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Abstract
We study the symmetric inclusion process (SIP) in the condensation regime. We obtain an
explicit scaling for the variance of the density field in this regime, when initially started from
a homogeneous product measure. This provides relevant new information on the coarsening
dynamics of condensing interacting particle systems on the infinite lattice. We obtain our
result by proving convergence to sticky Brownian motion for the difference of positions
of two SIP particles in the sense of Mosco convergence of Dirichlet forms. Our approach
implies the convergence of the probabilities of two SIP particles to be together at time t .
This, combined with self-duality, allows us to obtain the explicit scaling for the variance of
the fluctuation field.

1 Introduction

The symmetric inclusion process (SIP) is an interacting particle systemwhere a single particle
performs symmetric continuous-time random walks on the lattice Z, with rates kp(i, j) =
kp( j, i) (k > 0) and where particles interact by attracting each other (see below for the
precise definition) at rate p(i, j)ηiη j , where ηi is the number of particles at site i . The
parameter k regulates the relative strength of diffusion w.r.t. attraction between particles.
The symmetric inclusion process is self-dual, and many results on its macroscopic behavior
can be obtained via this property. Self-duality implies that the expectation of the number of
particles can be understood from one dual particle. In particular, because one dual particle
scales to Brownian motion in the diffusive scaling, the hydrodynamic limit of SIP is the heat
equation. The next step is to understand the variance of the density field, which requires two
dual particles.

It is well-known that in the regime k → 0 the SIP manifests condensation (the attractive
interaction dominates), and via the self-duality of SIPmore information can be obtained about
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this condensation process than for a generic process (such as zero-range processes). Indeed,
in [1] two of the authors of this paper in collaboration with C. Giardinà have obtained an
explicit formula for the Fourier-Laplace transform of two-particle transition probabilities for
interacting particle systems such as the simple symmetric exclusion and the simple symmetric
inclusion process, where simple refers to nearest-neighbor in dimension 1. From this formula,
the authors were able to extract information about the variance of the time-dependent density
field started from a homogeneous productmeasure.With the help of duality this reduces to the
study of the scaling behavior of twodual particles. In particular, for the inclusion process in the
condensation regime, from the study of the scaling behavior of the time-dependent variance
of the density field, one can extract information about the coarsening process. It turned out
that the scaling limit of two particles is in that case a pair of sticky Brownian motions. From
this one can infer the qualitative picture that in the condensation regime, when started from a
homogeneous product measure, large piles of particles are formed which move as Brownian
motion, and interact with each other as sticky Brownian motions.

Thewhole analysis in [1] is based on the exact formula for the Fourier-Laplace transformof
the transition probabilities of two SIP particles asmentioned above. This exact computation is
basedon the fact that the underlying randomwalk is nearest-neighbor, and therefore the results
are restricted to that case. However, we expect that for the SIP in the condensation regime,
sticky Brownian motion appears as a scaling limit in much larger generality in dimension
1. The exact formula in [1] yields convergence of semigroups, and therefore convergence
of finite-dimensional distributions. However, because of the rescaling in the condensation
regime, one cannot expect convergence of generators, but rather a convergence result in the
spirit of slow-fast systems, i.e., convergence of the type of gamma convergence. Moreover,
the difference of two SIP-particles is not simply a random walk slowed down when it is at
the origin as in e.g. [2]. Instead, it is a random walk which is pulled towards the origin when
it is close to it, which only in the scaling limit leads to a slow-down at the origin, i.e., sticky
Brownian motion.

In this paper, we obtain a precise scaling behavior of the variance of the density field in
the condensation regime. We find the explicit scaling form for this variance in real time (as
opposed to the Laplace transformed result in [1]), thus giving more insight in the coarsening
process when initially started from a homogeneous product measure of density ρ. This is
the first rigorous result on coarsening dynamics in interacting particle systems directly on
infinite lattices, for a general class of underlying randomwalks. There exist important results
on condensation either heuristically on the infinite lattice or rigorous but constrained to finite
lattices. For example [3] heuristically discusses on infinite lattices the effective motion of
clusters in the coarsening process for the TASIP; or the work [4] which based on heuristic
mean-field arguments studies the coarsening regime for the explosive condensation model.
On the other hand, on finite lattices via martingale techniques [5] studies the evolution of a
condensing zero-range process. In the context of the SIP on a finite lattice, the authors of [6]
showed the emergence of condensates as the parameter k → 0, and rigorously characterize
their dynamics. We also mention the recent work [7] where the structure of the condensed
phase in SIP is analyzed in stationarity, in the thermodynamic limit. More recently in [8],
condensation was proven for a large class of inclusion processes for which there is no explicit
form of the invariantmeasures. Thework in [8] also derived rigorous results on themetastable
behavior of non-reversible inclusion processes.

Our main result is obtained by proving that the difference of two SIP particles converges,
after a suitable rescaling defined below in Sect. 2.4.1, to a two-sided sticky Brownian motion
in the sense of Mosco convergence of Dirichlet forms, originally introduced in [9] and
extended to the case of varying state spaces in [10]. Because this notion of convergence
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implies convergence of semigroups in the L2-space of the reversible measure, which is
dx + γ δ0 for the sticky Brownian motion with stickiness parameter γ > 0, the convergence
of semigroups also implies that of transition probabilities of the form pt (x, 0). This, together
with self-duality, helps to explicitly obtain the limiting variance of the fluctuation field.
Technically speaking, the main difficulty in our approach is that we have to define carefully
how to transform functions defined on the discretized rescaled lattices into functions on the
continuous limit space in order to obtain convergence of the relevant Hilbert spaces, and at the
same time obtain the second condition of Mosco convergence. Mosco convergence is a weak
form of convergence which is not frequently used in the probabilistic context. In our context
it is however exactly the form of convergence which we need to study the variance of the
density field. As already mentioned before, as it is strongly related to gamma-convergence,
it is also a natural form of convergence in a setting reminiscent of slow-fast systems.

The rest of our paper is organized as follows. In Sect. 2 we deal with some preliminary
notions; we introduce both the inclusion and the difference process in terms of their infinites-
imal generators. In this section we also introduce the concept of duality and describe the
appropriate regime inwhich condensationmanifests itself. Ourmain result is stated in Sect. 3,
were we present some non-trivial information about the variance of the time-dependent den-
sity field in the condensation regime and provide some heuristics for the dynamics described
by this result. Section 4 deals with the basic notions of Dirichlet forms. In the same sec-
tion, we also introduce the notion of Mosco convergence on varying Hilbert spaces together
with some useful simplifications in our setting. In Sect. 5, we present the proof of our main
result and also show that the finite-range difference process converges in the sense of Mosco
convergence of Dirichlet forms to the two-sided sticky Brownian motion. Finally, as sup-
plementary material in the Appendix, we construct via stochastic time changes of Dirichlet
forms the two-sided sticky Brownian motion at zero and we also deal with the convergence
of independent random walkers to standard Brownian motion. This last result, despite being
basic, becomes a cornerstone for our results of Sect. 5.

2 Preliminaries

2.1 TheModel: Inclusion Process

The Symmetric Inclusion Process of parameter k (SIP(k)) is an interacting particle system
where particles randomly hop on the lattice Z with attractive interaction and no restrictions
on the number of particles per site. Configurations are denoted by η and are elements of
� = N

Z (where N denotes the set of natural numbers including zero). We denote by ηx the
number of particles at position x ∈ Z in the configuration η ∈ �. The generator working on
local functions f : � → R is of the type

L f (η) =
∑

i, j∈Z
p( j − i)ηi (k + η j )( f (η

i, j ) − f (η)) (1)

where ηi, j denotes the configuration obtained from η by removing a particle from i and
putting it at j . For the associated Markov process on �, we use the notation {η(t) : t ≥ 0},
i.e., ηx (t) denotes the number of particles at time t at location x ∈ Z. Additionally, we assume
that the function p : R → [0,∞) satisfies the following properties

1. Symmetry: p(r) = p(−r) for all r ∈ R.
2. Finite range: there exists R > 0 such that: p(r) = 0 for all |r | > R.
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3. Irreducibility: for all x, y ∈ Z there exists n ∈ N and x = i1, i2, . . . , in−1, in = y, such
that

∏n−1
k=1 p(ik+1 − ik) > 0.

It is known that these particle systems have a one-parameter family of homogeneous (w.r.t.
translations) reversible and ergodic product measures μρ, ρ > 0 with marginals

μρ(ηi = n) = kkρn

(k + ρ)k+n

�(k + n)

�(n + 1)�(k)
.

This family of measures is indexed by the density of particles, i.e.,
∫

η0dμρ = ρ.

Remark 2.1 Notice that for these systems the initial configuration has to be chosen in a subset
of configurations such that the process {η(t) : t ≥ 0} is well-defined. A possible such subset
is the set of tempered configurations. This is the set of configurations η such that there exist
C, β ∈ R that satisfy |η(x)| ≤ C |x |β for all x ∈ R. We denote this set (with slight abuse of
notation) still by �, because we will always start the process from such configurations, and
this set has μρ̄ measure 1 for all ρ. Since we are working mostly in L2(μρ) spaces, this is
not a restriction.

2.2 Self-duality

Let us denote by � f ⊆ � the set of configurations with a finite number of particles. We then
have the following definition:

Definition 2.1 We say that the process {ηt : t ≥ 0} is self-dual with self-duality function
D : � f × � → R if

Eη

[
D(ξ, ηt )

] = Eξ

[
D(ξt , η)

]
(2)

for all t ≥ 0 and ξ ∈ � f , η ∈ �.

In the definition above Eη and Eξ denote expectation when the processes {ηt : t ≥ 0} and
{ξt : t ≥ 0} are initialized from the configuration η and ξ respectively . Additionally we
require the duality functions to be of factorized form, i.e.,

D(ξ, η) =
∏

i∈Z
d(ξi , ηi ). (3)

In our case the single-site duality function d(m, ·) is a polynomial of degreem, more precisely

d(m, n) = n!�(k)

(n − m)!�(k + m)
1l{m≤n}. (4)

One important consequence of the fact that a process enjoys the self-duality property is
that the dynamics of m particles provides relevant information about the time-dependent
correlation functions of degree m. As an example we now state the following proposition,
Proposition 5.1 in [1], which provides evidence for the case of two particles

Proposition 2.1 Let {η(t) : t ≥ 0} be a process with generator (1), then
∫

Eη (ηt (x) − ρ) (ηt (y) − ρ) ν(dη)
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=
(
1 + 1

k
1l{x=y}

)(
kσ

k + 1
− ρ2

)
Ex,y

[
1l{Xt=Yt }

]+ 1l{x=y}
(

ρ2

k
+ ρ

)
(5)

where ν is assumed to be a homogeneous product measure with ρ and σ given by

ρ :=
∫

ηxν(dη) and σ :=
∫

ηx (ηx − 1)ν(dη) (6)

and Xt and Yt denote the positions at time t > 0 of two dual particles started at x and y
respectively and Ex,y the corresponding expectation.

Proof We refer to [1] for the proof. �	

Remark 2.2 Notice that Proposition 2.1 shows that the two-point correlation functions depend
on the two-particle dynamics via the indicator function 1l{Xt=Yt }. More precisely, these cor-
relations can be expressed in terms of the difference of the positions of two dual particles
and the model parameters.

Motivated by Remark 2.2, and for reasons that will become clear later, we will study in the
next section the stochastic process obtained from the generator (1) by following the evolution
in time of the difference of the positions of two dual particles.

2.3 The Difference Process

We are interested in a process obtained from the dynamics of the process {η(t) : t ≥ 0} with
generator (1) initialized originally with two labeled particles. More precisely, if we denoted
by (x1(t), x2(t)) the particle positions at time t ≥ 0, from the generator (1) we can deduce
the generator for the evolution of these two particles; this is, for f : Z2 → R and x ∈ Z

2 we
have

L f (x) =
2∑

i=1

∑

r

p(r)

(
k +

2∑

j=1

1lxi+r=x j

)(
f (xi,r ) − f (x)

)

where xi,r results from changing the position of particle i from the site xi to the site xi + r .
Given this dynamics, we are interested in the process given by the difference

w(t) := x2(t) − x1(t), t ≥ 0. (7)

Notice that the labels of the particles are fixed at time zero and do not vary thereafter. This
process was studied for the first time in [11] and later on [1], but in contrast to [1], we do not
restrict ourselves to the nearest-neighbor case, hence any time a particle moves the value of
w(t) can change by r units, with r ∈ A := [−R, R] ∩ Z \ {0}.
Using the symmetry and translation invariance properties of the transition function we obtain
the following operator as generator for the difference process

(L f )(w) =
∑

r∈A

2p(r) (k + 1lr=−w) [ f (w + r) − f (w)] (8)

where we used that p(0) = 0 and p(−r) = p(r).
Let μ denote the discrete counting measure and δ0 the Dirac measure at the origin, then we
have the following result:
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Proposition 2.2 The difference process is reversible with respect to the measure νk given by

νk := μ + δ0

k
, i.e. νk(w) =

{
1 + 1

k if w = 0

1 if w �= 0
(9)

Proof By detailed balance, see for example Proposition 4.3 in [12], we obtain that any
reversible measure should satisfy the following:

νk(w) = (k + 1lw=0)

(k + 1lr=−w)
νk(w + r) (10)

where, due to the symmetry of the transition function, we have cancelled the factor p(−r)
p(r) .

