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Abstract: Cytochrome c is a small globular protein whose main physiological role is to shuttle
electrons within the mitochondrial electron transport chain. This protein has been widely investigated,
especially as a paradigmatic system for understanding the fundamental aspects of biological electron
transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native
catalytic activity and be immobilized on an electrode surface for the development of third generation
biosensors. Here, an overview is offered of the most significant examples of such a functional
transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be
induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We
critically discuss the potential held by these systems as core constituents of amperometric biosensors,
along with the issues that need to be addressed to optimize their applicability and response.

Keywords: redox biosensing; cytochrome c; surface immobilization

1. Introduction

The heme group is the most abundant metal cofactor in living organisms and is
involved in many different biological functions, from O2 binding and transport, to redox
catalysis, from electron shuttling, to molecular sensing [1–4]. The reason for this large
variety of functions is the chemical versatility of the heme center the reactivity of which is
modulated and fine-tuned by the protein matrix, which may control the iron atom axial
coordination and spin state, the accessibility to solvent and exogenous molecules, and the
polarity of the surrounding environment [3–7].

The multiplicity of physiological roles and the ease of isolation, genetic manipulation,
and physico-chemical characterization have made electrode-immobilized native and mu-
tated heme proteins the species of choice for the development of bio(in)organic interfaces
for (bio)sensing and catalysis [5,6,8–15]. Exploiting the direct adsorption or covalent at-
tachment of the redox-active protein on the electrode surface proved to be an attractive and
promising approach, leading to the development of efficient third-generation amperometric
biosensors for substrates of clinical and industrial relevance (O2, H2O2, NO2

−) [5,6,8–15].
Its main drawback consists in the immobilization-induced protein unfolding and inactiva-
tion, which may severely hamper the electrochemical and electrocatalytic responses [5,6].
This is particularly relevant for globins, peroxidases, catalases, and cytochrome P450, since
their heme b is not covalently bound to the protein matrix and can be partially or com-
pletely released upon protein denaturation, generating electrochemical responses due to
non-native conformers or freely-diffusing heme groups in solution [5,16–18].
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Two approaches are applied to overcome this problem. The first consists in the de-
velopment of more efficient strategies of protein–electrode immobilization, which effec-
tively couple preservation of the native protein structure with efficient electrical commu-
nication [5,6,19–24]. The most common immobilization techniques consist in protein ph-
ysisorption or covalent attachment on (i) the bare electrode surfaces, (ii) electrodes surface-
modified with self-assembled monolayers (SAMs) of alkanethiols, or (iii) nanomaterials (Au
nanoparticles, carbon nanotubes, graphene), and iv) protein encapsulation into different
porous matrices (often incorporating redox mediators or carbon nanotubes) [5,6,19–31].

The second strategy, which is applied in combination with the former, is based on the
possibility of effectively modulating and controlling the reactivity of heme proteins by ratio-
nally designed mutations in key positions [32–36]. Of particular interest is the replacement
of five-coordinated heme b-containing proteins (which feature an open heme coordination
site for substrate binding) with engineered single and multi-heme cytochromes c as the core
constituents of the hybrid sensing interfaces [8,9,15,37–40]. The rationale of this approach
is that these species, whose reactivity can be made comparable to that of the replaced
proteins, are more robust and more resistant to immobilization-induced unfolding and
heme release, due to the presence of covalently bound hemes c [8,9,15,37–43]. The feasibility
of this approach has been demonstrated by the ability of mutated cytochromes c to catalyze
the electrocatalytic reduction of O2, H2O2, and NO2

− [8,9,15,37–40,44].
Cytochromes c constitute a large and ubiquitous family of redox metalloproteins

containing one or more hemes c covalently bound to the sidechains of two cysteine
residues [45–47]. Mitochondrial cytochromes c (cytc hereafter) are the most thoroughly
characterized species. Cytc is a small globular protein (ca. 13 kDa) that contains a single
six-coordinate heme c embedded into a hydrophobic environment, and whose axial iron
coordination positions are occupied by His18 and Met80 [45–48]. Under physiological con-
ditions, cytc is located in the intermembrane space of mitochondria, where it participates
in the electron transport chain, shuttling electrons from cytochrome c reductase (complex
III) to cytochrome c oxidase (complex IV).

