
ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

European Journal of Operational Research xxx (xxxx) xxx

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Solution methods for scheduling problems with sequence-dependent

deterioration and maintenance events

Maxence Delorme

a , ∗, Manuel Iori b , Nilson F. M. Mendes b

a Department of Econometrics and Operations Research, Tilburg University, the Netherlands
b Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy

a r t i c l e i n f o

Article history:

Received 6 July 2020

Accepted 2 March 2021

Available online xxx

Keywords:

Scheduling

Deterioration

Maintenance

Mathematical models

Metaheuristic

a b s t r a c t

In this work, we study the problem of scheduling jobs and maintenance activities on a set of unrelated

parallel machines, by considering that the processing time of a job increases according to a deterioration

factor that depends both on the machine and on the set of jobs the machine has processed since its last

maintenance. The objective we consider is to minimize the makespan. We introduce four mixed integer

linear programming models, two of which using big-M constraints and the other two using an expo-

nential number of variables. We also propose an iterated local search metaheuristic to tackle large size

instances and we provide empirical evidence of the performance of the proposed approaches by means

of extensive computational experiments.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

m

e

t

t

a

o

m

w

o

p

a

n

c

T

w

t

s

t

p

d

a

j

d

c

I

(

t

M

p

I

o

o

b

r

s

l

o

e

q

c

a

S

h

0

. Introduction

Fatigue and deterioration might severely affect human and

achine performances, causing an increase in the number of

rrors they make, in the quantity of resources they waste, or in

he processing time of the jobs they perform. In order to alleviate

his issue, work stops or maintenance events can be scheduled, so

s to recover the full productivity of the agent and improve the

verall performance of the system.

In this paper, we deal with the problem of scheduling jobs and

aintenance activities on a set of unrelated parallel machines,

here the processing time of each job on a given machine depends

n the initial processing time of the job on the machine (i.e., its

rocessing time if the machine was working at full performance)

nd on the deterioration level of the machine. The machines are

ot identical, which means that a job may have two different pro-

essing times and deterioration factors on two different machines.

he duration of a maintenance also depends on the machine on

hich it is performed, but it is not impacted by the current de-

erioration level of the machine. The objective is to find a feasible

chedule in which all jobs are processed and the makespan (i.e.,

he last completion time of a job) is minimized. This type of

roblems occurs, for example, in construction industry, where the

ifficulty of a given job impacts the workers’ level of tiredness
∗ Corresponding author.

E-mail address: m.delorme@tilburguniversity.edu (M. Delorme).

w

d

e

T

ttps://doi.org/10.1016/j.ejor.2021.03.067

377-2217/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article

Please cite this article as: M. Delorme, M. Iori and N.F.M. Mendes, Solu

deterioration and maintenance events, European Journal of Operational
nd thus increases the time they need to accomplish subsequent

obs, and in the cutting industry, where the hardness of a material

eteriorates the cutting tools and increases the time required to

ut other materials (see Ruiz-Torres, Paletta, & M’Hallah, 2017).

n both cases, a short time in which the agent is not operating

such as a break for the worker or a maintenance operation for

he cutting tools) is enough to restore full productivity.

In terms of contributions, we propose a linearization of the

ixed Integer Non-Linear Programming (MINLP) model originally

roposed by Ruiz-Torres et al. (2017) and three additional Mixed

nteger Linear Programming (MILP) models: an improvement of

ur first model that significantly reduces symmetry, a model based

n the classical set covering formulation, and a model inspired

y the arc flow formulation by Valério de Carvalho (1999) . Our

esulting models can be solved by invoking a standard MILP

olver and obtain optimal solutions for small size instances. For

arger instances, we propose a metaheuristic procedure based

n the concept of Iterated Local Search (ILS). We show, trough

xtensive computational experiments, that we can obtain good

uality solutions in a few seconds for a variety of instances,

onsidering a large range of deterioration rates, processing times,

nd maintenance times.

The remainder of the paper is organised as follows.

ection 2 provides a literature review on scheduling problems

ith deterioration and maintenance activities. We formally

escribe our problem in Section 3 , and we introduce the math-

matical models in Section 4 . The ILS is presented in Section 5 .

he outcome of extensive computational experiments assessing
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

tion methods for scheduling problems with sequence-dependent

 Research, https://doi.org/10.1016/j.ejor.2021.03.067

https://doi.org/10.1016/j.ejor.2021.03.067
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://creativecommons.org/licenses/by/4.0/
mailto:m.delorme@tilburguniversity.edu
https://doi.org/10.1016/j.ejor.2021.03.067
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2021.03.067

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

t

d

d

2

b

i

t

a

s

a

f

p

a

s

b

e

a

a

a

t

a

w

w

b

t

s

o

t

a

s

w

m

t

p

J

s

s

p

(

(

c

p

(

G

p

i

R

p

t

M

l

b

a

t

i

(

a

e

s

r

i

j

t

j

c

t

(

Y

d

c

i

o

m

d

(

Y

t

p

w

m

t

e

m

s

T

a

a

j

w

t

i

(

p

a

a

t

W

c

t

r

f

m

R

a

j

T

d

s

o

p

f

a

g

o

i

3

a

he quality of our approaches is reported in Section 6 . Finally, we

raw some conclusions and discuss interesting future research

irections in Section 7 .

. Literature review

The literature on scheduling problems with deterioration can

e split into two main groups, according to how the deterioration

s estimated. The first group focuses on job deterioration and uses

he paradigm that the jobs processed at a later stage require an

dditional time with respect to the jobs processed at an early

tage (e.g, due to some physical properties). In such a case, we

dopt the term time-dependent deterioration. The second group

ocuses on machine deterioration and adopts the paradigm that

rocessing a job deteriorates some components of the machine,

nd this makes the processing time of subsequent jobs longer. In

uch a case, we adopt the term sequence-dependent deterioration.

Scheduling problems with time-dependent deterioration have

een investigated since the late Eighties. To the best of our knowl-

dge, the first study was presented by Gupta and Gupta (1988) ,

nd focused on a single machine problem in which the duration of

 job depends on its starting time. The authors mentioned relevant

pplications in chemical and metallurgical processes, where the

emperature of the material cools down if it is not used immedi-

tely, requiring a longer time to be processed. This seminal study

as followed in the next years by Kunnathur and Gupta (1990) ,

ho proposed algorithms based on dynamic programming and

ranch-and-bound, by Browne and Yechiali (1990) , who analyzed

he effects of different deterioration schemes and derived optimal

cheduling policies that minimize either the expected makespan

r its variance, by Mosheiov (1991, 1994, 1996) , who outlined

heoretical properties on the optimal job sequence, and by Kubiak

nd van de Velde (1998) , who studied the case in which the

upplementary time caused by deterioration is bounded.

The problem where multiple parallel machines are available

as studied by Mosheiov (1995, 1998) , who proved that makespan

inimization with linear deterioration is an N P -hard problem if

here are at least two machines. He also introduced several com-

act MILP formulations and heuristic algorithms. More recently,

i and Cheng (2008) proposed a polynomial-time approximation

cheme for the case in which the number of machines is fixed.

The problem where the deterioration function works through

teps (i.e., the processing time of a job changes only if it is

rocessed after a given deadline) was studied by Cheng and Ding

2001) for the single machine case, and by Leung, Ng, and Cheng

2008) and Lalla-Ruiz and Voß (2016) for the multiple machine

ase.

Surveys on scheduling with time-dependent deterioration were

roposed by Alidaee and Womer (1999) and Cheng, Ding, and Lin

2004) . We also refer the reader to the recent survey proposed by

awiejnowicz (2020) for an up-to-date overview of this class of

roblems.

To the best of our knowledge, the first paper on schedul-

ng with sequence-dependent deterioration was proposed by

uiz-Torres, Paletta, and Pérez (2013) , who studied the unrelated

arallel machine case with the objective of makespan minimiza-

ion. They showed that the problem is N P -hard and proposed an

INLP model and a simulated annealing algorithm. A few years

ater, Santos and Arroyo (2017) proposed an IL S and an IL S com-

ined with a random variable neighborhood descent algorithm,

nd showed that their algorithms computationally outperformed

he one proposed in Ruiz-Torres et al. (2013) on both small size

nstances (50 jobs and 10 machines) and large size instances

150 jobs and 20 machines). In the same period, Araújo, Dhein,

nd Fampa (2017) linearized the model proposed in Ruiz-Torres

t al. (2013) and improved its performance so that it was able to
2
olve exactly instances with up to 50 jobs and 10 machines. More

ecently, Ding, Shen, Lü, and Peng (2019) studied a similar problem

n which the deterioration level of a machine when processing a

ob depends on the deterioration factor of the job itself in addition

o those of the jobs already processed. The authors studied the ob-

ectives of minimizing the makespan and minimizing the weighted

ompletion time. They proposed an ejection chain algorithm and

ested it on instances with up to 50 jobs and 10 machines.

Maintenance activities were also studied by Kuo and Yang

2008) , Zhao and Tang (2010) , Yang (2011) , and Yang, Cheng,

ang, and Hsu (2012) in the context of scheduling with position-

ependent deterioration. Position-dependent deterioration can be

onsidered as a special case of sequence-dependent deterioration

n which the additional time required to process a job depends

nly on the number of jobs that were processed since the last

aintenance (and not on the type of jobs, as in the sequence-

ependent case). While Kuo and Yang (2008) and Zhao and Tang

2010) focused on the single machine problem, Yang (2011) and

ang et al. (2012) dealt with the multiple machine case. In all

hese problems, as in ours, a maintenance activity restores the full

roductivity of a machine.

We note, in addition, that the term “maintenance activity” is

idely used in the scheduling literature, sometimes with different

eanings with respect to the one we adopt in our work. The

erm might refer, for example, to a mandatory operation (see,

.g., Nesello, Subramanian, Battarra, & Laporte, 2018b) or to a rate

odifying (rm) operation that changes the processing time of sub-

equent jobs (either by speeding them up or slowing them down).

A large stream of the literature is dedicated to rm activities.

o the best of our knowledge, the concept was introduced by Lee

nd Leon (2001) to describe a scheduling behavior in an electronic

ssembly line. In their single machine scheduling problem, each

ob had two possible processing times, depending on whether it

as scheduled before or after the rm activity. The problem was

hen to decide the job ordering and the position of the rm activity,

f necessary. This study was extended by Mosheiov and Sidney

2003) , who addressed a similar problem with the addition of

recedence constraints. They also studied the problem with the

ddition of a learning effect, which can be seen as the opposite of

 position-dependent deterioration (i.e., processing a job shortens

he duration of every subsequent job). Some recent studies, as

ang and Li (2017) and Lu, Liu, Pei, Thai, and Pardalas (2018) ,

onsider the case in which the rm activity has an execution time

hat linearly depends on its starting time. We refer the interested

eader to the recent book by Strusevich and Rustogi (2017) for

urther details on rm activities.

The first work in which sequence-dependent deterioration and

aintenance activities were studied together was proposed by

uiz-Torres et al. (2017) . In their paper, the deterioration level of

 machine when processing a job depends only on the types of

obs that the machine has processed since its last maintenance.

he authors studied the case of identical machines. They intro-

uced an MINLP model to describe the problem and proposed

ome constructive heuristics to find good quality solutions. In

ur work, which extends the one by Ruiz-Torres et al. (2017) , we

ropose new mathematical models and metaheuristic algorithms

or scheduling problems with sequence-dependent deterioration

nd maintenance events. All our techniques are valid for the

eneral case of unrelated machines. A preliminary version of

ur work containing the model of Section 4.2 and a prior ILS

mplementation was presented in Mendes and Iori (2019) .

