Learning with CTC

In addition to the plain AV-SI model, we devise a MTL approach, which attempts

to perform SI and phone recognition simultaneously. Our MTL training makes use

of a CTC loss [46] which is very similar to the one presented in [84] for the task

of speech synthesis from silent videos. The block bounded by red dashed lines in

Fig. 5.1 performs the phone recognition subtask. It is fed with the stacked BLSTM

units’ output and has a linear FC layer followed by a softmax layer which outputs

a CTC probability mass function l̂ = [p1(d), . . . ,pP (d)], with d ∈ [1, D], where

D is the size of the phone dictionary and P is the number of phone labels in the

utterance.

The MTL loss function is a weighted sum between the inpainting loss, JMSE(·, ·),

and the CTC loss, JCTC(·, ·):

JMTL(Xs, X̂s, l, l̂) = JMSE(X, X̂s) + λ · JCTC(l, l̂), (5.3)

with λ ∈ R, where l is the sequence of ground truth phone labels. λ is a

hyperparameter that controls the importance of the CTC loss in the overall cost

function.
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5.4 Experimental Setup

5.4.1 Dataset

We carry out our experiments on the GRID corpus [24], which we have introduced

in Subsection 3.4.1 and in Subsection 4.3.1.

We generate a corrupted version of the dataset where random missing time gaps

are introduced in the audio speech signals. Our models are designed to recover

multiple variable-length missing gaps. Indeed, for each signal we draw the amount

of total lost information from a normal distribution with a mean of 900 ms and a

standard deviation of 300 ms. The total lost information is distributed between 1

to 8 time gaps and each time gap is randomly placed within the signal. To avoid

unrealistic very short gaps, we set their minimum length to 36 ms. In addition, we

assure the presence of audio context by limiting the total duration of the missing

gaps to 2400 ms. Similarly to [64], the information loss is simulated by applying

binary TF masking to the original spectrograms. The generation process is the

same for training, validation, and test sets.

We evaluate our systems in a speaker-independent setting, with 25 speakers

(s1-20, s22-25, s28) used for training, 4 speakers (s26-27, s29, s31) for validation,

and 4 speakers (s30, s32-34) for testing. Furthermore, to evaluate the effect of the

gap size, we generate additional versions of the test set, each of them containing

a single gap of fixed size (100/200/400/800/1600 ms).

5.4.2 Optimization

The AV-SI models consist of 3 BLSTM layers, each of them with 250 units. The

Adam optimizer [66] is used to train the systems, setting the learning rate to 0.001.

We feed the models with mini-batches of size 8 and apply early stopping, when

the validation loss does not decrease over 5 epochs. The λ weight of the MTL
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loss, Jmtl(·, ·, ·, ·), is set to 0.001. All the hyperparameters are tuned by using a

random search and the best configuration in terms of the MSE loss, Jmse(·, ·), on

the validation set is used for testing.

In addition, we implement an AO-SI baseline model by simply removing the

video modality from the AV model, leaving the rest unchanged. We consider

AO models both with and without the MTL approach described in Subsection

5.3.2. The baseline obtains slightly better results than a state-of-the-art AO-SI

system [64]. In that work, the problem of AO-SI was tackled using an end-to-end

deep learning model with the U-Net architecture [107], which was trained on the

corrupted LibriSpeech corpus [95].

In order to assess the exact contribution of vision, we train a video-only SI

system. Similarly to the AO-SI baseline, we discard the audio modality from the

full AV model and analyze both the plain and the MTL approaches. Although this

model can be regarded as a video-to-speech synthesizer, it differs from the systems

presented at the end of Section 2.3, as it aims at generating only the missing time

segments.

5.4.3 Pre- and Post-Processing

The original waveforms are downsampled to 16 kHz. A STFT is computed using

a FFT size of 512 with Hann window of 384 samples (24 ms) and hop length of

192 samples (12 ms). Then, we compute the logarithm of the STFT magnitude

and apply normalization with respect to global mean and standard deviation to

get the acoustic input features.