In order to verify that νk satisfies (10) we have to consider three possible cases: Firstly w /∈
{0,−r}, secondlyw = 0 and finallyw = −r . Forw /∈ {0,−r}, (10) reads νk(w) = νk(w+r)
which is clearly satisfied by (9). Forw = 0 and forw = −r , (10) reads νk(0) = (1+ 1

k )νk(r)
which is also satisfied by (9). �	
Remark 2.3 Notice that in the case of a symmetric transition function the reversible measures
νk are independent of the range of the transition function.

2.4 Condensation and Coarsening

2.4.1 The Condensation Regime

It has been shown in [13] that the inclusion process with generator (1) can exhibit a conden-
sation transition in the limit of a vanishing diffusion parameter k. The parameter k controls
the rate at which particles perform random walks, hence in the limit k → 0 the interaction
due to inclusion becomes dominant which leads to condensation. The type of condensation
in the SIP is different from other particle systems such as zero-range processes, see [14] and
[15] for example, because in the SIP the critical density is zero.
In the symmetric inclusion process we can achieve condensation by the following rescaling:

1. First, by making the parameter k of order 1/N , more precisely:

kN = 1√
2γ N

for γ > 0.
2. Second, rescaling space by 1/N .
3. Third, by rescaling time by a factor of order N 3, more precisely N 3γ /

√
2.

We refer to this simultaneously rescaling as the condensation regime. In this regime the
generator (1) becomes

LN f (η) = N 3γ√
2

∑

i, j∈ 1
N Z

p( j − i)ηi
(

1√
2γ N

+ η j

)
( f (ηi, j ) − f (η)). (11)

Notice that by splitting the generator (11) as follows:

LN f (η) = L IRW
N f (η) + L SIP

N f (η)

where

L IRW
N f (η) = N 2

2

∑

i, j∈ 1
N Z

p( j − i)ηi ( f (η
i, j ) − f (η)) (12)
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and

L SIP
N f (η) = N 3γ√

2

∑

i, j∈ 1
N Z

p( j − i)ηiη j ( f (η
i, j ) − f (η)), (13)

we can indeed see two forces competing with each other. On the one hand, with a multi-

plicative factor of N2

2 we see the diffusive action of the generator (12). While on the other

hand, at a much larger factor N3γ√
2
we see the action of the infinitesimal operator (13) making

particles condense. Therefore the sum of the two generators have the flavor of a slow-fast
system. This gives us the hint that for the associated process we cannot expect convergence
of the generators. Instead, as it will become clear later, we will work with Dirichlet forms.

2.4.2 Coarsening and the Density Fluctuation Field

It was found in [13] that in the condensation regime (when started from a homogeneous
product measure with density ρ > 0) sites are either empty with very high probability, or
contain a large number of particles to match the fixed expected value of the density. We
also know that in this regime the variance of the particle number is of order N and hence
a rigorous hydrodynamical description of the coarsening process, by means of standard
techniques, becomes inaccessible. Nevertheless, as it was already hinted in [1] at the level
of the Fourier-Laplace transform, a rigorous description at the level of fluctuations might be
possible. Therefore we introduce the density fluctuation in the condensation regime, i.e.

XN (η, ϕ, t) = 1

N

∑

x∈Z
ϕ(x/N )

(
ηα(N ,t)(x) − ρ

)
with α(N , t) := γ N3t√

2
and kN = 1√

2γ N

(14)
defined for any ϕ in the space of Schwartz functions:

S (R) =
{
ϕ ∈ C∞(R) : sup

x∈R
|xαDβϕ| < ∞,∀α, β ∈ N

}
. (15)

Remark 2.4 Notice that the scaling in (14) differs from the standard setting of fluctuation
fields, given for example in Chapter 11 of [12]. In our setting, due to the exploding variances
(coarsening) it is necessary to re-scale the fields by an additional factor of 1√

N
.

3 Main Result: Time-Dependent Variances of the Density Field

Let us initialize the nearest-neighbor SIP configuration process from a spatially homogeneous
product measure ν parametrized by its mean ρ and such that

Eν[η(x)2] < ∞. (16)

We have the following result concerning the time-dependent variances of the density field
(14):

Theorem 3.1 Let {ηα(N ,t) : t ≥ 0} be the time-rescaled inclusion process, with infinistesimal
generator (11), in configuration space. Consider the fluctuation field XN (η, ϕ, t) given by
(14). Let νρ be an initial homogeneous product measure parametrized by its mean ρ and
satisfying (16). Then the limiting time dependent variance of the density field is given by:
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lim
N→∞Eν

[
XN (η, ϕ, t)2

]
= −√

2γ 2ρ2 e4γ
2t
∫

R2
ϕ(x)ϕ(y) e2

√
2γ |x−y| erf

(
2γ

√
t + |x−y|√

2t

)
dx dy

+√
2γρ2

(
1 − e4γ

2t erf(2γ
√
t)
) ∫

R

ϕ(x)2 dx, (17)

where the error function is:

erf(x) := 2√
π

∫ ∞

x
e−y2dy.

Heuristics of the Coarsening Process

In this section we give some intuition about the limiting behavior of the density field, as
found in Theorem 3.1. More concretely, we show that Theorem 3.1 is consistent with the
following “coarsening picture”. Under the condensation regime, and started from an initial
homogeneous product measure ν with density ρ, over time large piles are created which
are typically at distances of order N and of size ρN . The location of these piles evolves on
the appropriate time scale according to a diffusion process. If we focus on two piles, this
diffusion process is of the form (X(t), Y (t)) where X(t)−Y (t) is a sticky Brownian motion
Bsbm(t), and where the sum X(t) + Y (t) is an independent Brownian motion B(t), time-
changed via the local time inverse at the origin τ(t) of the sticky Brownian motion Bsbm(t)
via X(t) + Y (t) = B(2t − τ(t)).
In the following we denote by psbmt (x, dy) the transition kernel of a Sticky Brownian motion
with stickiness parameter

√
2γ . This kernel consists of a first term that is absolutely contin-

uous w.r.t. the Lebesgue measure and a second term that is a Dirac-delta at the origin times
the probability mass function at zero. With a slight abuse of notation we will denote by

psbmt (x, dy) = psbmt (x, y) dy + psbmt (x, 0) · δ0(dy) (18)

where psbmt (x, y) for y �= 0 denotes a probability density to arrive at y at time t when started
from x , and for y = 0 the probability to arrive at zero when started at x . See equation (2.15)
in [16] for an explicit formula for (18).
Let us now make this heuristics more precise. Define the non-centered field

ZN (η, ϕ, t) = 1

N

∑

x∈Z
ϕ
( x
N

)
ηα(N ,t)(x) (19)

then one has, using that at every time t > 0, and x ∈ Z
d , Eν(ηt (x)) = ρ:

lim
N→∞Eν [ZN (η, ϕ, t)] = ρ

∫

R

ϕ(x) dx (20)

and

lim
N→∞

(
Eν

[
ZN (η, ϕ, t)2

]− Eν

[
XN (η, ϕ, t)2

]) = ρ2
∫

R

∫

R

ϕ(x)ϕ(y) dx dy.

As we will see later in the proof of our main theorem, the RHS of (17) can be written as

−ρ2

2

∫

R2
ϕ
( u+v

2

)
ϕ
( u−v

2

)
psbmt (v, 0) dv du −

(√
2γρ2 psbmt (0, 0) − √

2γρ2
) ∫

R

ϕ(u)2 du,

and hence, we have that
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lim
N→∞Eν

[
ZN (η, ϕ, t)2

] = ρ2
∫

R

∫

R

ϕ(x)ϕ(y) dx dy + √
2γρ2

∫

R

ϕ(u)2 du

−ρ2

2

∫

R2
ϕ
( u+v

2

)
ϕ
( u−v

2

)
psbmt (v, 0) dv du − √

2γρ2 psbmt (0, 0)
∫

R

ϕ(u)2 du

= ρ2

2

∫

R

∫

R

ϕ
( u+v

2

)
ϕ
( u−v

2

)
(1 − psbmt (v, 0)) (dv + √

2γ δ0(dv)) du

= ρ2

2

∫

R

(∫

R

E
sbm
v

(
ϕ
( u+vt

2

)
ϕ
( u−vt

2

))
(1 − 1l{0}(v))

(
dv + √

2γ δ0(dv)
))

du

= ρ2

2

∫

R

∫

R

E
sbm
v

(
ϕ
( u+vt

2

)
ϕ
( u−vt

2

))
dv du

= ρ2

2

∫

R

∫

R

∫

R

ϕ
( u+z

2

)
ϕ
( u−z

2

)
psbmt (v, dz) dv du

= ρ2
∫

R

dv

∫

R

∫

R

ϕ(x)ϕ(y) · p̄sbmt (v; dx, dy) (21)

where
p̄sbmt (v; dx, dy) := psbmt (v, x − y) dx dy + psbmt (v, 0) dx δx (dy). (22)

In the second line we used the change of variables x = u+v
2 , y = u−v

2 .
We now want to describe a “macroscopic” time-dependent random field Z (ϕ, t) that is
consistent with the limiting expectation and second moment computed in (20) and (21).
This macroscopic field describes intuitively the positions of the piles formed from the initial
homogeneous background.
For any fixed m ∈ N we define the family of Rm-valued diffusion processes {Xx(t), t ≥
0}x∈Rm together on a common probability space �. Here x = (x1, . . . , xm) is the vector of
initial positions: Xx(0) = x. Thenwewill denote by Xx

i (t), i = 1, . . . ,m, the i-th component
of Xx(t) = (Xx

1(t), . . . , X
x
m(t)) that is defined as the trajectory started from xi , i.e. the i-

th component of x. Then for any fixed ω ∈ �, we define the define the macroscopic field
Z (m)(·, t)(ω) working on test functions ϕ : R → R as follows:

Z (m)(ϕ, t)(ω) = ρ

m

m∑

i=1

∫

R

ϕ(Xx
i (t)(ω))dxi . (23)

We want to find the conditions on the probability law of the trajectories {Xx
i (t), t ≥ 0} and

on their couplings that make the macroscopic field Z (ϕ, t) compatible with the limiting
expectation (20) and second moment (21) of the microscopic field. We will see that, in order
to achieve this it is sufficient to define the law of the one-component {Xx

i (t), t ≥ 0} and
two-components {(Xx

i (t), X
x
i (t)), t ≥ 0} marginals.

We assume that the family of processes {Xx(t), t ≥ 0}x∈Rm is such that, for all x =
(x1, . . . , xm),

a) for all i = 1, . . . ,m, the marginal Xx
i (t) is a Brownian motion with diffusion constant

χ/2 started from xi .
b) for all i, j = 1, . . . ,m, the pair {(Xx

i (t), X
x
j (t)), t ≥ 0} is a couple of sticky Brownian

motions starting from (xi , x j ), i.e. at any fixed time t ≥ 0 it is distributed in such a way
that the difference-sum process is given by

(Xx
i (t) − Xx

j (t), X
x
i (t) + Xx

j (t)) = (Bsbm,xi−x j (t), B̄xi+x j (2t − τ(t))). (24)
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Here Bsbm,xi−x j (t) is a sticky Brownian motion with stickiness at 0, stickiness parameter√
2γ , and diffusion constant χ , started from xi − x j and where τ(t) is the corresponding

local time-change defined in (113), and B̄xi+x j (2t − τ(t)) is another Brownian motion
and diffusion constant χ , independent from Bsbm(t) started from xi + x j .

Remark 3.1 For an example of a coupling satisfying requirements a) and b) above, we refer
the reader to the family of processes introduced in [17].

We will see that, for any fixed m, the field Z (m)(ϕ, t) reproduces correctly the first and
second moments of (20) and (21).
For the expectation we have, using item a) above

E[Z (m)(ϕ, t)] = ρ

m

m∑

i=1

∫

R

E[ϕ(Xx(t))]dxi

= ρ

∫

R

ϕ(x)
∫

R

pbmt (xi , x) dxi dx = ρ

∫

R

ϕ(x) dx (25)

where pbmt (·, ·) is the transition kernel of Brownian motion, and the last identity follows from
the symmetry: pbmt (xi , x) = pbmt (x, xi ). Notice that indeed the RHS of (25) coincides with
(20).
On the other hand, for the second moment, using item b) above

E[Z (m)(ϕ, t)2] = ρ2

m2

m∑

i, j=1

∫

R

∫

R

E[ϕ(Xx
i (t))ϕ(Xy

j (t))]dxi dy j . (26)

Then, from our assumptions,

E[ϕ(Xx
i (t))ϕ(Xy

j (t))] =
∫

R

∫

R

ϕ(x)ϕ(y)pt (xi , y j ; dx, dy).

