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Abstract: Nanocluster aggregation sources based on magnetron-sputtering represent precise and 

versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this 

work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a 

glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perov-

skite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas ag-

gregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of struc-

tural and morphological properties while thermal stability and endurance against air-induced oxi-

dation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP 

coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms 

of device power conversion efficiencies (up to 17.8%). 

Keywords: nanoparticles; Ag; MgO; perovskite solar cells; gas aggregation nanocluster source;  

localized surface plasmon resonance 

 

1. Introduction 

Recently, the development of efficient and low-cost photovoltaic technologies has 

gained increasing attention from the scientific community for satisfying the thirst for clean 

and sustainably obtained energy. Amongst third generation photovoltaics, perovskite so-

lar cells (PSCs) stand out due to their power conversion efficiency (PCE), which in the 

past ten years has been boosted from 3.8% in 2009 up to 25.6% in 2021 [1], making them 

comparable, in terms of PCE, with mature Si solar cells [2]. Such an astonishing result was 

triggered by the progressive optimization of a PSC structure mainly composed of a per-

ovskite absorber sandwiched between hole and electron selective contacts. Indeed, inter-

faces between adjacent layers play a crucial role in ruling the device performance and 

stability, since a charge carrier generated within the perovskite absorber should be effi-

ciently transferred to the selective layers without recombination before being collected at 
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the electrodes [3]. As a matter of fact, the PSC structure should be designed properly with 

the aid of energy band diagrams to avoid barriers at the interfaces, while adjacent layers 

should be deposited on top of each other by avoiding pinholes or defects due to the poor 

adhesion, lattice mismatch, solvent incompatibility and/or layer degradation, which occur 

in post-deposition processing or when the complete devices are in real working conditions 

and subject to prolonged illumination, prolonged heating, etc. 

In this context, interface engineering (IE) has been proposed as a winning strategy 

for tuning the interface opto-electronic properties, improving the charge dynamics within 

the device and eventually enhancing the device performance and stability [4]. IE strategies 

can be classified into three main groups: (i) looking for alternative selective contact mate-

rials on the basis of their morphologies and opto-electronic properties [5]; (ii) modification 

of the perovskite crystalline structure by finely controlling the crystal growing conditions 

[6], the perovskite precursor solution with possible doping and by considering a 2D per-

ovskite overlayer atop the 3D perovskite absorber [7]; (iii) surface modification of selective 

contact (mainly involving TiO2 when dealing with the mesoscopic n-i-p structure) [8]. The 

first strategy needs to completely redesign the device in terms of energy level alignment 

and to reassess the device lifetime under different stress test conditions. The second strat-

egy requires the optimization of the deposition process for the modified perovskite pre-

cursor solution or the fine control of the deposition conditions, as well as an additional 

production step in the case of a 2D perovskite overlayer. On the contrary, the surface 

modification of the selective contact where the perovskite layer is deposited could be a 

viable route for improving the PSC performance without modifying the perovskite pre-

cursor composition and eventually its deposition conditions. Moreover, any treatment 

needed to achieve the selective contact surface modifications (i.e., thermal annealing, UV–

ozone, etc.) is only limited by the material constituting the electrode. For example, in the 

case of mesoscopic PSCs, the usually employed TiO2 layer can be subjected to severe treat-

ment such as high temperature (i.e., in the case of lithium salt treatment) [9], aggressive 

chemical baths (i.e., TiCl4 treatments) [10] or harsh conditions typically achieved using 

invasive implantation or deposition techniques (i.e., ion implantation or atomic layer dep-

osition (ALD)) [11]. The mesoscopic structure is thus the best candidate to select for testing 

IE based on surface modification, even considering that the highest efficiencies ever certi-

fied for PSCs were demonstrated by employing a mesoscopic structure [1]. Considering a 

mesoporous TiO2 (m-TiO2) layer, IE has been clearly demonstrated as an effective strategy 

for improving the PSC performance and stability when employing several 2D materials 

[12] such as graphene [13–15] and its derivatives [16–18] as well as transition metal car-

bides or nitrides commonly known as MXenes [19,20]. Notably, the proper 2D materials 

can be chosen from a wide group (more than 2000 bi-dimensional materials are available), 

with exceptional opto-electronic properties due to the quantum confinement in the third 

dimension, that could even be tuned by proper chemical modification or edge modifica-

tion. Moreover, 2D materials can be produced and dispersed in several solvents by em-

ploying a liquid-phase exfoliation (LPE) technique [21] and the production process can be 

scaled up by employing the recently developed wet-jet milling techniques [22]. However, 

due to the simplicity of solution-based production processes, 2D materials are usually in 

the form of a few layers while the monolayer counterpart, desirable for the ideal charge 

transport properties, is only achieved by employing costly and time-consuming tech-

niques such as chemical vapor deposition (CVD). The impossibility to finely control the 

number of the constituting layers for 2D material flakes still represents the main drawback 

in terms of reproducibility and production process yield. Alternatively to 2D materials, 

the modification of PSC layers can be achieved by employing nanoparticles (NPs), 

properly designed in terms of chemical composition and size [23]. Indeed, coupling of 

NPs with photoactive layers is currently an extremely promising route to enhance device 

performances in photocatalysis [24] and solar energy conversion applications [25–31]. NP 

incorporation in photovoltaic (PV) devices has indeed proved successful in increasing 

their efficiency in a number of cases [27–31], their effectiveness being related to different 
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mechanisms, such as plasmon-enhanced absorption, increased optical path length inside 

the active layer due to the light scattering effect [32,33], hot-electron injections [34–36] and 

hot spots [37]. 

