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On the rank of a finite group of odd order
with an involutory automorphism

Cristina Acciarri and Pavel Shumyatsky

Abstract. Let G be a finite group of odd order admitting an in-
volutory automorphism φ, and let G−φ be the set of elements of G
transformed by φ into their inverses. Note that [G,φ] is precisely
the subgroup generated by G−φ. Suppose that each subgroup gen-
erated by a subset of G−φ can be generated by at most r elements.
We show that the rank of [G,φ] is r-bounded.

1. Introduction

Let G be a finite group of odd order admitting an involutory au-
tomorphism φ. Here the term “involutory automorphism” means an
automorphism φ such that φ2 = 1. We let G−φ stand for the set
{g ∈ G | gφ = g−1} and Gφ for the centralizer of φ, that is, the sub-
group of fixed points of φ. As usual we denote by [G, φ] the subgroup
generated by all elements of G that can be written as g−1gφ for a suit-
able g ∈ G. It is well known that [G, φ] is normal in G and φ induces
the trivial automorphism of G/[G, φ]. Observe that [G, φ] is precisely
the subgroup generated by G−φ. This is because an automorphism of
order at most two of a group of odd order is nontrivial if and only if
G−φ 6= {1} (cf Lemma 2.1(i) in the next section).The following theorem
was proved in [10, Theorem B].

Theorem 1.1. Let G a finite group of odd order admitting an in-
volutory automorphism φ such that the rank of Gφ is at most r. Then
the rank of [G, φ]′ is r-bounded.
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Recall that a rank of a finite group G is the least number r such
that each subgroup of G can be generated by at most r elements.
Throughout this manuscript we use the term “(a, b, c . . . )-bounded” to
mean “bounded from above by some function depending only on the
parameters a, b, c . . . ”.

Since in a finite group of odd order with an involutory automor-
phism φ there is a kind of (very vague) duality between Gφ and G−φ,
in this paper we address the question whether a rank condition imposed
on the set G−φ has an impact on the structure of G. We emphasize that
G−φ in general is not a subgroup of G and therefore the usual concept
of rank does not apply to G−φ. Instead we impose the condition that
each subgroup of G generated by a subset of G−φ can be generated by
at most r elements. Our main result is as follows.

Theorem 1.2. Let G be a group of odd order admitting an in-
volutory automorphism φ and suppose that any subgroup generated by
a subset of G−φ can be generated by r elements. Then [G, φ] has r-
bounded rank.

It is noteworthy that in the literature there are several papers deal-
ing with finite groups admitting a (not necessarily involutory) automor-
phism whose fixed-point subgroup is of rank r (see for example [6, 5]).
In particular, [5] contains a result similar to the above Theorem 1.1.
Thus, it seems plausible that some analogues of Theorem 1.2 are valid
for the case where the order of φ is bigger than two.

2. Nilpotent groups with involutory automorphisms

We start with a collection of well-known facts about involutory
automorphisms of groups of odd order (see for example [3, Lemma 4.1,
Chap. 10]).

Lemma 2.1. Let G be a finite group of odd order admitting an
involutory automorphism φ. The following conditions hold:

(i) G = GφG−φ = G−φGφ and |G−φ| = [G : Gφ];
(ii) The subgroup generated by G−φ is exactly [G, φ];

(iii) If N is any φ-invariant normal subgroup of G we have (G/N)φ =
GφN/N , and (G/N)−φ = {gN | g ∈ G−φ};

(iv) If N is any φ-invariant normal subgroup of G such that N =
N−φ or N = Nφ, then [G, φ] centralizes N ;

(v) The subgroup Gφ normalizes G−φ.

It is well known that a maximal abelian normal subgroup of a nilpo-
tent group coincides with its centralizer. We will require the following
related result.
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Lemma 2.2. Let G be a nilpotent group of odd order, φ an involu-
tory automorphism of G, and A a maximal φ-invariant abelian normal
subgroup of G. Then A = CG(A).

