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1 Introduction

In hindsight, the word “profusion” in the title of [1] is simultaneously misguided and pro-
phetic: misguided because the profusion referred to in that paper was in fact a simple finite
degeneracy; prophetic because three-dimensional conformal field theories have since been
found to enjoy an intricate moduli space of line operators preserving varying numbers of
supercharges. The finite degeneracy of the 1/2 BPS loops (also partially recognized in [2])
was soon realized holographically in [3]. However, the degeneracy of less supersymmetric
loops uncovered since (see, for example, [4–7]) has blossomed into an independent research
program whose full scope is still unclear.

After several years with more and more examples of BPS loops being found, the past
year has seen some initial steps to reorganize the subject. First, the roadmap paper [8]
reviewed what was known at the time about BPS Wilson loops in three dimensions, intro-
duced some new formalism and, for the first time, properly addressed the moduli spaces of
the 1/6 BPS Wilson loops in ABJ(M) theory. Second, the moduli spaces of BPS Wilson
loops in N = 2 theories were studied in [9] and identified with quiver varieties. Most
recently, the symmetries of BPS line operators in diverse dimensions were analyzed in [10],
where the naturalness of marginal defect couplings in three dimensions was stressed.
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This work aims to continue on that path, focusing on N = 4 Chern-Simons-matter
theories [11–14]. Though these theories are more constrained than N = 2 theories, they
afford more possibilities of preserved sets of supercharges. So, while in N = 2 theories
there are only 1/2 and 1/4 BPS loops, for N = 4 we find here loops preserving 1, 2, 4 and
8 supercharges, thus ranging between 1/16 BPS and 1/2 BPS (because of conformality the
vacuum has 16 supercharges). Compared to ABJ(M) theory, the allowed set of theories is
wider and different loops that are equivalent under the SO(6) R-symmetry of ABJ(M) may
be on disconnected branches of the moduli space in the presence of only SO(4) R-symmetry.

With the proliferation of papers on the topic, let us set the scope of this one explicitly.
We aim to study here circular Wilson loops in three-dimensional N = 4 theories that
are continuously connected by marginal deformations to the usual 1/4 BPS Gaiotto-Yin
(“bosonic”) Wilson loop [15]. One type of deformation arising in quiver gauge theories
involves couplings to the matter fields in bifundamental representations of the gauge groups.
This follows closely previous studies of the moduli spaces of loops in N = 2 theories and
in ABJ(M) [8, 9]. The other deformation is often called the “latitude” deformation and is
similar to the four-dimensional Wilson loops in [16]. This construction uses that N = 4
theories have triplets of bifundamental bilinears, the moment-maps that generalize the
scalar coupling of the Gaiotto-Yin Wilson loop.

The usual 1/4 BPS loop involves couplings to scalar bilinears of both the hyper and
twisted hyper fields of the three-dimensional Chern-Simons-matter theories. These cou-
plings break the SO(4) ' SU(2)L × SU(2)R to U(1)L × U(1)R, while the latitude defor-
mation further breaks one of the U(1)’s (we choose it to be U(1)R). This is a continuous
deformation with a parameter θ and for generic values of this parameter the loop preserves
1/8 of the supercharges. Given this as a starting point, we can deform the bosonic loops
by introducing couplings to more bifundamental fields through superconnections and get
“fermionic” operators, in the spirit of [8, 17]. This produces richer moduli spaces of BPS
loops, which also include 1/16 BPS operators. As this construction involves in an intimate
way the hypermultiplet fields and their SU(2) R-symmetries, we name these operators
hyperloops.

We choose to define our theories on S3 and to support our loops along great circles of
this space. What we call “latitude” deformation is then a slight misnomer, as for us this
deformation only affects the internal space of moment map couplings and not the geometric
contour on which these operators are defined. As a consequence, the two supercharges
preserved by the latitude loops are not a subset of the four preserved by the Gaiotto-Yin
loop, but this can be resolved by a conformal transformation mapping the original circle
at the equator to an actual latitude of the S3. The alternative formulation would follow
the four-dimensional construction in [18] or the ABJ(M) analog in [19] with the operators
defined from the start along latitudes and with the matter field couplings dictated by this
choice of geometric contour. In that case, the latitude loops would be a subset of loops
with arbitrary shapes on S2 ⊂ S3, all preserving a fixed subset of the supercharges. So,
barring the fact that we have made the choice to keep the circle fixed in space, we can view
all the loops presented here as continuous deformations of the Gaiotto-Yin loop preserving
a subset of the supercharges.
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Figure 1. The quiver and field content of the N = 4 theory.

The classification of the hyperloops depends on (i) some discrete data and (ii) some
continuous parameters. The discrete data is a choice of vector fields that appear in the
(super)connection (and their multiplicities) and a subset of the matter fields that we allow
to couple to the loop. This information can be conveniently conveyed by certain quiver
diagrams, as we explain below. Restricting to only half of the matter fields enhances
supersymmetry and gives hyperloops that are (at least) 1/8 BPS, so there are two choices
of which half of these fields to include, with each option spanning a separate branch of
the moduli space. One can also allow a coupling to all the fields at the price of preserving
less supersymmetry and obtaining 1/16 BPS operators. The continuous parameters are
the latitude angle θ mentioned above, an azimuthal angle ϕ0 (which we mostly ignore)
and the continuous couplings to the matter fields. In the simplest case, there are two or
four complex parameters per edge in the quiver, depending on how many supercharges one
wants to preserve. These parameters are subject to a global gauge symmetry, reducing the
moduli space to a cone, similar to the conifold in the case of ABJ(M) theory [8].

These notes are organized as follows. In section 2 we spell out the details of the theory
under consideration and set up the notation. In section 3 we write down the 1/4 BPS
Wilson loop coupled to a single node of the quiver and a 1/8 BPS generalization in terms
of the latitude parameter θ and the azimuthal angle ϕ0. In sections 4 and 5 we construct
the deformations of the 1/4 and 1/8 BPS bosonic loops by couplings them to bifundamental
fields, and study their moduli spaces. In section 6 we propose a matrix model that may
compute these operators. We conclude in section 7 with some outlook and provide details
about the supersymmetry transformations and other technicalities in two appendices.

2 The theory and notation

We consider an N = 4 Chern-Simons-matter theory, whose quiver is either circular or
linear. For the most part we discuss a node labeled by I with gauge field AI , and the
adjacent nodes with AI±1. There is a hypermultiplet (qaI , ψIȧ) coupling to AI and AI+1
and a twisted hypermultiplet (q̃I−1 ȧ, ψ̃

a
I−1) coupling to AI and AI−1, and so on in an

alternated fashion. The field content is summarized in the quiver diagram of figure 1,
where the thick solid lines represent the matter fields.

The (twisted) hyper multiplets can be decomposed into pairs of chiral multiplets.
Figure 2 shows the chiral scalar in this decomposition explicitly. Here and throughout chiral
fields are denoted as solid arrows and when needed, the anti-chiral fields are represented
by dashed arrows. The orientation of the arrows stands for the field’s representation. For
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q̄I,1

q2
I

q̃I+1,1̇

¯̃q2̇
I+1

Figure 2. The decomposition of the N = 4 matter multiplets into pairs of chiral multiplets. Only
the chiral scalar of each multiplet is indicated explicitly.

example, the fields q2
I is in the (�, �̄) of U(NI) × U(NI+1) and q̄I 1 is in the conjugate

representation.
The SU(2)L × SU(2)R R-symmetry indices a, b = 1, 2 and ȧ, ḃ = 1̇, 2̇ are raised and

lowered using the appropriate epsilon symbols: va = εabvb and va = εabv
b with ε12 = ε21 =

1, and similarly for the dotted indices.
We define moment maps and currents, which are bilinears of the hypermultiplets and

twisted hypermultiplets in the adjoint representation of U(NI), as follows

µI
a
b = qaI q̄I b −

1
2δ

a
b q
c
I q̄I c , jaḃI = qaI ψ̄

ḃ
I − εacεḃċψI ċq̄I c ,

µ̃I
ȧ
ḃ

= ¯̃q ȧI−1q̃I−1 ḃ −
1
2δ

ȧ
ḃ

¯̃q ċI−1q̃I−1 ċ , ̃ ḃaI = ¯̃q ḃI−1ψ̃
a
I−1 − εḃċεac

¯̃ψI−1 cq̃I−1 ċ ,

νI = qaI q̄I a , ν̃I = ¯̃q ȧI−1q̃I−1 ȧ .