Here pt (xi , y j ; dx, dy) is the transition probability kernel of the pair (Xx
i (t), X

y
j (t)).

Denoting now by p̃t (v0, u0; dv, du) the transition probability kernel of the pair (Xx
i (t) −

Xy
j (t), X

x
i (t) + Xy

j (t)), and by πt the probability measure of the time change τ(t), at time t ,
we have

p̃t (v0, u0; dv, du) =
∫

R

p̃t (v0, u0; dv, du |s) πt (ds) =
∫

R

p̃(1)
t (v0, dv |s) p̃(2)

t (u0, du |s) πt (ds)

(where p̃(i)
t (·, ·|s) for i = 1, 2, are resp. the transition probability density functions of the

Brownian motions B(t) and B̄(t) conditioned on s) as, from (24), the difference and sum
processes are independent conditioned on the realization of s = τ(t). Now we have that

∫

R

p̃(1)
t (v0, dv |s)πt (ds) = psbmt (v0, dv) and p̃(2)

t (u0, du |s) = pbm2t−s(u0, du)

hence
∫

R

∫

R

p̃t (v0, u0; dv, du) dv0 du0

=
∫

R

(∫

R

p̃(1)
t (v0, dv |s) dv0

)
·
(∫

R

pbm2t−s(u0, du) du0

)
πt (ds)

=
∫

R

∫

R

p̃(1)
t (v0, dv |s)πt (ds) dv0 =

∫

R

psbmt (v0, dv) dv0 (27)
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where the second identity follows from the symmetry of pbm(·, ·). Then, from the change of
variables v0 := xi − y j , u0 = xi + y j , and v = x − y, u = x + y, and since dv0 du0 =
2dxi dy j , it follows that

∫

R

∫

R

pt (xi , y j ; dx, dy) dxi dy j =
∫

R

p̄sbmt (v0; dx, dy) dv0. (28)

As a consequence

E[(Z (m)(ϕ, t))2] = ρ2
∫

R

∫

R

ϕ(x)ϕ(y)
∫

R

p̄sbmt (v; dx, dy)dv,

which is exactly the same expression as (21).

Remark 3.2 In order to match the first two moments of the limiting density field, it suffices to
take in (23) any m ≥ 2. We believe that in order to match all moments up to order k we need
m ≥ k, and so the limiting field would correspond to taking the limit m → ∞. However,
because in the current paper we can only deal with two particles, we cannot say more about
higher moments.

4 Basic Tools

Before showing the main result, in this section we introduce some notions and tools that will
be useful to show Theorem 3.1. These notions include the concept of Dirichlet forms and the
notion of convergence of Dirichlet forms that we will use; Mosco convergence of Dirichlet
forms. The reader familiar with these notions can skip this section and move directly to Sect.
5.

4.1 Dirichlet Forms

A Dirichlet form on a Hilbert space is defined as a symmetric form which is closed and
Markovian. The importance of Dirichlet forms in the theory of Markov processes is that
the Markovian nature of the first corresponds to the Markovian properties of the associated
semigroups and resolvents on the same space. Related to the present work, probably one of
the best examples of this connection is the work of Umberto Mosco. In [9] Mosco introduced
a type of convergence of quadratic forms, Mosco convergence, which is equivalent to strong
convergence of the corresponding semigroups. Before defining this notion of convergence,
we recall the precise definition of a Dirichlet form.

Definition 4.1 (Dirichlet f orms) Let H be a Hilbert space of the form L2(E;m) for some
σ -finite measure space (E,B(E),m). Let H be endowed with an inner product 〈·, ·〉H .
A Dirichlet form E ( f , g), or (E , D(E )), on H is a symmetric bilinear form such that the
following conditions hold

1. The domian D(E ) is a dense linear subspace of H .
2. The form is closed, i.e. the domain D(E ) is complete with respect to themetric determined

by

E1( f , g) = E ( f , g) + 〈 f , g〉H .

3. The unit contraction operates on E , i.e. for f ∈ D(E ), if we set g := (0 ∨ f ) ∧ 1 then
we have that g ∈ D(E ) and E (g, g) ≤ E ( f , f ).
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When the third condition is satisfied we say that the form E is Markovian.We refer the reader
to [18] for a comprehensible introduction to the subject of Dirichlet forms. For the purposes
of this work, the key property of Dirichlet forms is that there exists a natural correspondence
between the set of Dirichlet forms and the set of Markov generators (cf. Appendix 6.2.2). In
other words, to a reversible Markov process we can always associate a Dirichlet form that is
given by:

E ( f , g) = −〈 f , Lg〉H with D(E ) = D(
√−L) (29)

where the operator L is the corresponding infinitesimal generator of a symmetric Markov
process. As an example of this relation, consider the Brownian motion in R. We know that
the associated infinitesimal generator is given by the Laplacian. Hence its Dirichlet form is

Ebm( f , g) = 1

2

∫ ∞

−∞
f ′(x)g′(x)dx with domain D(Ebm) = H1(R) (30)

namely the Sobolev space of order 1.
From now on we will mostly deal with the quadratic form E ( f , f ) that we can view as a
functional defined on the entire Hilbert space H by defining

E ( f ) =
{
E ( f , f ), f ∈ D(E )

∞, f /∈ D(E ),
f ∈ H (31)

which is lower-semicontious if and only if the form (E , D(E )) is closed.

4.2 Mosco Convergence

Wenow introduce the framework to properly define themodeof convergencewe are interested
in. The idea is that we want to approximate a Dirichlet form on the continuum by a sequence
of Dirichlet forms indexed by a scaling parameter N . In this context, the problem with the
convergence introduced in [9] is that the approximating sequence of Dirichlet forms does
not necessarily live on the same Hilbert space. However, the work in [10] deals with this
issue. We also refer to [19] for a more complete understanding and a further generalization to
infinite-dimensional spaces. In order to introduce this mode of convergence, we first define
the concept of convergence of Hilbert spaces.

4.3 Convergence of Hilbert Spaces

We start with the definition of the notion of convergence of spaces:

Definition 4.2 (Convergenceof Hilbertspaces) A sequence of Hilbert spaces {HN }N≥0,
converges to a Hilbert space H if there exist a dense subset C ⊆ H and a family of linear
maps {�N : C → HN }N such that:

lim
N→∞ ‖�N f ‖HN = ‖ f ‖H , for all f ∈ C . (32)

It is also necessary to introduce the concepts of strong and weak convergence of vectors
living on a convergent sequence of Hilbert spaces. Hence in Definitions 4.3, 4.4 and 4.6 we
assume that the spaces {HN }N≥0 converge to the space H , in the sense we just defined, with
the dense set C ⊂ H and the sequence of operators {�N : C → HN }N witnessing the
convergence.
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Definition 4.3 (StrongconvergenceonHilbertspaces) A sequence of vectors { fN } with
fN in HN , is said to strongly-converge to a vector f ∈ H , if there exists a sequence { f̃M } ∈ C
such that:

lim
M→∞ ‖ f̃M − f ‖H = 0 (33)

and
lim

M→∞ lim sup
N→∞

‖�N f̃M − fN‖HN = 0. (34)

Definition 4.4 (WeakconvergenceonHilbertspaces) A sequence of vectors { fN } with
fN ∈ HN , is said to converge weakly to a vector f in a Hilbert space H if

lim
N→∞ 〈 fN , gN 〉HN

= 〈 f , g〉H (35)

for every sequence {gN } strongly convergent to g ∈ H .

Remark 4.1 Notice that, as expected, strong convergence implies weak convergence, and, for
any f ∈ C , the sequence �N f strongly-converges to f .

Given these notions of convergence, we can also introduce related notions of convergence
for operators. More precisely, if we denote by L(H) the set of all bounded linear operators
in H , we have the following definition

Definition 4.5 (Convergenceof boundedoperatorsonHilbertspaces)A sequenceof bou-
nded operators {TN } with TN ∈ L(HN ), is said to strongly (resp. weakly ) converge to an
operator T in L(H) if for every strongly (resp. weakly) convergent sequence { fN }, fN ∈ HN

to f ∈ H we have that the sequence {TN fN } strongly (resp. weakly ) converges to T f .

We are now ready to introduce Mosco convergence.

4.4 Definition of Mosco Convergence

In this section we assume the Hilbert convergence of a sequence of Hilbert spaces {HN }N to
a space H .

Definition 4.6 (Moscoconvergence) A sequence of Dirichlet forms {(EN , D(EN ))}N on
Hilbert spaces HN , Mosco-converges to a Dirichlet form (E , D(E )) in some Hilbert space
H if:

Mosco I. For every sequence of fN ∈ HN weakly-converging to f in H

E ( f ) ≤ lim inf
N→∞ EN ( fN ). (36)

Mosco II. For every f ∈ H , there exists a sequence fN ∈ HN strongly-converging to f in
H , such that

E ( f ) = lim
N→∞ EN ( fN ). (37)

The following theorem from [10], which relates Mosco convergence with convergence of
semigroups and resolvents, is one of the main ingredients of our work:

Theorem 4.1 Let {(EN , D(EN ))}N be a sequence of Dirichlet forms on Hilbert spaces HN

and let (E , D(E )) be a Dirichlet form in some Hilbert space H. The following statements
are equivalent:

1. {(EN , D(EN ))}N Mosco-converges to {(E , D(E ))}.
2. The associated sequence of semigroups {TN (t)}N strongly-converges to the semigroup

T (t) for every t > 0.
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4.5 Mosco Convergence and Dual Forms

The difficulty in proving conditionMosco I lies in the fact that (36) has to hold for all weakly
convergent sequences, i.e., we cannot choose a particular class of sequences.
In this section we will show how one can avoid this difficulty by passing to the dual form.We
prove indeed that Mosco I for the original form is implied by a condition similar to Mosco
II for the dual form (Assumption 1).

4.5.1 Mosco I

Consider a sequence of Dirichlet forms (EN , D(EN ))N on Hilbert spaces HN , and an addi-
tional quadratic form (E , D(E )) on a Hilbert space H . We assume convergence of Hilbert
spaces, i.e. that there exists a dense set C ⊂ H and a sequence of maps �N : C → HN such
that limN→∞ ‖�N f ‖HN = ‖ f ‖H . The dual quadratic form is defined via

E ∗( f ) = sup
g∈H

(〈 f , g〉 − E (g)) .

Notice that from the convexity of the form we can conclude that it is involutive, i.e., (E ∗)∗ =
E . We now assume that the following holds

Assumption 1 For all g ∈ H , there exists a sequence gN ∈ HN strongly-converging to g
such that

lim
N→∞ E ∗

N (gN ) = E ∗(g). (38)

We show now that, under Assumption 1, the first condition ofMosco convergence is satisfied.

Proposition 4.1 Assumption 1 implies Mosco I, i.e.

lim inf
N→∞ EN ( fN ) ≥ E ( f ) (39)

for all fN ∈ HN weakly-converging to f ∈ H.

Proof Let fN → f weakly then, by Assumption 1, for any g ∈ H there exists a sequence
gN ∈ HN such that gN → g strongly, and (38) is satisfied. From the involutive nature of the
form, and by Fenchel’s inequality, we obtain:

EN ( fN ) = sup
h∈HN

(〈 fN , h〉HN
− E ∗

N (h)
) ≥ 〈 fN , gN 〉HN

− E ∗
N (gN )

by the fact that fN → f weakly, gN → g strongly, and (38) we obtain

lim inf
N→∞ EN ( fN ) ≥ lim inf

N→∞
(〈 fN , gN 〉HN

− E ∗
N (gN )

) ≥ 〈 f , g〉H − E ∗(g).

Since this holds for all g ∈ H we can take the supremum over H ,

lim inf
N→∞ EN ( fN ) ≥ sup

g∈H
(〈 f , g〉H − E ∗(g)

) = E ( f ). (40)

This concludes the proof. �	
In other words, in order to prove condition Mosco I all we have to show is that Assumption
1 is satisfied.
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4.5.2 Mosco II

For the second condition, we recall a result from [20] in which a weaker notion of Mosco
convergence is proposed. In this new notion, condition Mosco I is unchanged whereas con-
dition Mosco II is relaxed to functions living in a core of the limiting Dirichlet form. Let us
first introduce the concept of core:

Definition 4.7 Let (E , D(E )) and H be as in Definition 4.1. A set K ⊂ D(E ) ∩ Cc(E) is
said to be a core of (E , D(E )) if it is dense both in (D(E ), ‖·‖E1) and (Cc(E), ‖·‖∞), where
Cc(E) denotes the set of continuous functions with compact support.

We now state the weaker notion from [20]:

Assumption 2 There exists a core K ⊂ D(E ) of E such that, for every f ∈ K , there exists
a sequence { fN } strongly-converging to f , such that

E ( f ) = lim
N→∞ EN ( fN ). (41)

Despite of being weaker, the authors were able to prove that this relaxed notion also implies
strong convergence of semi-groups. We refer the reader to Section 3 of [20] for details on
the proof.