. Problem description

Let J = { 1 , 2 , . . . , n } be a set of independent jobs, all available

t the beginning of the working horizon, to be processed on a

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Table 1

Ideal processing times, delay factors, and maintenance times for Example 1 .

machine t i ideal processing time (p i j) delay factor (d i j)

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

i = 1 2 10 20 10 30 1.2 1.1 1.1 1.2

i = 2 5 20 10 10 30 1.1 1.2 1.1 1.1

s

d

o

m

h

d

i

δ
o

s

(

t

I

o

j

m

c

c

s

c

m

o

m

n

a

t

j

t

c

o

m

p

w

L

R

“

n

i

R

I

t

E

c

a

s

fi

T

t

Fig. 1. Optimal job scheduling for Example 1 (machine 1 on top, machine 2 at the

bottom).

t

m

p

fi

1

w

4

e

t

v

n

4

c

a

n

n

b

s

a

m

t

a

b

i

m

n

r

i

m

e

s

e

c

m

o

a

et M = { 1 , 2 , . . . , m } of unrelated parallel machines subject to

eterioration. Let p i j be the ideal processing time of job j (j ∈ J)

n machine i (i ∈ M) , that is, the processing time when the

achine is fully operative, so either at the beginning of the time

orizon or right after a maintenance event has occurred. Let also

 i j ≥ 1 be the delay factor caused by the deterioration of machine

 after processing job j. As the delay factors are multiplicative, let

i j ≥ 1 be the accumulated delay factor due to the deterioration

f machine i because of all the jobs it has processed before j

ince the last maintenance. This sequence-dependent deterioration

which is also made clear by means of Example 1 at the end of

his section) can be described as follows:

• The actual processing time of job j on machine i is equal to

p i j δi j .
• The accumulated delay factor caused by the deterioration of

machine i after processing job j is equal to δi j d i j .

t can be observed that the accumulated delay factor at the start

f job j (i.e., δi j) is equal to the product of the delay factors of all

obs processed before j since the last maintenance.

Let t i be the duration of a maintenance event that returns

achine i to its fully operative state (i.e., δi j = 1 , for all j pro-

essed right after a maintenance activity). A single machine

annot process a job and perform a maintenance activity at the

ame time. In addition, preemption is not allowed, so a machine

annot be interrupted while it is processing a job to perform a

aintenance activity. There is no theoretical limit on the number

f maintenance activities that can be performed on a single

achine (even if in practice every relevant schedule has at most

 − 1 maintenance activities), nor on the number of maintenance

ctivities that can be performed in parallel on all machines.

Each job must be assigned to a machine in such a way that

he makespan (i.e., the maximum completion time among all

obs) is minimized. By summing the actual processing times of

he jobs and the maintenance times, we can easily compute the

ompletion time of each machine and the makespan. The insertion

f idle times on the machine schedules cannot decrease the

akespan because all jobs are available at time 0 and there are no

recedence constraints. Thus, there is always an optimal solution

ithout idle times.

According to the three-field notation by Graham, Lawler,

enstra, and Kan (1979) , this problem can be denoted as

 | Sdd,mnt | C max , where “R” stands for unrelated parallel machines,

Sdd” for sequence-dependent deterioration, “mnt” for mainte-

ance, and “C max ” for makespan minimization. The R | Sdd,mnt | C max

s strongly N P −hard because it generalizes the well-known

 || C max , already proven to be strongly N P -hard in Pinedo (2016) .

n the following, we introduce an example that will be resumed in

he next sections to outline the behavior of our models.

xample 1. Let us consider the following instance with two ma-

hines and four jobs, whose ideal processing times, delay factors,

nd maintenance durations are displayed in Table 1 .

As shown in Fig. 1 , jobs 1 and 3 are scheduled on machine 1

eparated by a maintenance activity (represented in white in the

gure). Job 4 is scheduled first on machine 2, followed by job 2.

he actual processing time of job 2 is 11 instead of 10 because of

he deterioration caused by job 4 (represented by hashed lines in
3
he figure). The optimal makespan is 41. Note that we included a

aintenance on machine 1 between job 1 and job 3 for descriptive

urposes. One could also skip the maintenance and process job 3

rst, followed by job 1, and obtain a load of 21 units on machine

. In any case, the optimal makespan would remain 41 as the

orkload on machine 2 is unchanged.

. Mathematical models

In this section, we present the MINLP model by Ruiz-Torres

t al. (2017) , introduce its linearized version, and then propose

hree novel MILP models. To ease notation, if the meaning of a

ariable is the same in several models, then we maintain the same

ame.

.1. Non-linear position-based formulation

The model of Ruiz-Torres et al. (2017) decomposes each ma-

hine into slots H = { 1 , 2 , . . . , | H|} . A slot defines the position of an

ctivity (a job or a maintenance) on a machine schedule and has

o pre-determined duration. Since we do not know a priori the

umber of slots required by each machine, we use a valid upper

ound | H| = 2 n − 1 to estimate it. Indeed, in the worst case a

ingle machine processes all the jobs and performs a maintenance

ctivity between each pair of jobs. Because the number of slots per

achine i is generally larger than the number of activities assigned

o i , some of the slots on i may remain free (i.e., with no assigned

ctivity). Such slots are herein called empty slots. Better upper

ounds on H can be derived, using the form | H| = 2(n − m

′) + 1 ,

f we can prove that there is always an optimal solution in which

′ machines perform at least one job, or, in other words, in which

o single machine performs strictly more than n − m

′ + 1 jobs, so

esulting in at most n − m

′ maintenance operations. In particular,

f the ideal processing time of each job is the same on every

achine, then we have m

′ = m .

Let x i jh be a binary variable taking the value 1 if job j is

xecuted in slot h of machine i , and 0 otherwise. Similarly, let

 ih be a binary variable taking the value 1 if a maintenance is

xecuted in slot h of machine i , and 0 otherwise, and let q ih be a

ontinuous variable that reports the current performance ratio of

achine i in slot h . The performance ratio is simply the inverse

f the accumulated delay factor δi j : it satisfies 0 < q ih ≤ 1 and the

ctual processing time of job j on machine i in slot h is equal to

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

0

d

a

d

C

c

m

s

∑

∑

x

q

q

x

s

q

C

O

C

a

e

s

t

b

(

t

m

a

c

4

t

v

a

q

I

p

c

i

p

m

s

∑

a

∑

∑

d

δ

x

s

a

δ

C

O

t

(

h

m

0

1

a

t

t

e

a

n

t

(

s

b

C

t

t

l

l

t

h

p i j

q ih
, while the performance ratio of machine i after processing job

j in slot h is equal to q ih (1 − d ′
i j
) .

Parameter d ′
i j

is called deterioration effect and satisfies

 ≤ d ′
i j

< 1 . It is adopted by Ruiz-Torres et al. (2017) to replace

elay factor d i j by imposing the relation d i j =

1
1 −d ′

i j

. For example,

 job j whose deterioration effect on machine i is d ′
i j

= 0 . 01 has a

elay factor on machine i of d i j =

1
0 . 99 ≈ 1 . 0101 .

By using these variables and an additional continuous variable

 max indicating the value of the makespan, the R | Sdd,mnt | C max

an be modeled as:

in C max (1)

.t.
∑

j∈ J
x i jh + s ih ≤ 1 ∀ i ∈ M, h ∈ H, (2)

i ∈ M

∑

h ∈ H
x i jh = 1 ∀ j ∈ J, (3)

j∈ J

∑

h ∈ H

p i j

q ih
x i jh +

∑

h ∈ H
t i s ih ≤ C max ∀ i ∈ M, (4)

 i jh ≤
∑

j ′ ∈ J
x i j ′ ,h −1 + s ih ∀ i ∈ M, j ∈ J, h ∈ H\{ 1 } , (5)

 i,h −1

∑

j∈ J
(1 − d ′ i j) x i j,h −1 + s i,h −1 = q ih ∀ i ∈ M, h ∈ H\{ 1 } , (6)

 i 1 = 1 ∀ i ∈ M, (7)

 i jh ∈ { 0 , 1 } ∀ i ∈ M, j ∈ J, h ∈ H, (8)

 ih ∈ { 0 , 1 } ∀ i ∈ M, h ∈ H, (9)

 ih ≥ 0 ∀ i ∈ M, h ∈ H, (10)

 max ≥ 0 . (11)

bjective function (1) imposes the minimization of the makespan.

onstraints (2) state that each slot can either accommodate a job,

 maintenance activity, or remain empty. Constraints (3) impose

ach job to be processed by a machine. Constraints (4) make

ure that the maskespan is equal to or greater than the finishing

ime of each machine. Constraints (5) force the empty slots to

e positioned at the end of the planning horizon. Constraints

6) compute the performance ratio of each machine in each slot

hrough an inductive process based on the previous slot of the

achine. Constraints (7) impose the machines to be fully operative

t the beginning of the planning horizon. It can be noticed that

onstraints (4) and (6) are non-linear.

.2. Linearized position-based formulation

The first MILP formulation that we propose is derived from

he work by Araújo et al. (2017) , who modeled R | Sdd | C max the

ersion of our problem without maintenance activities. It uses

n accumulated delay factor δih instead of the performance ratio

 ih , and the delay factor d i j instead of the deterioration effect d ′
i j

.

t also uses a continuous variable a i jh that indicates the actual

rocessing time of job j on machine i at time slot h , and “big-M”
4
onstraints that force a i jh to take (at least) value p i j δih when job j

s assigned to slot h on machine i , and 0 otherwise. The linearized

osition-based formulation is as follows:

in C max (12)

.t.
∑

j∈ J
x i jh + s ih ≤ 1 ∀ i ∈ M, h ∈ H, (13)

i ∈ M

∑

h ∈ H
x i jh = 1 ∀ j ∈ J, (14)

 i jh ≥ p i j δih − K

a
i j (1 − x i jh) ∀ i ∈ M, j ∈ J, h ∈ H, (15)

j∈ J

∑

h ∈ H
a i jh +

∑

h ∈ H
t i s ih ≤ C max ∀ i ∈ M, (16)

j∈ J
x i jh + s ih ≤

∑

j∈ J
x i j,h −1 + s i,h −1 ∀ i ∈ M, h ∈ H\{ 1 } , (17)

 i j δi,h −1 − K

b
i j (s i,h −1 + 1 − x i j,h −1) ≤ δih ∀ i ∈ M, j ∈ J, h ∈ H\{ 1 } ,

(18)

i 1 = 1 ∀ i ∈ M, (19)

 i jh ∈ { 0 , 1 } ∀ i ∈ M, j ∈ J, h ∈ H, (20)

 ih ∈ { 0 , 1 } ∀ i ∈ M, h ∈ H, (21)

 i jh ≥ 0 ∀ i ∈ M, j ∈ J, h ∈ H, (22)

ih ≥ 1 ∀ i ∈ M, h ∈ H, (23)

 max ≥ 0 . (24)

bjective function (12) and constraints (13) and (14) are identical

o those reported in the MINLP model of Section 4.1 . Constraints

15) are used to define the actual processing time of job j in slot

 of machine m . Coefficient K

a
i j

is a large constant defined for any

achine i and job j in such a way that a i jh is allowed to take value

 when x i jh = 0 and forced to take at least value p i j δih when x i jh =
 . Constraints (16) are the linearized version of constraints (4) , and

re used to calculate the makespan. Constraints (17) are the coun-

erparts of constraints (5) and prevent a job or a maintenance ac-

ivity to be scheduled after an empty slot (slot h on machine i is

mpty if
∑

j∈ J x i jh + s ih = 0). In other words, all the empty slots of

 given machine are forced to be positioned at the end of the plan-

ing horizon. Worth is mentioning that, while constraints (5) have

he purpose of removing symmetrical solutions, constraints

17) are necessary for the correctness of the model, because in-

erting an empty slot in the middle of the planning horizon would

e equivalent to performing an instantaneous maintenance activity.

onstraints (18) are the counterpart of constraints (6) and compute

he accumulated delay factor of each machine in each time slot

hrough an inductive process. The coefficient K

b
i j

is a sufficiently

arge constant defined for any machine i and job j, so that δih is al-

owed to take the value 0 when x i j,h −1 = 0 . Constraints (19) impose

he machines to be fully operative at the beginning of the planning

orizon, but are not necessary for the correctness of the model.

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

s

(

c

P

(

P

o

q

j

a

Q

w

b

c

s

c

S

s

s

l

a

0

K

K

I

v

t

p

r

h

b

w

c

n

O

s

t

p

m

t

4

i

n

o

m

o

o

i

f

t

o

m

t

a

d

a

e

m

∑

a

a

∑

δ

x

δ

x

a

C

C

e

(

o

d

d

f

t

t

c

(

f

j

I

a

E

b

F

In the following, we provide a property about the optimal

cheduling structure derived from Lemma 1 in Ruiz-Torres et al.

