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The COVID-19 pandemic has sparked an intense debate about the hidden factors

underlying the dynamics of the outbreak. Several computational models have been

proposed to inform effective social and healthcare strategies. Crucially, the predictive

validity of these models often depends upon incorporating behavioral and social

responses to infection. Among these tools, the analytic framework known as “dynamic

causal modeling” (DCM) has been applied to the COVID-19 pandemic, shedding new

light on the factors underlying the dynamics of the outbreak. We have applied DCM

to data from northern Italian regions, the first areas in Europe to contend with the

outbreak, and analyzed the predictive validity of the model and also its suitability in

highlighting the hidden factors governing the pandemic diffusion. By taking into account

data from the beginning of the pandemic, the model could faithfully predict the dynamics

of outbreak diffusion varying from region to region. The DCM appears to be a reliable tool

to investigate the mechanisms governing the spread of the SARS-CoV-2 to identify the

containment and control strategies that could efficiently be used to counteract further

waves of infection.

Keywords: DCM—dynamic causal modeling, COVID-19, predictive modeling, computational modeling, brain

modeling

INTRODUCTION

The COVID-19 pandemic has engendered a key debate about the generative factors governing its
evolution, and a wide series of mathematical models have been developed to predict the evolution
of the outbreak. The fight against the virus has in fact benefited from reliable models explaining
the wealth of epidemiological data to the aim of informing the healthcare system. Italy was the
first country severely hit by the outbreak outside China, particularly in its northern part, and
has promptly adopted a tight lockdown strategy and other specific public health measures (1, 2).
Nonetheless, northern Italian regions were more affected than others, with variable severity, raising
questions that remain so far unanswered: (i) How did the tight lockdown impact the local dynamics
of SARS-CoV-2 spread? (ii) Why were there substantial differences across regions despite the
similar public health measures adopted? and (iii) Could have been possible to predict somehow
the incoming of subsequent waves?
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Relevant epidemiological data have been accumulated
during the pandemic diffusion (3–5), and predictive models
have been developed to inform social and healthcare
strategies. Compartmental models such as the SIR-based
(susceptible–infected–recovered) or SEIR-based (susceptible–
exposed–infectious–recovered) models have been used during
the SARS-CoV-2 outbreak (6–12)–which are generally based
on differential equations accounting for the rate of transition
of an individual between specific states or compartments. The
extension of SIR models with network linkages, in which the
statistical dependencies between contacts are part of model
structure, demonstrates a notable improvement in the estimation
of transmission parameters (12). Recently, the application of
the dynamic causal modeling (DCM) (13) to the COVID-19
pandemic allowed to extract different interpretative perspectives
on the factors driving the pandemic through different countries
and phases (14–17). DCM is a flexible statistical procedure,
originally designed to infer the nature of connectivity in brain
networks. Whereas, DCM originates in the neuroimaging field to
infer the nature of connectivity in brain networks, it is grounded
on a generic theoretical–computational framework, which can
be applied to a variety of non-linear dynamical systems where
different causal sources interact in complex ways. In detail, DCM
involves positing an architecture of coupled causes that interact
in generating observable quantities. The causes themselves are
not directly observable (they are “latent”) but are probabilistically
inferred by the model so as to explain the observable data in a
Bayes-optimal fashion. This methodology allows one to model
the temporal trajectory of several quantities related to the process
under study and to estimate the impact of the underlying latent
factors on observable data. In DCM, compartmental models are
implemented as a generative model, where transitions among
compartments are equivalent to the pathways of information
transferred between the latent factors. DCM, therefore, can be
aptly used to study the behavior of a network of compartments,
allowing their dynamical interaction, along with the estimation
of a large set of hidden parameters, under standard frameworks
of Bayesian inference and parameter optimization.

The DCM has been applied to the evolution of the outbreaks
in different countries on a worldwide scale, demonstrating
remarkable performance in terms of goodness of fit and
predictive validity and allowing to predict the upsurge of cases
in several European countries and also the dynamics of the
second waves (17). In this study, we have adopted a similar
procedure on a finer-grain scale, by adapting it to northern
Italian regions which are characterized by a high degree of
heterogeneity (18). A DCM analysis of the COVID-19 pandemic
is of special interest since, in addition to characterizing the latent
causes of regional differences, has the potential to uncover the
dependencies between the efficacy of testing and tracking strategy
and the second-wave dynamics.

This study addresses the following aims: (1) validating
the DCM in modeling the spread of COVID-19 in
northern Italy, (2) inferring the relative weight of the
latent causal factors influencing the evolution of the
pandemic in northern Italian regions, (3) applying the
DCM as a reliable predictive tool to evaluate a strategic

intervention to suggest the implementation of public
health measures.

RESULTS

Estimation of the Dynamics of Pandemic’s
Waves
One of the main unknowns regarding the COVID-19 pandemic
was the duration of the succeeding waves, a key factor
that could have been employed to implement public health
containment strategies.