Due to its relative simplicity, stability, and availability, cytc has long been adopted
as a robust model for understanding the molecular details of biological electron transfer
and protein folding and stability [41–43,45–56]. These studies revealed the existence of
several non-native conformations, whose 3D structure, heme environment, and axial
ligation depend on the solution properties and binding events [41–43,45–49,55–86]. This
structural flexibility is crucial for controlling the physiological role of the protein, as well as
its reactivity in vitro [41–43,48,49,51,57,62,63,65,68,75–80,83,84,87–100], since the observed
changes in heme axial ligation, coordination number, and accessibility confer to cytochrome
c the ability to bind and catalyze the reduction of small exogenous molecules (such as O2,
H2O2 and NO2

−), turning it from an ET protein into an efficient redox enzyme [8,9,15,37–
39,41,43,44,63,83–85,93,98,101–105].

Indeed, it is now well established that cytc is a multi-tasking protein, whose structural
properties and biological role depend on external stimuli and cellular location [48,56,57,68,75,
93,106]. Its role as an apoptotic trigger is the epitome of this tunable functionality in vivo. This
function depends on cytc release into the cytosol, which is activated by binding to the negatively
charged glycerophospholipid cardiolipin (CL) found in the inner mitochondrial membrane
(IMM) [48,93,106,107]. The interaction with CL induces a conformational transition accompanied
by the cleavage of the Fe–S(Met80) bond [48,57,62,63,68,75,77,93,95,103,107–109], which imparts
cytc with a significant (lipo)peroxidase activity toward CL itself, crucial for the permeabilization
of the mitochondrial membrane [48,57,63,68,75,93,107,108,110,111]. Moreover, cytc can move
into the nucleus in response to DNA damage, preventing nucleosome assembly and blocking cell
survival [48,75,112]; although the mechanism of translocation and the conformations involved
in each step are still unknown.

In vitro, chemical denaturation of freely diffusing and surface-immobilized cytc (due
to extreme pH values, denaturing agents, organic solvents, or lipid membranes) induces a
heme axial ligand swapping similar to that observed upon CL binding in vivo, resulting
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in non-native low spin His/Lys and His/His axially ligated forms and 5-coordinate high-
spin His-ligated species [38,39,44,102,103,113–115], featuring good pseudo-peroxidase and
nitrite-reductase performances.

Here, we describe how to turn cytc into an efficient redox enzyme, for the develop-
ment of bioinorganic interfaces for third generation amperometric biosensors for small
substrates (O2, H2O2, NO2

−), through exploitation of (i) point mutations and (ii) chemical-
or adsorption-induced unfolding, also in the presence of lipid membranes, coupled with
immobilization on the surface of solid electrodes.

2. Exploiting Point Mutations

We can identify three major structural features that prevent cytochrome c from func-
tioning as an efficient electrocatalyst in its native, folded state (which, on the other hand,
are the same that allow it to act as an ET species) [9,44]. The most relevant is the lack of a
free position in the iron coordination sphere, in contrast with native heme enzymes, which
feature either a five-coordinate iron or a weakly bound sixth axial ligand that is easily
displaced by the substrate [1,2]. The second factor is the poor accessibility of the heme
pocket to potential substrates. Third, the heme pocket lacks a base catalyst, as the distal
His in heme peroxidases, which would facilitate the catalytic mechanism [116].

In the last two decades, the rational design of engineered cytc with non-native en-
zymatic activity has been devoted to lifting at least one of the aforementioned structural
limitations [117–121]. Here, we will focus exclusively on electrode immobilized mutant
cytochromes c turned into the core components of potential electrochemical biosensors.

The most relevant example of an ad hoc designed site-directed mutant of cytochrome
c endowed with catalytic activity is the M80A mutant, in which the axial iron ligand
methionine at position 80 (Figure 1) was replaced by a non-coordinating alanine residue.
Despite the mutation, the iron is still hexacoordinated by an OH− ion that protonates
with a pKa of 5.6 [37,121–127] that, however, could easily be replaced by small molecules
such as dioxygen, hydrogen peroxide, or anions (e.g., nitrite) [8,9,37,122–124,126], as
detailed below.
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Figure 1. Cartoon representing the 3D structure of wild type yeast cytochrome c (PDB 2YCC)
highlighting Met80 (orange), Tyr67 (light green), and Lys 72, Lys73, and Lys 79 (yellow).

In 2008, our group described the electrocatalytic properties of the M80A mutant
of yeast cytc immobilized on self-assembled monolayers (SAMs) formed either by a
mixture of mercaptoundecanoic acid/mercaptoundecanol (MUA/MU hereafter) or by
4-mercaptopyridine (4-MP) [37]. On the former SAM, the M80A mutant mainly adsorbs
via electrostatic interactions between the negatively-charged SAM headgroups and the
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surface-exposed lysines of the protein, as indicated by the loss of the redox signals at high
ionic strength. Conversely, the M80A mutant is believed to bind to the 4-MP SAM mostly
via hydrogen bonds involving pyridine nitrogen and interfacial water molecules. In both
cases, the E◦′ value at 25 ◦C for the immobilized protein is about 400 mV more negative
compared to the wt species under the same conditions, most likely as a consequence of the
replacement of the soft S(Met) axial ligand with the hard hydroxide ion [9,37].

