
26/06/2024 03:43

Improving Indoor Semantic Segmentation with Boundary-level Objectives / Amoroso, Roberto; Baraldi,
Lorenzo; Cucchiara, Rita. - 12862:(2021), pp. 318-329. (Intervento presentato al  convegno 16th
International Work-Conference on Artificial Neural Networks, IWANN 2021 tenutosi a Online nel June 16-
18, 2021) [10.1007/978-3-030-85099-9_26].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer Science and Business Media Deutschland GmbH

This is a pre print version of the following article:



Improving Indoor Semantic Segmentation
with Boundary-level Objectives

Roberto Amoroso[0000−0002−1033−2485], Lorenzo Baraldi[0000−0001−5125−4957],
and Rita Cucchiara[0000−0002−2239−283X]

University of Modena and Reggio Emilia, Modena, Italy
{name.surname}@unimore.it

Abstract. While most of the recent literature on semantic segmentation
has focused on outdoor scenarios, the generation of accurate indoor seg-
mentation maps has been partially under-investigated, although being a
relevant task with applications in augmented reality, image retrieval, and
personalized robotics. With the goal of increasing the accuracy of seman-
tic segmentation in indoor scenarios, we develop and propose two novel
boundary-level training objectives, which foster the generation of accu-
rate boundaries between different semantic classes. In particular, we take
inspiration from the Boundary and Active Boundary losses, two recent
proposals which deal with the prediction of semantic boundaries, and
propose modified geometric distance functions that improve predictions
at the boundary level. Through experiments on the NYUDv2 dataset,
we assess the appropriateness of our proposal in terms of accuracy and
quality of boundary prediction and demonstrate its accuracy gain.

Keywords: Indoor scene understanding · Segmentation · Boundary losses.

1 Introduction

Automatically parsing and understanding pictures of indoor scenes is a core
problem in Computer Vision, with a variety of applications ranging from aug-
mented reality interfaces to image retrieval and the navigation of mobile robots
in indoor spaces. The goal of the task is that of providing detailed information
about the objects in a scene, the layout of the space, and how objects inter-
act with each other [28]. One of the core subtasks which need to be solved in
this context is that of performing a semantic segmentation over the input im-
age. While most of the indoor understanding literature has focused on the usage
of RGBD data [7, 9, 15], and while most of the semantic segmentation litera-
ture has adopted outdoor scenarios [22, 18, 27, 10], some applications require to
employ RGB data in indoor contexts. Examples include the understanding of
indoor photos taken from mobile phones for augmented reality applications, the
processing of pictures taken from social networks and search engines, and every
application in which employing a depth camera is not practical.

In such contexts, providing accurate and fine-grained pixel-wise classification
without relying on depth data is of great importance. Recently, the research on
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semantic segmentation models has focused on the introduction of fully convo-
lutional networks [16, 4] which leverage convolutional layers and downsampling
operations to achieve a large receptive field, while upsampling operations are
employed to increase the output resolution. Although this architectural choice
is necessary to encode contextual information and deal with objects at large
scales, it also leads to feature smoothing across object boundaries, and thus to a
degraded quality in the final result. The segmentation results might look blurry
and lack fine object boundary details, thus leading to defects in the results of
augmented reality applications.

With the aim of improving the quality of semantic segmentation in indoor
scenarios, especially in boundary regions, in this paper, we investigate the de-
sign of boundary-aware losses for the optimization of semantic segmentation
architectures. We start from two recently proposed loss functions, namely the
Boundary loss [12] and the Active Boundary loss [21], and design two improved
versions that can significantly increase the overall quality of the segmentation
at boundary level. In particular, we improve their formulation in the geometric
distance between objects and prove that this results in better segmentation ac-
curacy and better predictions in boundary areas. From an experimental point of
view, we assess the effectiveness of the proposed losses on the NYUDv2 dataset
for indoor semantic segmentation. We quantify and show, through quantitative
and qualitative experiments, the role of both losses in the case of indoor scene
segmentation and the appropriateness of the proposed variants.

