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A comparison of machine learning methods for

predicting stock returns in the US market

Silvia Muzzioli* Giovanni Campisi � Bernard De Baets �

Abstract

In this paper we investigate the information content of option-based indicators to predict future

stock returns. To this end, we apply different machine-learning techniques. The data set consists

of stock index returns and option-based indicators of the US stock market from October 2014 to

September 2019. The goal is to achieve a good prediction accuracy out of sample.

Keywords: Machine learning; Volatility indices; Market risk.

1 Introduction

Stock market prediction has always been an important issue in finance (Giot (2005), Rubbaniy et al.

(2014), Lubnau and Todorova (2015), Gonzalez-Perez (2015), Elyasiani et al. (2017)). Unfortunately,

although the numerous scientific attempts, none of the methodology has accurately predicted future

stock returns. However, in the last decades the amount of information at disposal to researchers has

increased enormously and this has had a significant impact on stock markets. Moreover, new efficient

decision-making algorithms have become increasingly common in literature, this is the case of machine

learning algorithms. Therefore, combining these two elements, we contribute to the ongoing literature on

empirical asset pricing linking the role of machine learning methods to the information contained in risk

indices.

The aim of the paper is to make extensively use of machine learning (ML) techniques to model and

analyze the direction of S&P500 stock returns using different risk indices. Risk indices, such as implied

volatility indices, are essential for asset pricing and risk management since they contain information

embedded in option prices which reflect the investors’ opinion about future underlying asset evolution.

The most part of the papers dealing with the use of volatility indices in predicting stock returns have
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extensively used linear regressions (see Rubbaniy et al. (2014) and Elyasiani et al. (2017), for example)

and only recently quantile regressions (Ma and Pohlman (2008)). Furthermore, while the role of implied

volatility indices has been widely studied using traditional techniques, there is a lack of works combining

the volatility indices and machine learning methods. At the best of our knowledge, only Rosillo et al.

(2014) analyzed the impact of VIX on the directional weekly movement of the S&P500. However, the

authors consider only Support Vector Machines and include VIX and other technical indicators in their

study. In our work we rely on 11 relevant risk indices in financial literature applying 10 different machine

learning techniques.

The use of machine learning in finance is spreading widely lately, with few some exceptions (Hutchinson

et al. (1994), Yao et al. (2000)). It has been demonstrated that machine learning algorithms are very

efficient methods in predicting stock returns with respect to traditional methods, in particular classical

regression methods. Indeed, these methods are more flexible than more traditional econometric prediction

techniques (Gu et al. (2020)). Machine Learning methods are data-driven and they concern with the

development of algorithms. One main difference between ML and traditional statistical methods lies in

their purpose, as the former remains focused on making predictions as accurate as possible, while the

latter are aimed at inferring relationships between variables (Athey and Imbens (2019)).

There is strong evidence that volatility indices provide useful information about current and future stock

returns. To this end, Giot (2005) argues that high implied volatility levels indicate oversold markets

and could be viewed as short- to medium-term buy signals. Zhu (2013) investigates the US stock and

bond returns using a distribution-based framework and finds evidence that the VIX helps to forecast

the US stock returns distribution. Gonzalez-Perez (2015) provides a comprehensive literature review of

forecasting volatility models. Other examples of works highlighting the importance of volatility indices

as indicators of future stock returns are Elyasiani et al. (2017), Lubnau and Todorova (2015), Rubbaniy

et al. (2014), for example.

Our work also builds on the recent strand of the literature predicting stock returns as a function of

many characteristics at once. Recently, Patel et al. (2015) address the problem of predicting stock

direction for stocks and the stock index in the Indian stock market using Artificial Neural Network,

Support Vector Machine, random forest and naive-Bayes using 10 years of historical data. They found

that random forest and naive-Bayes performed better in terms of accuracy. Gu et al. (2020) provide a

comparative analysis of machine learning methods applied to the two canonical problems of empirical

asset pricing, i.e. predicting returns in cross-section and time series. They find that machine learning

methods enhance the performance relatively to traditional forecasting methods. Bracke et al. (2019)

develop a systematic analytical framework for approaching explainability questions in real world financial

applications. In particular they use the Quantitative Input Influence method of Datta et al. (2016) for

predicting mortgage defaults. Ryll and Seidens (2019) presents and analyses a vast array of literature on

machine learning applications for financial time series analysis. Gerlein et al. (2016) analyse the role of

simple machine learning models to achieve profitable trading through a series of trading simulations in

the FOREX market. The authors focus on the choice of the optimal combination of attributes to enhance

the classification performance of the models.

