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Abstract: Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited
disorders resulting from defects in two different enzymes of the heme biosynthetic pathway, i.e., fer-
rochelatase (FECH) and delta-aminolevulinic acid synthase-2 (ALAS2), respectively. The ubiquitous
FECH catalyzes the insertion of iron into the protoporphyrin ring to generate the final product, heme.
After hemoglobinization, FECH can utilize other metals like zinc to bind the remainder of the proto-
porphyrin molecules, leading to the formation of zinc protoporphyrin. Therefore, FECH deficiency in
EPP limits the formation of both heme and zinc protoporphyrin molecules. The erythroid-specific
ALAS2 catalyses the synthesis of delta-aminolevulinic acid (ALA), from the union of glycine and
succinyl-coenzyme A, in the first step of the pathway in the erythron. In XLP, ALAS2 activity in-
creases, resulting in the amplified formation of ALA, and iron becomes the rate-limiting factor for
heme synthesis in the erythroid tissue. Both EPP and XLP lead to the systemic accumulation of
protoporphyrin IX (PPIX) in blood, erythrocytes, and tissues causing the major symptom of cuta-
neous photosensitivity and several other less recognized signs that need to be considered. Although
significant advances have been made in our understanding of EPP and XLP in recent years, a com-
plete understanding of the factors governing the variability in clinical expression and the severity
(progression) of the disease remains elusive. The present review provides an overview of both
well-established facts and the latest findings regarding these rare diseases.

Keywords: erythropoietic protoporphyria; X-linked protoporphyria; phototoxicity; liver disease;
anemia; inflammation; osteoporosis

1. Introduction

Protoporphyria (PP) is a rare genetic metabolic disorder caused by inborn defects
in enzymes of the heme-biosynthetic pathway. The first comprehensive description of
the disease was published by Magnus et al. in 1961 [1]. Two clinically indistinguishable
forms are recognized: erythropoietic protoporphyria (EPP, MIM 177000) and X-linked
protoporphyria (XLP, MIM 300752). EPP results from the deficiency of ferrochelatase
(FECH, EC 4.99.1.1), the final enzyme in the heme-biosynthetic pathway [2]. XLP, a less
common condition, results from the genetically upregulated activity of the erythroid-
specific aminolevulinic acid synthase (ALAS2, EC 2.3.1.27), the first enzyme of the heme-
biosynthetic pathway in the erythroid cells [3].
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EPP is an autosomal recessive condition [4] that occurs because of a loss-of-function
mutation in one allele of the FECH gene, which is mostly accompanied by a low expression
FECH genetic variant (c.315–48C) in the other allele, leading to a 70% decrease in the
enzyme activity [5]. In a recent paper, it has been shown that this variant is linked to a
single haplotype encompassing the first 20 Kb of the FECH gene. Among all the variants
included in this haplotype, association analysis has revealed the GTC haplotype to be the
most common (c.1–252G, c.68–23T, c.315–48C), with TC haplotype occurring in only one
case [6]. In the same paper, the authors concluded that the c.315–48 C variant in isolation is
necessary but not sufficient to cause an overt disease even when inherited in homozygosis.
Rarely, patients can inherit bi-allelic loss-of-function mutations in the FECH gene, which
leads to a more severe form of the disease and accounts for about 4% of the cases in Europe.
In these patients, the majority of the mutations are missense and inherited in compound
heterozygosity [7].

XLP occurs due to gain-of-function mutations that are localized in the terminal exon
of the X-linked ALAS2 gene [8]; this region encodes for the carboxyl-terminal portion
of the enzyme, which is crucial for its activity and stability [9]. All male carriers are
affected; however, in heterozygous females with XLP, the random X-inactivation pattern
directly influences the penetrance and the severity of the phenotype [10]. Recently, an
autosomal dominant mutation in the CLPX gene, a modulator of ALAS2 activity, was also
reported [11].

EPP and XLP cause the accumulation of protoporphyrin molecules in the circulating
erythrocytes and plasma, which are subsequently taken up by the liver and vascular en-
dothelium, including the superficial skin vasculature [12,13]. The protoporphyrin molecules
are photodynamic and absorb light radiation of the visible blue-violet light in the Soret
band and the long-wave UV region (to a lesser degree) [14]. When exposed to sunlight, they
are photoactivated, which triggers singlet oxygen-mediated radical reactions, leading to
tissue and vessel damage, activation of the complement system, and release of histamines
and chemotactic factors [15].

