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Abstract

The relation for the gravity polarisation tensor as the tensor product of two gluon polarisation vectors 
has been well-known for a long time, but a version of this relation for multi-particle fields is presently still 
not known. Here we show that in order for this to happen we first have to ensure that the multi-particle 
polarisations satisfy colour-kinematics duality. In previous work it has been show that this arises naturally 
from the Bern-Kosower formalism for one-loop gluon amplitudes, and here we show that the tensor prod-
uct for multi-particle fields arises naturally in the Bern-Dunbar-Shimada formalism for one-loop gravity 
amplitudes. This allows us to formulate a new prescription for double-copy gravity Berends-Giele currents, 
and to obtain both the colour-dressed Yang-Mills Berends-Giele currents in the Bern-Carrasco-Johansson 
gauge and the gravitational Berends-Giele currents explicitly. An attractive feature of our formalism is that 
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it never becomes necessary to determine gauge transformation terms. Our double-copy prescription can also 
be applied to other cases, and to make this point we derive the double-copy perturbiners for α′-deformed 
gravity and the bi-adjoint scalar model.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The perturbative expansion of Yang-Mills theory has remarkable aspects and properties which 
are extremely difficult to be seen and extracted from the Feynman rules. Parke and Taylor [1]
made a conjecture about the tree-level scattering amplitudes that are maximally helicity violating 
(MHV) to be expressed in terms of simple holomorphic functions. Their observation was based 
on a computation for the first few cases but later was proved by Berends and Giele [2] for the 
general case. Recent years have seen a tremendous development in the area of the on-shell matrix 
elements calculation in quantum field theory, especially for gauge theory and gravity, such as 
unitary-based methods [3,4], twistors [5], Britto-Cachazo-Feng-Witten (BCFW) recursion [6,7]
and Grassmannians [8,9], see [10,11] for recent reviews.

In an independent development, the perturbiner expansion method was introduced by Rosly 
and Selivanov [12–15] as an efficient method to obtain the tree-level scattering amplitudes for a 
generic massless quantum field theory and, in the Yang-Mills case, can as well be used as a tool 
to compute multi-particle trees with one particle off-shell, i.e. the so-called Berends-Giele cur-
rents [2]. In fact, it turns out that these currents can be efficiently packed if a particular gauge is 
2
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chosen, namely the Bern-Carrasco-Johansson (BCJ) gauge [16], which displays the very helpful 
feature known as “colour-kinematics duality”, where colour-ordered amplitudes obey the same 
relations as their associated colour factors. In the Berends-Giele currents, colour-kinematics du-
ality was made explicit by identifying multi-particle polarisations which satisfy the so-called 
generalized Jacobi identities (GJI) [17].

In order to extend such constructions to gravity, a possible general strategy which has been 
widely used is to rely upon perturbative gauge-gravity duality, which is a consequence of open-
closed duality of string theory and at the perturbative string level gives rise to the so-called 
Kawai-Lewellen-Tye (KLT) relations between open string amplitudes and closed string ampli-
tudes [18]. In the particle limit of string theory (α′ → 0), it leads to relations between tree-level 
graviton amplitudes and tree-level gluon amplitudes in Yang-Mills theories, which are often 
summarized as “gravity = (gauge theory)2”. Such duality holds even though the structures of 
the non-abelian Yang-Mills and the Einstein-Hilbert lagrangians are rather different: the for-
mer contains only up to four-point interactions while the latter contains infinitely many vertices. 
Therefore the validity of the above duality in the field theory limit has been a major puzzle for 
many years. Finally, however powerful, these rules are limited to relations between scattering 
amplitudes, i.e. they are on-shell expressions.

The original derivation of the KLT relations was done in string theory [18]. Later on they were 
applied to n-point amplitudes in field theories in [19,20], and more recently they were revisited in 
a more algebro-topological framework in [21]. The connection between gravity and gauge theory 
starts already at three points. The three-point amplitudes vanish for real on-shell momenta, but 
this can be avoided by going to complex momenta which leads to the following compact result

M3(1,2,3) = A3(1,2,3) ˜A3(1,2,3) (1.1)

where M3 and A3( ˜A3) are the three-point gravity and gauge theory amplitudes accordingly [22]. 
For the four- and five-point amplitudes the relations look slightly different but still very simple

M4(1,2,3,4) = −s12A4(1,2,3,4) ˜A4(1,2,4,3)

M5(1,2,3,4,5) = s12s34A5(1,2,3,4,5) ˜A5(2,1,4,3,5)

+ s13s24A5(1,3,2,4,5) ˜A5(3,1,4,2,5) (1.2)

where sij = (ki + kj )
2 = 2ki · kj .

Bern, Carrasco and Johansson [16] discovered a direct way of constructing gravity ampli-
tudes from gauge theory amplitudes after organizing the latter in a specific manner, so that the 
amplitude numerator respects a certain colour-kinematics duality, which involves colour factors 
and kinematic numerators; then by a suitable replacement which is called the “double-copy con-
struction”, they obtained tree-level gravity amplitudes. Specifically, at tree-level, colour dressed 
scattering amplitudes in Yang-Mills theories can be written in the following form

An ∼
∑

i

cini

Di

(1.3)

where the ci are the colour factors or numerators consisting of contractions of the gauge Lie alge-
bra structure constants, the ni are the kinematic numerators which are sums of Lorentz-invariant 
contractions of external momenta and polarisations, and the Di are the propagators which can be 
written in term of Mandelstam variables. One particularity is that the sum is only over cubic or 
trivalent graphs with the quartic vertices absorbed by the cubic ones. Colour-kinematics duality 
3
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means that the relations satisfied by the colour factors due to Jacobi identities are mirrored by 
their respective kinematic numerators, i.e.

ci + cj + ck = 0 → ni + nj + nk = 0. (1.4)

The great advantage of having the amplitude represented like (1.3) is that the calculation of the 
associated gravity amplitude is automatic, as soon as the numerators satisfy colour-kinematics. 
The gravity amplitudes are obtained in terms of the gauge theory information simply by replacing 
the colour factors by another copy of the kinematic numerators and summing over the same cubic 
diagrams. The n-point gravity amplitude is given by

Mn ∼
∑

i

ni ñi

Di

. (1.5)

Interestingly, the double-copy construction has also been used in more phenomenological studies, 
such as in gravitational wave physics (see for example Refs. [23–25]) which since the direct 
detection of gravitational waves in the LIGO and VIRGO experiments [26,27] has become a 
very active field of research. Very recently, a classical double-copy relation was developed in the 
context of a worldline QFT description of the classical gravitational scattering of massive bodies 
[28].

In general, in the literature there are several proofs for the BCJ amplitude relations from differ-
ent approaches such as the string-theory monodromy relations [29–31] and the BCFW recursion 
relations [32]. In the field theory limit, in contrast to the KLT relations, the double-copy construc-
tion has been conjectured to hold for integrands of loop-level amplitudes [33] which has been 
tested in various publications [34–40]. There is a lot of evidence in supporting the conjecture that 
colour-kinematic dual representations exist for a variety of gauge theory amplitudes. In particu-
lar, colour-kinematics duality is believed to hold at all multiplicities for tree-level amplitudes for 
all the theories admitting a CHY representation. This fact has been shown explicitly in Ref. [33], 
where examples for tree-level amplitudes with up to eight external legs are presented, while gen-
eral approaches for the construction of amplitude numerators in the BCJ gauge for Yang-Mills 
theory have been described in Refs. [41–43]. At loop-level, integrands at several loop orders in 
maximally Supersymmetric-Yang-Mills theory have been computed in Refs. [16,34,35,40]. Less 
supersymmetric theories are also expected to respect such duality, see [33] for a two-loop QCD 
example. In Ref. [44] the duality between colour and kinematics has been generalized to three-
algebras in three-dimensional supersymmetric Chern-Simons theories. Double-copy also found 
applicability in anyonic models [45].

At loop level, starting from string amplitudes, Bern and Kosower unveiled a very power-
ful master formula for the one-loop gluon scattering amplitudes [46–48], later re-derived by 
Strassler directly from the particle approach, i.e. from the worldline formalism [49,50], which 
does not require on-shell conditions nor masslessness. Bern, Dunbar and Shimada then extended 
the Bern-Kosower string-based rules to gravity [51,52]. Their approach made essential use of 
the aforementioned open-closed string duality, treating graviton amplitudes as a double-copy of 
gluon amplitudes. Such approach is reviewed below, in Section 2.

A common difficulty in both scenarios, i.e. gluon and gravity amplitudes, is the explicit 
realization of Ward identities, which in the off-shell case relate n-particle amplitudes to (n − 1)-
particle amplitudes. In the on-shell case they are encoded in the transversality condition which 
involves both one-particle irreducible (1PI) and reducible (1PR) diagrams, which arise when 
trees are sewn to the loop. Hence, it is of fundamental importance to have a method which allows 
4
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one to efficiently compute these trees. As already mentioned in the gluon case such multi-particle 
trees, with one particle off-shell, are dubbed Berends-Giele currents [2].