The missing phase is recovered by applying the Local Weighted Sum (LWS)

algorithm [71] to the restored spectrogram, setting the available context phase as

the starting step. The LWS algorithm is a very efficient approximation of the

Griffin-Lim algorithm [48], where the most consistent phase for a given magnitude
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spectrogram is obtained by repeatedly computing STFT and inverse STFT. Fi-

nally, we use the inpainted spectrogram and the estimated phase to compute the

inverse STFT, which reconstructs the inpainted speech waveform.

We follow the pipeline described in Subsection 3.4.4 to extract the video fea-

tures, i.e., 68 facial landmarks motion vectors. We upsample the video features

from 25 to 83.33 fps to match the frame rate of the audio features.

During the testing of the MTL models, the estimated phone distribution is used

to generate the best phone sequence. We find the phone transcription applying

beam search decoding [45] with a beam width of 20.

5.5 Evaluation Results

5.5.1 Evaluation Metrics

We evaluate the systems using L1 loss, and two perceptual metrics, Short-Time

Objective Intelligibility (STOI) [118] and PESQ [106], which provide an estimation

of speech intelligibility and speech quality, respectively. Additionally, we evaluate

the Phone Error Rate (PER) obtained with an AO phone recognizer trained on the

original audio of the GRID dataset. The phone recognizer consists of 2 BLSTM

layers (250 units) followed by a FC and a softmax layers. PER score of the ground-

truth speech in the test set is 0.069.

While the L1 loss is computed only on the masked parts of the signals, the other

three metrics are applied to the entire signals, as it is not possible to perform the

evaluation on very short segments. Obviously, PER, STOI, and PESQ show lower

sensitivity, when the masked part is small (< 400 ms), since a large fraction of the

original signal is unchanged in that case.

For L1 and PER, the lower their values the better, while for STOI and PESQ

higher values correspond to better performance.
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Audio Video MTL L1 H PER H STOI N PESQ N

Unprocessed 0.838 0.508 0.480 1.634
7 0.482 0.228 0.794 2.458

7 0.549 0.162 0.787 2.379
7 7 0.452 0.151 0.811 2.506
7 7 0.476 0.214 0.799 2.466

7 7 0.540 0.154 0.793 2.393
7 7 7 0.445 0.137 0.817 2.525

Table 5.1: Results of the SI systems on the test set. The ”Unprocessed” row refers
to the evaluation values of the input corrupted speech.

5.5.2 Results and Discussion

The evaluation results of the proposed models on the test set are reported in the

Table 5.1. On average, the masking process discards about half of the original

speech information, as confirmed by the PER score of unprocessed data.

AV models outperform the AO counterparts on all metrics, demonstrating that

visual features provide complementary information for SI. In particular, the PERs

of AV models are lower by a considerable margin, meaning that generated signals

are much more intelligible. The improvements in terms of STOI and PESQ are not

as large as PER, mainly because the two perceptual metrics are less sensitive to

silence than PER. Nonetheless, they are significantly better than the unprocessed

data scores confirming the inpainting capability of our models.

Video-only models show an interesting behavior. They perform poorly on L1

and PESQ metrics compared to AO systems. This is motivated by the absence

of audio context, which is crucial to allow good speech quality and signal recon-

struction. On the other hand, they perform almost on par on STOI, and PER

is way lower. These findings suggest that the major contribution of vision re-

gards speech intelligibility rather than speech quality. The AV models can benefit

from both audio and video modalities to improve speech quality and intelligibility,
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respectively.

The MTL strategy is also beneficial. Indeed, exploiting phonetic data during

the training process is useful to improve the accuracy of SI. However, we observe

just a small improvement of the AV-MTL model over the plain AV one. This

might be explained by the fact that, unlike for the AV system, MTL strategy does

not add any additional information at the inference stage. Note that the sentences

in the GRID corpus follow a very constrained syntax, which can be easily learned

by adding a phone recognition subtask. Therefore, the small benefits of the MTL

might disappear with bigger and more complex datasets.