To examine the dynamics of the pandemic, we have
explored how a variable period of being shielded from infection
would affect the temporal evolution of the pandemic (see
Methods). Using a Bayesianmodel comparison (BMC) procedure
(see Methods, Supplementary Figure 1, left), we attempted to
estimate the most probable period of being shielded from
infection. To account for different periods of observation, the
procedure was performed with two datasets (see Methods) and in
both cases, a period of being shielded from infection of 6 months
was estimated (Figure 1), resulting in an upsurge of pandemic
compatibility with the actual second waves recorded throughout
northern Italy. This estimate accounted for the occurrence of
second waves (Figure 1), with different onset times and intensity
in each region.

Latent Causes and Model Validation
Model inversion (Supplementary Figure 1, right) provided
posterior estimates of the parameters (Supplementary Table 1)
driving the pandemic spread and highlighting differences
between regions (Supplementary Table 2; see also
Supplementary Figure 2 for regional differences in the
evolution of the pandemic). To evaluate the capacity of the
model to correctly infer such parameters, we examined the
time course of the model-estimated probability of leaving
home vis-à-vis the known dates of the lockdown progressively
imposed by the Italian government (from “soft” on February
23 to “tight” on March 8): we observed indeed a close match
between the time courses (with Veneto showing a slightly
different behavior from other regions), although the smooth
time course output by the model obviously could not match
perfectly the sharp discontinuities of the lockdown timeline
(Figure 2A).

As an additional validation, we compared the probability of
leaving home to the actual cell phone movement data in the
temporal window from January 31 to March 31, obtaining a
strong correlation, with a lesser reduction in mobility for Veneto
compared with Lombardy and Emilia-Romagna [Figure 2B and
Supplementary Table 3; see also (1)].

The latent causes generating the dynamics of the pandemic
are related to the states within each of the four factors in the
LIST model (see Methods). Focusing on the infection factor, the
model-inferred proportion of infected people showed a rapid
rise during the first weeks of the epidemic, peaking variably
from region to region (Figure 3A), with Lombardy showing
the highest and Veneto the lowest prevalence. Similarly, the
model-inferred proportion of immune people rose quickly in
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FIGURE 1 | Long-term prediction following BMC. Comparison of data fitting and prediction for the six regions under consideration, obtained via a BMC of 32 models

for each region on dataset 2 (similar results could be obtained with dataset 1; see Methods for specification on datasets). Dots represent data on daily positive cases

reported by the “National Civil Protection Agency.” Data are averaged with a sliding window of 7 days. The lines reproduce posterior expectations with corresponding

90% Bayesian confidence bands (shaded). Note the different timings of the peak of the second wave and its relative intensity in the different regions. Vertical dashed

arrows indicate the peak of the second wave for each prediction.

FIGURE 2 | (A) Dynamics of the probability of leaving home. The plot shows the time course of the probability of leaving home inferred by model inversion (colored

lines) in the temporal window from January 22 to August 22, 2021. During this period, the Italian government imposed a lockdown with different degrees of severity

from February 23 (soft lockdown: country-wide closing of schools, universities, and all non-essential industrial and commercial activities; limiting the activities of public

offices) to March 8 (tight lockdown: prohibition of any kind of mobility, apart from specific health or professional needs). May 4 is the date where the tight lockdown

was relaxed and people were allowed to freely move within their region, while on June 3, people were allowed to freely move within the whole country. Vertical blue

lines indicate the dates of lockdown, whereas the shaded red and pink areas represent the lockdown time windows. Note the peculiar behavior of Veneto (red line),

showing a lesser reduction in the probability of leaving home, indicating a reduced adherence to the lockdown orders. (B) Dynamics of the probability of leaving home,

compared with cell phone movements. The graph shows the trajectory of the probability of leaving home inferred by the model (solid lines) and the monitored cell

phone movements (dashed lines) for the three most hit regions (Lombardy, Veneto, and Emilia-Romagna) in the period from February 21 to March 27.

the first weeks of the epidemic peaking with different values
in each region, with Veneto and Lombardy at the bottom
and top of the range, respectively (Figure 3B). Of note, the
proportion of susceptible individuals begins to gradually rise
back toward the initial value as (effective) immunity weakens
after the first wave (Figure 3B). Conversely, the proportion of

resistant individuals (see Methods) rises in response to the
accumulation of people leaving the susceptible state (Figure 3C).
We point out that the effective immunity (see Methods) must
not be intended only as a biological parameter accounting for
antibodies and T-cells-dependent responses triggered by SARS-
CoV-2 infections, it rather accounts also for non-biological
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FIGURE 3 | Latent causes. (A) Time course of the proportion of infected people during the epidemic and in the following months for all the regions considered. Note

that Veneto shows a steep rise at the beginning of the epidemic but quickly drops to the initial values, whereas other regions display slower kinetics. (B) Time course

of the proportion of immune people during the epidemic and in the subsequent months for all the regions considered. As in the case of infected people, this

proportion is the lowest in Veneto throughout most of the considered time window. (C) Time course of the proportion of resistant people during the epidemic and in

the subsequent months for all the regions considered. Notice how at the beginning of the epidemic this proportion was highest in Veneto. (D) Data on the serological

test (% of the population that have been infected) are plotted against the peak value of the proportion of infected people inferred by the model and shown in (A).

factors such as self-isolation and non-pharmacological measures
to prevent infection.