Different strategies will be considered in order to learn the most important indicators among the ones
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considered. In our study, seven different Machine Learning techniques have been discussed and applied

to predict price movement. Starting with LDA (Linear Discriminant Analysis), we also consider Logistic

Regression, Ridge, Lasso, Bagging, Random Forest and Boosting. We explore the power of Machine

Learning techniques to analyze the role of different risk indices in financial markets.

As in Gu et al. (2020), our purpose is to describe an asset’s excess return as an additive prediction error

model. For this purpose we have considered two types of models: classification and regression. In the

first case, the prediction focus on the direction of the S&P500 stock market returns movements (i.e. rise

or fall) and the target variable is discrete. This is a two-class classification problem and we analyze it

with LDA and Logistic Regression. In the second case, the response variable is continuous and the focus

is on forecasting the change of the S&P500 returns with 30 days time to maturity. We exploit this model

with shrinkage methods: Ridge and Lasso. Additionally, due to their higher performance in terms of

accuracy, we employ Ensamble methods in both classification and regression models. In particular, we

consider Bagging, Random Forest and Boosting. Finally, in evaluating the performance of all the models

we transforming the results of the continuous variables into a binary variable in order to choose the

models that give us the best fit to the data in terms of AUC (are under the curve) and test error rate.

The reminder of the paper is organized as follows. In Section 2, we describe our dataset. In Section 3, we

outline the model specifications and investigate the forecasting power of the different methods proposed.

Section 4 provides results and associated comments. The last section concludes.

2 Data

The data source of this paper is based on the Bloomberg database. We use daily data on 11 input

variables: VIX, VIX9D, VIX3M, VIX6M, VVIX, SKEW, VXN, VIX3M/VIX, GVZ, OVX, PUTCALL.

The data cover a period from October 2014 to September 2019 of total 1232 daily observations. Table

(1) shows the summary statistics of our dataset. In the following, we provide the particular detail of the

selected attributes. The VIX is the CBOE volatility index computed by the bid and ask prices from

the cross section of S&P500 options1. The VIX9D, is the CBOE S&P500 9-Day Volatility Index and

estimates the expected 9-day volatility of S&P500 stock returns. The VIX3M is the CBOE 3-Month

Volatility Index that is designed to be a constant measure of 3-month implied volatility of the S&P500

Index options2. The VIX6M, represents the CBOE S&P500 6-Month Volatility Index and is an estimate

of the expected 6-month volatility of the S&P500 Index. It is calculated using the well-known VIX

methodology applied to SPX options that expire 6-to-9 months in the future. The CBOE VVIX Index

represents a volatility of volatility in the sense that it measures the expected volatility of the 30-day

forward price of VIX. This forward price is the price of a hypothetical VIX futures contract that expires

in 30 days. The CBOE SKEW Index estimates the skewness of S&P500 returns at the end of a 30-day

horizon. Similar to VIX the price of S&P500 tail risk is calculated from the prices of S&P500 out-

of-the-money options. SKEW typically ranges from 100 to 150. Values above the threshold level 100

tend to point to a negative risk-neutral skewness and a distribution skewed to the left (i.e. negative

1More details can be found at www.cboe.com.
2On September 18, 2017 the ticker symbol for the CBOE 3-Month Volatility Index was changed from “VXV” to “VIX3M”
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returns are more often expected than positive returns). For values below 100 it indicates a positive risk-

neutral skewness and a distribution skewed to the right (i.e. positive returns are more often expected

than negative returns). The CBOE NASDAQ-100 Volatility Index (VXN ) is a key measure of market

expectations of near-term volatility conveyed by NASDAQ-100 Index (NDX) option prices. It measures

the market’s expectation of 30-day volatility implicit in the prices of near-term NASDAQ-100 options.