EPP and XLP are diagnosed based on the biochemical confirmation of total erythrocyte
protoporphyrin (ePP), metal-free protoporphyrin IX (PPIX), and zinc bound protoporphyrin
(ZnPP) [16]. FECH deficiency in EPP leads to high ePP levels that are predominantly PPIX
(85% to 100%) with a low amount of ZnPP (Figure 1A). In contrast, XLP, with preserved
FECH and increased ALAS2 activity, leads to an increase in the PPIX (50% to 85%) and ZnPP
levels (Figure 1B). Plasma protoporphyrin molecules are also elevated, with a characteristic
fluorescent peak from 632 to 636 nm (Figure 1C); however, urinary protoporphyrin levels are
normal [17]. EPP has been described in patients worldwide, with an estimated prevalence
ranging from 1:75,000 in the Netherlands to 1:200,000 in the United Kingdom [18]. Among
these XLP accounts for about 2–5% of the cases in Europe [19,20] and approximately 10%
of the cases in the United States [8].
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Figure 1. Protoporphyrin detection. (A) Chromatographic profile of erythrocyte porphyrins from 
an EPP patient. (B) Chromatographic profile of erythrocyte porphyrins from an XLP patient. (C) 
Plasma fluorimetric emission scanning at high (black line ) and low (red line) concentrations. PPIX: 
metal-free protoporphyrin IX and ZnPP: zinc protoporphyrin. 

Figure 1. Protoporphyrin detection. (A) Chromatographic profile of erythrocyte porphyrins from an
EPP patient. (B) Chromatographic profile of erythrocyte porphyrins from an XLP patient. (C) Plasma
fluorimetric emission scanning at high (black line ) and low (red line) concentrations. PPIX: metal-free
protoporphyrin IX and ZnPP: zinc protoporphyrin.
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2. Cutaneous Manifestations

Protoporphyria (PP) presents itself as acute, painful phototoxicity on sun-exposed
areas starting at infancy or childhood [21]. The mean age of the onset of symptoms is four
years [13]. However, often a wide discrepancy is reported between the common median
age of disease onset and the diagnosis (frequently in the adult age) due to the rarity of the
disease and the variability of symptoms [22]. Late-onset cases, with PP first manifesting
after 40 years of age, have been described in association with myelodysplastic syndrome,
although cases without this association have also been detected [23]. Photosensitivity
manifests in early spring, summer, and early autumn. Poh-Fitzpatrick [24] described
the ‘priming phenomenon’, according to which, first sun exposure results in a moderate
reaction that might be followed by severe long-lasting reactions during subsequent days
if exposure is repeated even for a very short time. Patient photosensitivity might also be
aggravated by heat exposure or temperature gradients [25].

The clinical presentation in males and females is similar. Any sun-exposed area can be
affected; however, the back of the hands and face are most commonly involved. The pain is
usually preceded by tingling, itching, and burning sensations of the skin, occurring within
minutes of sun exposure in autumn and winter as well. Patients can develop erythema
and edema of the sun-exposed skin (Figure 2A,B). PP may also be manifested as solar
urticaria. Vesicles or bullous lesions are uncommon in this disorder, but rarely, patients
may present these symptoms (Figure 2C) in a rather acute form that distinguishes them
from other cutaneous porphyria conditions, where they appear after a longer delay [13]. In
a study, blistering was self-reported by about 26% of the patients [26]. Multiple episodes of
acute photosensitivity may lead to chronic changes of sun-exposed skin (lichenification,
loss of lunulae of the fingernails, ecchymoses, petechiae, and minor scarring on the face and
vertical grooving of the lips) (Figure 2D) [27]. Severe scarring, hypo or hyperpigmentation,
skin friability, and hirsutism are not typically observed [13]. Palmar keratoderma has been
reported in some individuals with two loss-of-function FECH mutations [28].

Diagnostics 2022, 12, 151 4 of 18 
 

 

2. Cutaneous Manifestations 
Protoporphyria (PP) presents itself as acute, painful phototoxicity on sun-exposed 

areas starting at infancy or childhood [21]. The mean age of the onset of symptoms is four 
years [13]. However, often a wide discrepancy is reported between the common median 
age of disease onset and the diagnosis (frequently in the adult age) due to the rarity of the 
disease and the variability of symptoms [22]. Late-onset cases, with PP first manifesting 
after 40 years of age, have been described in association with myelodysplastic syndrome, 
although cases without this association have also been detected [23]. Photosensitivity 
manifests in early spring, summer, and early autumn. Poh-Fitzpatrick [24] described the 
‘priming phenomenon’, according to which, first sun exposure results in a moderate reac-
tion that might be followed by severe long-lasting reactions during subsequent days if 
exposure is repeated even for a very short time. Patient photosensitivity might also be 
aggravated by heat exposure or temperature gradients [25]. 