5 Proof of Main Result

Our main theorem, Theorem 3.1, is a consequence of self-duality and Theorem 5.1 below
concerning the convergence in theMosco sense of the sequence of Dirichlet forms associated
to the difference process to the Dirichlet form corresponding to the so-called two-sided sticky
Brownian motion (see the Appendix for details on this process). Before stating Theorem 5.1
let us introduce the relevant setting for this convergence:
The convergence of the difference process to sticky Brownian motion takes place in the
condensation regime introduced earlier in Sect. 2.4.1. In this regime the corresponding scaled
difference process is given by:

wN (t) := 1

N
w

(
N 3γ√

2
t

)
with inclusion-parameter kN := 1√

2γ N

with infinitesimal generator

(LN f )(w) = N 3γ√
2

∑

r∈AN

2pN (r)

(
1√
2Nγ

+ 1lr=−w

)
[ f (w + r) − f (w)] (42)

for w ∈ 1
N Z, with

pN (r) := p(Nr) and AN := 1

N
{−R,−R + 1, . . . , R − 1, R} \ {0}. (43)

Notice that by Proposition 2.2 the difference processes are reversible with respect to the
measures νγ,N given by

νγ,N = μN + √
2γ δ0 (44)
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and by (29) the corresponding sequence of Dirichlet forms is given by

EN ( f ) = −
∑

w∈ 1
N Z

f (w)
∑

r∈AN

2pN (r)
(
N2

2 + N3γ√
2
1lr=−w

)
( f (w + r) − f (w)) νγ,N (w).

(45)

Remark 5.1 The choice of the reversible measures νγ,N determines the sequence of approx-

imating Hilbert spaces given by H sip
N := L2( 1

N Z, νγ,N ), N ∈ N. Here for f , g ∈ H sip
N their

inner product is given by

〈 f , g〉
H sip
N

=
∑

w∈ 1
N Z

f (w)g(w) νγ,N (w) = 〈 f , g〉H rw
N

+ √
2γ f (0)g(0) (46)

where

〈 f , g〉H rw
N

= 1

N

∑

w∈ 1
N Z

f (w)g(w)

is the inner product of Sect. 6.3.

On the other hand, the two sided sticky Brownian motion with sticky parameter γ > 0 can
be described in terms of the Dirichlet form (Esbm, D(Esbm)) given by

Esbm( f ) = χ

2

∫

R

1l{x �=0}(x) f ′(x)2dx, χ =
R∑

r=1

r2 p(r) (47)

whose domain is

D(Esbm) = H1(R) ∩ L2(R, ν̄) with ν̄ = dx + √
2γ δ0. (48)

Convergence of Hilbert spaces As we already mentioned in Remark 5.1, by choosing the
reversible measures νγ,N we have determined the convergent sequence of Hilbert spaces and,
as a consequence, we have also set the limiting Hilbert space H sbm to be L2(R, ν̄)with ν̄ as in
(48). Notice that from the regularity of this measure, by Theorem 13.21 in [21] and standard
arguments, we know that the set C∞

k (R) of smooth compactly supported test functions is
dense in L2(R, ν̄). Moreover the set

C0(R \ {0}) := { f + λ1l{0} : f ∈ C∞
k (R), λ ∈ R}, (49)

denoting the set of all continuous functions on R \ {0} with finite value at 0, is also dense in
L2(R, ν̄).
Before stating our convergence result, we have to define the right “embedding” operators
{�N }N≥1, cf. Definition 4.2 , to not only guarantee convergence of Hilbert spaces HN → H
, but Mosco convergence as well. We define these operators as follows:

{�N : C0(R \ {0}) → H sip
N }N defined by �N f = f | 1

N Z
. (50)

Proposition 5.1 The sequence of spaces Hsip
N = L2( 1

N Z, νγ,N ), N ∈ N, converges, in the
sense of Definition 4.2, to the space Hsbm = L2(R, ν̄).

Proof The statement follows from the definition of {�N }N≥1. �	
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Mosco Convergence of the Difference Process

In the context described above, we have the following theorem:

Theorem 5.1 The sequence of Dirichlet forms {EN , D(EN )}N≥1 given by (45) converges in
the Mosco sense to the form (Esbm, D(Esbm)) given by (47) and (48). As a consequence, if we
denote by TN (t) and Tt the semigroups associated to the difference process wN (t) and the
sticky Brownian motion Bsbm

t , we have that TN (t) → Tt strongly in the sense of Definition
4.5.

In the following section we will show how to use this result to prove Theorem 3.1. The proof
of Theorem 5.1 will be postpone to Sect. 5.2.

5.1 Proof of Main Theorem: Theorem 3.1

We denote by TN (t) and Tt the semigroups associated to the difference process wN (t) and
the sticky Brownian motion Bsbm

t . We will see that the strong convergence of semigroups
implies the convergence of the probability mass functions at 0.

Proposition 5.2 For all t > 0 denote by pNt (w, 0) the transition function that the difference
process starting from w ∈ 1

N Z finishes at 0 at time t. Then the sequence pNt (·, 0) converges
strongly to psbmt (·, 0) with respect to Hsip

N Hilbert convergence.

Proof From the fact that {TN (t)}N≥1 converges strongly to Tt , we have that for all fN strongly
converging to f , the sequence {TN (t) fN }N≥1 ∈ H sip

N converges strongly to Tt f . In particular,
for fN = 1l{0} we have that the sequence

TN (t) fN (w) = E
N
w1l{0}(wt ) = pNt (w, 0), (51)

converges strongly to
Tt f (w) = E

sbm
w 1l{0}(wt ) = psbmt (w, 0) (52)

where Esbm
w denotes expectation with respect to the sticky Brownian motion started at w. �	

Remark 5.2 Despite the fact that Proposition 5.2 is not a point-wise statement, we can still
say something more relevant when we start our process at the point zero:

lim
N→∞ pNt (0, 0) = psbmt (0, 0). (53)

The reason is that we can see pNt (w, 0) as a weakly converging sequence and used again the
fact that fN = 1l{0} converges strongly.

Proof of Theorem 3.1 Let ρ and σ be given by (6), then we can write

Eν

[
XN (η, ϕ, t)2

] = 1

N 2

∑

x,y∈Z
ϕ
( x
N

)
ϕ
( y
N

) ∫
Eη

(
ηα(N ,t)(x) − ρ

) (
ηα(N ,t)(y) − ρ

)
ν(dη)

where, from Proposition 5.1 in [1], using self-duality, we can simplify the integral above as
∫

Eη

(
ηα(N ,t)(x) − ρ

) (
ηα(N ,t)(y) − ρ

)
ν(dη)

=
(
1 + 1

kN
1l{x=y}

)(
kNσ

kN + 1
− ρ2

)
Ex,y1l{Xα(N ,t)=Yα(N ,t)} + 1l{x=y}

(
ρ2

kN
+ ρ

)
.(54)
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Notice that the expectation in the RHS of (54) can be re-written in terms of our difference
process as follows:

Ex,y
[
1l{Xα(N ,t)=Yα(N ,t)}

] = pα(N ,t)(x − y, 0) (55)

where pα(N ,t) is the transition function pNt under the space-time rescaling defined in (14),
since in the condensation regime we have, as in Sect. 2.4.1, kN = 1√

2γ N
. We then obtain:

Eν

[
XN (η, ϕ, t)2

]

= 1

N 2

∑

x,y∈Z
ϕ
( x
N

)
ϕ
( y
N

) (
1 + √

2γ N1l{x=y}
)( σ

1 + √
2γ N

− ρ2
)
pα(N ,t)(x − y, 0)

+ 1

N 2

∑

x∈Z
ϕ
( x
N

)
ϕ
( x
N

) (√
2γ Nρ2 + ρ

)
. (56)

At this point we have 3 non-vanishing contributions:

C (1)
N := ρ2

N 2

∑

x,y∈Z
ϕ
( x
N

)
ϕ
( y
N

)
pα(N ,t)(x − y, 0),

C (2)
N :=

√
2γρ2

N

∑

x∈Z

(
ϕ
( x
N

))2
pα(N ,t)(0, 0) and C (3)

N :=
√
2γρ2

N

∑

x∈Z

(
ϕ
( x
N

))2

where we already know:

lim
N→∞C (3)

N = √
2γρ2

∫

R

ϕ(v)2dv (57)

and, by Remark 5.2,

lim
N→∞C (2)

N = √
2γρ2 psbmt (0, 0)

∫

R

ϕ(v)2dv. (58)

To analyze the first contribution we use the change of variables u = x + y, v = x − y from
which we obtain:

C (1)
N = ρ2

N 2

∑

u,v∈ 1
N Z

u≡v mod 2

ϕ
( u+v

2

)
ϕ
( u−v

2

)
pα(N ,t)(v, 0). (59)

Hence by (46), C (1)
N can be re-written as

C (1)
N = 〈FN (·), pα(N ,t)(·, 0)

〉
H sip
N

− γρ2

√
2N

∑

u∈ 1
N Z

ϕ
( u
2

)
ϕ( u2 ) pα(N ,t)(0, 0) (60)

with FN given by

FN (v) = ρ2

N

∑

u∈ 1
N Z

u≡v mod 2

ϕ
( u+v

2

)
ϕ
( u−v

2

)
, for all v ∈ 1

N Z. (61)

We then have the following proposition:
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Proposition 5.3 The sequence of functions {FN }N≥1 ∈ Hsip
N , given by (61), converges

strongly to F ∈ Hsbm given by

F(x) := ρ2

2

∫

R

ϕ
( y+x

2

)
ϕ
( y−x

2

)
dy. (62)

Proof For simplicity let us deal with the case ϕ ∈ C∞
k (R). The case where ϕ ∈ S (R) \

C∞
k (R) can be done by standard approximations using a combination of truncation and

convolution with a kernel (see for example the proof of Proposition 6.1 in the Appendix).
In the language of Definition 4.3, we set the following sequence of reference functions:

F̃M (x) := ρ2

2M

∑

y∈Z
ϕ
( y
2M + x

2

)
ϕ
( y
2M − x

2

)
(63)

for all x ∈ R.
Then we have:

lim
M→∞ ‖F̃M − F‖2H sbm

= lim
M→∞

ρ4

4

∫

R

⎛

⎝ 1

M

∑

y1∈Z
ϕ
( y1
2M + x

2

)
ϕ
( y1
2M − x

2

)−
∫

R

ϕ
( y2+x

2

)
ϕ
( y2−x

2

)
dy2

⎞

⎠
2

(dx + √
2γ δ0(dx))

= ρ4

4

∫

R

⎡

⎣ lim
M→∞

1

M2

∑

y1,y2∈Z
ϕ
( y1
2M + x

2

)
ϕ
( y1
2M − x

2

)
ϕ
( y2
2M + x

2

)
ϕ
( y2
2M − x

2

)
⎤

⎦ dx

+ρ4

4

∫

R

[∫

R

ϕ
( y1+x

2

)
ϕ
( y1−x

2

)
dy1

∫

R

ϕ
( y2+x

2

)
ϕ
( y2−x

2

)
dy2

]
dx

−ρ4

2

∫

R

⎡

⎣ lim
M→∞

1

M

∑

y1∈Z
ϕ
( y1
2M + x

2

)
ϕ
( y1
2M − x

2

) ∫

R

ϕ
( y2+x

2

)
ϕ
( y2−x

2

)
dy2

⎤

⎦ dx

+
√
2γρ4

4

⎡

⎣ lim
M→∞

1

M2

∑

y1,y2∈Z
ϕ
( y1
2M

)2
ϕ
( y2
2M

)2
⎤

⎦+
√
2γρ4

4

[∫

R

ϕ
( y1
2

)2
dy1

∫

R

ϕ
( y2
2

)2
dy2

]

−
√
2γρ4

2

⎡

⎣ lim
M→∞

1

M

∑

y1∈Z
ϕ
( y1
2M

)2
∫

R

ϕ
( y2+x

2

)2
dy2

⎤

⎦

= 0 (64)

where in the last line we used the convergence

lim
M→∞

1

2M

∑

y∈Z
ϕ
( y
2M + x

2

)
ϕ
( y
2M − x

2

) = 1

2

∫

R

ϕ
( y+x

2

)
ϕ
( y−x

2

)
dy. (65)

Moreover, a similar expansion (substituting integrals by sums) gives:

‖�N F̃M − FN‖2
H sip
N

=
∑

x∈ 1
N Z

(
�N F̃M (x) − FN (x)

)2
νγ,N (x)
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=
∑

x∈ 1
N Z

⎛

⎜⎜⎜⎝
ρ2

2M

∑

y∈ 1
M Z

ϕ
( y+x

2

)
ϕ
( y−x

2

)− ρ2

N

∑

u∈ 1
N Z

u≡x mod 2

ϕ
( u+x

2

)
ϕ
( u−x

2

)

⎞

⎟⎟⎟⎠

2

(
1

N
+ √

2γ δ0

)