For M80A cytc on MUA/MU, electrocatalytic waves were observed upon increasing
the concentration of O2 in the solution (Figure 2), which could be attributed to the electro-
catalytic dioxygen reduction carried out by the adsorbed mutant. Such a response was
observed both at slightly acidic (5.1) and neutral pH values [37]. When bound to the 4-MP
modified gold electrode, M80A cytc could electrocatalytically reduce O2 in a wider pH
range (namely pH 5, 7, and 10) [37].
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Figure 2. Cyclic voltammograms for the M80A/C102T mutant of yeast iso-1-cytochrome c immo-
bilized on a polycrystalline gold electrode coated with a SAM of 1:1 MUA/MU at pH 5.2 (A) and
7 (B), recorded upon increasing exposure to air. For solution composition and other experimental
conditions, the reader is referred to the original literature. Reprinted with permission from ref. [37].
Copyright 2008 American Chemical Society.

These remarkable electrocatalytic properties are probably due to the large intrinsic
affinity of O2 for the Fe(II) heme and to the weakening of the bond between the heme iron
and the axial ligand (OH− or H2O, depending on the pH) upon Fe(III) reduction, which
facilitates the binding of O2 to the ferrous heme. The most severe limitation to the practical
use of the above described construct was the loss of the protein response upon extensive
electrochemical cycling, most likely due to oxidative disruption of the MUA/MU or 4-MP
monolayers by the radical species yielded by dioxygen reduction (possibly superoxide
anion) [37].
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As stability over prolonged electrochemical cycling is an important prerequisite for
amperometric biosensing, the M80A mutation was coupled to two further substitutions to
introduce a single, surface exposed cysteine (Cys62) for direct covalent immobilization of
the protein on bare Au working electrodes [8]. The M80A/N62C/C102T mutant covalently
bound to bare gold was indeed able to electrocatalytically reduce O2 with higher catalytic
currents over a wider pH range (from 3 to 10) compared to the physiosorbed M80A variant,
and, most notably, its electrochemical response did not fade upon prolonged electrocatalytic
activity [8].

The M80A/N62C/C102T mutant was also able to electrocatalytically reduce the nitrite
anion upon immobilization on 4-MP, on MUA/MU, and when covalently bound to bare
Au [8]. Independently of the surface confinement strategy, when the ion concentration was
increased to the micromolar range, an increase of the cathodic current, accompanied by a
decrease of the anodic one, was observed (Figure 3) [8].
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Figure 3. Cyclic voltammograms recorded in the presence of increasing concentrations of sodium
nitrite for the M80A variant of yeast iso-1-cytochrome c immobilized with different procedures on
a polycrystalline gold electrode at pH 7. (A) M80A/C102T on a SAM 4-MP (black, no nitrite; red,
10 µM; blue, 20 µM; magenta, 100 µM), (B) M80A/C102T on a SAM of MUA/MU (black, no nitrite;
red, 1 µM; blue, 5 µM; magenta, 15 µM; green, 20 µM), and (C) M80A/N62C/C102T covalently
linked to the electrode through an Au-S(Cys) bond (black, no nitrite; red, 1 µM; magenta, 2 µM,
blue, 5 µM; green, 10 µM; dashed red, 20 µM; dashed black, 30 µM; dashed magenta, 50 µM). For
the solution composition and other experimental conditions, the reader is referred to the original
literature. Reprinted with permission from ref. [8]. Copyright 2008 American Chemical Society.
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The proposed two-step mechanism first involves reduction of heme iron (which
destabilizes the bond with the OH− anion serving as the sixth ligand) followed by the
one-electron reduction of nitrite to NO [8,39,44]:

cytc-Fe(III)-OH− + e− → cytc-Fe(II) + OH−

cytc-Fe(II) + NO2
− + H+ → cytc-Fe(III)-OH− + NO

(1)

The catalytic activity of the electrode-immobilized M80A/N62C/C102T mutant was
successfully estimated using the Michaelis–Menten model, expressing the Michaelis–
Menten equation in terms of current density [8,39,44]:

1
jc

=
1

jmax
+

KM

jmax·
[
NO−2

] (2)

where jc and jmax are the electrocatalytic current density and the maximum current density
at substrate saturation, respectively (Figure 4).
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Figure 4. Lineweaver–Burk plot for the electrocatalytic currents yielded by the M80A/N62C/C102T
variant of yeast iso-1-cytochrome c covalently linked to the electrode through an Au-S(Cys) bond,
pH 7, in the presence of increasing nitrite ion concentrations. Reprinted with permission from ref. [8].
Copyright 2008 American Chemical Society.

