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Abstract 

The emergence of new spectral imaging applications in many science fields and in industry has not 

come to be a surprise, considering the immense potential this technique has to map spectral 

information. In the case of near-infrared spectral imaging, a rapid evolution of the technology has 

made it more and more appealing in non-destructive analysis of food and materials as well as in 

process monitoring applications. However, despite its great diffusion, some challenges remain open 

from the data analysis point of view, with the aim to fully uncover patterns and unveil the interplay 

between both the spatial and spectral domains. Here we propose a new approach, called Image 

Decomposition, Encoding and Localization (IDEL), where a spatial perspective is taken for the analysis 

of spectral images, while maintaining the significant information within the spectral domain. The 

methodology benefits from wavelet transform to exploit spatial features, encoding the outcoming 

images into a set of descriptors and utilizing multivariate analysis to isolate and extract the significant 

spatial-spectral information. A forensic case study of near-infrared images of biological stains on 

cotton fabrics is used as a benchmark. The stain and fabric have hardly distinguishable spectral 

signatures due to strong scattering effects that originate from the rough surface of the fabric and the 

high spectral absorbance of cotton in the near-infrared range. There is no selective information that 

can isolate signals related to these two components in the spectral images under study, and the 
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complex spatial structure is highly interconnected to the spectral signatures. IDEL was capable of 

isolating the stains, (spatial) scattering effects, and a possible drying effect from the stains. It was 

possible to recover, at the same time, specific spectral regions that mostly highlight these isolated 

spatial structures, which was previously unobtainable. 

Keywords: spectral imaging, wavelet decomposition, near-infrared, image encoding, forensics, cotton, 

biological fluids, multivariate image analysis, spatial-spectral analysis 

1. Introduction 

Near-infrared (NIR) imaging has become a cheap, versatile and very attractive method in many 

fields of science and diverse industrial applications, for its ability to capture phenomena in both 

spectral and spatial domains. Examples of applications are remote sensing in agriculture [1], stain 

analysis in forensics [2,3] and foodstuffs quality control [4]. With hundred-thousands of pixels for 

which a full NIR spectrum can be registered, the information content available from a spectral imaging 

data set is potentially overwhelming. This issue is often amplified by the nature of the sample itself, 

due to the complexity of its chemical composition and/or physical structure [5]. In most studies, it is 

mainly information extracted from the spectral domain that is exploited by the chemometric analysis, 

while the spatial (structural, textural) information of the sample is often disregarded.  

The analysis of highly scattering materials is challenging in the NIR range and limited by the 

difficulty to describe the chemical and physical properties of the sample separately [6]. In practice, 

the separation of absorption and scattering has been the subject of different spectroscopic studies 

[7,8], with most of them removing the effect of scattering on the measured spectra by adequate 

preprocessing. Nonetheless, with NIR images of highly diffusive samples, scattering and absorption 

are entangled by highly non-linear mechanisms, which cannot always be fully eliminated by applying 

scatter-correction techniques on the individual spectral pixels, without the consideration of the spatial 

domain. Indeed, dramatic changes in the scattering contribution to the spectral signal can be expected 
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from object borders and texture, which may fully dominate the spectral signal. Strong spectral 

interferences can be localized in the spatial domain by supervised or first principle modelling [9,10], 

but these methods require significant a priori information about the scattering behavior of the 

samples. 

Most of the approaches to analyze NIR imaging data solely exploit spectral variation as the two 

spatial dimensions of the measured data cube are unfolded pixel-wise, ignoring spatial correlation. 

Still, one possible approach is multivariate image analysis (MIA), where the unfolded imaging data is 

augmented with pixel-neighbor information, to incorporate local-spatial information before it is 

analyzed with multivariate analysis tools, such as principal component analysis (PCA) or partial least 

squares (PLS) regression [11–13]. MIA has been originally proposed for RGB images [11,13] then 

extended to multi-channel images [14] and only recently to spectral images [11]. However, the 

number of neighboring pixels increases rapidly with the distance (or window size in pixels) from the 

center pixel at which to consider the neighborhood, and this applies to all spectral channels, making 

the data unmanageable in some cases. In this context, a parsimonious solution can be to employ 

multivariate curve resolution-alternating least square (MCR-ALS) using image processing constraints 

to take into account the spatial structure [15]. Nonetheless, this does require the data to strictly follow 

a bilinear model. 

Image processing techniques (object detection [16], contrast enhancement [17], etc.) might be 

used to highlight some features of single images, i.e. at a given spectral channel or the mean image 

across all spectral channels [18], but disregarding the spectral domain will prevent chemical 

interpretation. Some work has also been done on image segmentation, with the integration of the 

spectral domain [19], as well as utilizing the spectral and spatial domain, interactively switching 

between the two modes [20]. The analysis of textural features in spectral imaging has also been 

explored, by using the wavelet transform (WT) [14, 21-26]. These analyses i) use a MIA-like approach, 

where the local spatial information is extracted by WT, and 2D-WT sub-images are then analyzed by 
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multivariate analysis [14, 21-23], either on each single sub-image [21, 22] or on the entire sets [14, 23-

24];  ii) exploit 3D-WT on the imaging data cube [25] or iii) fuse the 2D-WT sub-images obtained at 

each spectral channel [26]. These approaches also aim at linking the spectral and spatial domains, in 

some cases the spectral interpretation is not so straightforward [25] or of no concern [26], while in 

others the dimensionality of data matrix when passing from multispectral [14] to hyperspectral  

images become quite huge [24].  