2 Related Work

Localizing semantic boundaries or exploiting boundary information to improve
the semantic segmentation has been the focus of several previous studies [24, 1,
6]. Gated-SCNN [20], for instance, designs a two-stream network to exploit the
duality between the segmentation predictions and the boundary predictions, in-
tegrating shape information. Other works [11, 3, 5], instead, learn pairwise pixel-
level affinity and monitor information flow across boundaries to preserve feature
disparity for semantic boundaries and feature similarity for interior pixels.

While most of these methods [5, 20, 11] depend on the segmentation model
and require re-training, extensive studies [26, 14] have proposed post-processing
techniques to improve boundary details of segmentation results. DenseCRF [14]
considers fully connected CRF models defined at the pixel level to improve seg-
mentation accuracy around boundaries. SegFix [26], instead, proposes a model-
agnostic method to refine segmentation maps, by training a separate network to
transfer the label of interior pixels to boundary pixels. PointRend [13] presents
a rendering approach to refine boundary information by performing point-based
predictions at selected locations based on an iterative subdivision algorithm.

Boundary loss (BL) [12] and Active Boundary loss (ABL) [21], finally, pro-
pose a model-agnostic end-to-end trainable approach to tackle the problem of
semantic segmentation at boundaries. BL promotes the refinement of the seman-
tic boundaries by optimizing the sum of the linear combinations of the regional
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probability predictions and their distance transforms. ABL monitors the changes
in the boundaries of the segmentation predictions and encourages the alignment
between predicted boundaries and ground-truth boundaries, leveraging the dis-
tance transform of the prediction maps to regularize the network behavior.

Despite the empirical success of boundary-aware approaches in improving
segmentation precision, there are still substantial segmentation errors at object
boundaries. In this work, we investigate the reciprocal dependency between se-
mantic segmentation and boundary-level objectives to increase the accuracy of
semantic segmentation performance.

3 Method

Most of the existing semantic segmentation models can fail to provide correct
predictions along semantic boundaries between two different classes, as widely
used loss functions (like Cross-Entropy or Lovász-Softmax [2]) do not explicitly
deal with the prediction of semantic region boundaries. With the aim of improv-
ing the prediction along boundaries in the case of indoor scene segmentation, we
investigate the design of loss functions that explicitly model the prediction of se-
mantic boundaries. In particular, we take inspiration from the Boundary loss [12]
and the Active Boundary loss [21], two loss functions that already encode the
presence of boundary regions in their formulation. Noticeably, all the functions
we consider are model-agnostic and can be used during end-to-end training to
improve boundary prediction.

Hereafter, we consider a segmentation setting characterized by C classes and
input image resolution H ×W . P ∈ RC×H×W , instead, will be used to indicate
the class probability map predicted by the network. Thorough the rest of the
section, given a tensor with spatial support Z, the notation Zi will be employed
to denote the value(s) stored at the i-th spatial location of Z, thus employing a
“flattened” indexing of the two spatial dimensions.

3.1 Boundary loss

The Boundary loss was originally proposed by Kervadec et al. [12]. It concep-
tually calculates an integral over the points between regions which capture the
proximity of two shapes, and it is inspired by a discrete graph-based optimiza-
tion technique for computing gradient flows, which introduces a non-symmetric
`2 loss to regularize boundary deviation of the predicted segmentation mask rel-
ative to the ground truth. As such, it allows the incorporation of a weighting
term between the estimated and expected pixels along a semantic boundary.

The loss can be seen as a weighted average of predicted probabilities over the
entire image, as follows:

BL =
1

N

N∑
i

PiD
ᵀ
i , (1)

where BL indicates the Boundary loss, N is the number of pixels of the input
image, and D ∈ RC×H×W is a distance map that applies a probability weighting.
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Fig. 1. We consider two loss functions for improving boundary-level predictions in
semantic segmentation: (a) a Boundary loss which weights pixels predictions according
to their distance to semantic boundaries; (b) an Active Boundary loss which promotes
the alignment between predicted and ground truth boundaries. Best seen in color.