A third validation of the model was provided by serological
data. At the end of May, the Italian government launched a
campaign to randomly sample the population and test whether
they had been previously infected. The proportion of infected
people inferred by the model (Figure 3D) correlated with the
results of the serological tests (R2 = 0.92, linear regression across
regions). It should be noted that the proportion of infected people
inferred by the model accounts for subjects who have contracted
the virus and includes in a probabilistic way, both the tested and
untested cases. This is a remarkable aspect of predictive validity
because these serological data were never used to inform the
model parameters. Nonetheless, it should be noted that, although
the model over predicts from a quantitative point of view the
serological survey data, the differences in absolute value between
the measures and the estimates were larger in regions with a low
percentage of positive cases. The estimates of the model therefore
probably reflect a low signal to noise ratio in regions with a small
percentage of a positive case.

Forecasting the Dynamics of the Pandemic
Given the matching between the inferred latent causes and
empirical data, we have tested the capability of the model to

generate long- and mid-term predictions, which expressed the
occurrence of waves of infection in all the considered regions,
with varying onset from mid-September to late November. This
prediction is in accordance with the recurrence of infections
observed in the Autumn 2020 (Supplementary Figures 3–6),
throughout Italy. The early peaks appear in fact to be well-
predicted in Veneto (mid-September) and Tuscany (early
October), regions that witnessed a rise in the number of
positive cases in those periods (see Supplementary Figures 5,
6). Interestingly, when data related to the early upsurges in July
were withheld from model inversion (Dataset 1, see Methods),
a second wave could still be predicted, albeit with a later onset
(Supplementary Figure 7).

One common metric of viral transmission is the
reproduction ratio (Rt). The model-inferred value for the
Rt did follow the timeline of the lockdown policies that
mitigated viral transmission (Supplementary Figure 9).
Importantly, in July, this value raised again above 1,
as confirmed by official data released by the Italian
Minister of Health and preluding the rise of second
waves.

Finally, we analyzed how the efficacy of testing and tracking
strategies mitigated the spread of SARS-CoV-2. One of the
most effective mitigation strategies in facing the pandemic is
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FIGURE 4 | Second-wave forecasts (Lombardy, Veneto, and Emilia-Romagna): Predicted number of daily positive cases (left) and deaths (right) under increasing

levels of testing and tracking efficacy. The curves go from the value inferred by the model (red line) to 100% efficacy (green line). Black dots represent daily data

averaged with a sliding window of 7 days.

to test for infected but asymptomatic subjects and trace their
contacts to contain novel outbreaks (19–22). The model can
evaluate a range of possible scenarios by varying the efficacy
of TTS. In particular, the efficacy of TTS was increased,
in 16 equal steps, from the level initially inferred by the
model to the full efficacy (i.e., testing and tracking of every
asymptomatic individual). The ensuing predictions (Figures 4, 5;
Supplementary Figure 10) for all regions show the occurrence
of the second wave in the autumn, with a significant reduction
in prevalence and fatality as TTS efficacy is increased. Notably,
the model predicted that the occurrence of a second wave
could have been postponed by a suitable enhancement of
TTS, and this forecast is supported by the available data. As
a case example, we have analyzed changes in TTS efficacy
that were actually implemented in Lombardy at the end of
the first acute phase of the pandemic diffusion (which the
model infers to be in the range of 12–20% of the maximum
efficacy). The strategy adopted by this region appears indeed
to have been successful in postponing the peak of the second
wave (Figure 6). Furthermore, the increase in TTS efficacy can
markedly reduce the total number of deaths and positive cases
(Supplementary Figure 11).

DISCUSSION

Dynamic causal modeling, a modeling approach originally
conceived to characterize brain network dynamics, was used to
infer the latent causes underlying the progression of COVID-19
in northern Italy. The effective population (i.e., the population
potentially exposed to the virus) was smaller than the total
(census) population size and varied over the different regions
(Supplementary Table 4). This value, which takes into account
individuals that can get in contact with contagious people
and thus contribute to the outbreak, could indeed reflect
different geospatial factors, the territory, lifestyle, behavior, and
social habits. For example, Lombardy (90% effective population)
presents a huge metropolitan area, where people usually share
crowded means of transportation and working places. Similarly,
Piedmont has most of its habitants living in the metropolitan
Torino area (30% of the total regional population), one of the
biggest Italian cities. Conversely, the other four regions have
smaller metropolitan areas. Lombardy has more than two times
the number of towns with >20K inhabitants compared with
Tuscany (effective population ∼30% of the census population).
All these factors could have favored aggregation and viral spread,
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FIGURE 5 | Second-wave forecasts (Liguria, Piedmont, and Tuscany): The format of this figure follows that of Figure 4.

FIGURE 6 | Effects of testing and tracking strategies in Lombardy. Black dots are daily data from January 22 to June 10 (7-day sliding window averages) of positive

cases reported by the “National Civil Protection Agency” for Lombardy. The black line represents the posterior expectation for the same quantity following model

inversion. Colored lines represent the predicted number of positive cases under increasing levels of testing and tracking, starting from the level that the model inferred

to be the one adopted on June 10, to 12% (first red trace), 18% (middle red trace), and 24% (right red trace) of the maximum efficacy (see Methods). Red dots

represent daily data from June 11 to August 31 (7-day sliding window averages).
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especially in the initial phase of the pandemic. In the Testing
model (see Methods), where the total census population is
considered, different behaviors, social habits, and geographical
features affect the proportion of resistant people.