(2.1)

Similar bilinears (with the appropriate replacement of hypermultiplets and twisted hyper-
multiplets) exist also for the other nodes. For example, for the I + 1 node one can define
νI+1 = q̄Iaq

a
I . Note that in this notation the index of the moment maps represents the node

under which they are charged, rather than the fields they are made of, as is the case in
the notation of [1, 12]. In particular, µI+1

b
a is made of the same fields q̄I a and qbI as µI ba,

but it is charged under a different group. The moment maps are triplets of the respective
SU(2) R-symmetry group and are used below to construct the basic bosonic Wilson loops.
The moment maps can be thought of as the generalization to N = 4 of the N = 2 scalar
σ, though the latter is an auxiliary field in an off-shell formulation while we work in an
on-shell formulation. We provide some details on this correspondence in appendix A.

As stated in the Introduction, we define the theory on S3 and the Wilson loops we
construct are supported along the equator of this sphere. The corresponding N = 4
supersymmetry transformations are given in the appendix in (A.1), along with details
about how they relate to the ones for the N = 2 theory [20, 21].

3 Single-node Wilson loops

We start by constructing Wilson loops coupling to a single gauge field and hence suppress
the I index on the fields. The most symmetric such loop is a circle coupling to both the
untwisted and twisted moment maps through the connection

A = Aϕ −
i

k

(
µ1

1 − µ2
2 + µ̃1̇

1̇ − µ̃
2̇
2̇

)
. (3.1)
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This choice of scalar coupling can be motivated by considering what is the natural ge-
neralization to the N = 4 case of the scalar σ appearing in the Wilson loop in N = 2
Chern-Simons-matter theory [15]. Since the moment maps are triplets of the R-symmetry
group for N = 4, the coupling above corresponds to picking the moment maps along the
‘third’ direction of the R-symmetry triplet, so can be denoted alternatively as µ3 and µ̃3.

From (A.1) one finds the supersymmetry transformations of the moment maps

δµI
a
b = ξbċj

aċ
I −

1
2δ

a
b ξcċj

cċ
I , δµ̃I

ȧ
ḃ

= −ξcḃ̃
ȧc
I + 1

2δ
ȧ
ḃ
ξcċ̃

ċc
I , (3.2)

so the variation of the connection in (3.1) is

δA = i

k
ξaḃγϕ

(
jaḃ − ̃ ḃa

)
− i

k

(
ξ1ḃj

1ḃ − ξ2ḃj
2ḃ − ξa1̇̃

1̇a + ξa2̇̃
2̇a
)
, (3.3)

with γϕ along the equatorial circle on which the loop is supported. There are no solutions
to δA = 0 for ξ12̇ and ξ21̇, while for the other components one finds the conditions

ξ11̇(1− γϕ) = ξ22̇(1 + γϕ) = 0 . (3.4)

The resulting Wilson loop is hence 1/4 BPS, and it is in fact the same as the 1/2 BPS loop
in N = 2 theories [15] or the 1/6 BPS loop in ABJ(M) theory, as in [22–24].

To be more explicit, each supersymmetry parameter ξaḃ is a linear combination of
four Killing-spinors on S3. We label them as ξl, ξ l̄, ξr, ξr̄, according to their chiralities.
They obey

∇µξl,l̄ = i

2γµξ
l,l̄ , ∇µξr,r̄ = − i2γµξ

r,r̄ . (3.5)

Along the circle we take γϕ = σ3 and these reduce to [25]

ξlα =
(

1
0

)
, ξ l̄α =

(
0
1

)
, ξrα =

(
e−iϕ

0

)
, ξr̄α =

(
0
eiϕ

)
. (3.6)

Equation (3.4) restricts ξ11̇ to the two chiralities ξ l̄ and ξr̄, while ξ22̇ is a linear com-
bination of ξl and ξr. We can write the corresponding four supersymmetries as

Q1̇1
l̄
, Q1̇1

r̄ , Q2̇2
l , Q2̇2

r . (3.7)

In the subsequent sections we construct families of Wilson loop operators that preserve
all or particular linear combinations of those supercharges. These loops couple to two or
more nodes of the quiver and involve combining several gauge connections and couplings
to more bifundamental fields. However, there is still a family of Wilson loops involving just
a single node that preserve only two supercharges, being therefore 1/8 BPS. Following the
logic of the 1/4 BPSWilson loops inN = 4 SYM in 4d [16], the connection (3.1) is naturally
generalized introducing a “latitude”1 angle θ and an azimuthal angle ϕ0, as follows

Aθ = Aϕ −
i

k

(
µ1

1 − µ2
2 + cos θ

(
µ̃1̇

1̇ − µ̃
2̇
2̇

)
+ sin θ

(
e−i(ϕ−ϕ0)µ̃1̇

2̇ + ei(ϕ−ϕ0)µ̃2̇
1̇

))
. (3.8)

1As already mentioned in the Introduction, note that this is only a latitude in the internal space of scalar
couplings, while the loop is still an equator of the S3.
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Notice that only the couplings to the twisted hypermultiplets are modified, via their mo-
ment maps. This operator is now coupled to three different moment maps, which can
alternatively be written as µ̃3 and µ̃±. This deformation is not possible in theories with
only N = 2 symmetry, with only one σ field in the vector multiplet. An analogous con-
struction where the untwisted moment maps are modified and the twisted ones remain as
in (3.1) also works, but deforming both at the same time does not give BPS operators.
This deformation involves two parameters, θ and ϕ0, which define an S2. For simplicity
we set ϕ0 = 0 in the following.

The supersymmetry variation of (3.8) gives

δAθ = i

k

(
ξaḃγϕ

(
jaḃ − ̃ ḃa

)
−
(
ξ1ḃj

1ḃ − ξ2ḃj
2ḃ
)

+ cos θ
(
ξa1̇̃

1̇a − ξa2̇̃
2̇a
)

+ sin θ
(
e−iϕξa2̇̃

1̇a + eiϕξa1̇̃
2̇a
))

.
(3.9)

Requiring this to vanish and collecting terms according to the components of the currents,
one finds conditions on the supersymmetry parameters which are all solved imposing

ξ1ȧ(1− γϕ) = ξ2ȧ(1 + γϕ) = 0 ,
ξa1̇(γϕ − cos θ) = sin θ e−iϕξa2̇ .

(3.10)

The first line of (3.10) sets ξl1ȧ = ξr1ȧ = ξ l̄2ȧ = ξr̄2ȧ = 0. The second line also eliminates
ξr
a2̇ = ξ l̄

a2̇ = ξl
a1̇ = ξr̄

a1̇ = 0. The remaining ξ l̄11̇, ξ
r̄
12̇, ξ

r
21̇, ξ

l
22̇ are related by

ξ l̄11̇ = sin θ
1− cos θ ξ

r̄
12̇ = cot θ2 ξ

r̄
12̇ , ξr21̇ = − sin θ

1 + cos θ ξ
l
22̇ = − tan θ2 ξ

l
22̇ . (3.11)

We find finally the two independent supercharges preserved by the loop

Q1 = cos θ2 Q
1̇1
l̄

+ sin θ2 Q
2̇1
r̄ , Q2 = cos θ2 Q

2̇2
l − sin θ2 Q

1̇2
r , (3.12)

which is then 1/8 BPS, as advertised. Notice that the supercharges in (3.12) are not a
subset of those in (3.7). The reason for this is that we kept the circle on the equator of S3.
Were we to follow the logic of [19] and place the loop at a latitude angle of π/2− θ, which
can be done via a conformal transformation on the S3, the resulting loops would preserve
Q1̇1
l̄

and Q2̇2
l , which are indeed a subset of (3.7).

4 Hyperloops at θ = 0

In this and the next section we construct what we dub hyperloops: BPS Wilson loops
involving multiple gauge fields and couplings to the hypermultiplets beyond their bilinears.
Viewed in N = 2 language, these loops were already constructed in [9] (large subclasses
of them were previously found in [4]), so this section is mostly a review of that paper,
specializing to N = 4 theories. In addition to explaining the structure of the loops, we also
review the moduli space of BPS loops and its relation to quiver varieties.

The analysis of [9] gives families of Wilson loops preserving either all the supercharges
in (3.7) or one of the linear combinations

QL+ = Q1̇1
l̄

+Q2̇2
l , QL− = Q1̇1

l̄
−Q2̇2

l . (4.1)

– 6 –
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pI−1 pI pI+1αI−1

ᾱI−1

αI

ᾱI

Figure 3. A quiver diagram for a 1/4 BPS Wilson loop.