Recently, some of the present authors investigated the construction of Berends-Giele currents 
for gluons, inspired by the Bern-Kosower replacement rules [53]. The most relevant aspect of 
the Bern-Kosower rules to such purpose is a procedure known as “pinching procedure” that al-
lows one to construct the 1PR parts of the one-loop amplitudes from the 1PI ones at the level of 
the Feynman-Schwinger integrands. First one employs suitable integrations by parts which ef-
fectively remove quartic vertices and yield integrands which are expressed in terms of “Lorentz 
cycles”, i.e. traces of products of the linearized parts of gluon field strengths in momentum space. 
Then, one suitably removes linearly appearing Green’s functions, which correspond to the exter-
nal lines to be pinched. In [53] this pinching procedure was implemented with the introduction 
of a differential operator, so-called “pinch operator”, and also the parts of the integrand identified 
that have to be pinched in order to extract the multi-particle polarisations that will conform the 
Berends-Giele currents. Such polarisations come naturally in the BCJ gauge. The results of the 
above paper are summarized in Section 3.

In the present manuscript, in Section 4, we extend such a construction to gravity amplitudes, 
by considering the Bern-Dunbar-Shimada formalism and the double-copy procedure at the level 
of the Berends-Giele currents. In other words, we find the multi-particle polarisation expan-
sion for gravity by means of the “double pinch operator” which is a double-copy of the one 
used in the Yang-Mills case. These multi-particle polarisation currents are thus used to construct 
the perturbiner expansion. Unlike other recent approaches [54,55], in our method the off-shell 
double-copy polarisation currents emerge directly from the Bern-Dunbar-Shimada formalism, 
rather than from KLT relations.

Our new prescription for the double-copy Berends-Giele currents can be applied to other 
models. In Section 5 we present the perturbiners for the cases of the α′-deformed gravity and the 
bi-adjoint scalar model. Finally, in Section 6, we conclude.

Notation. Latin indices a, b, etc. from the beginning of the alphabet run over the N2 − 1 gener-
ators of su(N). We let these generators be denoted by Ta , with structure constants f c

ab satisfying

[Ta,Tb] = i
√

2f c
ab Tc.

For reasons of formal convenience, we set f̃ c
ab = i

√
2f c

ab .
By a word we mean a finite string P = i1i2 · · · in of positive integers i1, i2, . . . , in ≥ 1. The 

word consisting of no symbols is called the empty word, written ∅. Given a word P = i1i2 · · · in, 
we denote by |P | its length n. Also, the multi-particle momentum for such word and its associ-
ated Mandelstam invariant are given by kP = ki1 + ki2 + · · · + kin and sP = k2

P .
We shall implicitly work with the free Lie algebra generated by all words with letters in 

1, 2, . . . , n. There one can consider the left-to-right bracketing �, which is defined recursively by

�(∅) = 0,

�(i) = i,

�(i1i2 · · · in) = �(i1i2 · · · in−1)in − in�(i1i2 · · · in−1).

Using this notation, for objects labelled by words, the generalised Jacobi identities of order k can 
be characterised as

UP�(Q) + UQ�(P ) = 0
5
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for every pair of non-empty words P and Q such that |P | + |Q| = k. For example,

U12 + U21 = 0,

U123 + U312 + U231 = 0,

U1234 + U2143 + U3412 + U4321 = 0.

(1.6)

If UP satisfies the generalised Jacobi identities we will use the notation U�(P ) instead of UP . In 
particular, this implies that U[P,Q] = UP�(Q).

2. The string-based rules in field theory

Bern and Kosower [47,48] were the first to systematically investigate the usefulness of the 
fact that many amplitudes in field theory can be represented as the infinite string tension limit 
of appropriately chosen string amplitudes. In this way they obtained rules for the construction 
of Feynman-Schwinger type parameter integral representations of the one-loop on-shell n-gluon 
amplitudes with a scalar, spinor or gluon loop. This work was then generalized to the one-loop 
n-graviton amplitudes by Bern, Dunbar and Shimada [51] with some details filled in later by 
Dunbar and Norridge [52].

2.1. The one-loop n-gluon amplitudes

The central object in the Bern-Kosower formalism is the colour-ordered one-loop n-gluon 
correlator with a massless scalar loop. This amplitude in general has a one-particle irreducible 
and a one-particle reducible contribution. The irreducible one is encoded in the following master 
formula,

�(k1, ε1; . . . ; kn, εn) = (−ig)ntr (T a1 · · ·T an)

∞∫
0

dT (4πT )−
D
2

T∫
0

dτ1

τ1∫
0

dτ2 · · ·
τn−2∫
0

dτn−1

× exp

{ n∑
i,j=1

(1

2
Gijki · kj − iĠij εi · kj + 1

2
G̈ij εi · εj

)}∣∣∣
ε1...εn

(2.1)

Here

Gij ≡ G(τi, τj ) = |τi − τj | − (τi − τj )
2

T
(2.2)

so that

Ġij ≡ ∂

∂τi

Gij = sign(τi − τj ) − 2
(τi − τj )

T
(2.3)

(the explicit form of G̈ij ≡ ∂2

∂τ 2
i

Gij is not needed). The notation 
∣∣
ε1...εn

means that the exponential 

has to be expanded keeping only the terms linear in each of the polarisation vectors ε1, . . . , εn. 
The resulting integrand is of the form

exp

{
·
}∣∣∣

ε1ε2...εn

≡ (−i)nPn(Ġij , G̈ij )e
1
2

∑n
i,j=1 Gij ki ·kj (2.4)

with certain polynomials Pn.
6
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Fig. 1. Pinching of a vertex according to the Bern-Kosower rules.

The reducible contributions can be included by the following “pinching procedure”: (i) Re-
move the second derivatives G̈ij contained in Pn through suitable partial integrations. This step 
will lead to the replacement Pn(Ġij , G̈ij ) → Qn(Ġij ). (ii) Draw all possible φ3 one-loop dia-
grams Di with n legs, labelled 1, . . . , n and following the ordering of the colour trace. (iii) The 
pinching rule amounts to the replacement

Ġij −→ 2

sij
= 2

(ki + kj )2 (2.5)

removing the vertex and transferring the label i to the ingoing leg (see Fig. 1).
The τj - integration is omitted and the index j replaced by i in the remaining Gkl and Ġkl . 
(iv) The previous replacement can only occur on a vertex with labels i < j , iff Qn contains Ġij

linearly. Moreover, a diagram will contribute iff each vertex except the ones attached directly 
to the loop corresponds to a possible pinch. The pinching procedure starts with the outermost 
vertices and recursively removes the trees attached to the loop.

As a further benefit of the integration-by-parts procedure, at this stage the contributions of the 
spinor and gluon loop to the N -gluon amplitudes can be constructed at the integrand level using 
a set of “loop replacement rules” [47,48].

The pinching procedure was streamlined in [53] by the introduction of a pinch operator, 
that we will present here again in the next section, and the implementation of the multi-particle 
techniques that helped to have a better understanding of the structure of the trees attached to the 
loop.

2.2. The one-loop n-graviton amplitudes

The gluon master formula (2.1) was generalized in [51,52] to a master formula for the irre-
ducible one-loop n-graviton amplitudes with a massless scalar loop:

�[k1, h1; · · · ; kn,hn] = −(−κ

4
)n

∞∫
0

dT

T
(4πT )−

D
2

T∫
0

dτ1 · · ·
T∫

0

dτn

× exp

{
n∑

i,j=1

[
1

2
Gijki · kj − i(Ġij εi + ˙̄Gij ε̄i) · kj + 1

2
G̈ij εi · εj

+1

2
¨̄Gij ε̄i · ε̄j + 1

2
Hij (εi · ε̄j + εj · ε̄i )

]}∣∣∣
ε1...εnε̄1...ε̄n

(2.6)

Here we have used that on-shell the graviton polarisations can be chosen so as to factorize, 
h

μν
i = ε

μ
i ε̄ν

i . In the absence of the terms with Hij this would, after the expansion of the exponent, 
lead to a prefactor polynomial that simply factorizes into two copies of the one of the gluonic 
case in (2.4),
7
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exp

{
·
}∣∣∣

ε1...εnε̄1...ε̄n

= Pn(
˙̄Gij ,

¨̄Gij )Pn(Ġij , G̈ij )e
1
2

∑n
i,j=1 Gij ki ·kj (2.7)

At the string level, this comes from the factorisation of the closed string modes into left-movers 
and right-movers. The additional terms involving Hij stem from the fact that the left- and right-
movers are coupled through the zero mode of the string. In order to study the structure of the now 
gravitational trees attached to the loop, (2.7) is all we need, but for the calculation of the whole 
one-loop irreducible part we cannot neglect the contributions that come from these terms.

