
24/04/2024 10:57

Continual Activity Recognition with Generative Adversarial Networks / Ye, Juan; Nakwijit, Pakawat;
Schiemer, Martin; Jha, Saurav; Zambonelli, Franco. - In: ACM TRANSACTIONS ON THE INTERNET OF
THINGS. - ISSN 2691-1914. - 2:2(2021), pp. 1-25. [10.1145/3440036]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Continual Activity Recognition with Generative Adversarial
Networks

JUAN YE, PAKAWAT NAKWIJIT, MARTIN SCHIEMER AND SAURAV JHA, School of Computer
Science, University of St Andrews, UK
FRANCO ZAMBONELLI, Dipartimento di Scienze e Metodi dell’Ingegneria, Universita’ di Modena e
Reggio Emilia, Italy

Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing
number of HAR applications are deployed in real-world environments, it is important and essential to extend
the activity model to adapt to the change in people’s activity routine. Otherwise, HAR applications can become
obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting
abnormal sensor events or new activities, however, extending the activity model is currently under-explored.
To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning
and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time.
HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require
to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor
data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets
collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness
of HAR-GAN in continual activity recognition and shed insight on the future challenges.

CCS Concepts: •Human-centered computing → Ambient intelligence; Ubiquitous and mobile computing
systems and tools;

Additional Key Words and Phrases: Generative Adversarial Networks, continual learning, human activity
recognition, smart home, accelerometer

ACM Reference Format:
Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli. 2018. Continual Activity
Recognition with Generative Adversarial Networks. ACM Trans. Internet Things 0, 0, Article 0 (2018), 25 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Sensor-based Human Activity Recognition (HAR) is about inferring daily activities such as exer-
cising or cooking from wearable and environmental sensors [55]. It has great potential in a range
of applications in personal health, elderly care, and smart homes [13]. Indeed, human activity
recognition based systems are moving out of labs and testbeds into real world deployments. This
significantly challenges the current approaches to activity recognition, as now they have to account
for all sorts of unpredictable changes constantly occurring in the real world. Users can change their
activity routine such as wandering at home at night time due to insomnia. Ideally, we would expect

Authors’ addresses: Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha, School of Computer Science, University of
St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, UK, juan.ye@st-andrews.ac.uk; Franco Zambonelli, Dipartimento di
Scienze e Metodi dell’Ingegneria, Universita’ di Modena e Reggio Emilia, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2577-6207/2018/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

0:2 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

the system to quickly learn such new changes so that we can identify health problems at the early
stage. All these changes are unavoidable in the real-world environments. Without proper change
management, the system will derive incorrect inference and lead to undesirable consequences. All
these challenges lead to an emerging, important research topic in HAR – continual learning [53].

To achieve continual learning, we will require (1) an activity model to have a flexible, extensible
structure, and (2) a mechanism to automatically extend the model so as to learn new types of
activities while not compromising the performance on recognising previous activities (which refers
to as ‘catastrophic forgetting’). Here, an activity model is defined as a probabilistic computational
model, which can be any classifier that learns the correlation between sensor features and activity
classes and thus is able to predict an activity label on the incoming sensor data.

Current attempts in HAR towards continual learningmainly focus on change detection – discover-
ing new activities [1, 12, 15] and active learning – acquiring user annotations on new activities [22].
They often require to re-build and re-train the model from scratch every time when a new activity
class is introduced. Few have studied how to automatically evolve an activity model with new types
of activities [53]. However, such capability brings the benefit of retaining the knowledge in the
activity model that has accumulated over time while reducing the training cost and the manual
configuration and engineering effort. We consider this benefit is essential for long-term, sustainable
deployment of any sensor-based HAR system, which is the key objective of our proposed HAR-GAN.
To meet the requirements of continual learning, we have designed a novel architecture to

integrate Generative Adversarial Network (GAN) and an evolvable classifier in continual learning
for HAR, called HAR-GAN. GAN has made significant progress in computer vision and natural
language processing in generating synthetic samples mimicking real data distributions [16]. Here
we leverage GAN in generating synthetic samples on previously learnt activities to re-train the
evolvable classifier. This allows us to automate the training process without explicitly re-feeding
the data to the classifier and not to store any historical data.

Even though GAN has achieved promising performance in computer vision [16], its effectiveness
in sensor data is still under-explored. This papers aims to adapt and identify appropriate GAN
architecture for HAR and mechanisms for ensuring the quality of generated samples for continual
activity recognition. To do so, we have selected a collection of promising GAN architectures and
experimented different strategies to tackle characteristics of sensor data. Sensor data exhibits the
limitations of sensor noise, diversity of patterns within each activity class, and interference or
overlapping of patterns between activity classes. All these characteristics make it challenging to
converge a GAN model and thus difficult to generate high-quality, discriminative samples. To tackle
this challenge, we have experimented different training strategies including gradient penalty and
instance noise, and quality control strategies.

Another key novelty of our work is that we apply an evolvable neural network which can extend
the output layer with new classes continuously and automatically, which does not require a priori
knowledge of what and how many new classes are available in the future. To the best of our
knowledge, this is the first time that GAN and an evolvable classifier have been applied to continual
learning in HAR.

Our main contributions are listed as follows.

• HAR-GAN has been extensively evaluated on both binary and accelerometer sensor data,
which are the most common sensor data in HAR. The evaluation has demonstrated the
effectiveness of HAR-GAN in continual activity recognition and as well as uncovered findings
in dealing with continual learning in different types of sensor data and activities.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Continual Activity Recognition with Generative Adversarial Networks 0:3

• We have systematically integrated and evaluated with a range of state-of-the-art strategies
on tackling catastrophic forgetting. The results have shown that knowledge distillation [21]
has consistently improved learning across multiple datasets.

• We have extensively experimented with different GAN architectures and strategies. Our
result has shown that the generated samples from GAN can replace real samples and achieve
high accuracy in continual activity recognition.

2 RELATEDWORK
This section will briefly review the recent work in sensor-based human activity recognition and in
continual learning in the field of machine learning.

2.1 Sensor-based Activity Recognition
Activity recognition has been extensively studied in the last decade [8]. A large number of modern
data-driven techniques, including Hidden Markov Models, Support Vector Machines, and more
recently deep neural networks [49], have achieved promising results in extracting features from
raw sensor data [19, 29] and learning complex correlations between sensor data and activities
of interest [17]. For example, convolutional neural network and autoencoder have been used to
extract spatio-temporal features on EEG signals [58] and an ensemble of deep neural networks
has been designed for activity recognition [37]. Inspired by these recent successes, we also take a
deep learning approach; that is, leveraging Generative Adversarial Networks (GAN) in continual
activity recognition to enable learning the distribution of training data and automatically generating
samples.

2.2 Continual Activity Recognition
Continual learning is a natural next step inHAR; that is, what if people start doing new activities, and
if so, how a HAR model will be adapted to accommodate the change. Discovering and recognising
emerging activities has been attracting increasing attention in recent years. Fang et al. have proposed
a von Mises-Fisher-based hierarchical mixture model, which is a probabilistic model to represent
an overall population as a mixture of a finite number of different components. Each component
corresponds to a type of activity or a pattern of an activity [12]. Based on the Bayesian posterior
probability, the model can assess whether a data point is an outlier or belongs to an existing class.
Active learning is employed to acquire labels on new activities. Then a new activity class will be
modeled as a new component and added to the mixture model. The component weights will be
updated in an expectation maximisation (EM) process.

Gjoreski et al. have employed an agglomerative clustering technique to cluster streaming sensor
data in real time [15]. If the incoming data does not fall into the existing clusters, they are considered
as anomaly. To validate anomalous data for new activities, they apply two temporal constraints:
(1) a human activity usually lasts for a certain period of time and (2) there should not be frequent
transitions between activities. With these constraints, the technique can filter short outliers and be
able to more accurately discover clusters for new activities.
Another types of techniques towards continual learning is to evolve activity models. Cheng et

al. have adapted a zero-shot learner to recognise a new activity with limited training data [9]. A
knowledge-driven model is maintained, which encodes the semantic relationship between high-
level activities and low-level sensor attributes generated from accelerometer data. When including
a new activity, domain experts and developers will need manually add new attributes and update
the activity-attribute matrix with manually specified relationship between attributes and this new
activity.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

0:4 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

However, none of these techniques enable automatic evolution of an activity model without much
re-engineering effort. To directly tackle this challenge, we propose HAR-GAN that can dynamically
extend with new types of activities over time without the need to re-build or re-train the model
from scratch.

2.3 Continual Machine Learning
Beside HAR, continual learning or lifelong learning is an emerging and important topic in the
broader area of machine learning. Over recent years, many techniques have been proposed, espe-
cially at tackling catastrophic forgetting; that is, how to extend a learning model to accommodate
new tasks while maintaining good performance on old tasks. Here we focus our review on a
collection of techniques on neural network, as it is the one that has been adopted for our activity
recognition model. The techniques can be categorized into three types: regularisation, dynamic
architecture, and rehearsal [36].
Regularisation-based techniques in neural networks are inspired by the principle of continual

learning in human brain; that is, after learning occurs, a process called synaptic consolidation reduces
the plasticity of synapses that relate to previously learned tasks making them harder to change.
Thus, it reduces the interference from newly received data. Similarly, the regularisation-based
techniques control the way that the network updates its weight to balance between learning new
tasks and retaining learned knowledge. The importance of weights is estimated in terms of their
impact on previous tasks’ performance. It prevents changes on the parameters important to the
previous tasks and thus slows down changes to the corresponding parts of the network.