In order to be exploited for PV applications, it is important to separate metal NPs 

from the active layer with an insulating/semiconducting layer, chosen to guarantee: (i) 

effective hindering of charge recombination at the metal surface; (ii) chemical protection 

of the metal core, preventing NP aggregation [38] as well as oxidation processes occurring 

upon device fabrication and functioning, especially when the NPs are exposed to air or 

other species in the surrounding environment [39]; (iii) thermal stability. On the other 

hand, the protective layer/shell optical properties and thickness should be chosen to min-

imize its light absorption and to guarantee the closest possible proximity between the NPs 

and the active layer. 

Furthermore, core–shell NPs allow more flexibility in engineering the optical and 

electronic properties of the resulting nanostructures, by changing both the shell material 

and the core–shell size ratio. Recently, improved PSC performance has also been achieved 

by metal@core–shell NP incorporation at the interface between the photoactive layer (i.e., 

hybrid organic inorganic lead halide perovskite) and the electron transport layer (ETL) 

[40–42], showing a remarkable relative increase in the PCE values, from 5% up to 45%, 

with respect to the pristine devices. 

These promising results were obtained using NPs with different materials [31,42–44] 

and different geometries [37,45,46]. Among possible metals, silver (Ag) is considered the 

most promising material for photoactive applications, as it displays a strong absorption 

in the UV–visible range [47] and a lower manufacturing cost compared with its nearest 

competitors, gold (Au) and platinum (Pt). As far as shell materials are concerned, most of 

the studies related to Ag NPs report the use of TiO2 or SiO2 shells, and chemical wet meth-

ods for both NP@core–shell synthesis and the subsequent deposition [48]. Though chem-

ical synthesis guarantees high production outputs and scalability, in some cases, there 

may be limits to the choice of protective materials and their thickness. For instance, MgO 

is a very promising alternative shell material due to its wide energy gap (Eg = 6 eV) [49], 

low absorption coefficient in the UV–Vis region, outstanding chemical inertness, high 

temperature stability and efficacy in shielding metal NPs from the surrounding environ-

ment [50]. Despite these characteristics, proper Ag@MgO NPs are notably difficult to ob-

tain by chemical synthesis in liquid solution, due to the incompatibility between Ag NPs 

and MgO synthesis techniques and the high tendency of MgO to aggregate and form ther-

modynamically stable films. These difficulties have to date hindered the use of Ag@MgO 

NPs in photovoltaic applications. A recent study [51] highlights the possibility for a com-

bined use of Au NPs and a MgO passivation film, in particular by incorporating Au NPs 

into an m-TiO2 layer and depositing a MgO film on the Au NP-modified mesoporous TiO2 

via wet spinning and pyrolysis of magnesium salt. The study demonstrates that the com-

bination of metal NPs and magnesia is an effective and functional blend that can be ex-

ploited to design hybrid organic–inorganic perovskite photovoltaic devices with en-

hanced characteristics, reaching a PCE improvement of about 34% with respect to the pris-

tine device, therefore validating the potential of MgO as outstanding material for PV ap-

plications. In addition, MgO has been used as a hole-blocking layer between TiO2 ETL and 

the perovskite, improving the overall performances of solar devices by about 30% in terms 

of PCE enhancement [52]. 

In this work, we exploit the extremely versatile and clean physical synthesis meth-

odology to introduce Ag/MgO nanoparticles in a mesoscopic perovskite-based solar de-

vice, investigating their in situ properties and their overall effect on the device perfor-

mance. In more detail, Ag NPs are grown through magnetron sputtering and gas aggre-

gation, deposited in a high vacuum chamber on a glass/FTO/c-TiO2/m-TiO2 substrate. The 

protective MgO ultrathin film is introduced with sequential layer deposition [53,54] or co-

deposition methods [55,56], by thermally evaporating Mg in an oxygen environment [50], 

inside an ultra-high vacuum (UHV) chamber. The system morphology and structure are 
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then thoroughly characterized by means of X-ray photoemission spectroscopy (XPS), 

scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission 

electron microscopy (TEM), while its UV–Vis optical properties are investigated by means 

of polarized reflectivity and transmissivity measurements. Subsequent deposition of the 

perovskite active layer and fabrication of the final devices allow us to test the cell electrical 

performance, showing an improvement in current densities in the case of 1.5% Ag/MgO 

NP loading. As the main result, this study proves the feasibility of physical deposition 

methods of plasmonic NPs for possible application in PSCs. It therefore paves the way to 

explore different combinations of metal cores and protective shell or layer materials, aim-

ing for the fabrication of solar devices with increased current density and efficiency. 