The clinical presentation in males and females is similar. Any sun-exposed area can 
be affected; however, the back of the hands and face are most commonly involved. The 
pain is usually preceded by tingling, itching, and burning sensations of the skin, occurring 
within minutes of sun exposure in autumn and winter as well. Patients can develop ery-
thema and edema of the sun-exposed skin (Figure 2A,B). PP may also be manifested as 
solar urticaria. Vesicles or bullous lesions are uncommon in this disorder, but rarely, pa-
tients may present these symptoms (Figure 2C) in a rather acute form that distinguishes 
them from other cutaneous porphyria conditions, where they appear after a longer delay 
[13]. In a study, blistering was self-reported by about 26% of the patients [26]. Multiple 
episodes of acute photosensitivity may lead to chronic changes of sun-exposed skin (li-
chenification, loss of lunulae of the fingernails, ecchymoses, petechiae, and minor scarring 
on the face and vertical grooving of the lips) (Figure 2D) [27]. Severe scarring, hypo or 
hyperpigmentation, skin friability, and hirsutism are not typically observed [13]. Palmar 
keratoderma has been reported in some individuals with two loss-of-function FECH mu-
tations [28]. 
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that cause sunburn (UVB), can pass through window glass. Studies have reported that 
UVA phototest positivity is associated with high PPIX concentration [30]. Clinical mani-
festations are highly variable, with some patients unable to tolerate even a few minutes of 

Figure 2. Cutaneous manifestations. (A) Edema. (B) Erythema. (C) Vesicles and bullous lesions. (D)
Scarring of sun exposed areas.

In PP patients, the skin is more sensitive to longer ultraviolet wavelengths (UVA) and
visible light [29]; the wavelength of light that causes skin reactions in PP, unlike those that
cause sunburn (UVB), can pass through window glass. Studies have reported that UVA
phototest positivity is associated with high PPIX concentration [30]. Clinical manifestations
are highly variable, with some patients unable to tolerate even a few minutes of sun
exposure and some able to tolerate several hours of sun exposure. Most patients develop
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symptoms within 30 min of sun exposure. The pain is severe, and the symptoms may seem
out of proportion to the skin lesions or the lack of them. Recovery from symptoms may take
up to 4–7 days. Symptoms may also vary based on environmental conditions, including
season, cloud cover, the intensity and extent of sun exposure, and the time of the day. With
time, most patients can recognize the prodromal symptoms of PP (e.g., itching and tingling)
which serve as a warning sign to seek shade. Patients also develop a conditioned behavior
of sun avoidance by using protective clothing, shade, and tinted windows. This might
impact their daily activities, such as missing school or work [13].

Histological examination of acute lesions shows epidermal vacuolization and inter-
cellular edema in addition to endothelial vacuolization and cytolysis in the superficial
blood vessels of the skin, without any other alterations of the surrounding dermis. Pro-
gressively, the deposition of PAS1 hyaline material around dermal blood vessels results
in the thickening of capillary basement membranes. Electron microscopic examination of
chronically exposed skin revealed progressive reduplication of the basement membrane
of the superficial vessel walls, which is caused by repeated endothelial photoinduced
damage. These lesions result from a photodynamic oxygen-dependent reaction, where
protoporphyrin deposited on the skin that diffuses from the dermal vasculature acts as
the chromophore [25]. Differential diagnoses include phototoxic drug reactions, hydroa
vacciniforme, solar urticaria, contact dermatitis, angioedema, and lupus erythematosus.
Chronic lesions should be differentiated from lipoid proteinosis [12].

3. Liver Involvement

Even though the cutaneous involvement of PP is the most debilitating condition
for the majority of the patients, a small but significant percentage of the patients suffer
from liver disease due to progressive deposition and accumulation of insoluble PPIX in
hepatocytes and bile canaliculi [31]. PPIX is usually excreted into the bile and a part of
this is absorbed by the intestine and returned to the liver as part of the enterohepatic
circulation [32]. Excess PPIX can crystallize, forming stones and exerting a cholestatic effect
on the liver, which leads to architectural changes in the hepatobiliary system that range
from mild inflammation to fibrosis and cirrhosis [33]. Liver injury causes impairment of
PPIX biliary excretion, resulting in a vicious cycle of further PPIX accumulation in plasma
and increased PPIX-mediated toxicities. PP patients can also develop severe abdominal
pain along with back pain and proximal motor neuropathy due to liver injury [34]. This so-
called protoporphyric hepatopathy can be a serious complication of PP, potentially leading
to acute and rapidly progressive liver failure and the need for liver transplantation [35].

Four degrees of hepatobiliary disease in patients with EPP have been described:
cholelithiasis in young individuals (formation of biliary gallstones), mild parenchymal liver
disease (elevation of necrosis and stasis indices), progressive hepatocellular disease, and
acute cholestatic liver failure [36,37].

Approximately 5–20% of PP patients show clinical symptoms of liver disease, with
hepatic failure occurring in 1–5% of the patients [36,37]. Through abdominal ultrasonogra-
phy and transient elastography in a cohort of 114 adult patients, a recent study determined
the prevalence of liver steatosis (29%) and liver stiffness (9.6%). Although these condi-
tions occur at a similar rate in the general population, liver injury in PP patients might be
correlated with increased erythrocyte PPIX levels.

Moreover, the same study confirmed a high prevalence of cholelithiasis (25.7%), while
abnormal levels of liver enzymes (transaminases, alkaline phosphatase and γ-glutamyl
transferase) were found in 6.2% of the PP patients [38]. However, normal liver function
tests have also been reported in patients with PP-related fibrosis and cholestasis [39].