Elastic Weight Consolidation (EWC), a classic regularisation-based technique, uses the Bayesian
approach to quantify the importance of parameters in terms of the posterior distribution [11]. The
assumption is that there are many sets of parameters that lead to low errors for a certain task
and there exists a common set of parameters that can produce a low error in all tasks. The goal is
to constrain the network’s parameters to stay in the low-error region and explore those sets of
parameters to find the one that fits all tasks. Synaptic intelligence also uses the similar tactics in
controlling the parameter update [57]. The main limitation of these approaches is that they highly
depend on the relevance of the tasks. The more irrelevant the problems are, the more difficult
it can learn. The hypothesized set of parameters might not exist so this leads to a bias towards
maintaining existing knowledge rather than accepting new information.
Learning Without Forgetting (LwF) is not focused on regulating the network’s weights, but

rather on maintaining the predicted probabilities on all previously learned classes [30]. It penalizes
the model when the new prediction distribution is different from previous prediction distributions.
This method is drawn from knowledge distillation, a technique to transfer knowledge from one
large model to the smaller one [21]. Both EWC and LwF have achieved promising results, so we
have adopted and experimented them in HAR-GAN with the goal to assess which technique is
amenable to sensor data.

Architectural techniques are to dynamically accommodate neural resources for upcoming tasks
leaving more room to learn new data; for example, to increase the number of neurons, to update
connectivity patterns or to add task-specific components to the network. Progressive network
resolves the catastrophic forgetting by introducing a new neural network for each new task [41].
Then previous knowledge will be transferred to the new network through lateral connections.
Because there is no interference to the learned networks, there is no catastrophic forgetting.

Context-dependent gating and synaptic stabilisation address the problem with another architec-
tural approach, which is by allocating a different subnetwork for a different task [31]. During the
training step, only a subset of nodes in the network will be assigned randomly to participate in
each task. As inspired by activities in the human brain, sparse and mostly non-overlapping sets of

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Continual Activity Recognition with Generative Adversarial Networks 0:5

dendritic branches are active for any one task. This reduces the interference between tasks and
also increases the stability of the learned knowledge by distributing informative data throughout
the network. One major drawback of these architectural techniques is scalability. When the tasks
accumulate to a certain number, the complexity of these architectures can be difficult to manage.
Differently, we adopt a flexible structure for our classifier so that we can extend the number of

output classes on the fly, without the need to fix the number of classes nor to re-build the model
from scratch.

Rehearsal techniques are another neuroscience-inspired solution. iCaRL [38] is a classic rehearsal
technique, which stores only a small subset of data as ‘exemplars’ as the representative information
of the old classes. These examples will be used to augment the classifier result using the nearest
centroid. Generative replay model (GRM) is a more recent rehearsal technique without the need of
storing any historic data. GRM uses generated data from a generative adversarial network (GAN)
as replay samples [43]. In GRM, for each new task, a new classifier is built and trained with the
real samples on the current task and the generated samples on the GANs, each of which is trained
on previous tasks. At any point of time, the system maintains a collection of GANs per task and a
classifier. There are several drawbacks with this design. Re-building a classifier every time can be
computationally expensive. To deal with this problem, HAR-GAN extends the classifier every time
by adding new classes on the output layer and fine tunes it with generated samples on previous
classes and real samples on new classes. Also maintaining a collection of GAN models can be
inefficient if there are a large number of classes to learn over time. HAR-GAN employs a conditional
GAN [34], able to generate samples conditioned on each class. HAR-GAN is configured with various
strategies to deal with convergence and stability of GAN. These two problems are already observed
on MNIST—a simple hand-writing dataset and are getting more deteriorated with the intrinsic
complexity in sensor data in terms of noise, diversity in patterns per class, and similarity between
classes.

3 HAR-GAN CONTINUAL ACTIVITY RECOGNITION
Here HAR-GAN presents an iterative and incremental model to be able to extend with new activity
classes while not sacrificing the performance on recognising old activity classes without the
need of storing the historic data and retraining the model from scratch. Our key novelty in HAR-
GAN resides in extending this model with different GAN architectures especially with conditional
GAN to generate samples per activity type, and in evolving the classifier automatically over time
while tackling the catastrophic forgetting challenge.

In the following, we will formally define the problem of continual learning in HAR, present the
workflow, and then describe each component in the workflow and their design decisions. Following
the definition in [43], we define the task sequence𝑇 of 𝑁 tasks as𝑇 = [𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑁]. In HAR, each
task is a session of work in which new activities emerge and they must be learned and integrated
with the current system. Formally, a task 𝑡𝑖 (𝑖 ∈ [1, 𝑁]) is coupled with a set of activity classes
𝐶𝑖 = {𝑐𝑖1, ..., 𝑐𝑖𝐾𝑖

} and a collection of training data {(x𝑖𝑗 , 𝑦𝑖𝑗) |𝑦𝑖𝑗 ∈ 𝐶𝑖 }𝑀𝑖

𝑗=1. The learning objective on
the 𝑖th task is to optimize a model to recognise the current activities in𝐶𝑖 and previous activities in
𝐶𝑖−1 ∪ ... ∪𝐶1, where 𝐶𝑖 ∩ (𝐶𝑖−1 ∪ ... ∪𝐶1) = ∅; i.e., new classes in the current task have not been
observed in the previous tasks.

Figure 1 presents the workflow of HAR-GAN. The training session starts with the arrival of the
first task 𝑡1, which will build a GAN and a classifier. The classifier will learn to recognise activities
in 𝐶1 and the GAN learns the latent structure of {(x1𝑗)}𝑀

1

𝑗=1. When the next task 𝑡2 comes in, the
GAN will generate samples for the previous activities in 𝐶1. With the generated samples and the
training data in 𝑡2, we will update the classifier to recognise activities in both 𝐶1 and 𝐶2. The GAN

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

0:6 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

Generate

Task 1 Task 2 Task 3

Real sam
ples for Task 2

Real sam
ples for Task 3

Real sam
ples for Task 1

Task N

…

…

R1_work_at_computer

R2_work_at_computer

Train

Real sam
ples for Task 1

Real sam
ples for Task 2

Real sam
ples for Task 3

Generate Generate

R1_bed_to_toilet

R2_bed_to_toilet

Replayed samples Replayed samples

R1_sleep

R2_sleep

Classifier

GANGAN

Classifier

Train Train

C1

C2

C1

C2

C3

C4
C5
C6

C1
C2
C3
C4

G1 ⇌ D1G0 ⇌ D0
G2 ⇌ D2

Classifier

GAN

Fig. 1. The workflow of HAR-GAN. It starts with the first task of two activities R1_work_at_computer and
R2_work_at_computer, which will be used to train a GAN and a classifier. When the next task of two activities
R1_bed_to_toilet and R2_bed_to_toilet becomes available, then the GAN will generate samples on the classes in the first
task, which will be combined with real samples on the second task to update the GAN and classifier. This process will be
repeated with each new task.

will also be updated so as to be able to generate samples for the new activities. The process will be
repeated whenever a new task arrives. In the following, we will illustrate how to design (1) a GAN
with particular focus on addressing the convergence issue and improving the quality of generated
samples, and (2) a classifier with particular focus on how to evolve the classifier to recognise more
activities while not compromising the performance on old activities.

3.1 Design of GAN
GAN, Generative Adversarial Network, is a generative model to generate synthetic samples mim-
icking real data distributions [16]. It is composed of a generator and a discriminator in a minimax
two-player game. A generator generates synthetic samples and a discriminator distinguishes
whether the samples are synthetic from the generator or real from the original data. With the
feedback from the discriminator, the generator will be updated to produce better samples. The
learning completes when the discriminator collapses; i.e., failing to detect the generated samples
are synthetic or real. In this way, a generator and a discriminator are competing with each other.
This process then enforces the generated distribution to become closer to the true distribution or
achieve Nash Equilibrium.

Formally, the generator is defined by𝐺 (𝑧). By giving a noise 𝑧, it then converts that noise vector
into a synthetic sample. The discriminator is defined by 𝐷 (𝑥). It estimates the probability to decide
whether the input comes from the real data or the generator. To represent two objectives of the
zero-sum game, the discriminator 𝐷 will be trained to maximize the probability of assigning the
correct label by maximising E𝑥∼𝑝𝑟 (𝑥) [𝑙𝑜𝑔𝐷 (𝑥)] when 𝑥 is real and E𝑥∼𝑝𝑔 (𝑥) [1− 𝑙𝑜𝑔𝐷 (𝑥)] when 𝑥 is
synthetic. Meanwhile, the generator 𝐺 is trained to trick the discriminator; that is, it is expected to
minimise the gap between a synthetic and real sample. Given a synthetic sample 𝐺 (𝑧) : 𝑧 ∼ 𝑝𝑔 (𝑧),
the generator’s target is to minimise E𝑧∼𝑝𝑔 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))]. By combining both aspects, the
loss function of this minimax game is defined below:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿(𝐷,𝐺) = E𝑥∼𝑝𝑟 (𝑥) [𝑙𝑜𝑔𝐷 (𝑥)]
+ E𝑧∼𝑝𝑔 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))] . (1)

There exist different architectures of GAN. Here we mainly consider single-class GAN and
multi-class GAN. For single-class GAN, we train a GAN per class with the class’ real data and then

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Continual Activity Recognition with Generative Adversarial Networks 0:7

stack them together to form a multi-GAN (mGAN) architecture. We also consider a conditional
GAN (cGAN) on multiple classes which can generate samples with a given class label [33]. The
loss term of cGAN is similar to Equation (1), and the difference is that the loss is conditioned on a
class label:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿(𝐷,𝐺) =E𝑥∼𝑝𝑟 [𝑙𝑜𝑔𝐷 (𝑥 |𝑦)]
+ E𝑧∼𝑝𝑔 [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧 |𝑦)))] .

The motivation for considering mGAN and cGAN is that each of them has advantages and
limitations. On the one hand, mGAN is assumed to generate samples with higher quality as it is
only learned on one class at a time. However, as most HAR systems run on resource-constrained
devices, stacking a large number of GAN models (e.g., for 20, 50 or 100 activity classes) might lead
to the scalability problem. On the other hand, cGAN might suffer more on catastrophic forgetting
and instability, as it will be trained with a combination of generated and real samples for multiple
classes. As we will present in Section 5, sensor data exhibit high similarity between different activity
classes, which could cause interference in consecutive task training. In HAR-GAN, we experiment
both designs and assess their effectiveness on different types of sensor data.