Infection, location, and clinical parameters were similar in
the six regions under consideration (23, 24), supporting the
notion that social and healthcare strategies were comparable
and that, despite potential differences in climate and geographic
factors, the virology is substantially equal. In summary, a larger
susceptible population may lie at the origin of the higher
impact of COVID-19 in Lombardy compared with Veneto
and Emilia-Romagna, which were simultaneously hit by the
outbreak. This may in turn reflect a combination of causes
including geographical segregation of the population, lifestyle,
social habits, and environmental factors such as air pollution and
climate conditions, that may favor the virus persistence and thus
individual exposure (1, 25).

Interestingly, the model inversion uncovered peculiar values
for the testing parameters of Veneto, in line with the more
effective prevention policies adopted by this region since
the beginning of the outbreak, which included testing both
symptomatic and asymptomatic subjects, while in other regions,
only symptomatic cases were investigated (26, 27). This testing
policy seemed to have reduced the virus spread in Veneto, as
reflected in the lower pandemic toll compared with other regions
(28). It is likewise interesting that the proportion of the resistant
population is similar (∼50%) for all regions except Veneto (60%).
This difference could reflect a higher initial level of immunity
determined by an early circulation of the coronavirus, as recently
reported (29).

The model validation by comparison with the available
epidemiological data showed that the changes in mobility
inferred by the model matched both (i) the timeline of the
lockdown enforced by the government and (ii) the actual
mobility as tracked through cell phones; furthermore, the
inferred probability of being infected was correlated with data
from serological tests. It is noteworthy to point out that while
the probability of leaving home for Lombardy remains at the
minimum value throughout March, the probability of leaving
home for Veneto, on the other hand, does increase rapidly
after March 8. The trend for all other regions displays an
intermediate tendency. In general, it should be noted that the
probability of leaving home is a transition probability modeled
as the propensity to leave home and therefore expose oneself
to contacts. This propensity was inferred as a latent cause
markedly determining the number of new cases and is unlikely to
match exactly the actual movements, which are likely influenced
by other additional factors. Furthermore, the available data of
monitored cell phone movements were limited to March 30,
2020. It is quite likely that thesemovements would have shown an
increasing trend in April, thus reducing the apparent divergence
between prediction and data fromMarch 30 onward in the graph.
In particular, several of the major industrial sites, due to their
crucial role for the local and national economy, resumed their
activities in April and required their employees to physically go
back to work. Finally, it should be noted that cell phone data only
reflect movements beyond a 2-Km span and thus underestimate

the actual mobility. If people started to go out more and more
in the vicinity of their home before the end of the lockdown, for
example, neighborhood walks became very popular to counteract
the psychological repercussions of reclusion, this would have
caused an upward trend inmobility within the lockdown window
that could potentially have been picked up by the model but
would have not been reflected in the cell phone data.

The model was also validated through a procedure typical in
machine learning (see Methods and Supplementary Material).
Whereas, there was overall a good agreement between model
and data when using dataset 1, some points (positive cases)
did fall outside the credible intervals when considering dataset
2 (Supplementary Figures 3, 4). It is important to note that,
after June 30, sudden infection foci were related to episodic and
isolated outbreaks in confined areas. This may be explained as
follows: (i) traditionally, the Italian population moves around en
masse during late July and August for vacation; (ii) although,
in 2020, international tourism was markedly reduced, Italy is
traditionally one of the preferred destinations and thus remained
exposed to imported cases; (iii) most of the cases observed in
the late summer were related to Italian tourists coming back
from foreign countries, where infections were increasing; (iv)
in summer, Italy is particularly exposed to migrants, with no
exception in 2020. Migrants, when intercepted, are screened and
quarantined if needed, but some probably escape the entry filter
and may propagate the infection.

By comparing actual and predicted data quantitatively, the
model prediction values appear to be about 10 times smaller
than data obtained from the repository of the “Italian Civil
Protection” (around 800 vs. 8,000 daily positive cases at the peak
of the second wave). A potential explanation for this discrepancy
lies in the fact that predictions have been generated using data
on daily positive cases and daily tests, whereas the policy of
tests administration on the regional population has substantially
changed during the pandemic evolution. During the early phase,
pharyngeal nasal swabs were performed mainly on symptomatic
and hospitalized people whereas, during the late phase, tests were
performed extensively on a larger number of subjects. The result
is a collectively larger number of performed tests and a lower
percentage of symptomatic vs. positive tests. For instance, the
ratio between the number of daily hospitalizations and daily
tests during the first wave in Lombardy was on average 41 ±

3.3% (mean ± SD; range from 52% on February 25 to 18% on
March 25) and 4.4 ± 0.1% (mean ± SD; range from 4.5% on
October 10 to 3.5% on November 9) during the second wave (see
Supplementary Figure 13), which amounts to roughly to a 10-
fold decrease. Conversely, but in a similar 10-fold proportion, the
total number of tests performed daily massively increased from
the first wave (3,127 ± 284, mean ± SD; in the period between
February 25 and March 25) to the second wave (3,4220 ± 1,160,
mean± SD; in the period between October 10 and November 9).
We can speculate that the increase in the number of performed
tests while affecting the absolute amount of detected infections,
did not change the dynamics of the diffusion which were indeed
correctly predicted (Supplementary Figure 14).