2. Materials and Methods 

Mesoporous titania paste (30 NRD), formamidinium iodide (FAI) and methylammo-

nium bromide (MABr) were purchased from GreatCell SolarDyesol® . Lead(II) iodide 

(PbI2), and lead(II) bromide (PbBr2) were purchased from TCI. Cesium iodide (CsI) was 

purchased from GmbH. 2,20,7,70-tetrakis-(N,N-dip-methoxyphenylamine)9,9′-spirobiflu-

orene (spiro-OMeTAD) was purchased from Borun, and cobalt(III) FK209 was purchased 

from Lumtec. 

Titanium(IV) isopropoxide (TTIP), diisopropoxytitanium bis(acetylacetonate) 

(Ti(AcAc)2), acetyl acetone (AcAc), acetylacetone, ethanol (EtOH), 2-propanol (IPA), ace-

tone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile (ACN), tert-

butylpyridine (tBP), chlorobenzene (CB) and lithium bis(trifluoromethanesulfonyl)imide 

(Li-TFSI) were purchased from Sigma-Aldrich. 

Patterned fluorinated doped tin oxide (FTO)-coated glasses (Pilkington, 7 Ωcm−1) 

were washed with deionized water and soap, then cleaned first with a cycle of ultrasonic 

bath in acetone, then with ethanol, for 10 min at each stage. The compact TiO2 (c-TiO2) 

layer (around 50 nm) was deposited by a spray pyrolysis technique at 460 °C. The sprayed 

solution consists of 0.16 M Ti(AcAc)2 and 0.4 M AcAc in EtOH. Subsequently, the TiO2 

mesoporous (m-TiO2) solution was prepared using m-TiO2 paste (30 NRD) in EtOH (1:5 

wt/wt). The resulting m-TiO2 solution was deposited on the substrate by spin coating at 

3000 rpm for 20 s with subsequent annealing in air for 30 min at 480 °C, resulting in a 

mesoporous layer with thickness of 120 nm and roughness around 30–40 nm. The engi-

neered mesoscopic substrates were then transferred in an inert environment (nitrogen-

filled glovebox) to complete the device realization. 

The deposition of Cs0.05(MA0.17FA0.83)95Pb(I0.83Br0.17)3 was performed in nitrogen atmos-

phere following the antisolvent procedure, as detailed in our previous work [57–59]. A 

solution of PbI2, PbBr2, MABr, FAI and CsI in a solvent mixture of DMF and DMSO with 

a 4:1 ratio (v:v), respectively, was deposited by spin coating on top of the aforementioned 

substrates, following a sequential program at 1000 and 5000 rpm for 10 and 30 s, respec-

tively. During the second spin stage, 150 μL of chlorobenzene was quickly dropped on 

the rotating substrate at 7 s to the end of the program. Then, the substrates were immedi-

ately annealed at 100 °C for 1 h. Afterwards, spiro-OMeTAD (73.5 g·L−1 in CB solution 

doped with TBP (26.7 µL·mL−1)), LiTFSI (16.6 µL·mL−1) and a Co complex (7.2 µL·mL−1) 

were spin coated at 2000 rpm for 20 s. The devices were then finalized by thermally evap-

orating a gold counter electrode, with a thickness of around 100 nm, in high vacuum con-

ditions (around 10−6 mbar), with an active area of 0.1 cm2, determined by a black mask 

applied on the device backside. 

The flat TiO2 substrate (made of SiO2/TiO2) was produced at a high deposition rate 

(tens of nm per minute) by reactive DC-magnetron sputtering from metal targets (Ti) on 

a SiO2 substrate. The overall synthesis and deposition of Ag/MgO NPs was executed in-

side a UHV chamber connected to a nanocluster source (a complete description of the 

system can be found elsewhere in previous works [60]). The Ag NP deposition was per-

formed using a nanocluster source, composed of a magnetron (NC200U, Oxford Applied 

Research), connected with a quadrupole mass filter (QMF). The deposition of MgO was 
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realized by thermally evaporating Mg in an O2 atmosphere with similar procedures used 

elsewhere [50,61]. The deposition rate of Ag and Mg was carefully monitored and tuned 

using a quartz microbalance. For the experiments reported in this work, Ag NPs were 

produced with a magnetron discharge power P = 50 W and Ar flow value set at f = 60 

sccm. The O2 partial pressure was adjusted in order to obtain the right proportion of Mg 

to O2 to form MgO. Typical O2 partial pressure was PO2 = 3 × 10−7 mbar. The Ag NP depo-

sition rate, expressed in thickness of a continuum film with bulk Ag density per unit time, 

varied between 1 and 0.3 Å /min. MgO deposition rate varied between 10 and 12 Å /min. 

The amount of deposited Ag NPs is given in this work in terms of surface coverage and 

for MgO in terms of nominal thickness of an equivalent continuous film with the same 

density as bulk rock salt MgO. The size distribution of the deposited nanoparticles was 

estimated ex situ with SEM and TEM. The prepared samples were characterized by SEM 

using a Nova Nano SEM450 (FEI Company-Bruker Corporation,5350 NE Dawson Creek 

Drive Hillsboro, Oregon 97124 USA ). 