Differently from the gluon case, it is now generally not possible to remove all of the Ġij , ˙̄Gij

using partial integrations in the variables τi alone. Instead, one has to return to the string level and 
appeal to the fact that, before taking the infinite string tension limit, the left- and right movers 
depended on independent variables τi and τ̄i . This allows one to write Ġij = ∂

∂τi
Gij , ˙̄Gij =

∂
∂τ̄i

Ḡij and to treat Ġij , G̈ij as independent of ˙̄Gij , ¨̄Gij in the partial integration procedure. 
Additionally, the following rules must be used for derivatives hitting the universal exponent,

∂

∂τ̄k

Ġij = 1

2
(δkiHij − δkjHij ) (2.8)

∂

∂τk

˙̄Gij = 1

2
(δkiHij − δkjHij ) (2.9)

∂

∂τ̄k

G̈ij = 0 (2.10)

∂

∂τk

¨̄Gij = 0 (2.11)

The Hij are to be treated as constants in the integration-by-parts.

After the removal of the G̈ij , ¨̄Gij , the inclusion of the reducible contributions can be achieved 
by a pinching procedure that parallels the one for the gluon case above, except that the condition 
for the pinching of a vertex with labels i < j now is that the integrand should contain both Ġij

and ˙̄Gij linearly, and that the replacement (2.5) has to be modified to

Ġij
˙̄Gij → 4

sij
(2.12)

After the recursive removal of all trees attached to the loop one has at hand a parameter integral 
representation for the full on-shell n-graviton matrix element with a scalar loop. Representations 
for other spins in the loop (Weyl fermion, vector, gravitino, graviton) can again be obtained 
from this by certain loop replacement rules that are essentially independent applications of the 
above-mentioned QCD rules to the left- and right-mover parts, with an additional substitution 
rule Hij −→ 2/T for the cross terms.

2.3. Symmetric partial integration

Returning to the gluon case, the integrand resulting from the integration-by-parts procedure is 
unique for the two- and three-gluon cases, but starting from n = 4 ambiguities appear [50]. Dif-
ferent algorithms lead to different equivalent integrands that are all free of G̈ij s and suitable for 
an application of the pinching and loop replacement rules. Considering that the master formula 
(2.1) possesses (apart from the colour ordering) manifest permutation (or Bose) symmetry be-
tween the N gluons, in [56] the following symmetric partial integration algorithm was proposed 
that preserves this symmetry at each step.
8
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1. In every step, partially integrate away all G̈ij s appearing in the term under inspection simul-
taneously. This is possible since different G̈ij s never share variables.

2. In the first step, for every G̈ij partially integrate both over τi and τj , and take the mean of 
the results.

3. At every following step, any G̈ij appearing must have been created in the previous step. 
Therefore either both i and j were used in the previous step, or just one of them. If both, the 
rule is to again use both variables in the actual step for partial integration, and take the mean 
of the results. If only one of them was used in the previous step, then the other one should 
be used in the actual step.

This algorithm transforms the polynomial Pn(Ġij , G̈ij ) into a polynomial Qn(Ġij ) that, un-
like Pn, is homogeneous not only in the polarisations, but also in the momenta. Together with the 
manifest permutation invariance, this makes it possible to write Qn extremely compactly using a 
decomposition into bicycles and tails. A bicycle of length k is defined by

Ġ(i1, i2, · · · , ik) ≡ Ġi1i2Ġi2i3 · · · Ġiki1Zk(i1, i2, . . . , ik) (2.13)

where

Zk(i1, i2, . . . , ik) ≡
(1

2

)δk2
tr(fi1 · · ·fik ) (2.14)

and f μν
i = k

μ
i εν

i − ε
μ
i kν

i is the gluon field strength tensor. The tails are the left-overs after fac-
torizing out all possible bicycles. The k-tail T (i1, i2, · · · , ik) involves k polarisation vectors that 
have not yet been absorbed into field strength tensors (it is possible to do so using further partial 
integrations with non-local coefficients [57], but here we will not follow this route).

For example, the cycle decompositions of Q3 and Q4 read

Q3 = Q3
3 + Q2

3

Q3
3 = Ġ(1,2,3)

Q2
3 = Ġ(1,2)T (3) + Ġ(2,3)T (1) + Ġ(3,1)T (2)

(2.15)

Q4 = Q4
4 + Q3

4 + Q2
4 + Q22

4

Q4
4 = Ġ(1,2,3,4) + Ġ(1,2,4,3) + Ġ(1,3,2,4)

Q3
4 = Ġ(1,2,3)T (4) + Ġ(2,3,4)T (1) + Ġ(3,4,1)T (2) + Ġ(4,1,2)T (3)

Q2
4 = Ġ(1,2)T (3,4) + Ġ(1,3)T (2,4) + Ġ(1,4)T (2,3)

+ Ġ(2,3)T (1,4) + Ġ(2,4)T (1,3) + Ġ(3,4)T (1,2)

Q22
4 = Ġ(1,2)Ġ(3,4) + Ġ(1,3)Ġ(2,4) + Ġ(1,4)Ġ(2,3)

(2.16)

the superscripts on the left-hand side indicating the cycle-content of a term. Here the one- and 
two-tails appear,

T (a) ≡
∑

r

Ġarεa · kr (2.17)

T (a, b) ≡
∑
r,s

(r,s)
=(b,a)

Ġarεa · krĠsεb · ks + 1

2
Ġabεa · εb

[∑
r 
=b

Ġarka · kr −
∑
s 
=a

Ġskb · ks

]

(2.18)
9
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Note that the cycle decomposition of QN involves the tails of length up to N − 2. Up to length 4 
the tails are given in [58]; the five-tail was computed in [53].

For the graviton amplitudes, the above partial integration rules imply that the symmetric par-
tial integration algorithm can be applied separately in the variables τi to remove the G̈ij and in 

the τ̄i to remove the ¨̄Gij , with additional terms involving Hij generated by the first two rules in 
(2.11). The integrand can thus be ordered according to the powers of Hij , where the terms in the 

prefactor polynomial not containing any Hij can be factorised into Qn(
˙̄G)Qn(Ġ) and terms with 

m factors of H containing (n − m) factors of Ġ and ˙̄G each.

In this factorised term Qn(
˙̄G)Qn(Ġ) we can apply all that we learned in the gluonic case in 

[53]. One of the lessons there was that we have to pinch only the tails in order to extract the 
multi-particle polarisations, that happen to obey colour-kinematics duality. Now we will have 
“squared” structures in the integrands like

T̄ (1,2, . . . , n − 2)T (1,2, . . . , n − 2) (2.19)

where we use the shorthand notation T̄ (1, 2, . . . , n − 2) to imply that it only depends on ˙̄G’s.
The idea now is to apply the procedure we implemented in [53] to calculate the Berends-Giele 

currents from the pinching of the squared tails to the gravitational case with this new structure 
in (2.19). In the next section we will review this procedure for gluons before going back to the 
gravity version.

3. Colour-kinematics duality

In the present section we will investigate how the colour-kinematics duality can be made 
manifest at the level of Yang-Mills Berends-Giele currents. We begin with a short summary of 
the results obtained in [53], where a systematic procedure to construct such currents in the BCJ 
gauge from the Bern-Kosower formalism for one-loop gluon amplitudes is proposed.

3.1. Colour-stripped Berends-Giele currents from the Bern-Kosower formalism

The main ingredients for the approach advocated in [53] are the symmetric partial integration 
algorithm and the Bern-Kosower rules reviewed in the preceding section. These two combine 
to produce the permutation invariant integrand Qn(Ġ) and, for two adjacent legs i and j with 
i < j , the “pinch operator” acting on Qn(Ġ) as

DijQn(Ġ) = ∂

∂Ġij

Qn(Ġ)

∣∣∣∣Ġij =0
Ġjk→Ġik

. (3.1)

The latter is what diagrammatically corresponds to pinching the two adjacent legs i and j . Thus 
the complete effect of the pinching procedure in the Bern-Kosower formalism may be imple-
mented by the iterated action of pinch operators.

With the help of the foregoing we can build the colour-stripped Yang-Mills Berends-Giele cur-
rents directly in the BCJ gauge for both, the field strength and the polarisation. For the purposes 
of the present paper, however, we can restrict our attention to the latter. In doing so, we note – as 
pointed out in at the end of Section IV of [53] – that the part of the polynomial Qn(Ġ) responsible 
for the extraction of the multi-particle fields associated with the colour-stripped Berends-Giele 
polarisation current, after applying the pinch operator consecutively n − 2 times for each pair 
10
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Fig. 2. The maximal pinch diagram yielding Berends-Giele current.

of labels following the cyclic order, is the (n − 2)-tail T (1, 2, . . . , n − 2). In the notation of 
Refs. [46–48,51] this “maximal pinch” contribution corresponds to the diagram shown in Fig. 2. 
More explicitly, the exact meaning of this expression is

D1(n−1)D1(n−2) · · ·D13D12T (1,2, . . . , n − 2) = ε12···(n−2) · kn−1. (3.2)

The multi-particle polarisation field εμ

12···(n−2)
obtained this way satisfies the GJI of order n − 2

in 1, 2, . . . , n − 2. This property for these kinds of polynomials has been verified up to degree 
n = 9. For this reason, it is more accurate to write εμ

�(12···(n−2)) instead of εμ

12···(n−2), or, more 
generally, εμ

�(P ) instead of εμ
P for any word P .