2017) , we explain how to compute good values for the big-M

oefficients, and we outline the weaknesses of the model.

roperty 1. There is always an optimal solution in which a job

j is scheduled in a position h of a machine i in such a way that

δih − 1) p i j ≤ t i holds.

roof. Consider a solution S in which a job j is scheduled in slot h

n machine i such that (δih − 1) p i j > t i , and let Q be the time re-

uired by machine i to process all the activities until it has finished

ob j. The alternative solution S ′ in which machine i schedules

 maintenance in slot h and processes job j in slot h + 1 takes

′ = Q − δih p i j + t i + p i j . It follows that Q − Q

′ = (δih − 1) p i j − t i ,

hich is strictly positive according to the initial condition. Finally,

ecause all delay factors d i j are greater than or equal to 1, we

an simply show that the accumulated delay factor in the original

olution S after processing job j in slot h , which is δi,h +1 = δih d i j ,

annot be smaller than the accumulated delay factor in solution

′ after performing a maintenance in slot h and processing job

j in slot h + 1 , which is δi,h +2 = d i j . As a result, because the two

olutions S and S ′ have the same job ordering but S ′ completes j

ooner and with a lower accumulated delay factor, then S ′ is at

east as good as S. �

An interesting implication of Property 1 is that there is always

n optimal solution that satisfies δih ≤ 1 +

t i
p i j

, ∀ i ∈ M, h ∈ H : s ih =
 . This allows us to define the big-M values as:

a
i j = p i j × min

{ ∏

j ′ ∈ J
d i j ′ ,

(
1+

t i
min j ′ { p i j ′ }

)
× max

j ′
{ d i j ′ }

}

i ∈ M, j ∈ J, (25)

b
i j = d i j × min

{ ∏

j ′ ∈ J
d i j ′ ,

(
1 +

t i
min j ′ { p i j ′ }

)
× max

j ′
{ d i j ′ }

}

i ∈ M, j ∈ J. (26)

ndeed, we know that, in order to deactivate constraints (15) when

ariables x i jh take value 0, we need coefficients K

a
i j

to be greater

han or equal to p i j δih . An obvious upper bound on δih is the

roduct of the delay factors of all jobs. Thanks to Property 1 , a

efined upper bound of δih when a job is scheduled in position

 (i.e., when s ih = 0) is (1 +

t i
min

j ′ { p i j ′ }) . By multiplying this value

y max j ′ { d i j ′ } , we obtain an upper bound which is also valid

hen s ih = 1 . A similar reasoning can be applied to determine

oefficients K

b
i j

.

The linearized position-based model involves a polynomial

umber O (| M|| J| 2) of variables and a polynomial number

 (| M|| J| 2) of constraints. However, it also has a large amount of

ymmetry: indeed, a subset of jobs processed between two main-

enance activities can be exchanged with another subset of jobs

rocessed between two other maintenance activities on the same

achine without affecting the makespan. In the following, we in-

roduce an event-based formulation aimed at palliating this issue.

.3. Event-based formulation

The event-based formulation uses the notion of a block . A block

s a sequence of jobs that occurs either before the first mainte-

ance activity, or between two consecutive maintenance activities,

r after the last maintenance activity. The model decides on which

achine a job is scheduled, and whether a job initiates a block

r is positioned after another job. The decisions regarding the
5
rdering of the blocks within the same machine do not have any

mpact on the makespan and are thus removed from the model.

We define j 0 as a dummy job of processing time 0 and delay

actor 1 that initiates each block. We use a binary variable x i j j ′
hat takes the value 1 if job j ′ is scheduled right after job j

n machine i , and 0 otherwise (i ∈ M, j ∈ J ∪ j 0 , j
′ ∈ J) . For each

achine, we identify sequences of jobs that can be disregarded by

he model (as they are not necessary to reach an optimal solution)

nd store them in set S . Continuous variables δ j and a i j now

efine the accumulated delay factor before starting job j and the

ctual processing time of job j on machine i , respectively. The

vent-based formulation is as follows:

in C max (27)

i ∈ M

∑

j∈ J∪ j 0
x i j j ′ = 1 ∀ j ′ ∈ J, (28)

∑

j∈ J∪ j 0
x i j j ′ ≥

∑

j ′′ ∈ J
x i j ′ j ′′ ∀ j ′ ∈ J, i ∈ M, (29)

 i j ′ ≥ p i j ′ δ j ′ − K

a
i j ′ (1 − x i j j ′) ∀ i ∈ M, j ∈ J, j ′ ∈ J, (30)

 i j ′ ≥ p i j ′ x i j 0 j ′ ∀ i ∈ M, j ′ ∈ J, (31)

j∈ J
a i j − t i +

∑

j ′ ∈ J
t i x i j 0 j ′ ≤ C max ∀ i ∈ M, (32)

j ′ ≥ δ j d i j − K

b
i j (1 − x i j j ′) ∀ i ∈ M, j ∈ J, j ′ ∈ J, (33)

 i j j ′ = 0 ∀ (i, j, j ′) ∈ S (34)

j ′ ≥ 1 ∀ j ′ ∈ J, (35)

 i j j ′ ∈ { 0 , 1 } ∀ i ∈ M, j ∈ J ∪ j 0 , j
′ ∈ J, (36)

 i j ′ ≥ 0 ∀ i ∈ M, j ′ ∈ J, (37)

 max ≥ 0 . (38)

onstraints (28) force each job to be scheduled on a machine,

ither after another job or after a dummy job j 0 . Constraints

29) allow a job j ′′ to be scheduled after job j ′ on machine i

nly if job j ′ was itself scheduled after another job j or after the

ummy job j 0 on machine i . Constraints (30) and (31) are used to

efine the actual processing time of job j ′ on machine i . While the

ormer constraints are activated if j ′ is scheduled after another job,

he latter ones are activated if j ′ is scheduled after the dummy job

j 0 . Constraints (32) are used to calculate the makespan. Note that

he number of maintenance activities scheduled on a given ma-

hine is equal to the number of blocks scheduled on that machine

i.e., the number of times a job is scheduled after the dummy job

j 0) minus one. Constraints (33) compute the accumulated delay

actor before starting job j ′ and constraints (34) forbid certain

obs to be scheduled after some others on specific machines.

nitially, we forbid each job to be scheduled right after itself on

ny machine (i.e., ∀ i ∈ M, j ∈ J, (i, j, j) ∈ S).

xample 1 (resumed) . The values of the variables of the event-

ased formulation for Example 1 in the solution depicted in

ig. 1 are as follows:

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

i

s

T

L

w

d

P

s

s

P

a

p

a

j

a

p

t

Q

A

m

i

p

o

Q

B

d

1

a

j

a

s

s

d

n

t

d

p

t

g

m

m

(

t

t

n

l

t

x

w

c

O

c

i

d

b

4

a

p

f

m

b

P

e

p

t

p

s

o

b

b

s

a

n

s

a

v

i

v

o

m

∑

−

x

C

C

o

m

m

i

t

• x 101 = 1 , δ1 = 1 , a 11 = 10
• x 103 = 1 , δ3 = 1 , a 13 = 10
• x 204 = 1 , δ4 = 1 , a 24 = 30
• x 242 = 1 , δ2 = 1 . 1 , a 22 = 11

And constraints (32) are as follows:

• C max ≥ 10 + 10 + 2(2 − 1) = 22 (load on machine 1)
• C max ≥ 30 + 11 + 5(1 − 1) = 41 (load on machine 2)

In the following, we provide a property on the optimal schedul-

ng structure that allows further triplets (i, j, j ′) to be added to

et S , so reducing the number of binary variables in the model.

his property is derived from Lemma 1 in Ding et al. (2019) and

emma 1 from Ruiz-Torres et al. (2013) , both devoted to the case

ithout maintenance, and was used by Ruiz-Torres et al. (2017) to

erive heuristics for the case with maintenance.

roperty 2. There is always an optimal solution in which two

uccessive jobs j and j ′ scheduled in the same block on a machine i

atisfy the condition

p i j

d i j − 1

≥ p i j ′

d i j ′ − 1

∀ i ∈ M, j, j ′ ∈ J : x i j j ′ = 1 . (39)

roof. Consider a solution S in which job j is scheduled right

fter job j ′ on machine i , in the same block, in such a way that
p i j

d i j −1
>

p
i j ′

d
i j ′ −1

holds. Let Q be the time required by machine i to

rocess all activities until job j is finished. Let us also consider an

lternative solution S ′ in which job j is scheduled on machine i

ust before job j ′ , and let Q

′ be the time required to process all

ctivities until job j ′ is finished. By denoting k the time required to

rocess all jobs before the beginning of job j ′ (resp., job j) in solu-

ion S (resp., solution S ′), we can define Q (resp., Q

′) as follows:

Q = k + p i j ′ + (δ j ′ − 1) p i j ′ + p i j + (δ j ′ d i j ′ − 1) p i j ,

′ = k + p i j + (δ j − 1) p i j + p i j ′ + (δ j d i j − 1) p i j ′ .

s δ j ′ only depends on the set of jobs performed before job j ′ by

achine i since the last maintenance, then δ j ′ in Q is equal to δ j

n Q

′ . To ease the notation, we set δ j = δ j ′ = δ in the rest of the

roof. By computing the difference between the completion times

f the two partial schedules, we obtain:

 − Q

′ = (δ − 1) p i j ′ + (δd i j ′ − 1) p i j − (δ − 1) p i j − (δd i j − 1) p i j ′ ,

= (δ − δd i j) p i j ′ + (δd i j ′ − δ) p i j ,

= (1 − d i j) δp i j ′ + (d i j ′ − 1) δp i j ,

= −(d i j − 1) δp i j ′ + (d i j ′ − 1) δp i j .

ecause of (39) , we know that
p i j

d i j −1
>

p
i j ′

d
i j ′ −1

, or, in other words, as

 i j − 1 and d i j ′ − 1 are strictly positive, that p i j (d i j ′ − 1) > p i j ′ (d i j −
) . Thus, as also δ is strictly positive, then Q − Q

′ is strictly positive

s well. In addition, the accumulated delay factor after processing

ob j in solution Q is the same as the accumulated delay factor

fter processing job j ′ in solution Q

′ , which is δd i j d i j ′ . As a result,

ince the two solutions have processed the same set of jobs, but

olution S ′ completed it sooner and with the same accumulated

elay factor, solution S ′ is at least as good as solution S. �

Note that, for a given machine, Property 2 is a necessary but

ot sufficient condition for the optimality of a schedule. That is,

here could be some job schedules satisfying condition (39) that

o not minimize the makespan of the machine (an intuitive exam-

le is to schedule all the jobs in the same block). This differs from

he version of the problem without maintenance in which, for a

iven machine, the job schedules minimizing the makespan of the

achine always satisfy condition (39) . We also outline that there

ay exist several optimal solutions that do not satisfy condition

39) on every machine: indeed, as the makespan only depends on
6
he schedule of the machine(s) with largest workload, it is possible

hat one or more blocks in machines with smaller workload do

ot fulfill (39) . However, Property 2 states that there is always at

east one solution in which the job ordering of each block satisfies

his condition. As a corollary of Property 2 , we obtain:

 i j j ′ = 0 ∀ i ∈ M, ∀ j, j ′ ∈ J :
p i j

d i j − 1

<

p i j ′

d i j ′ − 1

, (40)

hich allows us to set a large number of variables to 0 through

onstraints (34) .

The event-based model also involves a polynomial number

 (| M|| J| 2) of variables and a polynomial number O (| M|| J| 2) of

onstraints. It has less symmetry since the block ordering decision

s removed from the model. However, its linear relaxation is weak

ue to the big-M constraints. In the following, we introduce a

lock-based formulation free of big-M constraints.

.4. Block-based formulation

While the event-based formulation decides on which machine

 job is scheduled, and whether a job initiates a block or is

ositioned after another job, the block-based formulation selects

rom a large set of feasible blocks the ones that minimize the

akespan. The decisions regarding the job ordering within each

lock are determined before running the model in accordance with

roperty 2 . This formulation is a natural extension of the set cov-

ring formulation of Gilmore and Gomory (1961, 1963) originally

roposed for the cutting stock problem. Some formulations using

he notion of blocks were already proposed for other scheduling

roblems (see, e.g., Pacheco, Àngel Bello, & Álvarez, 2013 for a

ingle-machine scheduling problem with set-up times), but not all

f these formulations associate a variable to each of the feasible

locks as the model presented in this section does.