5.5.3 Gap Size Analysis

Table 5.1 reports the average results using multiple variable-length time gaps,

not providing information about how the gap size affects the SI capability of our

models. For this reason, we generate other test sets, each of them containing

samples with a single time gap of fixed length (100/200/400/800/1600 ms). Fig. 5.2

shows the inpainting results for each metric on these test sets. As expected, while

for short gaps (≤ 200 ms) AO and AV models reach similar performance, their

difference rapidly increases when missing time gaps get larger. The performance

of AO models drops significantly with very long gaps (≥ 800 ms). Therefore,

the audio context does not contain enough information to correctly reconstruct

missing audio signals without exploiting vision.

The diagram of L1 loss shows that video-only methods are very poor at in-

painting very short segments compared to other models, although they are less

affected by changes of missing gap lengths. In terms of PER, video-only models

outperform AV models with 800 and 1600 ms gaps, confirming that vision provides

a huge contribution in speech intelligibility in presence of extremely long gaps.

Regarding the models trained with the MTL approach, we can notice a good



Gap Size Analysis 71

200 400 600 800 1000 1200 1400 1600
GAP SIZE (ms)

0.4

0.5

0.6

0.7

0.8

L1
 

200 400 600 800 1000 1200 1400 1600
GAP SIZE (ms)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ST
O

I 

200 400 600 800 1000 1200 1400 1600
GAP SIZE (ms)

1.5

2.0

2.5

3.0

3.5

4.0

PE
SQ

 

200 400 600 800 1000 1200 1400 1600
GAP SIZE (ms)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PE
R

 

Unprocessed
Audio

Video
Audio-Video

Audio+MTL
Video+MTL

Audio-Video+MTL

Figure 5.2: Effect of gap size on SI performance.

improvement in terms of L1 loss and PER, even if the contribution is not as high

as the one provided by the visual modality.

Some examples of spectrograms inpainted by AO, video-only, and AV models

trained with MTL are shown in Fig. 5.3. We do not present the examples with

short gaps (≤ 200 ms) since the performance of AO and AV models are similar.

In general, AO models inpaint long gaps with stationary signals, whose energy

is concentrated in the low frequencies. On the other hand, AV models are able

to generate well-structured spectrograms, demonstrating the benefit that visual

features bring to inpaint long gaps. However, they produce blurred TF regions,



72 Audio-Visual Speech Inpainting

0 50 100 150 200 250 3000

1000

2000

3000

4000

5000

6000

7000

8000

IN
PU

T

FR
EQ

UE
NC

Y 
(H

z)

0 50 100 150 200 250 3000

1000

2000

3000

4000

5000

6000

7000

8000

AU
D

IO
O

N
LY

FR
EQ

UE
NC

Y 
(H

z)

0 50 100 150 200 250 3000

1000

2000

3000

4000

5000

6000

7000

8000

VI
D

EO
O

N
LY

FR
EQ

UE
NC

Y 
(H

z)

0 50 100 150 200 250 3000

1000

2000

3000

4000

5000

6000

7000

8000

AU
D

IO
VI

D
EO

FR
EQ

UE
NC

Y 
(H

z)

0 50 100 150 200 250 300
TIME FRAME INDEX

0

1000

2000

3000

4000

5000

6000

7000

8000

G
RO

U
N

D
TR

U
TH

FR
EQ

UE
NC

Y 
(H

z)

(a) 400 ms gap.
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(b) 800 ms gap.
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(c) 1600 ms gap.

Figure 5.3: Examples of spectrogram inpainted by SI models trained with MTL.
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resulting in robotic speech, although it is still intelligible. Finally, the spectrograms

generated by vision-only models are very similar to AV ones, but sometimes they

can fail in presence of shorter time gaps (see Fig. 5.3a).