The VXN is quoted in percentage points. The ratio VIX3M/VIX provides useful information on the term

structure of S&P500 option implied volatility (i.e. the average volatility that traders expect to prevail

over non-overlapping time intervals). The CBOE Gold ETF Volatility Index (”Gold VIX”, Ticker - GVZ )

measures the market’s expectation of 30-day volatility of gold prices by applying the VIX methodology

to options on SPDR Gold Shares (Ticker - GLD). The Cboe Crude Oil ETF Volatility Index (”Oil VIX”,

Ticker - OVX ) measures the market’s expectation of 30-day volatility of crude oil prices by applying

the VIX methodology to United States Oil Fund. The PUT/CALL is a proportion between all the put

options and all the call options purchased on any given day. Returns30 are the S&P500 daily returns at

time t that refer to a window of 30 days.

Figure 1 demonstrates the time series of the Returns30 variable, which represents the response variable

of all the regression models we use in our analysis. In particular, the returns fluctuate around the mean

value of zero and display the phenomenon of volatility clustering (i.e. consecutive large volatility periods

alternating with several consecutive periods of limited volatility).

The summary statistics of the variables have been reported in Table 1. As can be seen, of the 12 variables

considered, SKEW, VVIX and OVX posses the highest mean value. We observe the lowest mean value

for Returns30, PUTCALL and V IX3M V IX variables. The test for skewness and kurtosis reveals that

Returns30 and V IX3M V IX are skewed to the left (or negatively skewed), which means that the tail of

the left side of the probability density function is longer than the right side and the majority of the values

are situated to the right of the mean. All other indices are positively skewed. Moreover, the VIX9D and

the VVIX are leptokurtosis (i.e. their distribution displays fat tails compared to the normal distribution),

whereas all other variables are platykurtosis (i.e. they have fatter middles or fewer extreme values). The

reported autocorrelations show that all variables are highly persistent. We also investigate if all the series

are stationary by employing the augmented Dickey-Fuller (ADF) unit-root test. We conclude that all

the series are stationary, indeed the series display the rejection of unit roots at the 1% level. Finally, the

Jarque-Bera test rejects the null hypothesis at the 1% significance level for each of the twelve variables,

since the test statistic, J-B statistic, is greater than the critical value, which is 5.8461.

From Table 1 it is evident that SKEW, VVIX and OVX exhibit higher mean values than all other

variables. In this respect, we have proceeded to standardize the dataset in order to maintain all variables

on the same scale. Moreover, this is necessary also because we are using methods involving distances

in the loss function (in particular, lasso and ridge) resulting in estimations that are dependent on the

scale of the predictors. Therefore, before applying the learning algorithms standardization is needed (see

James et al. (2013)). After standardization all variables have a mean of 0 and standard deviation of 1,

whereas all other statistics reported in Table 1 remain the same.

In Table 2 we provide the correlations between all predictors. We can observe that the most part

of variables is moderately correlated. However, as can be expected, the correlation between volatility
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Figure 1: Time series of S&P500 30-days log-returns

indices at different time intervals (VIX, VIX9D, VIX3M, VIX6M, VIX3M VIX ) is very high. Although

correlation does not imply causation, we need to exclude the problem of multicollinearity in our analysis.

In order to overcome the presence of multicollinearity and to select representative features for prediction,

we use Lasso regression which performs both parameter shrinkage and variable selection, generating more

stable and interpretable estimates in models with a large number of regressors (Rapach et al. (2013)).