The SEM column is equipped with a Schottky field-emission gun (SFEG) and it can 

achieve a resolution of 1.4 nm in low-voltage (1 kV) operation. The TEM measurements 

were carried out with a TALOS F200S G2 (Thermo-Fisher Scientific,168 Third Avenue 

Waltham, MA USA 02451 ) equipped with a Schottky Field Emitter (80–200 keV) operating 

in TEM and STEM mode, and a double silicon drift detector (SDD) for energy dispersive 

X-ray spectroscopy (EDXS). For a better visualization and quantification of the EDXS 

chemical maps (especially for the low Mg signal), we performed a denoising of the spectra 

based on principal component analysis (PCA) [62]. The average height distribution of NP 

films was estimated with AFM (NTEGRA AURA model, NT-MDT). 

Thermal annealing for the evaluation of the stability of NPs was performed ex situ 

and verified with XPS using Al Kα photons and a hemispherical electron analyzer in nor-

mal emission geometry. The optical measurements were performed ex situ using a line-

arly polarized s radiation, with an angle of 45° between sample and incident beam. The 

UV–Vis experiment system architecture was composed of an Ocean Optics DH-20000-

BAL light source, the emitted radiation wavelength was between 200 and 1050 nm; the 

polarizers and the HR4000CG-UV-NIR grating monochromator were purchased from 

Ocean Optics and furnished with CCD detectors. The J-V characterization of the PSCs was 

performed with a customized PXI (National Instruments)-based platform (Arkeo). The 

instrumental setup was composed of a 4-channel source-meter (NI PXIe 4141) and a power 

supply (NI PXIe 4112) used to deliver high-power white LED (Bridgelux-50C10K0, 5000 

Kelvin). The 1 SUN (100 mW·cm−2) equivalent incident power was then calibrated with a 

certified reference Si cell (RERA Solutions RR-1002) through the Mismatch Factor [63,64]. 

IPCE spectra acquisition were realized using a homemade setup with a monochromator 

(Newport, mod. 74000, Newport Corporation 1791 Deere Avenue Irvine, CA, 92606 USA) 

coupled with a xenon lamp (Oriel Apex, Newport Corporation 1791 Deere Avenue Irvine, 

CA, 92606 USA) and a source meter (Keithley, mod. 2420), controlled by a home-made 

LabVIEW program for acquiring spectra [65]. 

Figure 1 displays a schematic representation of the experimental steps adopted for 

the realization of every layer of the PSCs and the physical deposition of Ag/MgO NPs, 

along with the corresponding energy band diagram. 
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Figure 1. (a) Representation of the initial substrate, from bottom to the top: conductive glass substrate (blue) (2.2 mm) 

covered with an FTO layer (aquamarine) (around 700 nm), compact TiO2 layer (light gray) (around 50 nm), mesoporous 

TiO2 layer (gray) (around 150 nm). (b) Scheme of the NP (dark blue) synthesis and deposition with MgO (red) on top of 

the previously realized m-TiO2 layer. (c) Top view scheme of the experimental device until the m-TiO2 layer (see the left 

part of scheme c), containing four independent cells, three of them with NPs and one used as the reference cell, while the 

right part of scheme c represents the addition of the perovskite layer (violet) (around 400 nm), Spiro-OMeTAD layer (black) 

(250 nm) and gold layer (yellow) (around 100 nm); NPs are localized at the interface between the perovskite and mesopo-

rous TiO2 layer. The dimensions of each layer displayed here are not to scale. (d) Final step of characterization of the 

engineered solar devices. (e) Energy band diagram of the device. The work function values for FTO, TiO2 have been taken 

from references [66,67]. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) levels for perovskite have been taken from reference [68]. The energy band edge positions for Spiro-OMeTAD 

have been taken from reference [69]. The energy band values for Ag NPs and MgO are taken from reference [70] and [71], 

respectively. The depicted energy values are relative to the vacuum level. Blue and red arrows show the direction of 

electron and hole motion, respectively. 

3. Results and Discussion 

The formation of Ag/MgO NPs was firstly assessed by TEM, depositing 5 nm (nom-

inal thickness) Ag nanoclusters and 0.8 nm MgO via co-deposition [61] on a TEM grid. 

The main information of the NP structure was obtained from a high-resolution, bright-

field TEM image of a single NP, as shown in Figure 2a. Lattice fringes are visible across 

almost all the particle, although in some areas they are confused, probably because of the 

contributions from both the Ag core and MgO protective layer in an almost spherical NP. 

In particular, in the region delimited by the white square, the fringes can be assigned to 

an icosahedral-type structure in 2-fold orientation, as can be seen from the simulation in 

Figure 2c. Ag (111) planes are quite evident (see the fast Fourier transform (FFT) image in 

Figure 2b), and the analysis gives an interplanar distance of 0.238 nm. The occurrence of 

the icosahedral shape in physically synthesized face-centered cubic (fcc) metals clusters 

and NPs—such as bare Ag, Ni and FePt—has been previously reported [50,60,61]. The 

physical reason for this arrangement has been ascribed to the kinematics of the cluster 

formation [72–75] in the aggregation region of the NP source, in particular to the cooling 

velocity during the collision process with the inert gas atoms. The cluster freezing favors 
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formation of multi-twinned domains in the nascent nanocrystal, which gives rise to met-

astable structures deviating from the Born-Wulff construction [72–75]. It can therefore be 

concluded that the structure of the Ag core, consisting of a multi-twinned McKay icosa-

hedron [73], is preserved during the formation of the MgO film. In the top-right region of 

the NP, image reflections are visible with a corresponding interplanar distance d = 0.213 

nm, which can be assigned to (200) MgO planes. This confirms that MgO covers, at least 

partially, the Ag core. 