The possible hyperloops can be visualized by quiver diagrams, which may include some
or all of the nodes and edges of the original quiver defining the gauge theory. Let us review
the connection between quiver diagrams and hyperloops. First, we include a node for each
vector multiplet the loop couples to, solid arrows for the chiral fields and dashed arrows for
the anti-chirals. Some of the nodes are denoted by squiggly circles and some by unsquiggly
ones. This represents that the connection of the gauge field in the squiggly nodes has
an extra shift by2 1/2, and supersymmetry requires alternating squiggly and unsquiggly
nodes. Each node is decorated by integers pI , indicating the multiplicity of the gauge field
in the hyperloop. We indicate the chiral fields coupling to the hyperloop (according to the
decomposition in figure 2) by solid arrows and the anti-chirals by dashed arrows. Arrows
between the I and I + 1 nodes are decorated by pI × pI+1 complex parameters αI and ᾱI
for anti-chirals, though they are not complex conjugates.

These diagrams represent 1/4 BPS hyperloops, preserving all four supercharges in (3.7)
if all solid arrows point into squiggly nodes.3 If the decorated quiver contains solid arrows
pointing both in and out of the squiggly circles, the loop preserves only one of the super-
charges in (3.7), either QL+ or QL−, and is 1/16 BPS.

We begin by describing the 1/4 BPS loops. Given a decorated quiver diagram, the
hyperloop is constructed as follows. One first assembles a diagonal matrix L0, with pI copies
of the connection AI (3.1) for every unsquiggly node. For squiggly nodes the connection
is augmented to AI + 1/2. For example, let us consider the quiver in figure 3 with pI−1 =
pI+1 = 1 and pI = 2. The corresponding L0 matrix is

L0 =


AI−1 + 1

2 0 0 0
0 AI 0 0
0 0 AI 0
0 0 0 AI+1 + 1

2

 . (4.2)

Next we define the matrix

G =


0 ᾱ1

I−1q̃I−1 2̇ ᾱ2
I−1q̃I−1 2̇ 0

α1
I−1 ¯̃q2̇

I−1 0 0 α1
Iq

2
I

α2
I−1 ¯̃q2̇

I−1 0 0 α2
Iq

2
I

0 ᾱ1
I q̄I 2 ᾱ2

I q̄I 2 0

 , (4.3)

from which we construct the superconnection (see for example [8])

Lα,ᾱ = L0 + iQL+G + G2 . (4.4)
2Here and throughout we set the radius of the sphere to R = 1. For a generic radius the shifts would be

± 1
2R , and similarly for the shifts in the next section.

3In a different gauge, they all point out of the squiggly nodes.
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pI−1 pI pI+1βI−1

β̄I−1

βI

β̄I

Figure 4. The other quiver diagram giving another family of 1/4 BPS hyperloops.

The hyperloop is then
Wα,ᾱ = sTrP exp

[
i

∮
Lα,ᾱ |ẋ| ds

]
. (4.5)

The supertrace treats the unsquiggly nodes (I) as even and the squiggly ones (I±1) as odd.
Another branch of 1/4 BPS hyperloops comes from swapping squiggly and unsquiggly

nodes as in figure 4, with the same values of the pI ’s as above. In this case, the bosonic
connection is4

L0 =


AI−1 0 0 0

0 AI + 1
2 0 0

0 0 AI + 1
2 0

0 0 0 AI+1

 (4.6)

and

G =


0 β1

I−1q̃I−1 1̇ β2
I−1q̃I−1 1̇ 0

β̄1
I−1 ¯̃q1̇

I−1 0 0 β̄1
I q

1
I

β̄2
I−1 ¯̃q1̇

I−1 0 0 β̄2
I q

1
I

0 β1
I q̄I 1 β2

I q̄I 1 0

 . (4.7)

The rest of the construction is exactly as above with a superconnection and hyperloop that
could be denoted as Lβ,β̄ and Wβ,β̄ (with the parameters β and β̄ being complex, but,
again, not complex conjugates of each other).

The 1/16 BPS loops are obtained by couplings to all the chiral and anti-chiral fields
with parameters αI , ᾱI and βI , β̄I . This can be achieved by a gauge transformation of L0
in (4.6) to the form in (4.2), which corresponds to exchanging squiggly and unsquiggly
nodes in figure 4. This results in the extra phases

G →


0 eiϕβ1

I−1q̃I−1 1̇ eiϕβ2
I−1q̃I−1 1̇ 0

e−iϕβ̄1
I−1 ¯̃q1̇

I−1 0 0 e−iϕβ̄1
I q

1
I

e−iϕβ̄2
I−1 ¯̃q1̇

I−1 0 0 e−iϕβ̄2
I q

1
I

0 eiϕβ1
I q̄I 1 eiϕβ2

I q̄I 1 0

 . (4.8)

We add this to the expression in (4.3) to find a new G given by
0 ᾱ1

I−1q̃I−12̇+eiϕβ1
I−1q̃I−11̇ ᾱ2

I−1q̃I−12̇+eiϕβ2
I−1q̃I−11̇ 0

α1
I−1 ¯̃q2̇

I−1+e−iϕβ̄1
I−1 ¯̃q1̇

I−1 0 0 α1
Iq

2
I++e−iϕβ̄1

I q
1
I

α2
I−1 ¯̃q2̇

I−1+e−iϕβ̄2
I−1 ¯̃q1̇

I−1 0 0 α2
Iq

2
I+e−iϕβ̄2

I q
1
I

0 ᾱ1
I q̄I 2+eiϕβ1

I q̄I 1 ᾱ2
I q̄I 2+eiϕβ2

I q̄I 1 0

 .
(4.9)

4To avoid cluttering the notation too much, we denote the bosonic connections and the matrices G of
all these examples with the same symbols: L0 and G. We always refer to explicit equations, so this should
hopefully not lead to confusion.
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pI−1 pI pI+1αI−1

ᾱI−1

βI−1

β̄I−1

αI

ᾱI

βI

β̄I

Figure 5. A quiver diagram for a 1/16 BPS.
hyperloop.

The rest of the construction follows as before. The superconnection can be constructed
with QL+ as in (4.4) or, alternatively, with QL−, leading to two different classes of 1/16 BPS
hyperloops, graphically represented as in figure 5.

For any quiver diagram we can always exchange squiggly and unsquiggly nodes (i.e.
grading) at the price of adding phases to the matter fields, as in (4.8). This leads to the
same loop operator, but in a different gauge. Note that in the case of 1/16 BPS loops
shown in figure 5, the two gradings of the quiver are gauge equivalent. This is not the case
for families of 1/4 BPS loops, where the two gradings also represent which of the chiral
fields are included, as illustrated in figures 3 and 4.

4.1 Moduli spaces

The hyperloops we construct are built upon a connection L0 to which we add bifundamental
couplings encoded in the matrix G. The deformation is thus described by the parameters
in this matrix, which are a set of complex numbers α, ᾱ, etc. This description is however
redundant, so the moduli space of hyperloops is a quotient of the space of these parameters,
as described below.

Wilson loops are intimately related to gauge invariance, and in particular are gauge
invariant observables. The invariance under

∏
I U(NI) gauge transformations are built into

the definition of the hyperloops, but they posses a larger (global) gauge symmetry. L can
be thought of as a superconnection, which in the example above is in the superalgebra
GL(NI−1 + NI+1|2NI). We do not expect local-gauge symmetry under this group, as it
is not a symmetry of the theory, but constant gauge transformations do not require extra
gauge fields. Of those, the transformations that preserve our formulation and are not the
gauge symmetries of the quiver theory are the centralizer of L0, which in our examples is

(C∗)2 ×GL(2,C) . (4.10)

Concretely this symmetry acts by conjugation

L0 →


x−1 0 0 0

0
0

S−1 0
0

0 0 0 y−1

L0


x 0 0 0
0
0
S

0
0

0 0 0 y

 = L0 , S ∈ GL(2,C) . (4.11)

The action on G and consequently on Lα,ᾱ is generally non-trivial, mapping superconnec-
tions with different parameters to each-other. Note though that matrices in the center of
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GL(4,C), i.e. where y = x and S = diag(x, x) do commute with all matrices, so should be
excluded, thus the gauge symmetry is really

S
(
(C∗)2 ×GL (2,C)

)
. (4.12)

Remaining with our examples above, we describe the 1/4 BPS loops with eight complex
parameters, see (4.3) and (4.7), and the 1/16 BPS loops with sixteen, see (4.9). As argued,
this means that the moduli space of 1/4 BPS loops correspond to two copies of

C8//S
(
(C∗)2 ×GL (2,C)

)
, (4.13)

while for 1/16 BPS operators we have for either QL+ or QL− a single copy of

C16//S
(
(C∗)2 ×GL (2,C)

)
. (4.14)

These are 3- and 11-(complex) dimensional conical spaces, respectively.
These spaces are the usual quiver varieties associated to the quiver representations

in figures 3, 4 and 5, see [26–30]. We use the double slash notation mirroring the con-
cept of geometric invariant theory, in order to point out that we need to be careful when
identifying the singular orbits of the resulting manifolds. In particular, hyperloops with
off-diagonal components that are exclusively upper or lower triangular are identical as
quantum operators for all values of α and therefore should be identified.