Table 1: Summary statistics

Statistic N Mean St. Dev. Skewness Kurtosis ρ1 ρ2 ρ3 ADF JB statistic

VIX 1,233 15.176 4.289 1.461 3.108 0.933∗∗∗ 0.872∗∗∗ 0.820∗∗∗ −14.5632∗∗∗ 939.0446

VIX9D 1,233 14.622 5.645 2.003 7.270 0.891∗∗∗ 0.806∗∗∗ 0.738∗∗∗ −14.3858∗∗∗ 3554.5864

VIX3M 1,233 16.975 3.257 0.988 1.066 0.956∗∗∗ 0.917∗∗∗ 0.886∗∗∗ −17.6622∗∗∗ 260.1662

VIX6M 1,233 18.259 2.626 0.805 0.599 0.966∗∗∗ 0.935∗∗∗ 0.909∗∗∗ −17.3656∗∗∗ 152.127

VVIX 1,233 94.128 12.723 1.800 6.250 0.897∗∗∗ 0.798∗∗∗ 0.715∗∗∗ −14.1254∗∗∗ 2684.1922

SKEW 1,233 129.214 8.437 0.404 -0.240 0.877∗∗∗ 0.826∗∗∗ 0.780∗∗∗ −14.5625∗∗∗ 36.4302

VXN 1,233 18.104 4.534 1.333 1.995 0.945∗∗∗ 0.895∗∗∗ 0.859∗∗∗ −15.3199∗∗∗ 572.4133

VIX3M VIX 1,233 1.143 0.099 -0.538 0.137 0.911∗∗∗ 0.830∗∗∗ 0.756∗∗∗ −14.4138∗∗∗ 60.6049

GVZ 1,233 14.624 3.494 0.576 -0.305 0.971∗∗∗ 0.950∗∗∗ 0.932∗∗∗ −12.9092∗∗∗ 72.9266

OVX 1,233 36.681 10.554 0.933 0.378 0.982∗∗∗ 0.965∗∗∗ 0.949∗∗∗ −10.7339∗∗∗ 186.6909

PUTCALL 1,233 0.962 0.088 0.643 0.456 0.969∗∗∗ 0.916∗∗∗ 0.848∗∗∗ −11.1408∗∗∗ 96.0166

Returns30 1,233 0.007 0.033 -0.570 1.012 0.936∗∗∗ 0.873∗∗∗ 0.813∗∗∗ −12.3499∗∗∗ 120.2973

Table 2: Correlation matrix

VIX VIX9D VIX3M VIX6M VVIX SKEW VXN VIX3M VIX GVZ OVX PUTCALL Returns30

VIX 1 0.968 0.967 0.907 0.667 -0.249 0.823 -0.867 0.322 0.536 0.607 -0.644

VIX9D 0.968 1 0.905 0.833 0.705 -0.236 0.766 -0.867 0.271 0.451 0.556 -0.647

VIX3M 0.967 0.905 1 0.978 0.579 -0.253 0.810 -0.744 0.448 0.662 0.620 -0.586

VIX6M 0.907 0.833 0.978 1 0.499 -0.252 0.747 -0.632 0.555 0.734 0.604 -0.530

VVIX 0.667 0.705 0.579 0.499 1 0.116 0.480 -0.649 0.117 0.094 0.340 -0.515

SKEW -0.249 -0.236 -0.253 -0.252 0.116 1 -0.300 0.241 -0.143 -0.278 -0.190 0.172

VXN 0.823 0.766 0.810 0.747 0.480 -0.300 1 -0.723 0.128 0.423 0.578 -0.540

VIX3M VIX -0.867 -0.867 -0.744 -0.632 -0.649 0.241 -0.723 1 -0.055 -0.248 -0.495 0.597

GVZ 0.322 0.271 0.448 0.555 0.117 -0.143 0.128 -0.055 1 0.672 0.262 -0.049

OVX 0.536 0.451 0.662 0.734 0.094 -0.278 0.423 -0.248 0.672 1 0.400 -0.284

PUTCALL 0.607 0.556 0.620 0.604 0.340 -0.190 0.578 -0.495 0.262 0.400 1 -0.632

Returns30 -0.644 -0.647 -0.586 -0.530 -0.515 0.172 -0.540 0.597 -0.049 -0.284 -0.632 1
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3 Empirical model

In this section we explore the power of ML techniques to analyze the role of different risk and sentiment

indices in financial markets. In our analysis we consider the problem of forecasting the stock index

returns by using different indicators in two settings: classification and regression. In the classification

types of problem we consider: logistic regression, linear discriminant analysis, random forests, bagging

and gradient boosting. In the regression problem we use: lasso, ridge, random forests, bagging and

gradient boosting.