We recently proposed a novel approach to highlight the spatial-spectral interplay of the different 

components underlying a spectral imaging data set of a complex analytical system and published 

preliminary results [27] concerning a relatively simple Raman spectroscopy case study and a more 

complex one involving NIR spectral imaging datasets of an oil droplet in water and of biological fluids 

on cotton fabrics, respectively. However, we noticed that in systems of higher complexity, whose 

components show strong spectral and spatial overlap the analysis will become increasingly complex. 

To cope with this kind of situation, we here propose an extension and formalization leading to a novel 

method, called Image Decomposition, Encoding and Localization (IDEL). The method is meant to be 

unsupervised and exploratory.   

IDEL  relies on wavelet transform (WT) to resolve spatial features in distinct WT sub-images, then 

encodes this information in a set of descriptors (by using gray-level co-occurrence matrices [28]), and 

finally recovers specific spectral signatures for each spatial feature by multivariate data analysis. The 

encoded spatial information is fully exploited applying a semi-automatic procedure (that is data-

driven) furnishing as a result a set of distinct spatial features linked to the specific spectral channels 

at which they are observable. In this way, clear and precise spatial features can be extracted, while 

chemical interpretability is maintained.  

IDEL is challenged with a benchmark consisting of complex samples made of semen and lubricant 

stains on cotton fabrics analyzed with NIR imaging. There is significant spatial and spectral overlap 

between the stains and fabrics, and strong scattering effects are present. The localization of the fluid 
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on the substrate is of interest in forensic applications. As such, the segmentation of the biological fluid 

from the substrate as well as the removal of the significant scattering effects visible in the spectral 

imaging data is crucial. IDEL was able to isolate the stains from the fabrics, while preserving spectral 

information, as well as isolating a spatial structure previously unobserved. Moreover, the final 

obtained model is capable of isolating components also in new images, of similar type, once projected 

on it. 

2. Materials & Methods 

2.1 Methodology 

The framework for WT decomposition and gray-level co-occurrence matrices is described in detail in 

reference [27] and briefly recalled in this section. The main novelty implemented in this work consists 

of a methodology where: i) only the most relevant spatial information is selected by applying PCA on 

the descriptors’ matrix, which is based on picking the most significant scores (in terms of unique 

information) by means of convex peeling [29, 30] and ii) a semi-automatic procedure to link the 

spectral information to the relevant spatial information, establishing a correspondence among PCA 

scores and loadings. As a result, the most relevant wavelet sub-images are extracted. These sub-

images form a new data cube that contains the most significant spatial information at specific spectral 

channels. In more general terms, the spatial structures are firstly resolved, exploiting the original data 

cube. Then, maintaining a direct link with the spectral signature, a reduced image data cube is 

retrieved in the WT domain. Subsequently, to interpret the corresponding information encoded in 

terms of individual spatial components, a PCA approach is proposed. In fig. 1, the three main steps of 

IDEL are schematically shown. These steps are explained in detail in the following sub-sections. 

2.1.1 Spectral image decomposition and encoding 

The first step consists of the decomposition of the individual images corresponding to each spectral 

channel by 2D-WT (see fig 1a). 2D-WT is a very powerful filtering method, highlighting the different 
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frequencies content of an image, while maintaining their localization with respect to the original 

domain. High- and low-pass filters are applied to decompose the signal into two disjoint subspaces 

holding the sets of details and approximation blocks (high and low frequencies, corresponding to sharp 

and smooth features, respectively). The decomposition is iterated on the approximation block, 

obtaining at each level a coarser representation of the image than in the previous approximation block 

and the filtered higher frequencies in the details. For image analysis, the same mono-dimensional 

wavelet filters are recursively applied along the two image directions. For each decomposition level, 

four blocks are obtained: 1) approximation (A): a low-pass filter is applied both row- and column-wise; 

2) horizontal details (H): a low-pass filter is applied row-wise, then a high-pass filter, column-wise; 3) 

vertical details (V): a high-pass filter is applied row-wise, then a low-pass filter, column-wise; 4) 

diagonal details (D): a high-pass filter is applied both row- and column-wise. The specific direction 

along which the low- and high-pass filters are alternated, allows for specific textural patterns to be 

captured e.g., the H decomposition block highlights any pattern which would manifest horizontally, 

such as stripes (hence the name horizontal details). For the V and D blocks, vertical and diagonal 

textural patterns are highlighted, respectively, while the A block holds the original image with the 

details subtracted. We use the 2D stationary WT (2D-SWT) [31] which retains the size of the original 

image (see fig. S1, Supplementary Material), so that the decomposition blocks (from now on, referred 

to as sub-images A, H, V, and D), for each decomposition level, are equal in size to the raw image.  