The analysis can be carried out for more general quivers as follows. In the case of
1/4 BPS loops, each edge between nodes of multiplicities pI and pI+1 has 2pIpI+1 complex
parameters. For 1/16 BPS operators, this becomes 4pIpI+1. From these we need to remove
the symmetries, which amount to a factor of GL(pI ,C) for each node with multiplicity pI ,
apart for the trivial action of the center, as explained above (4.12).

Therefore, for a linear quiver of length L we find the moduli space of 1/4 BPS loops
to be two copies of

C2p1p2 × C2p2p3 × · · · × C2pL−1pL//S(GL(p1)×GL(p2)× · · · ×GL(pL)) . (4.15)

For the 1/16 BPS loops, we loose the second copy and we have the same as above where
the 2s in the exponents become 4s.

For a circular quiver, the moduli space of 1/4 BPS loops is two copies of

C2p1p2 × C2p2p3 × · · · × C2pL−1pL × C2pLp1//S(GL(p1)×GL(p2)× · · · ×GL(pL)) . (4.16)

For 1/16 BPS loops, we again loose the second copy and the manifold is the one above
with 2s replaced by 4s.

All these moduli spaces are the quiver varieties associated to the quiver representations
that the hyperloops furnish. Before moving on to the next section, where we study the
θ 6= 0 versions of these hyperloops, let us specialize to the moduli space of 1/6 BPS loops
in ABJ(M) theory with p1 = p2 = 1. As it is a circular two-node quiver, we set L = 2
in (4.16), giving two copies

C2 × C2//S((C∗)× (C∗)) = C4//C∗ . (4.17)

This quotient is the conifold, as already found in [8].
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5 Hyperloops at θ 6= 0

Having reviewed the formulation of the loops in terms of quiver representations and imple-
mented it for theories with N = 4 supersymmetry, we generalize it to loops based on the
bosonic connections deformed as in (3.8). We provide here much more detail, as most of
these loops are novel.

5.1 Construction

To construct hyperloops with θ 6= 0 we apply the same logic of [8], involving a deformation
built from the supercharges in (3.12). More specifically, we consider the combinations
Q± = Q1 ± Q2. Note that when θ = 0 it follows that Q± = QL±. The whole procedure
relies on being able to write (Q±)2G = DϕG, for some matrix of matter fields G and
an appropriate covariant derivative Dϕ. Since (Q1)2 = (Q2)2 = 0, this is the same as
acting with {Q1,Q2} on G. In appendix B we compute the explicit form of this double
transformation acting on the untilded scalar fields qaI and on a specific spatially-dependent
rotation of the tilded ones, defined by

r̃I±1 1̇ ≡ cos θ2 q̃I±1 1̇ + e−iϕ sin θ2 q̃I±1 2̇ , r̃I±1 2̇ ≡ cos θ2 q̃I±1 2̇ − e
iϕ sin θ2 q̃I±1 1̇ . (5.1)

These combinations are nice because the connection in (3.8) can be written compactly in
their terms as

AθI = Aϕ,I −
i

k

(
µI

1
1 − µI2

2 + ¯̃r 1̇
I−1r̃I−1 1̇ − ¯̃r 2̇

I−1r̃I−1 2̇

)
. (5.2)

Moreover, one can show that the double transformation acting on qaI and r̃I±1 ȧ can be
recast as a covariant derivative, see (B.8) and (B.10). These fields are then the natural
ingredients to write down G.

The connections appearing in the double deformations are as in (5.2), with extra shifts
of ±1

2 and ±1
2 cos θ that can be viewed as the coupling to a background field on the sphere.

This is implemented by shifting the original connections, as in the previous section. Let us
note that the effect of these shifts is to introduce phases like e±iπ cos θ in the definition of
the Wilson loop, which are compensated for in the definition of the trace. Recall that in
the original formulation of the 1/2 BPS Wilson loop of [17] a trace was required to make
them gauge invariant, but in the gauge introduced in [8] and in section 4, this is replaced
with a more natural supertrace. For gauge invariance of hyperloops at θ 6= 0, the definition
of supertrace should include ±1 and e±iπ cos θ gradings. The generic Wilson loop with both
α and β couplings is then defined as

W θ
α,ᾱ,β,β̄

= sTrθ P exp
[
i

∮
Lθ
α,ᾱ,β,β̄

|ẋ| ds
]
, (5.3)

where sTrθ includes the generalized gradings mentioned above to compensate for the effect
of the shifts.
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To be concrete, we illustrate this explicitly in an example of a hyperloop involving the
three nodes I − 1, I and I + 1, as before. For pI−1 = pI = pI+1 = 1, we now have

Lθ0 =

A
θ
I−1 + 1

2 0 0
0 AθI 0
0 0 AθI+1 + 1

2 cos θ

 . (5.4)

The explicit expression for AθI±1 is written in (B.7). We associate to this choice of con-
nection the quiver diagram in figure 3, though there are now some differences: the loop
preserves only two supercharges, so it is 1/8 BPS; the right node has a shift of 1

2 cos θ in-
stead of 1

2 and the left arrows are couplings to the rotated fields r̃I−1 2̇ and their conjugates,
rather than to the q̃’s. The corresponding hyperloop is

W θ
0 = sTrθ P exp

[
i

∮
Lθ0|ẋ|ds

]
≡ −TrP exp

[
i

∮ (
AθI−1 + 1

2

)
|ẋ|ds

]
+ TrP exp

[
i

∮
AθI |ẋ|ds

]
+ e−iπ cos θ TrP exp

[
i

∮ (
AθI+1 + 1

2 cos θ
)
|ẋ|ds

]
.

(5.5)

To proceed with the deformation, we define as before the matrix

G =

 0 ᾱI−1r̃I−1 2̇ 0
αI−1 ¯̃r 2̇

I−1 0 αIq
2
I

0 ᾱI q̄I2 0

 . (5.6)

Crucially, this matrix is such that i(Q+)2G = ∂ϕG − i[Lθ0,G]. The expression in (5.6) can
then be used to construct a deformed superconnection

Lθα,ᾱ = Lθ0 + iQ+G + G2 . (5.7)

Under the action of Q+

Q+Lθα,ᾱ = i(Q+)2G + {Q+G,G} = ∂ϕG − i[Lθ0,G] + {Q+G,G} . (5.8)

This is easily seen to correspond to the supercovariant derivative

DϕG ≡ ∂ϕG − i
{
Lθα,ᾱ,G

]
, (5.9)

so that the hyperloop with superconnection Lθα,ᾱ transforms as a total derivative under Q+.
To analyse the behavior under the action of Q− it is useful to split G = G+ Ḡ with

G =

 0 0 0
αI−1 ¯̃r 2̇

I−1 0 αIq2
I

0 0 0

 and Ḡ =

 0 ᾱI−1r̃I−1 2̇ 0
0 0 0
0 ᾱI q̄I2 0

 , (5.10)

which satisfy Q−G = Q+G and Q−Ḡ = −Q+Ḡ. One has then

Q−Lθα,ᾱ = i(Q+)2(−G+ Ḡ) + {Q+(G− Ḡ),G}
= ∂ϕ(−G+ Ḡ)− i[Lθ0,−G+ Ḡ] + {Q+(G− Ḡ),G}
= Dϕ(−G+ Ḡ) + {Q+(G− Ḡ),G} − {Q+G,−G+ Ḡ}+ i[G2,−G+ Ḡ] ,

(5.11)
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where we attempted to write the last line as a covariant derivative with a Lθα,ᾱ supercon-
nection. For the loop to be invariant under Q−, the three extra (anti)commutators should
vanish and while there are some cancellations among them, the remaining terms are elim-
inated when G and Ḡ are nilpotent of degree 2 as in (5.10). This implies that for generic
α and ᾱ these Wilson loops are 1/8 BPS, preserving exactly the same supercharges as Lθ0.