To maintain our approach as general as possible, we first describe the model in its general form, then we

illustrate the characteristic of each method outlined in detail.

Following Gu et al. (2020) we aim to describe an asset’s excess return as an additive prediction error

model:

rt+1 = Et(rt+1) + εt+1 (1)

where

Et(rt+1) = g∗(zt) (2)

rt+1 is the S&P500 stock return at time t + 1 with t = 1, ..., T . Our objective is to apply a statistical

learning method in order to find a function g∗(zt) expressed in terms of the predictor variables, zt, that

maximizes the out-of-sample explanatory power for the realized return at time t+ 1, rt+1. The function

g∗(zt) represents the conditional expectation of rt+1 and it is a flexible function of the predictors zt.

The output variable differs with respect to the method used. Indeed, we admit that our variable can be

binary or continuous. In the former case, we face a classification problem and our goal is to predict if the

market is bearish (i.e. returns go down) or bullish (i.e. returns go up). When our response variable is

continuous we consider our problem as a regression set up in order to forecast the S&P500 returns with

30 days time to maturity. However, the two problems can be considered as a whole, transforming the

results of the continuous variables into a binary variable in order to choose the model that give us the

best fit to the data.

To avoid overfitting, we rely on the choice of a set of hyper-parameters (also called tuning parameters), i.e.

those parameters that maximize the model performance allowing to control model complexity. Following

the most common approach in the literature we select tuning parameters from the data using k-fold cross

validation. In particular, we randomly divide our dataset into k folds of approximately equal size. First,

we train the model on k−1 subsets and then we test it on the remaining one subset. Finally, we calculate

the test error (i.e. the mean squared error). This procedure is repeated k times obtaining k estimates

of the test error. The k-fold cross validation estimate is computed by averaging these values (see James

et al. (2013) for futher details).

We use the open source software package R to run our machine-learning models. In the following, we

give an overview of the two problems.

3.1 Classification models

In our classification models we consider the response variable as binary: it represents positive and negative

S&P500 stock returns. We consider a two-class classification problem where the training algorithm
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consists of pairs (x, y) with x ∈ X is the feature vector, and y ∈ (0, 1) is the response variable and it

represents Pr(y = 1|X), that is the probability that the response variable belong to the category 1 given

X.

Logistic regression models the probability that y belongs to a particular category. In our case, we face a

binary classification problem and the response variable falls into one of two categories: bearish or bullish.

Consequently, if we label the class 1 as bullish and the class 0 as bearish, then Pr(y = 1|X) represents

the probability that the market is bullish given X. The log-likelihood function is expressed as follows:

`(β) =
∑
i

[yi log p(xi) + (1− yi) log(1− p(xi))] (3)

where p(xi) = exiβ

1+exiβ
.

Unlike logistic regression, linear discriminant analysis (LDA) uses a different estimation procedure to

estimate parameters. In particular, logistic regression relies on maximum likelihood whereas LDA fits all

parameters using the first two moments extracted from a multivariate Normal distribution. With LDA it

is assumed that each predictor, xi is drawn from a multivariate normal distribution. Formally, consider

a n−dimensional random variable X then we assume that X ∼ N(µ,Σ) where E(X) = µ is the mean of

X, and Cov(X) = Σ is the nxn variance-covariance matrix of X. In both methods, the model to analyse

takes the following form:

p(xi) =
exiβ

1 + exiβ
= log

(
p(xi)

1− p(xi)

)
= xiβ (4)

3.2 Regression models

The first two regression models we consider, i.e. ridge and lasso, fall into the category of skrinkage

methods. Indeed, both methods allow us to fit a model involving all the predictor provided that the

estimated coefficient are constrained or shrunken towards zero. These methods, also called penalized

methods, append a penalty to the original loss function. There are several choices for the penalty

function, we rely on the ridge and lasso penalty. These regularization approaches have the advantage of

reducing variance. Moreover, depending on what type of shrinkage is performed, some of the coefficients

may be estimated to be exactly zero (in particular, in the case of lasso).