We borrow the set covering notation and use B i to define

oth the set of blocks and the set of block indices that can be

cheduled on machine i . We also use b to define both a block

nd its index. Note that sets B i and B

′
i

(i, i ′ ∈ M, i
 = i ′) are not

ecessarily identical as shown in the example at the end of this

ection. The b th block on machine i is described by its duration a i
b

nd by an integer array (αi
1 b

, αi
2 b

, . . . , αi
| J| b) , where αi

jb
takes the

alue 1 if job j is included in the b th feasible block of machine

 , and 0 otherwise. We now use binary variables x i
b

that take the

alue 1 if the b th feasible block of machine i is selected, and 0

therwise. The block-based formulation is as follows:

in C max (41)

i ∈ M

∑

b∈B i
αi

jb x
i
b = 1 ∀ j ∈ J, (42)

t i +

∑

b∈B i
(a i b + t i) x

i
b ≤ C max ∀ i ∈ M, (43)

i
b ∈ { 0 , 1 } ∀ i ∈ M, b ∈ B i , (44)

 max ≥ 0 . (45)

onstraints (42) impose that each job is contained in exactly

ne of the selected blocks, and constraints (43) calculate the

akespan, which is minimized in (41) .

In Algorithm 1 , we provide a pseudo-code to exhaustively enu-

erate every feasible non-dominated block. A block b is dominated

f there exists a set of blocks S containing the same jobs as b

hat can be processed in a shorter time (taking into account the

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Algorithm 1 Create blocks.

1: for each i ∈ M do � For each machine i

2: B i ← ∅ , b = 0 � There are no blocks in B i
3: for each j ∈ J do

4: αi
jb

← 0 � Create the empty block

5: end for

6: a i
b

← 0 , δi
b

← 1 , B i ← B i ∪ { b} , b ← b + 1 � Add the empty block to B i
7: for each j ∈ J ordered by non-increasing

p i j

d i j −1
do � For each job

8: B̄ i ← ∅ � There are no new blocks

9: for each b ′ ∈ B i do � For each existing block in B i
10: for each j ′ ∈ J do

11: αi
j ′ b ← αi

j ′ b ′ � Block b is a copy of the existing block b ′
12: end for

13: αi
jb

← 1 , a i
b

← a i
b ′ + δi

b ′ p i j , δ
i
b

← δi
b ′ d i j � add job j to block b

and perform a i
b

and δi
b

14: if isNotDominated(b) then � if the block is not removed

by our reduction criterion

15: B̄ i ← B̄ i ∪ { b} , b ← b + 1 � add block b to the new blocks,

and increment b

16: end if

17: end for

18: for each b̄ ∈ B̄ i do

19: B i ← ∪{ ̄b } , � add the new blocks to B i
20: end for

21: end for

22: end for

d

i

b

a

g

b

a

d

t

r

0

a

m

b

B

t

b

1

n

i

i

b

e

1

A

t

d

p

t

c

g

i

p

t

t

v

i

i

R

E

E

b

m

o

o

1

c

w

(

1

o

a

f

v

a

4

v

s

a

2

I

n

c

V

d

m

o

R

p

l

G

r

d

z

E

l

1

1

s

p

a

l

t

τ
o

o

i

fl

m

uration of the | S| blocks and the | S| − 1 maintenance activities

n-between blocks). Dominated blocks are not useful to the model

ecause there is always an optimal solution that does not contain

ny dominated block. Before describing the algorithm steps, we

ive its general idea: starting from B i containing only the empty

lock, the algorithm temporarily duplicates every block in B i

nd adds the job currently processed in each duplicate. It then

iscards the newly generated blocks that are dominated, inserts

he remaining ones into B i and moves on to the next job. As a

esult, B i contains at most 2 j blocks at step j.

For each machine i , the algorithm sets the block counter to

 (step 2), creates the dummy empty block of duration 0 and

ccumulated delay factor 1, and adds it to the set of blocks of

achine i (steps 3–6). Then, for each job j (preliminary re-ordered

y non-increasing
p i j

d i j −1
values), it creates a temporary new set

¯
 i in which it stores the new blocks generated when adding job

j (step 8). After this, each original block in B i is copied, one at a

ime, into block b (steps 9–12). The algorithm adds job j to block

and computes its duration and its accumulated delay factor (step

3). Then, the algorithm determines if block b is dominated or

ot in the way described below. If block b is not dominated, then

t is added to the new blocks (step 15) and the block counter is

ncremented. If, instead, block b is dominated, then it will simply

e overwritten during the next loop. Finally, the algorithm adds

very newly generated non-dominated block from B̄ i into B i (steps

8–20) and moves on to the next item j.

Assessing whether a block is dominated or not is not trivial.

n easy criterion can be derived through Property 1 , by checking

hat the duration of the new block a i
b

is strictly shorter than the

uration of the old block a i
b ′ plus the ideal processing time of job j

lus the duration of a maintenance activity t i . If it is not the case,

hen it is shorter to perform a maintenance activity before pro-

essing j and block b is dominated (and so, it does not need to be

enerated). The more powerful test that we implemented consists

n trying, in turns, to insert a maintenance activity between each

air of consecutive jobs and comparing the sum of the duration of

hese two blocks plus the duration of a maintenance activity with

he duration of the new block a i
b
. If a i

b
is longer, then it is more ad-

antageous to use two blocks separated by a maintenance activity

nstead of block b, and thus it is not necessary to generate b as it
7
s dominated. Note that this test was also used in the heuristic of

uiz-Torres et al. (2017) in order to improve incumbent solutions.

xample 1 (resumed) . The blocks generated by Algorithm 1 for

xample 1 are presented in Table 2 . An optimal solution provided

y an ILP solver selects block 6 in machine 1 and block 9 in

achine 2 for a total makespan equal to 41. Note that there exists

ther optimal solutions with a makespan equal to 41, such as the

ne obtained by selecting blocks 1 and 2 in machine 1 and block

0 in machine 2.

The block-based model involves a polynomial number of

onstraints O (| M| + | J|) and an exponential number of variables,

hich empirically grows very fast as the number of jobs increases

some instances with 100 jobs led to models with more than

00 million variables in our tests). A possible option could be to

nly generate a subset of variables through column generation

nd embed the procedure in a branch-and-price algorithm. In the

ollowing, we introduce an arc flow formulation whose number of

ariables still grows exponentially with the number of jobs, but at

 lesser extent as shown in the computational experiments section.

.5. Arc flow-based formulation

The arc flow formulation was popularized by Valério de Car-

alho (1999) for the CSP, and extensively studied afterwards in

everal application fields. Recently, it has been applied to cutting

nd packing (see, e.g., Clautiaux, Sadykov, Vanderbeck, & Viaud,

018, Dell’Amico, Delorme, Iori, & Martello, 2019 , and Delorme &

ori, 2020), production (see, e.g., Nesello, Delorme, Iori, & Subrama-

ian, 2018a) and Ramos, Alves, & Valério de Carvalho, 2020 (forth-

oming) , and vehicle routing (see, e.g., Clautiaux, Hanafi, Macedo,

oge, & Alves, 2017). In the scheduling field, arc flow models were

eveloped to solve problems on parallel machines, either to mini-

ize weighted tardiness (Pessoa, Uchoa, Poggi, & Rodrigues, 2010)

r weighted completion times (Kramer, Dell’Amico, & Iori, 2019).

In the arc flow-based formulation we propose for the

 | Sdd,mnt | C max , the composition of a block is defined as a

ath in a graph where nodes are intermediary accumulated de-

ay factors and arcs are jobs. Formally, for each machine i , let

 i = (V i , A i) be a multigraph where the node set N i includes every

elevant intermediary accumulated delay factors. A trivial way to

efine N i is to include every z satisfying:

 =

∏

j∈ J
((d i j − 1) y j + 1) ,

y j ∈ { 0 , 1 } ∀ j ∈ J.

xample 1 (resumed) . All the possible intermediary accumu-

ated delay factors for Example 1 are N 1 = { 1 , 1 . 1 , 1 . 2 , 1 . 21 , 1 . 32 ,

 . 44 , 1 . 452 , 1 . 584 , 1 . 7424 } and N 2 = { 1 , 1 . 1 , 1 . 2 , 1 . 21 , 1 . 32 , 1 . 331 ,

 . 452 , 1 . 5972 } .
To correctly represent a block, each path must start at the

ource node s = 1. There is no restriction on the node in which a

ath must terminate. Arcs in A i are in the form (e, f, j) and have

 given duration τ necessary to calculate the makespan, where

j (j ∈ J) is the job index, e (e ∈ N i) is the intermediary accumu-

ated delay factor at the beginning of job j, f (f ∈ N i , f = e d i j) is

he intermediary accumulated delay factor at the end of job j, and

is obtained by multiplying p i j (the ideal processing time of job j

n machine i) by e (the accumulated delay factor at the beginning

f the arc). By using a binary variable x i
e f j

that takes the value 1

f arc (e, f, j) is selected on machine i , and 0 otherwise, the arc

ow-based formulation is as follows:

in C max (46)

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Table 2

Blocks generated by Algorithm 1 for Example 1.

Jobs Id

Machine 1 Machine 2

order a i
b

δi
b

isNotDominated order a i
b

δi
b

isNotDominated

{1} 1 1 10 1.2 true 1 20 1.1 true

{2} 2 2 20 1.1 true 2 10 1.2 true

{3} 3 3 10 1.1 true 3 10 1.1 true

{4} 4 4 30 1.2 true 4 30 1.1 true

{1,2} 5 2,1 31 1.32 true 1,2 31 1.32 true

{1,3} 6 3,1 21 1.32 true 1,3 31 1.21 true

{1,4} 7 4,1 42 1.44 false 4,1 52 1.21 true

{2,3} 8 2,3 31 1.21 true 3,2 21 1.32 true

{2,4} 9 2,4 53 1.32 false 4,2 41 1.32 true

{3,4} 10 4,3 42 1.32 false 4,3 41 1.21 true

{1,2,3} 11 2,3,1 43.1 1.452 false 1,3,2 43.1 1.452 true

{1,2,4} 12 2,4,1 66.2 1.584 false 4,1,2 64.1 1.452 true

{1,3,4} 13 4,3,1 55.2 1.584 false 4,1,3 64.1 1.331 true

{2,3,4} 14 2,4,3 66.2 1.452 false 4,3,2 53.1 1.452 true

{1,2,3,4} 15 2,4,3,1 80.72 1.7424 false 4,1,3,2 77.41 1.5972 true

∑

(

−

x

C

C

b

w

f

j

c

o

a

o

m

a

a

i

d

n

t

a

c

g

E

E

s

N

n

f

Algorithm 2 Create arcs.

1: for each i ∈ M do � For each machine i
2: A i ← ∅ , N i ← s � There are no arcs in A i and only

the source node in N i

3: for each j ∈ J ordered by non-increasing

p i j

d i j −1
do �

For each job

4: N̄ i ← ∅ � There are no new nodes
5: for each k ∈ N i do � For each existing node in N i

6: if isNotDominated (k , d i j k , j) then � if the arc
is not removed by our reduction criterion

7: A i ← (k , d i j k , j) � Add the new arc to A i

8: N̄ i ← d i j k � Add the new node to N̄ i

9: end if
10: end for
11: for each k̄ ∈ N̄ i do

12: N i ← ∪{ ̄k } , � add the new nodes to N i

13: end for
14: end for
15: end for

B

t

A

c

N
(

1

c

a

f

G

a

r

t

f

a

w

×
a

1

a

i ∈ M

∑

(e, f, j) ∈A i
j = j ′

x i e f j = 1 ∀ j ′ ∈ J, (47)

∑

e, f, j) ∈A i
e = k

x i e f j ≤
∑

(e, f, j) ∈A i
f= k

x i e f j ∀ i ∈ M, ∀ k ∈ N i \ { s } , (48)

t i + t i
∑

(e, f, j) ∈A i
e = s

x i e f j +

∑

(e, f, j) ∈A i
e x i e f j p i j ≤ C max ∀ i ∈ M, (49)

i
e f j ∈ { 0 , 1 } ∀ i ∈ M, (e, f, j) ∈ A i , (50)

 max ≥ 0 . (51)

onstraints (47) force exactly one arc associated with each job to

e selected. Constraints (48) ensure flow conservation, or, in other

ords, that the number of jobs starting with accumulated delay

actor k (k ∈ N i \ { s }) is smaller than or equal to the number of

obs ending with accumulated delay factor k . Constraints (49) cal-

ulate the makespan by summing, for each machine, the duration

f the selected arcs with the time required for the maintenance

ctivities (if we count one maintenance for each selected arc

riginating from the source node, we should remove one extra

aintenance). In Algorithm 2 , we provide a procedure to generate

ll the feasible arcs.