Proof. Let C = CG(A) and assume that the result is false, that
is, A < C. Then C/A is a nontrivial φ-invariant normal subgroup of
G/A. The nilpotency of G/A implies that C/A ∩ Z(G/A) 6= 1.

Let U be the full inverse image of C/A∩Z(G/A) in G. Since C/A∩
Z(G/A) 6= 1, the subgroup A is properly contained in U . From Lemma
2.1(i) we know that U = UφU−φ. Thus, either Uφ � A or U−φ � A. In
any case we can choose u ∈ U \A satisfying either uφ = u or uφ = u−1.
Take H = A〈u〉 and note that A < H. Furthermore, H is a φ-invariant
abelian normal subgroup of G. This yields a contradiction. �

Note that the previous lemma fails if φ is allowed to be a coprime
automorphism of arbitrary order. For example, the quaternion group
of order 8 admits an automorphism α of order 3 and the maximal
α-invariant abelian normal subgroup is central.

Lemma 2.3. Let p be an odd prime and G a p-group admitting
an involutory automorphism φ such that G = [G, φ]. Let M be a φ-
invariant normal subgroup of G and assume that |M−φ| = pn for some
nonnegative integer n. Then M ≤ Z2n+1(G).

Proof. If n = 0, then the result follows from Lemma 2.1(iv), so
assume that n ≥ 1 and use induction on n.

Let N = M ∩ Z2(G). If N � Z(G), then Lemma 2.1(iv) implies
that N−φ 6= 1, in which case we have |(M/N)−φ| < |M−φ| = pn. By
induction M/N ≤ Z2n−1(G/N), whence M ≤ Z2n+1(G). If N ≤ Z(G),
then it turns out that M ∩ Z(G) = M ∩ Zi(G) for any i ≥ 2 and so,
obviously, M ≤ Z(G). This concludes the proof. �

We now fix some notation and hypotheses that will be used through-
out this section.

Hypothesis 2.4. Let p be an odd prime, r a positive integer and
G a finite p-group with an involutory automorphism φ such that G =
[G, φ]. Assume that any subgroup generated by a subset of G−φ can be
generated by r elements.

Lemma 2.5. Assume Hypothesis 2.4 and suppose that G is of expo-
nent p. There exists a number l = l(r), depending on r only, such that
the rank r(G) of G is at most l.

Proof. Let A be a maximal φ-invariant abelian normal subgroup
of G. The subgroup 〈A−φ〉 is an r-generated abelian subgroup of expo-
nent p and so |A−φ| ≤ pr. Lemma 2.3 implies that A ≤ Z2r+1(G). Since
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γ2r+1(G) commutes with Z2r+1(G), we deduce that γ2r+1(G) centralizes
A. Furthermore, by Lemma 2.2, A = CG(A). Thus γ2r+1(G) ≤ A, that
is, the quotient group G/A is nilpotent of class 2r. We deduce that G
has r-bounded nilpotency class as well. Since G = 〈G−φ〉 is r-generated
by hypothesis, it follows that the rank r(G) of G is r-bounded, as de-
sired. �

The following result from [10, Lemma 2.2] is also useful.

Lemma 2.6. Let G be a group of prime exponent p and rank r0.
Then there exists a number s = s(r0), depending only on r0, such that
|G| ≤ ps.

Lemma 2.7. Let G be a group satisfying Hypothesis 2.4. There
exists a number λ = λ(r), depending only on r, such that γ2λ+1(G) is
powerful.

Proof. Let s(r0) be as in Lemma 2.6 and let l(r) be as in Lemma
2.5. Take N = γ2λ+1(G), where λ = s(l(r)). In order to show that
N ′ ≤ Np, we assume that N is of exponent p and prove that N is
abelian.