Following Gu et al. (2020), in order to provide a description of the ridge and the lasso methods, we start

from the baseline model of the linear regression. We consider to approximate the conditional expectation

that have a linear form:

g(zt; θ) = z
′

tθ (5)

The traditional method for estimating the regression function is least squares, resulting in the following

objective function:

L(θ) =
1

T

T∑
t=1

(rt+1 − g(zt; θ))
2 (6)

Minimizing L(θ) yields the OLS estimator.

Instead of directly optimizing (6), a term (i.e. a penalty) is added to the objective function to penalize
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the complexity of the model. One common form of regularization is to add a penalty term to the original

loss function:

L(θ; ρ) = L(θ) + φ(θ; ρ) (7)

According to the functional form given to the penalty function we can distinguish between the ridge and

the lasso. In particular, we consider the following functional form of φ(θ; ρ):

φ(θ; ρ) = ρ‖θ‖k (8)

where ρ > 0 is the tuning parameter. This parameter serves to control the relative impact of the regression

coefficient estimates. When ρ = 0, the penalty function 8 has no effect in the objective function 7 and

we find the same results of the least squares estimates. When ρ→∞, the coefficient estimates approach

to zero. The notation ‖θ‖k denotes the lk norm of a vector, and is defined as ‖θ‖k =
N∑
i=1

|θi|k. The k = 1

corresponds to the lasso. For k = 2, this corresponds to the ridge regression. Both methods differ to

the choice of the penalty function. However, there is an important difference among these two models.

While lasso lead to solutions with a number of the regressor coefficients exactly equal to zero, in ridge

regression all of the estimated regression coefficients generally differ from zero. In this respect, we say

that the lasso yields sparse models referring to models that involve only a subset of the variables while

ridge regression is a shrinkage method that helps prevents coefficients from becoming excessively large in

magnitude. We adaptively optimize the tuning parameter using k-fold cross validation.

3.3 Ensemble methods

Ensemble methods are aimed at combining multiple weak learning algorithm to produce a strong learning

algorithm. They belong to the class of decision tree methods because the predictor space is segmented

into a number of simple regions that can be summarize in a tree. These methods can be applied to both

classification and regression models. In our work we consider three types of ensemble learning approaches:

bagging (or bootstrap aggregation), random forests and boosting.

Ensemble methods aim at generating multiple version of a predictor and using these to get an aggregated

predictor. This procedure leads to get better prediction accuracy.

Bagging (Breiman (1996)) aggregates many predictions from different training set of the population.

Given that, in reality, only one training set is available we fit classification or regression models to

bootstrap samples from the unique training data and combine by majority vote (in classification), i.e.

the commonly occurring class among the B predictions, or averaging over individual tree predictions

(in regression). Unlike previous models analyzed, with bagging there is no need to perform k-fold cross

validation to obtain the test error. This error is obtained from the bootstrap procedure taking into

consideration the observations that are not considered in the fit of the model, i.e. the out-of-bag (OOB)

observations. For each observation we get a single prediction by averaging the predicted responses (in

regression) or by taking the majority vote (in classification). Finally we obtain the overall OOB MSE or

classification error depending on the model used, i.e. regression or classification respectively.

Random forests (Breiman (2001)) is a variant of bagging. In particular, it involves the same bootstrap

procedure to generate samples from the original dataset. However, at each step of splitting, in random
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forests we use only a random subsample (usually M =
√
P ) of all features, P. For instance, if a random

forest is built using M = P , then we lead to bagging. The final random forest output is given by the

average of the outputs of all B trees:

ĝ(zt; d,B) =
1

B

B∑
b=1

ĝb(zt; θ̂b, d) (9)

where B is the number of trees and d is the number of splits in each tree which allows to control for the

complexity of the model.

Boosting (Schapire (1990) and Freund (1995)) is a variant of both bagging and random forests. Unlike

these methods, boosting does not involve bootstrap sampling. Instead, it allows each tree to grow using

information from previously grown trees. In this respect, the trees grow sequentially, indeed boosting is

a method that learns slowly (James et al. (2013). It consists of fitting a decision tree using the residuals

as response variable. Then, this new decision tree is added into the fitted function in order to update

the residuals. In the update process the residual forecast is added to the total with a shrinkage weight of

λ. This parameter controls the rate at which boosting learns. This procedure is iterated B times, which

corresponds to the number of trees. At each new step b, the tree is fitted to the residuals from the model

with b− 1 trees and then used to update the model (ĝb). The final model output is

ĝB(zt;B, λ, d) =

B∑
b=1

λf̂b(·) (10)

where (B, λ, d) are the tuning parameters which we adaptively choose in the k-fold cross validation

procedure. In particular, B is the number of trees, λ is the shrinkage parameter and d is the number of

splits in each tree which allows to control for the complexity of the boosted ensemble.