Next we turn to the hyperloops with the quiver diagram in figure 4, but again we take
multiplicity equal to one in the central node. In this case5

Lθ0 =

A
θ
I−1 0 0
0 AθI + 1

2 0
0 0 AθI+1 + 1−cos θ

2

 . (5.12)

Note that now the connection in the bottom right corner is shifted by (1−cos θ)/2, though
the corresponding node in the diagram is not squiggly. This does not exactly match the
shifts, which are no longer all equal to 1/2. However, we retain the same notation in the
figure to indicate the allowed couplings to matter fields that preserve the supercharges.
These are now organized in the matrix

G =

 0 βI−1r̃I−1 1̇ 0
β̄I−1 ¯̃r 1̇

I−1 0 β̄Iq
1
I

0 βI q̄I1 0

 , (5.13)

and the construction proceeds exactly as before to produce another family of 1/8 BPS
loops.

To construct 1/16 BPS loops we again gauge transform the connection in (5.12) to
bring it to the form in (5.4). This results in the extra phases in the corresponding G,

G →

 0 βI−1e
iϕr̃I−1 1̇ 0

β̄I−1e
−iϕ ¯̃r 1̇

I−1 0 β̄Ie
−iϕ cos θq1

I

0 βIe
iϕ cos θ q̄I1 0

 . (5.14)

We can now add this expression to the G in (5.6) to get

G =

 0 ᾱI−1r̃I−1 2̇ + βI−1e
iϕr̃I−1 1̇ 0

αI−1 ¯̃r 2̇
I−1 + β̄I−1e

−iϕ ¯̃r 1̇
I−1 0 αIq

2
I + β̄Ie

−iϕ cos θq1
I

0 ᾱI q̄I2 + βIe
iϕ cos θ q̄I1 0

 .
(5.15)

This is similar to the sum of the two matrices in (4.9), but there is an obstruction to
using this G to construct a deformation, as the combination αIq

2
I + β̄Ie

−iϕ cos θq1
I is not

periodic. This is worse than the non-periodicity in (5.14), as it cannot be fixed by a gauge
transformation. The only way to overcome this is to set either αI = ᾱI = 0 or βI = β̄I = 0,
giving two branches of 1/16 BPS Wilson loops.

For βI = β̄I = 0 we can represent it by the quiver in figure 6.
In the case of αI = ᾱI = 0, it is a bit nicer to employ the gauge in (5.12) to avoid the

awkward phase multiplying q1
I . The diagram is in figure 7.

5Again, we always use the same symbols Lθ0 and G and refer to explicit equations to avoid confusion.
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1 1 1αI−1

ᾱI−1

βI−1

β̄I−1

αI

ᾱI

Figure 6. A quiver diagram for a 1/16 BPS Wilson loop.

1 1 1αI−1

ᾱI−1

βI−1

β̄I−1

βI

β̄I

Figure 7. The other class of 1/16 BPS loops.

5.2 A closer look at the hyperloops

Let us examine in detail the hyperloops with superconnection Lα,ᾱ in (5.7). To do so we
need the explicit expressions of Q+ acting on the scalar fields qaI and r̃I−1 ȧ. For the latter,
we get back components of ψ̃aI−1 as (the ± on the ψ̃ represent spinor indices)

Q+r̃I−1 1̇ = −ψ̃1
I−1,+ , Q+ ¯̃r1̇

I−1 = ¯̃ψI−1 1,− , Q+r̃I−1 2̇ = ψ̃2
I−1,− , Q+ ¯̃r2̇

I−1 = − ¯̃ψI−1 2,+ .

(5.16)
For the action on the qaI fields it is convenient to define rotated fermions ρIȧ via

ρI1̇ ≡ cos θ2 ψI1̇ + e−iϕ sin θ2 ψI2̇ , ρI2̇ ≡ cos θ2 ψI2̇ − e
iϕ sin θ2 ψI1̇ , (5.17)

such that

Q+q
1
I = −ρI1̇,− , Q+q

2
I = ρI2̇,+ , Q+q̄I1 = ρ̄1̇

I,+ , Q+q̄I2 = −ρ̄2̇
I,− . (5.18)

Hence we find

Lθα,ᾱ = Lθ0 +


ᾱI−1αI−1r̃I−1 2̇ ¯̃r 2̇

I−1 iᾱI−1ψ̃
2
I−1,− ᾱI−1αI r̃I−1 2̇q

2
I

−iαI−1
¯̃ψI−1 2,+ αI−1ᾱI−1 ¯̃r 2̇

I−1r̃I−1 2̇ + αI ᾱIq
2
I q̄I2 iαIρI 2̇,+

ᾱIαI−1q̄I2 ¯̃r 2̇
I−1 −iᾱI ρ̄2̇

I,− ᾱIαI q̄I2q
2
I

 .
(5.19)

An interesting question is whether there are any points of enhanced supersymmetry
along our moduli space. A simple guide is to look for points of enhanced bosonic symmetry
that does not commute with the preserved supercharges, so either SU(2)L or SU(2)R.

Looking to impose the SU(2)R symmetry, recall that it acts on the dotted indices
of r̃ and ρ̃. Examining (5.19), we immediately see that we should impose αI = ᾱI = 0
to eliminate the off-diagonal entries where dotted indices appear. This has the effect
of eliminating the entire third row and column of the supermatrix. The corresponding
diagonal entry in Lθ0, which is AθI+1, is also clearly not SU(2)R symmetric, as can be seen
from (B.7). So we should remove it from Lθ0 as well and focus on a loop coupling to only
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two nodes. Of course, it is possible to generalize this to any even number of nodes, but
with only couplings between pairs.

Focusing then on the upper-left 2 × 2 block of (5.19), there are still explicit dotted
indices in the diagonal parts, but those appear also in Lθ0. Let us write them together, say
for the I-th node:

AθI + αI−1ᾱI−1 ¯̃r 2̇
I−1r̃I−1 2̇ + αI ᾱIq

2
I q̄I2 = Aϕ,I −

i

k
¯̃r ȧI−1M̃ȧ

ḃr̃I−1 ḃ −
i

k
qaIMa

bq̄I b , (5.20)

with

M̃ȧ
ḃ =

(
1 0
0 ikαI−1ᾱI−1 − 1

)
and Ma

b =
(

1 0
0 ikᾱIαI − 1

)
. (5.21)

We chose to write the matrix M̃ in the basis of the twisted r̃, but regardless of the basis,
in order to preserve SU(2)R, it has to be proportional to the identity, so ikαI−1ᾱI−1 = 2.

The exact same structure follows for the top left entry, which is now also symmetric.
Recalling the C∗ symmetry, we can further fix αI−1 = ᾱI−1 =

√
2i/k and the full form of

the connection becomes

Lθ =

Aϕ,I−1 + q̃I−1 ȧ ¯̃q ȧI−1 + q̄I1q
1 − q̄I2q2 + 1

2 −1−i√
k
ψ̃2
I−1,−

1−i√
k

¯̃ψI−1 2,+ AI,ϕ + ¯̃q ȧI−1q̃I−1 ȧ + q1q̄I1 − q2q̄I2

 .
(5.22)

Note that the θ-dependence completely dropped out of this expression, so it is within the
class of 1/4 BPS operators presented in section 4, but with extra SU(2)R symmetry, so
this is in fact the 1/2 BPS loop of [1], now adapted to the 3-sphere.

Imposing SU(2)L symmetry is similar, but the results are different. Looking for un-
dotted indices in (5.19), we see that now we should take αI−1 = ᾱI−1 = 0. This eliminates
the top line and left column from the matrix and, as before, we should remove the top left
entry in Lθ0 as well.

We should again also examine the diagonal blocks, as we again have the expression
in (5.20). Now M̃ = diag(1,−1) and we want M to be proportional to the identity, so we
set ikᾱIα1 = 2, or αI = ᾱI =

√
2i/k. The resulting 2× 2 connection is

Lθ =

AI,ϕ+¯̃r1̇
I−1r̃I−11̇− ¯̃r2̇

I−1r̃I−12̇+qaq̄Ia −1−i√
k
ρI 2̇,+

1−i√
k
ρ̄2̇
I,− AI+1,ϕ+r̃I−11̇ ¯̃r1̇

I−1−r̃I−12̇ ¯̃r2̇
I−1+q̄Iaqa+ 1

2

 .
(5.23)

The fermions in the off-diagonal entries are defined in terms of the original fields in (5.17)
and the scalar bilinears are

¯̃r1̇
I−1r̃I−1 1̇ − ¯̃r2̇

I−1r̃I−1 2̇ =
(

¯̃q 1̇
I−1 ¯̃q 2̇

I−1

)( cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)(
q̃I−1 1̇
q̃I−1 2̇

)
, (5.24)

We recognize the same structure as the “fermionic latitude” of [19], so this is its genera-
lization to arbitrary N = 4 Chern-Simons-matter theories. For θ = 0 it becomes another
class of 1/2 BPS loop of [1].
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In addition to the supercharges Q±, this loop is also invariant under the ones obtained
by swapping undotted indices,

cos θ2 Q
1̇2
l̄

+ sin θ2 Q
2̇2
r̄ , cos θ2 Q

2̇1
l − sin θ2 Q

1̇1
r . (5.25)

The examples thus far were for the grading in figure 3. The story for the second grading
is analogous, with the β parameters coupling to the remaining fields. In particular, the
matrices M̃ and M in (5.21) would have the upper left corner shifted by bilinears of β. To
preserve SU(2)R we now set βI = β̄I = 0, and again have to focus on a superconnection
involving only the I − 1 and I nodes with M as before and M̃ = diag(−1,−1). This is
the second SU(2)R invariant 1/2 BPS Wilson loop described in [1]. Likewise, the SU(2)L
invariant hyperloop on this branch is another version of the “fermionic latitude” loops
described in [19] (in the notation of that paper it has l = −1).