The arc generation algorithm is similar to the block generation

lgorithm. However, assessing whether an arc is dominated or not

s more challenging. There is still an easy criterion which can be

erived from Property 1 , by checking that the duration of each

ew arc (k , d i j k , j) is strictly smaller than the ideal processing

ime of job j plus the duration of a maintenance activity (i.e.,

p i j k < p i j + t i). If it is not the case, then it is shorter to perform

 maintenance activity before processing j at intermediary ac-

umulated delay factor k and arc (k , d i j k , j) does not need to be

enerated as it is dominated.

xample 1 (resumed) . The arcs generated by Algorithm 2 for

xample 1 are displayed in Figs. 2 and 3 . The first set of nodes,

, B, . . . , G , corresponds to each intermediary accumulated factor in

 1 for machine 1, which are 1 , 1 . 1 , . . . , 1 . 7424 . The second set of

odes, s ′ , B, . . . , H

′ , corresponds to each intermediary accumulated

actor in N for machine 2, which are 1 , 1 . 1 , . . . , 1 . 5972 .
2

8
We now briefly explain how the graph in Fig. 2 was obtained.

efore processing the first item, the set of nodes N 1 only con-

ains s , which corresponds to intermediary accumulated factor 1.

fter processing job 2, Algorithm 2 creates arc (s, B, 2) , where B

orresponds to intermediary accumulated factor 1.1, and adds B to

 1 . After processing job 4, Algorithm 2 creates arcs (s, C, 4) and

B, E, 4) , where C corresponds to intermediary accumulated factor

.2 and E to 1.32 (1.1 × 1.2), and adds C and E to N 1 . After pro-

essing job 3, Algorithm 2 creates arcs (s, B, 3) , (B, D, 3) , (C, E, 3) ,

nd (E, G, 3) , where D corresponds to intermediary accumulated

actor 1.21 (1.1 × 1.1) and G to 1.452 (1.32 × 1.1), and adds D and

 to N 1 . Note that nodes E and B were already contained in N 1

nd do not need to be added again. This gives an intuition of the

eason why the number of variables grows at a lesser extent in

he arc flow-based formulation than it does in the block-based

ormulation. Finally, after processing job 1, Algorithm 2 creates

rcs (s, C, 1) , (B, E, 1) , (C, F , 1) , (D, G, 1) , (E, H, 1) , and (G, I, 1) ,

here F corresponds to intermediary accumulated factor 1.44 (1.2

1.2), H to 1.584 (1.32 × 1.2), and I to 1.7424 (1.452 × 1.2), and

dds F , H, and I to N 1 .

The block containing jobs 1 and 2 can be obtained on machine

 by selecting the path containing arcs (s, B, 2) and (B, E, 1) , for

 duration of 20 × 1 + 10 × 1 . 1 = 31 . The block containing jobs

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Fig. 2. Arcs generated for Machine 1 in Example 1 without reduction procedure.

Fig. 3. Arcs generated for Machine 2 in Example 1 without reduction procedure.

2

c

2

t

C

2

f

2

c

o

r

(

i

s

b

(

r

B

n

(

o

w

a

r

n

i

S

a

m

l

a

s

t

t

w

e

c

v

b

t

E

h

i

(

j

j

a

a

f

t

T

(

c

O

p

c

o

i

f

b

a

a

5

o

f

f

a

t

d

o

i

t

a

i

t

w

t i
, 3, and 4 can be obtained on machine 1 by selecting the path

ontaining arcs (s, B, 2) , (B, E, 4) , and (E, G, 3) , for a duration of

0 × 1 + 30 × 1 . 1 + 10 × 1 . 32 = 66 . 2 . Note that the application of

he easy reduction procedure would prevent arcs initiating at node

or at subsequent nodes to be generated.

The block containing jobs 1 and 2 can be obtained on machine

 by selecting the path containing arcs (s ′ , B ′ , 1) and (B ′ , E ′ , 2) ,

or a duration of 20 × 1 + 10 × 1 . 1 = 31 . The block containing jobs

, 3, and 4 can be obtained on machine 2 by selecting the path

ontaining arcs (s ′ , B ′ , 4) , (B ′ , D

′ , 3) , and (D

′ , G

′ , 2) , for a duration

f 30 × 1 + 10 × 1 . 1 + 10 × 1 . 21 = 53 . 1 . Note that applying the easy

eduction procedure would not prevent any arc to be generated.

An optimal solution provided by an ILP solver selects arcs

s, B, 3) and (B, E, 1) in machine 1 and arcs (s ′ , B ′ , 4) and (B ′ , E ′ , 2)

n machine 2 for a total makespan of 41. There exist other optimal

olutions with a makespan equal to 41, such as the one obtained

y selecting arcs (s, B, 3) and (s, C, 1) in machine 1 and arcs

 s ′ , B ′ , 4) and (B ′ , E ′ , 2) in machine 2.

In the following, we propose a significantly more powerful

eduction criterion by assigning an “expiration date” to each node.

efore explaining in details the concept of expiration date, we first

eed to observe that, as k ≥ 1 ,

d i j − 1) + k ≤ (d i j − 1) k + k = d i j k,

r, in other words, that by approximating d i j k with (d i j − 1) + k ,

e obtain a lower bound on the accumulated delay factor. This

pproximation has a nicer mathematical structure, because it

emoves the multiplicative aspect of the delay factors. We can

ow predict that, by processing a set S of jobs whose sum of

deal processing times is l (i.e.,
∑

j∈ S p i j = l) after a set of jobs

′ whose accumulated delay factor is k (i.e.,
∏

j∈ S ′ d i j = k), then

t least l(k − 1) additional time can be solely imputed to the

achine deterioration caused by the jobs in S ′ . As a result, if

(k − 1) is greater than or equal to the time necessary to perform

 maintenance activity t i (i.e., if l ≥ t i
(k −1)

), then it is better to

chedule a maintenance activity between S’ and S than to schedule

he two sets of jobs successively one after the other.

The “natural” expiration date of a node on machine i is equal

o
t i

(k −1)
. When we create a new node d i j k through arc (k , d i j k , j) ,

e compare its natural expiration date
t i

(d i j k −1)
with the “real”

xpiration date of its predecessor (i.e., node k) minus the ideal pro-

essing time of job j and we keep the minimum among the two

alues. If node d i j k was already defined, then its expiration date

ecomes the maximum between its current expiration date and

he expiration date it would have had if the node was just created.

xample 2. Let us consider an instance with a single machine

aving maintenance time t 1 = 6 , and seven identical jobs having

deal processing time p 1 j = 100 and delay factor d 1 j = 1 . 01 , for
9
j = 1 , . . . , 7) . After creating the initial node s , we process each

ob in turn and obtain:

• node n 1 = 1 . 01 , expiration date =

6
1 . 01 −1 = 600

• node n 2 = 1 . 01 2 , expiration date = min { 600 − 100 , 6
1 . 01 2 −1

} ≈
298 . 507463

• node n 3 = 1 . 01 3 , expiration date = min { 298 . 507463 −
100 , 6

1 . 01 3 −1
} ≈ 198 , 0132669

• node n 4 = 1 . 01 4 , expiration date = min { 198 . 0132669 −
100 , 6

1 . 01 4 −1
} ≈ 98 . 0132669

No further nodes need to be created because the remaining

obs are longer than the expiration date. Note that if we only

pplied the reduction criterion from Property 1 we would have

lso created node 1 . 01 5 . An optimal solution schedules the first

our jobs on the machine followed by a maintenance activity and

hen the last three jobs, for a total duration time of 715.0501.

he selected arcs are (s, n 1 , 1) , (n 1 , n 2 , 2) , (n 2 , n 3 , 3) , (n 3 , n 4 , 4) ,

s, n 1 , 5) , (n 1 , n 2 , 6) , (n 2 , n 3 , 7) .

The arc flow-based model involves an exponential number of

onstraints O (
∑

i ∈ M

|N i |) and an exponential number of variables

 (
∑

i ∈ M

|A i |) . Empirically, these numbers grow at a reasonable

ace as the number of jobs increases, because (i) the reduction

riterion removes a significant number of arcs and nodes, and (ii)

nly a few supplementary nodes need to be created when generat-

ng the arcs for job j if the arcs of another job j ′ with similar delay

actor (i.e., d i j = d i j ′) were generated previously. Despite its scala-

ility, the model becomes too large for instances with 10 machines

nd 200 jobs. In the next section, we introduce a metaheuristic

ble to find good quality solutions for large size instances.

. Metaheuristic algorithm

In this section, we describe the ILS algorithm that we devel-

ped to look for high-quality solutions in quick time as the ILP

ormulations can be long to provide a feasible solution, especially

or large size instances. The ILS uses a greedy algorithm to build

n initial solution, and five local search procedures to improve it.

In the following, we call S a set of jobs, and (S, i) the block ob-

ained on machine i if it had to process the jobs in S in the order

etermined by Property 2 . The greedy procedure uses the notion

f “temporary blocks”, which are blocks that may be changed later

n the algorithm, and the notion of “final blocks”, which are blocks

hat are parts of the initial solution. The greedy procedure works

s follows. First, we assign an empty set S i of jobs to each machine

 ∈ M. Then, for each job j, we determine the machine i whose

emporary block is the best fitted to perform j, (i.e., the one for

hich (S i ∪ { j} , i) has minimum duration), and add j to S i . After

hat, we try to form a temporary block (S , i). If the block satisfies

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

P

t

t

a

u

a

t

l

p

p

i

t

t

t

b

l

i

m

�

�

t

a

g

c

t

a

m

e

6

R

p

n

p

u

r

a

o

r

t

d

i

∀

t

d

u

a

m

c

M

T

G

L

E

s

o

n

e

T

t

i

w

a

W

f

R

6

h

m

t

“

t

i

t

l

t

i

“

m

l

a

c

“

“

roperty 1 , we simply continue the job assignment. If, instead,

he block does not satisfy the property, then (S i , i) is split into

wo smaller blocks, (S ′
i
, i) and (S ′′

i
, i), separated by a maintenance

ctivity. We consider the first block (S ′
i
, i) as a final block and

pdate job set S i so that it now contains only the jobs in S ′′
i

. Once

ll the jobs have been processed, we transform all the remaining

emporary blocks S i into final blocks.

The initial solution is improved by means of the following five

ocal search procedures:

1. Swap blocks: Swap two blocks (S 1 , i) and (S 2 , i
′) to obtain

(S 1 , i
′) and (S 2 , i). Machine i is the machine with the largest

workload, and block (S 1 , i) is the block of machine i with the

largest duration. Block (S 2 , i
′) is chosen randomly from another

machine. The procedure performs the first swap that improves

the makespan, if any, so working with a first improvement

policy. It tries to swap block (S 1 , i) with at most �̄1 other

blocks (S 2 , i
′).

2. Move job intra: Select two blocks (S 1 , i) and (S 2 , i) on the

same machine, and move one job j from the first block to the

second one, so as to obtain blocks (S 1 \ { j} , i) and (S 2 ∪ { j} , i).
The procedure works with first improvement policy and tries

to move at most �̄2 jobs j. At each iteration, machine i , job j,

and the two blocks S 1 and S 2 are chosen randomly.

3. Swap jobs intra: Select two blocks (S 1 , i) and (S 2 , i) on

the same machine, and swap two jobs j ∈ S 1 and j ′ ∈ S 2 , so

as to obtain blocks (S 1 ∪ { j ′ } \ { j} , i) and (S 2 ∪ { j} \ { j ′ } , i). The

procedure works with first improvement policy and tries to

swap at most �̄3 jobs j and j ′ . At each iteration, machine i , jobs

j and j ′ , and the two blocks S 1 and S 2 are chosen randomly.

4. Move block: Select the block with the largest duration from

the machine with the largest workload (S 1 , i), and move it to

another machine i ′ so as to create block (S 1 , i
′). The procedure

works in first improvement, and tries to move block S 1 to

at most �̄4 machines. At each iteration, the machine i ′ with

smallest workload (and that was not chosen in a previous

iteration) is selected.

5. Move job inter: Select two blocks (S 1 , i) and (S 2 , i
′) on two

distinct machines, and move one job j from the first set to the

second one, so as to obtain blocks (S 1 \ { j} , i) and (S 2 ∪ { j} , i ′).
The procedure finishes after a given number of iterations �̄5 .

The procedure stops as soon as the makespan is improved and

tries to move at most �̄5 jobs j. At each iteration, machines i

and i ′ , job j, and the two blocks S 1 and S 2 are chosen randomly.