5.6 Concluding Remarks

In addition to SE and SS, restoring missing information from audio signals, i.e.,

SI, is crucial to enable robust audio processing applications.

This chapter proposes the use of visual information, i.e., face landmark motion,

for SI. We test our LSTM-based models on a speaker-independent setting using

the GRID dataset and demonstrate that AV models strongly outperform their AO

counterparts. In particular, the improvement due to the visual modality increases

with duration of time gaps. Finally, we show that learning a phone recognition

task together with the inpainting task leads to better results.

At the best of our knowledge, this is the first study that addresses the AV-

SI problem. Our AV models can generate intelligible speech, although it sounds

robotic. Future work will investigate other AV fusion techniques which make better

use of the audio context in presence of long gaps. Furthermore, the audio context

can be exploited to explicitly extract speaker characteristics which are useful to

generate more natural speech.





Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

Background noisy speech and audio signal loss are two common distortions to

speech signals in daily listening environments. These distortions can compromise

an effective communication among people and between humans and machines.

Speech perception is a multi-modal process, where visual information provides

an important contribution to speech intelligibility. In this dissertation, we have

presented several systems based on deep learning architectures which exploit both

audio and visual modalities to improve the performances of speech-related tasks

in adverse conditions.

In Chapter 3 we have proposed the use of face landmarks motion vectors for

audio-visual speech enhancement in a single-channel multi-talker scenario. Differ-

ent models are tested where face landmarks motion vectors are used to generate

TF masks that extract the target speaker’s spectrogram from the acoustic mixed-

speech spectrogram. To the best of our knowledge, some of the proposed models

are the first models trained and evaluated on the limited size GRID [24] and TCD-

TIMIT [52] datasets that accomplish speaker-independent SE in the multi-talker
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setting, with a quality of enhancement comparable to that achieved in a speaker-

dependent setting. In Section 3.6 we have described how to adapt our approach

to work with visual features extracted with event-driven cameras in place of con-

ventional frame-based features.

Motivated by the effectiveness of our audio-visual speech enhancement sys-

tems, in Chapter 4 we have studied how an audio-visual enhancement front-end

can be combined with ASR to improve recognition accuracy in a multi-task learn-

ing framework. Surprisingly, the joint optimization of the two tasks does not lead

to the best results. We explore the trends of the speech enhancement and ASR

loss functions when the training strategy consists of an alternation of the enhance-

ment and recognition training stages. We note that the loss function that is not

considered for the training phase tends to diverge. However, the interaction be-

tween the two tasks can be exploited. In particular, the alternated training method

shows that recognition error can be gradually reduced by wisely alternating the

two training phases.

To deal with lost speech segments, in Chapter 5 we have proposed the use

of visual information for speech inpainting. We test our models on a speaker-

independent setting using the GRID [24] dataset and demonstrate that audio-

visual models strongly outperform their audio-only counterparts. In particular,

the improvement due to the visual modality increases with duration of time gaps.

Finally, we show that learning a phone recognition task together with the in-

painting is effective, although the largest contribution to performance comes from

vision.
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6.2 Future work

This dissertation explores different ways to use audio-visual information in speech

processing tasks. In the last few years this research area has received growing

attention from speech and computer vision communities. Even though we have

witnessed a clear breakthrough in the field, a lot of problems remain unsolved. In

the following, we suggest some possible future research directions:

� Face landmarks features. We propose to use face landmarks motion features

for several speech-related tasks. However, we employ a landmarks extractor

[63] which only works for frontal faces. Therefore, the performance of our

systems drops in more challenging scenarios. This problem can be addressed

by using different face detectors and landmarks extractors, which are able to

deal with faces in profile or even partially occluded. Besides, face landmarks

can be normalized with several geometric transformations, in order to move

the landmarks points according to a fixed head pose (e.g., roll, yaw, pitch).