Armed with these results, it is possible to find the explicit expression for the colour-stripped 
Berends-Giele polarisation current in terms of the multi-particle polarisation fields εμ

P . To that 
end, it is very convenient to introduce a combinatorial artefact that helps us to keep track of the 
correspondence between nested Lie brackets and planar binary trees. This is termed the “binary 
tree map” in [43], but we will refer to it as the colour-stripped Berends-Giele map. It is defined 
as the map bcs acting on all words and determined recursively by

bcs(i) = i,

bcs(P ) = 1

sP

∑
P=QR

[bcs(Q), bcs(R)], (3.3)

where sP is the Mandelstam invariant, and where 
∑

P=QR denotes the sum over all possible 
deconcatenations of the word P into Q and R. Also as a matter of notation, for an arbitrary 
labelled object UP , such as the multi-particle polarisation fields εμ

P , we borrow the definition 
from [43] for the replacement of words by such object as

�U� ◦ P = UP . (3.4)

With this background in mind, the colour-stripped Berends-Giele polarisation current associated 
with the multi-particle polarisation fields εμ

P is simply

A
μ
P = �εμ� ◦ bcs(P ). (3.5)

We note, moreover, that the GJI satisfied by the multi-particle polarisation fields εμ
P translate 

directly into the shuffle symmetry Aμ
P

∃

Q = 0. As an example, the colour-stripped Berends-Giele 
polarisation currents up to multiplicity four would read

A
μ
1 = ε

μ
1 ,

A
μ
12 = ε

μ
[1,2]
s12

,

A
μ
123 = ε

μ
[[1,2],3]
s12s123

+ ε
μ
[1,[2,3]]
s23s123

,

A
μ
1234 = ε

μ
[[[1,2],3],4]

s12s123s1234
+ ε

μ
[[1,[2,3]],4]

s123s1234s23
+ ε

μ
[[1,2],[3,4]]

s12s1234s34
+ ε

μ
[1,[[2,3],4]]

s1234s23s234
+ ε

μ
[1,[2,[3,4]]]

s1234s234s34
.

(3.6)
11
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In these expressions, the multi-particle polarisation fields εμ
[1,2], ε

μ
[[1,2],3] and εμ

[[[1,2],3],4] can be 
written in a compact way as

ε
μ
[1,2] = 1

2

{
(k1 · ε2)ε

μ
1 − (k2 · ε1)ε

μ
2 + ε1νf

μν
2 − ε2νf

μν
1

}
,

ε
μ
[[1,2],3] = 1

2

{
(k3 · ε[1,2])εμ

3 − (k12 · ε3)ε
μ
[1,2] + ε3νf

μν
[1,2] − ε[1,2]νf μν

3

} − k
μ
123h123,

ε
μ
[[[1,2],3],4] = 1

2

{
(k4 · ε[[1,2],3])εμ

4 − (k123 · ε4)ε
μ
[[1,2],3] + ε4νf

μν
[[1,2],3] − ε[[1,2],3]νf μν

4

}
+ (k12 · k3)ε

μ
3 h124 + (k1 · k2)(ε

μ
2 h134 − ε

μ
1 h234) − k

μ
1234h1234,

(3.7)

where we have set

f
μν
i = k

μ
i εν

i − kν
i ε

μ
i ,

f
μν
[1,2] = k

μ
12ε

ν[1,2] − kν
12ε

μ
[1,2] − (k1 · k2)(ε

μ
1 εν

2 − εν
1ε

μ
2 ),

f
μν
[[1,2],3] = k

μ
123ε

ν[[1,2],3] − kν
123ε

μ
[[1,2],3] − (k12 · k3)(ε

μ
[1,2]ε

ν
3 − εν[1,2]ε

μ
3 )

− (k1 · k2)(ε
μ
1 εν[2,3] + ε

μ
[1,3]ε

ν
2) + (k1 · k2)(ε

ν
1ε

μ
[2,3] − εν[1,3]ε

μ
2 ),

h123 = 1
4 (ε1 · ε2)ε3 · (k2 − k1),

h1234 = 1
4

[
ε1 · ε2 ε3 · k2ε4 · (k1 − k23) + 1

2 (ε1 · ε2 ε3 · ε4 k2 · k3) − (123 → 312)
]

− (1 ↔ 2).

(3.8)

The bracketed notations in the words tell us about the GJI satisfied by the given object. Let us 
remind the GJI up to rank four, from (1.6), for the polarisations

ε
μ
[1,2] + ε

μ
[2,1] = 0,

ε
μ
[[1,2],3] + ε

μ
[[1,2],3] = 0, ε

μ
[[1,2],3] + ε

μ
[[3,1],2] + ε

μ
[[2,3],1] = 0,

ε
μ
[[1,2],3],4] + ε

μ
[[1,2],3],4] = 0, ε

μ
[[1,2],3],4] + ε

μ
[[3,1],2],4] + ε

μ
[[2,3],1],4] = 0,

ε
μ
[[1,2],3],4] − ε

μ
[[1,2],4],3] + ε

μ
[[3,4],1],2] − ε

μ
[[3,4],2],1] = 0.

(3.9)

In addition, using the symmetry properties of the bracket, εμ
[[1,2],3] = −ε

μ
[3,[1,2]], ε

μ
[[1,[2,3]],4] =

−ε
μ
[[[2,3],1],4], ε

μ
[1,[[2,3],4]] = −ε

μ
[[[2,3],4],1], ε

μ
[1,[2,[3,4]]] = ε

μ
[[[3,4],2],1] and ε

μ
[[1,2],[3,4]] =

ε
μ
[[[1,2],3],4] −ε

μ
[[[1,2],4],3], so that these multi-particle polarisation fields are obtained from the for-

mulas in (3.7) by a simple relabelling. It is also worth pointing out that f μν
i , f μν

[1,2] and f μν
[[1,2],3]

in (3.8) respectively correspond to the single-, two- and three-particle field strength produced 
following the procedure of [53].

Now that we have an explicit form of the colour-stripped Berends-Giele polarisation currents, 
the next task is to write down the colour-stripped perturbiner expansion. This is a simple mat-
ter: we just set it to be generating series

Aμ(x) =
∑
n≥1

∑
P∈Wn

A
μ
P eikP ·x T aP , (3.10)

where Wn denotes the set of words of length n. It is important to note that the shuffle symmetry 
satisfied by the constituent currents Aμ

P guarantees that the generating series (3.10) is a Lie 
algebra-valued field. This expansion does not come directly from the Yang-Mills action, since in 
our case we have only trivalent vertices with no use of auxiliary fields.

To complete our discussion we must also mention how the colour-stripped Berends-Giele 
polarisation currents Aμ are related to the scattering amplitudes in Yang-Mills theory. At tree 
P

12
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level, the colour-ordered partial amplitude of n gluons is determined through the Berends-Giele 
formula

A tree(1,2, . . . , n) = s12···(n−1)A
μ

12···(n−1)Anμ. (3.11)

The factor s12···(n−1) is inserted to cancel the off-shell propagator inside A12···(n−1). Note that we 
are assuming momentum conservation and have on-shell external legs. There are other off-shell 
terms that cancel out, the ones of the form kμ

P hP at the end of each polarisation. Finally it may 
be remarked that, by virtue of the shuffle symmetry, the partial amplitudes in the form of (3.11)
satisfy the Kleiss-Kuijf relations [59].