The local search procedures are called one after the other. Each

rocedure i (i = 1 , . . . , 5) is called �̄i times. Once the local search

hase is terminated, we call the following perturbation procedure

n order to diversify the solution:

• Perturb: Randomly remove 20% of the blocks and assign, one

at a time, each of the removed jobs to the block with small-

est accumulated delay factor in the machine with smallest

workload.

In each of the aforementioned procedures, it is possible

hat a block has to be split into two smaller blocks if, after

he job reordering from Property 2 , the algorithm determines

hat a maintenance activity should be performed within the

lock because of Property 1 . The metaheuristic stops once 20

ocal search/perturbation cycles were performed without any

mprovement in the incumbent solution. Preliminary experi-

ents were used to determine the following parameters values:
¯

1 = 5 , �̄2 = 10 , �̄3 = 5 , �̄4 =

| M|
2 , �̄5 = 10 , �̄1 = 10 , �̄2 = 30 ,

¯
3 = 30 , �̄4 = 10 , and �̄5 = 30 . This approach is different from

he heuristics proposed by Ruiz-Torres et al. (2017) , as (1) we use

 perturbation component that prevents the objective function to

et stuck in a local optimum, (2) our procedure includes a random
10
omponent to avoid repeating a specific local search move in case

he same solution is reached twice during the search procedure,

nd (3) our moves are suitable for the general case of non-identical

achines, while some of the constructive heuristics of Ruiz-Torres

t al. (2017) use the fact that the machines are identical.

. Computational experiments

To test the performance of the methods we proposed for the

 | Sdd,mnt | C max , we generated a set of instances by adopting the

arameters already used by Ruiz-Torres et al. (2017) , namely:

umber of machines m taking value 2, 5, 10, or 20; ratio of jobs

er machine n/m taking value 10, 15, or 20; delay factor d i j

niformly distributed in the range { 1 . 01 , 1 . 02 , . . . , 1 . 06 } or in the

ange { 1 . 05 , 1 . 06 , . . . , 1 . 10 } ; integer duration t i of a maintenance

ctivity i uniformly distributed in either [1,3] or in [1,9]. For each

f the 4 × 3 × 2 × 2 = 48 configurations, we generated 10 instances

esulting in 480 instances in total. In each of the 480 instances,

he (integer) ideal processing time of a job p i j was uniformly

istributed in range [1,100]. In our experiments, the ideal process-

ng time of a job was the same on every machine (i.e., p i j = p i ′ j ,
 i, i ′ ∈ M, j ∈ J) , but, unlike Ruiz-Torres et al. (2017) , the duration of

he maintenance activities and of the delay factors were machine-

ependent. This decision was taken in order to make the machines

nrelated, while preventing trivial decision making (e.g., if p 11 = 1

nd p 21 = 100 , then it is unlikely that job 1 gets assigned to

achine 2). All our instances can be downloaded at https://github.

om/mdelorme2/Scheduling _ Sequence _ Dependent _ Deterioration _

aintenance _ Events _ Data . All our algorithms were coded in C++ .
he experiments were run on an Intel Xeon E5-2680W v3, 2.50

igaHertz with 192 GigaByte of memory, running under Scientific

inux 7.5, and Gurobi 7.5.2 was used to solve the MILP models.

ach instance was run using a single core with a time limit of 3600

econds. We do not compare our models and metaheuristic with

ther approaches from the literature, because previous works did

ot consider maintenance as in Santos and Arroyo (2017) or Ding

t al. (2019)) or were designed for identical machines as in Ruiz-

orres et al. (2017) . We mention, however, that an adaptation of

he approach in Ruiz-Torres et al. (2017) developed to handle non-

dentical machines was investigated in a preliminary version of this

ork (see Mendes & Iori, 2019), but turned out to be computation-

lly outperformed by a preliminary version of our metaheuristic.

e also mention that preliminary computational tests were per-

ormed with FICO Xpress Solver to evaluate the MINLP model of

uiz-Torres et al. (2017) , but the results were not satisfying.

.1. Computational results on small size instances

We first tested each of the four MILP models and the meta-

euristic on the 120 randomly generated instances with 2

achines, and we provide detailed results in Tables 3–6 . In each

able, column “Method” identifies the approach used, column

opt.” gives the number of proven optimal solutions found by

he model, column “# UB is opt.” gives the number of instances

n which the upper bound found by the approach was equal

o the optimal solution value (including the cases in which the

ower bound did not match the upper bound), column “TT” gives

he average execution time (in seconds) required to solve an

nstance (including those terminated by the time limit), column

TP” indicates the average time (in seconds) required to build the

odel, columns “LB” and “UB” indicate, respectively, the average

ower and upper bounds produced, columns “nb. var.”, “nb. cons.”,

nd “nb. nzs” give, respectively, the average number of variables,

onstraints, and non-zero elements in the MILP models, column

LP” gives the average LP-relaxation of the model, and column

gap” gives the average relative gap computed as 100 × UB −LB ,
UB

https://github.com/mdelorme2/Scheduling_Sequence_Dependent_Deterioration_Maintenance_Events_Data

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Table 3

Evaluation of the proposed approaches on instances with 2 machines.

method # opt. # UB is opt. TT TP LB UB nb. var. nb. cons. nb. nzs LP gap

Slot 0 0 3597.9 0 756.37 795.84 7602 7685 44 448 0 4.4

Event 32 47 2791 0 786.57 791.49 2084 4079 17 582 0 0.6

Block 90 103 1084.6 1.3 791.05 791.09 1 393 975 32 12 154 388 790.9196 0.0

Arc flow w/o exp. date 119 120 109.3 0 791.08 791.09 24 889 11 094 99 493 790.9193 0.0

Arc flow 120 120 60.3 0 791.09 791.09 6044 2865 24 113 790.9193 0.0

ILS - 0 0.5 - - 797.75 - - - - -

Table 4

Evaluation on instances with 2 machines, results grouped by n/m ratio.

n/m method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

10 Position 0 3597.6 0 499.1 516.4 3109 3162 17 888

Event 20 2135.3 0 513.2 514.8 901 1742 7322

Block 40 138.0 0 514.8 514.8 16 415 22 108 220

Arc flow 40 3.2 0 514.8 514.8 1475 801 5857

ILS - 0.4 - - 520.4 - - -

15 Position 0 3596.7 0 791.0 819.4 7069 7152 41 248

Event 9 2853.9 0 811.5 816.1 1951 3812 16 382

Block 29 1189.4 0.4 815.7 815.8 461 919 32 3 846 625

Arc flow 40 48.0 0 815.7 815.7 4958 2556 197 68

ILS - 0.5 - - 822.1 - - -

20 Position 0 3599.3 0 979.1 1051.7 126 29 127 42 742 08

Event 3 3383.9 0 1035.0 1043.6 3401 668 2 290 42

Block 21 1926.4 3.5 1042.7 1042.8 370 359 0 42 325 083 19

Arc flow 40 129.7 0 1042.8 1042.8 116 99 5236 467 14

ILS - 0.7 - - 1050.8 - - -

Table 5

Evaluation on instances with 2 machines, results grouped by delay factor range.

d i j range method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

[1.01,1.06] Position 0 3597.4 0 740.49 784.51 7602 7685 444 48

Event 6 3369.1 0 774.05 780.42 2084 4079 17 582

Block 35 1797.7 2.6 779.90 779.98 2 744 176 32 24 036 514

Arc flow 60 110.4 0 779.96 779.96 11 023 5196 440 32

ILS - 0.5 - - 788.71 - - -

[1.05,1.10] Position 0 3598.4 0 772.26 807.16 7602 7685 44 448

Event 26 2213.0 0 799.09 802.57 2084 4079 17 582

Block 55 371.5 0 802.20 802.21 43 773 32 272 262

Arc flow 60 10.2 0 802.21 802.21 1064 533 4194

ILS - 0.6 - - 806.79 - - -

Table 6

Evaluation on instances with 2 machines, results grouped by maintenance duration t i .

t i range method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

[1,3] Position 0 3598.7 0 765.25 786.91 7602 7685 44 448

Event 21 2416.9 0 782.16 783.60 2084 4079 17 582

Block 49 915.3 0.1 783.45 783.46 92 834 32 641 860

Arc flow 60 14.1 0 783.46 783.46 1637 895 6486

ILS - 0.6 - - 787.76 - - -

[1,9] Position 0 3597.1 0 747.50 804.77 7602 7685 44 448

Event 11 3165.2 0 790.98 799.38 2084 4079 17 582

Block 41 1253.9 2.6 798.65 798.73 2 695 115 32 23 666 916

Arc flow 60 106.5 0 798.71 798.71 10 451 4834 417 40

ILS - 0.5 - - 807.74 - - -

w

b

d

i

r

t

h

p

t

t

i

here LB is the lower bound provided by the model and UB is the

est solution found by the model.

We observe that the MILP models that use big-M constraints

isplayed poor performance. We opted to keep the two models

n our computational experiments because (1) they are natu-

al extensions of other models proposed in the literature for
11
he R | Sdd,mnt | C max without maintenance, and (2) they outline

ow computationally difficult the problem is in practice. The

osition-based model could not solve a single instance to op-

imality within an hour (relative gap at 4.4% on average), and

he event-based model only solved 32 instances in total – 47

f we count those without proof of optimality (relative gap at

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

0

o

t

r

c

o

t

f

a

v

s

fl

a

b

e

j

a

f

m

t

w

i

s

a

w

I

i

f

(

d

T

s

s

w

b

n

b

f

i

f

g

a

p

(

e

t

r

t

d

T

s

i

(

9

f

b

d

i

s

T

c

1

t

m

o

i

a

6

r

r

i

a

p

i

i

t

0

r

b

c

s

b

(

s

t

o

a

w

s

t

a

W

a

u

t

l

l

o

h

i

a

h

a

t

�

o

fl

e

i

r

t

b

f

.6% on average). This can be explained by the very poor quality

f their continuous relaxation (having value 0), which is due to

he disjunctive constraints. The block-based formulation obtained

elatively good results, as it could solve 90 instances – 103 if we

ount those without proof of optimality (relative gap at 0.005%

n average), but the large number of variables it involved (more

han a million on average), indicates that it is not a viable option

or solving larger instances. The arc flow-based formulation solved

ll the instances in one minute on average, requiring only 60 0 0

ariables on average, and thus appearing as a good candidate for

olving larger instances. The continuous relaxation of both the arc

ow-based and the block-based formulations are very good, but

re almost never equal to an optimal solution. The tiny difference

etween the continuous relaxation of the two models can be

xplained by the fact that a block cannot contain twice the same

ob in the block-based formulation, while this can happen in the

rc flow-based formulation. A similar behavior was already noticed

or the bin packing problem (see Delorme & Iori, 2020).

For comparison purposes, we also ran the arc flow-based for-

ulation without expiration dates. Even though the results we ob-

ained were competitive (119 instances solved to proven optimality

ith an average running time of 2 minutes), using expiration dates

s strictly better as it reduces by approximately 75% the model

ize. We thus adopted the expiration dates in all subsequent tests.

The metaheuristic was extremely fast (less than a second on

verage), and produced good quality solutions as the absolute gap

ith respect to the optimal solution was less than 7 on average.

n the following, we provide more detailed results in which the

nstances are grouped by ratio of jobs per machine (Table 4), delay

actor range (Table 5), and maintenance activity duration range

 Table 6).

The results from Table 4 indicate that instances become more

ifficult to solve as the ratio of jobs per machine n/m increases.

his is particularly evident for the block-based formulation, which

olved all the instances with n/m = 10 but only half of the in-

tances with n/m = 20 , and for the arc flow-based formulation,

hich solved all instances with n/m = 10 in 3 seconds on average

ut took more than 2 minutes on average to solve instances with

/m = 20 . This is not surprising because the number of feasible

locks and the number of relevant intermediary accumulated

actors increases with the number of jobs, resulting in an increase

n the number of variables for both formulations. The big-M

ormulations too obtained better results for n/m = 10 (absolute

aps – computed as the difference between the upper bound

nd the lower bound found by the model – around 17 for the

osition-based and 1.5 for the event-based) than for n/m = 20

absolute gaps around 70 for the position-based and 8.5 for the

vent-based). The metaheuristic was not particularly impacted by

he ratio of jobs per machine, as it obtained an absolute gap with

espect to the optimal solution around 6 for n/m = 10 and equal

o 8 for n/m = 20 .