 

Figure 2. (a) Bright-field HRTEM image of an Ag/MgO NP. The lattice fringes from Ag (111) planes are shown in the left 

part of the NP. Planes assigned to MgO (200) are shown in the top right of the NP image. (b) FFT image from the Ag 

domain, and (c) simulated image from an Ag ideal icosahedral domain oriented along the 2-fold axis. (d) EDXS map of 

Ag-L edge intensity (cyan), (e) EDXS map of Mg-K edge intensity (red). (f) EDXS profile for Ag and Mg content (atomic 

%) from a single NP. 

In Figure 2d, the EDXS map corresponding to the Ag-L (cyan) edge clearly reveals a 

few rounded Ag NPs, whose diameter is estimated to be around (10.0 ± 0.6) nm. The Mg 

map (Figure 2e) provides evidence of the preferential adsorption of MgO on top of Ag 

NPs, while the EDXS line profile from a single NP reported in Figure 2f shows that Mg 

has a higher concentration at the edge of the NP, as previously found in similar systems 

[61] and as expected by a thin capping layer. 

It has been demonstrated that the morphological properties of physically synthesized 

NPs may be significantly influenced by the substrate on which they are deposited [76,77]. 

For this reason, it is important to fully characterize the Ag/MgO directly on the techno-

logically relevant substrate, i.e., the glass/FTO/c-TiO2/m-TiO2 (where c-TiO2 is a compact 

titanium dioxide layer, while m-TiO2 is the mesoporous top layer) used in fabrication of 

PSCs [78]. In this case, the MgO capping layer was sequentially deposited on top of NPs, 

following the procedures given in reference [50]. The effectiveness of this approach relies 

on the low sticking coefficient of MgO on TiO2, as compared to that on Ag. This has been 

preliminarily proved through XPS; after a nominal deposition of 6 Å  MgO—as evaluated 

by a calibrated quartz microbalance—the amount of Mg deposited on a bare TiO2 sub-

strate without NPs—as estimated from XPS quantitative analysis (see Figure S1 in Sup-

plementary Materials)—was 0.1 Å , indicating a MgO sticking coefficient on TiO2 substrate 

of less than 2%. This finding safely allows us to consider the MgO capping layer to cover 

only the deposited Ag NPs, for relatively low NP coverages, while leaving the bare TiO2 

substrate essentially unaffected. 

The morphology of Ag/MgO NPs deposited on TiO2 substrates was investigated by 

SEM. As shown in Figure 3a, the substrate top layer is an m-TiO2 film characterized by a 

mesoporous morphology, with pore dimensions of a few tens of nanometers, i.e., compa-

rable with the NP diameter. For this reason, we acquire SEM images using the backscat-

tered electron signal (BSE), which, as shown in Figure 3b,e for 1.5% and 10% coverage, 

respectively, allows us to single out the heavier Ag cluster (Z = 49) from lighter TiO2 sub-

strate and to statistically analyze their size distribution [79], as shown in Figure 3c. The 

obtained NP size distribution is fitted with the log-normal function described by O’Grady 

et al. [80], finding an average NP diameter d = 8 nm, with an FWHM of 7 nm for the 1.5% 

coverage case. For higher coverages, the complicated morphology of the mesoporous 

films may introduce an overestimation of the NP dimensions, as NPs which are actually 
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on different terraces may improperly appear as single larger aggregates. For this reason, 

a more thoroughly analysis for 10% coverage was performed using a flat, but chemically 

equivalent, TiO2 substrate, grown on SiO2, as shown in Figure 3d. The resulting size dis-

tribution gives d = 13 nm and FWHM increases to 17 nm, for the 10% coverage (Figure 3f). 

 

Figure 3. (a) SE SEM image of a typical mesoporous TiO2 sample, (b) BSE SEM image of 1.5% coverage in Ag/MgO sample 

on m-TiO2, (c) size distribution resulting from analysis of Figure 3b corresponding to 1.5% NP coverage, (d) SE SEM image 

of Ag/MgO NPs with 10% coverage on a flat TiO2 substrate, (e) BSE SEM image of 10% coverage of Ag/MgO NPs on m-

TiO2, (f) size distribution resulting from analysis of Figure 3d. 

Deposition on the flat TiO2 substrate also allows us to investigate the NP height dis-

tribution by means of AFM topography. In Figure 4, the topography of the Ag/MgO on 

TiO2 is reported (Figure 4a), along with the relative height distribution (Figure 4b). The 

latter appears clearly as bimodal and it is fitted with two log-normal components: the first 

component (peak 0) can be ascribed to the surface roughness of TiO2 film bare areas with 

an average height value <h0> = 3 and FWHM = 2 nm (as shown in Figure S2, the bare TiO2 

substrate is characterized by a surface roughness of 3 nm), while the second component 

(peak 1) corresponds to the NP height distribution, with mean value <h1> = 7.3 and FWHM 

= 2 nm (Figure 4b). A fair estimate of the average NP height can be given by subtracting 

the average values of the two components, resulting in a value <h> = 4 nm (see also refer-

ences [81,82]). 
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Figure 4. (a) AFM image of Ag/MgO NPs on flat TiO2 substrate with a profile line at the bottom, (b) 

AFM analysis of the resulting height histogram distribution, red curve (peak 0) is the fitting com-

ponent corresponding to the substrate roughness, while the green curve (peak 1) is the fitting com-

ponent corresponding to the height distribution of the Ag/MgO NPs. 