3.2. Colour-dressed Berends-Giele currents

Now we turn our attention to obtaining the colour-dressed Berends-Giele polarisation currents 
from the multi-particle polarisation fields εμ

P . These types of currents were obtained first for 
Yang-Mills in the Lorenz gauge in [54] using perturbiner methods. Back to our case, we need to 
make some small, but important, changes in the notation introduced thus far. In the first place, 
we need to modify the colour-stripped Berends-Giele map (3.3) by a colour-dressed version of 
it, which we write as bcd. Here we borrow the prescription already encountered in [60]. Namely, 
we define bcd as the map acting on all ordered words and determined recursively by

bcd(i) = i,

bcd(P ) = 1

2sP

∑
P=Q∪R

[bcd(Q), bcd(R)], (3.12)

where 
∑

P=Q∪R denotes the sum over all possible ways of distributing the letters of the ordered 
word P into non-empty ordered words Q and R. We remark that the factor of 2 in the denom-
inator can be dropped if we impose the condition that |Q| ≥ |R|. In the second place, for each 
ordered word P = i1i2 · · · in of length n, we employ the notation ca

P to indicate the product of 
colour factors determined by

ca
P = f̃

b
ai1 ai2

f̃
c

bai3
· · · f̃ e

dain−1
f̃

a
eain

, (3.13)

with the understanding that ca
i = δa

ai
. We further put

ca
[P,Q] = f̃ a

bc cb
P cc

Q (3.14)

for any pair of ordered words P and Q. In the third place, given two arbitrary labelled objects 
UP and VP , we define the replacement of ordered words by the product of such objects as

�U ⊗ V � ◦ P = UP VP . (3.15)

By making use of the foregoing, one can show that we can write the colour-dressed Berends-
Giele polarisation currents in the form

A
aμ
P = �ca ⊗ εμ� ◦ bcd(P ). (3.16)

At this point, however, we should perhaps emphasise that this way of representing the colour-
dressed Berends-Giele polarisation currents is always possible regardless of whether or not the 
multi-particle polarisation fields εμ

P satisfy the GJI. When they do, as it is the case in the present 
discussion, we see that such identities mirror the GJI satisfied by the colour factor ca . Hence, 
P

13



N. Ahmadiniaz, F.M. Balli, O. Corradini et al. Nuclear Physics B 975 (2022) 115690
we are led to the conclusion that the “factorisation” of the colour-dressed Berends-Giele po-
larisation currents given in (3.16) is a realisation of the colour-kinematics duality. This will be 
pointed out, in a somewhat simplified context, and from a more algebraic perspective, in [60]. In 
the next section, we will see that in terms of this factorisation, the double-copy prescription is 
straightforward to phrase.

We shall now proceed to write down explicitly the colour-dressed Berends-Giele polarisation 
currents up to multiplicity four, in order to familiarise ourselves with formula (3.16). We first 
consider the single-particle case in which P = 1. Then we at once obtain

A
aμ
1 = δa

a1
ε
μ
1 . (3.17)

Next we consider the two-particle case in which P = 12. In this case, the only possible way of 
distributing the letters is (Q, R) = (1, 2), and thus we find that colour-dressed Berends-Giele 
polarisation current Aaμ

12 acquires the form

A
aμ
12 = ca

[1,2]ε
μ
[1,2]

s12
, (3.18)

with colour factor ca
[1,2] = f̃

a
a1a2 and two-particle polarisation field εμ

[1,2] given by (3.7). Let 
us next take up the three-particle case in which P = 123. In this case, the possible ways of 
distributing the letters that contribute to the sum are (Q, R) = (12, 3), (13, 2), (23, 1). Therefore, 
after a straightforward calculation making use of the recursion (3.12) we obtain for the colour-
dressed Berends-Giele polarisation current Aaμ

123 the formula

A
aμ
123 = ca

[[1,2],3]ε
μ
[[1,2],3]

s12s123
+ ca

[[1,3],2]ε
μ
[[1,3],2]

s13s123
+ ca

[[2,3],1]ε
μ
[[2,3],1]

s23s123
, (3.19)

with colour factors ca
[[1,2],3] = f̃

b
a1a2 f̃

a
ba3

, ca
[[1,3],2] = f̃

b
a1a3 f̃

a
ba2

, ca
[[2,3],1] = f̃

b
a2a3 f̃

a
ba1

and 
three-particle polarisation fields εμ

[[1,2],3], ε
μ
[[1,3],2], ε

μ
[[2,3],1] given by (3.7) after relabelling. Fi-

nally, we consider the four-particle case in which P = 1234. In this case, the possible ways of dis-
tributing the letters that contribute to the sum are (Q, R) = (123, 4), (124, 3), (134, 2), (234, 1),

(12, 34), (13, 24), (23, 14). By analogy with the calculation leading to (3.19), we find that the 
colour-dressed Berends-Giele polarisation current Aaμ

1234 may be represented in the form

A
aμ
1234 = ca

[[[1,2],3],4]ε
μ
[[[1,2],3],4]

s12s123s1234
+ ca

[[[1,2],4],3]ε
μ
[[[1,2],4],3]

s12s124s1234
+ ca

[[[1,3],4],2]ε
μ
[[[1,3],4],2]

s13s134s1234

+ ca
[[[2,3],4],1]ε

μ
[[[2,3],4],1]

s23s234s1234
+ ca

[[[1,3],2],4]ε
μ
[[[1,3],2],4]

s13s123s1234
+ ca

[[[1,4],2],3]ε
μ
[[[1,4],2],3]

s14s124s1234

+ ca
[[[1,4],3],2]ε

μ
[[[1,4],3],2]

s14s134s1234
+ ca

[[[2,3],1],4]ε
μ
[[[2,3],1],4]

s23s123s1234
+ ca

[[[2,4],1],3]ε
μ
[[[2,4],1],3]

s24s124s1234

+ ca
[[[2,4],3],1]ε

μ
[[[2,4],3],1]

s24s234s1234
+ ca

[[[3,4],1],2]ε
μ
[[[3,4],1],2]

s34s134s1234
+ ca

[[[3,4],2],1]ε
μ
[[[3,4],2],1]

s34s234s1234

+ ca
[[1,2],[3,4]]ε

μ
[[1,2],[3,4]]

s12s34s1234
+ ca

[[1,3],[2,4]]ε
μ
[[1,3],[2,4]]

s13s24s1234
+ ca

[[1,4],[2,3]]ε
μ
[[1,4],[2,3]]

s14s23s1234
.

(3.20)

Here the colour factors are easily determined from (3.13) and (3.14) as
14
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ca
[[[1,2],3],4] = f̃ b

a1a2
f̃

c
ba3

f̃ a
ca4

, ca
[[[1,2],4],3] = f̃ b

a1a2
f̃

c
ba4

f̃ a
ca3

,

ca
[[[1,3],4],2] = f̃ b

a1a3
f̃

c
ba4

f̃ a
ca2

, ca
[[[2,3],4],1] = f̃ b

a2a3
f̃

c
ba4

f̃ a
ca1

,

ca
[[[1,3],2],4] = f̃ b

a1a3
f̃

c
ba2

f̃ a
ca4

, ca
[[[1,4],2],3] = f̃ b

a1a4
f̃

c
ba2

f̃ a
ca3

,

ca
[[[1,4],3],2] = f̃ b

a1a4
f̃

c
ba3

f̃ a
ca2

, ca
[[[2,3],1],4] = f̃ b

a2a3
f̃

c
ba1

f̃ a
ca4

,

ca
[[[2,4],1],3] = f̃ b

a2a4
f̃

c
ba1

f̃ a
ca3

, ca
[[[2,4],3],1] = f̃ b

a2a4
f̃

c
ba3

f̃ a
ca1

,

ca
[[[3,4],1],2] = f̃ b

a3a4
f̃

c
ba1

f̃ a
ca2

, ca
[[[3,4],2],1] = f̃ b

a3a4
f̃

c
ba2

f̃ a
ca1

,

ca
[[1,2],[3,4]] = f̃ b

a1a2
f̃ c

a3a4
f̃ a

bc , ca
[[1,3],[2,4]] = f̃ b

a1a3
f̃ c

a2a4
f̃ a

bc ,

ca
[[1,4],[2,3]] = f̃ b

a1a4
f̃ c

a2a3
f̃ a

bc . (3.21)

As for the four-particle polarisation fields, keeping in mind the identities ε
μ
[[1,2],[3,4]] =

ε
μ
[[[1,2],3],4] − ε

μ
[[[1,2],4],3], ε

μ
[[1,3],[2,4]] = ε

μ
[[[1,3],2],4] − ε

μ
[[[1,3],4],2] and εμ

[[1,4],[2,3]] = ε
μ
[[[1,4],2],3] −

ε
μ
[[[1,4],3],2], they are all determined by (3.7) with the necessary relabellings.

Having obtained the expression (3.16) for the colour-dressed Berends-Giele polarisation cur-
rents, we can of course then obtain the colour-dressed perturbiner expansion. This is simply given 
as the generating series

Aaμ(x) =
∑
n≥1

∑
P∈OW n

A
aμ
P eikP ·x, (3.22)

where OW n denotes the set of ordered words of length n. It should also be noted that the link 
between the colour-stripped and colour-dressed perturbiner expansions (3.10) and (3.22) is pro-
vided by Aμ(x) = A

μ
a (x)T a . Finally we remark that a colour-dressed perturbiner expansion 

analogous to (3.22) for the field strength can be obtained if we instead take the colour-dressed 
Berends-Giele field strength current associated with the multi-particle field strength.

Before leaving this section, let us comment on the role the colour-dressed Berends-Giele po-
larisation currents Aaμ

P play in the determination of the scattering amplitudes for Yang-Mills 
theory. Employing again the Berends-Giele formula we obtain the colour-dressed n-point ampli-
tude

A tree
n = s12···(n−1)A

aμ

12···(n−1)Anaμ (3.23)

where again we assume momentum conservation. It is also interesting to note that we may rewrite 
the amplitude (3.23) as

A tree
n =

∑
�

c�n�∏
e∈� se

, (3.24)

where the sum goes over all (2n − 5)!! trivalent trees � with propagators se associated to each 
internal edge e of �. Here c� denotes the colour structure attached to each diagram, while n�

is the remaining part of the numerator involving kinematic information such as contractions of 
momenta and polarisation vectors.