The model predictions for the COVID-19 pandemic entail
the occurrence of second waves in the geographical areas under
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the study. The characteristics of the forecast depend on whether
the simulation uses data excluding (dataset 1) or including
(dataset 2) the movement-intensive months of July and August
(Supplementary Figures 3, 4 vs. Supplementary Figures 5, 6;
Supplementary Figure 7). We decided to limit the temporal
window of observation to November 2020 rather than also
including the first months of 2021 since virus variants with
different infective properties that could alter the dynamics of
the pandemic were first detected at the end of 2020. Lombardy
showed small differences in the predicted number of cases and
deaths using the two datasets, while Veneto, Piedmont, and
Tuscany, due to a sharp increase of cases in the first weeks of
August, showed marked differences in the onset of the second
wave when using datasets 1 or 2. Indeed, those cases were mainly
related to an increase in holiday-related population fluxes among
regions or, alternatively, because of immigration, both seasonal
events that could not be predicted by the model at that stage (the
model could in principle predict seasonal trends if multiyear data
are used for model inversion). Furthermore, the evaluation of the
impact of different strategies of healthcare policy (Figures 4, 5),
mainly by increasing the efficacy of TTS (see Methods), shows
that they can influence the occurrence of the second wave and
reduce its impact in terms of lives saved and pressure on the
healthcare system. In all cases, the severity of the second wave
predicted by the model is markedly lower than the one of the
first wave in terms of deaths, the proportion of infected people,
and proportion of people showing symptoms as it was indeed
observed in northern Italy (see Supplementary Table 5).

The proposed study, despite the advantages afforded by
DCM, suffers from some limitations, which have already been
mentioned in the original model development (17): (i) the model
does not consider interactions with seasonal flu or other annual
fluctuations (30); (ii) as with other modeling approaches, the
outcomes of the BMC and posterior inferences are strictly model
dependent; (iii) updating the model with available data could
change the posterior predictions; (iv) the model does not include
geospatial aspects, but rather each outbreak is treated as a point
process (31); and (v) the accuracy of the model inversion and the
subsequent predictions depend on the amount of the available
data, being proportional to the percentage of positive cases.

Nevertheless, with reference to the above listed points, it
is important to consider that: (i) annual fluctuations such as
seasonal flu can alter the overall statistics but are uniformly
distributed throughout the country without preferential
geographical localizations, and therefore, the potential error is
systematic and homogeneously distributed; (ii) the outcomes of
every model are limited to the approach that is actually employed
(i.e., this is not a specific shortcoming of DCM); (iii) the
continuous updating of the model and therefore of the posterior
predictions is inherently one of the main advantages of this
kind of approach and could thus be regarded as a feature rather
than as a flaw. The flexibility of the model takes into account
unexpected and sudden events that can promptly change the
pandemic dynamics allowing therefore to update the prediction
generating different future scenarios; (iv) once more, treating
each outbreak as a point process provides the model with the
capability to interpret as potentially dangerous both single and

spotted events, without the need to collect all the data to yield
a uniform prediction; (v) newly available data can be used to
improve the accuracy of the prediction.

In conclusion, the retrospective analysis of the latent causes
of the pandemic enables the uncovering of factors that can
be effectively controlled by institutional and healthcare policies
and provides an effective procedure to simulate the impact of
the latter on second-wave scenarios. This should allow better
planning by optimizing the benefit-cost ratio of such policies
in view of the specific means and resources available to each
region, for example, by balancing strategies such as lockdown
enforcement, testing, and tracking protocols, and vaccinations.

METHODS

Data Sources
The data on the pandemic evolution were obtained from the
official repository of the “National Civil Protection Agency”
(https://github.com/pcm-dpc/COVID-19). Specifically, we
used the daily number of confirmed positive cases, deaths, and
recovered cases from January 22 to August 31. This dataset
was split into two subsets (dataset 1: from January 22 to July
20; dataset 2: from January 22 to August 31) to accommodate
differences in the social and movement patterns before and
after the end of July, a period when the great majority of the
Italian population leaves home for the summer vacations. Data
on daily individual movements were collected anonymously via
mobile cell phone networks (1). Based on the position of cell
phones in the six investigated regions, as available through the
call detail records (CDR) of SIM card data of around 27 million
Italian residents, we computed the regional daily number of
cell phone movements, weighted by the provincial population
(only changes in cell phone position >2Km were considered).
The data on the seroprevalence of SARS-CoV-2 antibodies were
made available by the Italian Ministry of Health (http://www.
salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&
menu=notizie&p=dalministero&id=4998), as identified through
a serological population-based survey performed by the “Italian
Croce Rossa” fromMay 25 to July 15.