Even in early PP, ultrastructural damage associated with protoporphyrin crystals has
been described in hepatocyte nuclei, endoplasmic reticulum, plasma membranes, and bile
canaliculi [40]. Fluorescent birefringence studies have revealed the presence of significant
amounts of intracellular protoporphyrin precipitates in liver samples of PP patients [37,41].
A mild accumulation of α1-antitrypsin has also been reported in Kupffer cells, but not in
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hepatocytes. However, no hemosiderin or copper was detectable by special stains [42]. A
recent study demonstrated the unique property of porphyrins to cause organelle-selective
protein oxidation and aggregation, which is thought to be a major mechanism of cellular
injury in porphyria [43]. As internal organs are not exposed to light, photosensitized
porphyrin-protein aggregation is not applicable; thus, an alternative porphyrin-mediated
cellular damage was proposed, at least for hepatocytes [44]. In this study, the authors re-
ported that a light-independent porphyrin-mediated protein aggregation occurs in internal
organs after secondary triggers of oxidative stress, such as inflammation or other injuries.
This, in turn, leads to the formation of ROS and protein oxidation. Porphyrins then bind to
the oxidized proteins further promoting protein aggregation.

Animal studies have shown that excessive PPIX exposure can result in periportal
or septal fibrosis accompanied by an atypical ductular reaction [45]. Paradoxically, an
unimpaired bile flow was reported and biliary bile salt secretion was four times higher in
EPP mice than in controls. Moreover, there was a two-fold increase in the bile salt/lipid
ratio [46]. PPIX binds to bile components and disrupts the physiological equilibrium of
phospholipids, bile acids, and cholesterol present in bile. Some studies have proposed
that PPIX retention in hepatocytes and Kupffer cells with a consequent lower biliary PPIX
efflux and the formation of less lipid-free bile acid could prevent the development of liver
complications [47].

The precise mechanisms responsible for liver failure are not fully understood; however,
it has been hypothesized that the ABCG2-dependent delivery of PPIX to the biliary system,
causing bile duct blockage, could play an important role [48]. The authors of this paper
demonstrated that ABCG2 transporter deficiency could protects against PP-associated
hepatotoxicity by modulating PPIX distribution, metabolism, and excretion. Moreover, the
decrease of PPIX distribution on the skin also prevents PP-associated phototoxicity.

Since there is no clear relationship between the genetic defect responsible for PP and
hepatic accumulation of PPIX, a few researchers have proposed that additional genetic
factors might be involved in the pathogenesis of this rare complication [49]. However, the
identification of the factors determining the individual predisposition to liver involvement
is still an active area of research. The loss of the porphyrin transporter ABCB6 was reported
to exacerbate liver damage in a Fech-deficient mouse model with extensive deposits of
protoporphyrin crystals in hepatocytes, signs of parenchymal disarray, higher total serum
bilirubin levels, and increased levels of markers of liver injury and inflammation. In the
same study, an EPP patient with fatal liver failure harbored a common variant of ABCB6
(T521S) that was found by in vitro experiments to cause the loss of the protein [50]. Due to
a small cohort of analyzed patients, the potential contribution of candidate transporters in
the development of PP-associated liver disease needs further investigation.

4. Anemia

A mild hypochromic, microcytic anemia has been reported in 33% of men and 48%
of women with PP [51]. However, the presence of iron deficiency remains unclear. A two-
thirds decrease in the iron stores (assessed by serum ferritin) of PP patients was observed.
However, soluble transferrin receptor-1 and iron concentrations in serum were reported to
be normal, suggesting that erythropoiesis is not limited by iron supply [51,52]. Moreover,
an inappropriate increase was not observed in the hepcidin level in both serum and urine,
thus excluding a decreased enteral iron absorption [53]. Finally, the iron deficiency in these
disorders is not related to chronic inflammation or iron loss [54]. A positive correlation
between erythrocyte PPIX and serum transferrin (Tf) level was described in a mouse
model of EPP [55], suggesting a higher mobilization of tissue iron stores to meet the
requirement of erythropoiesis. Studies have shown a negative correlation of PPIX with iron
and Tf saturation in PP patients, leading to the conclusion that PPIX stimulates the hepatic
synthesis of Tf and influences distribution of the iron in peripheral iron stores such as the
spleen, and the bone marrow [52]. However, a protective role of iron deficiency cannot be
completely excluded [56].
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5. Vitamin D Deficiency and Osteoporosis

Vitamin D belongs to the category of fat-soluble vitamins and can promote the absorp-
tion of calcium and phosphorous, thereby influencing the bone mineralization. However,
in the last decade, various other functions of vitamin D have been reported. Vitamin D is
measured in the body by determining the levels of 25-hydroxycholecalciferol (25[OH]D)
and values below 20 ng/mL (50 nmol/L) are considered inadequate [57]. The optimal
serum concentration of 25(OH)D must exceed 30 ng/mL. Since sunlight is the major source
of vitamin D, lower latitude and higher intensity of sunlight have been associated with
a lower risk of vitamin D deficiency [58–60]. Assuming that PP patients avoid the sun, it
is important to assess the concentration of vitamin D to prevent bone damage and other
health problems linked to its deficiency.

