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Abstract

We derive sufficient conditions for the existence of second and fourth moments of
Markov switching multivariate generalized autoregressive conditional heteroscedas-
tic processes in the general vector specification. We provide matrix expressions in
closed form for such moments, which are obtained by using a Markov switching
vector autoregressive moving-average representation of the initial process. These
expressions are shown to be readily programmable in addition of greatly reducing
the computational cost. As theoretical applications of the results, we derive the spec-
tral density matrix of the squares and cross products, propose a new definition of
multivariate kurtosis measure to recognize heavy-tailed features in financial real
data, and provide a matrix expression in closed form of the impulse-response func-
tion for the volatility. An empirical example illustrates the results.
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Since the seminal works of Engle (1982) and Bollerslev (1986), generalized autoregressive

conditional heteroscedastic (GARCH) models have been frequently used in modeling the

volatility of financial time series. These dynamic models are shown to be more capable than

standard time series models, such as vector autoregressive moving-average (VARMA) proc-

esses, to capture the empirical features in several financial data, such as stock prices or indi-

ces, and exchange rates. Estimation, consistency, and asymptotic theory of quasi-maximum

likelihood (QML) estimators of the parameters of multivariate GARCH models are pro-

vided by Comte and Lieberman (2003), Hafner and Preminger (2009), and Francq and

Zakoı̈an (2012). Stationarity conditions for GARCH models in various specifications can

be found in Francq and Zakoı̈an (2011, §10).
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A feature of the GARCH model is that the conditional variance changes over time as a

fixed function of the past. However, it has been shown empirically that many financial time

series typically exhibit structural changes in the dynamics of the conditional variance,

which are not accounted for by standard GARCH models. One popular approach in model-

ing changes in regime is to consider Markov switching (MS) parameters. Several authors

have proposed MS GARCH models to model the volatility in financial time series. For in-

formation concerning stationarity, consistency of maximum likelihood (ML) estimates geo-

metric ergodicity, L2-structure, filtering, duality, and statistical inference of univariate MS

GARCH models, see Francq, Roussignol, and Zakoı̈an (2001), Francq and Zakoı̈an

(2005), Liu (2006), and Bauwens, Preminger, and Rombouts (2010).

A special case of MS GARCH models are the so-called mixture GARCH models, where

the regime variable is identically and independently distributed (i.i.d.) across different dates.

In the univariate GARCH case, mixture models have been introduced by Haas, Mittnik, and

Paolella (2004), while Bauwens, Hafner, and Rombouts (2007) extend such models to the

multivariate case. Both papers derive the fourth moment structure, so there is some link with

the results obtained in this paper. An advantage of mixture models is that in high dimensions,

simple models with few parameters can be mixed to obtain more flexibility than specifying a

complex one-component model. On the other hand, introducing changes in regime substan-

tially increases the model flexibility. This makes MS models more preferable than mixture

ones in several empirical economic applications. In the mixing case, it is possible that covari-

ance stationarity, and hence finite second moments, holds although for some components it

does not hold, see Bauwens, Hafner, and Rombouts (2007). Something like this is also pos-

sible in the MS case, see Bauwens, Preminger, and Rombouts (2010).

Our goal is to study the second and fourth moment structures of multivariate MS

GARCH models in the general vector specification [including, the BEKK specification of

Engle and Kroner (1995)]. The approach to do this is based on an MS VARMA representa-

tion of the initial process. We generalize the matrix formula obtained by Hafner (2003) for

the second moments of standard multivariate GARCH models to the MS context. Then we

derive a matrix expression in closed form for the fourth moment structure of multivariate

MS GARCH models. This formula is new, nonrecursive, and without the use of an infinite

summation as in Hafner (2003), so it is easily tractable and directly computable. Estimating

GARCH-type models often requires to calculate their unconditional moments, which are

needed for variance targeting. To our knowledge, there are no explicit matrix formulas in

closed form, which allow to do this analytically for the class of multivariate MS GARCH

processes. Our matrix expressions for the second and fourth unconditional moments of

multivariate MS GARCH models are shown to be readily programmable. So they greatly

reduce the computational cost of estimating unconditional moments for such models.

As a first application, we propose a new definition of multivariate kurtosis measure for

multivariate MS GARCH models. As remarked by Hafner (2003), this is relevant for vari-

ous purposes. For example, having estimated the model based on QML, the question arises

as to which innovation distribution one should use in simulation studies such that the em-

pirical kurtosis is approximated. In finance, this is particularly important for option pric-

ing, where the degree of excess kurtosis explains the shape of the so-called smile. A second

example is the estimation by generalized method of moments, where the efficiency may

often be improved using the kurtosis formula. Further theoretical applications of our results

include the derivation of the spectral density matrix of the squares and cross products, and
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a matrix expression in closed form of the impulse-response function for the volatility of

multivariate MS GARCH models.

The article is structured as follows. Section 1 is devoted to introduce the model and state

the main results. In Section 2, we propose the kurtosis measure and derive the spectral dens-

ity matrix of the squares and cross products and the impulse-response function for the vola-

tility of a multivariate MS GARCH model. Section 3 applies the results to a bivariate MS

GARCH. Section 4 concludes. Some proofs are given in the Appendix. Additional proofs

and examples are provided in the Supplementary Material.

1 Assumptions and Main Results

Let us consider the general M-state MS m-dimensional GARCH(p, q) model [in short,

MS(M) GARCH(p, q)]:

xt ¼ H
1=2
t gt; (1)

ht ¼ c stð Þ þ
Xq

i¼1

Ai stð Þyt�i þ
Xp

j¼1

Bj stð Þht�j; (2)

where xt is a random vector with values in R
m; yt ¼ vech xt x0t

� �
2 R

K with

K ¼ m mþ 1ð Þ=2, Ht ¼ H F t�1;Dtð Þ 2 R
m�m, and ht ¼ vech Htð Þ 2 R

K. Here, F t denotes

the information set available at time t, that is, F t ¼ xt;xt�1; . . .f g and Dt ¼ st; st�1; . . .f g.