= ρ4
∑

x∈ 1
N Z

⎡

⎢⎢⎢⎣
1

2M

∑

y∈ 1
M Z

ϕ
( y+x

2

)
ϕ
( y−x

2

)− 1

N

∑

u∈ 1
N Z

u≡x mod 2

ϕ
( u+x

2

)
ϕ
( u−x

2

)

⎤

⎥⎥⎥⎦

2

(
1

N
+ √

2γ δ0

)

where we used (46) and (44).
Developing the square we obtain:

‖�N F̃M − FN‖2
H sip
N

= ρ4

N

∑

x∈ 1
N Z

⎡

⎢⎢⎣
1

4M2

∑

y1,y2∈ 1
M Z

ϕ
( y1+x

2

)
ϕ
( y1−x

2

)
ϕ
( y2+x

2

)
ϕ
( y2−x

2

)

⎤

⎥⎥⎦

−2ρ4

N

∑

x∈ 1
N Z

⎡

⎢⎢⎢⎢⎣
1

2MN

∑

y∈ 1
M Z

∑

u∈ 1
N Z

u≡x mod 2

ϕ
( y+x

2

)
ϕ
( y−x

2

)
ϕ
( u+x

2

)
ϕ
( u−x

2

)

⎤

⎥⎥⎥⎥⎦

+ρ4

N

∑

x∈ 1
N Z

⎡

⎢⎢⎢⎢⎣
1

N 2

∑

u1,u2∈ 1
N Z

ui≡x mod 2

ϕ
( u1+x

2

)
ϕ
( u1−x

2

)
ϕ
( u2+x

2

)
ϕ
( u2−x

2

)

⎤

⎥⎥⎥⎥⎦

+√
2γρ4

⎡

⎢⎢⎣
1

4M2

∑

y1,y2∈ 1
M Z

ϕ
( y1
2

)2
ϕ
( y2
2

)2

⎤

⎥⎥⎦

−2
√
2γρ4

⎡

⎢⎢⎢⎢⎣
1

2MN

∑

y∈ 1
M Z

∑

u∈ 1
N Z

u≡0 mod 2

ϕ
( y
2

)2
ϕ
( u
2

)2

⎤

⎥⎥⎥⎥⎦

+√
2γρ4

⎡

⎢⎢⎢⎢⎣
1

N 2

∑

u1,u2∈ 1
N Z

ui≡0 mod 2

ϕ
( u1
2

)2
ϕ
( u2
2

)2

⎤

⎥⎥⎥⎥⎦
. (66)

Therefore, in order to conclude

lim
M→∞ lim sup

N→∞
‖�N F̃M − FN‖2

H sip
N

= 0
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we can use (65) and the convergence:

lim
N→∞

1

N

∑

u∈ 1
N Z

u≡v mod 2

ϕ
( u+v

2

)
ϕ
( u−v

2

) = 1

2

∫

R

ϕ
( y+v

2

)
ϕ
( y−v

2

)
dy. (67)

�	
From the strong convergence FN → F , Proposition 5.2, and Remark 5.2 we conclude

lim
N→∞C (1)

N = ρ2

2

∫

R2
ϕ
( u+v

2

)
ϕ
( u−v

2

)
psbmt (v, 0) du dv. (68)

Substituting the limits of the contributions we obtain

lim
N→∞Eν

[
XN (η, ϕ, t)2

]

= −ρ2

2

∫

R2
ϕ
( u+v

2

)
ϕ
( u−v

2

)
psbmt (v, 0) dv du −

(√
2γρ2 psbmt (0, 0) − √

2γρ2
) ∫

R

ϕ(u)2 du

= −ρ2

2

∫

R

∫

R

ϕ
( u+v

2

)
ϕ
( u−v

2

)
E
sbm
v

[
1l{0}(vt )

] (
dv + √

2γ δ0(dv)
)
du + √

2γρ2
∫

R

ϕ(u)2 du

= −ρ2

2

∫

R

∫

R

E
sbm
v

[
ϕ
( u+vt

2

)
ϕ
( u−vt

2

)]
1l{0}(v)

(
dv + √

2γ δ0(dv)
)
du + √

2γρ2
∫

R

ϕ(u)2 du

=
√
2γρ2

2

∫

R

{
ϕ
( u
2

)2 − E
sbm
0

[
ϕ
( u+vt

2

)
ϕ
( u−vt

2

)]}
du

=
√
2γρ2

2

∫

R

{
ϕ
( u
2

)2 −
∫

R

psbmt (0, dv)ϕ
( u+v

2

)
ϕ
( u−v

2

)}
du (69)

where in the third equality we used the reversibility of SBM with respect to the measure
ν̂(dv) = dv+√

2γ δ0(dv). Then, (17) follows, after a change of variable, using the expression
(2.15) given in [16] for the transition probability measure psbmt (0, dv) of the Sticky Brownian
motion (with θ = √

2γ ), namely

psbmt (0, dv) = √
2γ e2

√
2γ |v|+4γ 2t erf

(
2γ

√
t + |v|√

2t

)
dv + δ0(dv)e4γ

2t erf
(
2γ

√
t
)

.(70)

This concludes the proof. �	
Remark 5.3 Using the expression of the Laplace transform of psbmt (0, dv) given in Section
2.4 of [16], it is possible to verify that the Laplace transform of (17) (using (69)) coincides
with the expression in Theorem 2.18 of [1].

5.2 Proof of Theorem 5.1: Mosco convergence for inclusion dynamics

In this section we prove Theorem 5.1; the Mosco convergence of the Dirichlet forms asso-
ciated to the difference process {wN (t), t ≥ 0} to the Dirichlet form corresponding to the
two-sided sticky Brownian motion {Bsbm

t , t ≥ 0} given by (47) and (48).
By Proposition 5.1 we have already determined the relevant notions of weak and strong
convergence of vectors living in the approximating sequence of Hilbert spaces (the spaces
H sip
N ). We can then move directly to the verification of conditions Mosco I and Mosco II in

the definition of Mosco convergence. We do this in Sects. 5.2.1 and 5.2.2 respectively.
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5.2.1 Mosco I

Wewill divide our task in two steps. First, we will compare the inclusion Dirichlet form with
a random walk Dirichlet form and show that the first one dominates the second one. We will
later use this bound and the fact that the random walk Dirichlet form satisfies Mosco I, to
prove that Mosco I also holds for the case of inclusion particles.
We call {v(t), t ≥ 0} the random walk on Z with jump range A = [−R, R] ∩ Z \ {0} (see
Appendix 6.3 where similar notation is used for the nearest neighbor case). Thus we denote
by Lrw the infinitesimal generator:

(Lrw f )(v) =
∑

r∈A

p(r) [ f (v + r) − f (v)] , v ∈ Z. (71)

Hence, in the diffusive scaling, the N -infinitesimal generator is given by:

�N g(v) = N 2
∑

r∈A+
N

pN (r) [g(v + r) − 2g(v) + g(v − r)] , v ∈ 1
N Z (72)

where A+
N := {|r |: r ∈ AN } i.e. the generator of the process vN (t) := 1

N v(N 2t), t ≥ 0, and
denote by (RN , D(RN )) the associated Dirichlet form.

Comparing RW and SIP Dirichlet Forms

The key idea to prove Mosco I is to transfer the difficulties of the SIP nature to independent
random walkers. This is done by means of the following observation:

Proposition 5.4 For any fN ∈ Hsip
N we have

EN ( fN ) ≥ RN ( fN ). (73)

Proof Rearranging (45) and using the symmetry of p(·) allows us to write:

EN ( fN ) − RN ( fN ) = N 2

√
2

γ
∑

r∈AN

2pN (r)( fN (r) − fN (0))2 (74)

and the result follows from the fact that the RHS of this identity is nonnegative. �	

Strong andWeak Convergence in Hrw
N and Hsip

N Compared

Proposition 5.5 The sequence {hN = 1l{0}}N≥1, with hN ∈ Hrw
N , converges strongly to

h = 0 ∈ Hbm with respect to Hrw
N -Hilbert convergence.

Proof In the language of Definition 4.3 we set h̃M ≡ 0. With this choice we immediately
have

‖h̃M − h‖Hbm = 0 and ‖�N h̃M − hN‖2H rw
N

= 1
N (75)

which concludes the proof. �	

Proposition 5.6 The sequence {hN = 1l{0}}N≥1, with hN ∈ Hsip
N , converges strongly to

h = 1l{0} ∈ Hsbm with respect to Hsip
N -Hilbert convergence.
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Proof In the language of Definition 4.3 we set h̃M ≡ 1l{0}. With this choice we immediately
have

‖h̃M − h‖H sbm = 0 and ‖�N h̃M − hN‖
H sip
N

= 0 (76)

which concludes the proof. �	

A consequence of Proposition 5.6 is that any sequence which is weakly convergent, with
respect to H sip

N -Hilbert convergence, converges also at zero.

Proposition 5.7 Let { fN }N≥1 in {Hsip
N }N≥1 be a sequence converging weakly to f ∈ Hsbm

with respect to Hsip
N -Hilbert convergence, then limN→∞ fN (0) = f (0).

Proof By Proposition 5.6 we know that {hN = 1l{0}}N≥1 converges strongly to h = 1l{0} with
respect to H sip

N -Hilbert convergence. This, together with the fact that { fN }N≥1 converges
weakly, implies:

lim
N→∞〈 fN , hN 〉

H sip
N

= 〈 f , h〉H sbm = √
2γ f (0) (77)

but by (46)

〈 fN , hN 〉
H sip
N

=
(

1
N + √

2γ
)
fN (0) (78)

which, together with (77), implies the statement. �	

To further contrast the two notions of convergence, Proposition 5.5 has a weaker implication

Proposition 5.8 Let {gN }N≥1 in {Hrw
N }N≥1 be a sequence converging weakly to g ∈ Hbm

with respect to Hrw
N -Hilbert convergence, then limN→∞ 1

N gN (0) = 0.

Proof By Proposition 5.5 we know that {hN = 1l{0}}N≥1 converges strongly to h = 0 with
respect to H rw

N -Hilbert convergence. This, together with the fact that {gN }N≥1 converges
weakly, implies:

lim
N→∞〈gN , hN 〉H rw

N
= 0 (79)

but we know

〈gN , hN 〉H rw
N

= 1

N
gN (0) (80)

which together with (79) concludes the proof. �	

From Hrw
N Strong Convergence to Hsip

N Strong Convergence

Proposition 5.9 Let {gN }N≥1 in {Hrw
N }N≥1 be a sequence converging strongly to g ∈ Hbm

with respect to Hrw
N -Hilbert convergence. For all N ≥ 1 define the sequence

ĝN = gN − gN (0)1l{0}. (81)

Then {ĝN }N≥0 also converges strongly with respect to Hsip
N -Hilbert convergence to ĝ given

by:
ĝ = g − g(0)1l{0}. (82)
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Proof From the strong convergence in the H rw
N -Hilbert convergence sense, we know that

there exists a sequence g̃M ∈ C∞
k (R) such that

lim
M→∞ ‖g̃M − g‖Hbm = 0, (83)

and
lim

M→∞ lim sup
N→∞

‖�N g̃M − gN‖H rw
N

= 0 (84)

for each M we define the function ĝM given by

ĝM = g̃M − g̃M (0)1l{0}.

Notice that:
‖ĝM‖2H sbm = ‖g̃M‖2Hbm < ∞ (85)

and hence we have ĝM belongs to both C0(R \ {0}) and H sbm.
As before, we have the relation:

‖ĝM − ĝ‖2H sbm = ‖ĝM − ĝ‖2Hbm + √
2γ (ĝM (0) − ĝ(0))2 = ‖g̃M − g‖2Hbm (86)

which shows that indeed we have

lim
M→∞ ‖ĝM − ĝ‖2H sbm = 0. (87)

For the second requirement of strong convergence we can estimate as follows

‖�N ĝM − ĝN‖2
H sip
N

= 1

N

∑

x∈ 1
N Z

x �=0

(�N g̃M (x) − gN (x))2.

Relation (84) allows us to see that the RHS of the equality above vanishes. This, together
with (87), concludes the proof of the Proposition. �	

From Hsip
N Weak Convergence to Hrw

N Weak Convergence

The following proposition says that with respect to weak convergence the implication comes
in the opposite direction

Proposition 5.10 Let { fN }N≥1 in {Hsip
N }N≥1 be a sequence converging weakly to f ∈ Hsbm

with respect to Hsip
N -Hilbert convergence. Then it also converges weakly with respect to

Hrw
N -Hilbert convergence.

Proof Let { fN }N≥0 in {H sip
N }N≥0 be as in the Proposition. In order to show that it also

converges weakly with respect to H rw
N -Hilbert convergence, we need to show that for any

sequence {gN }N≥0 in {H rw
N }N≥0 converging strongly to some g ∈ Hbm we have

lim
N→∞〈 fN , gN 〉H rw

N
= 〈 f , g〉Hbm . (88)

Consider such a sequence {gN }N≥0, by Proposition 5.9 we know that the sequence {ĝN }N≥1

also converges strongly with respect to H sip
N -Hilbert convergence to ĝ defined as in (82).