Correlational Analyses
To evaluate the capacity of the model to infer latent variables,
we assessed how well the probability of leaving home tracked
the time series of cell phone movements in the latest period
available (from February 1 to March 27), via a Pearson’s
correlation analysis.

The Dynamic Causal Model
The approach adopted in this paper is based on the work of
Friston and colleagues developed during the first outbreak of
the pandemic (March–July 2020). In particular, we refer to “(16);
Testing and tracking in the UK: a dynamic causal modelling study”
and “(17); Effective immunity and second waves: a dynamic causal
modelling study.”

In the following section, we summarize the basic principles
of the theoretical framework of DCM applied to the COVID-
19 pandemic.
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The Basic Structure of the Model and Its Applications
The DCM methodology (13) has been recently applied to the
worldwide COVID-19 diffusion based on an epidemiological
compartmental model, readers are referred to the original
technical reports for details (14–17). In summary, the requisite
generative model rests upon a mean field approximation to
population dynamics, where individuals can be probabilistically
characterized by their state within four factors, representing
respectively their location, infection, symptoms, and testing
state (LIST model, Supplementary Figure 1). These factors
are coupled through probabilistic transitions specified by
state probability transition matrices (for an example, the
transition matrix for the location factor in “Model parameters
and latent causes”). There are 26 model parameters in
total, which parameterize the probabilities of occupying each
state and transitioning between states. These parameters
are initialized with a priori expectations and variances (see
Supplementary Table 1). The DCM model inversion maps from
the observed data to the estimated parameter values using
gradient ascent until the marginal likelihood of the data
(aka, model evidence) is maximized. Technically, the gradient
ascent is on a variational bound on model evidence, known
as evidence lower bound (ELBO) in machine learning, and
variational free energy in physics. The posterior densities of
the parameters returned by the procedure can be used to
simulate the impact of various parameters on the dynamics of
the process.

We adopted the same approach to model the pandemic
evolution in the six Italian regions showing the maximum
number of deaths during the first 3 months of the outbreak,
namely, Lombardy, Veneto, Emilia-Romagna, Liguria,
Piedmont, and Tuscany. More specifically, we used DCM
for the following aims (Supplementary Table 5):

1) Verifying the Predictive Ability of the Model

Initially, we assessed the model’s forecast against the actual
data. To do this, we obtained the posterior estimates of model
parameters (Supplementary Figures 3–7) based upon a subset
of the available data, namely, the number of daily positive cases,
deaths, and recovered cases from January 22 to June 30 (dataset 1)
and from January 22 to August 11 (dataset 2) and compared the
model forecast to the actual data for the time points from June 30
to July 20 (dataset 1) and from August 12 to August 31 (dataset
2). The first temporal window was chosen so as to exclude, for the
purpose of model validation, the last week of July. Traditionally,
the great majority of Italian people leave home for vacation at the
end of July or the beginning of August, marking a period with
significant changes in social interactions and movement patterns
that could not be predicted by the model. The second temporal
window was added in an attempt to include as much of the data
corresponding to the vacation fluxes as possible at the time of
writing the manuscript.

2) Estimating the duration of immunity and its impact on the
expected onsets of second waves

For this purpose, we used BMC, as described in (16). The
BMC consists in comparing models differing in latent causes

parametrization to evaluate changes in model evidence. This
procedure allows identifying which latent causes subtending
mechanistic hypotheses aremore explicative of the collected data.
In our case, the BMC was performed on models differing for the
rate at which the effective immunity is lost.

A total of 32 DCM models were specified with data
comprising the number of daily positive cases and deaths
(Supplementary Figure 1A) on the time interval from January
22 to August 31 (dataset 2, see Methods). Each model differed
only in the prior assumption about the duration of immunity,
from 1 to 32 months in monthly increments. The model evidence
for each of the 32 models was pooled over the six Italian regions
under consideration, yielding a marginal likelihood for each
potential duration of being shielded from infection (“effective
immunity”). It is important to note that, as explained in the
section “Model parameters and latent causes,” the period of
immunity is not a hard threshold denoting a sudden loss of
immunity, rather it represents the time constant (τ ) of an
exponential waning of immunity, which can depend on several
factors such as population fluxes that can change the size of the
susceptible pool, or factors depending on virus and host [see (17)
for a detailed explanation]. Since the loss of protection from the
infection is a crucial factor in determining outbreak recurrences,
its posterior estimate was used to forecast the onsets of second
waves in the various Italian regions.

3) Evaluating the effect of varying degrees of the efficacy of the
testing and tracking strategy on second-wave outbreaks

Different aspects of testing and surveillance were analyzed
through the testing and tracking procedure (16). The posterior
estimates of model parameters (Supplementary Figure 1B) are
based upon dataset 2 on the number of daily positive cases,
deaths, and performed tests in all the six Italian regions under
consideration. Crucially, the total number of tests allows a more
informed parameter estimation (see Supplementary Figure 2).
The efficacy of testing and tracking policy is defined as the
probability that a subject will be offered a test if infected
and asymptomatic (16). Efficacy varies from 0%, where
the probability of being offered a test when infected and
asymptomatic is null, to 100% if the subject will certainly be
tested and subsequently self-isolated. We performed a series of
simulations by incrementing in 16 steps the testing and tracking
efficacy from 0 to 100%. For the purpose of the simulation, the
testing and tracking strategy was assumed to be introduced 20
weeks after the first outbreak.