Assuming that the NP height does not strongly depend on coverage, for relatively 

low coverages, and combining SEM and AFM information on size (d) and height (h) dis-

tribution, respectively, we can estimate the Ag/MgO NP aspect ratio with the formula AR 

= d/h. The mean AR value varies from ~2 to 3, upon increasing coverage from 1.5% to 10%; 

the origin of this flat shape may be associated with both shape deformation as a result of 

the interaction of the NPs with the surface [81,82] and the formation of small aggregates 

[50]. 

The thermal stability of the Ag/MgO-engineered substrates is an extremely relevant 

aspect to be considered when photovoltaic applications are pursued. Indeed, a tempera-

ture as high as 100 °C is reached during the formation of the perovskite layer on top of the 

functionalized substrate; moreover, the environmental heat generated during PSC work-

ing conditions may also increase the temperature well above room temperature [83]. We 

have therefore tested the thermal stability of the functionalized substrate by means of XPS, 

upon annealing up to T = 150 °C in UHV (base pressure 5 × 10−10 mbar). For this experi-

ment, a glass/FTO/c-TiO2/m-TiO2 substrate was functionalized with 15% coverage of Ag 

NPs and covered with 1 nm (nominal thickness) of MgO. It was exposed to air for 10 min 

during the transfer to another UHV system, equipped with a sample heater and an XPS 

instrument. Figure 5 shows the Ag 3d core level spectra acquired at room temperature 

and after annealing at T = 100 °C and T = 150 °C for 20 min, respectively. A spectrum taken 

on a bare Ag NP sample after exposure to air for 30 min (OX) at room temperature is also 

shown for comparison. In the case of bare Ag NPs, air exposure completely quenches the 

plasmonic loss at 372 eV, while the Ag 3d peaks become broader. In the case of Ag/MgO 

NPs instead, the plasmonic loss is clearly visible, while no oxidized component appears, 

indicating that MgO is positively acting as a proper capping material in protecting the 

metal core from oxidation. Furthermore, upon annealing, the Ag plasmonic feature is pre-

served, proving that the functionalized substrates are stable up to 150 °C, with Ag in its 

metallic phase. In addition, the Ag and Mg core level intensities remain essentially con-

stant during the annealing, showing that the system is stable in this temperature range. 
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Figure 5. XPS (a) Ag 3d core level of bare Ag NPs after air exposure, (b) Ag 3d core levels at room 

temperature (RT), (c) Ag 3d core levels at 100 °C and (d) Ag 3d core level at 150 °C. The system used 

was glass/FTO/c-TiO2/m-TiO2/Ag NPs/MgO. The red arrows highlight the plasmonic features. 

The system optical response for different NP coverages is investigated by measuring 

its UV–Vis reflectivity R(λ) and transmissivity T(λ), with s-polarized light and beam inci-

dence of 45° with respect to the surface normal. Measurements are performed on samples 

subdivided into four areas, on top of which four single and electrically independent cells 

are successively grown in the same conditions. Typically (Figure 1c (left)), three cells were 

functionalized with the same NP amount, while the fourth was kept pristine by proper 

masking, and serves as a reference. In the upper panel of Figure 6a we show the UV–Vis 

optical loss L, defined as L = 1 − (T + R) as a function of the wavelength, for samples cor-

responding to NP coverage of 1.5%, 3.5% and 9%, respectively. For each coverage, the 

spectrum Lsub of the corresponding glass/FTO/c-TiO2/m-TiO2 pristine substrate is shown 

for comparison. 
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Figure 6. (a) Optical loss spectra of Ag/MgO NPs at different coverages levels. (b) Differential optical loss spectra of sam-

ples with different coverages of Ag/MgO NPs. The differences in signal intensity of Lsub (and therefore the corresponding 

L) for different samples may arise from small variations in contaminants (e.g., carbon), humidity and roughness. (c) The 

imaginary part of the calculated in-plane polarizability for Ag NPs having different aspect ratios embedded in a MgO 

matrix with refractive index n = 1.7. (d) The imaginary part of the calculated in-plane polarizability for Ag NPs having 

different aspect ratios embedded in a MgO matrix with refractive index n = 1.4. Only the in-plane component of the po-

larizability has been computed due to the s-polarization of the light beam. 

The lower panel (Figure 6b) reports the differential optical loss, i.e., ∆L = L − Lsub. 