Note that the subgroup 〈N−φ〉 is of exponent p. By Lemma 2.5
the rank of 〈N−φ〉 is at most l(r). It follows from Lemma 2.6 that
|N−φ| ≤ ps(l(r)) = pλ. Now Lemma 2.3 yields N ≤ Z2λ+1(G) . By using
the well-known fact that [γi(G), Zi(G)] = 1, for any positive integer i
and any group G, we conclude that N is abelian, as required. �

Lemma 2.8. Assume Hypothesis 2.4. For any i ≥ 1, there exists a
number mi = mi(i, r), depending only on i and r, such that γi(G) is
an mi-generated group.

Proof. Let N = γi(G). In view of the Burnside Basis Theorem
[9, 5.3.2], we can pass to the quotient G/Φ(N) and assume that N is
elementary abelian. Now 〈N−φ〉 is an elementary abelian r-generated
group, so |〈N−φ〉| ≤ pr. Thus, by Lemma 2.3, we have N ≤ Z2r+1(G)
and deduce that G has nilpotency class bounded only in terms of i and
r. Since G = 〈G−φ〉 is r-generated, we conclude that r(G) is (i, r)-
bounded as well. Therefore N is mi-generated for some (i, r)-bounded
number mi. This concludes the proof. �

Proposition 2.9. Under Hypothesis 2.4 the rank of G is r-bounded.

Proof. Let s(r0) be as in Lemma 2.6 and l(r) as in Lemma 2.5.
Take N = γ2λ+1(G), where λ = λ(r) = s(l(r)). Let d be the minimal
number such that N is d-generated. Lemma 2.8 tells us that d is an
r-bounded integer and N is powerful by Lemma 2.7. It follows from
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[1, Theorem 2.9] that r(N) ≤ d, and so the rank of N is r-bounded.
Since the nilpotency class of G/N is r-bounded (recall that λ depends
only on r) and G = 〈G−φ〉 is r-generated, we conclude that r(G/N)
is r-bounded as well. Now r(G) ≤ r(G/N) + r(N) and the result
follows. �

3. Main results

Throughout this section the Feit-Thompson Theorem [2] is used
without explicit references and p stands for a fixed odd prime. Given
a finite soluble group G, we denote by rp(G) and lp(G) the rank of
a Sylow p-subgroup and the p-length of G, respectively. Recall that
lp(G) is by definition the number of p-factors (that is, factors that are
p-groups) of the lower p-series of G given by:

1 ≤ Op′(G) ≤ Op′,p(G) ≤ Op′,p,p′(G) ≤ · · · .

We aim to establish the following generalisation of Proposition 2.9.

Theorem 3.1. Let G be a group of odd order admitting an involu-
tory automorphism φ such that G = [G, φ]. Let r be a positive integer
and assume that any subgroup generated by a subset of G−φ can be
generated by r elements, then rp(G) is r-bounded.

We start with an extension of Lemma 2.3.

Lemma 3.2. Let G be a group of odd order admitting an involutory
automorphism φ such that G = [G, φ]. Let M be a φ-invariant normal
subgroup of G and assume that |M−φ| ≤ pn, for some nonnegative
integer n. Then M ≤ Z2n+1(Op(G)).

Proof. The proof can be reproduced word-by-word following that
of Lemma 2.5. We argue by induction on n, being Lemma 2.1(iv) the
case n = 0. Let n ≥ 1. If M � Z(Op(G)), then by Lemma 2.1(iv)
we have N−φ 6= 1, where N = M ∩ Z2(Op(G)). This implies that
|(M/N)−φ| < |M−φ|. Thus we can pass to the quotient G/N and use
the inductive hypothesis. The result follows. �

For the sake of simplicity we fix the following hypothesis that we
will use in the next arguments.

Hypothesis 3.3. Let r be a positive integer and G a group of odd
order admitting an involutory automorphism φ such that G = [G, φ].
Assume that any subgroup generated by a subset of G−φ can be generated
by r elements.
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As usual, we denote by F (G) the Fitting subgroup of a group G.
Write F0(G) = 1, F1(G) = F (G) and let Fi+1(G) be the inverse image
of F (G/Fi(G)). If G is soluble, then the least number h such that
Fh(G) = G is called the Fitting height of G.