Assumption 1. The process stð Þ is an irreducible, aperiodic, and ergodic Markov chain with

values in the set N ¼ 1; 2; . . . ;Mf g, stationary transition probabilities pij ¼ Pr st ¼ð jjst�1 ¼ iÞ for

i; j ¼ 1; . . . ;M, and unconditional (or steady state) probabilities pi ¼ Pr st ¼ ið Þ for i 2 N.

Let P ¼ pijð Þ denote the transition probability matrix of the chain. For the model param-

eters, we have Ai stð Þ; Bj stð Þ 2 R
K�K and c stð Þ 2 R

K, where R
m�n denotes the class of real

m�n matrices and R
n the class of n-dimensional real vectors, that is, Rn ¼ R

n�1.

Assumption 2. The innovation gtð Þ is i.i.d. with mean zero and identity covariance matrix.

Furthermore, gtð Þ is independent of stð Þ.

To simplify computations, the conditional mean of xtð Þ is assumed to be zero in Equation

(1). But the results of the article can be easily generalized to a nonzero mean case. Thus, we

have E xtð Þ ¼ E xtjF t�1ð Þ ¼ E xtjF t�1;Dtð Þ ¼ 0 and var xtjF t�1;Dtð Þ ¼ Ht. The square root of

the matrix Ht in Equation (1) can be defined as H
1=2
t ¼ QtK

1=2
t Q0t with the matrix Qt contain-

ing the eigenvectors and the diagonal matrix Kt containing the eigenvalues of Ht on its diag-

onal. To define the square root of Ht, one can also use a Cholesky factorization of Ht. A

sufficient condition for Ht to be positive definite is that each of the parameter matrices is sym-

metric positive definite. The symmetry of the parameter matrices, however, is a rather restrictive

assumption. There are as yet no general results on necessary and sufficient conditions for posi-

tivity of Ht. This is why in practice one often considers restrictions that ensure positivity.

For example, the MS BEKK(p, q) model specifies Ht as

Ht ¼ C stð ÞC
0

stð Þ þ
Xq

i¼1

Ai stð Þxt�ix
0
t�iA

0
i stð Þ þ

Xp

j¼1

B j stð ÞHt�jB
0
j stð Þ;
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where C stð Þ is a m�m lower triangular parameter matrix, Ai stð Þ and B j stð Þ are m�m par-

ameter matrices. See Engle and Kroner (1995) for the state-invariant case. Such a specifica-

tion ensures positivity of Ht. Moreover, it will typically involve fewer parameters than the

vec equation in Equation (2). Positivity constraints on the conditional variances in the fam-

ily of conditional correlation GARCH models can also be found in Nakatani and

Teräsvirta (2008).

In this article, we derive results for the more general vec model in Equation (2), for

which the following holds:

Assumption 3. The matrix Ht is positive definite almost surely.

Models (1) and (2) are the MS extension of the multivariate GARCH considered in

Hafner (2003).

By rearranging terms, the model can be represented as an MS(M) VARMA(r, p), where

r ¼ max p; qð Þ:

yt ¼ c stð Þ þ
Xr

i¼1

ai stð Þyt�i þ et þ
Xp

j¼1

bj stð Þet�j; (3)

where

et ¼ e F t�1;Dtð Þ ¼ yt � ht ¼ rtut 2 R
K

rt ¼ r F t�1;Dtð Þ ¼ Dþm H
1=2
t �H

1=2
t

� �
2 R

K�m2

ut ¼ gt � gt � vec Imð Þ 2 R
m2

:

In order to give explicit results, we assume a specific distribution for the innovations gt.

See Hafner (2003), Assumption 3.

Assumption 4. The distribution of gt belongs to the class of spherical distributions with fi-

nite fourth moments.

Spherical distributions include the multinormal and multivariate Student’s t-distribu-

tions. It is known that very often the latter distributions are used to accommodate fat tails

of the innovation distribution.

If gt satisfies Assumption 4 with mean zero, covariance identity matrix Im, and cokurto-

sis coefficient c, then the innovation process utð Þ is i.i.d. with mean zero and covariance

matrix

X ¼ 2cDmDþm þ c� 1ð Þvec Imð Þvec Imð Þ0

¼ c Im2 þ Kmm½ � þ c� 1ð Þvec Imð Þvec Imð Þ0:

See Magnus and Neudecker (1986), Lemma 8, and Hafner (2003), Lemma 3. Here, Dm

is the m2 � K duplication matrix, Dþm denotes the Moore–Penrose inverse of Dm, that is,

Dþm ¼ D0mDm

� ��1
D0m 2 R

K�m2

, and Kmm is the m2 �m2 commutation matrix. For example,

for a multinormal distribution c¼1, and for a multivariate Student’s t-distribution with �

degrees of freedom, c ¼ � � 2ð Þ= � � 4ð Þ if � > 4.

In the MS VARMA representation (3), the K�K matrices ai stð Þ are given by

ai stð Þ ¼ Ai stð Þ þ Bi stð Þ; i ¼ 1; . . . ; r, where we set Aqþ1 stð Þ ¼ � � � ¼ Ap stð Þ ¼ 0 if p > q and
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Bpþ1 stð Þ ¼ � � � ¼ Bq stð Þ ¼ 0 if q> p. Furthermore, bj stð Þ ¼ �Bj stð Þ for j ¼ 1; . . . ;p. Notice

that etð Þ is a martingale difference sequence such that E etð Þ ¼ E etjF t�1ð Þ ¼ 0 and E ete
0
s

� �
¼

0 for t 6¼ s. However, etð Þ is not independent over time since it does not have a constant

variance in time, that is, it is not a homoscedastic process. Thus, etð Þ is only weak white

noise. This is the reason why Equation (3) allows only a study of covariance stationarity

and not strict stationarity.