In an uncontrolled study, the vitamin D level of 201 PP patients was analysed. The
researchers collected the samples for seven months, i.e., between January and July, in
order to monitor the levels in the winter and summer seasons. In general, low levels of
vitamin D were detected in both seasons, with a slight increase in summer. The mean of
serum 25(OH)D increased for every month in the observation time, from 15.5 to 21.3 ng/mL.
Overall, results indicated that 34 patients (17%) were deficient and 126 (63%) had insufficient
levels of vitamin D [61].

Similar results were obtained in a cross-sectional study on 48 Dutch PP patients during
the period between June and November. Twenty-two patients (46%; 15 males and 7 females)
were deficient in vitamin D, and there was a significant difference in mean serum 25(OH)D
between female and male patients [62].

A longitudinal controlled prospective cohort study was conducted in the UK on 53 PP
patients and 109 controls across different seasons. The results showed a lack of 25(OH)D
during summer and 47% of the PP samples showed a lower level of vitamin D compared
to the 18% of the control samples [63].

A lack of vitamin D leads to osteoporosis, and to investigate further this condition,
a bone mineral density (BMD) test was performed with four males and six females. The
results showed that the lumbar T-score median levels were in the osteopenia range in both
female and males [64]. These results were confirmed in a study performed with 44 PP
patients. Osteopenia was present in 36% and osteoporosis in 23% of the patients [65].

6. Systemic Inflammation

The biological process that leads to a phototoxic reaction in PP patients has not been
completely elucidated. Thunell et al., in 2000, first hypothesized that PPIX excitated at
410 nm leads to singlet oxygen (1O2*) mediated damage of endothelial cells [66]. The pho-
todamage leads to the stimulation of an inflammatory response, occurring via complement
system (CS) activation and mast cell degranulation, with exocytosis of vasoactive mediators.
The CS comprises a group of 50 proteins, and as a part of the innate immune system, it can
be activated through three different pathways: classical, lectin, and alternative (also known
as the properdin pathway) [67]. A few studies based on in vitro experiments in both animal
and human serum have focused on the CS activation in porphyria. In both models, the
activation of exogenously added uroporphyrin, or protoporphyrin, after exposure to a light
source emitting 400–410 nm radiation resulted in the activation of the CS and the generation
of chemotactic activity in human polymorphonuclear leukocytes [68,69]. Dosage studies of
the most common proteins of CS, i.e., C3 and C5, were conducted in vivo on different kinds
of tissues (skin and serum), in a few patients. The first evidence of the activation of the CS
was demonstrated by the collection of blood and skin samples after irradiation (0.7 J/cm2

at 400–410 nm) in two PP patients [70,71]. Moreover, a study in 1980, conducted on serum
samples of 14 photosensitive asymptomatic PP patients before and after UV irradiation,
showed marked activation of CS for Cl, C4, C2, and C3 proteins after UV irradiation; also,
the levels of C3 correlated with the concentration of PPIX in the plasma [72].

Several studies in the last decade have focused on the function of the CS in inflam-
mation, especially in chronic diseases (arthritis, asthma, and kidney failure). Active par-
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ticipation of this pathway has been well-established in regulating the homeostasis of
tissues, eradicating cellular debris, orchestrating immune responses, and sending ‘danger’
signals [67,73].

A recent study on 18 PP patients reported a non-invasive method that allowed the
analysis of CS fluctuations associated with the variation of light intensity between seasons
without exposing the patients to dangerous and painful treatment. The study showed
a significant increase in the C3 and factor-B (FB) proteins, primarily in summer, which
highlighted the involvement of the alternative pathway (AP) of the CS in the phototoxic
reaction of patients [74]. Another study reported an increase in C5 and properdin and a
decrease in inhibitor factor H (FH) of the AP in summer [75].

Properdin is the main protein that binds to FB-C3b complex, triggering the amplifi-
cation loop in the AP. Properdin is positively correlated with C3 in summer, suggesting
the stimulation of the AP in summer. All assumptions were supported by the evaluation
of exposure to global solar radiation, collected by the regional agency of environmental
protection (ARPA). With an increase in global radiation, the main factors of the AP, such as
C3 and properdin, also increase. A decrease in the FH values with a concomitant increase
in global radiation, confirmed the loss of inhibition of the AP loop in summer [75].

These results confirmed the presence of inflammation in the phototoxic reaction and
explained the chills, malaise, fatigue, nausea, excessive temperature sensitivity, and general
sickness reported by patients after long solar exposure. These symptoms could be attributed
to the functions of the systemic immune system [31,76].