Then we have:

lim
N→∞〈 fN , ĝN 〉

H sip
N

= 〈 f , ĝ〉H sbm = 〈 f , g〉Hbm (89)

123



Condensation of SIP Particles and Sticky Brownian Motion Page 25 of 42 40

which can be re-written as:

lim
N→∞〈 fN , gN 〉H rw

N
− 1

N
fN (0)gN (0) = 〈 f , g〉Hbm (90)

and together with Propositions 5.7 and 5.8 implies that:

lim
N→∞〈 fN , gN 〉H rw

N
= 〈 f , g〉Hbm (91)

and the proof is done. �	

Conclusion of Proof of Mosco I

In order to see that condition Mosco I is satisfied, we combine Proposition 5.4, Proposition
5.10 and the Mosco convergence of Random Walkers to Brownian motion to obtain that for
all f ∈ H sbm, and all fN ∈ H sip

N converging weakly to f , we have (cf. Appendix 6.3)

lim inf
N→∞ EN ( fN ) ≥ lim inf

N→∞ RN ( fN ) ≥ χ

2

∫

R

f ′(x)2 dx

= χ

2

∫

R

1l{x �=0}(x) f ′(x)2 dx = Esbm( f )

where the last equality comes from equation (117) and Remark 6.4 in the Appendix.

5.2.2 Mosco II

We are going to prove that Assumption 2 is satisfied. We use the set of compactly supported
smooth functions C∞

k (R), which by the regularity of the measure dx + δ0 is dense in H =
L2(dx + δ0).

The Recovering Sequence

For every f ∈ C∞
k (R), we need to find a sequence fN strongly-converging to f and such

that
lim

N→∞ EN ( fN ) = E ( f ). (92)

The obvious choice fN = �N f does not work in this case, the reason of this is the emergence
in the limit of a non-vanishing term containing f ′(0). Nevertheless our candidate is the
sequence {�N f }N≥1 given by

(�N f )(i) =
{
f (i) i ∈ 1

N Z \ AN

f (0) otherwise
for any f ∈ C∞

k (R), (93)

where AN is as in (43).

Remark 5.4 The sequence {�N f }N≥1 is chosen in such away that the SIP part of theDirichlet
form, i.e. the right hand side of (74), vanishes at �N f for all N . See below for the details.

Our goal is to show that the sequence {�N f }N≥1 indeed satisfies (92). First of all we need
to show that �N f → f strongly.

Proposition 5.11 For all f ∈ C∞
k (R) ⊂ L2(dx + δ0), the sequence {�N f }N≥1 in Hsip

N

strongly-converges to f w.r.t. the Hsip
N -Hilbert space convergence given.
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Proof In the language of Definition 4.3 we set f̃M ≡ f . Hence the first condition is trivially
satisfied:

lim
M→∞ ‖ f̃M − f ‖H sbm = 0. (94)

Moreover

lim
M→∞ lim sup

N→∞
‖�N f̃M − �N f ‖2

H sip
N

= lim sup
N→∞

‖�N f − �N f ‖2
H sip
N

= lim sup
N→∞

∑

i∈ 1
N Z

(�N f (i) − �N f (i))2νγ,N (i) = lim sup
N→∞

1

N

∑

i∈AN

( f (i) − f (0))2 = 0

where we used the boundedness of f and the fact that the cardinality of the set AN is finite
and does not depend on N . �	

Preliminary Simplifications

To continue the proof of (92), the first thing to notice is that the Dirichlet form EN evaluated
in �N f can be substantially simplified:

EN (�N f ) = −
∑

i∈ 1
N Z

�N f (i)
∑

r∈AN

2pN (r)
(
N2

2 + N3γ√
2
1lr=−i

)
(�N f (i + r) − �N f (i))νγ,N (i)

= −
∑

i∈ 1
N Z

�N f (i)
∑

r∈AN

pN (r)N 2(�N f (i + r) − �N f (i))νγ,N (i)

−
∑

i∈ 1
N Z

�N f (i)
∑

r∈AN

2pN (r)
(
N3γ√

2
1lr=−i

)
(�N f (i + r) − �N f (i))νγ,N (i)

(95)

where, from the observation that for i = −r and r ∈ AN , via (93) we get

(�N f (i + r) − �N f (i)) = 0, (96)

and therefore the whole second sum in line (95) vanishes. Then, using the expression (44)
for νγ,N , we are left with

EN (�N f ) = −N
∑

r∈AN

pN (r)
∑

i∈ 1
N Z

�N f (i)(�N f (i + r) − �N f (i))

−√
2γ N 2

∑

r∈AN

pN (r)�N f (0)(�N f (r) − �N f (0)). (97)

By (93) we have (�N f (r) − �N f (0)) = 0 for r ∈ AN , and therefore our Dirichlet form
becomes

EN (�N f ) = −N
∑

r∈AN

pN (r)
∑

i∈ 1
N Z

�N f (i)(�N f (i + r) − �N f (i))

that we split again as follows

EN (�N f ) = −N
∑

r∈AN

pN (r)
∑

i∈ 1
N Z\AN

�N f (i)(�N f (i + r) − �N f (i)) − SN
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with SN = N
∑

r∈AN

pN (r)
∑

i∈AN

�N f (i)(�N f (i + r) − �N f (i)). (98)

Idenditification of the Limiting Dirichlet Form

First we show that SN vanishes as N → ∞. For i ∈ 1
N Z, we define the sets

Ai
N := AN − i and A+

N = {|r |: r ∈ AN }. (99)

Notice that for r ∈ Ai
N we have (�N f (i + r) − �N f (0)) = 0 and hence

SN = N
∑

i∈AN

∑

r∈AN \Ai
N

pN (r) f (0)( f (i + r) − f (0))

= N
∑

i∈A+
N

∑

r∈AN \Ai
N

pN (r) f (0)( f (i + r) − 2 f (0) + f (−i − r))

where we used the symmetry of p(·) and the fact that r ∈ AN \ Ai
N if and only if −r ∈

AN \ A−i
N . We conclude that SN vanishes by recalling that by a Taylor expansion the factor

( f (i + r) − 2 f (0) + f (−i − r)) is of order N−2.
For what concerns the remaining term in (98), we notice that, exploiting the symmetry of the
transition function p(·), we can re-arrange it into

EN (�N f )+SN = −N
∑

r∈A+
N

pN (r)
∑

i∈ 1
N Z\AN

�N f (i)(�N f (i + r) − 2�N f (i) + �N f (i − r)).

Let us define the following set BN = 1
N {−2R,−2R + 1, . . . , 2R − 1, 2R} and split the sum

above as follows

EN (�N f )+SN = −N
∑

r∈A+
N

pN (r)
∑

i∈ 1
N Z\BN

�N f (i)(�N f (i + r) − 2�N f (i) + �N f (i − r))

−N
∑

r∈A+
N

pN (r)
∑

i∈BN \AN

�N f (i)(�N f (i + r) − 2�N f (i) + �N f (i − r)). (100)

The above splitting allows to isolate the first term for which we have no issues of the kind
�N f (i + r) = f (0) and hence no complications when taylor expanding around the points
i ∈ 1

N Z.
We now show that the second term in the RHS of (100) vanishes as N goes to infinity:
Take a positive i ∈ BN \ AN , then for r ∈ Ai

N , �N f (i + r) = f (0).

Remark 5.5 Notice that, for −i ∈ BN \ AN , the set Ai
N = −A−i

N is such that

�N f (−i − r) = f (0) for all r ∈ Ai
N . (101)

Remark 5.6 We will omit the analysis for r /∈ Ai
N because for those terms we can Taylor

expand f around the point i and show that the factors containing the discrete Laplacian are
of order N−2.
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We now consider the contribution that each pair (i,−i) gives to the second sum in the RHS
of (100). Let i ∈ (BN \ AN )+, then

CN (i) := N

2

∑

r∈Ai
N

pN (r)�N f (i) [�N f (i + r) − 2�N f (i) + �N f (i − r)]

= N

2

∑

r∈Ai
N

pN (r) f (i) [ f (0) − 2 f (i) + f (i − r)] . (102)

Taylor expanding around zero the terms inside the square brackets in the RHS of (102) gives

CN (i) = N

2

∑

r∈Ai
N

pN (r) f (i) f ′(0) [−r − i] + O(1/N ).

Analogously, for the contribution CN (−i) we obtain

CN (−i) = N

2

∑

r∈Ai
N

pN (r) f (−i) f ′(0) [i + r ] + O(1/N ).

Summing both contributions over all i > 0 we obtain

∑

i∈(BN \AN )+
CN (i) + CN (−i)

= N

2

∑

i∈(BN \AN )+

∑

r∈Ai
N

pN (r) f ′(0) (r + i) [ f (−i) − f (i)] + O(1/N ) = O(1/N )(103)

where we used that the cardinality of the sets Ai
N and (BN \ AN )+ does not depend on N .

Then we can write

EN (�N f ) = − 1

N

∑

r∈A+
N

pN (r)
∑

i∈ 1
N Z\BN

N 2 f (i)( f (i + r) − 2 f (i) + f (i − r)) + O(1/N ),

which indeed by a Taylor expansion gives the limit

lim
N→∞ EN (�N f ) = −χ

2

∫ 0

−∞
f (x) f ′′(x) dx − χ

2

∫ ∞

0
f (x) f ′′(x) dx

= χ

2

∫

R

1l{x �=0}(x) f ′(x)2 dx, (104)

with χ =∑R
r=1 p(r)r

2.
This concludes the proof of Mosco II. �	

Remark 5.7 Notice that in the second line of (104) we are using the fact that f ∈ C∞(R),
and hence f ′(0−) = f ′(0+).
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6 Appendix

In this Appendix we present some results, in the context of Dirichlet forms, that are neces-
sary for the proof of Theorem 5.1. First, in Sect. 6.1, we introduce the basic notions related
to time changes of Markov processes and their Dirichlet forms. Then, in Sect. 6.2, we use
the machinery from Sect. 6.1 to compute the Dirichlet form of the two-sided sticky Brow-
nian motion at zero. Finally in Sect. 6.3 we show the convergence, in the sense of Mosco
convergence of Dirichlet forms, of a single random walker to the standard Brownian motion.

6.1 Revuz Measures, PCAF’s and Time Changes of Dirichlet Forms

In this sectionwe present some basic notions in the context time changes ofMarkov processes
and their Dirichlet forms. The content of this section follows [22]. In particular we refer the
reader to Chapter 5 and the Appendix of [22] for more details and necessary background.
Let M = (�,M , Mt , ζ,P) a right continuousMarkov process, on a Lusin space (E,B(E)),
where the relevant probability space is given by the triple (�,M ,P), and where for every
ω ∈ � the random variable ζ(ω) denotes the lifetime of the sample path of ω.i.e.,

ζ(ω) = inf{t ≥ 0 : Mt (ω) = ∂} (105)

for ∂ the cemetery point.
Furthermore, we assume that for each t ≥ 0 there exists a map θt : � → � such that

Ms ◦ θt = Ms+t

for every s ≥ 0. Moreover, we have θ0ω = ω, and θ∞ω = [∂], where [∂] denotes a specific
element of � such that Mt ([∂]) = ∂ .
In addition, we denote by {Ft }t≥0 the filtration generated by the Markov process Mt , i.e.,
for t < ∞:

Ft = σ {Ms : s ≤ t}.
For convenience we extend the parameter t of the filtration to [0,∞] by setting:

F∞ = σ {Ft : t ≥ 0}
We now define the notion of a positive continuous additive functional (PCAF):

Definition 6.1 (PCAF) A function At (ω) of two variables t ≥ 0 and ω ∈ � is called a
positive continuous additive functional of Mt if there exists � ∈ F∞ and a μ-inessential set
N ⊂ E with

Px (�) = 1 for x ∈ E \ N and θt� ⊂ � for t ≥ 0 (106)

if the following conditions are satisfied:
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(i) For each t ≥ 0, At |� is Ft -measurable.
(ii) For anyω ∈ �, A·(ω) is right continuous on [0,∞) has left limits on (0, ζ(ω)), A0(ω) =

0, |At (ω)| < ∞ for t < ζ(ω), and At (ω) = Aζ(ω)(ω) for all t ≥ ζ(ω).
(iii) The additivity property is satisfied, i.e.,

At+s(ω) = At (ω) + As(ω) for all t, s ≥ 0. (107)

If we denote by A +
c the set of all PCAF, it turns out that there exists a one to one correspon-

dence between the setA +
c and a special subset of the set of the Borel measures on E . Which

we now introduce:

Definition 6.2 (Smoothmeasures) Let ν be a positive measure on (E,B(E)), ν is said to
be smooth if

1. It does not charge any EM -polar set.
2. There exists a nest {Fk}k≥1 such that ν(Fk) < ∞ for all k ≥ 1.

Remark 6.1 Wedefine all theDirichlet forms related concepts ( EM -capacity for example ) are
in terms of the Dirichlet space (EM , D(EM )), which corresponds to the symmetric Markov
process Mt .