Wavelet filters are grouped in specific families, which differ in shape and symmetry, while 

amplitude is modulated in each family by the number of vanishing moments [32]. The choice of an 

appropriate wavelet filter is data dependent and providing an automatic tool to tackle this task is 

outside the scope of the paper. However, there are criteria detailed in literature [33, and references 

therein] to guide the choice of suitable wavelet filters. A general recommendation, that can be given 

is that the simplest Haar wavelet, which comes from the Daubechies-family (Daubechies-1) is usually 

a good starting point when, as in this case, the aim is exploratory. In fact, Haar can capture general 
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changes present in an image, not focusing on specific spatial features, and disentangle signals that 

range from sharp contrasting edges to broad structures. 

In this work, the simplest Haar wavelet is applied, which comes from the Daubechies-family 

(Daubechies-1) and showed good performance (other wavelet filters, such as Daubechies-2, -5,  -7, 

Symlet-2, -4 and Coiflet-3, -5 were tested, data not shown); the maximum decomposition level 

compatible with the image size was used. As is illustrated in fig. 1b, 2D-SWT is applied to the spectral 

imaging data.  

To exploit the spatial information, the decomposition blocks are encoded into a set of 

descriptors that contain information on distinct local spatial features. This is done by calculating 

descriptors on the gray-level co-occurrence matrices (GLCM) derived from the A, H, V, and D sub-

images. The GLCM method maps the spatial dependence of pixel-pairs in quantized gray-level images. 

The quantization was set at 128. As such, each image intensity is normalized and distributed across 

128 gray-levels. A map is generated with size 128 by 128 elements, containing all possible quantized 

pixel-pairs. Selecting the appropriate number of gray-levels is similar to selecting the bin size in a 

mono-dimensional histogram and is always dependent on the size of, and information present in an 

image. A balance must be found between highlighting the relationships between neighboring pixels 

and not losing the details in the maps. Choosing a low number of gray-levels (large bin size) will result 

in a high number of counts over a small number of points, while choosing a high number of gray-levels 

(small bin size) will yield a low number of counts over a larger number of points (see fig. S2 in 

Supplementary Material for a visual representation).  

 On the pixel-pairs counting, two other parameters are of importance, namely the offset and 

angle. Both parameters must be attuned to the decomposition blocks and levels, due to the nature of 

WT. The offset determines the distance at which every neighboring pixel is observed with respect to 

the main pixel e.g., for a direct neighboring pixel, this distance is 1. This has been set to vary as 2level-1, 

with level being the WT decomposition level corresponding to the sub-image being codified. This 
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permits GLCM to account for the smoother patterns that are highlighted with increased WT 

decomposition levels, due to the removal of higher frequencies. The second parameter is the angle, 

or neighbors’ location, which dictates the direction in which a neighboring pixel is located. We select 

the angle to maintain coherency between the directions of the WT decomposition details H, V, and D 

and the location of the investigated neighbor within the GLCM. Hence, the angle is set depending on 

the type of sub-image: H considers the top and bottom neighbors, V, the left and right neighbors, and 

D, the top-left, and bottom-right neighbors. These neighbors highlight the local differences within the 

sub-images. While for A, as there is no specific direction, the neighbors in all directions, are 

considered. 

To encode the information carried by distinct patterns within an image, a set of eight 

descriptors was calculated from the GLCM, namely Energy, Contrast, Correlation, Variance, Inverse 

difference moment, Sum entropy, Information measure of correlation 1, and Maximal correlation 

coefficient. These are a subset of the descriptors proposed by Haralick et al. [28], which were selected 

as they are not much correlated with one another while describing all the relevant spatial features. 

We refer to [14] for a more in-depth survey of the selected descriptors. 

As is illustrated in fig. 1c, a matrix of dimensions: decomposition blocks x decomposition levels, 

in the rows, and spectral wavelengths in the columns, is obtained for each descriptor, which is auto-

scaled. Appending column-wise the matrices obtained for all descriptors, a so-called Descriptors’ 

matrix (DM) is obtained (see fig. 1d).  

2.1.2 Locating informative decomposed images 

The DM contains descriptors on sub-images at every spectral channel, encoding spatial information in 

the rows and retaining spectral information in the columns. Applying PCA to DM, scores (fig 1e) and 

loadings (fig. 1f) thus relate to the spatial and spectral information, respectively. The number of PCs 

to consider is of course data dependent and here we used the scree-plot as a guideline. Each point in 

the scores plot corresponds to one descriptor of a sub-image (A, H, V or D) at a specific decomposition 
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level. Thus, looking at the scores, the most distinct spatial structures can be identified. The loadings 

plot, in conjunction with the scores plot, enables us to establish a link with the spectral channels. In 

fact, the loadings plot shows at which spectral wavelengths the largest variation of the descriptors 

within the different sub-images and decomposition levels is observed.   