7. Management
7.1. Photoprotection

The prevention of phototoxic reactions due to the activation of PPIX by sunlight
forms the basis of PP management. The majority of the patients learn to manage their
disease by avoiding sun exposure after the appearance of prodromal symptoms. However,
prolonged exposure to sunlight leads to more severe symptoms, such as pain that does not
respond to narcotic analgesics and may last for several days. Some patients find relief by
applying cold wet compresses to the affected areas or by using fans or air conditioners. The
recurrence of these events establishes a lifestyle that is oriented toward avoiding sunlight,
leading to negative consequences on social life, as well as on the quality of life (QoL).
The conventional topical sunscreens are not effective in preventing phototoxic reactions
due to poor protection in the longer UVA and light in the visible wavelength. Sunscreens
containing zinc oxide or titanium dioxide in addition to an absorbing pigment can block the
visible light, but they might be unpleasant aesthetically [77]. Patients are used to wearing
photoprotective clothing, such as long-sleeved dresses, gloves, wide-brimmed hats, and
sunglasses. Photoprotection measures, such as the application of yellow filters to lights in
the operating room, must be considered in the case of long-lasting surgeries that expose
large surfaces of the skin and internal organs to phototoxic damage [78]. This is particularly
relevant for those PP patients who have high erythrocyte PPIX levels and are undergoing
abdominal surgery, such as liver transplantation for cholestatic disease. Polyimide filters
offer the possibility of operating safely with adequate visibility [79].

7.2. Photosensitivity

In the past, a variety of pharmacological products were tested to minimize the
pathogenic effect of PPIX by increasing skin coloration and enhancing antioxidant de-
fenses against free radicals. Oral β-carotene, administered at high dosages, can cause mild
yellowish skin pigmentation, leading to several studies focusing on its potential photopro-
tective effect, but with contradictory results. Minder et al. critically reviewed these studies
highlighting their methodological shortcomings, as most of the works were open-label
studies, uncontrolled studies, or retrospective case reports [80]. There was only one ran-
domized, crossover-controlled trial [81], whose results indicated no effect or negative effect
of exposure time to bright sunlight in nine out of 11 patients. The study was performed
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with an overall minimal increase in the mean exposure time per day, and the same authors
evaluated the results to be clinically irrelevant. A drawback of using β-carotene is that its
dosage should not exceed 25 mg/day, as higher dosages entail an increased risk of lung
and stomach cancer [82]. More effective therapy in inducing skin pigmentation is based on
the stimulation of melanocytes by UV radiation [15]. Phototherapy protocols have been
performed by using narrow band-UVB [83,84] or psoralen-UVA [85]; however, only a few
EPP patients were effectively treated. A major concern is the increased risk of developing
skin cancers after several treatment sessions. Other therapeutic options tested to amelio-
rate photosensitivity in EPP patients include the oral intake of N-acetyl-cysteine [86,87],
cysteine [88,89], and vitamin C [90], but the experimental data does not support the clinical
efficacy of these treatments [80]. Nevertheless, in clinical practice, antioxidants, such as
β-carotene (provitamin A) and vitamin C, are usually prescribed as therapeutic measures
to mitigate the photosensitivity in PP patients. It is commonly believed that these patients
must increase their intake of antioxidants to counteract the oxidative cellular damage
caused by the chronic accumulation of PPIX in erythrocytes and the liver. In a recent pilot
study [91], Parker et al. tested isoniazid that is known to inhibit ALAS2 activity, the rate
limiting enzyme of heme biosynthesis in erythroid cells. Although the results obtained in
the animal model were promising, isoniazid, with a dosage of up to 300 mg, was unable to
decrease serum and erythrocyte PPIX levels in 15 tested patients.