It is well acknowledged that training GAN is non-trivial [18], [2], [32], as it can be slow or even
fail to converge. When training a GAN, we often observe low dimensional supports and vanishing
gradient [2], which can cause imbalance between its discriminator and generator and thus lead to
instability during the training progress. As introduced earlier, the main challenge in HAR is sensor
noise, diffusing boundary between activities and complexity in sensor features. On the one hand,
this challenge can lead to poor accuracy in the discriminator, and thus the generator does not have
accurate feedback, resulting in low accuracy. On the other hand, due to the high-dimensionality of
sensor features, the generator cannot converge as fast as the discriminator. That is, even though a
discriminator can achieve high accuracy quickly, the gradient of the loss function will decrease to
zero, making the learning progress slow to converge. To tackle this problem, we will introduce the
state-of-the-art approaches to alleviate the GAN’s convergence issue: instance noise, Wasserstein
loss function, and gradient penalty, and aim to find out which one is more suitable for sensor data.

3.1.1 Instance Noise. JS (Jensen-Shannon)- and KL (Kullback-Leibler)-divergence are typically
used as a GAN’s loss function. They become meaningless when the probability mass between
actual data and synthetic data do not overlap, which leads to instability of GANs [3], [2]. One way
to avoid this situation is to introduce instance noise to the inputs of the discriminator [3], [32].
The instance noise will smooth the actual and generated distributions so they become overlapped.
In our current implementation, Gaussian noise is added into input vectors before feeding to the
discriminator. The volume of instance noise will be damped down to zero by each epoch to balance
the effect of the noise.

3.1.2 Wasserstein GAN. Anotherway to alleviate instability is to introduce a newGAN loss function
called Wasserstein distance [4]. The Wasserstein distance measures the distance between two
probability distributions by calculating the minimum energy cost of transforming one probability
distribution to the other distribution. It could result in smoother and more meaningful distance
than JS- and KL-divergence and thus will stabilise GAN’s learning process. However, the original
Wasserstein distance formula is intractable as it requires to exhaust all the possible joint distributions.
To make it tractable, a transformation based on the Kantorovich-Rubinstein duality [48] is applied
and the new loss function is now calculated by the difference of the average critic score on actual
and generated data [4]; that is,

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿(𝐷,𝐺) = E𝑥∼𝑝𝑟 [𝐷 (𝑥)] − E𝑧∼𝑝𝑔 [𝐷 (𝐺 (𝑧))] .

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

0:8 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

3.1.3 Gradient Penalty. Non-convergence might still be observed in Wasserstein GAN due to
weight clipping [18]. Weight clipping is a key component to maintain Lipschitz continuity, but it
might end up with exploding or vanishing gradients, which again leads to instability of GAN. An
alternative approach to avoid this is to add gradient penalty to the loss function [18]:

𝐿𝐺𝑃 (𝐷,𝐺) = E𝑥∼𝑝𝑟 [𝐷 (𝑥)] − E𝑧∼𝑝𝑔 [𝐷 (𝐺 (𝑧))] +𝐺𝑃 (2)

𝐺𝑃 = _E𝑥 ′∼𝑝𝑥′ [(| |∇𝑥 ′𝐷 (𝑥 ′) | |2 − 1)2], (3)

where 𝑥 ′ is a random sample and _ is a controlling weight which is generally set to be 10. This
equation is formulated to penalise the model when the gradient norm diverges from one [18].

3.2 Design of Evolving Classifier
A large number of recent research propose to apply deep neural networks (DNNs) to HAR [49].
The recent work has leveraged the learning capability of DNNs in capturing complex correlations
between sensor data and activity classes. Build on top of this, we also design our activity classifier
as a neural network, and focus on how to extend the capacity of the network over time in order to
accommodate new activity classes. As described in Section 2, this capability has not been explored
in HAR, and most of the activity models will require re-engineering or re-build the model to include
new output classes.

Here we adopt a dynamically extensible activity classifier; that is, output units will be extended
when a new task is introduced. To achieve this, when a new output class is introduced, the new
weights and bias of the network will be initialised by a truncated normal distribution with standard
derivation equals to 𝑠𝑞𝑟𝑡 (2/𝑙), where 𝑙 is size of the last hidden layer. This method provides a
controlled initialisation, resulting in faster, more efficient gradient descent and alsominimal gradient
oscillation during the training [20].

Furthermore, apart from the classifier’s architecture, its loss function is customised to consider
the loss on generated samples from the old classes and real samples from new classes. The loss
function is defined as:

𝐿(𝐶𝐿𝑡) = 𝑟E(𝑥,𝑦)∼𝑇𝑡 [𝐿(𝐶𝐿𝑡 (𝑥), 𝑦)]
+ (1 − 𝑟)E𝑥 ′∼𝐺𝑡−1 [𝐿(𝐶𝐿𝑡 (𝑥 ′),𝐶𝐿𝑡−1 (𝑥 ′))] (4)

Given a generator 𝐺𝑡 and a classifier 𝐶𝐿𝑡 at a train session 𝑡 , the loss function will be calculated
from actual loss and replayed loss regulating by a factor 𝑟 representing how important of the new
task. We set 𝑟 to be 0.5, considering replay loss and actual loss equally. The actual loss is similar
to simple classifier loss function by taking the actual input 𝑥 and a label 𝑦 and then applying
cross entropy as function 𝐿 to determine the classifier’s ability. In contrast, the replayed loss is
determined by loss from generated samples 𝑥 ′ drawn from the generator(s) in the previous session.
The above designs allows to extend the classifier dynamically to retrain the knowledge of the

network (i.e., weights and bias). However, when we train the classifier incrementally with training
data on new activities, the classifier will be optimised to maximise the accuracy on the new activities,
which can lead to decreased accuracy on the old activities. In the following, we will introduce
Elastic Weight Consolidation (EWC) and Learning Without Forgetting (LwF) to control the gradient
updates so as to avoid such decrease. Afterwards, we will describe the strategies to deal with the
imbalance problem that is a classic problem in most of HAR datasets and to control the quality of
generated samples from GAN.

3.2.1 Elastic Weight Consolidation (EWC). EWC is a regularisation technique that penalises the
changes that are important to the previous tasks [11]. It adds an additional term to the loss function

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Continual Activity Recognition with Generative Adversarial Networks 0:9

as follows.
𝐿(\) = 𝐿𝑡 (\) +

∑
𝑖

_

2
𝐹𝑖 (\𝑖 − \ ∗𝑡−1,𝑖)2,

where 𝐿𝑡 (\) is the loss for the current training session 𝑡 , _ is a tuning parameter that indicates
the importance of the previous tasks, 𝐹 is the Fisher information matrix and \ ∗𝑡−1 are the trainable
parameters from the previous tasks. A parameter’s importance is estimated by the Fisher Information
matrix. It will be evaluated after completing each training session using both generated samples on
old tasks and real samples in the current task.

3.2.2 Learning Without Forgetting. Different from EWC, learning without forgetting (LwF) aims to
maintain the probabilities predicted by the previous model with the help of knowledge distillation
(KD). To do so, before training the 𝑡th task, all input will be fed to the most recent classifier (i.e.,
the model trained at the training session 𝑡 − 1) to determine its probability vector 𝑦∗𝑡−1.

𝑦𝑐𝑡−1 = 𝑝\𝑡−1 (𝑌 = 𝑐 |𝑥), 𝑦∗𝑐𝑡−1 =
𝑦𝑐𝑡−1

1/𝑇∑𝑗=𝐶

𝑗=1 (𝑦
𝑗

𝑡−1)1/𝑇
,

where 𝑦𝑐𝑡−1 is the conditional probability distribution on a class label 𝑐 given an input 𝑥 , which is
obtained from the network configured with the parameters \𝑡−1. In order to increase the importance
of the smaller logit values, before calculating loss, a probability vector 𝑦𝑐𝑡−1 will be soften into 𝑦∗𝑐𝑡−1
by temperature 𝑇 as follows (T=2) [21]. Given the training data {(x𝑡𝑗 , 𝑦𝑡𝑗) |𝑦𝑡𝑗 ∈ 𝐶𝑡 }𝑀𝑡

𝑗=1 at the session
𝑡 , the new loss function is a combination of the loss function on new training data 𝐿𝑁

\𝑡
and the

knowledge distillation loss 𝐿𝐷
\𝑡−1

on data in previous learned classes:

𝐿(\) = _𝑁𝐿𝑁
\𝑡
+ _𝐷𝐿𝐷

\𝑡−1
+ 𝑅

𝐿𝑁
\𝑡

= −
𝑀𝑡∑
𝑗=1

y𝑗𝑙𝑜𝑔ŷ𝑗

𝐿𝐷
\𝑡−1

= −
𝐶1..𝑡−1∑
𝑘=1

(
𝑀𝑘∑
𝑖=1

𝑦∗𝑖,𝑡−1𝑙𝑜𝑔𝑦
∗
𝑖,𝑡−1)

where y is the vectorised ground truth of 𝑦 𝑗 in the new training data, ŷ is the vectorised prediction,
𝑀 is the number of generated samples on old activity classes, and 𝑅 is the normal regularisation
on the network, and 𝐶1..𝑡−1 is the number of classes that have been learned so far. _𝑁 and _𝐷 are
the ratio to balance loss weight, which are set to be 1 and 𝑇 2, as they have achieved well balanced
performance on old and new classes [46].

3.2.3 Oversampling. Class imbalance, where only a few activities occur often while most activities
occur rather infrequently, is generally observed in HAR. Oversampling is implemented to handle
the imbalanced problem. We use Synthetic Minority Over-sampling Technique (SMOTE) [7], which
synthesises new data from the minority class.

3.2.4 Self-Verification of Generated Samples. The quality of replayed samples plays an important
role in maintaining the accuracy of the previous tasks. The low-quality samples could behave as
a noise which will distract and degrade the model’s accuracy. A random process is embedded in
a vital part of GANs so unexpected noise could be accidentally generated. Therefore, the quality
control is needed but as it is impossible to manually verify these generated data and we cannot
visually inspect the generated sensor data like the way that we do with the images. To ensure high
standard quality, the previously trained classifier is used as a quality control. We assume that it is

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

0:10 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

trained to capture the key properties of those trained classes. On that account, before training for
the current task, we will generate samples for each previous class and test them with the previous
classifier. We verify their labels to see if the classifier can predict the same class label. If the samples
pass the test, we will use them as replayed samples; otherwise, we will discard them. This process is
computationally effective since generating new data takes less time than training. We hypothesise
that this self-verification process can prevent accidental noise.