For 1.5% coverage, ∆L is characterized by a broad feature peaking at λ~420 nm, to-

gether with a tail extending to a higher wavelength, up to λ~700 nm. For higher coverages, 

the overall ∆L intensity progressively increases, the main peak slightly red shifting and 

becoming broader while the high-wavelength tail rises [84]. The origin of these features 

and their dependence on coverage can be rationalized considering that the optical loss is 

given by two contributions, i.e., the layer absorbance (A) and the scatter (S), the latter 

accounting for light diffusion induced by surface roughness [85]. The main peak observed 

at λ = 430 nm can be assigned to the Ag NP localized surface plasma resonance (LSPR) 

absorbance while the broad tail can be attributed to an enhancement in light diffusion 

(decreasing at longer wavelengths [86]), caused by NP-induced increasing surface rough-

ening. 

It is well known that the NP optical absorption response is highly influenced by na-

noparticle shape—especially their aspect ratio (AR) [87]—as well as by the dielectric prop-

erties of the embedding material, while it is fairly independent from NP size, at least for 

diameters in the 5–40 nm range [88]. For bare, spherical Ag NPs, the LSPR is localized at 

390 nm [47], while it shifts to higher wavelengths if NPs are embedded in a solid-state 

matrix [84,88], the shift being higher the larger the matrix refractive index. Following the 

Maxwell Garnett approach [89] (see Supplementary Materials for further details), we have 

computed the imaginary part of the Ag NP in-plane polarizability for different values of 

the NP AR [90] and of the matrix dielectric function. Indeed, as occurs in the case of other 

metal oxide materials, the MgO UV–Vis dielectric function is known to vary with the film 

thickness t, becoming smaller than in the bulk for films thinner than t~250 nm [91,92]. In 

Figure 6c, the imaginary part of the NP polarizability is calculated for different values of 

AR ranging between 1.5 and 2.5, using the dielectric constants of bulk Ag and MgO, taken 

from reference [93]. In this case, a red shift of the LSPR maximum from ~500 nm to ~570 

nm is observed upon AR increasing. Figure 6d shows, instead, the imaginary part of the 

NP polarizability calculated using the smaller dielectric constant of a thin MgO layer, as 

taken from the literature [94]. In this case, all the spectra are blue shifted, the AR = 2 mov-

ing from 520 to 460 nm, in fair agreement with the maximum position measured for the 

1.5% coverage. As previously discussed, the distribution of NP AR values is expected to 

broaden with increasing NP film coverages—with larger NPs having higher AR—thus 
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explaining the observed broadening of the LSPR peak. On the other hand, particle inter-

connections can also influence the values of plasmonic resonance mode at high coverages, 

contributing to the overall broadening [95,96]. 

Eventually, the functionalized substrates were used to fabricate and test the overall 

electric performance of Ag/MgO-engineered PSCs, for different NP coverages. As shown 

in Figure 1c (right), the Ag/MgO NPs are localized at the interface between the ETL m-

TiO2 layer and the mixed-cation perovskite photoactive layer. 

The summary of the main performance parameters—i.e., short circuit current density 

(Jsc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (PCE)—is 

shown in Table 1 for different NP coverages; at least nine devices were tested for each 

coverage. The reference cell (0.0%) presents an average PCE of 16.0% ± 0.4%. The best 

results are obtained for an NP surface coverage of about 1.5%, which performs at an av-

erage efficiency of 16.5% ± 0.8%, corresponding to a relative improvement of ~3% in PCE. 

For NP coverages above 3.5%, the performance of the NP-engineered cells progressively 

deteriorates, possibly due to reduced transmissivity at the TiO2/NP interface, which re-

duces the fraction of light reaching the perovskite active layer [97]. For all measured de-

vices, no perovskite degradation was visually observed, indicative of the active role 

played by MgO as an effective protective material of the Ag core from direct exposure to 

perovskite. 

Table 1. Main parameters, with their standard deviations, for devices ranging between 0.0% and 

10.0% of surface coverage in Ag/MgO NPs atop an m-TiO2 layer. 

Ag/MgO 

Coverage % 
Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

0.0 21.6 ± 0.3 1.04 ± 0.03 71.1 ± 1.0 16.0 ± 0.4 

1.5 22.1 ± 0.4 1.07 ± 0.03 71.5 ± 2.4 16.5 ± 0.8 

3.2 21.6 ± 0.7 1.06 ± 0.02 69.7 ± 2.8 15.0 ± 1.2 

8.7 12.0 ± 1.4 1.00 ± 0.03 60.2 ± 2.2 8.4 ± 1.0 

10.0 7.3 ± 0.7 0.98 ± 0.01 50.9 ± 3.3 5.0 ± 0.9 

As shown in Table 1, the PCE enhancement observed for 1.5% coverage is related to 

an increase in both JSC and VOC. The best cell electrical parameters are reported in Table 2, 

showing a PCE value of 17.8%, as compared to the 17.0% of the best-efficiency reference 

device, corresponding to an overall relative increment of about 5%. Analogous relative 

increments in PCE enhancement have been reported in the literature for different types of 

core–shell NPs deposited or embedded in the ETL. For instance, in the cases of Au@Pt@Au 

[44], Ag@TiO2@Pa [31] and Au@SiO2 [42], the observed increase in PCE ranges between 8 

and 17%. 

Table 2. Main performance parameters for the best reference cell and the best optimized device with 

Ag/MgO NPs. 

 Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

Reference 22.0 1.05 72.2 17.0 

Ag/MgO 1.5% 22.6 1.08 71.9 17.8 

In Figure 7, the current density–voltage (J-V) curve for the best optimized device at 

about 1.5% coverage of Ag/MgO NPs is compared to the corresponding (best-performing) 

reference cell, at stabilized conditions for both devices. 
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Figure 7. J-V curves for both the best reference cell without Ag/MgO NPs (black curve) and the best 

optimized device with NPs (red curve). 

As shown in Figure 7 and Table 2, embedding the Ag/MgO NPs atop an m-TiO2 layer 

reflected a significant enhancement of VOC. By following the study of Yuan et al. [34], we 

suggest that the improvement of VOC may be due to a reduction in TiO2/Ag/MgO NP work 

function with respect to TiO2. In fact, under light illumination, due to the injection of car-

riers from Ag/MgO NPs to TiO2, the Fermi level is expected to increase, leading to reduced 

TiO2 work function. Finally, this reduction may enhance the built-in potential and increase 

the VOC [98]. 

Moreover, in Figure 8, the IPCE spectra of the best-performing cell and of the (0%) 

reference cell are compared, along with the corresponding integrated current density (Jin-

tegrated). The observed enhancement in IPCE takes place in the whole (340–760) nm optical 

window, in agreement with previous results reported in the literature [99–101]. This 

broadband effect has been attributed to different NP-related effects, suggesting that, be-

sides near-field LSPR-enhanced absorption, other mechanisms such as increased far-field 

scattering, facilitated charge-transfer and separation [37,102] and reduction in the exciton 

binding energy [42,48] may play a relevant role. 
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Figure 8. IPCE spectra for both the best-performing device with Ag/MgO NPs (red) and the best 

reference device (black) and their integrated current density; the J values registered are coherent 

with those shown in Table 2 under a solar simulator, with a percentage difference of 3% and 4.7% 

for the devices with and without NPs, respectively. 

4. Conclusions 

In this work, the magnetron-based physical deposition method was applied to incor-

porate novel NPs in thin-film perovskite solar devices, thus probing their properties and 

their effect on device performance enhancement. In particular, the structural properties of 

Ag/MgO NPs—deposited on a suitable mesh by a co-deposition method—are investi-

gated by HR-TEM, showing the multi-twinning icosahedral structure of the Ag core, and 

providing evidence (through EDXS mapping) of the actual formation of the MgO over-

layer. The morphological properties of Ag/MgO NPs deposited on top of the m-TiO2 ETL 

layer by means of sequential-layer deposition were investigated through XPS, SEM and 

AFM, providing information on their lateral dimension and height distributions. For an 

NP coverage of 1.5%, the mean value of the NP lateral dimension is d = 8.0 nm while the 

mean height is h = 4 nm, showing that NPs are characterized by a flattened spheroidal 

shape, with AR~2. Furthermore, XPS measurements show the NPs’ stability against ther-

mal treatment up to 150 °C, an important aspect to be considered for their actual use in 

real PSC devices. Optical loss data, taken with s-polarized UV–visible light in the 300–800 

nm, are dominated by the Ag LSPR absorption band, peaking at λ~420 nm, together with 

a long-wavelength tail mainly attributed to diffuse scattering. Upon an NP coverage in-

crease, the optical loss intensity increases and the LSPR peak broadens and red shifts; 

these changes are attributed to a change in the NP size and AR distributions and suggest 

the possibility of tuning the system optical response, as well as extending the plasmonic 

response to a broader spectral range, by changing the deposited NP amount and morphol-

ogy. By embedding silver magnesia NPs at the interface between the photoactive layer 

(i.e., a triple-cation perovskite layer) and the m-TiO2 electron transport layer in thin films 

of PSC devices, average efficiency increases of ~3% were obtained, from 16.0% in the pris-

tine device to 16.5% in the engineered Ag/MgO NP device at an optimized coverage value 

around 1.5%. It is noted that the moderate increase in device performances—as compared 

with other NP-engineered cells reported in the literature—becomes quite remarkable if 

we consider that in the tested devices, NPs were mainly localized at the surface of the 

mesoporous substrate. This increase is mainly related to an enhancement in the device 

short circuit current and open circuit voltage, while the IPCE spectrum shows that this 
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increase is distributed on all wavelengths. This suggests, in agreement with the literature, 

that Ag LSPR may not be the main source of the observed efficiency enhancement, while 

other mechanisms such as diffuse light scattering, enhanced charge separation and reduc-

tion in exciton binding energy also have to be considered. In parallel, the improved VOC 

suggests an upward shift of m-TiO2 work function due to an efficient charge transfer from 

Ag/MgO NPs and m-TiO2. This work presents our physical deposition method, based on 

a gas aggregation nanocluster source, as an innovative, versatile, and solvent-free strategy 

for plasmonic NP engineering, which will allow the exploration of different combinations 

of metal cores and shell/protective layer materials, aiming at the fabrication of solar de-

vices with increased current density and efficiency. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ma14195507/s1, Figure S1： XPS spectra of MgO on TiO2; Figure S2: AFM roughness 

analysis of the flat TiO2; polarizability calculation within the Maxwell Garnett model (Equation). 
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