To investigate covariance stationarity of the process ytð Þ, we use a Markovian representa-

tion of Equation (3), proposed by Francq and Zakoı̈an (2001) (here, we set n ¼ K pþ rð Þ):

zt ¼ Utzt�1 þ xt xt ¼ ct þ Rt; (4)

where

zt ¼ y0t y0t�1 � � � y0t�rþ1 e0t e0t�1 � � � e0t�pþ1

� �0
2 R

n

ct ¼ c0 stð Þ 00 � � � 00
� �0 2 R

n

Rt ¼ R F t�1;Dtð Þ ¼ e0t 00 � � � 00 e0t 00 � � � 00
� �0 ¼ get 2 R

n

g0 ¼ IK 0 � � �0IK 0 � � � 0ð Þ 2 R
K�n

and

Ut ¼

a1 stð Þ a2 stð Þ � � � ar�1 stð Þ ar stð Þ b1 stð Þ b2 stð Þ � � � bp�1 stð Þ bp stð Þ
IK 0 � � � 0 0 0 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � IK 0 0 0 � � � 0 0

0 0 � � � 0 0 0 0 � � � 0 0

0 0 � � � 0 0 IK 0 � � � 0 0

0 0 � � � 0 0 0 IK � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � 0 0 0 0 � � � IK 0

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA
belongs to R

n�n. In the vectorial representation (4), it is implicitly assumed that p� 1

(hence, r�1) without loss of generality because bp stð Þ can be equal to 0 in Equation (3).

Let U ið Þ and c ið Þ be the matrices obtained replacing st by i in Ut and ct, respectively. Then

the following matrices can be defined:

P Uð Þ ¼

p11U 1ð Þ p21U 1ð Þ � � � pM1U 1ð Þ
p12U 2ð Þ p22U 2ð Þ � � � pM2U 2ð Þ

..

. ..
. ..

.

p1MU Mð Þ p2MU Mð Þ � � � pMMU Mð Þ

0BBBBBB@

1CCCCCCA 2 R
Mnð Þ� Mnð Þ

and

c ¼ p1c0 1ð Þ � � � pMc0 Mð Þð Þ0 2 R
Mn:

Assumption 5. All eigenvalues of the matrix P Uð Þ have modulus smaller than 1.
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Theorem 1. Under Assumptions 1–3 and 5, the second moments of the multivariate

MS Mð Þ GARCH p; qð Þ process x ¼ xtð Þ in Equations (1) and (2) are finite. In that case, the

unconditional covariance matrix Rx ¼ var xtð Þ is given by

rx ¼ vech Rxð Þ ¼ e0 � f0ð ÞU;

where

U ¼ IMn � P Uð Þð Þ�1
c:

Here, we set e ¼ 1 � � � 1ð Þ0 2 R
M and f0 ¼ IK 0 � � � 0ð Þ 2 R

K�n.

The matrix expression for rx in Theorem 1 generalizes formula (5) of Hafner (2003)

obtained for multivariate GARCH models without regime switching.

The following result has been proved by Hafner (2003, theorem 1) for multivariate

standard GARCH models. It also maintains its validity in the MS context (as shown in the

Appendix), and serves to prove Theorem 3 below on the computation of the fourth

moments for multivariate MS GARCH processes.

Theorem 2. Set Ry ¼ E yty
0
t

� �
; Rh ¼ E hth

0
t

� �
and Re ¼ E ete

0
t

� �
. Under Assumptions 1–5, we

have

Re ¼ Ry � Rh

vec Ryð Þ ¼ GK vec Rhð Þ

vec Reð Þ ¼ GK � IK2ð Þ vec Rhð Þ
;

where

GK ¼ c 2 Lm �Dþm
� �

Im � Kmm � Imð Þ Dm �Dmð Þ þ IK2

� �
with Lm denoting the elimination matrix and c ¼ E g4

1t

� 	
=3, where gt ¼ g1t � � � gmtð Þ0.

Let P U� Uð Þ be defined replacing U ið Þ by U ið Þ � U ið Þ in the definition of P Uð Þ. Then

P U� Uð Þ is Mn2ð Þ � Mn2ð Þ. Let C be defined replacing c ið Þ by c ið Þ � c ið Þ in the definition

of c. Then C is Mn2ð Þ � 1. Let D be defined replacing U ið Þ by c ið Þ � U ið Þ þ U ið Þ � c ið Þ in

the definition of P Uð Þ. Then D is Mn2ð Þ � Mnð Þ.

Assumption 6. All eigenvalues of the Mn2ð Þ � Mn2ð Þ matrix P U� Uð Þ have modulus

smaller than 1, and the Mn2ð Þ � MK2ð Þmatrix

Q ¼ IM � ~f
� �

� IMn2 � P U� Uð Þ
� 	�1

IM � ~gð Þ

has rank MK2, where ~f ¼ f � fð ÞGK and ~g ¼ g� gð Þ GK � IK2ð Þ.

Notice that the first sentence of Assumption 6 implies Assumption 5, but the converse is

not true in general. See, for example, Cavicchioli (2017).

Theorem 3. Under Assumptions 1–4 and 6, the fourth moments of the multivariate MS Mð Þ
GARCH p; qð Þ process x ¼ xtð Þ in Equations (1) and (2) are finite. In that case, the uncondi-

tional fourth moment of x is given by

vech Ryð Þ ¼ DþKGK e0 � IK2

� �
V;
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where y ¼ ytð Þ with yt ¼ vech xtx
0
t

� �
, and

V ¼ Q0Q
� ��1

Q0 IMn2 � P U� Uð Þ
� 	�1

DUþ Cð Þ:

Note that vec Ryð Þ ¼ Dþm �Dþm
� �

E xtð Þ�4
h i

, where xtð Þ�4 denotes the Kronecker product of

four copies of xt.