4 EVALUATION METHODOLOGY
In the following we introduce the datasets exploited in the evaluation, present the evaluation
metrics and process on continual learning, and describe our implementation details and parameter
selection.

4.1 Datasets
To assess the generality of our approach, we selected four state-of-the-art datasets with binary
sensors and accelerometers, all of which have been widely used in the area of activity recognition.
The selected datasets exhibit different forms of sensor representations and different levels of
complexity such as diverse patterns in an activity class and high similarity between activity classes.
The evaluation on these datasets will help build a comprehensive performance profile of HAR-GAN.
As our focus is on continual learning, instead of feature extraction, we employ the basic feature
extraction technique on binary sensor data and use the datasets that have already extracted features
on accelerometer data. This will assess the generality of our approach independently of feature
extraction techniques, and also make it easier to reproduce the results.
The first two datasets record sensor events from binary sensors. The sensors will be activated

and produced a reading of ‘1’ or ‘ON’, when a user is interacting with an object embedded with a
sensor or is present in front of a sensor. The first dataset (denoted as House A) is collected by the
University of Amsterdam [47]. It contains 14 sensors and 7 activities from a single-resident houses
including ‘sleep’, ‘shower’, ‘toilet’, ‘breakfast’, ‘dinner’, ‘drink’, and ‘leave home’. The second dataset
is twor.2009 datasets from CASAS at the Washington State University [6] (denoted as CASAS). It
records activities of daily living on two residents. This testbed consists of 72 sensors in 6 different
types: motion sensors, door sensors, light switch sensors, water flow sensors, burner sensors and
item sensors. For both binary sensor datasets, we follow the state-of-the-art techniques to segment
sensor data into a 60-second interval and normalise the ratio of senor activation by the total number
of events being activated in an interval [54]. We also add one temporal feature, which is the hour
of the first sensor in each interval.
The other two datasets contain continuous sensor readings from inertial measurement units

that are worn by participants, which are PAMAP2 [39] and DSADS [5]. As we focus on continual
learning, we use the datasets that contain the extracted features on these datasets [50], which
include mean, standard deviation, and correlations of axes.

To make the results comparable across different datasets, we fix the total number of activities as
10 on the three larger datasets, namely CASAS, PAMAP2 and DSADS, and use all the 6 activities on
House A. Figure 2 presents the statistics of the selected datasets including the number of features,
the number of activity classes, and the number instances, along with the class distribution of
selected activities in our experiments. As we can see in Figure 2, these datasets exhibit imbalanced
class distribution, which adds extra complication to continual learning. Intraclass diversity and
interclass similarity are also observed in the datasets, as presented in Figure 3.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Continual Activity Recognition with Generative Adversarial Networks 0:11

Dataset Statistics
Datasets No. Features No. Activities No. Instances
House A 15 6 483
CASAS 72 10 15655
PAMAP 243 10 6451
DSADS 405 10 4800

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

R1
_w
ork
_a
t_c
om
pu
ter

R1
_sl
ee
p

R2
_sl
ee
p

R2
_w
ork
_a
t_c
om
pu
ter

R2
_w
atc
h_
TV

R2
_p
rep
are
_d
inn
er

R2
_p
rep
are
_lu
nc
h

R1
_w
ork
_a
t_d
ini
ng
_ro
o…

R1
_b
ed
_to
_to
ile
t

R2
_b
ed
_to
_to
ile
t

Di
st
rib

ut
io
n

CASAS

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Sle
ep

Toile
t

Dinner

Leave home

Sh
ower

Breakfast

Di
st

rib
ut

io
n

House A

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Iro
ning

Walking
Lyi

ng

Sta
nding

Sit
tin

g

Vacuum cle
an

ing

Cyclin
g

Asce
nding s

tai
rs

Desce
nding sta

irs

Running

Di
st

rib
ut

io
n

PAMAP2

Di
st

rib
ut

io
n

Di
st

rib
ut

io
n

Di
st

rib
ut

io
n

Iro
nin

g
Walk

ing
Ly

ing
Stan

din
g

Sitti
ng

Va
cu

um

cle
an

ing Cyc
lin

g
Asc

en
din

g s
tai

rs
Des

ce
nd

ing
 st

air
s

Run
nin

g

Slee
p

Toilet
Dinn

er

Le
ave

 ho
me

Sho
wer

Brea
kfa

st

R1_
work_

at_
co

mpute
r

R1_
sle

ep

R2_
sle

ep

R2_
work_

at_
co

mpute
r

R2_
watc

h_
TV

R2_
prep

are
_d

inn
er

R1_
work_

at_
dinin

g_ro
om

R1_
bed

_to
_to

ilet

R2_
bed

_to
_to

ilet

R2_
prep

are
_lu

nc
h

Fig. 2. Description of datasets, including the number of features, activities, and instances, and the class distributions.
DSADS has the equal activity distribution.

(c) Cycling activity performed by different subjects in PAMAP2

Dimension 1 Dimension 1

Di
m

en
si

on
 2

Di
m

en
si

on
 2

(a) Similar patterns between ‘prepare dinner’ and ‘watch TV’ in CASAS (b) Diverse patterns of ‘cycling’ in PAMAP2

Fig. 3. t-SNE plots to demonstrate interclass similarity and intraclass diversity in sensor data. (a) ‘prepare dinner’ and
‘watch TV’ in CASAS exhibit high similarity as they have overlapping and diffusing boundaries of activity classes. (b) there
exists diverse patterns on the ‘cycling’ activity in PAMAP2.

4.2 Evaluation Metrics and Process
To evaluate our model, we randomly generate task sequences and introduce tasks to the model one
by one. Each task consists of 2 new activity classes. To train a new activity class, we use 80% of
its data for training and 20% for testing. Every time when we train a new task, we will compute
three types of accuracy. (1) Base accuracy – the accuracy of recognising the activity classes in
the first task after training on each task, which will indicate the stability of the model; (2) New
accuracy – the accuracy of recognising the new activity classes in the current task, which will
indicate the plasticity of the model; and (3) Overall accuracy – the accuracy of recognising all the
activity classes that have learned so far, which will indicate the overall performance of the model.

In addition, we consider the following three metrics from the machine learning community [27],
which average and normalise the above three types of accuracy over time. Given N as a number
of learned tasks so far, 𝑀𝑏𝑎𝑠𝑒 measures how the model retains the knowledge by measuring the
averaged ratio between the accuracy of the first task (base accuracy) to the expected accuracy that

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

0:12 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

is the accuracy of the same task from the offline model (ideal accuracy).𝑀𝑛𝑒𝑤 indicates how well
the model acquires the new knowledge. The test accuracy of a task that is immediately learned
after each training (new accuracy) is used and divided by the ideal accuracy of the same task. Lastly,
𝑀𝑜𝑣𝑒𝑟𝑎𝑙𝑙 presents the overall result of the model determined by the average ratio between the
accuracy of each task after training the last task and its expected accuracy. These three metrics
are relative to ideal accuracy on the offline model, which can reveal the effectiveness of continual
learning, independent of specificity of learning tasks.

𝑀𝑏𝑎𝑠𝑒 =
1
𝑁

𝑁∑
𝑖=1

base accuracy after training task 𝑖
ideal accuracy of task 𝑖

,

𝑀𝑛𝑒𝑤 =
1
𝑁

𝑁∑
𝑖=1

new accuracy after training task 𝑖
ideal accuracy of task 𝑖

,

𝑀𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
1
𝑁

𝑁∑
𝑖=1

overall accuracyof task i at the last task
ideal accuracy of task 𝑖

.

4.3 Implementation and Parameter Tuning
The classifier for activity recognition is implemented as a fully-connected neural network with
two hidden layers, which is based on the recent studies on similar types of data [42], [56], [35].
We have also experimented on 3-layered neural network, the performance is not better than our
2-layered network. ReLU activation function is used in all hidden layers to avoid vanishing gradient.
Adam optimiser is applied, which is a better options for problems with noisy data, sparse gradients
and non-stationary objectives [28]. The experimental results from recent studies show that Adam
optimiser could yield better results in both generative and classifier models [40], [18] and also in
continual models [57], [24]. The learning rate and the batch sizes are set as the default setting
(learning rate=0.01, batch sizes=5). We have run grid search on the number of hidden units per
layer and based on the results, we select 200, 500, 1000 and 1000 neurons per layer for House A,
CASAS, PAMAP2 and DSADS respectively.

We experiment four variant architectures of GANs, includingmGAN (a stack of vanilla GANS [16]),
cGAN (a conditional GAN on activity classes), mWGAN and cWGAN (with Wasserstain distance
as a loss function). On all the GANs, we use the same architecture for discriminator and generator
as the above classifier1.
Another important parameter in HAR-GAN is the importance ratio between reply loss and

actual loss from the current task (Equation (4)). To understand the effect of this parameter, we run
various ratios on the datasets and examine their impact on the accuracy of continual learning. The
results show that this ratio factor reflects the stability-plasticity dilemma as there is a trade-off
between increasing model’s stability and decreasing in model’s plasticity. In the end, we decide to
set the ratio as 0.5 to treat replay loss and actual loss equally which provides the maximum overall
accuracy.

5 RESULTS AND DISCUSSION
This section will present the results on assessing the effectiveness of continual learning and discuss
different design decisions of GANs and classifiers. We are seeking the answers to the following
questions:

• Q1 – Can HAR-GAN achieve effective continual activity recognition?
• Q2 – To what extent the generated samples from GAN can replace real data samples?

1The implementation and results have been submitted as the supplementary materials.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Continual Activity Recognition with Generative Adversarial Networks 0:13

• Q3 – What strategies in Section 5.5 play a significant role in improving the accuracy of
continual learning?