The analysis here relies on a bosonic symmetry to indicate enhanced supersymmetry.
In principle there could be further points with accidental or more subtle supersymmetry
enhancement. We leave the study of that to the future.

5.3 Further examples

So far we focused on hyperloops involving three nodes of a long quiver. The simplest
generalization arising already in that case is taking multiple copies of the connections, i.e.
pJ > 1 in figures 3 and 4, forming larger Lθ0 connections and involving more α and/or β
parameters in the appropriate matrices G. This mirrors the examples in section 4, where
the central node had multiplicity 2.

In the case of a linear quiver one may worry about the final nodes which couple either to
hypermultiplets or to twisted hypermultiplets, although both kinds of fields appear in (3.8)
and (B.7). This turns out not to be a problem, and the construction proceeds as before with
the missing moment maps removed. For example, suppose that there is no hypermultiplet
to the left of the I − 1 node in the quiver of the underlying theory. When constructing
the hyperloop as in (5.4), this would mean that AθI−1 would loose the µ contribution and
become

Aϕ,I−1 −
i

k

(
r̃I−1 1̇ ¯̃r1̇

I−1 − r̃I−1 2̇ ¯̃r2̇
I−1

)
, (5.26)

but the construction of the hyperloop would follow exactly as before. Likewise if the
underlying theory had no twisted hypermultiplet to the right of the node I + 1, then AθI+1
would become

Aϕ,I+1 −
i

k
(µI+11

1 − µI+12
2) , (5.27)

and again the construction would follow as before.
Of course, if we have only a 2-node quiver and no twisted hypermultiplets, there would

not be a way to θ-deform their couplings. In that case there would only be the analog
deformation of µ, which is completely parallel to the constructions based on µ̃.

Next we examine what happens for longer quivers and for circular quivers like ABJ(M)
theory. Consider first the hyperloop coupling to 4 nodes as in figure 8. The story proceeds
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pI−1 pI pI+1 pI+2αI−1

ᾱI−1

αI

ᾱI

αI+1

ᾱI+1

Figure 8. A quiver diagram for a 4-node 1/8 BPS hyperloop.

exactly as before, except that we should remember that the shifts are relative to neighboring
nodes, so in this case (for all pJ = 1) the starting point is

Lθ0 =


AI−1 + 1

2 0 0 0
0 AI 0 0
0 0 AI+1 + 1

2 cos θ 0
0 0 0 AI+2 + cos θ−1

2

 . (5.28)

It should be clear how to deform this loop by adding couplings to the fermions and also
construct the loop corresponding the quiver with the second possible grading.

In the case of circular quivers, turning on θ 6= 0 poses a challenge. In the simplest
case of ABJ(M) we have two nodes, so L = 2. Then in our figures and expressions for L0,
etc. we can take I = 2 and identify the nodes I − 1 = 1 and I + 1 = 3. If we consider
a hyperloop coupling only to one edge in the quiver — so the quiver for the hyperloop is
a linear 2-node quiver — there is no problem. If we want to couple to matter from both
nodes, we face the fact that while we identify nodes 1 and 3, the shift of A1 is 1

2 and that
of A3 it should be 1

2 cos θ, see (5.4).
The solution to this problem was already anticipated in [9] (in other contexts where

the shifts were not 1/2) and it amounts to taking a cover of the original gauge theory
quiver. So we can couple the Wilson loop to both edges of the original quiver as long as
we consider a 3-node hyperloop with Lθ0 given by

Lθ0 =

A1 + 1
2 0 0

0 A2 0
0 0 A1 + 1

2 cos θ

 . (5.29)

Here A1 appears twice with different shifts. One can continue further with another copy
of A2 with a shift of (cos θ − 1)/2, and so on.

For θ 6= 0 the connection in (5.29) has (C∗)3 symmetry (with one copy acting trivially),
so the moduli space of 1/4 BPS loops according to (4.15) is

C2 × C2//C∗ × C∗ ' C2 . (5.30)

The θ = 0 case has enhanced symmetry (C∗)3 → GL(2,C) × C∗. The moduli space
according to (4.16) is now four-dimensional

C8//GL(2,C) . (5.31)

In addition to the very special case of θ = 0, for any rational cos θ, a hyperloop based on
a long enough quiver will have also some enhanced symmetry.
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6 A matrix model proposal

The construction of the hyperloops is based on a deformation of a bosonic loop and all
the loops of fixed θ are cohomologically equivalent under the supercharge Q+ used to
define them. This means that any localization computation for any loop on the moduli
space is immediately applicable to any one. The (tedious) proof, following [1, 17] requires
expanding the exponentials and checking order-by-order that the difference between the
different operators is Q+-exact. We do not reproduce this computation here since it is
essentially identical.

We propose now a matrix model that we hope captures the expectation value of our
operators. The matrix model partition function can be motivated by considering the usual
ingredients due to the vector multiplets (hyperbolic sines) and hypermultiplets (hyperbolic
cosines) at each node [31] and the proposal in [32] on how to introduce the θ-deformation:

Z =
∏
I

1
NI !

∫ NI∏
i=1

dλIi
2π ei

kI
4πλ

2
Ii

NI∏
i<j

4 sinh ν(λIi − λIj)
2 sinh λIi − λIj2ν

×

NI∏
i=1

NI+1∏
j=1

2 cosh ν
(−1)I (λIi − λI+1,j)

2

−1

.

(6.1)

The explicit value of the parameter ν can be fixed by the comparison with a perturbative
computation and turns out to be given, in our notation, by ν =

√
cos θ [32]. Note that

twisted and untwisted hypermultiplets contribute differently, with ν either in the numer-
ator or in the denominator of the argument of the hyperbolic cosines. The expectation
value of the θ-deformed hyperloops is given by inserting in the partition function above∑
I

∑NI
i=1 e

νλIi .

7 Conclusions

This paper reorganized the space of known Wilson loop operators in N = 4 Chern-Simons-
matter theories in three dimensions, which we now call hyperloops, and generalized it
considerably to include loops preserving 1, 2, 4 and 8 supercharges. Our findings clarify
and elaborate the intricate structure of the supersymmetric line operators and their moduli
spaces. The strategy, adapted from [8, 9], is to start with a choice of diagonal (bosonic)
superconnection, which is at the apex of a conical moduli space, and describes all other
superconnections as deformations of it. The operators we have thus obtained are classified
in terms of quiver diagrams encoding which gauge fields are involved and the couplings to
the matter fields. This, together with a “latitude” parameter θ, completes the set of data
necessary for the classification.

More concretely, we need to choose some or all of the vector fields and the number
of times they are represented in the Wilson loop. The next step is to choose a grading,
which plays two roles: it indicates the constant shifts in some of the diagonal connections
and it implies which half of the chiral fields we couple to, in order to get hyperloops with
twice as many supercharges. The two possible gradings then also give the two branches
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of the moduli space. Finally, for each of the included chiral (antichiral) fields we have
couplings αI , βI (ᾱI , β̄I) subject to a global gauge invariance, reducing the moduli space
to a quotient of Cp for some p. These moduli spaces are known as quiver varieties and
generically are conical, as first observed in [8] for the conifold in the case of the 1/6 BPS
loops of the ABJ(M) theory.

The hyperloops with θ = 0 were previously found in [9], but our description is much
more algorithmic and their moduli space was never studied in such detail. Loops with
θ 6= 0 were only studied in ABJ(M) theory and not in theories with N = 4 supersymmetry.
Furthermore, the constructions focused on the bosonic loops and on the analogs of the
1/4 BPS loops (which are 1/6 BPS in ABJ(M)) presented in section 5.2. The continuous
family of hyperloops interpolating between those two cases and all the other directions in
the moduli space have not been previously described.