Remark 1. In the case of multivariate mixed GARCH models, the fourth moment structure

has been derived by Bauwens, Hafner, and Rombouts (2007, formula 18). Their formula

relates with that given in Theorem 3: both expressions for vec Ryð Þ have the matrix GK on

the left side, followed by matrix products that look alike.

Remark 2. As remarked in the introduction, the formula for the fourth moments in

Theorem 3 is nonrecursive and without the use of an infinite summation as in Hafner

(2003) for standard vector GARCH models. The difference of approach with respect to the

cited paper in obtaining the results can be explained as follows. Hafner (2003) uses a vector

moving-average representation of infinite order, in short VMA(1), for the VARMA model

in Equation (3) (without shifts in regime). Our method of computation is based on the

Markovian representation (4) for the MS VARMA model in Equation (3).

The proof of Theorem 3 (see the Appendix) and Theorem 2 from Francq and Zakoı̈an

(2001) imply the following result:

Theorem 4. Under Assumptions 1–4 and 6, for all t 2 Z, the series

zt ¼
X1
k¼1

UtUt�1 � � �Ut�kþ1xt�k þ xt

converges in L2 and the MSðMÞ VARMA r;pð Þ process ytð Þ, defined as the block of the first

K components of ztð Þ, is the unique nonanticipative second-order stationary solution of

Equation (4).

Recall that a process ytð Þ is called nonanticipative if, for all t 2 Z; yt is measurable with re-

spect to the r–field generated by ss; es : s�tf g.
In the sequel, we illustrate some theoretical implications of our results.

2 Spectral Density, Kurtosis, and Impulse-Response Functions for the
Volatility

2.1 The Spectral Density Matrix of the Squares and Cross Products

It might be useful to look at the frequency domain properties of the squares and cross prod-

ucts of a multivariate MS GARCH process rather than at the time domain. For example,

the model specification process might compare the empirical spectral density with the the-

oretical counterpart of a fitted model. The spectral density matrix of a covariance station-

ary stochastic process is defined as the Fourier transform of the autocovariance function,

that is, F xð Þ ¼ 2pð Þ�1P1
s¼�1 C sð Þexp �isxð Þ. We compute the spectral density matrix of

the vector of squares and cross products, yt ¼ vech xtx
0
t

� �
, of the multivariate MS

GARCH(p, q) process x ¼ xtð Þ. Under Assumptions 1� 4, we derive a closed-form matrix

expression for the autocovariance function Cy sð Þ of y ¼ ytð Þ. For all s� 0, let W sð Þ be the
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Mn2ð Þ � 1 vector whose i-th block is piE zt � zt�sjst ¼ ið Þ, for i ¼ 1; . . . ;M. Then

W 0ð Þ ¼W ¼ IM � ~f
� �

V, where V is given in Theorem 3. Let P cð Þ be the Mnð Þ �M matrix

defined replacing U ið Þ by c ið Þ in the definition of P Uð Þ. For s > 0, the following matrix rela-

tion is proved in the Supplementary Material, Section 1:

W sð Þ ¼ P Uð Þ � In½ �W s� 1ð Þ þ P cð Þ P0ð Þs�1
� �

� In

h i
U; (5)

where P is the transition probability matrix and U is given in Theorem 1.

Theorem 5. Under Assumptions 1–5, the autocovariance function Cy sð Þ of y ¼ ytð Þ is given

by

vecCy sð Þ ¼ e0 � f0 � f0ð ÞW sð Þ � rx � rx;

where

W sð Þ ¼ P Uð Þ½ �s � In

� �
IM � ~f
� �

VþW	 sð Þ

and

W	 sð Þ ¼
Xs

i¼1

P Uð Þ½ �i�1 � In

n o
P cð Þ P0ð Þs�i
h i

� In

n o
U:

Now the spectral density function of y follows from Theorem 5 (here, we set Ai ¼ In if i¼0

for an n�n matrix A).

2.2 Multivariate Kurtosis for MS GARCH Models

Having matrix expressions for the unconditional second and fourth moments of the multi-

variate MS GARCH process x ¼ xtð Þ, we can introduce a new kurtosis measure for such

time series, which changes in regime, and derive a matrix formula in closed form for it. A

deviation from the Gaussian distribution can be reflected by this measure, which depends

on the characteristics of the volatility process. Let Rx be the covariance matrix of x. Let us

consider the process x	 ¼ x	tð Þ defined by

x	t ¼ R�1=2
x xt;

where R1=2
x is any symmetric square root of Rx. For the process x, driven by the multivariate

MS GARCH model in Equations (1) and (2), the kurtosis of x is defined to be the K2 � 1

vector, with K ¼ m mþ 1ð Þ=2, given by

k xð Þ :¼ vecRy	 ;

where y	 ¼ ðy	t Þ and y	t ¼ vechðx	t x	0t Þ ¼ DþmðR�1=2
x � R�1=2

x Þðxt � xtÞ: Since xt � xt ¼
vecðxtx

0
tÞ ¼ Dmvechðxtx

0
tÞ ¼ Dmyt, it follows that y	t ¼ Ryt, where R ¼ DþmðR�1=2

x

�R�1=2
x ÞDm. Then we have Ry	 ¼ RRyR0, where Ry is given by Theorem 3.

It is immediate to see that this concept extends the corresponding kurtosis measure

known for univariate time series (Hamilton, 1994, p. 746). In fact, if x ¼ xtð Þ is univariate

(m¼1), then k xð Þ ¼ E x	4t

� �
¼ E r�2

x x4
t

� �
¼ E x4

t

� �
= var xtð Þ½ �2. Furthermore, the above defin-

ition relates with the multivariate kurtosis measure proposed by Mardia (1970). In the ex-

ample of Section 3, both measures will be reported and compared. Given a multivariate
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process x ¼ ðxtÞ, Mardia’s kurtosis of x is defined to be

bðxÞ ¼ Ef½ðxt � lxÞ
0R�1

x ðxt � lxÞ�
2g 2 R, where lx and Rx are the mean and the covariance

matrix of x, respectively. One disadvantage of Mardia’s definition depends on the fact that

not all order mixed moments are taken in account. So our different approach constitutes a

merit of the new definition with respect to that of Mardia.