5.1 Effectiveness of Continual Learning
To assess the effectiveness of continual learning of HAR-GAN, we configured with cGAN and
evolving classifier with the following components: self-verification, LwF-based regularisation,
instant noise, and SMOTE for over-sampling. We follow the evaluation process in Section 4.2,
where we extend and train a model every time when a new task is introduced. We compare our
technique with five different settings:

• Batch: The model is trained with all activities at once. That is, we train a neural network
with 80% of each dataset and test it with the remaining 20%. As there is no task sequence, the
base, new, and overall accuracy is the same for each dataset.

• Offline: The model is trained all at once using data from all tasks so far. It considers being
an ideal model for the experiment. All metrics are calculated using this model as the expected
model.

• None: The model is sequentially trained one task at a time without any data from the previous
tasks. It is treated as lower bound for the experiment.

• Exact Replay: The model is sequentially trained on a new task and all the training data
from previously learned tasks. It represents a model with the best quality of replayed samples.
Here we use all of the training data of the old classes for replay.

• Generative Replay: The model is sequentially trained using a new set of data and generated
data from the generator, which is HAR-GAN.

Besides the above settings, we also select the following continual learning techniques for com-
parison.

• LwF [30] and EWC [11] which are regularisation only techniques. HAR-GAN has experi-
mented the regularisation terms in LwF and EWC, and comparing with them will assess the
advantage of using generated samples in continual learning.

• iCaRL (Incremental Classifier and Representation Learning) [38] that stores real samples from
old tasks in memory and combines them with new training samples to update the classifier.
However, the number of in-memory samples is often constrained, as it is impractical to store
all the old samples. Here we compare HAR-GAN with iCaRL to assess the advantage of
generating unbounded samples over storing constrained real samples.

• DGR (Deep Generative Replay) [45] that uses variational autoencoder (VAE) for generating
samples. An extended technique is DGR-KD that combines DGR with knowledge distillation
loss to further mitigate catastrophic forgetting. RtF (Replay-through-Feedback) [45] that
improves upon DGR with generative feedback connections. The comparison with DGR, DGR-
KD, and RfF2 will demonstrate the strength of GAN over VAE in generating high-quality
samples.

Figure 4 and 5 present the base, new, and overall accuracy on each dataset over time between
HAR-GAN, basic settings, and state-of-the-art continual learning techniques. From these results,
we can draw the following conclusions.

Firstly, as shown in Figure 4, HAR-GAN achieves high accuracy in continual activity recognition,
as the overall accuracy is close to the offline accuracy across the four datasets. More specifically,
compared to offline, the overall accuracy on HAR-GAN only drops 0.092, 0.187, 0.09, and 0.166 on
the last task on House A, CASAS, PAMAP2, and DSADS respectively. Compared to none setting,

2We adapt the implementations from https://github.com/GMvandeVen/continual-learning.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://github.com/GMvandeVen/continual-learning

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

0:14 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

House A - Base Accuracy House A - New Accuracy House A - Overall Accuracy

Number of tasks being learnt

Ac
cu

ra
cy

Number of tasks being learnt

Ac
cu

ra
cy

Number of tasks being learnt
Ac

cu
ra

cy

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

CASAS - Base Accuracy CASAS - New Accuracy CASAS - Overall Accuracy

PAMAP2 - Base Accuracy PAMAP2 - New Accuracy PAMAP2 - Overall Accuracy

DSADS - Base Accuracy DSADS - New Accuracy DSADS - Overall Accuracy

Fig. 4. Comparison of Base, new, and overall accuracy on activities learned over tasks on four different datasets
between HAR-GAN and basic settings. The upper bound settings are presented in dashed lines with a square marker
and the lower bound settings are in dotted lines with a circle marker.

the gain in the overall accuracy is 0.396, 0.496, 0.349 and 0.288 on these four datasets. Therefore,
we conclude HAR-GAN performs effectively in learning activities in a continuous manner.

Secondly, HAR-GAN well balances retaining old knowledge while learning new activities as it
achieves high accuracy on new activity while not dropping significantly on base activities on three
datasets. We have observed the larger drop in the base accuracy on DSADS, which can be due to the
poor quality of samples generated from GAN. The reason is that DSADS has the feature dimension
of 405, which can be challenging to generate high-quality samples to resemble old classes.
Thirdly, as shown in Figure 5, GAN is a good replacement for real samples, as there is no

significant difference in accuracy between HAR-GAN and exact replay, although the adoption of
different GAN architectures may have different impacts as discussed in the following subsection. It

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Continual Activity Recognition with Generative Adversarial Networks 0:15

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

House A - Base Accuracy House A - New Accuracy House A - Overall Accuracy

Number of tasks being learnt

Ac
cu

ra
cy

Number of tasks being learnt

Ac
cu

ra
cy

Number of tasks being learnt
Ac

cu
ra

cy

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Number of tasks being learnt Number of tasks being learnt Number of tasks being learnt

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

CASAS - Base Accuracy CASAS - New Accuracy CASAS - Overall Accuracy

PAMAP2 - Base Accuracy PAMAP2 - New Accuracy PAMAP2 - Overall Accuracy

DSADS - Base Accuracy DSADS - New Accuracy DSADS - Overall Accuracy

Fig. 5. Comparison of Base, new, and overall accuracy on activities learned over tasks on four different datasets
between HAR-GAN and state-of-the-art continual learning techniques.The generative techniques are presented in
dashed lines with a triangle marker and the other techniques are in dotted lines with a square marker.

significantly outperforms LwF and EWC in base and overall accuracy, which again demonstrates
the strength of generative samples in mitigating catastrophic forgetting. Compared to iCaRL that
stores a limited number of real samples from old classes, HAR-GAN produces higher accuracy on
most of the datasets as it can generate as many samples as needed. However, on DSADS, iCaRL
performs better than HAR-GAN still has the limitation of generating high-quality samples when
the dimension is high.

Fourthly, compared to other generative techniques such as DGR, DGR-KD, and RtF,HAR-GAN has
achieved similar accuracy to them on the four datasets. On House A and CASAS, HAR-GAN has a
higher overall accuracy to the best of these three techniques by 2% and 10%. However, on PAMAP2
and DSADS, HAR-GAN is underperforming by 7% and 12%. This is likely to do with the fact that the

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

0:16 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

output layer of the classifier in DGR, DGR-KD, and RtF is fixed; that is, they do not need to extend
the classifier every time when a new task is added, and thus they do not reshuffle the weights at
the last layer. This makes learning more effective, especially on RtF that has a feedback training
loop between VAE and classifier and the weights on the last layer are optimised from training the
first task. However, this design does not suit the real world application, as they need to know the
number of all the future classes in advance, which is very likely to be unrealistic. That is, it is often
difficult, if not impossible at all, to predict what new activities a user might perform in the future.
In contrast, HAR-GAN uses an evolvable classifier, which can automatically extend to any new
number of classes without a priori knowledge on future activities.

Table 1. Experiments of different task sequence to demonstrate the challenge of continual activity recognition
in the face of interclass similarity

Experiment Task Activities in each task

Accuracy of
recognising 2 activities
after training Task 1

Accuracy of
recognising 2
activities after
training Task 2

Accuracy of recognising 4
activities after training
Task 1 and 2 sequentially

R2_prepare_dinner 0.985 0.015
R2_watch_TV 0.988 0.16
R2_prepare_lunch 1 0.96
R1_work_at_dining_room_table 1 0.95

R2_prepare_dinner 0.41 0.525
R2_prepare_lunch 0.65 0.29
R2_watch_TV 0.872 0.592
R1_work_at_dining_room_table 0.75 0.67

Task 1

Task2

Task 1

Task2

#1

#2

As shown in Figure 4, on DSADS, all the techniques exhibit a decrease on the 3rd task sequence.
After looking into the results, we have found that the classes in Task 3 and 2 are similar, and the
discriminability of the model on new classes in Task 3 is decreased so the accuracies drop. And
classes in Task 4 are easier to learn, so the accuracy goes back. This phenomenon is caused by
the impact of task sequence on catastrophic forgetting, which is already well known in continual
learning [14] and is further complicated with high interclass similarity in HAR.
To have a closer look, we present a concrete example in Figure 3 (a) and we design two experi-

ments with different task sequences, as shown in Table 1. We put dissimilar activities in the same
task; that is, ‘R2_prepare_dinner’ and ‘R2_watch_TV’ in one task and ‘R2_prepare_lunch’ and
‘R1_work_at_dining_room_table’ in another. When we train each task separately, the accuracy
on all these four classes is very high, between 98.5% and 100%. However, at the end of training
these two tasks, when we test these four activities, the accuracy on the 2 activities in the first task
(which are ‘R2_prepare_dinner’ and ‘R2_watch_TV’) is compromised; reducing to 1.5% and 16%
respectively. The GAN models tend to generate samples to their similar counterpart that has been
just trained, and the classifiers also forget about the previous learned activities, resulting in 95.5%
accuracy on the latter two classes.
In another experiment, we put similar activities in the same task; that is, ‘R2_prepare_dinner’

and ‘R2_prepare_lunch’ in one task, and ‘R2_watch_TV’ and ‘R1_work_at_dining_room_table’
in another. When we train each task separately, the accuracy on all these four classes is not as
high as the previous experiment, dropping to 49% and 85%. However, when we test at the end of
training, HAR-GAN has achieved more balanced accuracy on these classes: between 29% and 67%.
That is, the GAN and classifier suffer less catastrophic forgetting problem. However, in practice, it
is difficult to avoid this situation. With more and more new tasks, the interference is more likely
to impact. To tackle this problem, in the future, we will consider spinning out a new cGAN and
classifier if new activities are too similar from the previous ones. It will be worthy of investigating

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Continual Activity Recognition with Generative Adversarial Networks 0:17

how to assess the similarity between activities and how to manage a growing number of cGANs
and classifiers in a controlled and systematical manner.

5.2 Assessment of Different of GAN Architectures

Table 2. Comparison of𝑀𝑏𝑎𝑠𝑒 ,𝑀𝑛𝑒𝑤 , and𝑀𝑎𝑙𝑙 on different GAN architectures with two baseline settings:
None and Exact Replay. The bold text indicates the best performance among GANs.