To this aim, we developed a semi-automatic procedure, which looks for relevant points in the scores 

plot while matching them to the loadings. It is a two-steps procedure.  

The first step of the procedure consists of the selection of relevant sub-images from the scores 

plot. It is based on the estimation of the convex-hull of the score points (fig. 1e). Convex hull is applied, 

instead of e.g., a thresholding on scores values, as it depicts the minimum set of distinctive points 

enclosing all information captured in the scores plot. Here, we implemented a “peeling procedure” 

where the convex hull is applied twice. The first convex hull will remove the first “peel” of the data 

and the second will refine the selection. This accounts for situations where a few quite extreme points 

may skew the convex geometry too much [34, 35]. This procedure identifies the distinct sub-images 

that show the highest variation across spectral channels for the descriptors as, e.g., in fig. 1e, where 

the selected points (marked red) show significant variation on the first two PCs, meaning that they 

show high variation for a specific descriptor (within a certain sub-image at a given decomposition level 

across all spectral channels).  

The second step is to match the salient spectral channels with the distinct spatial features (see 

fig. 1f). To do this, the scores and loadings must be reconducted in the same space by adequate scaling, 

as in a biplot [36]. The correspondence of the loading points with the selected score points is 

expressed in terms of angle, which evaluates the location of the scores and loadings with respect to 

the origin of the PC-space. To identify the loading points that have a correspondence with specific 

score points, a threshold is set around 20 degrees (zero degrees meaning perfect correspondence, 

and ninety degrees, no correspondence). The sign, of the scores and loadings, is not considered, 

meaning that a loading point that shows negative correlation (opposite location with respect to the 
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PC origin) to a score point is considered equal to a loading point that shows positive correlation. We 

assume that positive and negative correlations between the scores and loadings have equal 

importance. 

A single sub-image can be selected multiple times if it showed significant variation across 

spectral channels in several different descriptors. In fact, there are eight different points in the scores 

plot corresponding to each sub-image at a specific decomposition level, one for each GLCM descriptor. 

To give a clear overview of the selected sub-images at distinct spectral channels and highlight the sub-

images that show significant variation for several descriptors, a representation is generated. This 

representation, depicted as a Ω-map in fig. 1g, represents the decomposition blocks and levels of all 

sub-images vs the spectral channels. The Ω symbol indicates the sub-images selected by the 

procedure. The color coding on the color bar depicts the number of descriptors that were selected. In 

the end, only the sub-images that are required to explain the spatial features that make up the 

different spatial components in the wavelet decomposition are kept. 

The selected sub-images are then reconstructed by inverse SWT and reorganized in the so-

called Ω-data cube (fig. 1h). Even if the decomposed sub-images are of congruent size, reconstruction 

avoids spatial distortion with respect to the original image, which may be introduced at the deepest 

level of decomposition and brings the decomposed images back to original intensity scale. The Ω-data 

cube contains the wavelet sub-images at specific spectral channels, that isolated the significant spatial 

structures determined from a set of chosen descriptors. Also, the values in each of these sub-images, 

when assembling the Ω-data cube, are auto-scaled, and multiplied by √𝑓, with 𝑓 being the number of 

descriptors that have been selected for each selected sub-image. In this way, more weight is given to 

sub-image which show significant variation for more than one descriptor, meaning that different and 

distinctive spatial features are enhanced/captured by them.  

2.1.3 Image fusion 
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Notwithstanding that the Ω-data cube contains a subset of reconstructed wavelet sub-images 

exploited by 2D-SWT decomposition of spectral imaging data, it still includes some redundant spatial 

information (the same spatial features are visible at more than one single spectral channel). Thus, it 

can be desirable to further distill the captured information. We generically refer to this task as “image 

fusion” and different approaches may be used. The simplest approach is to decompose the data matrix 

obtained after pixel-wise unfolding of the Ω-data cube by applying PCA. The refolded scores will 

provide images (fig. 1i) that combine the spatial patterns that show a similar variation in the Ω-domain. 

The representation and interpretation of the loadings is slightly more complex, as they do not 

encompass all channels of the original spectral domain (see fig. 1j). The loadings are organized in such 

a way that they will have the same dimensions as the Ω-map to get a clear overview on their 

importance (by means of the color bar) at a specific decomposition and spectral channel. This results 

in a so-called loadings map. Beside it, for each PC, a plot of the mean spectrum of the original spectral 

image is reported, with only the significant loadings highlighted by using distinct symbols/colors to 

indicate the corresponding wavelet sub-image, i.e. A, H, V, and D (fig. 1k). This is done to visualize any 

correspondence of the selected sub-images with any spectral bands in the original data set. The path 

from here can branch out, as extracting the spatial structures of the Ω-data cube can be done by 

several different fusion or modelling techniques e.g., one can apply MCR or Independent Component 

Analysis instead of PCA.  