Lemma. The above defined kurtosis measure for multivariate MS GARCH models is in-

variant under nonsingular time-independent linear transformation of the random vector xt.

For a random sample of size T drawn from x, the measure of the sample kurtosis corre-

sponding to k xð Þ is given by

bkT xð Þ ¼ S�1=2
x T�1

XT

t¼1

y	t � y	t

 !
;

where Sx is the sample covariance matrix.

Theorem 6. Under Assumptions 1–4 and 6, the K2-dimensional sample estimator bkT xð Þ is

consistent, that is, it converges to k xð Þ with probability 1 as T goes to infinity.

In the univariate case, Bauwens, Preminger, and Rombouts (2010, theorem 2.1) provide

sufficient conditions for the geometric ergodicity of the extended process

Zt ¼ xt htþ1 stþ1ð Þ0. The geometric ergodicity ensures not only that a unique stationary

probability measure for the process exists, but also that the chain, irrespective of its initial-

ization, converges to it at a geometric rate with respect to the total variation norm. Markov

chains with this property satisfy the central limit theorem for any given starting value given

the existence of suitable moments (Jones, 2004, theorem 5). In this case, the above-defined

sample kurtosis is also asymptotically normally distributed. An open problem is the proof

of the geometric ergodicity in the multivariate MS case.

In empirical applications, it might be useful to compare the above-defined measure of

multivariate kurtosis with that of a centered normal distribution in order to investigate

whether an MS GARCH process has close features to normality or not. Recall that the

fourth moment of an m-dimensional normal distributed process with covariance matrix X

is given by (see the Supplementary Material, Section 5)

Kmm � Im2 þ Im4ð Þvec X� Xð Þ þ vec Xð Þ � vec Xð Þ: (6)

To obtain the multivariate kurtosis measure, as defined above, we must premultiply the

last m4 � 1 vector by the K2 �m4 matrix Dþm �Dþm.

2.3 Impulse-Response Functions for the Volatility

Following Hafner (2003, p. 34), an impulse-response function for the volatility is given by

the difference of a “shock scenario” and a “baseline scenario”

vs gtð Þ ¼ E htþsjgt;F t�1

� �
� E htþsjF t�1ð Þ

for s� 0. Let Vs be the Mnð Þ � 1 matrix whose i-th block is given by

pi E ztþsjgt;F t�1; stþs ¼ ið Þ � E ztþsjF t�1; stþs ¼ ið Þ
� 	
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for i ¼ 1; . . . ;M and s�0. We set V ¼ V0. The following matrix relations are proved in the

Supplementary Material, Sections 6 and 7:

V ¼ IM � gDþm
� �� 	

Hut; (7)

Vs ¼ P Uð ÞVs�1 ¼ P Uð Þ½ �sV; (8)

whereH is the Mm2ð Þ �m2 matrix whose i-th block is given by

piE H
1=2
t �H

1=2
t jF t�1; st ¼ i

� �
2 R

m2�m2

for i ¼ 1; . . . ;M. Then we have:

Theorem 7. Under Assumptions 1–5, the impulse-response functions for the volatility of

the multivariate MS GARCH p; qð Þ model in Equations (1) and (2) are given by the follow-

ing matrix expression in closed form:

vs gtð Þ ¼ e0 � f0ð Þ P Uð Þ½ �s IM � gDþm
� �� 	

Hut:

As a consequence, the long-run effect is given by

X1
s¼0

vs gtð Þ ¼ e0 � f
0ð Þ IMn � P Uð Þ½ ��1

IM � gDþm
� �� 	

Hut:

For a multivariate state-invariant GARCH model (case M¼1), the formula in Theorem

7 becomes

vs gtð Þ ¼ /sLm H
1=2
t �H

1=2
t

� �
Dmvech gtg

0
t � Im2

� �
; (9)

which is formula (24) in Hafner (2003), where /s ¼ f0Usg 2 R
K�K, and U is the n� n ma-

trix obtained by setting st¼1 in the definition of Ut. In this case, we have

EðH1=2
t �H

1=2
t jF t�1; st ¼ 1Þ ¼ EðH1=2

t �H
1=2
t jF t�1Þ ¼ H

1=2
t �H

1=2
t . This also gives the

VMAð1Þ representation yt ¼ rþ
P1

i¼0 /iet�i, where r ¼ ðIK �
Pr

i¼1 aiÞ�1c and /i ¼ f0Uig

and ai denotes aiðstÞ for the unique regime st¼1. This reproduces formulas 5–7 in Hafner

(2003) in the single regime case.

3 An Empirical Example

In this section, we consider an MS(2) GARCH(1, 1) model from Lee and Yoder (2007, p.

1258) in order to illustrate our theoretical results. These authors use bivariate two-state MS

GARCH models to estimate the hedge ratios through the second moments of futures and

spot prices in the corn and nickel commodity markets. The parameter estimates of their MS

BEKK-GARCH model (as named after Baba, Engle, Kraft and Kroner specification) for

corn futures contracts (traded on the Chicago Board of Trade; sample period from January

2, 1991 to December 31, 2003) are presented in Table 2 of Lee and Yoder (2007). This

model can be nested into model (1) and (2) as the estimated conditional mean is close to

zero. So we derive the following MS(M) multivariate GARCH(p, q) model such that M ¼
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m ¼ 2 and p ¼ q ¼ 1 (hence, K ¼ 3 and n ¼ 6), that is, a two-state bivariate GARCH(1, 1)

model:

xt ¼ H
1=2
t gt gt 
 NID 0; I2ð Þ

ht ¼ c stð Þ þ A stð Þyt�1 þ B stð Þht�1;

where xt ¼ rc;t rf ;tð Þ0 2 R
2, with rc;t and rf ;t returns on the spot and futures at time t, re-

spectively, yt ¼ vech xtx
0
t

� �
2 R

3 and ht ¼ vech Htð Þ 2 R
3,

c stð Þ ¼ 3:4501� 1:7193st 5:6368� 2:8120st 5:8298� 2:9078stð Þ0;