Model Parameters and Latent Causes
The model we used is formally identical to the one described
in (16, 17) and the full list of model parameters can be found
in Supplementary Table 1. Here, we describe in greater detail
the hidden states that are particularly relevant for the present
purposes (“hidden” means that these quantities were not directly
observed but were inferred by the model):

• The probability of leaving home (location factor) given the
condition of being asymptomatic has a prior baseline
value (see “probability of going out” parameter in
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Supplementary Table 1) multiplied by a decreasing function
of the proportion of infected people. The social distancing,
modeled as “the propensity to leave home and expose
oneself to interpersonal contacts (14),” is an exponential
threshold parameter (see social distancing threshold
Supplementary Table 1). The transition probabilities among
the location factor can be defined for each state of the clinical
factor as follows: the probability of being in a certain location
arriving from a different location is regulated by:

P = θout(1− pinfected)
θsde

Where θout is the probability of leaving home normally every
day, θ sde is the social distancing threshold, and pinfected is the
probability of being infected. For example, the probability of
being asymptomatic in a certain location is defined by the
following (5× 5) transition matrix

P
(

loct+1

∣

∣loct , clint = asymptomatic
)

=
















home work CCU morgue isolation
(1− θout) 1 1 (1− kday) (1− Piso)

θout 0 0 0 0
0 0 0 0 0
0 0 0 kday 0

0 0 0 0 Piso

















where the columns indicate the current location, and the rows
indicate the next location. In all the transition probability
matrices of the location factor, rows, and columns are ordered
as home, work, CCU, morgue, and isolation. The parametrization
of transition probabilities is in terms of rate parameters (such as
θout , kday, Piso) as in (14).

θ = exp
(

−k
)

= exp(−1/τ )

where the rate parameter θ is related through an exponential
decay to the rate constant κ and ultimately with the time
constant τ , to indicate that the probability of staying in one
state is determined by the typical occupation time of that state.
For instance, the parameters Piso can be specified in terms of
the number of days people remain in self-isolation (τ =

7 days , Piso = exp(−1/7) ). The permanence in the morgue
state is also transitory (τ = 1 day , kday = exp−1) to conserve
the total population since deaths are compensated by newborn
susceptible individuals (17).

• The proportion of infected people (infection factor) represents
the proportion of people who are infected at a certain time.
The probability of being infected depends upon the number
of social contacts and the proportion of time spent at home.
These dependencies are parametrized by the “effective number
of contacts being home and being out” and the “probability of
getting contagion for each contact” (Supplementary Table 1).

• The proportion of immune people (infection factor) represents
the number of people that are effectively probabilistically
immune at a certain time.

• The proportion of resistant people (infection factor) represents
individuals that are not susceptible to infection because they
are relatively protected from the infection by immunity, such
as crossreactivity (32, 33) or protective host factors (34, 35).
Notably, during the pandemic, people can transit from a state
of exposure to a state of resistance through a mild illness that
does not entail seroconversion, with recovery being mediated
by T-cell response (36). The resistant state also includes the
immune state for subjects who never became contagious.

Similarly to what shown above, the probability of moving
between different states of infections is:

P =

(

1− θtrn · p
inf
infectious

)

Where θtrn is the transition probability per contact.

• The proportion of people showing symptoms (symptoms factor)
represents the proportion of subjects developing symptoms
after being exposed.

In the DCM approach, the definition of these factors and
the associated transition probabilities constitutes a generative
model of the observable data, based on the hypothesized real
(but latent) causal structure of the process under the study.
Starting from the LIST model [See model scheme on the left
in Supplementary Figure 1 and in Figure 3 in (15)], one of the
main assumptions is that the total population is divided into two
compartments: resistant and susceptible:

• The resistant state is an absorbing state (once entered, people
stay in that state) and includes individuals that are not
susceptible to infection because either they have preexisting
immunity (due to crossreactivity or specific host factors) or
they are shielded from the virus by virtue of geographical
segregation. Some susceptible people who have been exposed
to the virus can enter the resistant state without entailing
seroconversion since the recovery is mediated at a cellular
level (T-cells).

• The susceptible state includes people that can be infected
and potentially undergo seroconversion or alternatively,
through a mild illness, can enter the resistant state without
seroconversion (see above) since they show innate immunity.

The quota of susceptible individuals that can be temporarily
shielded from the infection was modeled via the “effective
immunity” parameter accounting for the prevalence of
antibodies against coronavirus and lifestyle factors such as
isolation due to mitigation strategies. The effective population

immunity parameter represents therefore the proportion of
people who, albeit potentially susceptible, cannot contract or
transmit the virus at a certain point in time. The effective
immunity has been assumed to decay due to antibodies decay
(37), virus mutation (30, 31), or fluxes of people that can dilute
the preexisting immunity (38).