2.1.4 Ω-projection 

An advantage of IDEL is that the generated PCA model can be used to project new imaging data, 

requiring only the 2D-SWT decomposition step to assemble the Ω-data for the test images (see section 

3.3). Sub-images at the specific spectral channels (the ones belonging to the Ω of the training image) 

need to be calculated. Then, having the Ω-data of the new image, we can unfold and project it onto 

the PCA model, obtaining the scores, which in turn give the scores’ images by refolding.  
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2.2 Data and preprocessing 

The increased use of spectral images in forensic applications makes this methodology particularly 

interesting for body fluid detection [2-3, 37–39]. In such a scenario, forensic experts are often 

searching for compounds (such as blood, semen, and saliva) with specific spectral signatures that can 

link a crime scene to a victim, an assaulter or even a witness. However, those fluids usually appear on 

many different substrates, whose composition and texture characteristics can hamper its localization, 

making it difficult for the analyst to identify its origin and, consequently, to submit them to further 

DNA analyses, for example.  

IDEL has been applied on ten spectral images of stained cotton fabrics. There are five differently 

colored (yellow, white, red, green, and black) cotton fabrics, each with a stain of either lubricant or 

semen. All semen samples were obtained from the same donor [3, 40], and the lubricant called KY-

Jelly, mostly consisting of glycerol and hydroxyethyl-cellulose, came from the Durex© brand. The NIR 

imaging data was acquired by a Short-Wave Infrared (SWIR) SisuCHEMA imaging system from Specim 

(Oulu, Finland). The spectral range was 900 to 2500 nm with a spectral resolution FWHM of 10 nm 

and a spectral step size of 6.3 nm (256 spectral channels). The imaging system used had a lens of 50 

mm and a pixel size of 156x156 mm2. The squared pieces of fabric were stained with a droplet of 

semen and lubricant, and left to dry for a week at room temperature. We refer to Silva et al. [3] for 

more details on the samples and data acquisition. The pre-processing of the data in this work is not 

the standard procedure for NIR imaging data, as the aim of standard procedures is to generate bi-

linearity within the data by harmonizing the scattering and removing the variance of the path length 

(e.g. multiplicative scattering correction [41], MSC and standard normal variate [42], SNV). The angle 

of analysis for IDEL is image processing while maintaining spectral correlation. As such, the intended 

purpose of pre-processing is to contrast the spatial features within the images, while maintaining 

spectral correlation. To achieve this purpose weighted least squares baseline correction is applied, 

where a baseline is estimated for each pixel. However, firstly, the data was smoothed with Savitzky-

Golay [43] (11-point window, 2nd order polynomial) to account for any unwanted spikes in the spectra. 
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Secondly, the first 40 and last 15 spectral channels were removed, as these show only noisy images, 

containing no significant information. And lastly, weighted least squares (WLS) baseline correction (3rd 

order) [44] is applied. A summary of the example dataset used in this work is shown in fig. 2. In 

addition, the scores maps and loadings profiles resulting from its PCA analysis after preprocessing by 

means of WLS and two more standard pretreatment algorithms for near-infrared data (i.e., MSC, and 

SNV) are displayed in figure S3 of Supplementary Material. 

3. Results and Discussion 

The stained cotton fabrics data are of interest for forensic applications and were used for the purpose 

of presumptive identification of biological fluids on textile. These data provide a meaningful 

benchmark to assess the efficiency of IDEL. At least two chemical constituents exist for each image, 

the cotton and the stain (lubricant or semen), but there is no spatial region without cotton, and the 

location of the stain may be detectable at selected spectral channels, but it is not clearly observed in 

the raw data as it is mixed with the cotton [16]. Moreover, the fabric and stain show overlapped 

spectral bands. The results obtained from three different images will be discussed, namely the yellow 

cotton fabric with a lubricant stain (LY), the white cotton fabric with a semen stain (SW) and the red 

cotton fabric with a semen stain (SR) (see fig. S4). In addition, the results of all ten datasets are 

provided in fig. S5. 

For the LY and SW data sets, parameters were set as detailed in section 2.1.1. The results will go over 

the PCA analysis of the Ω-data cube, investigating the scores’ images, loadings maps and highlighted 

loadings on the mean spectrum, as shown in fig. 1i, j and k. 

3.1 Lubricant on yellow cotton fabric 

The Ω-data cube for the LY data set consists of 140 sub-images, extracted from the wavelet 

decomposition, and the results are reported in fig. 3. The resulting scores’ images (fig. 3a) of the first 

4 PCs (explaining 58.3 % variance of the Ω-data cube) are considered, where four distinctive spatial 
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features are clearly recognizable. One can clearly identify the stain spot and the cotton fiber pattern, 

as will be discussed below. 