4. Double-copy relations for perturbiner expansions

In this section we will show that the double-copy prescription to construct gravity theories as 
the “square” of Yang-Mills theory finds a natural interpretation in terms of perturbiner expan-
sions. To accomplish this, we first briefly discuss a systematic procedure, exactly analogous to 
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the one found in [53], to obtain the multi-particle polarisation fields on the gravity side from the 
Bern-Dunbar-Shimada formalism for one-loop graviton amplitudes.

4.1. Multi-particle polarisation tensors from the Bern-Dunbar-Shimada formalism

We take as point of departure the symmetric partial integration algorithm and the Bern-
Dunbar-Shimada rules explained in Section 2. From these we identify the permutation invariant 
integrand Q̄n(

˙̄G)Qn(Ġ). In addition, just as in Section 3 we have associated for two adjacent 
legs i and j with i < j a pinch operator, we may likewise define a “double pinch operator” 
acting on Q̄n(

˙̄G)Qn(Ġ) as

D̄ijDij Q̄n(
˙̄G)Qn(Ġ) =

(
∂

∂ ˙̄Gij

Q̄n(
˙̄G)

∣∣∣∣ ˙̄Gij =0
˙̄Gjk→ ˙̄Gik

)(
∂

∂Ġij

Qn(Ġ)

∣∣∣∣Ġij =0
Ġjk→Ġik

)
. (4.1)

This double pinch operator is thus identical with the one for Yang-Mills applied independently 
to both the left- and right-mover parts of the integrand expression.

Our object is to find the multi-particle polarisation tensors by iterated action of double pinch 
operators. Here we may borrow from the analysis carried out in the Yang-Mills case, where 
we learned that the part of the polynomial Qn(Ġ) relevant to the multi-particle polarisations is 
the (n − 2)-tail. This makes it feasible in the present situation to also consider the (n − 2)-tail 
T̄ (1, 2, . . . , n − 2)T (1, 2, . . . , n − 2). Applying the double pinch operator consecutively n − 2
times for each pair labels to the latter, one finds

D̄1(n−1)D1(n−1)D̄1(n−2)D1(n−2) · · · D̄13D13D̄12D12T̄ (1,2, . . . , n − 2)T (1,2, . . . , n − 2)

= ε̄
μ

12···(n−2)ε
ν
12···(n−2)k(n−1)μk(n−1)ν . (4.2)

This relation ensures that the multi-particle polarisation tensor is given by ε̄μ

12···(n−2)ε
ν
12···(n−2). 

We may also remark that, by construction, each of the individual factors ε̄μ

12···(n−2)
and εν

12···(n−2)

satisfies the generalised Jacobi identity of order n − 2 in 1, 2, . . . , n − 2. Thus this is precisely 
the “square” of the Yang-Mills multi-particle polarisation fields derived upon using (3.2).

One further thing to be noted is this. In our preliminary discussion of the Bern-Dunbar-
Shimada formalism, we indicated that when bringing into play the pinching rules we no longer 
have an ordering of the tree legs. This means that the tree attached to the loop is obtained by tak-
ing all possible pinches, which is an exceedingly tedious and onerous task. The main point to be 
stressed in connection with (4.2) is that we may infer directly the existence of a “double-copy” 
version of the Berends-Giele polarisation currents, circumventing the need to determine them 
indirectly using the pinching procedure.

4.2. Double-copy perturbiner expansion

The foregoing discussion contains all the underlying principles that are necessary for treat-
ing the double-copy polarisation currents and the corresponding perturbiner expansion. Indeed, 
examining the expression for the colour-dressed Berends-Giele polarisation current (3.16) and 
taking note of (4.2) it is readily verified that the double-copy polarisation currents may be ob-
tained by replacing the colour factor f̃ a with another copy of the multi-particle polarisation 
field ε̄μ. To be more precise, the double-copy polarisation current, which we denote by Gμν

P , is 
expressible in the form
16
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G
μν
P = �ε̄μ ⊗ εν� ◦ bcd(P ). (4.3)

This provides a realisation of the off-shell double-copy that arises naturally in the string-based 
formalism, as an alternative to previous approaches [54,61] that mimic the KLT relations adapt-
ing them to Berends-Giele currents.

As some examples, bringing to mind (3.17), (3.18), (3.19) and (3.20), the first instances of the 
double-copy polarisation current up to multiplicity four are given by

G
μν
1 = ε̄

μ
1 εν

1 ,

G
μν
12 = ε̄

μ
[1,2]εν[1,2]

s12
,

G
μν
123 = ε̄

μ
[[1,2],3]εν[[1,2],3]

s12s123
+ ε̄

μ
[[1,3],2]εν[[1,3],2]

s13s123
+ ε̄

μ
[[2,3],1]εν[[2,3],1]

s23s123
,

G
μν
1234 = ε̄

μ
[[[1,2],3],4]εν[[[1,2],3],4]

s12s123s1234
+ ε̄

μ
[[[1,2],4],3]εν[[[1,2],4],3]

s12s124s1234
+ ε̄

μ
[[[1,3],4],2]εν[[[1,3],4],2]

s13s134s1234

+ ε̄
μ
[[[2,3],4],1]εν[[[2,3],4],1]

s23s234s1234
+ ε̄

μ
[[[1,3],2],4]εν[[[1,3],2],4]

s13s123s1234
+ ε̄

μ
[[[1,4],2],3]εν[[[1,4],2],3]

s14s124s1234

+ ε̄
μ
[[[1,4],3],2]εν[[[1,4],3],2]

s14s134s1234
+ ε̄

μ
[[[2,3],1],4]εν[[[2,3],1],4]

s23s123s1234
+ ε̄

μ
[[[2,4],1],3]εν[[[2,4],1],3]

s24s124s1234

+ ε̄
μ
[[[2,4],3],1]εν[[[2,4],3],1]

s24s234s1234
+ ε̄

μ
[[[3,4],1],2]εν[[[3,4],1],2]

s34s134s1234
+ ε̄

μ
[[[3,4],2],1]εν[[[3,4],2],1]

s34s234s1234

+ ε̄
μ
[[1,2],[3,4]]εν[[1,2],[3,4]]

s12s34s1234
+ ε̄

μ
[[1,3],[2,4]]εν[[1,3],[2,4]]

s13s24s1234
+ ε̄

μ
[[1,4],[2,3]]εν[[1,4],[2,3]]

s14s23s1234
.

(4.4)

We reiterate that the crucial step in the double-copy procedure we have just argued is the 
construction of the multi-particle polarisation fields εμ

P satisfying the GJI as suggested by colour-
kinematics duality.

Since we have already obtained the double-copy polarisation currents we can now readily 
obtain the double-copy perturbiner expansion, which is nothing but the generating series

Gμν(x) =
∑
n≥1

∑
P∈OW n

G
μν
P eikP ·x . (4.5)

Like in the Yang-Mills case, (4.5) is not a solution of the Einstein field equations, for it has been 
“strictified” to include exclusively cubic interactions.

Going on-shell now, it remains to say a word about the scattering amplitudes in the double-
copy theory. Recalling the colour-dressed amplitude (3.23), the Berends-Giele formula for the 
n-point gravity amplitude reads

M tree
n = s12···(n−1)G

μν

12···(n−1)Gnμν. (4.6)

Not surprisingly, the previous expression takes the well-known form for gravity amplitudes in its 
double-copy version

M tree
n =

∑ n̄�n�∏
e∈� se

, (4.7)

�
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which is equivalent to the KLT formula as can be seen in [33]. We also checked our result up 
to degree n = 5 for particular polarisations. At any rate, the outcome of this approach is that we 
can calculate the amplitudes for the double-copy theory in a relatively straightforward manner, 
without the need for separately finding local BCJ numerators. This attribute was not apparent in 
previous approaches using the perturbiner method, since the generating series of Berends-Giele 
currents is usually presented in its colour-stripped version for the BCJ gauge.

5. Some other examples

Now that we found a prescription for the double-copy perturbiners, let us apply it to other 
theories beyond Yang-Mills and gravity. In principle it can be applied to any theory as soon as 
we guarantee multi-particle fields in the BCJ gauge. One first example should be the case where 
the BCJ gauge originally appeared, ten-dimensional N = 1 super Yang-Mills in [17] (more 
recently from a new approach in [62]), but for now we will restrict our presentation only to cases 
without supersymmetry.