The results were obtained using MATLAB code available
as part of the free and open-source academic software SPM
(https://www.fil.ion.ucl.ac.uk/spm/), released under the terms of
the GNU General Public License version 2 or later.
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Model Predictions Using Tests as Input Data
To analyze the impact of different testing and tracking
strategies, we used a version of the model that received as
input, in addition to the daily number of positive cases and
deaths, also the daily number of positive tests (Testing model,
Supplementary Table 6). This procedure increased the data
fitting accuracy (see Supplementary Figure 2), since the number
of positive cases was effectively controlled for the number of
actual tests. As shown in Supplementary Figure 2, data fitting
was markedly improved (compare Supplementary Figures 3, 6

to Supplementary Figure 2) and the model prediction tended to
follow closely the cyclic data fluctuations.

Model Validation and Predictive Validity on Dataset 1
The time series of the estimated daily number of positive
cases and a daily number of deaths, as compared to the actual
data, are reported in Supplementary Figures 3, 4. The predictive
capability of the model was assessed by withholding data from
the last 20 days during model inversion (see Methods). The
time series considered included data from January 22 to June
30. This choice was motivated by the customary social pattern
of the Italian population to go on vacation en masse in a
period ranging from early July to late August. We wanted to
exclude this period from the forecast of the model because
it entailed a sharp variation in people movements that could
not be realistically predicted by the model. The model forecast
was then compared with the actual data for these time points
(Supplementary Figures 3, 4 zoomed views; model forecast:
black lines; actual data: red dots). If we used data up to July
20, one can see that while the model predicted a slight increase
for the number of daily positive cases (Supplementary Figure 7),
which is arguably due to the beginning of the waning of
effective immunity, inaccurate predictions are most likely due
to isolated local outbreaks typically occurring during vacation
periods, people returning from foreign countries after vacations
or migrant fluxes. In all cases, the data related to dataset 1 fall
within the credible interval of the forecast for both the positive
cases and the daily deaths.

Predictive Validity on Dataset 2
The procedure performed to validate the model described
above was repeated with data up to August 31, with 20 days
starting from August 11 excluded from input data to assess
the model’s predictions. In this case, the model predicted an
increasing trend for both the number of daily positive cases
and deaths for Lombardy and Emilia-Romagna, the regions with
the highest number of daily cases at the peak of the epidemic
(Supplementary Figures 5, 6). The forecast for these regions
attests to a mild increment of daily cases and deaths that follow
the general trend of prediction and mostly remain within the
Bayesian 90% credible interval. Notably, the predictions for
Veneto, Piedmont, and Tuscany are expected to reach a baseline
close to zero within the subsequent few weeks. The actual data
(Supplementary Figures 5, 6) for the number of positive cases
fall outside the 90% credible interval and may thus prelude
to a sudden start of the second epidemic wave. It is however
important to highlight that these data often reflect new outbreak

episodes in small and localized areas, such as the one reported in
a migrant reception center at the beginning of August in Veneto.
It should also be noted that, in both cases, the number of daily
deaths follows the general trend of the prediction, lying mostly
within the confidence bands (Supplementary Figure 6).

Estimates of the Period of Loss of Shield From

Infection
The period of immunity loss was estimated by BMC on the
32 models for each of the regions under consideration (see
Supplementary Figure 8). Model inversion returned accurate
data fitting for the total number of deaths and positive cases, as
shown in Supplementary Figure 8.

Effective Reproduction Rate
The model of infection transmission supports the calculation of
an effective reproduction rate [Rt, always positive (16)], which
represents how many people an infectious individual is likely
to infect. This quantity depends upon the probability that any
contact will cause an infection (transmission strength parameter),
the probability of transition between the susceptible state and the
infection state, and the number of people an individual contacts
either at home or out (effective number of contacts: home and
effective number of contacts: out parameters, respectively). Note
that the effective reproduction rate is not a biological constant
rate; it is rather a useful epidemiological value indicating the rate
of outbreak diffusion. When Rt < 1, the infection will decay to an
endemic equilibrium, otherwise, the infection will spread with a
velocity proportional to Rt (Supplementary Figure 9).

Among the various possibilities to estimate the Rt, we have
adopted the one used by (16), since the effective reproduction
(Rt) rate is not a model parameter itself, but a quantity that can be
calculated from the latent causes inferred by the model according
to the following equation:

Rt = e(Kt ·τcon)

where

Kt = ln
P

(

infectedt+1

)

P
(

infectedt
)

The equation reflects both the growth of the proportion of
infected people and the period they remain infectious (τcon).

Sensitivity Analysis
An example of sensitivity analysis related to the influence on
death rates of the testing factor for Lombardy is shown in
Supplementary Figure 12. Sensitivity is calculated as the partial
derivative of the outcome with respect to a specified parameter
for each timestep (sensitivity may be different at different times
in the evolution of the process and it is thus represented as a
time course). The change in cumulative deaths with respect to the
specified parameter was calculated by integrating the sensitivity
over the period of 100 days from January 1 to April 10 (short-
term period, representing the first half of the first wave) and over
the remaining part of the curve (long term).
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Efficacy of Testing and Tracking Strategy
To quantitatively estimate the effect of testing and tracking
strategies, we computed the cumulative number of positive cases
and deaths in different conditions. Values were then normalized
to the maximum cumulative number and plotted on a relative
scale (Supplementary Figure 11).
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