The PC1 scores’ image (fig. 3a) mainly shows the presence of an intense spot (almost in the 

center) which can be identified as a stain. The corresponding loadings map (see fig. 3b) shows that all 

the wavelet sub-images from every decomposition block (A, H, V and D) are contributing to the model, 

however the highest loadings values are mainly associated to approximation sub-images (A), which 

retain low frequency contributions in the original data set, hence smooth patterns. Figure 3c 

represents the relevant spectral wavelengths on the mean spectrum of the spectral image with the 

notable points being: i) approximation sub-images at decomposition levels 2 and 6 (A-2 and A-6), 

which are linked to positive loadings within the spectral region 1990 to 2060 nm, ii) sub-images A-4 

and 5, linked to negative loadings around 2400 nm, and iii) A-6 linked to negative loadings around 

1300 nm. Although it is extremely difficult to consider band assignment in NIR for such complex 

matrices, the band around 2000 nm suggests contributions from glycerol [45], one of the main 

compounds of the lubricant. The negative contribution at 1300 nm is interesting as well, as neither 

cotton nor glycerol absorb at that wavelength. This contribution could be linked to a solely physical 

effect, due to the lack of absorbance of either cotton or lubricant, or it could be linked to a third 

unknown component.  

The PC2 scores’ image (fig. 3a) clearly shows the diagonal texture associated to the cotton 

fibers. The loadings’ map (fig. 3b) shows that the most relevant contributions are from the H and D 

sub-images in the spectral range from 1400 to 1550 nm. When looking at the loadings (see fig. 3), all 

these contributions relate to the band centered at 1494 nm. This can be attributed to the first 

overtone of O-H in cotton [46]. The main contribution comes from the D sub-images, however some 

minor contributions come from the H-sub-images. This can be attributed to the large spacing that is 

seen between the diagonal fibers, which can be captured in the horizontal details. 
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The PC3 scores’ image (fig. 3a) is not straightforward to interpret. It shows some very smooth 

patterns, which are usually captured at the deepest decomposition levels (low frequency 

contributions in the spectral images) and mainly by approximations. However, details may also 

capture this type of information when, as in this case, there could be low frequency directional spatial 

patterns present (the most intense loadings values are from the H and V sub-images). When looking 

at the highest values in the loadings map (fig. 3b) and at their location on the mean spectrum (fig. 3c), 

the contributing spectral regions are quite spread and mainly on shoulders or along the spectral 

baseline. These patterns are quite difficult to interpret, and can originate from various sources, e.g. 

non-homogeneous illumination of the surface. These points can introduce minor variations in an 

image that can be seen in the deepest levels of a wavelet decomposition. 

Finally, PC4, as for PC2, shows the texture of the cotton textile, however now its pattern has 

mostly a vertical direction. The main contributions are for details sub-images (mainly V) and again the 

relevant spectral region includes the band centered at 1494 nm.  

Added to this is a contribution from the spectral band at about 2000 nm, which was not 

captured by PC2. This spectral channel is slightly shifted with respect to the contribution discussed in 

PC1. This could be attributed to the first overtone of R-CO-R. Possible reasoning for PC4 to be 

separated from PC2 is that the spatial structure is significantly different and is isolated as a different 

component. Even though they both originate from cotton, the overlapping fiber structures show 

significant differences.  

Summarizing the results for the LY data set, different spatial features could be isolated, segmenting 

the stain and recovering the cotton fiber patterns across the whole image in the scores’ images. A 

possible link to the spectral domain has also been established, where the interplay of chemical and 

physical information is observed.  
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3.2 Semen on white cotton fabric 

The Ω-data cube consists of 491 sub-images, extracted from the wavelet decomposition. The results 

of the PCA analysis of the Ω-data cube for the SW data set are shown in fig. 4. The first four PCs 

(explaining 52.1 % variance of the Ω-data), which capture the different spatial structures, are discussed 

below. 

The PC1 scores’ image only shows the semen stain without any pattern related to the texture 

of the fabric (see fig. 4a). The loadings map (fig. 4b) highlights several contributions but the highest (in 

absolute terms) are from the A sub-images across most of the decomposition levels. Reporting the 

correlated loadings on the mean spectrum, the corresponding spectral regions are located at: 1300 

nm, 1700 nm and 2200 nm, showing positive loadings values, 1450 nm, 1850 nm and 1940 nm, 

showing negative loadings values. 

The contributions at 1700, 1850 and 2200 nm could relate to semen, as they could be 

attributed to protein bands [47]. However, the band at 1300 nm is not attributable to a specific 

component: it could be that this is solely associated to physical scattering effects that come into play, 

as something similar was observed in the lubricant example. The 1450 and 1940 nm bands could be 

attributed to water bands [48], as the loadings show negative values and a faint negative circle is 

observable in the lower left part of the corresponding score image (fig. 4a , PC1). A similar contribution 

can be seen on the PC3 scores’ image (fig. 4a) but with an inverted sign (positive values of scores and 

loadings). Even if the samples were dried, it cannot be excluded that water on the border is reabsorbed 

due to the environmental conditions, since the humidity of the room (where the samples were stored) 

was not controlled. 

As in the lubricant data, the PC2 scores’ image depicts the texture linked to the cotton fibers. 