Negative values in Di ∈ RC will increase the probability of predicting a given
class in a pixel, while positive values will discourage the network from predicting
a given class in a spatial location.

Given a one-hot ground-truth tensor G ∈ {0, 1}C×H×W , the distance map is
usually calculated by means of the distance transform operator, which computes
for each positive pixel its distance to the closest zero-valued pixel on the same
channel, i.e. the closest pixel which does not belong to a given class. In the
original formulation of the Boundary loss [12], the distance map was defined as
follows:

Di = −Dist(Gi)�Gi + Dist(1−Gi)� (1−Gi) (2)

where � indicates the element-wise multiplication and Dist(·) is the distance
transform. As it can be observed from the above formula, pixels that belong
to a class are given a negative weight, thus promoting the prediction of high
probability values for that class – while pixels that do not belong to a class are
given a positive weight, thus discouraging the network from predicting the same
class. When considering the magnitude of the weights, instead, it can be seen
that pixels far from the boundaries, for which the Dist(·) function produces high
values, play a larger role in determining the loss in this formulation – while pixels
close to the boundary are given less importance. In other words, the network is
encouraged to give correct predictions in regions that do not lie close to the
boundaries between classes and is allowed to be less precise in boundary regions.

With the aim of increasing the quality of predictions at the boundary level,
we propose and investigate variations of the Boundary loss according to two
principles: (i) we consider the different role of positive and negative pixels, and
devise different weighting strategies for the two classes of pixels, instead of treat-
ing them equally as the original loss does; (ii) we replace the distance function
with a proximity function, so that pixels close to a boundary are given greater
importance, and regions that do not lie close to a boundary are given less im-
portance – thus inverting the original spirit of the Boundary loss.
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Following the first principle (i.e. treating positive and negative pixels differ-
ently), we devise two variations of the Boundary loss which correspond to the
following distance maps:

D+
i = −Gi + Dist(1−Gi)� (1−Gi), (3)

D−
i = −Dist(Gi)�Gi + (1−Gi). (4)

As it can be observed, in the two above variants the distance map values are
replaced with constant values which are independent of the distance from the
boundary. This is done in the case of pixels that do not belong to the target
class (i.e., negative pixels) for D−

i , and in the case of pixels that belong to the
target class (i.e., positive pixels) for D+

i , respectively. In this manner, greater
importance is also given to boundary pixels, compared to the original formula-
tion.

According to the second principle, instead, we replace the concept of distance
with that of proximity to the boundaries. To this aim, we devise an inversion
function that translates distances to proximities. Our inversion function is de-
fined as Φ(x) = max(x) − x + 1: as it can be seen, when applied to a distance
transform, Φ(·) returns the maximum value of the original map for pixels con-
nected to a class boundary (for which x = 1 holds), and decreases linearly until
reaching a minimum value of 1. According to this proximity function, we devise
the following two variants of the Boundary loss:

D̃i = ReLU(K −Dist(1−Gi))� (1−Gi)− ReLU(K −Dist(Gi))�Gi, (5)

D̂i = Dist(1−Gi)� (1−Gi)− Φ(Dist(Gi))�Gi. (6)

As it can be seen by comparing the two above formulations with the original
loss, in the first case the distance function Dist(·) is replaced with ReLU(K −
Dist(·)), i.e. with a proximity function that starts from K and decreases linearly
until reaching 0 – while in the second case the full proximity function Φ(·) is
employed. Noticeably, in the second case, the maximum proximity value depends
on the size of the object (being a function of the maximum distance in the
ground-truth map), while in the first case it is constant.