We denote by S(E) the set of all smooth measures on E . The correspondence we mentioned
above is between A +

c and S(E). Formally, this correspondence is given by the following
result:

Theorem 6.1 (PCAF and Smooth measures) For A ∈ A +
c we denote by νA the measure that

is in Revuz correspondence with A, i.e. the measure that for any f ∈ B+(E) satisfies:
∫

E
f (x)νA(dx) = lim

t↓0
1

t
Eμ

[∫ t

0
f (Ms)d As

]
(108)

where the expectation Eμ on the right hand side of (108) is taken over both the position of
the starting point of the process Ms, which is selected according to the invariant measure μ,
and over the trajectory of the process Ms.
Then we have the following:

(i) For any A ∈ A +
c , νA ∈ S(E).

(ii) For any ν ∈ S(E), there exists A ∈ A +
c satisfying νA = ν uniquely up toμ-equivalence.

Proof This is part of Theorem 4.1.1 in [22] where the proof is included. �	
It is known that there exists a one to one correspondence between Markov process and
Dirichlet forms [23]. The idea is that given a PCAF At we can define a stochastic time-
changed process given by the generalized inverse of At in terms of its correspondingDirichlet
form. More precisely:

Theorem 6.2 Let Mt be a symmetric Markov process with corresponding Dirichlet space
given by (EM , D(EM )). Let also At be a PCAF whose Revuz measure νA has full quasi
support. Denote by M̃t the time-changed process given by the generalized inverse of At .
Then we have that its corresponding Dirichlet space (EM̃ , D(EM̃ )) is given by

EM̃ ( f , g) = EM ( f , g) and D(EM̃ ) = D(EM ) ∩ L2(E, νA). (109)
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Proof This theorem is just a specialization of Theorem 5.2.2 in [22].Where the time-changed
form is given by

EM̃ ( f , g) = EM (HF f , HFg). (110)

The specialization consists in the fact that the Revuz measure νA has full quasi support, i.e.,

HFh(x) = Ex [h(MσF ); σ f < ∞] = h(x) (111)

where F is the support of νA and σF is its hitting time. We refer the reader to page 176 of
the same reference if more details are needed. �	

6.2 Sticky BrownianMotion and its Dirichlet Form

In this Appendix we provide some background material on the two-sided sticky Brownian
motion in the context of Dirichlet forms. Namely, by means of an example we apply the
machinery of Dirichlet forms to the theory of stochastic time changes for Markov processes.
The example that we will build at the end of this section plays the role of the limiting process
for the difference process. In this appendix we will mostly follow the approach presented in
Chapter 5 of [22].

6.2.1 Two-Sided Sticky Brownian Motion

The traditional approach to construct sticky Brownian motion (SBM) on the real line is by
means of local times and time changes related to them. Let us say that we are in the one
dimensional case and we want to build Brownian motion sticky at zero. We consider then
standard Brownian motion {Bt }t≥0 taking values on R and define its local time at zero by

L0
t = lim

ε→0

1

2ε

∫ t

0
1l[−ε,ε](Bs)ds.

Given this local time and for γ > 0 we consider the functional

Tt = t + γ L0
t (112)

and denote by τ its generalized inverse, i.e.,

τ(t) = inf{s > 0 : Ts > t}, (113)

then the process given by the time change

Bsbm
t = Bτ(t), (114)

is what is known in the literature by two-sided sticky Brownian motion.

Remark 6.2 The idea in defining (112) is that we add some “extra time” at zero and by taking
the inverse (113) via the time change we slow down the new process whenever it is at 0.
Notice that the parameter γ controls the factor by which we slow down time.

As expected, in the context of Dirichlet forms, we can also perfom this kind of stochastic
time changes. Our goal for this section is to describe the Dirichlet forms approach to perfom
the kind of time changes we are interested in. There are basically two ingredients that we
need:

1. A symmetric Markov process Mt with reversible measure μ with support in the state
space E .

123



40 Page 32 of 42 M. Ayala et al.

2. A PCAF that, in a sense to be seen later, plays the role of the local time.

Remark 6.3 In the same way that the local time L0
t implicitly defined the point {0} as the

“sticky region”, the PCAF of the second ingredient above will determine a “sticky region”
for our new process.

Under this setting, it becomes then easier to characterize the time-change of Brownianmotion
given by the inverse of the functional Tt defined in (112). The idea is that under the setting
given by one dimensional Brownianmotion on the real line, we know that the process {Bt }t≥0

is reversible with respect to the Lebesgue measure dx . The Lebesgue measure dx is in Revuz
correspondence with the trivial PCAF A1

t = t . Furthermore, the following computation
shows the Revuz correspondence between the PCAF L0

t and the Dirac measure at zero δ0:

lim
t↓0

1

t
Edx

[∫ t

0
f (Bs)dL

0
s

]

= lim
t↓0

1

t
Edx

[∫ t

0
f (Bs) lim

ε↓0
1

2ε
1l[−ε,ε](Bs) ds

]

= lim
t↓0 limε↓0

1

t

1

2ε

∫ t

0

∫

R

EB0 [ f (Bs + x)1l[−ε,ε](Bs + x)] dxds

= lim
t↓0 limε↓0

1

t

1

2ε

∫ t

0

∫

R2
f (y + x)1l[−ε,ε](y + x)

e
−y2

2s√
2πs

dydxds

= lim
t↓0 limε↓0

1

t

1

2ε

∫ t

0

∫

R

∫ ε

−ε

f (z)
e

−(z−x)2

2s√
2πs

dzdxds

= lim
ε↓0

1

2ε

∫ ε

−ε

f (z) dz

= f (0) =
∫

f (x)δ0(dx). (115)

Then the measure ν = dx + γ δ0 is in Revuz correspondence with the PCAF Tt and hence
by Theorem 6.2 the Dirichlet form for one dimensional Sticky Brownian motion {Bsbm

t }t≥0

is given by:

EBsbm( f , g) = EB( f , g) and D(EBsbm) = D(EB) ∩ L2(R, dx + γ δ0) (116)

where (EB , D(EB)) are given as in (30).
In particular for the quadratic functional EBsbm( f ), given by (31), we have:

EBsbm( f ) =
∫

R

1l{x �=0}(x) f ′(x)2 dx (117)

for f ∈ H1(R, dx) ∩ L2(R, dx + γ δ0).
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Remark 6.4 Notice that with an abuse of notation, and taking advantage of the fact that the
Lebesgue measure assigns zero mass to the point zero, we can write the equality

EBsbm( f ) = EB( f ) (118)

for any f ∈ D(EBsbm).

6.2.2 Domain of the Infinitesimal Generator

In this section we will make use of the correspondence between Dirichlet forms and Markov
generators to obtain a description of the generator of sticky Brownian motion with parameter
γ . Let us then expand a bit on what we mentioned before equation (29); this is how the two
directions of the correspondence are actually given:

(a) From forms E to generators L: The correspondence is defined by

D(L) ⊂ D(E ), E ( f , g) = − < L f , g > ∀ f ∈ D(L), g ∈ D(E ). (119)

(b) From generators L to forms E : In this case the correspondence is given by

D(E ) = D(
√−L), E ( f , g) =<

√−L f ,
√−Lg > ∀ f , g ∈ D(E ). (120)

We can think of these relations as the first and second representation theorems for Dirichlet
forms in the spirit of Kato [24] for sesquilinear forms. For the particular case of Dirichlet
forms, more details and the connection to semigroups and resolvents, can be found on the
Appendix of [22].

Remark 6.5 Please notice that the time-changed process behaves like Brownian motion on
the setR\ {0} and differently (sticky behavior) when it visits 0. Therefore we expect the new
generator LBsbm to be the same Laplace operator in the region R \ {0} i.e.

LBsbm f (x) = f ′′(x) ∀x ∈ R (121)

and some additional restrictions at the point zero.

The idea is to assume that the generator LBsbm is just the Laplacian at all points, and by using
the properties of the time-changed process determine additional constrains at zero.
For f ∈ D(EBsbm), thanks to (120) we can re-write (116) in terms of LBsbm in the following
way:

EBsbm( f , g) =
∫

R

1l{x �=0}g′(x) f ′(x)dx (122)

for all g ∈ D(EBsbm).
On the other hand, for f ∈ D(LBsbm) we have:

EBsbm( f , g) = −
∫

R

g(x)LBsbm f (x) (dx + γ δ0(dx))

= −
∫

R

g(x) f ′′(x)dx − γ g(0) f ′′(0)

= −
∫

R\{0}
g(x) f ′′(x)dx − γ g(0) f ′′(0) (123)

where in the first line we used (119), and in the third line we used the fact the the Lebesgue
measure assigns zero mass to the singleton {0}.
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Let us split the first therm on the r.h.s. of (123) in two regions:
∫

R\{0}
g(x) f ′′(x)dx =

∫

x>0
g(x) f ′′(x)dx +

∫

x<0
g(x) f ′′(x)dx . (124)

Integrating by parts in the first integral of the r.h.s. of (124) we obtain:
∫

x>0
g(x) f ′′(x)dx = −g(0) f ′(0+) −

∫

x>0
g′(x) f ′(x)dx (125)

where

f ′(0+) = lim
h↓0

f (h) − f (0)

h
. (126)

Similarly we obtain:
∫

x<0
g(x) f ′′(x)dx = g(0) f ′(0−) −

∫

x<0
g′(x) f ′(x)dx (127)

therefore, for every g ∈ D(EBs ) we obtain:

g(0)
(
γ� f (0) − f ′(0+) + f ′(0−)

) = 0 (128)

which gives
γ f ′′(0) = f ′(0+) − f ′(0−) (129)

for every f ∈ D(LBsbm).
We then indeed have, from (129), that for every f ∈ D(LBsbm):

EBsbm( f ) =
∫

R

f (x)
(−LBsbm f (x)

)
(dx + γ δ0(dx)) dx

=
∫

R

1l{x �=0}(x) f ′(x)2 dx . (130)

Remark 6.6 Notice that condition (129) coindices with what we would expect from the con-
ditions given for two-sided sticky Brownian motion. See for instance Appendix 1 in [25].

6.3 Mosco Convergence for the RandomWalk

In this section, we consider the difference process for the position-coordinates of two parti-
cles performing nearest-neighbor symmetric independent random walks. This process, that
we denote by {v(t), t ≥ 0}, is itself a random walk in Z for which convergence to the stan-
dard Brownian motion in the diffusive time-scales is well-known. By convergence we mean
convergence of generators. In this section we will prove Mosco convergence of Dirichlet
forms of v(t).

As we can see in Sect. 5.2, the proof of Mosco-convergence for inclusion walkers strongly
relies on the result for independentwalkers (in particular for the proof ofMosco I). The choice
of considering the independent dynamics case has the purpose of exemplifying the use of the
Dirichlet approach in a setting simpler than the one of inclusion dynamics.
The generator of {v(t), t ≥ 0} is given by the discrete Laplacian �1:

L rw f (v) = �1 f (v) = f (v + 1) − 2 f (v) + f (v − 1), v ∈ Z. (131)
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This is simply the generator of a random walk in Z. Speeding up time by a factor N 2 and
scaling the mesh between the lattice sites by a factor 1

N we obtain that the generator of this
scaled process is

L rw
N f (v) = �N f (v) = N 2 ( f

(
v + 1

N

)− 2 f (v) + f
(
v − 1

N

))
, v ∈ 1

N Z. (132)

We denote by (RN , D(RN )) the Dirichlet form associated to the generator (132), that is
given by

RN ( f ) = −
∑

i∈Z/N

f (i)�N f (i)μN (i) (133)

where μN is the discrete counting measure on 1
N Z, this is

μN (i) = 1
N , for all i ∈ 1

N Z (134)

which is reversible for the dynamics. We are going to prove the Mosco convergence of the
sequence of Dirichlet forms {(RN , D(RN ))}N to the Dirichlet form (Ebm, D(Ebm)), i.e. the
Dirichlet form associated to the standard Brownian motion in R

Ebm( f ) = 1

2

∫

R

f ′(x)2dx . (135)

Proof of Mosco Convergence for RW

Convergence of Hilbert Spaces

For the sequence of Hilbert spaces

H rw
N := L2 ( 1

N Z, μN
)

(136)

where μN is as in (134). It is easy to see that we can guarantee the convergence of {H rw
N }N≥1

to the Hilbert space
Hbm := L2(R, dx) (137)

i.e. the space of Lebesgue square-integrable functions in R, by means of the restriction
operators

{�N : C∞
k (R) ⊂ Hbm → H rw

N }N defined by �N f = f | 1
N Z

. (138)

Remark 6.7 The choice of the space of all compactly supported smooth functions C :=
C∞
k (R) as dense set for our Hilbert space turns out to be particularly convenient since it is

a core of the Dirichlet form associated to the Brownian motion. As a consequence, we can
make use of the same set also for proving that (41) is satisfied.