5.1. α′-deformations

For the first example we will calculate the currents and amplitudes for the deformations of 
general relativity that come from the α′ corrections of the closed bosonic string, also referred to 
as GR+R2+R3. The amplitudes for this theory were calculated using the KLT relations for string 
theory [18,63]. The action was found in [64] and it reads

S closed
bosonic

∼
∫

dDx
√

g

{
R − 2(∂μϕ)2 − 1

12
H 2 + α′

4
e−2ϕ

(
RμνλρRμνλρ − 4RμνR

μν + R2)
+ α′2e−4ϕ

(
1

16
Rμν

αβRαβ
λρRλρ

μν − 1

12
Rμν

αβRβρ
νλR

λα
ρμ

)
+O(α′3)

}
, (5.1)

where here ϕ represents the dilaton and H = dB represents the field strength of the B-field. The 
gauge field theory for the double-copy is the deformed Yang-Mills theory that comes from the 
low energy limit of the open string. The action, compatible with colour-kinematics duality [65], 
is the following

SYM+F 3+F 4 =
∫

dDx tr

{
1

4
FμνF

μν + 2α′

3
Fμ

νFν
λFλ

μ + α′2

4
[Fμν,Fλρ][Fμν,Fλρ]

}
,

(5.2)

which has the following equations of motion in the Lorenz gauge, ∂μAμ = 0,

�Aλ = [Aμ,∂μAλ] + [Aμ,Fμλ] + 2α′{[∇μFμν,Fν
λ] + [Fμν,∇μFν

λ]}
+ 2α′2

{[[∇μFμλ,Fρσ ],F ρσ
] + [[Fμλ,∇μFρσ ],F ρσ

] + [[Fμλ,Fρσ ],∇μFρσ
]}

.

(5.3)

In [66], the authors conducted a detailed analysis for the calculation of the currents in this gauge 
using the perturbiner approach [67,54,68]. Then, they applied the non-linear gauge transforma-
tion studied in [69] in order to obtain currents in the BCJ gauge. In general the expressions for 
the α′-deformed multi-particle polarisations have the following structure

a
μ = ε

μ + α′ε(1)μ + α′2ε
(2)μ

. (5.4)
P P P P
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We invite the reader to have a look at the explicit expressions in [66].
Our double-copy perturbiner for the α′-deformation of general relativity comes out to be

G(α′)μν(x) =
∑
n≥1

∑
P∈OWn

G
(α′)μν
P eikP ·x, (5.5)

where the Berends-Giele currents are given by

G
(α′)μν
P = �aμ ⊗ āν� ◦ bcd(P ). (5.6)

Naturally, in complete analogy with (4.6), the corresponding amplitude reads

M (α′)tree
n = s1...n−1G

(α′)μν
1...n−1G

(α′)
nμν. (5.7)

This we have also checked using the explicit expressions for aμ
P from [66].

5.2. Zeroth-copy

Another example whose perturbiner can be obtained in a very straightforward manner with 
our approach is the one for the bi-adjoint scalar model. For this model, originally found in [70], 
we have a scalar field that takes values in the tensor product su(N) ⊗ su(N ′), and is expressible 
in terms of the generators as � = �aa′T a ⊗ T ′a′

. The corresponding action takes the form

Sbi-adjoint =
∫

dDx

{
− 1

2�aa′��aa′ + 1

3! f̃
abcf̃ ′a′b′c′

�aa′�bb′�cc′
}

. (5.8)

Its Berends-Giele currents were found for the first time in [67] in the colour-stripped version and 
the colour-dressed version in [54], both cases using the perturbiner approach. Here we can obtain 
it simply by applying the zeroth-copy [71], now in its analogue perturbiner version. Therefore, 
for the bi-adjoint perturbiner we have

�aa′
(x) =

∑
n≥1

∑
P∈OWn

φaa′
P eikP ·x, (5.9)

where for the Berends-Giele currents read

φaa′
P = �ca ⊗ c′a′

� ◦ bcd(P ) (5.10)

The expressions for the currents are exactly like the ones in (4.4) but replacing the polarisations 
by the colour factors presented in Section 3. The colour-dressed amplitudes can also be calculated 
directly using the Berends-Giele formula in (4.6).

6. Conclusions

We have seen that colour-kinematics duality and double-copy arise quite naturally in the 
string-based formalism in the form of multi-particle fields. The combination of the string-based 
rules and the technology developed in the study of such fields allowed us to reduce the calculation 
of tree-level amplitudes in Yang-Mills and gravity to a single basic calculation, namely the full 
pinching of the tail that gives the multi-particle polarisation in the BCJ gauge. Both the colour-
dressed Yang-Mills Berends-Giele currents in the BJC gauge and the gravitational Berends-Giele 
currents are given explicitly up to multiplicity five. The most attractive feature of our formalism 
is that it never becomes necessary to determine gauge transformation terms. We presented a new 
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prescription for the off-shell double-copy that has applications to theories beyond the ones that 
we can represent by the infinite string tension limit, as we have demonstrated with the examples 
of α′-deformed gravity and the bi-adjoint scalar model.

In the Yang-Mills case, we have shown in [53] how to feed the obtained multi-particle tensors 
back into the Bern-Kosower formalism so as to make the whole pinching procedure unnecessary. 
It is not obvious whether this aspect of our approach can be generalized to the gravity case, since 
here the existence of the cross terms seems to start making a real difference. We leave this to 
further study.

One application in progress is the calculation of Berends-Giele currents for gravity coupled 
to matter fields along the lines of [72] and [73], that could be compared with [74]. Another 
application for the near future is to some cases of supergravity, where Berends-Giele currents 
have been found for N = 1 Super-Yang-Mills in the BCJ gauge in [17,43].

A more ambitious use of the string-based representation of one-loop graviton amplitudes 
would be to construct full one-loop amplitudes that manifest colour-kinematics duality at the 
integrand level. Obviously, this would require the reintroduction of the loop momentum that in 
the Bern-Kosower formalism is already integrated out. One possible approach would be to ex-
tend the string-based representation to the graviton-dressed open line, which for the scalar line 
was achieved in Ref. [75], and construct the one-loop graviton amplitudes by sewing.
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Appendix A. Berends-Giele currents of multiplicity five

In this appendix, we exploit the procedure showed above for the computation of colour-
dressed Berends-Giele polarisation currents in the BCJ gauge and we show the complete 
expressions for the current at multiplicity five. The computation follows from (3.16), where 
in the five-particle case P = 12345. In this case, the word decomposition reads as (Q, R) =
(1234)(5), (1235)(4), (1245)(3), (1345)(2), (2345)(1), (123)(45), (124)(35), (125)(34), 
20
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(134)(25), (145)(23), (135)(24), (234)(15), (235)(14), (245)(13), (345)(12). Therefore, mak-
ing also use of the recursion in (3.11), we obtain for the colour-dressed Berends-Giele polarisa-
tion current Aaμ

12345 the formula

A
aμ
12345 = ca

[[[[1,2],3],4],5]ε
μ
[[[[1,2],3],4],5]

s12s123s1234s12345
+ ca

[[[[1,3],2],4],5]ε
μ
[[[[1,3],2],4],5]

s13s123s1234s12345

+ ca
[[[[2,3],1],4],5]ε

μ
[[[[2,3],1],4],5]

s23s123s1234s12345
+ ca

[[[[1,2],4],3],5]ε
μ
[[[[1,2],4],3],5]

s12s124s1234s12345

+ ca
[[[[1,4],2],3],5]ε

μ
[[[[1,4],2],3],5]

s14s124s1234s12345
+ ca

[[[[2,4],1],3],5]ε
μ
[[[[2,4],1],3],5]

s24s124s1234s12345

+ ca
[[[[1,3],4],2],5]ε

μ
[[[[1,3],4],2],5]

s13s134s1234s12345
+ ca

[[[[1,4],3],2],5]ε
μ
[[[[1,4],3],2],5]

s14s134s1234s12345

+ ca
[[[[3,4],1],2],5]ε

μ
[[[[3,4],1],2],5]

s34s134s1234s12345
+ ca

[[[[2,3],4],1],5]ε
μ
[[[[2,3],4],1],5]

s23s234s1234s12345

+ ca
[[[[2,4],3],1],5]ε

μ
[[[[2,4],3],1],5]

s24s234s1234s12345
+ ca

[[[[3,4],2],1],5]ε
μ
[[[[3,4],2],1],5]

s34s234s1234s12345

+ ca
[[[1,2],[3,4]],5]ε

μ
[[[1,2],[3,4]],5]

s12s34s1234s12345
+ ca

[[[1,3],[2,4]],5]ε
μ
[[[1,3],[2,4]],5]

s13s24s1234s12345

+ ca
[[[1,4],[2,3]],5]ε

μ
[[[1,4],[2,3]],5]

s14s23s1234s12345

+
(
(1234)(5) ↔ (1235)(4)

)
+

(
(1234)(5) ↔ (1245)(3)

)
+

(
(1234)(5) ↔ (1345)(2)

)
+

(
(1234)(5) ↔ (2345)(1)

)

+ ca
[[[1,2],3],[4,5]]ε

μ
[[[1,2],3],[4,5]]

s12s123s45s12345
+ ca

[[[2,3],1],[4,5]]ε
μ
[[[2,3],1],[4,5]]

s23s123s45s12345

+ ca
[[[1,3],2],[4,5]]ε

μ
[[[1,3],2],[4,5]]

s13s123s45s12345

+
(
(123)(45) ↔ (124)(35)

)
+

(
(123)(45) ↔ (125)(34)

)
+

(
(123)(45) ↔ (134)(25)

)
+

(
(123)(45) ↔ (145)(23)

)
+

(
(123)(45) ↔ (135)(24)

)
+

(
(123)(45) ↔ (234)(15)

)
+

(
(123)(45) ↔ (235)(14)

)
+

(
(123)(45) ↔ (245)(13)

)
+

(
(123)(45) ↔ (345)(12)

)
,

(A.1)

where the colour factors have structures of type

ca
[[[[1,2],3],4],5] = f̃ b

a1a2
f̃

c
ba3

f̃ d
ca4

f̃
a

da5
, ca

[[[1,2],[3,4]],5] = f̃ b
a1a2

f̃ c
a3a4

f̃ d
bc f̃

a
da5

,

ca
[[[1,2],3],[4,5]] = f̃ b

a1a2
f̃

c
ba3

f̃ d
a4a5

f̃ a
cd .