However, here the fiber orientation spatially manifests in the horizontal direction. As such, the H sub-

images are mostly selected (fig. 4b, PC2). The salient loadings highlighted on the mean spectrum are 
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associated to the absorption band at 1494 nm, which has already been referred to as the first overtone 

of O-H stretching in cotton. 

The PC3 scores’ image shows, like for the lubricant data, smooth spatial patterns. However, a 

small intense circle is also visible in the bottom left part of the image. Looking at the salient loadings, 

both in the loadings map and reported on the mean spectrum, we see that mostly A and V sub-images 

have the highest absolute loadings; the relevant spectral channels are in large part the same as for 

PC1, e.g. 1300, 1450, 1830 and 1940 nm. In fact, the simultaneous absorbance around 1450 and 1940 

nm could be linked to water, which could mean that what is observed is due a to a drying effect at the 

border of the semen stain. Analogously, similar, but negative spectral contributions were observed in 

PC1. In the image, the semen stain border has an elongated form in the vertical direction. As such, it 

is being captured by the vertical details (V sub-image). On the other hand, the A sub-images capture 

the small spot, which is linked to semen. 

The PC4 scores’ image shows the border of the semen stain, captured by H and V sub-images, 

contributing the most to the loadings map. However, the contribution from the texture of cotton is 

observable. Around the border of the stain, the spectral contributions from the cotton fabric and the 

semen stain are strongly overlapping. The salient spectral regions include the 1700 nm band, already 

discussed for PC1 as connected to semen, and the 1500 nm band connected to the cotton fibers, 

mentioned with regards to PC2. 

The compression (or “fusion”) step operated by PCA was extremely efficient to extract 

information, separating spatially not only the semen stain from the texture (which consists of the 

scattering effects of cotton), but also distinguishing the scattering around the border of the semen 

stain together with a possible drying effect of the semen. 

3.3. Projection: Semen on red cotton fabric  

We have seen that the proposed approach is very efficient to retrieve spatial information and 

interpret it in terms of spectral contributions. In particular, the scores’ images obtained from the 
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analysis of the Ω-data help in discerning the various spatial components, which are not observable 

separately at any single spectral channel in the original data. The loadings highlight the spectral 

channels at which those components mostly manifest. A clear next step can be foreseen, which is 

evaluating if new (test) images projected on the loadings of a reference image can extract the same 

kind of specific spatial information in the scores’ images.  

The SR data set is investigated. The system is sufficiently similar to SW, but the shape of the stain, 

the scattering effects and the color of the cotton are different. The resulting scores’ images are shown 

in fig. 5. In the projected scores’ images, similar spatial features can be observed: the semen stain is 

isolated in PC1, the texture of the cotton fibers with some bordering effects is seen in PC2, in PC3 a 

bordering effect linked to the semen stain is visible, and finally, the joint border and scattering effects 

are highlighted along PC4. Although the texture of the cotton fibers is not completely isolated from 

the border effects in PC2, the semen stain has been isolated and correctly identified. These minor 

differences may be due to spatial and spectral differences between the data sets. The texture of the 

cotton fibers is not the same, i.e., it is oriented in a different direction with respect to the modelled 

image. In addition, the color of the fabric is different: red fabrics might exhibit a different absorption 

with respect to white. Also, the amount of deposited semen may not be the same, nor its position or 

shape.  Very similar results were obtained by projecting, as test image, the green cotton fabric with a 

semen stain (SG), as shown in fig. 6a. It is worth noticing that, for both SR and SG, the squared 

prediction residuals (SPE) are in the same range of the calibration image (i.e. SW) as shown in fig. 5b 

and 6b, respectively.  

Overall, these results seem very promising. Nonetheless, the projection (figure not shown for the 

sake of brevity) of the black fabric image with a semen stain (SB) and, to a minor extent, of the yellow 

fabric, while showing similar spatial features on scores images, resulted in high SPE signaling that 

when, the spatial structures and/or the spectral background (as it is the case of SB) of the test images 
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are very different from the calibration image much care should be taken in interpreting the scores 

maps, even if interesting spatial structure are unveiled. 

4. Concluding remarks 

IDEL utilizes WT, image encoding and PCA to extract decomposed sub-images that show significant 

variation across the spectral domain for spatial features related to distinct descriptors. Not only can it 

extract the distinct spatial-scattering effects present in a NIR spectral image, but also other 

components that show significant spatial differences between each other, while simultaneously 

having the capability to retain the spectral information that is linked to such captured spatial 

components. Thus, IDEL seems a very useful and powerful spectral imaging exploratory tool. However, 

some care must be paid when interpreting the highlighted spectral channels, as the previously 

discussed physico-chemical effects are difficult to separate from one another.  

Once the model is built for components that have distinct spatial-spectral features, test images 

can be projected onto its space for their direct assessment. Also, the application of PCA to the Ω-data 

cube showed very promising results for spectral image interpretation. Some future work will be to 

utilize image fusion techniques to better extract and isolate spatial components.  