Dataset Architecture 𝑀𝑏𝑎𝑠𝑒 𝑀𝑛𝑒𝑤 𝑀𝑜𝑣𝑒𝑟𝑎𝑙𝑙

House A

None 0.36 ± 0.01 1.13 ± 0.01 0.34 ± 0.01
Exact Replay 1.03 ± 0.01 1.07 ± 0.01 1.01 ± 0.01
mGAN 0.95 ± 0.03 1.02 ± 0.02 0.84 ± 0.03
mWGAN 1.00 ± 0.02 1.03 ± 0.02 0.83 ± 0.04
cGAN 0.96 ± 0.02 1.02 ± 0.02 0.89 ± 0.03
cWGAN 0.82 ± 0.04 1.06 ± 0.02 0.84 ± 0.03

CASAS

None 0.29 ± 0.05 1.20 ± 0.05 0.23 ± 0.02
Exact Replay 1.23 ± 0.16 1.17 ± 0.05 1.04 ± 0.04
mGAN 0.99 ± 0.16 1.07 ± 0.07 0.80 ± 0.04
mWGAN 0.90 ± 0.17 1.12 ± 0.06 0.80 ± 0.04
cGAN 1.15 ± 0.25 0.99 ± 0.07 0.83 ± 0.06
cWGAN 0.88 ± 0.10 1.13 ± 0.07 0.76 ± 0.04

PAMAP2

None 0.27 ± 0.02 1.18 ± 0.03 0.32 ± 0.02
Exact Replay 1.12 ± 0.05 0.98 ± 0.06 0.97 ± 0.06
mGAN 0.61 ± 0.05 1.15 ± 0.03 0.68 ± 0.04
mWGAN 0.30 ± 0.04 1.17 ± 0.03 0.42 ± 0.03
cGAN 0.79 ± 0.06 1.14 ± 0.04 0.85 ± 0.04
cWGAN 0.51 ± 0.06 1.16 ± 0.03 0.49 ± 0.04

DSADS

None 0.42 ± 0.06 1.40 ± 0.14 0.33 ± 0.05
Exact Replay 1.97 ± 0.31 0.85 ± 0.11 0.83 ± 0.11
mGAN 0.64 ± 0.08 1.33 ± 0.11 0.66 ± 0.06
mWGAN 0.45 ± 0.06 1.46 ± 0.13 0.39 ± 0.06
cGAN 0.97 ± 0.23 1.34 ± 0.11 0.77 ± 0.09
cWGAN 0.57 ± 0.08 1.45 ± 0.14 0.42 ± 0.06

To assess the impact different GAN architectures on continual activity recognition, the accuracy
𝑀𝑏𝑎𝑠𝑒 ,𝑀𝑛𝑒𝑤 , and𝑀𝑎𝑙𝑙 on each dataset has been measured and reported in Table 2. By examining
the results, we have the following observations. (1) cGAN works the best; i.e., achieving the highest
base and overall accuracy. mGAN is the second best, which suggests that cGANs conditional on
activity classes might help guide the search for a target distribution throughout the search space,
thus producing samples that have finer discriminative capability between classes. This finding is
consistent with the comparison between normal GAN and conditional GAN in computer vision [34],
[26]. (2) The Wasserstein loss function has little positive effect on the generators as both mWGAN
(mGAN with Wasserstein loss) and cWGAN (cGAN with Wasserstein loss) have lower accuracy
than their counterparts. (3) The small difference in accuracy between exact replay and various
types of GANs implies that generated samples are good choices to replace real data. The overall
performance 𝑀𝑜𝑣𝑒𝑟𝑎𝑙𝑙 on all the GANs reach about 0.76 ∼ 0.88 of the ideal accuracy, with the
difference between cGANs and the exact replay setting as 0.12, 0.21, 0.12, and 0.07 on House A,
CASAS, PAMAP2, and DSADS.

One important aspect when assessing the quality of GAN generated samples is mode collapsing;
that is, the generated data are collapsed to a few mode centers and are not diverse enough to capture
the whole space of real data. This can be detrimental to HAR, as there often exist multiple patterns
for one activity class (See an example in Figure 3). To examine the diversity aspect, we have plotted

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

0:18 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

the generated samples from cGAN, mGAN, cWGAN, and mWGAN on the ‘Vacuum Cleaning’
activity on PAMAP2 dataset in Figure 6. None of the GANs can cover the whole distribution of
real data. cGAN and mGAN has a different coverage because cGAN is conditioned on a class label,
which might focus more on the data that have better discriminative features. In contrast, cWGAN
and mWGAN covers much smaller space than cGAN and mGAN, indicating that Wasserstein may
constrain the diversity of samples being generated. In the following section, we thoroughly assess
the quality of generated samples across a wide range of the state-of-the-art metrics.

Component 1 Component 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 2

Fig. 6. PCA (Principal component analysis) plots to compare distribution of generated samples compared to
real samples on the ‘Vacuum Cleaning’ activity from PAMAP2

5.3 Quality of GAN Samples
To gain a better understanding of GAN, we will assess the quality of generated samples and how
the quality has a significant impact on tackling catastrophic forgetting. It is difficult to quantify the
quality of the generative model. Because the majority of research on GAN works with images, the
evaluation is dominated by visual inspection and qualitative description, which can be subjective
and possibly misleading. In recent years, measurement of dissimilarity between real and generated
probability distribution; e.g., KL- and JS-divergence, has become a widely accepted metric in the
literature. But both divergence metrics assume that the input distributions need to be known and
well-defined [51], which might not be suitable for many HAR applications where the distributions
of the sensor data can change over time due to the change in sensor performance and users’ daily
routine. Therefore, these divergence metrics alone cannot be used as quality measurement for GAN
samples.

Following the literature [51], we consider three metrics for sample quality evaluation: Inception
score, Kernel MMD (Maximum Mean Discrepancy), and 1-Nearest Neighbor score. Inception score
measures certain properties of generated samples with the Inception network, a pre-trained model
on the ImageNet [44]. The inception score is defined by the average KL divergence between the
probability distribution of a certain label 𝑦 recognised by the Inception model given an input 𝑥 –
𝑝 (𝑦 |𝑥) : 𝑥 ∼ P𝑔 and the marginal distribution obtained from all the samples – 𝑝 (𝑦). The score is
computed by the following equation.

𝐼𝑆 (P𝑔) = 𝑒E𝑥∼P𝑔 [𝐾𝐿 (𝑝 (𝑦 |𝑥) | |𝑝 (𝑦))], (5)

where 𝑝 (𝑦 |𝑥) is the posterior probability on output class given an input 𝑥 . The higher 𝑝 (𝑦 |𝑥),
indicating that the generated samples can be recognised by the offline model, the higher quality
of the generated samples. The term 𝑝 (𝑦) indicates the variety of the output; that is, a higher 𝑝 (𝑦)
suggests an even distribution of classes. We replace the Inception network with our batch offline
classifier that is trained with real data on all the activities. As a complementary to IS, we also
consider test accuracy from the offline model (𝐴𝑐𝑐𝑜 𝑓 𝑓) to indicate the quality of the sample being
generated.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Continual Activity Recognition with Generative Adversarial Networks 0:19

Kernel MMD represents the dissimilarity as the distance between samples drawn independently
from two distributions P𝑔 and P𝑟 for some kernel function 𝑘 , which is set as Gaussian kernel in our
experiment. A lower MMD score suggests a closer distribution between P𝑔 and P𝑟 . It is computed
by the following equation:

𝑀𝑀𝐷2 (P𝑔, P𝑟) = Ex𝑟 ,x′𝑟∼P𝑟 ,x𝑔,x′𝑔∼P𝑔 [𝑘 (x𝑟 , x
′
𝑟)] + 𝑘 (x𝑔, x′𝑔)] − 2𝑘 (x𝑟 , x𝑔)] . (6)

1-Nearest Neighbor (1-NN) Score is computed by the leave-one-out accuracy of a 1-nearest
neighbor classifier trained. The model will be trained with positive samples from true distribution
P𝑔 and negative samples from generated distribution P𝑟 . It asserts that the classifier should yield
about 0.5 accuracy when GANs achieve the high quality results because the average distance at
any given point to both distributions are about the same when two distributions are close and
overlapped. It can also indicate the cases that P𝑔 is overfitting to P𝑟 (in the extreme, GANs can only
re-generate the exact input) by observing when the score is lower than 0.5 and it will go zero when
P𝑔 = P𝑟 .
TPR (true positive rate) and TNR (true negative rate) are used to indicate when mode collapse

occurs [51]. A low TPR implies that the majority of real samples are surrounded by generated
samples indicating that the generator can capture different modes of real data. In contrast, a high
TNR implies that the generated samples are surrounded by samples from the same class with a few
mode centers, indicating that mode collapse occurs.

Table 3 reports the results of the above four metrics on different GAN architectures. cGAN and
mGAN produce comparable quality of generated samples, as they achieve similar accuracy on the
offline model. Compared to cGAN, mGAN achieves higher 𝐴𝑐𝑐𝑜 𝑓 𝑓 : 0.17 on House A and 0.02 on
DSADS, but lower 𝐴𝑐𝑐𝑜 𝑓 𝑓 : 12.6 on CASAS and 0.07 on PAMAP2. Also, cGAN and mGAN gain
similar IS scores: 6.932 vs. 8.325 on CASAS and 7.684 vs. 8.592 on PAMAP2. cGAN have higher IS
scores than mGAN: 4.35 vs. 3.671 on House A and 6.301 vs. 3.787 on DSADS.