Such transformations should decrease the variability of input visual features,

reducing the need of complex models and of extremely large training datasets.

� Unsupervised learning. The majority of audio-visual speech enhancement

and separation systems are based on supervised learning methods. Super-

vised models need both clean and noisy speech at training time. Since it is

very difficult to collect clean and noisy signals pairs, they are usually syn-

thetically generated by summing the clean speech with several kind of noises

at various SNRs. This approach can reach excellent generalization perfor-

mance, especially when the systems are trained with a large amount of data.

However, it treats target speech and noises as independent signals, which

does not reflect a real-world scenario (see Lombard effect [13]). In addition,

the collection of clean videos during real conversations represents a big is-
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sue due to disturbing sources that are present in everyday environments.

Audio-visual speech recognition systems presents similar issues. Moreover,

the availability of audio-visual datasets with word transcriptions is very lim-

ited compared to audio-only counterparts, posing an important limitation to

large-scale training of audio-visual speech recognition models. Unsupervised

learning can be a solution to these drawbacks. Learning to enhance and

recognize speech directly from real noisy recordings would enable a major

advancement in the field.

� Low latency and low energy processing. All the systems developed in this

dissertation operate in an offline fashion. Although it is acceptable for some

applications, like keyword spotting or video editing, most applications in

daily life require nearly real-time processing. Additionally, many devices

have to meet power consumption requirements. For example, hearing aids

need to guarantee low latency performance using low processing power and

limited storage. However, deep neural networks generally requires millions of

parameters and computations, resulting on high computational and memory

consumption. This challenge is even bigger for audio-visual systems, which

have to deal with visual data. Indeed, video has a higher dimensionality

compared to audio. Some possible directions include better model design to

reduce redundancy in computation and to decrease the number of parameters

maintaining the same performance. The use of event-driven cameras is an

early attempt to optimize the computational load of visual stream. Follow-up

work will focus on the collection of native AV event-driven datasets. Addi-

tionally, different neural network architectures, e.g., spiking neural networks

[39], can be exploited to process event-driven data directly. In this way,

there is no need to convert events to frame-based data, resulting in time and

computational savings.
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� Joint speech enhancement and recognition. In Chapter 4 we have described

two simple BLSTM to perform speech enhancement and phone recognition,

respectively. The connection between the two models is made by inserting

a hidden layer with fixed weights to compute a mel-scale spectrogram. The

results show that the mel-scaled spectrogram is not the optimal input for the

recognition task. We can replace the fixed hidden layer with learnable hidden

layers, which can be seen as adaptive filters. Then, different optimization

schemes can be tested in order to find the optimal combination of the three

modules, i.e., speech enhancement, learnable filters, and speech recognition.

Finally, future work will carry out experiments with other data to verify if

the findings presented in Section 4.4 can be generalized to different dataset

sizes and scenarios.

� Audio-visual speech inpainting. The system proposed in Chapter 5 repre-

sents a first attempt to solve the audio-visual speech inpainting task with

simple deep learning models. Indeed, there is still a lot of room for improve-

ment. Training on large-scale datasets and more complex deep learning ar-

chitectures are the natural way to move forward. For example, different AV

fusion techniques can be tested. In particular, more natural speech can be

generated by exploiting speaker characteristics explicitly extracted from the

uncorrupted audio context. Additionally, different kinds of information loss

can be explored, e.g., irregular masked time-frequency regions, to improve

model generalization.

� Joint speech enhancement and inpainting. Both speech enhancement and

inpainting aim at restoring clean speech from signals affected by several

levels of degradation. Although joint enhancement and inpainting audio-

only algorithms already exist [50], there are no audio-visual approaches that



address this problem. Audio-visual speech enhancement, audio-visual speech

inpainting, and speech synthesis from silent videos can be tied together to

pave the way towards universal robust speech processing systems.
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