3.2 Active Boundary loss

We now turn to the evaluation of a second boundary-aware loss function, namely
the Active Boundary loss. This is formulated as a differentiable direction vector
prediction problem, which gradually promotes the alignment between predicted
boundaries (which in the following will be named, for brevity, PBs) and ground
truth boundaries (for brevity again, GTBs). The pipeline for computing the loss
can be conceptually divided into two phases.
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Phase 1 During this phase, we compute the PBs starting from the probability
map predicted by the network and devise a target direction map Dg which will
be employed to align PBs with GTBs.

Specifically, boundary pixels of the predicted boundary map are recovered through
the computation of the Kullback–Leibler (KL) divergence between the probabil-
ities predicted for adjacent pixels. The i-th pixel of the PB is defined as

PBi =

{
1 if ∃KL(Pi||Pj) > ε, j ∈ N2(i);
0 otherwise,

(7)

where N2(·) indicates the 2-neighborhood of a pixel, corresponding to the off-
set {{1, 0}, {0, 1}} (i.e., the pixels to the right and below the current pixel).
The threshold value ε is calculated dynamically to ensure that the number of
boundary pixels in PB is less than 1/100 of the area of the input image.

The pixels of GTBs are, accordingly, determined by applying Eq. 7 to the
one-hot ground-truth tensor and replacing the KL divergence with a simpler
equality condition on the class labels between the pixels in N2(·).

As a second point, we compute a target direction map containing offset vec-
tors which will encourage pixels on the PBs to move towards pixels of the GTBs.
In the original version of the Active Boundary loss, the offset was encoded as a
one-hot vector. In our version, we encode the coordinate of the offset vector as
a progressive index indicating its position within the 8-neighborhood of a pixel,
ranging from 0 (i.e. offset {−1,−1} or top-left corner) to 8 (i.e. offset {1, 1}
or bottom-right corner) following the row-major order, and excluding index 4
which is associated with the central pixel itself.

Formally, the target direction map Dg ∈ RH×W is computed by considering
the offset direction which would move a pixel closer to a GTB, i.e.:

Dg
i = arg minjMi+∆j , j ∈ {0, 1, ..., 7}, (8)

where M = Dist(GTBs) is the result of the distance transform applied to GTBs
and ∆j represents the j-th element in the set of directions ∆ = {{−1,−1},
{0,−1}, {1,−1}, {−1, 0}, {1, 0}, {−1, 1}, {0, 1}, {1, 1}}.

Phase 2 By using the KL divergence between the predictions for a pixel i
and those for one of its neighbor pixels j as logits in a cross-entropy loss, the
predicted boundary at pixel i is pushed towards the pixel j in a probabilistic
way. The purpose is to increase the KL divergence between the class probability
distribution of i and j while reducing the KL divergence between i and its 8-
neighborhood pixels. To this aim, a predicted direction map Dp ∈ R8×H×W is
computed as follows:

Dp
i =

{
eKL(Pi,Pi+∆k )∑7
h=0 eKL(Pi,Pi+∆h )

, k ∈ {0, 1, ..., 7}

}
, (9)
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Employing the predicted and the target direction map, the Active Boundary loss
can be defined as a weighted cross-entropy (CE) loss, as follows:

ABL =

(∑
i

Λ(Mi)�CE(Dp
i ,D

g
i )� PBi

)
· 1∑

iPBi
(10)

Through the weight function Λ(x) = min(x,θ)
θ , the distance of the pixel i from

the nearest boundary of GTBs is used as weight to penalize its divergence from
the GTBs.

Managing collisions Noticeably, collisions between offset vectors of neighbor-
ing pixels are possible, especially in the case of complex boundary shapes. To
address this problem, the original formulation of the Active Boundary loss [21]
suggests detaching the gradient flow for all non-boundary pixels. As a result, the
gradient is calculated only for the pixels on the predicted boundaries, ignoring
all the other pixels.