One key step forward to the proof of Theorem 3.1 consists in show-
ing that there exists an r-bounded number f such that the fth term
of the derived series of G is nilpotent. For our purpose we will require
the following result which is an immediate corollary of Hartley-Isaacs
Theorem B in [4].

Proposition 3.4. Let H be a finite group of odd order admitting an
involutory automorphism φ such that H = [H,φ]. Let k be a field with
characteristic different from 2 and V a simple k〈φ〉H -module. Suppose
that dimV−φ = r. There exists an r-bounded number δ = δ(r) such
that dimV ≤ δ.

In the proof of the next proposition we will use the well-known
theorem of Zassenhaus (see [11, Satz 7] or [8, Theorem 3.23]) stating
that for any n ≥ 1 there exists a number j = j(n), depending only on
n, such that, whenever k is a field, the derived length of any soluble
subgroup of GL(n, k) is at most j.

Proposition 3.5. Assume Hypothesis 3.3. There exists a number
f = f(r), depending only on r, such that the f th term G(f)of the derived
series of G is nilpotent.

Proof. Let δ = δ(r) be as in Proposition 3.4 and f = j(δ) the
number given by the Zassenhaus theorem.

Suppose that the proposition is false and let G be a group of min-
imal possible order for which Hypothesis 3.3 holds while G(f) is not
nilpotent. Then G has a unique minimal φ-invariant normal subgroup
M . Indeed, suppose that G has two minimal φ-invariant normal sub-
groups, say M1 and M2. Then M1 ∩M2 = 1, being both elementary
abelian p-groups for some prime p. Since |G/M1| < |G|, the minimality
of G implies that (G/M1)

(f) is nilpotent. For a symmetric argument
(G/M2)

(f) is nilpotent too. This yields a contradiction since G(f) can
be embedded into a subgroup of G/M1 × G/M2 which is nilpotent,
being isomorphic to the direct product of (G/M1)

(f) and (G/M2)
(f).

We claim that M = CG(M). Since M is a p-subgroup, for some
prime p and it is unique, the Fitting subgroup F = F (G) is a p-
subgroup too. If Φ(F ) is nontrivial, then we immediately get a contra-
diction because F (G/Φ(F )) = F/Φ(F ) and, again by the minimality
of G, we know that (G/Φ(F ))(f) is nilpotent, so in particular G(f) ≤ F .
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Assume now that Φ(F ) = 1 and so F is elementary abelian. If
M = F , then M = CG(M), since the Fitting subgroup of a soluble
group contains its own centralizer (see, for example, [3, Theorem 1.3,
Chap. 6]). Thus we can assume that M < F . By hypotheses, on one
hand, we know that G(f) ≤ F2(G) (to clarify, for the minimality of G
the quotient (G/F )(f) is nilpotent, so it is contained in F (G/F )) and,
on the other hand, that (G/M)(f) is nilpotent (again by the minimality
of G). Now let T be a φ-invariant Hall p′-subgroup of G(f). It follows
that both FT and MT are φ-invariant normal subgroups of G. Indeed,
FT/F is normal in G/F , since (G/F )(f) is nilpotent and, similarly,
MT/M is normal in G/M , being (G/M)(f) nilpotent as well.

Suppose first that CF (T ) 6= 1. Note that CF (T ) = Z(FT ), since F
is abelian. Thus CF (T ) is a φ-invariant normal subgroup of G, because
FT is normal and φ-invariant. Hence M ≤ CF (T ). This implies that
T centralizes M and so MT = T ×M . Recall that T ≤ F2(G) and
T ∩ F = 1. It follows that T is nilpotent. Then T × M is normal
nilpotent and T ≤ F , a contradiction.

Thus, CF (T ) = 1. On the other hand, we see that [F, T ] ≤M , since
the nilpotent p′-subgroup MT/M and the p-subgroup F/M are both
contained in F (G/M) and commute, being F (G/M) nilpotent. Now
we have M < F and F = [F, T ] × CF (T ), so it should be CF (T ) 6= 1,
a contradiction. Thus M = CG(M), as claimed above.