3.4 Performance measures

To asses the predictive performance of our models, we rely on two metrics: the classification error rate

and the area under the receiver operating characteristic curve (AUC). Prediction accuracy is based on

a confusion matrix shown in Table 3. The classification error rate is defined in terms of accuracy. The

accuracy of a model is calculated by the diagonal elements of the confusion matrix and represents the

correct classification by the classifier,i.e.:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

Then, the classification error rate is given by:

Classification error = 1−Accuracy =
FP + FN

TP + FP + TN + FN
(12)

The second measure we use is the AUC which is a ranking-based measure of classification performance.

Its value can be interpreted as the probability that a classifier is able to distinguish a randomly chosen

positive example from a randomly chosen negative example. In contrast to many alternative performance
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Table 3: confusion matrix

Predicted

Positive Negative

Actual
Positive True positive (TP) False Negative (FN)

Negative False positive (FP) True Negative (TN)

measures, AUC is invariant to relative class distributions and class-specific error costs (see Airola et al.

(2009)). AUC values range from 0.5, for a classifier with no predictive value, to 1, for a perfect classifier.

In line with Airola et al. (2009), we define the AUC using the following formula:

A(S, fZ) =
1

|S+||S−|
∑
xi∈S+

∑
xj∈S−

H(fZ(xi)− fZ(xj)) (13)

where H is the Heaviside step function, for which H(a) = 1 if a > 0, H(a) = 1/2 if a = 0 and H(a) = 0

if a < 0. fZ is a prediction function returned by a learning algorithm based on a fixed training set Z.

S is a sequence of examples, with S+ ⊂ S and S− ⊂ S denote the positive and negative examples in S,

respectively.

4 Discussion of the results

In our work we compare ten models in total, including Logistic regression, Linear Discriminant Analysis

(LDA), Ridge, Lasso, Random Forest, Bagging and Boosting. The ensemble methods have been employed

in both classification and regression models.

Regarding the choice of the variables, we used all market risk indicators that are extensively used in

financial literature proving that these indices has a significant role in predicting stock market returns.

Indeed, there is strong evidence that volatility indices provide useful information about current and future

stock returns. In this respect, Rubbaniy et al. (2014), Giot (2005) examine the predictive power of VIX

and VXN on the underlying index returns. Mora-Valencia et al. (2021) find that the Skew Index reveal

salient information for expected financial downturns. Regarding the role of OVX, Kang et al. (2015)

find that OVX impacts stock returns in the US market. Moreover, Dutta et al. (2020) underline the

crucial role of OVX in asset pricing and risk analysis and its capability in forecasting crude oil returns.

Gokmenoglu and Fazlollahi (2015) find evidence that volatility in one market affect the price index of

the other market using GVX and OVX. Finally, Simon and Wiggins III (2001) investigates the predictive

power of VIX, PUTCALL and tradign index on the S&P500 future contract obtaining statistically and

economically significant forecasting power. However, none of the works consider all our indices in their

analysis neither in a machine learning set-up. Instead, we use these risk indices predictors to forecast the

direction of the S&P500 stock returns combining 10 machine learning algorithms.