The latter is the electrochemical equivalent of vmax in the usual Michaelis–Menten
model and depends on kcat and on the surface concentration of the catalytically active
protein on the electrode. Hence, fluctuations in jmax are directly connected to kcat changes,
provided that the protein coverage of the SAM is conserved. As a consequence, jmax reflects
the ability of electrode-immobilized M80A/N62C/C102T mutant to catalyze the reduction
of NO2

− [8,39,44]. KM indicates the kinetic affinity between the protein and substrate, the
smaller the KM values the higher the protein affinity for NO2

−.
The cathodic current decreases for [NO2

−] > 20 µM, possibly as a consequence of
electrostatic interactions between the anion and the positively charged lysine-rich patches
on the protein surface, which might induce a conformational change detrimental to the
catalytic activity [8]. The KM and jmax values are 5.1 µM and 2.14 µA cm−2 (Table 1),
respectively [8]. KM values in the micromolar range indicate a significant kinetic affinity of
the nitrite ion for the mutant (much larger than that for myoglobin or cytochrome P450,
which show larger KM values, by about three orders of magnitude [128,129]). The jmax
values are informative on the catalytic efficiency, which turns out to be comparable to
that of a freely diffusing nitrite reductase accepting electrons via heterogeneous ET from
surface-immobilized cytc551 [130].
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Table 1. Kinetic parameters for the electrocatalytic reduction of NO2
− carried out by wt yeast iso-1 cytochrome c (ycc) and some

of its variants covalently bound to a bare polycrystalline gold electrode (M80A/N62C/C102T) or adsorbed on a polycrystalline
gold electrode coated with a SAM of MUA/MU or 1-DT (M80A and M80A/Y67A). For the solution composition, experimental
conditions, and uncertainties associated with the reported values, the reader is referred to the original literature.

KM (µM) Jmax
(µA cm−2)

Jmax/KM
(µA cm−2 µM−1) Ref.

Protein covalently bound to a bare Au electrode

M80A/N62C/C102T a 5.1 2.14 0.42 [8]

Protein adsorbed on a Au electrode surface-modified with a MUA/MU SAM

wt ycc folded - - - [44]
wt ycc unfolded (7 M urea) - - - [44]
M80A ycc unfolded (7 M urea) 0.64 3.47 5.42 [44]
M80A/Y67A ycc folded 5.96 2.78 0.47 [44]
M80A/Y67A ycc unfolded (7 M urea) 4.51 3.95 0.88 [44]

Protein adsorbed on a Au electrode surface-modified with a 1-DT SAM

wt ycc - - - [39]
wt ycc + CL - - - [39]
M80A ycc 0.22 1.20 b 5.46 b [39]
M80A ycc +CL 0.37 1.50 b 4.04 b [39]
M80A/Y67A ycc 0.43 1.42 b 3.30 b [39]
M80A/Y67A ycc + CL 0.85 1.35 b 1.59 b [39]

a These kinetic parameters correspond to those for the electrocatalytic reduction of NO2
− by the folded M80A variant, since covalent

binding of the M80A/N62C/C102T variant to a bare polycrystalline gold electrode does not induce protein unfolding. b Calculated by
multiplying the data reported in Table 3 of ref. [39] by the corresponding electrode surface coverages Γ0.

Very recently, our group investigated the electrocatalytic properties of a surface-bound
M80A mutant in mixed organic/water solvent [82]. Retaining peroxidase-like activity
in a non-fully aqueous environment is crucial for exploitation of the construct in real
life applications. In particular, M80A was electrostatically physisorbed on a MUA/MU
mixed SAM, and its electrocatalytic activity towards H2O2 reduction was measured in
dimethylsulfoxide (DMSO)/water mixtures [82]. The mutant retained its peroxidase-like
properties up to 60% v/v DMSO, while at higher DMSO concentrations a marked decrease
of the activity occurred, most likely due to conformational changes, as indicated by changes
in the reduction thermodynamics and ET kinetics [82].