Then G/M acts faithfully and irreducibly on M . Moreover 〈M−φ〉 is
r-generated and elementary abelian, so |〈M−φ〉| ≤ pr. Now we can view
M as a G/M〈φ〉-module over the field with p elements. By Proposition
3.4 we have dim(M) ≤ δ(r). Applying the theorem of Zassenhaus the
derived length of G/M is at most f = f(δ(r)). Then G(f) ≤ F , which
concludes the proof. �

As a by-product of the previous result we obtain a bound for the
p-length of G.

Corollary 3.6. Assume Hypothesis 3.3. Then lp(G) is r-bounded,
for any p ∈ π(G).

Proof. By Proposition 3.5 we know that G(f) is nilpotent for some
r-bounded number f . This implies that the Fitting height h(G) ≤ f .
The result easily follows since it can be shown, by induction on the
Fitting height h(K), that lp(K) ≤ h(K) for any finite soluble group K
and for any prime p ∈ π(K). �

The next result will be useful for a reduction argument inside the
proof of Theorem 3.1.
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Lemma 3.7. Let G be a group of odd order admitting an involutory
automorphism φ. Assume that G = PB, where P is a φ-invariant
normal elementary abelian p-subgroup and B is a cyclic subgroup such
that B = B−φ. If r(P−φ) = r, then the rank of [P,B] is at most 2r.

Proof. Let B = 〈b〉, where b is a generator of B. Let C = Pφ and
C0 = C ∩ Cb. Then it follows from Lemma 2.1(i) that

[P : C0] ≤ [P : C][P : Cb] ≤ p2r,

since r(P−φ) = r. We claim that C0 ≤ CG(b). Indeed, choose x ∈ C
such that xb ∈ C. Then, we have xb = (xb)φ = xb

−1
and so x commutes

with b2. Since b has odd order, it follows that C0 ≤ CG(b), as claimed.
Thus C0 ≤ Z(G). Choose now a1, . . . , a2r elements that generate P
modulo C0. By using linearity in P and the fact that C0 is central in
G, we deduce that [P, b] is generated by [a1, b], . . . , [a2r, b]. Hence the
result. �

We are ready to embark on the proof of Theorem 3.1.

Proof of Theorem 3.1. Recall that G is a group satisfying Hy-
pothesis 3.3 and we want to show that rp(G) is r-bounded for any fixed
prime p ∈ π(G).

First, we show that G is generated by r-boundedly many elements
from G−φ. If G is a p-group, then the claim follows from the Burnside
Basis Theorem since G = 〈G−φ〉 is r-generated. In the case where G
is nilpotent, we have [G, φ] = [P1.φ]× · · · × [Ps, φ], where {P1, . . . , Ps}
are the Sylow subgroups of G, so the result easily follows from the case
of p-groups. Assume now that G is not nilpotent. Let h = h(G) ≥ 2.
Since we know from the proof of Corollary 3.6 that h is r-bounded,
it is sufficient to show that G is generated by (h, r)-boundedly many
elements from G−φ. We argue by induction on h. Let F = F (G). By
induction there are boundedly many elements a1, . . . , ad ∈ G−φ such
that G = F 〈a1, . . . , ad〉. Let D = 〈F−φ, a1, . . . , ad〉. Note that D has
an r-bounded number of generators from G−φ. Let N be the normal
closure of 〈F−φ〉 inG. ThenN is precisely 〈F−φ〉D because F normalizes
〈F−φ〉 by Lemma 2.1(v). Thus N ≤ D. Recall that by Lemma 2.1(i) we
have F = FφF−φ. Hence the image of F in G/N is contained in (G/N)φ
and, therefore, it is central by Lemma 2.1(iv). Since G = FD, it follows
that D/N becomes normal in G/N and, therefore, D is normal in G
(because N ≤ D). Now φ acts trivially on the quotient G/D, that is
[G, φ] ≤ D. Since G = [G, φ], we have G = D. This concludes the
proof that G can be generated by r-boundedly many elements from
G−φ.
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If G is a p-group, then the theorem follows immediately from Propo-
sition 2.9. Assume that G is not a p-group and use induction on
l = lp(G) that is r-bounded by Corollary 3.6. So it is sufficient to
show that rp(G) is (l, r)-bounded. By induction assume that there
exists r1, depending only on l and r, such that rp(K) ≤ r1 for any
φ-invariant quotient K of G having lp(K) at most l − 1.