The results obtained in this work can be generalized to any application field employing spectral 

imaging for the visualization of materials characterized by high morphological content, such as 

biological tissues [48], wooden materials [49–51], or remote sensing [52]. The integration of the 

proposed approach with other data analysis techniques, like multivariate curve resolution (MCR), will 

also be investigated. 
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Legend of figures 

Figure 1: Illustration of DIEL. The methodology consists of three main steps. Firstly, “Spectral image 

decomposition and encoding”, encompassing; a) a NIR spectral image, which is decomposed by means 

of wavelet transform into; b) blocks containing horizontal (H), vertical (V) and diagonal (D) details, and 

approximations (A) at different decomposition levels; c) that are then encoded into distinct descriptors 

and organized into a Descriptor’s matrix. Secondly, “Locating the informative decomposed images”: 

where d) the Descriptors’ matrix is unfolded descriptor wise, retaining the spectral dimension, and e)-
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f) decomposed by principal component analysis. The convex hull of the resulting scores is highlighted 

in red and labelled in the scores plot, while the corresponding salient loadings are highlighted by a 

black point, inside the colored point in the loadings plot. g) The scores (on the convex hull) and their 

respective (salient) loadings are mapped in the Ω-map. The map reports on the “x-axis” the spectral 

channels and on the “y-axis” the decomposition block, to which each sub-image belongs, as well as the 

decomposition levels ordered from first to last (going down). Lastly, “Image fusion”, where the sub-

images that are localized in the Ω-map are extracted from the reconstructed wavelet decomposition 

and assembled into a Ω-data cube (h). Principal component analysis is applied on the unfolded Ω-data 

cube and the resulting (refolded) scores’ images for the first two principal components are shown in i1-

2. The loadings are mapped and visualized in a so-called loadings’ map (j1-2), where the color coding is 

set according to the loadings values. The mean spectrum is shown in k1-2, which highlights only loadings 

with absolute values > 0.075 (to declutter the figure, where negative values are denoted by a ✷ and 

positive ones by a O), colored according to the decomposition block: A (blue), H (red), V (black) and D 

(green) sub-images. The purple to red color coding relates to the spectral dimension throughout the 

figure. 

Figure 2: An illustrative data set is shown: (a) the spectral data cube, (b) the corresponding mean 

image and (c) 1 % of the spectra. 

Figure 3: Results for the LY data set are shown. Scores’ images (a1-4), loadings’ maps (b1-4) and salient 

spectral channels on the mean spectrum (c1-4) are shown for the first four principal components 

extracted from the analysis of the Ω-data cube. 

Figure 4: Results for the SW data set are shown. Scores’ images (a1-4), loadings’ maps (b1-4) and salient 

spectral channels on the mean spectrum (c1-4) are shown for the first four principal components 

extracted from the analysis of the Ω-data cube. 
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Figure 5: (a) Results of the projection of the SR data set onto the SW PCA model. Scores’ images of the 

first four principal components are shown; (b) Plot of squared prediction residuals (SPE). SPE for 

calibration set (SW image) are shown in blue color. 

Figure 6: (a) Results of the projection of the SG (semen stain on green fabric) data set onto the SW PCA 

model. Scores’ images of the first four principal components are shown; (b) Plot of squared prediction 

errors (SPE). SPE for calibration set (SW image) are shown in blue color. 

Supplementary figures 

Figure S1: Framework of two-dimensional stationary wavelet transform. A low- (Fj) and high- (Gj) pass 

filter is applied row- and column-wise, in particular sequences, to retrieve distinct sub-images: 

Horizontal (H), Vertical (V) and Diagonal (D) details, and Approximations (A). ↑2 denotes an up-

sampling that is applied to the resulting wavelet coefficients to retain the original image size. 

Figure S2: The effect of the number of gray-levels in a GLCM to show the clear balance between a low 

and high number of bins / gray-levels. 

Figure S3: PCA analysis of the semen stain on white cotton fabric data (SW), with different pre-

processing techniques (WLS, top; MSC, bottom-left; SNV, bottom-middle; 2nd derivatives, bottom-

right). 

Figure S4: Mean images (across the spectral dimension) of the ten colored fabrics with either lubricant 

(left) or semen (right) stains. 

Figure S5: Outcomes of the analysis of the ten images of colored cotton fabrics with either lubricant 

(left) or semen (right) stains. The first four scores’ images and salient spectral channels on the mean 

spectrum are shown. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

Figure 6 
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Figure S1 (Supplementary Material) 
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Figure S2 (Supplementary Material) 
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Figure S3 (Supplementary Material) 
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Figure S4  
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Figure S5 (Supplementary Material) 
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1. A novel method for unsupervised exploration of hyperspectral imaging data is presented. 

2. The method is based on Image Decomposition, Encoding and Localization steps. 

3. It retrieves distinct spatial features while linking them to specific spectral channels. 

4. The method is tested on data sets of forensic interest. 
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