RW: Mosco I

In order to prove that Assumption 1 is satisfied, it is convenient to split the proof in two cases
depending whether f belongs or not to the effective domain of (−�)−1/2. It is then sufficient
to prove Propositions 6.1 and 6.2 below:

Proposition 6.1 For any f ∈ D((−�)−1/2), there exists a sequence fN ∈ Hsip
N strongly-

converging to f , such that:

lim
N→∞R∗

N ( fN ) = E ∗
bm( f ).
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Proof Let us proceed by cases:
Case I f ∈ C∞

k (R)

In this case the approximate sequence fN is simply given by:

fN = �N f (139)

which converges strongly to f .
Let G(x) be the Green’s function of the Laplacian in R, i.e. the fundamental solution to the
problem �G = δ0 that is given by G(x) = −|x |. We refer the reader to [26] for more details
on Green’s functions. Let f be as in the statement, then, by standard variational arguments
we know that

E ∗
bm( f ) = sup

g∈D((−�)1/2)

(
〈g, f 〉 − 1

2

∥∥(−�)1/2g
∥∥2
L2(R)

)
= 1

4

∥∥(−�)−1/2 f
∥∥2
L2(R)

= −1

4
〈 f ,G ∗ f 〉L2(R) = 1

4

∫

R

∫

R

f (x) f (y)|x − y|dxdy.

Analogously, for the discrete case, we can write

R∗
N (�N f ) = −1

4
〈�N f ,�−1

N �N f 〉H rw
N

= − 1

4N

∑

i, j∈ 1
N Z

�N f (i) · �N f ( j) · GN (i − j)

= − 1

4N

∑

i, j∈Z
�N f ( i

N ) · �N f
(

j
N

)
· GN

(
i− j
N

)

where GN (·) is the Green’s function of the discrete Laplacian �N in 1
N Z, i.e. the solution of

the discrete problem:
�NGN = δ0 in 1

N Z (140)

we refer to Chapter 5 in [27] for more details on discrete Green’s functions. Notice that

1
N2 G1(i) = GN

( i
N

) ∀i ∈ Z

where G1(·) is the solution of (140) for N = 1. Then we can re-write

R∗
N (�N f ) = − 1

4N 3

∑

i, j∈Z
�N f

( i
N

) · �N f
(

j
N

)
· G1(i − j). (141)

By Theorem 4.4.8 in [27] we have that, for i �= j , there exists C, β > 0 such that

G1(i − j) = −|i − j | + C + O(e−β|i− j |).

Incorporating the above expression in (141) we obtain

R∗
N (�N f ) = 1

4N3

∑

i, j∈Z
i �= j

�N f
( i
N

)
�N f

(
j
N

) (
|i − j | + C + O(e−β|i− j |)

)

− 1
4N3

∑

i∈Z

(
�N f

( i
N

))2
G1(0).

Notice that the sum on the diagonal (the second term in the RHS of (142)) vanishes as
N → ∞. Even more, thanks to the factor N−3 in front of the two dimensional sum, we have
that
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lim
N→∞

1

4N 3

∑

i, j∈Z
i �= j

�N f
( i
N

)
�N f

(
j
N

) (
C + O(e−β|i− j |)

)
= 0.

where we used the smoothness of f and the extra factor 1
N in front of the summation.

Then we have

lim
N→∞R∗

N (�N f ) = lim
N→∞

1

4N 3

∑

i, j∈Z
i �= j

�N f
( i
N

) · �N f
(

j
N

)
· |i − j |

= lim
N→∞

1

4N 2

∑

i, j∈Z
i �= j

�N f
( i
N

) · �N f
(

j
N

)
· | i− j

N |

= 1

4

∫

R

∫

R

f (x) f (y)|x − y|dxdy = E ∗
bm( f ). (142)

Which completes the proof of the first case.
Case II f ∈ D((−�)−1/2) \ C∞

k (R)

In this case the sequence fN is given by:

fN = �N
(
( f · 1l{[−Na ,Na ]}) ∗ KN

)
(143)

for KN the following sequence of kernels:

KN (x) = Nb√
2π

e− |Nbx |2
2 (144)

with a, b positive real numbers such that a + b < 1.
Let us first verify that { fN = �N

(
( f · 1l{[−Na ,Na ]}) ∗ KN

)}N≥1 converges strongly to f . In
the language of Definition 4.3, we first let f̃m to be equal to:

f̃M = ( f · 1l{[−Ma ,Ma ]}) ∗ KM (145)

Since KM is an approximation to the identity, given by the Gaussian Kernel, by standard
results we have:

lim
M→∞

∥∥∥ f̃M − f
∥∥∥
2

Hbm
= 0.

We also have:

∥∥∥�N f̃M − fN
∥∥∥
2

H rw
N

= 1

N

∑

i∈Z

(∫

R

f
(

i
N − x

) (
1l{[−Ma ,Ma ]}

(
i
N − x

)
KM (x) − 1l{[−Na ,Na ]}

(
i
N − x

)
KN (x)

)
dx

)2

≤ 1

N

∑

i∈Z

∫

R

f
(

i
N − x

)2
dx
∫

R

(
1l{[−Ma ,Ma ]}

(
i
N − x

)
KM (x) − 1l{[−Na ,Na ]}

(
i
N − x

)
KN (x)

)2
dx

≤ C f

N

∑

i∈Z

∫

R

(
1l{[−Ma ,Ma ]}

(
i
N − x

)
KM (x) − 1l{[−Na ,Na ]}

(
i
N − x

)
KN (x)

)2
dx

≤ 2C f

N

∑

i∈Z

∫

R

1l{[−Ma ,Ma ]}
(

i
N − x

)
KM (x)2 dx + 2C f

N

∑

i∈Z

∫

R

1l{[−Na ,Na ]}
(

i
N − x

)
KN (x)2 dx

(146)
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where the constant C f is equal to the L2-norm of f .
Let us deal with the second term in the RHS of (146), since the first term is done in a similar
way:

2C f

N

∑

i∈Z

∫

R

1l{[−Na ,Na ]}
( i
N − x

)
KN (x)2 dx

≤ C ′Na

N

∫

R

KN (x)2 dx = 4C ′Na+b

2
√

πN

∫

R

KN (y) dy

≤ CNa+b

N
(147)

where in the first inequality we used the finite support of the indicator function, in the equality
we used the explicit expression for KN (·) and the change of variables y = √

2x . Notice that
the constantC ′ changes values from line to line and incorporates all factors independent from
N .
In an analogous way, the first term in the RHS of (146) can be bounded as follows:

2C f

N

∑

i∈Z

∫

R

1l{[−Ma ,Ma ]}
( i
N − x

)
KM (x)2 dx ≤ CMaNb

N
(148)

Recall that in Definition 4.3 we first take the limit in N and then in M . Hence, strong
convergence is then obtained since the RHS of (147) vanishes as N → ∞, because a+b < 1.
Now we need to verify that indeed we have:

lim
N→∞R∗

N ( fN ) = E ∗
bm( f ).

Similar to the case where f ∈ C∞
k (R), we have an analogous of expression (142), namely:

R∗
N ( fN ) = 1

4N 2

∑

i, j∈Z
�N

(
( f · 1l{[−Na ,Na ]}) ∗ KN

) ( i
N

) · �N
(
( f · 1l{[−Na ,Na ]}) ∗ KN

) ( j
N

)
· | i− j

N |

= 1

4N 2

∑

i, j∈Z
| i− j

N |
∫ Na

−Na
f (x) KN

( i
N − x

)
dx
∫ Na

−Na
f (y) KN

(
j
N − y

)
dy.

(149)

We then want to control the following:

|R∗
N ( fN ) − I ( f )|

where

I ( f ) = 1

4

∫

R

∫

R

f (z) f (w)|z − w| dz dw.

In an attempt to use an epsilon over two argument, we then introduce the following

IN ( f ) = 1

4

∫

R

∫

R

|z − w|
∫ Na

−Na
f (x) KN (w − x) dx

∫ Na

−Na
f (y) KN (z − y) dy dz dw.

(150)
Hence we have:

|R∗
N ( fN ) − I ( f )| ≤ |R∗

N ( fN ) − IN ( f )| + |IN ( f ) − I ( f )| (151)
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where the second term in the RHS of (151) can be controlled by the convergence fN → f ,
the fact that f ∈ D((−�)−1/2) and dominated convergence.
It is then enough to estimate the following:

|R∗
N ( fN ) − IN ( f )| ≤ 1

4

∣∣∣∣∣∣
1

N 2

∑

i, j∈Z
| i− j

N |
∫ Na

−Na
f (x) KN

( i
N − x

)
dx
∫ Na

−Na
f (y) KN

(
j
N − y

)
dy

−
∫

R2
|z − w|

∫ Na

−Na
f (x) KN (w − x) dx

∫ Na

−Na
f (y) KN (z − y) dy dz dw

∣∣∣∣∣

≤ 1
4

∫

R2
| f (x) f (y)ĜN (x, y)| dx dy (152)

where ĜN is given by:

ĜN (x, y) = 1

N 2

∑

i, j∈Z
| i− j

N | KN
( i
N − x

)
KN

(
j
N − y

)

−
∫

R2
|z − w| KN (w − x) KN (z − y) dz dw (153)

which is controllable since by the smoothness of the kernels KN the RHS of (153) converges
to zero and a combination of dominated convergence and the fact that f ∈ D((−�)−1/2).
This concludes the second case. �	
In order to conclude Assumption 1 it remains to consider f such that it does not belong to
the domain of D((−�)−1/2), this is f such that E ∗

bm( f ) = ∞.

Proposition 6.2 For any f ∈ Hbm \ D((−�)−1/2) we have

lim
N→∞R∗

N ( fN ) = ∞.

where fN is given as follows:

fN = �N
(
( f · 1l{[−Na ,Na ]}) ∗ KN

)
(154)

for KN given in terms of the Gaussian Kernel as follows:

KN (x) = Nb√
2π

e− |Nbx |2
2 (155)

with a, b positive real numbers such that a + b < 1.

Proof First, notice that by the same arguments as in the proof of Proposition 6.1, fN converges
strongly to f .
Let then f be as in the statement, on the one hand we know because f /∈ D((−�)−1/2):

E ∗
bm( f ) = 1

8π

∫

R

( f̂ (q))2

q2
dq = ∞ (156)

where f̂ denotes the Fourier transform of f .
For the discrete setting we have:

R∗
N ( fN ) = 1

4
〈 fN ,�−1

N fN 〉H rw
N

= 1

4N 3

∑

x∈Z
fN
( x
N

) · �−1
1 fN

( x
N

)
. (157)
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Let us denote by {Xt : t ≥ 0} the continuous time random walk on Z started at x . Then we
have that �−1

1 fN ( x
N ) is given by

�−1
1 fN

( x
N

) = 1

2π

∫ π

−π

f̂N (k)e−ikx

2 − 2 cos k
dk (158)

where

f̂N (k) =
∑

x∈Z
fN
( x
N

)
eikx

Substitution of (158) in (157) gives:

R∗
N (�N f ) = 1

8πN 3

∫ π

−π

f̂N (k)

2 − 2 cos k

∑

x∈Z
fN
( x
N

)
e−ikx dk

= 1

8πN 3

∫ π

−π

f̂N (k) f̂N (−k)

2 − 2 cos k
dk = 1

8π

∫ πN

−πN

(
1
N f̂N

( q
N

)) ( 1
N f̂N

(−q
N

))

N 2
(
2 − 2 cos q

N

) dq.

At this point, in order to get convergence to the limiting dual we have on the one hand the
limit:

lim
N→∞ N 2 (2 − 2 cos q

N

) = q2.

On the other hand, by definition of the Fourier transform for a generic f ∈ L2(R, dx), and
arguments analogous to the ones in the proof of Proposition 6.1 we have:

lim
N→∞

1
N f̂N

( q
N

) = f̂ (q).

By Fatou’s Lemma we indeed obtain:

lim
N→∞R∗

N ( fN ) = 1

8π

∫

R

( f̂ (q))2

q2
dq = ∞,

which finishes the proof. �	

RW: Mosco II

For what concerns the second condition of Mosco convergence, we choose K := C∞
k (R)

that is a core of Ebm. In this way, for all f ∈ C∞
k (R), we can consider the restrictions �N f

(strongly-convergent to f ) and Taylor expand them to prove that:

lim
N→∞RN (�N f ) = − 1

N
lim

N→∞
∑

i∈ 1
N Z

�N f (i)�N�N f (i)

= − lim
N→∞

1

N

∑

i∈ 1
N Z

f (i)�N f (i)

= − lim
N→∞

1

2N

∑

i∈Z
f
( i
N

)
f ′′ ( i

N

)+ O

(
1

N

)

= −1

2

∫

R

f (x) f ′′(x)dx = 1

2

∫

R

f ′(x)2dx = Ebm( f ) (159)
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which concludes the proof of Assumption 2. �	

Remark 6.8 Notice that Theorem 4.48 in [27] also applies for the finite-range case and hence
the results concerning Mosco convergence to the corresponding Brownian motion can be
extended to thefinite-range settingmodulus amultiplicative constant depending on the second
moment of the transition p.
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