To overcome any conflicts, we adopted an equivalent strategy. In our im-
plementation, we multiply the result of the weighted cross-entropy loss by the
predicted boundary map PB, so that the only pixels that contribute to the loss
calculation are the boundary pixels. The final value is the average calculated by
dividing the sum of the weighted and masked values of the cross-entropy by the
number of predicted boundary pixels.

Finally, the Active Boundary loss is regularized through label smoothing [19],
to prevent the network from taking over-confident decisions. During label smooth-
ing, the highest probability of the one-hot target distribution is set at 0.8, while
the rest of the distribution is set to 0.2/7. Both values have been empirically
determined during our preliminary experiments.

Applying proximity function As in the case of the Boundary loss, we propose
to employ a proximity function in place of the distance function when weight-
ing predicted boundary pixels (cfr. Eq. 10). Employing the previously defined
proximity function Φ, we propose to modify the Active Boundary loss function
as follows:

ÂBL =

(∑
i

Λ(M̂i)�CE(Dp
i ,D

g
i )� PBi

)
· 1∑

iPBi
, (11)

where M̂ is obtained by applying the proximity function to the distance trans-
form applied to GTBs, i.e. M̂ = Φ(Dist(GTB)). As it can be observed, also
in this case we give more importance to pixels lying close to object bound-
aries, in order to increase the quality of the prediction at the boundary level.
This is in contrast with the original spirit of the Active Boundary loss, which
instead promoted pixels far from the boundaries. As the maximum proximity
value depends on the size of the ground-truth object mask, the application of
the proposed proximity function encourages the network to concentrate on the
boundaries of objects with a significant area.
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4 Experiments

4.1 Dataset

We conduct our analyses on the image segmentation dataset NYU-Depth V2 [17],
which provides densely annotated images of indoor environments. Specifically,
the NYU-Depth V2 dataset consists of 1449 RGB-D frames showing interior
scenes, acquired through the Microsoft Kinect sensor and with a size of 640×480.
Since the distortion of the images has been corrected, they showcase a thin white
border which we remove by cropping the original images to a size of 608 × 448
pixels. We use the segmentation labels provided in [7], in which all labels were
mapped to 40 classes. We employ the standard training/test split with 795 and
654 images, respectively, and train our models on RGB images only.

In NYU-Depth V2, ground-truth labels are given as semantic regions, rather
than pixel-level segmentation. This occasionally results in thin strips of unla-
beled pixels between two adjacent regions and creates an issue when evaluating
segmentation results at boundary level. To remedy the issue, we pre-processed
the ground truth to remove small unlabeled regions through the median filtering
strategy proposed in [23]. Overall, the NYUDv2 is a challenging dataset due to
difficult lighting conditions and cluttered scenes.

4.2 Implementation details and evaluation protocol

We train our semantic segmentation models using two loss functions Lbl and
Labl, both consisting of the traditional cross-entropy and IoU losses, which are
paired with the considered boundary-level losses:

Lbl = CE + IoU + waBL,

Labl = CE + IoU + wbABL. (12)

Here, CE is the cross-entropy loss and IoU refers to the lovász-softmax loss [2],
a surrogate IoU loss. While the CE loss focuses on per-pixel classification, the
lovász-softmax loss prevents small objects from being ignored. The weights wa
and wb regulate the contribution of BL and ABL to the final loss, respectively.
In particular, our experimental results are obtained by setting wa to 1 both for
the original version of BL and its proposed variants, while wb is set to 0.8. The
loss hyper-parameters K and θ are respectively set to 300 and 50.

In all experiments, we employ a DeepLabV3 [4] with ResNet-50 [8] as our
default backbone architecture. Following the training protocol of [25], we use
random scaling, crop, left-right flipping, and brightness jittering during data
augmentation. We use a plain SGD optimizer, with an initial learning rate of
0.005 and weight decay equal to 0.0005. Training is performed with a mini-batch
size of 4 and conducted for 200 training epochs. The learning rate is divided by
10 after 60, 80, 100, and 150 epochs.
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Table 1. Quantitative results on the NYUDv2 dataset, when training with the Bound-
ary loss and the proposed variations.