The results displayed in Table 5 show that instances are more

ifficult to solve when the jobs have smaller delay factors d i j .

his is true for all models (e.g., the block-based formulation could

olve 35 instances with small delay factors, while it could solve 55

nstances with large delay factor) and also for the metaheuristic

as the absolute gap with respect to the optimal solution is around

 for low delay factors while it is around 4.5 for large delay

actors). This behaviour is expected for the arc flow-based and the

lock-based formulations, because the number of jobs per block

ecreases as the delay factors of the jobs increase, thus resulting

n models in fewer variables.

We observe in Table 6 that instances are more difficult to

olve when the maintenance activities t i have longer duration.

his is evident for all models (e.g., the arc flow-based formulation

ould solve all instances with shorter maintenance duration in
c

12
4.1 seconds on average, while it took 40 seconds on average

o solve instances with longer maintenance duration) and the

etaheuristic. This can be explained by the fact that the number

f jobs per block increases as the maintenance activity duration

ncreases, resulting in additional variables for the arc flow-based

nd the block-based formulations.

.2. Computational results on medium and large size instances

We tested the arc flow-based formulation and the ILS on the

emaining instances having 5, 10, and 20 machines. We display the

esults we obtained in Tables 7–9 . In each table, column “group”

ndicates the criterion used to aggregate the instances into groups,

nd column “# inst.” indicates the number of aggregated instances

er group. The other columns are identical to those displayed

n the previous tables. We opted not to report the relative gaps

n this section as the quality of the lower bound obtained by

he arc flow-based model was inconsistent and could even reach

 sometimes when the model was not able to solve the linear

elaxation in an hour. We focus instead on the quality of the upper

ounds provided by the two tested approaches.

We observe in Table 7 that the arc flow-based formulation

ould only solve one instance to optimality among the 120 in-

tances with 5 machines. However, the average absolute gap

etween the upper and lower bounds obtained is very small

around 0.2 on average). The metaheuristic was very fast but the

olutions it obtained were around 10 units longer on average than

hose found by the arc flow-based formulation. Interestingly, we

nly observe a minor impact of the tested parameters on the

bsolute gaps obtained by the arc flow-based formulation:

• The absolute gap is around 0.2 for each ratio n/m ;
• The absolute gap for short delay factors is around 0.3, while it

is around 0.1 for long delay factors;
• The absolute gap for short maintenance duration is around 0.1,

while it is around 0.3 for long maintenance duration.

Similarly to what was noticed for instances with 2 machines,

e observe that the metaheuristic tends to find better quality

olutions for instances with long delay factors and short main-

enance duration, while it is not particularly impacted by the

verage ratio n/m .

In Table 8 , we focus on the 120 instances with 10 machines.

e notice that the arc flow-based formulation could not solve

ny instance to proven optimality. The average gap between the

pper and lower bounds vary significantly depending on the

ested parameters: for instances with short maintenance duration,

ong delay factors, and small n/m ratio, the absolute gap was

ess than 0.8 on average, while it was significantly higher for the

ther instances, even reaching 140 on average for instances with

igh maintenance duration. The behavior of the metaheuristic

s relatively similar to what was observed for instances with 2

nd 5 machines. We notice here for the first time that the meta-

euristic found better solutions (upper bound equal to 790.22 on

verage) than the arc flow-based formulation (upper bound equal

o 804.63 on average). By studying the distribution of parameter

, which we define as the difference between the upper bound

btained by the ILS and the upper bound obtained by the arc

ow-based model (i.e., � = U B ILS − U B AF), we report that � is

qual to −14.41 on average, but its median is equal to 8.87. This

ndicates that U B AF < U B ILS for a majority of instances, but in the

are cases in which U B AF > U B ILS , the difference is significant (up

o approximatively 930). Further analysis outlined that the upper

ound obtained by the arc flow-based model is particularly bad

or instances in which most of the computation time is spent on

omputing the lower bound.

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

Table 7

Evaluation on instances with 5 machines.

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 Arc flow 1 3600 0.1 515.99 516.24 71 613 29 763 28 6201

ILS - 2.1 - - 524.16 - - -

n/m = 15 40 Arc flow 0 3600 0.3 777.55 777.75 224 008 844 30 895 660

ILS - 3.0 - - 787.20 - - -

n/m = 20 40 Arc flow 0 3600 0.6 1038.26 1038.46 478 514 164 100 1 913 558

ILS - 3.8 - - 1049.72 - - -

d i j ∈ [1 , 6] 60 Arc flow 0 3600 0.6 766.14 766.43 491 081 176 263 1 963 948

ILS - 2.6 - - 778.50 - - -

d i j ∈ [5 , 10] 60 Arc flow 1 3600 0 788.40 788.53 25 010 9266 99 664

ILS - 3.3 - - 795.55 - - -

t i ∈ [1 , 3] 60 Arc flow 0 3600 0 772.77 772.91 37 908 16 377 151 257

ILS - 3.3 - - 779.42 - - -

t i ∈ [1 , 9] 60 Arc flow 1 3600 0.6 781.77 782.06 478 182 16 9152 1 912 356

ILS - 2.7 - - 794.63 - - -

Overall 120 Arc flow 1 3600 0.3 777.27 777.48 258 045 92 764 1 031 806

ILS - 3.0 - - 787.03 - - -

Table 8

Evaluation on instances with 10 machines.

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 Arc flow 0 3600 1.2 516.75 517.51 904 542 314 498 3 617 176

ILS - 8.2 - - 541.67 - - -

n/m = 15 40 Arc flow 0 3600 2.4 748.31 774.14 2 033 046 657 109 8 130 689

ILS - 12.1 - - 778.64 - - -

n/m = 20 40 Arc flow 0 3600 6.5 938.12 1122.26 5 040 395 1 450 953 20 159 585

ILS - 17.0 - - 1050.35 - - -

d i j ∈ [1 , 6] 60 Arc flow 0 3600 6.6 686.32 826.40 5 151 331 1 566 014 20 603 831

ILS - 11.1 - - 778.61 - - -

d i j ∈ [5 , 10] 60 Arc flow 0 3600 0.1 782.47 782.87 167 324 49 026 667 801

ILS - 13.8 - - 801.83 - - -

t i ∈ [1 , 3] 60 Arc flow 0 3600 0.4 769.61 770.04 340 493 127 799 1 360 478

ILS - 13.4 - - 777.77 - - -

t i ∈ [1 , 9] 60 Arc flow 0 3600 6.4 699.17 839.23 4 978 162 1 487 241 19 911 155

ILS - 11.5 - - 802.67 - - -

Overall 120 Arc flow 0 3600 3.4 734.39 804.63 2 659 328 807 520 10 635 816

ILS - 12.5 - - 790.22 - - -

Table 9

Evaluation on instances with 20 machines.

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 Arc flow 0 3600 12.9 428.16 630.39 8 771 690 2 584 382 35 082 775

ILS - 35.2 - - 535.29 - - -

n/m = 15 40 Arc flow 0 3600 43.9 587.08 991.11 28 817 601 7 058 348 115 264 422

ILS - 53.2 - - 789.44 - - -

n/m = 20 40 Arc flow 0 3600 94.5 655.55 1283.72 38 341 270 8 760 478 153 577 723

ILS - 83.1 - - 1062.14 - - -

d i j ∈ [1 , 6] 60 Arc flow 0 3600 99.9 328.39 1150.58 49 490 269 12 000 939 198 102 178

ILS - 50.5 - - 787.31 - - -

d i j ∈ [5 , 10] 60 Arc flow 0 3600 1 785.47 786.23 1 130 105 267 866 4 514 435

ILS - 63.9 - - 803.93 - - -

t i ∈ [1 , 3] 60 Arc flow 0 3600 4.2 693.53 851.68 3 555 787 1 134 663 14 217 164

ILS - 59.9 - - 795.08 - - -

t i ∈ [1 , 9] 60 Arc flow 0 3600 96.7 420.33 1085.14 47 064 587 11 134 141 188 399 449

ILS - 54.4 - - 796.16 - - -

Overall 120 Arc flow 0 3600 50.5 556.93 968.41 25 310 187 6 134 402 101 308 307

ILS - 57.2 - - 795.62 - - -

2

r

f

i

p

s

T

a

n

Unsurprisingly, we observe in Table 9 that for instances with

0 machines the arc flow-based formulation also obtains better

esults for instances with short maintenance duration, long delay

actors, and small ratio n/m . The behavior of the metaheuristic

s very satisfactory, as it now outperforms the average solution
13
rovided by the arc flow-based formulation on all types of in-

tances, with a single exception on those with large delay factors.

he average computational effort of the ILS is around one minute,

nd ranges between 35 seconds for n/m = 10 , to 83 seconds for

/m = 20 , on average.

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

7

u

d

o

r

t

p

l

m

b

q

t

t

b

i

f

t

fl

t

t

2

i

r

o

t

d

m

t

c

t

A

m

M

E

E

R

A

A

B

V

C

C

C

C

D

D

D

G

G

G

G

G

J

K

K

K

K

L

L

L

L

M

M

M

M

M

M

M

N

N

. Conclusion

We studied the problem of processing a set of jobs on a set of

nrelated parallel machines by considering sequence-dependent

eterioration and the option of restoring a machine to its full

perational speed by performing a maintenance activity. We

eviewed an integer non-linear programming formulation from

he literature, and introduced four novel mixed integer linear

rogramming formulations. We derived two properties from the

iterature that allowed us to improve the performance of the

odels. In addition, we developed a new metaheuristic approach,

ased on the concept of iterated local search, to provide good

uality solutions for large size instances.

We tested all our approaches with an extensive set of computa-

ional experiments. Among the mathematical models, we observed

hat the arc flow-based formulation was the one providing the

est results on average: it could solve to proven optimality all

nstances with 2 machines, and obtained good quality solutions

or most instances with 5, 10, and 20 machines. We also noticed

hat, due to the large number of variables it requires, the arc

ow-based formulation could have a large optimality gap, and

hus be outperformed by the metaheuristic in terms of running

ime and solution value. This happened mostly on instances with

0 machines. We also outlined specific parameters that made the

nstances easier to solve by our approaches (namely, small n/m

atio, short maintenance time, and long delay factors).

Interesting future research directions concern the development

f a branch-and-price algorithm for the block-based formulation,

he search for a tighter arcflow LP-relaxation (e.g., by avoiding the

uplication of a job in the same block) and the investigation of

aintenance scheduling problems with sequence-dependent de-

erioration with alternative objective functions, such as weighted

ompletion time, weighted earliness or weighted tardiness func-

ions.

cknowledgments

We thank three anonymous referees for their helpful com-

ents. We acknowledge financial support from University of

odena and Reggio Emilia under grant FAR 2018 and from the

ngineering and Physical Science Research Council through grant

P/P029825/1.

eferences

lidaee, B., & Womer, N. (1999). Scheduling with time dependent processing times:

Review and extensions. Journal of the Operational Research Society, 50 , 711–720.
https://doi.org/10.1057/palgrave.jors.2600740 .

raújo, O. , Dhein, G. , & Fampa, M. (2017). Minimizing the makespan on parallel
machines with sequence dependent deteriorating effects. In Xlix sbpo, smposio

brasileiro de pesquisa operacional .

rowne, S., & Yechiali, U. (1990). Scheduling deteriorating jobs on a single processor.
Operations Research, 38 (3), 4 95–4 98. https://doi.org/10.1287/opre.38.3.4 95 .

alério de Carvalho, J. (1999). Exact solution of bin-packing problems using column
generation and branch-and-bound. Annals of Operations Research, 86 , 629–659.

https://doi.org/10.1023/A:1018952112615 .
heng, T., & Ding, Q. (2001). Single machine scheduling with step-deteriorating

processing times. European Journal of Operational Research, 134 (3), 623–630.

https://doi.org/10.1016/S0377-2217(0 0)0 0284-8 .
heng, T., Ding, Q., & Lin, B. (2004). A concise survey of scheduling with time-

dependent processing times. European Journal of Operational Research, 152 (1),
1–13. https://doi.org/10.1016/S0377- 2217(02)00909- 8 .

lautiaux, F., Hanafi, S., Macedo, R., Voge, M.-E., & Alves, C. (2017). Iterative aggrega-
tion and disaggregation algorithm for pseudo-polynomial network flow models

with side constraints. European Journal of Operational Research, 258 (2), 467–477.
https://doi.org/10.1016/j.ejor.2016.09.051 .

lautiaux, F., Sadykov, R., Vanderbeck, F., & Viaud, Q. (2018). Combining dynamic

programming with filtering to solve a four-stage two-dimensional guillotine-cut
bounded knapsack problem. Discrete Optimization, 29 , 18–44. https://doi.org/10.