Besides substitution of an axial ligand with a non-coordinating residue, the heme
pocket was further modified to make it more similar to that of native heme redox enzymes.
A key residue in this respect is the highly conserved Tyr67, which plays a crucial structural
role, through its extended hydrogen bond network within the heme pocket [127,131,132].
To assess the role played by Tyr67, several research groups produced and characterized cytc
variants at position 67, exploring changes at the structural level and in the peroxidase-like
activity [117,119,120]. The two most widely explored mutations for yeast and human cytcs
were Y67H and Y67R [117,119,120]. Interestingly, the Y67H mutation has little structural
effects, despite the weakening of the Fe-S(Met80) bond [120]. On the contrary, in the Y67R
mutant of human cytc, the Fe-S(Met80) bond is lost, resulting in an eight-fold increase of
peroxidase activity with respect to the wt protein [120], possibly due to the stabilization of
the negative charge of the Fe(III)-OOH complex by the newly introduced Arg67 during
Compound I formation.

To assess whether addition of a mutation at Tyr67 to the Met80-to-Ala swapping
further enhances the catalytic properties of cytc, our group investigated the electrochemical
behavior of the double mutants M80A/Y67H and M80A/Y67A of yeast cytc adsorbed on
an MUA/MU-modified gold electrode [9]. The near invariance of the E◦′ values suggested
that the Y67/A-H changes did not induce relevant structural differences compared to
the single M80A mutant. Both double variants were able to electrocatalytically reduce
H2O2 in the low micromolar range [9]. An irreversible catalytic activity loss occured at



Molecules 2021, 26, 4950 8 of 22

H2O2 concentrations higher than 5 µM and 18 µM, respectively, which could be ascribed to
oxidative damage to the protein and/or loss of the heme iron [9].

The catalytic activity of the M80A variant and both double mutants was again esti-
mated using the Michaelis–Menten equation, expressed in terms of current density [9]:

1
jc

=
1

jmax
+

KM
jmax·[H2O2]

(3)

Perhaps surprisingly, the immobilized M80A/Y67H and M80A/Y67A displayed
poorer peroxidase-like capability than M80A, as indicated by lower jmax values (3 and
10 times smaller than M80A for M80A/Y67H and M80A/Y67A, respectively) and slightly
higher KM values (Table 2) [9]. Therefore, despite resulting in a larger heme cavity, the Tyr67
substitution removes a residue that is important for efficient catalytic turnover, most likely
thanks to its involvement in the H-bond to hydrogen peroxide or hydroperoxide anion.

Table 2. Kinetic parameters for the electrocatalytic reduction of H2O2 carried out by wt beef heart cytochrome c (bcc),
wt yeast iso-1 cytochrome c (ycc) and its K79A, K73A, K72A/K73A, K72A/K73A/K79A, K72A/K73H/K79A, M80A,
M80A/Y67A, and M80A/Y67H variants adsorbed on a polycrystalline gold electrode coated with a SAM of MUA/MU or
1-DT. For the solution composition, experimental conditions, and uncertainties associated with the reported values, the
reader is referred to the original literature.

KM (µM) Jmax
(µA cm−2)

Jmax/KM
(µA cm−2 µM−1) Ref.

Protein adsorbed on a Au electrode surface-modified with a MUA/MU SAM

wt ycc - - -
wt ycc unfolded (8 M urea) 9.3 5.18 0.56 [102]
K79A ycc unfolded (8 M urea) 2.0 5.50 2.75 [102]
K73A ycc unfolded (8 M urea) 18.8 2.68 0.14 [102]
K72A/K73A ycc unfolded (8 M urea) 18.3 5.53 0.30 [102]
K72A/K73A/K79A ycc unfolded (8 M urea) 11.5 2.34 0.20 [102]
K72A/H73H/K79A ycc folded (0 M urea), pH 7.4 0.95 0.5 0.5 [38]
K72A/H73H/K79A ycc unfolded (4 M urea), pH 7.4 0.96 4.0 4.2 [38]
K72A/H73H/K79A ycc unfolded (8 M urea), pH 7.4 0.60 2.7 4.5 [38]
K72A/H73H/K79A ycc unfolded (8 M urea), pH 5 0.59 2.8 4.7 [38]
M80A ycc 3.25 9.26 2.85 [9]
M80A ycc unfolded (7 M urea) 1.38 5.49 3.98 [44]
M80A/Y67A ycc 8.90 0.94 0.11 [9]
M80A/Y67A ycc unfolded (7 M urea) 5.36 4.52 0.84 [44]
M80A/Y67H ycc 3.7 2.91 1.27 [9]

Protein adsorbed on a Au electrode surface-modified with a 1-DT SAM

wt bcc 3.4 12.4 3.56 [104]
wt bcc + CL 4.1 17.3 4.22 [104]
wt ycc 4.1 11.2 2.73 [104]
ycc wt + CL 4.9 16.5 3.37 [104]
K72A/K73A/K79A ycc 5.5 10.8 1.96 [104]
K72A/K73A/K79A + CL 6.2 15.1 2.44 [104]
M80A ycc 4.72 3.76 a 0.80 a [39]
M80A/Y67A ycc 2.80 4.73 a 1.69 a [39]
M80A ycc +CL 1.90 1.41 a 0.74 a [39]
M80A/Y67A ycc + CL 2.01 3.64 a 1.81 a [39]

a Calculated by multiplying the data reported in Table 3 of ref. [39] by the corresponding electrode surface coverages Γ0.