(A.2)
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Also, in (A.1) we made use of the multi-particle polarisation field εμ
[[[[1,2],3],4],5] defined as

ε
μ
[[[[1,2],3],4],5] = 1

2

[
ε
μ
5

(
ε[[[1,2],3],4] · k5

) − ε
μ
[[[1,2],3],4] (ε5 · k1234) + ε[[[1,2],3],4]νf νμ

5

− ε5νf
νμ
[[[1,2],3],4]

] + (k123 · k4)ε
μ
4 h1235 + (k12 · k3)

(
ε
μ
3 h1245

+ ε
μ
[3,4]h125 − ε

μ
[1,2]h345

) + (k1 · k2)
(
ε
μ
2 h1345 + ε

μ
[2,3]h145

+ ε
μ
[2,4]h135 − ε

μ
1 h2345 − ε

μ
[1,3]h245 − ε

μ
[1,4]h235

) − k
μ
12345h12345

(A.3)

where we have set

f
μν
[[[1,2],3],4] = k

μ
1234ε

ν[[[1,2],3],4] − (k123 · k4)ε
μ
[[1,2],3]ε

ν
4 − (k12 · k3)(ε

μ
[1,2]ε

ν[3,4] + ε
μ
[[1,2],4]ε

ν
3)

− (k1 · k2)(ε
μ
[1,3]ε

ν[2,4] + ε
μ
[1,4]ε

ν[2,3] + ε
μ
[[1,3],4]ε

ν
2 − ε

μ
[[2,3],4]ε

ν
1) − (μ ↔ ν)

(A.4)

and

h12345 = 1

4

[{
ε3 · ε4ε1 · k2ε2 · k3ε5 · k1 − ε2 · ε3ε1 · k2ε4 · k3ε5 · k1

+ ε1 · ε2ε3 · k2ε4 · k3ε5 · k1 + ε3 · ε4ε1 · k2ε2 · k3ε5 · k2 − ε2 · ε3ε1 · k2ε4 · k3ε5 · k2

− ε1 · ε2ε3 · k2ε4 · k3ε5 · k2 − ε1 · ε5ε3 · ε4ε2 · k3k1 · k2 + 1

2
ε1 · ε5ε2 · ε3ε4 · k3k1 · k2

− 1

2
ε2 · ε5ε3 · ε4ε1 · k2k2 · k3 − 3

4
ε1 · ε2ε3 · ε4ε5 · k1k2 · k3

+ 3

4
ε1 · ε2ε3 · ε4ε5 · k2k2 · k3 − (123 → 312) − (1234 → 4123)

}
+

{
ε2 · ε3ε1 · k2ε4 · k2ε5 · k3 − ε2 · ε4ε1 · k2ε3 · k2ε5 · k1 − ε2 · ε3ε1 · k2ε4 · k2ε5 · k1

− ε1 · ε2ε3 · k2ε4 · k2ε5 · k2 − ε1 · ε2ε3 · k2ε4 · k2ε5 · k4 + 1

2
ε2 · ε4ε3 · ε5ε1 · k2k2 · k3

+ 1

2
ε1 · ε2ε3 · ε5ε4 · k2k2 · k3 + 1

2
ε1 · ε2ε4 · ε5ε3 · k2k2 · k4 − (123 → 312)

}
+ ε1 · ε4ε2 · k1ε3 · k1ε5 · k1 + ε2 · ε4ε1 · k2ε3 · k2ε5 · k4

]
− (1 → 2).

(A.5)

Note that, as for the lower-point polarisation fields, εμ
[[[[1,2],3],4],5] is the only five-particle po-

larisation field needed in (A.1). Indeed, using the identities εμ
[[[1,2],[3,4]],5] = ε

μ
[[[[1,2],3],4],5] −

ε
μ
[[[[1,2],4],3],5] and εμ

[[[1,2],3],[4,5]] = ε
μ
[[[[1,2],3],4],5] − ε

μ
[[[[1,2],3],5],4], all the five-particle polarisa-

tion fields appearing in (A.1) are obtained from (A.3) by a simple relabelling.

Finally, we report here the formula for the double-copy polarisation current at five point 
G

μν
12345. As pointed out in Section 4, this is simply obtained by substituting the colour factors 

ca in (A.1) with another copy of the multi-particle polarisation field ε̄μ. The resulting expression 
for Gμν

12345 is thus given by

G
μν
12345 = ε

μ
[[[[1,2],3],4],5]ε̄

ν
[[[[1,2],3],4],5]

s12s123s1234s12345
+ ε

μ
[[[[1,3],2],4],5]ε̄

ν
[[[[1,3],2],4],5]

s13s123s1234s12345

+ ε
μ
[[[[2,3],1],4],5]ε̄

ν
[[[[2,3],1],4],5] + ε

μ
[[[[1,2],4],3],5]ε̄

ν
[[[[1,2],4],3],5]
s23s123s1234s12345 s12s124s1234s12345

22
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+ ε
μ
[[[[1,4],2],3],5]ε̄

ν
[[[[1,4],2],3],5]

s14s124s1234s12345
+ ε

μ
[[[[2,4],1],3],5]ε̄

ν
[[[[2,4],1],3],5]

s24s124s1234s12345

+ ε
μ
[[[[1,3],4],2],5]ε̄

ν
[[[[1,3],4],2],5]

s13s134s1234s12345
+ ε

μ
[[[[1,4],3],2],5]ε̄

ν
[[[[1,4],3],2],5]

s14s134s1234s12345

+ ε
μ
[[[[3,4],1],2],5]ε̄

ν
[[[[3,4],1],2],5]

s34s134s1234s12345
+ ε

μ
[[[[2,3],4],1],5]ε̄

ν
[[[[2,3],4],1],5]

s23s234s1234s12345

+ ε
μ
[[[[2,4],3],1],5]ε̄

ν
[[[[2,4],3],1],5]

s24s234s1234s12345
+ ε

μ
[[[[3,4],2],1],5]ε̄

ν
[[[[3,4],2],1],5]

s34s234s1234s12345

+ ε
μ
[[[1,2],[3,4]],5]ε̄

ν
[[[1,2],[3,4]],5]

s12s34s1234s12345
+ ε

μ
[[[1,3],[2,4]],5]ε̄

ν
[[[1,3],[2,4]],5]

s13s24s1234s12345

+ ε
μ
[[[1,4],[2,3]],5]ε̄

ν
[[[1,4],[2,3]],5]

s14s23s1234s12345

+
(
(1234)(5) ↔ (1235)(4)

)
+

(
(1234)(5) ↔ (1245)(3)

)
+

(
(1234)(5) ↔ (1345)(2)

)
+

(
(1234)(5) ↔ (2345)(1)

)

+ ε
μ
[[[1,2],3],[4,5]]ε̄

ν
[[[1,2],3],[4,5]]

s12s123s45s12345
+ ε

μ
[[[2,3],1],[4,5]]ε̄

ν
[[[2,3],1],[4,5]]

s23s123s45s12345

+ ε
μ
[[[1,3],2],[4,5]]ε̄

ν
[[[1,3],2],[4,5]]

s13s123s45s12345

+
(
(123)(45) ↔ (124)(35)

)
+

(
(123)(45) ↔ (125)(34)

)
+

(
(123)(45) ↔ (134)(25)

)
+

(
(123)(45) ↔ (145)(23)

)
+

(
(123)(45) ↔ (135)(24)

)
+

(
(123)(45) ↔ (234)(15)

)
+

(
(123)(45) ↔ (235)(14)

)
+

(
(123)(45) ↔ (245)(13)

)
+

(
(123)(45) ↔ (345)(12)

)
. (A.6)
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