As mentioned in section 3, the Gaiotto-Yin loop breaks SU(2)L × SU(2)R → U(1)L ×
U(1)R. The parameter θ further breaks U(1)R by including extra couplings to the moment
maps arising from the twisted hypermultiplets. All the examples that are presented in the
preceding sections have analogs with the roles of hypermultiplets and twisted hypermulti-
plets reversed.

There are many possible directions that can be pursued from here. Among the most
obvious ones is to attempt the complete exploration of the full moduli space of line operators
in three-dimensional Chern-Simons-matter theories. In addition to the tried and tested
approach of making ansätze and restricting them to be BPS, we can try to extend the point
of view introduced in [8] and employed here, of constructing the loops as deformations of
previously identified ones. One should first verify whether there are further line operators
involving only single nodes. Then whether there are any further deformations of them with
more complicated forms than considered here. Finally, one should examine other points
along the moduli space to see whether there are other branches that may intersect those
points, but not pass through the origin we employ here.

Still, these explorations cannot answer the question of what is the full space of BPS
line operators, which would require new tools to address. Moreover, there are other types
of line operators, known as vortex loops [33–35]. In some cases they are known to be dual
under mirror symmetry to Wilson loops [25], so it should be exciting to understand their
moduli spaces as well.

In section 5.2 we looked at some special examples of these loops which have enhanced
supersymmetry. It is not clear that the ones identified there, which were all previously
known, are the only points of enhanced supersymmetry on the moduli space.

Also in this spirit of discovering new hyperloops would be the construction of operators
supported along generic curves on a S2 ⊂ S3, following the four-dimensional example
of [18, 36, 37] or the ABJ(M) analog of [19].

Another question worth asking is what happens to these operators at the quantum level
and whether the classical moduli spaces described here receive corrections. The analysis
of [10] suggests that moduli spaces are natural for line operators in three dimensions, but
it does not predict their dimensions, as we found here, nor that their classical structure is
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not subject to quantum corrections. The heroic 3-loop calculation of [38]6 suggests that
the degeneracy among pairs of 1/2 BPS Wilson loops of [1] may sometimes get lifted. Such
a perturbative analysis would also be useful to test the matrix model proposal we put
forward in section 6.

Yet another angle is to study these moduli spaces as defect conformal manifolds in the
context of defect CFT. Explicit analysis of this type for line operators in four-dimensional
N = 4 theory include [40–42] and in three dimensions [43].

Wilson loops are also interesting in the holographic context, for they provide a rich
dictionary between gauge theory and string theory objects. It would then be interesting
to understand the holographic realization of the operators constructed here. Very little
has been done in this direction since the original proposal for the holographic dual in [22–
24]. Proposals for the holographic duals of 1/2 BPS loops in some N = 4 theories were
put forward in [3] and a first examination of a possible moduli space of 1/6 BPS loops in
ABJ(M) theory was done in [44].
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A The transformations for N = 4 on S3

The supersymmetry transformations of the N = 4 Chern-Simons-matter theory on the S3

can be seen to be given by

δAµ I = i

k
ξaḃγµ

(
jaḃI − ̃ ḃaI

)
,

δqaI = ξaḃψI ḃ , δq̄I a = ξaḃψ̄
ḃ
I ,

δq̃I−1 ḃ = −ξaḃψ̃
a
I−1 , δ ¯̃q ḃI−1 = −ξaḃ ¯̃ψI−1 a ,

δψI ȧ = iγµξbȧDµq
b
I + iζbȧq

b
I −

i

k
ξbȧ
(
νIq

b
I − qbIνI+1

)
+ 2i
k
ξbċ
(
µ̃I

ċ
ȧq
b
I − qbI µ̃I+1

ċ
ȧ

)
,

δψ̄ȧI = iγµξbȧDµq̄I b + iζbȧq̄I b −
i

k
ξbȧ (q̄I bνI − νI+1q̄I b) + 2i

k
ξbċ
(
q̄I b µ̃I

ȧ
ċ − µ̃I+1

ȧ
ċ q̄I b

)
,

δψ̃aI−1 = −iγµξaḃDµq̃I−1 ḃ − iζ
aḃq̃I−1 ḃ + i

k
ξaḃ
(
q̃I−1 ḃν̃I − ν̃I−1q̃I−1 ḃ

)
− 2i
k
ξbċ (q̃I−1 ċµI

a
b − µI−1

a
b q̃I−1 ċ) ,

δ ¯̃ψI−1 a = −iγµξaḃDµ ¯̃q ḃI−1 − iζaḃ ¯̃q
ḃ
I−1 + i

k
ξaḃ

(
ν̃I ¯̃q ḃI−1 − ¯̃q ḃI−1ν̃I−1

)
− 2i
k
ξbċ
(
µI

b
a
¯̃q ċI−1 − ¯̃q ċI−1µI−1

b
a

)
.

(A.1)
6See also [39] for a previous attempt limited to a two-loop computation.
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where ζaḃ = 1
3γ

µ∇µξaḃ. More specifically, from (3.5) one finds ζ l,l̄
aḃ

= i
2ξ
l,l̄

aḃ
and ζr,r̄

aḃ
= − i

2ξ
r,r̄

aḃ
.

We work in Euclidean signature and take the gamma-matrices, (γµ) β
α , to be given by the

Pauli matrices. As usual, the spinor contractions are such that

ξ1ξ2 ≡ ξα1 ξ2,α = +ξ2ξ1 , ξ1γ
µξ2 ≡ ξα1 (γµ) β

α ξ2,β = −ξ2γ
µξ1 , α, β = ±. (A.2)

Then it follows that the Killing spinors on S3 of (3.6) satisfy ξ l̄ξl = ξlξ l̄ = 1 and ξ l̄γµξl =
−ξlγµξ l̄ = δµϕ, and similarly for the contractions involving ξr and ξr̄.

The expressions in (A.1) can be motivated by relating them to the transformations
of the N = 2 Chern-Simons-matter theory on S3 written down in [20, 21]. The off-shell
supersymmetry transformation of the physical fields from the vector multiplets (Aµ, σ, D,
λ, λ̄) and chiral multiplets (φ, ψ, F ) in the (�, �̄) bifundamental and their conjugates are

δAµ I = − i2
(
ε̄γµλI − λ̄Iγµε

)
, δφI = ε̄ψI , δφ̄I = εψ̄I ,

δψI = iγµεDµφI + iε (σIφI − φIσI+1) + i

3γ
µDµεφI + ε̄FI ,

δψ̄I = iγµε̄Dµφ̄I − i
(
σI+1φ̄I − φ̄IσI

)
ε̄+ i

3 φ̄Iγ
µDµε̄+ F̄Iε .

(A.3)

To match with N = 4 theories we go on-shell, so use the actions7

S
(I)
CS = − kI4π

∫
d3x
√
gTr

[
εµνρ
√
g

(
Aµ I∂νAρ I −

2i
3 Aµ IAν IAρ I

)
− λ̄IλI + 2DIσI

]
, (A.4)

iS
(I)
matter =

∫
d3x
√
gTr

[
iDµφ̄ID

µφI + ψ̄Iγ
µDµψI + 3i

4l2 φ̄IφI − ψ̄I(σIψI − ψIσI+1)

− ψ̄I(λIφI − φIλI+1) + φ̄I(λ̄IψI − ψI λ̄I+1)− φ̄I(DIφI − φIDI+1)

+ iφ̄I(σIσIφI − 2σIφIσI+1 + φIσI+1σI+1) + iF̄IFI

]
,

to integrate out the auxiliary fields λ, λ̄, σ, D, F and F̄ .
This yields the on-shell transformations

δAµI =−2πi
kI

[
ε̄γµ

(
φ̄I−1ψI−1−ψI φ̄I

)
−
(
φI ψ̄I−ψ̄I−1φI−1

)
γµε
]
, δφI = ε̄ψI , δφ̄I = εψ̄I ,

δψI = iγµεDµφI+ 2πi
kI

ε
[(
φ̄I−1φI−1−φI φ̄I

)
φI−φI

(
φI+1φ̄I+1−φ̄IφI

)]
+ i

3γ
µDµεφI ,

δψ̄I = iγµε̄Dµφ̄I−
2πi
kI

[(
φI+1φ̄I+1−φ̄IφI

)
φ̄I−φ̄I

(
φ̄I−1φI−1−φI φ̄I

)]
ε̄+ i

3 φ̄Iγ
µDµε̄ .