A similar approach can be extended to multi-heme proteins. In particular, the M64A
and M164A variants of the di-heme cytochrome c4 from P. haloplanktis, in which the Fe-
binding methionine of both heme centers is replaced by an OH− ion, have been studied
as potential components for third generation biosensors [40]. Indeed, the M64A mutant,
thanks to a favorable orientation on a MUA-coated gold electrode, can act as catalyst for
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dioxygen reduction, while the native C-terminal heme most likely functions as an electron
shuttle to the newly introduced catalytic center [40].

3. Exploiting Protein Unfolding

Cytochrome c unfolds due to acidic pH, denaturing agents (urea and GdCl) or upon
interaction with (mainly hydrophobic) surfaces [10,68,76,77,88,108,113,115,127,133–135].
In all cases, a remarkable decrease in E◦′ is observed, due to the replacement of Met80
by a new axial ligand (either an OH− ion or an endogenous His or Lys residue), which
selectively stabilizes the ferric protein.

3.1. Chemical Unfolding

Cyclic voltammetric and Surface-enhanced resonance Raman (SERR) spectroscopy
studies have shown that in the presence of high urea concentration (>6 M) the E◦′ of beef
heart and yeast cytcs, adsorbed on electrodes surface-modified with MUA/MU and 4-MP
SAMs, shifts to approximately 0.4 V more negative values, owing to the replacement of the
native Met80 axial ligand by His26 or 33 [101,102,113,115,136]. In similar conditions, the
same heme axial ligand swapping is also observed for single, double, and triple mutants
of yeast cytc, in which the lysine residues surrounding the solvent-exposed heme edge
(Figure 1) are replaced by alanines (K73A, K79A, K72A/K73A, and K72A/K73A/K79A
variants) [102,113].

In all cases, the adsorbed urea-unfolded proteins catalyze the reduction of O2 and
H2O2 [101,102]. The unfolded bis-His ligated conformers, prevailing at large concentrations
of unfolding agent [101,102,113,136], are responsible for the observed behavior [101,102],
since the native His-Met-ligated form of all immobilized proteins is unable to perform
the electrocatalytic reduction of O2 and H2O2. Moreover, the protein layers are stable
and can be re-used, as the voltammetric signal of all bis-His-ligated conformers can be
restored upon complete removal of dioxygen and H2O2, and the catalytic currents can be re-
obtained upon addition of the substrates [101,102]. Most importantly, the near invariance of
the cathodic and anodic peak potentials over the entire range of dioxygen partial pressures
and hydrogen peroxide concentrations analyzed indicates that in all cases the catalytic
active species is the ferrous form [101,102], which binds and reduces O2 and H2O2, as
observed for different heme enzyme-based electrodes [5,6,22,137,138].

The lower affinity of the imidazole ring of histidine for the ferrous heme compared
to the sulfur of the native Met80 axial ligand is crucial, because it reduces the stability of
the reduced bis-His-ligated conformer, inducing the dissociation of one of the histidine
ligands from the iron(II) center [101,102], and thereby making an axial site available for the
interaction with O2 and H2O2. On the contrary, the six-coordinate ferrous heme iron of
folded wt cytc is not available for substrate binding, due to the strong bond formed with
the thioether sulfur of the axial Met ligand.

The observed electrocatalytic activity of the bis-His-ligated cytc conformers towards
O2 can be accounted for by a mechanism in which O2 binds to the ferrous heme upon
dissociation of one of the axial His, yielding an oxidative addition that results in a Fe(III)–
O2
− derivative, which then dissociates [101]:

cytc-Fe(III)-His + e− → cytc-Fe(II) − − − His
cytc-Fe(II) − − − His + O2 → cytc-Fe(III)-O2

−

cytc-Fe(III)-O2
− → cytc-Fe(III)-His + O2

−
(4)

where cytc-Fe(II) − − − His is the ferrous unfolded yeast cytc, in which one of the metal–
His bonds is longer and weakened. Detection of the superoxide ion in the products of the
(electro)catalytic reduction confirms the soundness of the above mechanism [101].