Table 3. Sample quality assessment of GAN architectures
Dataset Architecture IS 𝐴𝑐𝑐𝑜 𝑓 𝑓 Kernel MMD 1-NN

Acc TPR TNR

House A

mGAN 3.671 1.000 0.171 0.934 0.888 0.956
mWGAN 3.017 0.830 0.158 0.966 0.915 0.991
cGAN 4.350 0.833 0.180 0.957 0.903 0.983
cWGAN 4.098 1.000 0.222 0.982 0.944 1.000

CASAS

mGAN 8.325 0.791 0.250 0.910 0.891 0.930
mWGAN 6.309 0.796 0.201 0.902 0.884 0.921
cGAN 6.932 0.917 0.204 0.947 0.893 1.000
cWGAN 7.811 0.937 0.215 0.973 0.945 1.000

PAMAP

mGAN 8.592 0.894 0.156 0.927 0.854 1.000
mWGAN 4.369 0.438 0.593 0.999 0.999 0.998
cGAN 7.684 0.901 0.202 0.962 0.925 0.999
cWGAN 5.362 0.501 0.384 1.000 0.999 1.000

DSADS

mGAN 3.787 0.617 0.656 1.000 1.000 1.000
mWGAN 3.685 0.299 0.796 1.000 1.000 1.000
cGAN 6.301 0.597 0.347 0.988 0.976 1.000
cWGAN 1.109 0.093 0.895 1.000 1.000 1.000

Consistent with the results in Section ??, theWasserstein loss function has weak positive effect on
the generators. mGAN and cGAN have achieved smallest the kernel-MMD scores, which indicates
that their generated samples are close to the real samples. Compared to cGAN, cWGAN achieves
better 𝐴𝑐𝑐𝑜 𝑓 𝑓 with the improvement of 0.17 on House A and 0.12 on CASAS, but much worse
𝐴𝑐𝑐𝑜 𝑓 𝑓 with a drop of 0.4 on PAMAP2 and 0.5 on DSADS. mGAN achieves consistently higher

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

0:20 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

𝐴𝑐𝑐𝑜 𝑓 𝑓 than mWGAN, with an improvement of 0.17 on House A, 0.22 on CASAS, 0.46 on PAMAP2,
and 0.32 on DSADS. Although Wasserstein loss significantly stabilises GAN’s training process, it
does not guarantee to get a proper data coverage.

Furthermore, the 1-NN score clearly shows that mode collapse occurs in all models. It indicates
that the generators can only produce a certain type of given data. This could reduce the generality
of the classifier especially in a situation that has a high variety of activity patterns. However, the
results would seem to suggest that the mode collapse does not cause a significant accuracy drop. It
is likely that the GANs could capture enough properties that are sufficiently used to solve the tasks.

5.4 Convergence, Training Time, and Memory Size

mGAN

mWGAN

cGAN

cWGAN

Task accuracy per epoch

Task accuracy per epoch

Task accuracy per epoch

Task accuracy per epoch Loss of discriminator and generator
at training session #1

Loss of discriminator and generator
at training session #1

Loss of discriminator and generator
at training session #1

Loss of discriminator and generator
at training session #1

Loss of discriminator and generator
at training session #5

Loss of discriminator and generator
at training session #5

Loss of discriminator and generator
at training session #5

Loss of discriminator and generator
at training session #5

Ac
cu

ra
cy

 p
er

 ta
sk

Ac
cu

ra
cy

 p
er

 ta
sk

Ac
cu

ra
cy

 p
er

 ta
sk

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Ac
cu

ra
cy

 p
er

 ta
sk

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 lo
ss

Discriminator
Generator

Discriminator
Generator

Discriminator
Generator

Discriminator
Generator

Discriminator
Generator

Discriminator
Generator

Discriminator
Generator Discriminator

Generator

R1/R2_wrok_at_computer
R1/R2_sleep
R1/R2_bed_to_toilet
R2_prepare_dinner/R2_watch_TV
R2_prepare_lunch/R1_work_at_dinner_room_table

R1/R2_wrok_at_computer
R1/R2_sleep
R2_prepare_dinner/R2_watch_TV
R2_prepare_lunch/R1_work_at_dinner_room_table
R1/R2_bed_to_toilet

R1/R2_wrok_at_computer
R1/R2_sleep
R2_prepare_dinner/R2_watch_TV
R2_prepare_lunch/R1_work_at_dinner_room_table

R1/R2_bed_to_toilet

R1/R2_wrok_at_computer
R1/R2_sleep
R2_prepare_dinner/R2_watch_TV
R2_prepare_lunch/R1_work_at_dinner_room_table
R1/R2_bed_to_toilet

Iterations Iterations Iterations

Iterations Iterations Iterations

Iterations Iterations Iterations

Iterations Iterations Iterations

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

5

4

3

2

1

0

5
4

3
2
1

0

5

4

3

2

1

0

-1
-2

5
4

3
2
1

0

-1

-2

5
4

3
2
1

0

-1
-2

5
4

3
2
1

0

-1
-2

5
4

3
2
1

0

-1
-2

5

4

3

2

1

0

Fig. 7. Comparison of continual activity recognition accuracy and the loss on generator and discriminator on
each GAN architecture over time on the CASAS dataset

Instability might be a major drawback of using GANs in the continual learning model. Figure 7
shows that the divergence between discriminator and generator could be observed in several classes
on the CASAS dataset. In extreme, the generator might lose all information about the given classes

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Continual Activity Recognition with Generative Adversarial Networks 0:21

and produce only noisy and unrelated samples. This will degrade the classifier accuracy on that
task or even interfere with all other classes.
Considering the complexity of the input space, both cGAN and cWGAN are likely to be more

susceptible to the inference and instability problem. While better stability could also be observed
in the WGAN as Wasserstein distance gives meaningful indicator even when the probability
distribution of real and synthetic data are not overlapping [4]. Surprisingly, the stability issue does
not lead to a major decrease in the performance of the framework. The unstable GANs could still
have moderately good accuracy or even result in a better model. It is still unclear how instability
could harm the model but arguably, it certainly has a gap between exact replay and generative
replay.
The training time is assessed on the same moderate machine: a DELL Inspiron 5370 with a

processor i5-85250U CPU @ 1.60GHz, 4 cores and 12G memory. On the larger datasets PAMAP2
and DSADS mGAN and cGAN take about 200 ∼ 300 seconds to learn a new task, and mWGAN and
cWGAN take longer, which is about 300 ∼ 425 seconds. The averaged training time per task on
different GANs are presented in Table 4.

Table 4. Training time (per task) and model size of GANs
Dataset Architecture Training Times (in seconds) Model size (in MB)

HouseA

mGAN 218.221 ± 4.457 6.25
mWGAN 420.430 ± 6.197 6.25
cGAN 230.270 ± 41.246 1.05
cWGAN 417.628 ± 84.313 1.05

CASAS

mGAN 113.453 ± 0.959 66.84
mWGAN 221.088 ± 1.594 66.84
cGAN 152.586 ± 18.197 6.71
cWGAN 254.707 ± 26.133 6.71

PAMAP

mGAN 199.390 ± 1.438 287.44
mWGAN 364.938 ± 4.492 287.44
cGAN 269.627 ± 28.846 28.79
cWGAN 397.254 ± 42.922 28.79

DSADS

mGAN 234.003 ± 9.589 324.54
mWGAN 424.940 ± 11.527 324.54
cGAN 313.566 ± 33.527 32.50
cWGAN 394.307 ± 60.784 32.50

The model size of mGANs is between 6.25 MB (on House A) and 324.54 MB (on DSADS), which
has linearly increased with the number of tasks. This is a major issue to the mGAN architecture.
When there is a large number of tasks, there might take up much memory space. On the contrary,
cGAN maintains the same size over time (the smallest size 1.05 MB on House A and the largest size
32.5 MB on DSADS), which can be preferable for resource-constrained devices.

5.5 Design Decisions on Classifiers
We have equipped the classifier in HAR-GAN with different components: self-verification, SMOTE,
and classifier regularisation (both EWC and LwF). In this section, we evaluate the importance of
each component by ablation analysis. Specifically, we fix our GAN architecture as cGAN, and then
add only one component a time and compare their accuracy.
Figure 8 presents𝑀𝑏𝑎𝑠𝑒 ,𝑀𝑛𝑒𝑤 , and𝑀𝑜𝑣𝑒𝑟𝑎𝑙𝑙 of the ablation analysis on four datasets. From the

results, we draw the following conclusions. (1) The most significant component is the knowledge
distillation loss from LwF, which consistently outperforms the other components. (2) SMOTE
does not have a significant impact on the performance. It helps improve accuracy on House A

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

0:22 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

Sc
or

e

House A - Mbase House A - Mnew

CASAS - Mbase

PAMAP2 - Mbase

DSADS - Mbase

House A - Moverall

CASAS - Mnew CASAS - Moverall

PAMAP2 - Mnew PAMAP2 - Moverall

DSADS - Mnew DSADS - Moverall

Sc
or

e

Sc
or

e
Sc

or
e

Sc
or

e
Sc

or
e

Sc
or

e
Sc

or
e

Sc
or

e

Sc
or

e
Sc

or
e

Sc
or

e

Self-verification

Self-verification

Self-verification

Self-verification

Self-verification

Self-verification

Self-verification

Self-verification

Self-verification

None
SMOTE

EWC
LwF

All Self-verification

None
SMOTE

EWC
LwF

AllSelf-verification

None
SMOTE

EWC
LwF

All

Self-verification

None
SMOTE

EWC
LwF

All Self-verification

None
SMOTE

EWC
LwF

All Self-verification

None
SMOTE

EWC
LwF

All

Self-verification

None
SMOTE

EWC
LwF

All
Self-verification

None
SMOTE

EWC
LwF

AllSelf-verification

None
SMOTE

EWC
LwF

All

Self-verification

None
SMOTE

EWC
LwF

All Self-verification

None
SMOTE

EWC
LwF

All Self-verification

None
SMOTE

EWC
LwF

All

House A - Overall Accuracy CASAS - Overall Accuracy

DSADS - Overall AccuracyPAMAP2 - Overall Accuracy
Score

Score

Score
Score

Components Components

Components Components

Fig. 8. Ablation analysis of different components

and PAMAP2, but it leads to a large dip in accuracy on DSADS, which is still due to the curse of
dimensionality. On CASAS, classes have high similarity, which makes it difficult for SMOTE to
generate good-quality samples exactly within the class boundary. (3) The impact of self-verification
is negatively correlated with the feature dimension. Self-verification helps improve the overall accu-
racy on House A and CASAS, but not on high-dimensional feature space like PAMAP2 and DSADS.
The reason is that when cGANs fail to generate high-quality samples to pass self-verification, we
have less training data on the previous classes to allow the classifier to retain the old knowledge.
Our current implementation does not compensate poor samples by repetitively generating new
samples. The reason is that we have noticed that when GAN itself is not capable, it can take several
rounds to generate the required number of samples. In the future, we will look into how to further
improve the quality of samples on a high-dimension feature space and also to design more flexible
self-verification strategy to include more generated samples.