Presently, afamelanotide (Scenesse, Clinuvel Pharmaceuticals) is a clinically tested
treatment proven to improve photosensitivity in PP patients. Results from three clinical
trials with two randomized phases demonstrated a longer pain-free duration of exposure
to the sun and an improved QoL in afamelanotide-treated patients [92]. The drug, with
common adverse reactions such as nausea, fatigue, and headache, is considered to be safe.
Afamelanotide was approved for the symptomatic treatment of PP by major drug regulatory
authorities, such as the European Medicines Agency (EMA) in December 2014, the US
Food and Drug Administration (FDA) in October 2019, and the Australian Therapeutic
Goods Administration (TGA) in October 2020. The more recent updates came from the post-
authorization observational studies, which followed the marketing approval by EMA [93].
In particular, QoL scores of EPP patients rose after initiating afamelanotide and were stable
during the entire treatment period [94,95]; however, the scores decreased rapidly after the
interruption of afamelanotide [96]. Although the decrease in the number of phototoxic
reactions during the treatment period was not confirmed, these events were perceived as
less painful [95,96]. Patients treated with afamelanotide spent more time outside, 6 h or
more per week on average [95]. The maximum time spent in sunlight without a phototoxic
reaction, defined as phototoxic burn tolerance time (PBTT), increased from the median
value of 10 min to 180 min [96]. However, this evidence of efficacy might be biased due to
the reluctance of EPP patients to expose themselves to the sun. It was recently proposed
that time to prodrome (TTP), i.e., the exposition time until the appearance of prodromal
symptoms, could be a more reliable parameter to measure the pharmacological response
as safer for patients [97]. Afamelanotide is an analog of the α melanocyte-stimulating
hormone (α-MSH) and binds to the melanocortin 1 receptor (MC1R), stimulating the
production of eumelanin [98], which provides photoprotection and antioxidant defence
in melanocytes [99]. Moreover, due to its anti-inflammatory properties, it was tested for
the treatment of various immune-mediated inflammatory disorders [100], such as solar
urticaria [101], Hailey–Hailey disease [102], and vitiligo [103]. As recommended by the
EMA, it is administered as a biodegradable subcutaneous implant (16 mg) every 60 days
and a maximum of four implants per year are allowed [93]. A new emerging therapy,
the synthetic molecule MT-7117 (Dersimelagon, Mitsubishi Thanabe Pharma America),
has been developed for oral administration. Like afamelanotide, MT-7117 acts through
the selective activation of the MCR1 dermal receptor, which induces skin pigmentation
due to melanin production. Recently, a Phase II clinical trial was completed for MT-7117,
after which, a multicenter, randomized Phase III trial was initiated. Previous results
demonstrated increments of more than 50 min in the average time of daily exposure to
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sunlight without prodromal symptoms in both treatment groups—low dose (100 mg/day)
and high dose (300 mg/day). The drug is well tolerated as the commonly reported adverse
events are nausea, ephelides, and skin hyperpigmentation [104].

7.3. Liver Disease

The management of the hepatic manifestations of EPP is currently sub-optimal, with
the efficacy of various treatments being unestablished. Because of the rarity of the disease,
no controlled trials have been conducted to validate a specific approach. An algorithm
for monitoring early EPP liver disease and managing early and progressive EPP liver
disease has been recently proposed [105]. Periodic monitoring of liver function with
blood chemistry tests (complete blood count, international normalized ratio, transaminases,
and markers of cholestasis) and a radiologic assessment (e.g., abdominal ultrasound) is
recommended every 6 to 12 months, depending on the patient’s clinical history. Special
attention should be paid to the elevation of the laboratory markers of cholestasis (bilirubin
total and conjugated, γ-glutamyl transferase, and alkaline phosphatase).

In some cases, severe liver dysfunction is induced by exogenous triggering agents [106],
thereby necessitating the minimization of exposure to hepatotoxic factors. Patients should
be encouraged to avoid alcohol and follow a lifestyle and dietary regimen to prevent the
onset of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH).
They should also be screened for the most common hepatotropic viruses (HAV, HBV, and
HCV) and vaccinated against those for which a vaccine is available (HAV and HBV). Hepa-
totoxic drugs should be administered with caution. Based on the experience of the authors,
paracetamol should be avoided if possible and replaced with careful administration of
non-steroidal anti-inflammatory drugs (NSAIDs) instead. Vitamin E is sometimes adminis-
tered as an antioxidant for the liver and has been reported to induce a marked decrease in
erythrocyte PPIX concentration when administered intravenously [107].

Protoporphyrin gallstones and biliary sludge formation should be prevented in the
patients. A combination of chenodeoxycholic acid and ursodeoxycholic acid is administered
to enhance the elimination of PPIX through the biliary system [108,109]. However, they
were reported to be ineffective in animal models [110].

Furthermore, cholestyramine, a bile sequestering agent, might potentially reduce the
plasma levels of protoporphyrin molecules by interrupting their enterohepatic circula-
tion [111,112] although its effective clinical role is debatable [113]. If jaundice and liver
dysfunction do not improve even after increased ursodeoxycholic acid intake, cimetidine
and lactulose can also be administered. Lactulose is expected to decrease the enterohep-
atic circulation of protoporphyrin, inhibiting re-absorption of bile acids, while cimetidine
is known to reduce hepatic ALA synthase activity [114]. Another approach involves
lowering protoporphyrin plasma concentration during the rapidly progressive phase of
the disease to reduce further uptake from liver cells. Hematin administration [115–117],
plasmapheresis [118,119] and low-density lipoproteins (LDL) apheresis (LDL is a major
protoporphyrin carrier) [118] have been variously used. Suppressing the release of erythro-
poietin from kidney interstitial cells might benefit patients during erythrocyte transfusion
at higher hemoglobin thresholds (e.g., 9–10 g/dL), even in the absence of clinical signs of
anemia [120,121].