Likewise, based on literature data showing that in several reactions iron (II) is oxidized
to the ferryl group by H2O2 [139], the following mechanism is proposed for the observed
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electrocatalytic reduction of H2O2 mediated by the ferrous bis-His-ligated unfolded con-
former [102]:

cytc-Fe(III)-His + e− → cytc-Fe(II) − − − His

cytc-Fe(II) − − − His + H2O2 → cytFe(IV)=O(His)uncoordinated + H2O

cytFe(IV)=O(His)uncoordinated + e− + 2 H+ → cytc-Fe(III)-His + H2O

(5)

Since the E◦′ of the ferryl group is remarkably more positive than that of the ferric
heme, under the conditions of the catalytic event, the former is immediately reduced at the
potential of the electrode [102].

The catalytic activity of electrode-immobilized unfolded His–His conformers in 9 M
urea was successfully estimated using the Michaelis–Menten model [102]. The data re-
ported in Table 3 show that the urea unfolded His–His conformer of yeast cytc immobilized
on both MUA/MU and 4-MP SAMs possesses a large catalytic efficiency for O2 reduc-
tion [101], which is only marginally affected by the nature of the protein–SAM interactions
(electrostatic or through H-bonds). Since cytc unfolding has been associated with human
pathologies and disorders involving increased production of partially reduced oxygen
species, this result suggests that O2 adds to H2O2 as a substrate for catalytic reactions
carried out by denatured cytc, which contributes to the overall oxidative stress of the
cell [101].

Table 3. Kinetic parameters for the electrocatalytic reduction of O2 carried out by urea-unfolded
bis-His form of yeast iso-1 cytochrome c (ycc) adsorbed on a polycrystalline gold electrode coated
with a SAM of MUA/MU or 4-MP. For the solution composition, experimental conditions, and
uncertainties associated with the reported values, the reader is referred to the original literature.

KM (Pa) Jmax (µA cm−2) Ref.

wt ycc adsorbed on MUA/MU 2.39 × 104 4.75 [101]
wt ycc adsorbed on 4-MP 1.76 × 104 2.99 [101]

As for O2, the KM and jmax values for the electrocatalytic reduction of H2O2 by the
immobilized unfolded bis-His-ligated conformers of native cytc and the Lys-to-Ala mutants
(Table 2) are indicative of a high catalytic efficiency [102]. In particular, the KM values are
comparable to those of the M80A variant [9], and show that the kinetic affinity of H2O2 for
the heme iron in these proteins is one to three orders of magnitude larger than those for
other heme proteins immobilized on surface-modified electrodes [102].

Between pH 5 and 7.5, the K72A/K73H/K79A mutant of yeast cytochrome c un-
dergoes a reversible, pH-dependent, structural transition, in which the newly intro-
duced His 73 replaces Met80 as the sixth axial heme iron at slightly alkaline pH val-
ues [15,38,56,88,140,141]. Upon immobilization on a MUA/MU surface-modified gold
electrode, this folded His-His73-ligated conformer mediates the electrocatalytic reduc-
tion of H2O2 (Figure 5), according to the same catalytic mechanism discussed above for
urea-unfolded species (Equation (5)) [15,38,102].

This further confirms that the catalytic activity of cytc requires that at least one
of the axial coordination positions of the ferrous heme is free, or occupied by a weak
ligand, to bind the substrate molecule. Most interestingly, as the His/Met ligated form
prevailing below pH 5.5 is catalytically inactive, the pseudo-peroxidase activity of the
K72A/K73H/K79A mutant can be turned on and off at will, by simply adjusting the pH
within a small range around the physiological conditions [15]. The Michaelis–Menten
equation yielded jmax and KM values of 0.5 µA cm−2 and 0.95 µM for the folded His-His73-
ligated conformer (Table 2), respectively [15].
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Figure 5. Cyclic voltammograms for a K72A/K73H/K79A mutant of yeast cytochrome c adsorbed
on polycrystalline gold electrode modified with a SAM of MUA/MU recorded in the presence of
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the reader is referred to the original literature. Reprinted with permission from ref. [15]. Copyright
2012 Royal Society of Chemistry.