A stð Þ ¼

0:2523st � 0:0846 �0:5176st þ 0:6362 0:2952st � 0:2113

0:2804st � 0:1618 �0:2075st þ 0:1961 0:2161st � 0:2242

0:2952st � 0:2113 �0:1999st þ 0:1918 0:1133st � 0:1125

0BBBBB@

1CCCCCA;

B stð Þ ¼

�0:1435st þ 0:5511 0:6451st � 1:1356 �0:5714st þ 1:1617

�0:4768st þ 0:6197 0:9397st � 1:2139 �0:1263st þ 0:4563

0:0381st þ 0:012 �0:3438st þ 0:2476 1:0100st � 0:8255

0BBBBB@

1CCCCCA;

and st 2 1;2f g. The transition probability matrix is

P ¼
p11 1� p11

1� p22 p22

 !
;

where p11 ¼ 0:6743 and p22 ¼ 0:5349. The unconditional probabilities are p1 ¼ 0:5881

and p2 ¼ 0:4119. Then the process x ¼ xtð Þ is obtained from the above model by using esti-

mated parameters. The basic assumption that the eigenvalues of the 12� 12 matrix P Uð Þ
are less than 1 in modulus is fulfilled because its spectral radius is 0.8414. Then the second

moments of x are finite. Applying the formula in Theorem 1 gives

rx ¼ 6:8757 5:1479 5:8749ð Þ0 2 R
3;

hence the unconditional covariance matrix is

Rx ¼ var xtð Þ ¼
6:8757 5:1479

5:1479 5:8749

 !
:

The eigenvalues of Rx are 1.2032 and 11.5475. Assumption 5 is satisfied as the spectral

radius of the 72� 72 matrix P U� Uð Þ is 0.8264, and the rank of the 72�18 matrix Q is

18. Applying the formula in Theorem 3, the unconditional fourth moments of x are given

by vech Ryð Þ, where

Ry ¼
52:6713 46:3358 25:9558

46:3358 45:0175 21:6136

25:9558 21:6136 16:2993

0BB@
1CCA:
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The eigenvalues of Ry are 1.3534, 4.8533, and 107.7814. The kurtosis of x is the 9� 1

vector k xð Þ ¼ vecRy	 , where

Ry	 ¼
5:6369 16:5031 17:3930

16:5031 17:4190 18:3599

17:3930 18:3599 19:3531

0BB@
1CCA:

Computing the value of Mardia’s kurtosis for this exercise gives 5.2856, which is suffi-

ciently close to the first element of the kurtosis vector k xð Þ in our definition. This further

confims that not all order mixed moments are taken in account.

Using the estimated parameters, we are able to reproduce the empirical kurtosis of the

single returns of corn reported in Table 1 in Lee and Yoder (2007), which is 14.3795.

Moreover, by Theorem 5, we derive the spectral density matrix of y, and plot the spectral

density functions of the squares r2
c;t, r2

f ;t, and cross product rc;trf ;t in Figure 1. The curves of

the squares increase quickly to high values at high frequency, clearly indicating short-term

movements in returns. However, it is worth to notice that the cross product exhibits less

short-term interaction in favour of more important medium and low frequencies, indicating

delayed effects. Finally, we complete the analysis with impulse-response functions for the

volatility using the expression in Theorem 7. As mentioned before, the impulse-response

function for the volatility is given by the difference of a “shock scenario” and a “baseline

scenario.” In Figure 2, we report impulse-responses for the volatility h, which correspond

(from left to right) to spot returns, mixed term, and future returns. The impulse-responses

show an increase (with different magnitude in the three cases) over the first 30 days and a

decrease thereafter.

Further applications and illustrative examples with univariate MS GARCH models

from Bauwens, Preminger, and Rombouts (2010, pp. 229 and 235) and Zhang, Li, and

Yuen (2006, p. 592) are provided in the Supplementary Material, Section 9.

4 Conclusion

We provide matrix expressions in closed form for the second and fourth unconditional

moments of multivariate MS GARCH processes in their general vector specification. Unlike

Figure 1 Spectral density functions of the squares r2
c;t (left panel), r2

f ;t (middle panel), and cross product

rc;t rf ;t (right panel) obtained from the bivariate MS(2) GARCH(1, 1) model in Lee and Yoder (2007) and

described in Section 3.
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second moments, fourth moments crucially depend on the innovation distribution, which

we assume to be spherical distributions in the sense of Hafner (2003). We propose some po-

tential applications of the obtained results, such as the derivation of the spectral density ma-

trix of the squares and cross products, a new definition of the multivariate kurtosis measure

to recognize heavy-tailed features in real data, and a matrix expression in closed form of

the impulse-response function for the volatility. These theoretical results are illustrated

with an empirical example in the article, while other applications and examples are given in

the Supplementary Material. Further analyses are possible, such as, for example, the issue

of the temporal aggregation of multivariate MS GARCH models, the analysis of the multi-

variate kurtosis as a function of the sampling frequency, and the estimation of the asymmet-

ric volatility under skewed distributions.
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Appendix

Proof of Theorem 1. Let Ut be the Mnð Þ-dimensional vector, whose i-th block is the n-

dimensional vector piE ztjst ¼ ið Þ for i ¼ 1; . . . ;M, that is,

Ut ¼ p1E z0tjst ¼ 1
� �

� � �pME z0tjst ¼M
� �� �0 2 R

Mn:

Figure 2 Impulse-response functions for the volatility obtained from the bivariate MS(2) GARCH(1, 1)

model in Lee and Yoder (2007) and described in Section 3. They correspond (from left to right) to spot

returns, mixed term, and future returns.
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Starting from Equation (4), for i ¼ 1; . . . ;M, we have

piE ztjst ¼ ið Þ ¼ piE U ið Þzt�1 þ c ið Þ þ Rtjst ¼ i
� �

¼ piU ið ÞE zt�1jst ¼ ið Þ þ pic ið Þ þ piE Rtjst ¼ ið Þ

¼ piU ið ÞE zt�1jst ¼ ið Þ þ pic ið Þ

¼
XM
j¼1

pjiU ið ÞpjE zt�1jst�1 ¼ jð Þ þ pic ið Þ

as E Rtjst ¼ ið Þ ¼ gE E rtjF t�1; st ¼ ið ÞE utð Þ
� 	

¼ 0. For i ¼ 1; . . . ;M, let Uit and ci be the i-th

block of Ut and c, respectively. For i; j ¼ 1; . . . ;M, let P Uð Þij be the (i, j) block of P Uð Þ.
Thus, Uit and ci are n� 1, and P Uð Þij is n� n. Using these notations, the last formula

becomes

Uit ¼
XM
j¼1

P Uð ÞijUjt þ ci

for i ¼ 1; . . . ;M. Then the matrix relation

Ut ¼ P Uð ÞUt þ c

holds. If q P Uð Þð Þ < 1, where q �ð Þ denotes the spectral radius, the matrix IMn � P Uð Þ is in-

vertible. Then Ut can be expressed in closed form as

Ut ¼ IMn � P Uð Þð Þ�1
c:

So Ut is time-invariant, and we set U ¼ Ut for every t 2 Z. The unconditional mean of zt

is given by E ztð Þ ¼ e0 � Inð ÞU. By construction, it follows that E ytð Þ ¼ e0 � f0ð ÞU. So the

process ztð Þ [and hence ytð Þ] is first-order stationary. Finally, we have

rx ¼ vech Rxð Þ ¼ E vech xtx
0
t

� �� �
¼ E ytð Þ ¼ e0 � f0ð ÞU;

where U ¼ IMn � P Uð Þð Þ�1
c. This completes the proof.

Proof of Theorem 2. We have

var vec xtx
0
t

� �
jF t�1;Dt

� 	
¼ var xt � xtjF t�1;Dtð Þ

¼ var H
1=2
t �H

1=2
t

� �
gt � gtð ÞjF t�1;Dt

h i
¼ H

1=2
t �H

1=2
t

� �
var gt � gtð Þ H

1=2
t �H

1=2
t

� �
¼ 2c H

1=2
t �H

1=2
t

� �
DmDþm H

1=2
t �H

1=2
t

� �
þ c� 1ð Þ H

1=2
t �H

1=2
t

� �
vec Imð Þvec Imð Þ0 H

1=2
t �H

1=2
t

� �
¼ 2c H

1=2
t �H

1=2
t

� �
DmDþm H

1=2
t �H

1=2
t

� �
þ c� 1ð Þvec Htð Þvec Htð Þ0

as var gt � gtð Þ ¼ 2cDmDþm þ c� 1ð Þvec Imð Þvec Imð Þ0 by Lemma 3 of Hafner (2003).

Theorem 3.11 of Magnus (1988) implies

H
1=2
t �H

1=2
t

� �
DmDþm ¼ DmDþm H

1=2
t �H

1=2
t

� �
;
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hence

var xt � xtjF t�1;Dtð Þ ¼ 2cDmDþm Ht �Htð Þ þ c� 1ð Þvec Htð Þ vec Htð Þ0:

By definition, yt ¼ vech xtx
0
t

� �
¼ Dþm vec xtx

0
t

� �
¼ Lm vec xtx

0
t

� �
. In fact, one could replace

Dþm by Lm by the symmetry of xtx
0
t. This gives

var ytjF t�1;Dt

� �
¼ var Lmxt � xtjF t�1;Dtð Þ ¼ Lmvar xt � xtjF t�1;Dtð ÞL0m
¼ 2cLmDmDþm Ht �Htð ÞL0m þ c� 1ð ÞLm vec Htð Þ vec Htð Þ0L0m
¼ 2cDþm Ht �Htð ÞL0m þ c� 1ð ÞLm vec Htð Þ Lm vec Htð Þ½ �0

as LmDm ¼ IK by Lütkepohl (2007, p. 664). Applying the vec operator yields

vec var ytjF t�1;Dt

� �� 	
¼ 2c Lm�Dþm

� �
vec Ht�Htð Þ

þ c�1ð Þ Lm vec Htð Þ½ �� Lm vec Htð Þ½ �

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þ vec Htð Þ� vec Htð Þ½ �

þ c�1ð Þ Lm�Lmð Þ vec Htð Þ� vec Htð Þ½ �

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þþ c�1ð Þ Lm�Lmð Þ
� 	

vec Htð Þ� vec Htð Þ½ �:

By definition, Dmht ¼ Dm vech Htð Þ ¼ vec Htð Þ. Using this relation, we get

vec var ytjF t�1;Dt

� �� 	
¼ 2c Lm �Dþm

� �
Im � Kmm � Imð Þ þ c� 1ð Þ Lm � Lmð Þ

� 	
� Dm �Dmð Þ ht � htð Þ:

But

var ytjF t�1;Dt

� �
¼E yty

0
tjF t�1;Dt

� �
�E ytjF t�1;Dt

� �
E y0tjF t�1;Dt

� �
¼E yty

0
tjF t�1;Dt

� �
�E htjF t�1;Dtð ÞE h0tjF t�1;Dt

� �
¼E yty

0
tjF t�1;Dt

� �
�hth

0
t:

Hence,

R� ¼ E ete
0
t

� �
¼ E E ete

0
tjF t�1;Dt

� �� 	
¼ E var etjF t�1;Dtð Þ½ �

¼ E var ytjF t�1;Dt

� �� 	
¼ E E yty

0
tjF t�1;Dt

� �� 	
� E hth

0
t

� �
¼ E yty

0
t

� �
� E hth

0
t

� �
¼ Ry � Rh

by using Equation (3). This proves the first relation in the statement of Theorem 2. From

above, we can also write

vecRy ¼E vec var ytjF t�1;Dt

� �� 	
þ vecRh

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þþ c�1ð Þ Lm�Lmð Þ
� 	
� Dm�Dmð ÞvecRhþ vecRh

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þ Dm�Dmð Þþ c�1ð Þ Lm�Lmð Þ Dm�Dmð Þþ IK2

� 	
vecRh

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þ Dm�Dmð Þþ c�1ð Þ LmDmð Þ� LmDmð Þþ IK2

� 	
vecRh

¼ 2c Lm�Dþm
� �

Im�Kmm� Imð Þ Dm�Dmð Þþ c�1ð ÞIK� IKþ IK2

� 	
vecRh

¼GK vecRh
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as LmDm ¼ IK and IK � IK ¼ IK2 . Here, GK is the matrix defined in the statement of

Theorem 2. Finally, we have

vecRe ¼ vecRy � vecRh ¼ GK � IK2ð Þ vecRh

as required. An alternative proof of the relation

vecRe ¼ vecRy � vecRh

can also be obtained from equation et ¼ yt � ht. In fact, we have

vecRe ¼ E yt � ht

� �
� yt � ht

� �� 	
¼ vecRy � E yt � ht

� �
� E ht � yt

� �
þ vecRh:

But one can directly prove that

vecRh ¼ E yt � ht

� �
¼ E ht � yt

� �
¼ Dþm �Dþm
� �

E H
1=2
t

� ��4

 �

vec Imð Þ � vec Imð Þ½ �;

where ðH1=2
t Þ�4 denotes the Kronecker product of four copies of H

1=2
t .

Proof of Theorem 3. Let Wt and Vt be defined as U by replacing zt by zt � zt and ht � ht,

respectively. Let us consider the Mn2ð Þ � 1 matrix defined by

St ¼

p1E Rt � Rtjst ¼ 1ð Þ
p2E Rt � Rtjst ¼ 2ð Þ

..

.

pME Rt � Rtjst ¼Mð Þ

0BBBBB@

1CCCCCA:

Since Rt ¼ get and zt ¼ fyt, Theorem 2 implies

E Rt � Rtð Þ ¼ g� gð Þ vecRe ¼ g� gð Þ GK � IK2ð Þ vecRh ¼ ~g vecRh

E zt � ztð Þ ¼ f � fð Þ vecRy ¼ f � fð ÞGK vecRh ¼ ~f vecRh:

Then we have St ¼ IM � ~gð ÞVt and Wt ¼ IM � ~f
� �

Vt. Now we are going to prove the fol-

lowing matrix relation

Wt ¼ P U� Uð ÞWt þDUþ Cþ St:

Starting from Equation (4), for i ¼ 1; . . . ;M, we have

piE zt � ztjst ¼ ið Þ ¼ piE U ið Þzt�1 þ c ið Þ þ Rtð Þ � U ið Þzt�1 þ c ið Þ þ Rtð Þjst ¼ i
� 	

¼ pi U ið Þ � U ið Þ½ �E zt�1 � zt�1jst ¼ ið Þ þ pi U ið Þ � c ið Þ þ c ið Þ � U ið Þ½ �

� E zt�1jst ¼ ið Þ þ pic ið Þ � c ið Þ þ piE Rt � Rtjst ¼ ið Þ

¼
PM

j¼1 pji U ið Þ � U ið Þ½ �pjE zt�1 � zt�1jst�1 ¼ jð Þ

þ
PM

j¼1 pji U ið Þ � c ið Þ þ c ið Þ � U ið Þ½ �pjE zt�1jst�1 ¼ jð Þ

þ pic ið Þ � c ið Þ þ piE Rt � Rtjst ¼ ið Þ:

580 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/4/565/5529349 by O

m
bretta M

alavasi user on 25 O
ctober 2021



For i ¼ 1; . . . ;M, let Wit; Ci and Sit be the i-th block of Wt; C and St, respectively. For

i; j ¼ 1; . . . ;M, let P U� Uð Þij and Dij be the (i, j) block of P U� Uð Þ and D, respectively.

Then Wit; Ci, and Sit are n2 � 1. Furthermore, P U� Uð Þij is n2 � n2, and Dij is n2 � n.

Using these notations, the last formula becomes

Wit ¼
PM
j¼1

P U� Uð ÞijWjt þ
XM
j¼1

DijUj þ Ci þ Sit

for i ¼ 1; . . . ;M. This proves the claimed matrix relation. Collecting the above formulas

yields

IMn2 � P U� Uð Þ
� 	

Wt ¼ DUþ Cþ St;

hence

IMn2 � P U� Uð Þ
� 	

IM � ~f
� �

Vt ¼ DUþ Cþ IM � ~gð ÞVt

or, equivalently,

IM � ~f
� �

Vt ¼ IMn2 � P U� Uð Þ
� 	�1

DUþ Cð Þ þ IMn2 � P U� Uð Þ
� 	�1

IM � ~gð ÞVt

by using Assumption 6. By definition of Q, the last relation becomes

QVt ¼ IMn2 � P U� Uð Þ
� 	�1

DUþ Cð Þ:

If Q has full rank MK2, then the MK2ð Þ � MK2ð Þ matrix Q0Q is invertible. So Vt can be

expressed in closed form as

Vt ¼ Q0Q
� ��1

Q0 IMn2 � P U� Uð Þ
� 	�1

DUþ Cð Þ;

hence Vt is time-invariant, and we set V ¼ Vt for every t 2 Z. Finally, we have

vecRh ¼ e0 � IK2ð ÞV, and the result follows from Theorem 2.
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