Since l = lp(G/Op′(G)), we can assume that Op′(G) = 1. Take
P = Op(G). Note that

rp(G) ≤ r(P ) + rp(G/P ).

Since lp(G/[P,G]) ≤ l − 1, by induction the rank rp(G/[P,G]) ≤ r1.
Then it is sufficient to bound the rank of P .

Let us show first that P has an r-bounded number of genera-
tors. Passing to the quotient G/Φ(P ), we can assume that P is el-
ementary abelian. As showed above, we know that G can be gen-
erated by t = t(r) elements from G−φ, say d1, . . . , dt. Note that
[P,G] = [P, d1][P, d2] . . . [P, dt]. In view of Lemma 3.7 each [P, di] has
rank at most 2r. Therefore the rank of the image of [P,G] in G/Φ(P )
is at most 2rt and by induction on l, rp(G/[P,G]) is r-bounded, so P
has an r-bounded number of generators, as claimed.

Next, we claim that for any i ≥ 2 there exists a number mi =
mi(i, r), depending only on i and r, such that V = γi(P ) has mi-
bounded number of generators. We can pass to the quotient G/Φ(V )
and assume that V is elementary abelian. Now 〈V−φ〉 is an elementary
abelian r-generated group, so |〈V−φ〉| ≤ pr. Thus, by Lemma 3.2, we
have V ≤ Z2r+1(P ) and deduce that the nilpotency class of P/Φ(V ) is
bounded only in terms of i and r. Since P has an r-bounded number
of generators, we conclude that r(P/Φ(V )) is (i, r)-bounded as well.
Therefore V is mi-generated for some (i, r)-bounded number mi, as
claimed.

Let s(r0) be as in Lemma 2.6 and let l(r) be as in Lemma 2.5.
Take M = γ2λ+1(P ), where λ = s(l(r)). We want to prove that M is
powerful. In order to show that M ′ ≤ Mp, we assume that M is of
exponent p and prove that M is abelian. Note that the subgroup 〈M−φ〉
is of exponent p. By Lemma 2.5 the rank of 〈M−φ〉 is at most l(r). It
follows from Lemma 2.6 that |M−φ| ≤ ps(l(r)) = pλ. Now Lemma 3.2
yields that M ≤ Z2λ+1(P ) . Since [γi(P ), Zi(P )] = 1, for any positive
integer i, we conclude that M is abelian, as required.

Let now d0 be the minimal number such that M is d0-generated. It
was shown above that d0 is an r-bounded integer. Since M is powerful,
it follows from [1, Theorem 2.9] that r(M) ≤ d0, and so the rank of
M is r-bounded. Since the nilpotency class of P/M is r-bounded and
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P has an r-bounded number of generators, we conclude that r(P/M)
is r-bounded as well. Now r(P ) ≤ r(P/M) + r(M) and the result
follows. �

It is now easy to give the proof of our main result, Theorem 1.2,
which states that if G is a group satisfying Hypothesis 3.3, then the
rank of G is r-bounded.

Proof of Theorem 1.2. Without loss of generality we can as-
sume that G = [G, φ]. By a result of Kovács [7] for any soluble group
H we have r(H) ≤ max{rp(H) | p ∈ π(H)}+ 1. Therefore it is enough
to check that rp(G) is bounded in terms of r only for any p ∈ π(G).
This is immediate from Theorem 3.1. �
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