Based on the results of the Lasso, after features selection we excluded three variables: VIX3M, VIX6M

and VIX3M VIX. Tables 4 and 5 presents the comparison of machine learning techniques in terms of

their test error rate and AUC before and after features selection with Lasso was performed. In line
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with Smialowski et al. (2010) and Zhang et al. (2014), we employ a supervised preprocessing of the data

considering the general characteristic of the training set to select the key regressors independently: as a

results, the test set was not used in this procedure. After features selection the results of our models do

not change significantly. First of all, considering the test error as performance measure, looking at Table

5, Random Forest significantly outperforms all the other classifiers in both classification and regression

models. Gradient Boosting in the regression model performs the worst, whereas LDA attains the highest

test error in classification model. According to the AUC measure, Ridge reaches the lowest value of

0.8939 followed by Lasso with AUC equals to 0.8951. In the classification model, the lowest values are

those of Logistic regression and LDA with AUC equal to 0.90 and 0.9047, respectively. In both models,

Bagging possesses the highest AUC apart from Random Forest. In general, all the classifiers applied in

the classification model outperform those applied in the regression model.

Predicting the direction of the stock market returns is of interest for most investors and for this purpose

many studies have faced this problem. It is interesting to compare our results with other related studies

that use machine learning algorithms for the same purpose. In particular, we can observe that our machine

learning algorithms allow us to obtain results in term of accuracy higher than other study using machine

learning to predict the direction of the stock market. For example, Khan et al. (2020) use algorithm on

social media and financial news data to discover their impact on stock market prediction accuracy. In

their experiments, they found that Random forest classifier reaches the highest accuracy of 0.8322 which

is lower than the accuracy we found in our work (i.e. 1 − 0.1396 = 0.8604). Hu et al. (2018) use an

improved back propagation neural network for predicting the directions of the opening stock prices for

the S&P500 and they obtain an hit ration of 0.8681. Schumaker and Chen (2009) estimate a discrete

stock price twenty minutes after a news article was release, they use support vector machine obtaining

an accuracy of 0.571. Moreover, our results in term of accuracy are in line with the studies in other

markets reaching an accuracy level above 0.8, such as Patel et al. (2015) in the Indian stock market and

Malagrino et al. (2018) in the Brazilian stock market.

Table 4: Test error and AUC before feature selection

ML method test error AUC

logistic regression 0.1494 0.9043

lda 0.1753 0.9062

Random Forest classification 0.1169 0.9432

Bagging classification 0.1234 0.9394

Gradient Boosting classification 0.1331 0.9261

Random Forest regression 0.1333 0.9393

Bagging regression 0.1266 0.9468

Gradient Boosting regression 0.1721 0.9212

Ridge regression 0.1818 0.8958

Lasso regression 0.1753 0.8951
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Table 5: Test error and AUC after feature selection

ML method test error AUC

logistic regression 0.1461 0.90

lda 0.1623 0.9047

Random Forest classification 0.1136 0.9392

Bagging classification 0.1201 0.9334

Gradient Boosting classification 0.1364 0.9154

Random Forest regression 0.1396 0.9347

Bagging regression 0.1429 0.937

Gradient Boosting regression 0.1883 0.9114

Ridge regression 0.1688 0.8939

Lasso regression 0.1753 0.8951

5 Conclusions

The purpose of our study is to examine the forecasting power of market risk indices on future stock returns

using machine learning algorithms. In particular, we have considered two basic models: regression and

classification. The response variable in the regression model is continuous and we forecast the S&P500

returns with 30 days time to maturity. In the classification model, the response variable is binary and

we predict if the market is bearish (i.e. returns go down) or bullish (returns go up). Moreover, in order

to compare our results in both models, we have transformed the results of continuous variables into a

binary variable. We have compared our results in terms of two well known measures: classification error

(called also test error) and AUC (area under the curve).

We have underlined the role of each method used in our work describing its characteristic. Moreover,

we have motivated the use of our predictors observing that they are all extensively used in all relevant

empirical finance analyses.

In order to solve possible problem of multicollinearity we have performed a feature selection using Lasso

regression. As a consequence, three input variables were eliminated from our analysis: VIX3M, VIX6M

and VIX3M VIX. The feature selection procedure are conducted following the recent literature that

suggests to exclude the test set in this stage.

The results show that Random Forest attains the highest performance followed by Bagging and in general,

all the classifiers applied in the classification model outperform those applied in the regression model.

Moreover, when compare our results with other related studies, we find that our performance is higher.

In addition, we have highlighted that our results are also in line with other analysis conducted in other

relevant financial markets, such as the Indian and the Brazilian markets.
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