1016/j.disopt.2018.02.003 .
ell’Amico, M., Delorme, M., Iori, M., & Martello, S. (2019). Mathematical models

and decomposition methods for the multiple knapsack problem. European Jour-
14
nal of Operational Research, 274 (3), 886–899. https://doi.org/10.1016/j.ejor.2018.
10.043 .

elorme, M., & Iori, M. (2020). Enhanced pseudo-polynomial formulations for bin
packing and cutting stock problems. INFORMS Journal on Computing, 32 (1), 101–

119. https://doi.org/10.1287/ijoc.2018.0880 .
ing, J., Shen, L., Lü, Z., & Peng, B. (2019). Parallel machine scheduling with

completion-time-based criteria and sequence-dependent deterioration. Comput-
ers & Operations Research, 103 , 35–45. https://doi.org/10.1016/j.cor.2018.10.016 .

awiejnowicz, S. (2020). A review of four decades of time-dependent scheduling:

Main results, new topics, and open problems. Journal of Scheduling, 23 , 3–47.
https://doi.org/10.1007/s10951- 019- 00630- w .

ilmore, P., & Gomory, R. (1961). A linear programming approach to the cutting-
stock problem. Operations Research, 9 (6), 849–859. https://doi.org/10.1287/opre.

9.6.849 .
ilmore, P. , & Gomory, R. (1963). A linear programming approach to the cutting-s-

tock problem. Operations Research, 11 (6), 863–888 .

raham, R., Lawler, E., Lenstra, J., & Kan, A. R. (1979). Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. In P. Hammer,

E. Johnson, & B. Korte (Eds.), Discrete optimization ii . In Annals of Discrete
Mathematics: 5 (pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)

70356-X .
upta, J., & Gupta, S. (1988). Single facility scheduling with nonlinear process-

ing times. Computers & Industrial Engineering, 14 (4), 387–393. https://doi.org/

10.1016/0360- 8352(88)90041- 1 .
i, M., & Cheng, T. (2008). Parallel-machine scheduling with simple linear deteriora-

tion to minimize total completion time. European Journal of Operational Research,
188 (2), 342–347. https://doi.org/10.1016/j.ejor.2007.04.050 .

ramer, A., Dell’Amico, M., & Iori, M. (2019). Enhanced arc-flow formulations to
minimize weighted completion time on identical parallel machines. European

Journal of Operational Research, 275 (1), 67–79. https://doi.org/10.1016/j.ejor.2018.

11.039 .
ubiak, W., & van de Velde, S. (1998). Scheduling deteriorating jobs to minimize

makespan. Naval Research Logistics, 45 (5), 511–523. https://doi.org/10.1002/(SICI)
1520- 6750(199808)45:5 < 511::AID- NAV5 〉 3.0.CO;2- 6 .

unnathur, A., & Gupta, S. (1990). Minimizing the makespan with late start penal-
ties added to processing times in a single facility scheduling problem. Eu-

ropean Journal of Operational Research, 47 (1), 56–64. https://doi.org/10.1016/

0377- 2217(90)90089- T .
uo, W.-H., & Yang, D.-L. (2008). Minimizing the makespan in a single-machine

scheduling problem with the cyclic process of an aging effect. Journal of the Op-
erational Research Society, 59 (3), 416–420. https://doi.org/10.1057/palgrave.jors.

2602363 .
alla-Ruiz, E., & Voß, S. (2016). Modeling the parallel machine scheduling problem

with step deteriorating jobs. European Journal of Operational Research, 255 (1),

21–33. https://doi.org/10.1016/j.ejor.2016.04.010 .
ee, C.-Y., & Leon, V. (2001). Machine scheduling with a rate-modifying activity. Eu-

ropean Journal of Operational Research, 128 (1), 119–128. https://doi.org/10.1016/
S0377-2217(99)0 0 066-1 .

eung, J.-T., Ng, C., & Cheng, T. (2008). Minimizing sum of completion times for
batch scheduling of jobs with deteriorating processing times. European Journal

of Operational Research, 187 (3), 1090–1099. https://doi.org/10.1016/j.ejor.2006.03.
067 .

u, S., Liu, X., Pei, J., Thai, M., & Pardalas, P. (2018). A hybrid ABC-TS algorithm for

the unrelated parallel-batching machines scheduling problem with deteriorating
jobs and maintenance activity. Applied Soft Computing, 66 , 168–182. https://doi.

org/10.1016/j.asoc.2018.02.018 .
endes, N. , & Iori, M. (2019). A mathematical model and metaheuristic for a job

and maintenance machine scheduling problem with sequence dependent dete-
rioration. In Xlix sbpo, s-mposio brasileiro de pesquisa operacional: 2 .

osheiov, G. (1991). V-shaped policies for scheduling deteriorating jobs. Operations

Research, 39 (6), 979–991. https://doi.org/10.1287/opre.39.6.979 .
osheiov, G. (1994). Scheduling jobs under simple linear deterioration. Computers

& Operations Research, 21 (6), 653–659. https://doi.org/10.1016/0305-0548(94)
90080-9 .

osheiov, G. (1995). Scheduling jobs with step-deterioration; minimizing makespan
on a single- and multi-machine. Computers & Industrial Engineering, 28 (4), 869–

879. https://doi.org/10.1016/0360-8352(95)0 0 0 06-M .

osheiov, G. (1996). �-shaped policies to schedule deteriorating jobs. Journal of the
Operational Research Society, 47 (9), 1184–1191. https://doi.org/10.1057/jors.1996.

146 .
osheiov, G. (1998). Multi-machine scheduling with linear deterioration. INFOR: In-

formation Systems and Operational Research, 36 (4), 205–214. https://doi.org/10.
1080/03155986.1998.11732359 .

osheiov, G., & Sidney, J. (2003). New results on sequencing with rate modification.

INFOR: Information Systems and Operational Research, 41 (2), 155–163. https://doi.
org/10.1080/03155986.2003.11732673 .

esello, V., Delorme, M., Iori, M., & Subramanian, A. (2018a). Mathematical models
and decomposition algorithms for makespan minimization in plastic rolls pro-

duction. Journal of the Operational Research Society, 69 , 326–339. https://doi.org/
10.1057/s41274- 017- 0221- 8 .

esello, V., Subramanian, A., Battarra, M., & Laporte, G. (2018b). Exact solu-

tion of the single-machine scheduling problem with periodic maintenances
and sequence-dependent setup times. European Journal of Operational Research,

266 (2), 498–507. https://doi.org/10.1016/j.ejor.2017.10.020 .

https://doi.org/10.1057/palgrave.jors.2600740
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0002
https://doi.org/10.1287/opre.38.3.495
https://doi.org/10.1023/A:1018952112615
https://doi.org/10.1016/S0377-2217(00)00284-8
https://doi.org/10.1016/S0377-2217(02)00909-8
https://doi.org/10.1016/j.ejor.2016.09.051
https://doi.org/10.1016/j.disopt.2018.02.003
https://doi.org/10.1016/j.ejor.2018.10.043
https://doi.org/10.1287/ijoc.2018.0880
https://doi.org/10.1016/j.cor.2018.10.016
https://doi.org/10.1007/s10951-019-00630-w
https://doi.org/10.1287/opre.9.6.849
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0014
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1016/j.ejor.2007.04.050
https://doi.org/10.1016/j.ejor.2018.11.039
https://doi.org/10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
https://doi.org/10.1016/0377-2217(90)90089-T
https://doi.org/10.1057/palgrave.jors.2602363
https://doi.org/10.1016/j.ejor.2016.04.010
https://doi.org/10.1016/S0377-2217(99)00066-1
https://doi.org/10.1016/j.ejor.2006.03.067
https://doi.org/10.1016/j.asoc.2018.02.018
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0026
https://doi.org/10.1287/opre.39.6.979
https://doi.org/10.1016/0305-0548(94)90080-9
https://doi.org/10.1016/0360-8352(95)00006-M
https://doi.org/10.1057/jors.1996.146
https://doi.org/10.1080/03155986.1998.11732359
https://doi.org/10.1080/03155986.2003.11732673
https://doi.org/10.1057/s41274-017-0221-8
https://doi.org/10.1016/j.ejor.2017.10.020

M. Delorme, M. Iori and N.F.M. Mendes European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; May 27, 2021;2:47]

P

P

P

R

R

R

S

S

W

Y

Y

Z

acheco, J. , Àngel Bello, F. , & Álvarez, A. (2013). A multi-start tabu search method
for a single-machine scheduling problem with periodic maintenance and se-

quence-dependent set-up times. Journal of Scheduling, 16 , 661–673 .
essoa, A. , Uchoa, E. , Poggi, M. , & Rodrigues, R. (2010). Exact algorithm over an arc–

time-indexed formulation for parallel machine scheduling problems. Mathemat-
ical Programming Computation, 2 , 259–290 .

inedo, M. (2016). Scheduling: Theory, algorithms and systems development . New York:
Springer . Fifth Edition

amos, B., Alves, C., & Valério de Carvalho, J. (2020 (forthcoming)). An arc flow

formulation to the multitrip production, inventory, distribution, and routing
problem with time windows. International Transactions in Operational Research .

https://doi.org/10.1111/itor.12765 .
uiz-Torres, A., Paletta, G., & M’Hallah, R. (2017). Makespan minimisation with

sequence-dependent machine deterioration and maintenance events. Interna-
tional Journal of Production Research, 55 (2), 462–479. https://doi.org/10.1080/

00207543.2016.1187776 .

uiz-Torres, A., Paletta, G., & Pérez, E. (2013). Parallel machine scheduling to mini-
mize the makespan with sequence dependent deteriorating effects. Computers &

Operations Research, 40 (8), 2051–2061. https://doi.org/10.1016/j.cor.2013.02.018 .
15
antos, V., & Arroyo, J. (2017). Iterated greedy with random variable neighborhood
descent for scheduling jobs on parallel machines with deterioration effect. Elec-

tronic Notes in Discrete Mathematics, 58 , 55–62. https://doi.org/10.1016/j.endm.
2017.03.008 .

trusevich, V. , & Rustogi, K. (2017). Scheduling with time-changing effects and rate–
modifying activities . Berlin: Springer .

ang, J.-B., & Li, L. (2017). Machine scheduling with deteriorating jobs and modi-
fying maintenance activities. The Computer Journal, 61 (1), 47–53. https://doi.org/

10.1093/comjnl/bxx032 .

ang, D.-L., Cheng, T., Yang, S.-J., & Hsu, C.-J. (2012). Unrelated parallel-machine
scheduling with aging effects and multi-maintenance activities. Computers &

Operations Research, 39 (7), 1458–1464. https://doi.org/10.1016/j.cor.2011.08.017 .
ang, S.-J. (2011). Parallel machines scheduling with simultaneous considerations

of position-dependent deterioration effects and maintenance activities. Journal
of the Chinese Institute of Industrial Engineers, 28 (4), 270–280. https://doi.org/10.

1080/10170669.2011.573006 .

hao, C., & Tang, H. (2010). Single machine scheduling with general job-dependent
aging effect and maintenance activities to minimize makespan. Applied Mathe-

matical Modelling, 34 (3), 837–841. https://doi.org/10.1016/j.apm.20 09.07.0 02 .

http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0037
https://doi.org/10.1111/itor.12765
https://doi.org/10.1080/00207543.2016.1187776
https://doi.org/10.1016/j.cor.2013.02.018
https://doi.org/10.1016/j.endm.2017.03.008
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00372-6/sbref0042
https://doi.org/10.1093/comjnl/bxx032
https://doi.org/10.1016/j.cor.2011.08.017
https://doi.org/10.1080/10170669.2011.573006
https://doi.org/10.1016/j.apm.2009.07.002

	Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events
	1 Introduction
	2 Literature review
	3 Problem description
	4 Mathematical models
	4.1 Non-linear position-based formulation
	4.2 Linearized position-based formulation
	4.3 Event-based formulation
	4.4 Block-based formulation
	4.5 Arc flow-based formulation

	5 Metaheuristic algorithm
	6 Computational experiments
	6.1 Computational results on small size instances
	6.2 Computational results on medium and large size instances

	7 Conclusion
	Acknowledgments
	References