Loss function Pixel Accuracy Mean Accuracy Mean IoU

CE 64.85 53.37 38.95
CE + IoU 65.16 54.73 39.68

CE + IoU + BL 65.10 55.05 39.49
CE + IoU + BL− 64.97 54.15 39.39
CE + IoU + BL+ 65.24 54.71 39.55

CE + IoU + B̃L 65.30 54.98 39.45

CE + IoU + B̂L 65.36 54.60 39.84

4.3 Quantitative Evaluation

Table 1 reports the results obtained on the NYUDv2 dataset when training with
the Boundary loss, and with the four proposed variations, in terms of mean
intersection-over-union, pixel accuracy, and mean accuracy [16]. As it can be
seen, the combination of cross-entropy loss and IoU loss leads to improved results
in terms of all metrics, proving that this combination is useful in the domain of
indoor segmentation.

When turning to the evaluation of the losses based on BL, we first notice
that the combination of cross-entropy, IoU, and Boundary loss leads to an im-
provement in terms of mean accuracy and to a decrease in pixel accuracy and
mean IoU, highlighting that the original loss struggles to improve the results.
The usage of the proposed variations that treat positive and negative pixels dif-
ferently (D+ and D− – indicated in Table 1, respectively, as BL+ and BL−),
helps to recover this quantitative loss, leading to improved results in terms of
accuracy and mean IoU. This also highlights that giving a constant weight to
pixels close to the boundary works better than using a distance function which
gives more importance to pixels far from a boundary.

Using the proposed variations that employ a proximity function in place of
the distance function (D̃ and D̂ – indicated in Table 1, respectively, as B̃L

and B̂L) leads to a further improvement in terms of pixel accuracy and mean
IoU, with the full proximity function providing the best result on all metrics
except the mean accuracy. Figure 2 reports some qualitative samples, compar-
ing the predictions obtained with CE+IoU and those with CE+IoU+BL and
CE+IoU+B̂L.

In Table 2, instead, we turn to the evaluation of the Active Boundary loss, and
the proposed variant based on the proximity function. Firstly, we notice that in
this case the ABL, in its original formulation, does not show a loss in performance
when compared with the CE + IoU baseline. Indeed, a CE+IoU+ABL setting
leads to an improvement in terms of pixel accuracy, mean accuracy, and mean
IoU. Further, applying the proximity function in place of the distance function
significantly increases the performance in terms of pixel accuracy and mean IoU,
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Image Ground Truth CE+IoU CE+IoU+BL CE+IoU+B̂L

Fig. 2. Qualitative comparison between Boundary loss functions

Table 2. Quantitative results on the NYUDv2 dataset, when training with the Active
Boundary loss and the proposed variation.

Loss function Pixel Accuracy Mean Accuracy Mean IoU

CE 64.85 53.37 38.95
CE + IoU 65.16 54.73 39.68

CE + IoU + ABL 65.18 54.76 39.74

CE + IoU + ÂBL 65.49 54.60 39.99

thus confirming the appropriateness of using a proximity function that gives
higher importance to boundary pixels. Finally, in Figure 3 we show qualitative
samples comparing the results obtained when employing the CE+IoU baselines,
in comparison with the ABL loss with distance and proximity functions.

5 Conclusion

We considered the usage of boundary loss functions when training segmentation
models in indoor scenarios. To this end, we have considered two recently pro-
posed boundary-level objectives, i.e. the Boundary loss, and Active Boundary
loss, and proposed the application of a proximity function that gives higher im-
portance to boundary pixels. Through quantitative and qualitative experiments
on the NYUDv2 dataset, we have shown that the proposed variation can improve
segmentation results at the boundary level.
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Image Ground Truth CE+IoU CE+IoU+ABL CE+IoU+ÂBL

Fig. 3. Qualitative comparison between Active Boundary loss functions
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