For end-stage chronic liver disease, the medical management of PP includes liver
transplantation [35]. More than 50 transplants for PP liver disease have been reported with
a survival rate of 47–66% after 10 years of follow-up [34]. Although liver transplantation is
effective in restoring liver function in patients with PP, it does not cure the FECH deficit
in erythroid cells and does not abate liver exposure to plasma protoporphyrin molecules;
therefore, there is a real risk of the recurrence of PP-liver disease after transplantation.
The risk can be minimized only through hematopoietic cell transplantation [122], which
issometimes performed in a sequential approach after liver transplantation [123]. Probably
due to the persistence of biliary excretion of protoporphyrin, patients with PP are more
susceptible to biliary complications compared to other liver transplant recipients. In this
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regard, a Roux loop for the safer drainage of bile has been recommended over duct-to-
duct anastomosis [124]. However, growing clinical evidence indicates that bone marrow
transplantation can restore liver function without the need for a liver transplantation if the
cholestatic liver disease can be stabilised by medical treatment and the fibrosis grade is not
advanced [125].

7.4. Microcytic Anemia

Hypochromic microcytic anemia is generally mild in PP patients. Clinical evidence
indicated that iron therapy in XLP might improve liver damage and photosensitivity in
addition to anemia [126]. The conserved FECH activity in XLP converts the toxic PPIX into
heme depending on the availability of iron. Further investigation is needed to establish
whether replenishing iron stores can actually improve the management of these patients. In
EPP patients, oral iron supplementation should be considered only for severe iron deficiency
after the assessment of hematological and iron storage parameters [127]. Iron can increase
the activity of ALAS and then exacerbate the PPIX accumulation in erythrocytes and liver.
Therefore, iron therapy must be carefully monitored with complete blood count, ferritin,
transferrin saturation, and liver enzymes [12].

7.5. Vitamin D Deficiency

Vitamin D supplementation as the active form of cholecalciferol can prevent the
vitamin D deficiency due to sun avoidance [128]. A qualitative study on the behavior and
attitude regarding vitamin D knowledge was performed with 19 photosensitive patients,
including three patients with EPP. Based on direct counseling for 45 min, it was concluded
that low vitamin D status is a significant issue in patients with photosensitivity and must
be managed appropriately and effectively; all patients were willing to take vitamin D
orally [129].

The benefit of vitamin D intake in PP was tested in 46 Danish patients, demonstrat-
ing that follow-up on vitamin D status and recommendations of an adequate diet and
supplementation are essential to restore 25(OH)D levels [130] (Table 1).

Table 1. Management and monitoring of protoporphyria.

Symptoms Treatment Measurements Recommendations

Cutaneous Manifestations

Photoprotection Protective clothing such as hats, long sleeves,
gloves and trousers are beneficial.

Sunscreens mainly protect against UV
radiation and do not protect against light that
causes EPP symptoms. Windows in houses
and cars offer no protection since harmful

visible light passes.

Application of yellow filters to lamps in the
operating room

Only in PP patients who are undergoing
long-lasting abdominal surgery such as liver

transplantation.

Photosensitivity Afamelanotide (Scenesse®)
16 mg subcutaneous implant every 60 days
with a maximum of four implants per year

Liver involvement

Gallstones Ursodeoxycholic acid

Monitoring of erythrocyte protoporphyrins,
liver function tests, and necrosis and stasis
indices. Abdominal imaging (ultrasound or
computed tomography) every 6 to 12 months

depending on the patient
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Table 1. Cont.

Symptoms Treatment Measurements Recommendations

Cholestasis Plasma exchange and erythrocyte transfusion

Acute liver failure Liver or bone marrow transplantation

Bone marrow transplantation can restore
liver function without the need for a liver

transplantation if the cholestatic liver disease
can be stabilised by medical treatment and

the fibrosis grade is not advanced

Iron deficiency anemia Oral iron supplementation

In EPP patients, oral iron supplementation
should be considered only for severe iron
deficiency and not just routinely when the
patient is slightly anemic. Monitoring of

complete blood count, ferritin, transferrin
saturation and erythrocyte protoporphyrins

every 6 months.

Osteopenia, osteoporosis Adequate diet and
vitamin D supplementation

Monitoring of serum vitamin D and bone
indices every year. Bone mineral density
every year if in treatment; every 3–5 y if

normal scans are detected.

8. Conclusions

EPP and XLP are known as rare photodermatoses resulting in acute, painful, and non-
blistering phototoxicity on sun exposure. However, a wide spectrum of clinical findings
indicating hepatobiliary disease have also been reported. The individual susceptibility
of patients to protoporphyrin-induced liver damage is highly variable, and the reasons
are unknown. Microcytic anemia with abnormal iron metabolism is observed in about
40% of the patients; however, the cause and mechanism of iron deficiency remain to be
elucidated. Vitamin D deficiency affects the majority of patients as a consequence of
avoiding sunlight. Decreased bone mineral density was also reported in protoporphyria
as compared to the general population, indicating the prevalence of osteoporosis and
osteopenia in these patients. Finally, the activation of the CS during the phototoxic reaction
suggests that a systemic inflammatory response occurs, justifying the general malaise
reported by patients after exposure to light for a long time. Based on these observations,
EPP and XLP should be considered as chronic metabolic multi-organ disorders and not
limited to skin photosensitivity problems or purely dermatological diseases with seasonal
onset (Figure 3).
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