6 CONCLUSION
This paper proposes HAR-GAN to support continual learning in human activity recognition with
generative rehearsal. Continual learning refers to the ability to learn new activity classes over time.
This requires to dynamically extend the original model with new output classes, and update the
model parameters to learn new classes’ distributions, while not compromising the recognition
performance on old activity classes.
With extensive experiments on four datasets from both binary sensors and accelerometers,

HAR-GAN has demonstrated great potential in supporting continual activity recognition. It can be

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Continual Activity Recognition with Generative Adversarial Networks 0:23

combined with anomaly detection techniques in Section 2 so as to enable an automatically evolving
HAR system. Anomaly detection helps identify new activities, which can be fed to HAR-GAN to
update the activity model. In this way, the HAR system can be continuously updated and recognise
new activities without much need for re-engineering effort; such as re-training and re-deploying
the model every time when new activities become available.

As the accuracy for continual learning on HAR still has a room for improvement, in the future,
we will look into new techniques to generate high-quality of samples that best represent the
real data while also encouraging the diversity. Also we are interested in designing a hierarchy
of conditional GANs to mitigate catastrophic forgetting effect and also reduce the interference
between similar activity classes. To do so, we will look into more sophisticated regularisation terms
such as contrastive loss [10] and anchor-based margin ranking loss [23]. We will also investigate a
more advanced GAN architecture that combines autoencoder to mitigate its forgetting [25] or a
robust GAN model with Gumbel softmax in its discriminator [52].

REFERENCES
[1] Z. S. Abdallah, M. M. Gaber, B. Srinivasan, and S. Krishnaswamy. Anynovel: detection of novel concepts in evolving

data streams. Evolving Systems, pages 1–21, 2016.
[2] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR 2017,

2017.
[3] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks, Jan. 2017.
[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML 2017, pages 214–223,

2017.
[5] B. Barshan andM. C. Yüksek. Recognizing daily and sports activities in two open source machine learning environments

using body-worn sensor units. The Computer Journal, pages 1649–1667, 2014.
[6] CASAS. WSU CASAS smart home project. http://casas.wsu.edu/datasets/, Aug. 2014. Accessed: 2019-5-30.
[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique.

Journal of artificial intelligence research, 16:321–357, 2002.
[8] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu. Sensor-based activity recognition. IEEE TSMC Part C, pages

790–808, 2012.
[9] H.-T. Cheng, F.-T. Sun, M. Griss, P. Davis, J. Li, and D. You. Nuactiv: Recognizing unseen new activities using semantic

attribute-based learning. In Proceedings of MobiSys ’13, pages 361–374. ACM, 2013.
[10] S. Dai, Y. Cheng, Y. Zhang, Z. Gan, J. Liu, and L. Carin. Contrastively smoothed class alignment for unsupervised

domain adaptation. ArXiv, abs/1909.05288, 2019.
[11] J. K. et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,

114(13):3521–3526, 2017.
[12] L. Fang, J. Ye, and S. Dobson. Discovery and recognition of emerging human activities using a hierarchical mixture of

directional statistical models. IEEE Transactions on Knowledge and Data Engineering, 2019.
[13] L. Fiorini, F. Cavallo, P. Dario, A. Eavis, and P. Caleb-Solly. Unsupervised machine learning for developing personalised

behaviour models using activity data. Sensors, 17, 2017.
[14] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, pages 128–135, 1999.
[15] H. Gjoreski and D. Roggen. Unsupervised online activity discovery using temporal behaviour assumption. In

Proceedings of ISWC ’17, pages 42–49, 2017.
[16] I. Goodfellow et al. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680,

2014.
[17] Y. Guan and T. Plötz. Ensembles of deep lstm learners for activity recognition using wearables. Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol., 1(2), June 2017.
[18] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. In

Advances in neural information processing systems, pages 5767–5777, 2017.
[19] N. Y. Hammerla, S. Halloran, and T. Plötz. Deep, convolutional, and recurrent models for human activity recognition

using wearables. arXiv preprint arXiv:1604.08880, 2016.
[20] K. He et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV

2015, pages 1026–1034, 2015.
[21] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

http://casas.wsu.edu/datasets/

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

0:24 Juan Ye, Pakawat Nakwijit, Martin Schiemer and Saurav Jha and Franco Zambonelli

[22] H. S. Hossain, N. Roy, and M. A. A. H. Khan. Active learning enabled activity recognition. In Proceedings of PerCom
’16, pages 1–9, 2016.

[23] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a unified classifier incrementally via rebalancing. In CVPR
2019, 2019.

[24] W. Hu. Overcoming catastrophic forgetting for continual learning via model adaptation. In ICLR 2019, 2019.
[25] W. Hu, Z. Lin, B. Liu, C. Tao, Z. Tao, J. Ma, D. Zhao, and R. Yan. Overcoming catastrophic forgetting for continual

learning via model adaptation. In ICLR, 2019.
[26] P. Isola and et al. Image-to-image translation with conditional adversarial networks. In CVPR 2017, pages 1125–1134,

2017.
[27] R. Kemker and et al. Measuring catastrophic forgetting in neural networks. In AAAI 2018, 2018.
[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[29] O. D. Lara and M. A. Labrador. A survey on human activity recognition using wearable sensors. IEEE Communications

Surveys Tutorials, 15(3):1192–1209, Third 2013.
[30] Z. Li and D. Hoiem. Learning without forgetting. IEEE TPAMI, 40(12):2935–2947, 2017.
[31] N. Y. Masse, G. D. Grant, and D. J. Freedman. Alleviating catastrophic forgetting using context-dependent gating and

synaptic stabilization. Proceedings of the National Academy of Sciences, 115(44):E10467–E10475, 2018.
[32] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans do actually converge? arXiv preprint

arXiv:1801.04406, 2018.
[33] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
[34] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In JMLR, pages 2642–2651,

2017.
[35] F. J. Ordonez and D. Roggen. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity

recognition. Sensors, 16(1), 2016.
[36] G. I. Parisi et al. Continual lifelong learning with neural networks: A review. Neural Networks, 2019.
[37] V. Radu, C. Tong, S. Bhattacharya, N. Lane, C. Mascolo, M. Marina, and F. Kawsar. Multimodal deep learning for

activity and context recognition. In Proceedings of Ubicomp ’18, 2018.
[38] S.-A. Rebuffi and et al. icarl: Incremental classifier and representation learning. In CVPR 2017, pages 2001–2010, 2017.
[39] A. Reiss and D. Stricker. Introducing a new benchmarked dataset for activity monitoring. In ISWC 2012, pages 108–109,

2012.
[40] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.
[41] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell.

Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
[42] S. S. Saha et al. Position independent activity recognition using shallow neural architecture and empirical modeling.

In UbiComp/ISWC ’19 Adjunct, pages 808–813, 2019.
[43] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. In Advances in Neural Information

Processing Systems, pages 2990–2999, 2017.
[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
[45] G. M. van de Ven and A. Tolias. Generative replay with feedback connections as a general strategy for continual

learning. ArXiv, abs/1809.10635, 2018.
[46] G. M. van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734, 2019.
[47] T. L. van Kasteren, G. Englebienne, and B. J. Kröse. Human activity recognition from wireless sensor network data:

Benchmark and software. In Activity recognition in pervasive intelligent environments, pages 165–186. Springer, 2011.
[48] C. Villani. Optimal Transport: Old and New (Grundlehren Der Mathematischen Wissenschaften). Springer, 2008.
[49] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu. Deep learning for sensor-based activity recognition: A survey. Pattern

Recognition Letters, 119:3 – 11, 2019. Deep Learning for Pattern Recognition.
[50] J. Wang and et al. Stratified transfer learning for cross-domain activity recognition. In PerCom 2018, pages 1–10. IEEE,

2018.
[51] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger. An empirical study on evaluation metrics of

generative adversarial networks. arXiv preprint arXiv:1806.07755, 2018.
[52] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, S. Hu, D. Liu, S. Liu, L. Su, and T. Abdelzaher. Sensegan: Enabling deep

learning for internet of things with a semi-supervised framework. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 2(3), 2018.

[53] J. Ye, S. Dobson, and F. Zambonelli. Lifelong learning in sensor-based human activity recognition. IEEE Pervasive
Computing, 18(3):49–58, 2019.

[54] J. Ye, S. Dobson, and F. Zambonelli. Xlearn: learning activity labels across heterogeneous datasets. ACM TIST, 2020.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Continual Activity Recognition with Generative Adversarial Networks 0:25

[55] K. Yordanova. Challenges providing ground truth for pervasive healthcare systems. IEEE Pervasive Computing, pages
100–104, 2019.

[56] M. Zeng et al. Convolutional neural networks for human activity recognition using mobile sensors. In MobiCASE 2014,
pages 197–205, 2014.

[57] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In JMLR, pages 3987–3995, 2017.
[58] X. Zhang and et al. Converting your thoughts to texts: Enabling brain typing via deep feature learning of eeg signals.

In PerCom 2018, pages 1–10, 2018.

Received February 2020

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sensor-based Activity Recognition
	2.2 Continual Activity Recognition
	2.3 Continual Machine Learning

	3 HAR-GAN Continual Activity Recognition
	3.1 Design of GAN
	3.2 Design of Evolving Classifier

	4 Evaluation Methodology
	4.1 Datasets
	4.2 Evaluation Metrics and Process
	4.3 Implementation and Parameter Tuning

	5 Results and Discussion
	5.1 Effectiveness of Continual Learning
	5.2 Assessment of Different of GAN Architectures
	5.3 Quality of GAN Samples
	5.4 Convergence, Training Time, and Memory Size
	5.5 Design Decisions on Classifiers

	6 Conclusion
	References