(A.5)

Now we use the chiral decomposition of N = 4 hypermultiplets and twisted hypermultiplets
in figure 2. The chiral fields in this representation are q2 and q̃1̇. Extending to the other
fields in the multiplets we match (A.1) to (A.5) with the replacements

q̃1̇, q
2 → φ , ψ2̇, −ψ̃

1 → ψ , ¯̃q1̇, q̄2 → φ̄ , ψ̄2̇, − ¯̃ψ1 → ψ̄ . (A.6)
7Note that for the N = 4 theory the CS-levels are alternating, kI = (−1)Ik.
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where we also identified the supersymmetry parameters as ξ11̇ → ε and ξ22̇ → ε̄. A
mismatch by 2π in the non-linear terms can be fixed by rescaling the fields.

The other fields transform in the conjugate (�̄,�) representation, and with the same
choice of supersymmetry parameter identification they would be matched to N = 2 fields
in this representation according to

¯̃q2̇, q̄1 → φ , ψ̄1̇, − ¯̃ψ2 → ψ , q̃2̇, q
1 → φ̄ , ψ1̇, −ψ̃

2 → ψ̄ . (A.7)

B Double transformations of the fields

The main ingredient in the construction of fermionic Wilson loops are the double transfor-
mations of scalar fields. Using (A.1), we write these as

[δ1, δ2] qaI = −i
(
ξaḃ1 γ

µξ2bḃ − ξ
aḃ
2 γ

µξ1bḃ

)
Dµq

b
I − i

(
ξaḃ1 ζ2bḃ − ξ

aḃ
2 ζ1bḃ

)
qbI

+ i

k

(
ξaḃ1 ξ2bḃ − ξ

aḃ
2 ξ1bḃ

) (
νIq

b
I − qbIνI+1

)
− 2i
k

(
ξaȧ1 ξ2bḃ − ξ

aȧ
2 ξ1bḃ

) (
µ̃I

ḃ
ȧq
b
I − qbI µ̃I+1

ḃ
ȧ

)
[δ1, δ2] q̃I−1 ȧ = −i

(
ξ1aȧγ

µξaḃ2 − ξ2aȧγ
µξaḃ1

)
Dµq̃I−1ḃ − i

(
ξ1aȧζ

aḃ
2 − ξ2aȧζ

aḃ
1

)
q̃I−1ḃ

+ i

k

(
ξ1aȧξ

aḃ
2 − ξ2aȧξ

aḃ
1

) (
q̃I−1ḃν̃I − ν̃I−1q̃I−1ḃ

)
− 2i
k

(
ξ1aȧξ

bḃ
2 − ξ2aȧξ

bḃ
1

) (
q̃I−1ḃµI

a
b − µI−1

a
bq̃I−1ḃ

)
. (B.1)

We specialize the double transformations to the supercharges (3.12), whose correspond-
ing parameters are given by

ξ1,aḃ = δ1
a

(
δ1̇
ḃ

cos θ2ξ
l̄ + δ2̇

ḃ
sin θ2ξ

r̄
)
, ξ2,aḃ = δ2

a

(
δ2̇
ḃ

cos θ2ξ
l − δ1̇

ḃ
sin θ2ξ

r
)
. (B.2)

The Killing spinors in (3.6) obey (3.5), from which one sees that the second term in (B.1)
becomes

−i(ξaḃ1 ζ2bḃ − ξ
aḃ
2 ζ1bḃ)q

b
I = −1

2 cos θ
(
δa1q

1
I − δa2q2

I

)
. (B.3)

Combining with the rest of (B.1) one finds

i{Q1,Q2}q1
I = Dϕq

1
I −

i

2 cos θ q1
I + 1

k
(νIq1

I − q1
IνI+1)

− 1
k

(
¯̃r 1̇
I−1r̃I−1 1̇ − ¯̃r 2̇

I−1r̃I−1 2̇

)
q1
I + 1

k
q1
I

(
r̃I+1 1̇ ¯̃r 1̇

I+1 − r̃I+1 2̇ ¯̃r 2̇
I+1

)
,

i{Q1,Q2}q2
I = Dϕq

2
I + i

2 cos θ q2
I −

1
k

(νIq2
I − q2

IνI+1)

− 1
k

(
¯̃r 1̇
I−1r̃I−1 1̇ − ¯̃r 2̇

I−1r̃I−1 2̇

)
q2
I + 1

k
q2
I

(
r̃I+1 1̇ ¯̃r 1̇

I+1 − r̃I+1 2̇ ¯̃r 2̇
I+1

)
,

(B.4)

with fields r̃ defined in (5.1). Noting that

νIq
1
I − q1

IνI+1 = −
(
µI

1
1 − µI2

2

)
q1
I + q1

I

(
µI+1

1
1 − µI+1

2
2

)
,

νIq
2
I − q2

IνI+1 =
(
µI

1
1 − µI2

2

)
q2
I − q2

I

(
µI+1

1
1 − µI+1

2
2

) (B.5)
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we can write

i {Q1,Q2} qaI = Dϕq
a
I −

i

2 cos θ
(
δa1q

1
I − δa2q2

I

)
− i

(
AθI −Aϕ,I

)
qaI + iqaI

(
AθI+1 −Aϕ,I+1

)
.

(B.6)
where AθI+1 is given by the natural generalization of (5.2) to the I + 1-th node

AθI±1 = Aϕ,I±1 −
i

k

(
µI±11

1 − µI±12
2 + r̃I±1 1̇ ¯̃r 1̇

I±1 − r̃I±1 2̇ ¯̃r 2̇
I±1

)
. (B.7)

The covariant derivative is Dϕq
a
I = ∂ϕq

a
I − iAϕ,IqaI + iqaIAϕ,I+1, so that the double trans-

formation can be recast as a total covariant derivative with respect to the Aθ-connection,
including the coupling to a background field

i{Q1,Q2}q1
I = Dϕq1

I ≡ ∂ϕq1
I −

i

2 cos θq1
I − iAθIq1

I + iq1
IAθI+1 ,

i{Q1,Q2}q2
I = Dϕq2

I ≡ ∂ϕq2
I + i

2 cos θq2
I − iAθIq2

I + iq2
IAθI+1 .

(B.8)

Note that q1
I and q2

I are charged oppositely with respect to the background field.
We repeat the computation for the r̃ȧ’s arriving at

i {Q1,Q2} r̃I−1 1̇ = Dϕr̃I−1 1̇ + i

2 r̃I−1 1̇ −
1
k

(
r̃I−1 1̇ν̃I − ν̃I−1r̃I−1 1̇

)
+ 1
k

(
r̃I−1 1̇

(
µI

1
1 − µI2

2

)
−
(
µI−1 1

1 − µI−1 2
2
)
r̃I−1 1̇

)
,

i {Q1,Q2} r̃I−1 2̇ = Dϕr̃I−1 2̇ −
i

2 r̃I−1 2̇ + 1
k

(
r̃I−1 2̇ν̃I − ν̃I−1r̃I−1 2̇

)
+ 1
k

(
r̃I−1 2̇

(
µI

1
1 − µI2

2

)
−
(
µI−1 1

1 − µI−1 2
2
)
r̃I−1 2̇

)
.

(B.9)

It is easy to see that these are also given by total derivatives

i{Q1,Q2}r̃I−1 1̇ = Dϕr̃I−1 1̇ ≡ ∂ϕr̃I−1 1̇ + i

2 r̃I−1 1̇ − iA
θ
I−1r̃I−1 1̇ + ir̃I−1 1̇A

θ
I ,

i{Q1,Q2}r̃I−1 2̇ = Dϕr̃I−1 2̇ ≡ ∂ϕr̃I−1 2̇ −
i

2 r̃I−1 2̇ − iA
θ
I−1r̃I−1 2̇ + ir̃I−1 2̇A

θ
I ,

(B.10)

with, again, the two components oppositely charged with respect to the background field.
We also need the corresponding expressions for the conjugate fields, which are given by

i{Q1,Q2}q̄Ia = Dϕq̄Ia ≡ ∂ϕq̄Ia − (−1)a i2 cos θ q̄Ia − iAθI+1q̄Ia + iq̄IaAθI ,

i{Q1,Q2}¯̃r ȧI−1 = Dϕ ¯̃r ȧI−1 ≡ ∂ϕ ¯̃r ȧI−1 + (−1)ȧ i2
¯̃r ȧI−1 − iAθI ¯̃r ȧI−1 + i¯̃r ȧI−1AθI−1 .

(B.11)
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