Both the electrode-immobilized folded His-His73 and His/Met conformers of the
K72A/K73H/K79A mutant experience urea-induced unfolding [38]. The former species
undergoes a conformational change above 5 M urea, involving the replacement of His73 by
another endogenous His (His26 or 33) as an axial iron ligand [38]. The axial Met80 of the
latter form is proposed to be replaced by the engineered His73 at low urea concentrations,
which in turn is replaced by another His ligand at larger denaturant concentrations [38].
Both unfolded bis-His ligated conformers observed at high urea concentrations feature
nearly coincident reduction thermodynamics, rate of heterogeneous ET, and catalytic
efficiency, indicating that they correspond to the same protein form [38]. The unfolding-
induced increased solvent accessibility of the heme in these systems results in a much higher
catalytic efficiency compared to the folded His-His73-ligated species observed at pH 7.4 in
the absence of denaturant (Table 2). Their lower KM is consistent with the different His axial
ligand, which apparently binds to the heme center more weakly than His73, increasing
the heme affinity for H2O2 [38]. Likewise, the unfolded bis-His ligated conformers of the
K72A/K73H/K79A mutant feature much lower KM values than the urea-unfolded wt
cytc and KtoA variants (Table 2), which indicates the easier access to the heme by H2O2
and suggests slightly different heme environments [38]. Most importantly, the observed
decrease in KM results in a much higher catalytic efficiency.

3.2. Adsorption-Induced Unfolding

Immobilization on a hydrophobic SAM of decane-1-thiol (1-DT) induces the unfolding
of wt and KtoA mutated cytc, resulting in an equilibrium between low-potential (LP)
and high-potential (HP) conformers [103,104]. Surface-enhanced resonance Raman (SERR)
spectra demonstrated that the LP and HP species contain a low-spin (LS) six-coordinated
His-His and a high-spin (HS) five-coordinated His/− heme, respectively [103]. This assign-
ment is supported by the corresponding E◦′ values, since the reduction potential of the LP
conformer resembles those of the His-His ligated urea-unfolded cytc [101,102,113,115,136]
and diheme cytochrome c (DHC) from Shewanella baltica OS155 [142], whereas the E◦′ of the
HP conformer is similar than that of immobilized myoglobin, featuring a five-coordinated
high-spin His/− ligated heme [143]. Moreover, the LS six-coordinated His-His ligation
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prevails in the oxidized state, whereas the HS five-coordinated His/− heme prevails in the
reduced form [103,104].

Gold electrodes modified with a SAM of decane-1-thiol (1-DT) were used to study the
effect of hydrophobic immobilization on the redox behavior of the adduct formed by wt and
KtoA cytc with cardiolipin (CL) [103,104], a negatively charged glycerophospholipid found
in the inner mitochondrial membrane (IMM) [48,57,62,68,75,77,93,106,107]. Binding of cytc
to CL in vivo blocks the mitochondrial electron transfer chain and imparts the protein with
a significant (lipo)peroxidase activity [48,57,68,75,77,93,97,100,106,107]. CL peroxidation
catalyzed by CL-bound cytc increases the permeability of the mitochondrial membrane,
allowing cytc ejection into the cytosol, where it promotes the apoptosis cascade, upon
forming a multimeric complex (apoptosome) with Apaf-1 (Apoptotic protease activating
factor 1), ATP, and pro-caspase-9 [48,57,68,75,77,93,106,107]. The interaction between cytc
and CL has been widely investigated in solution, revealing that formation of the cytc-CL
adduct induces a relevant conformational change, which includes swapping of the axial
methionine ligand [48,57,62,68,75,77,93,95–97,100,106,107,144].

Although not strictly relevant for biosensing, hydrophobic immobilization of the
cytc-CL adduct provides important bio-physical information, since it mimics the motional
restriction experienced by cytc upon binding to CL at IMM and it conceivably would more
closely reproduce the in vivo behavior than the studies carried out in solution [103,104].
Moreover, the extended and smoothed surface of the SAM of 1-DT is more similar to
the IMM surface compared to a small, soft, and approximately spherical liposome in
solution [103,104], since the protein density on the phospholipidic membrane and its
curvature heavily affect the cytc–CL interaction [68,92].

Adsorption of cytc–CL adducts on the hydrophobic SAM of decane-1-thiol results in
the equilibrium between the same low-potential (LP) low-spin six-coordinated His-His
and high-potential (HP) high-spin five-coordinated His/− conformers observed without
CL, prevailing in the oxidized and reduced states, respectively [103,104]. Interestingly, CL
binding makes the conversion between the LP and HP conformers faster. This behavior is
similar to that observed upon the cytc binding to liposomes formed by 100% CL or by a
combination of 1,1′,1,2′-tetraoleyolcardiolipin (TOCL, 20%) and 1,2-deoleyol-snglycero-3-
phosphocholine (DOPC, 80%) using different spectroscopic techniques [95,109].

Upon increasing the concentration of O2 (by increasing the time of exposure of the
electrochemical cell, initially under argon, to air) [103] and H2O2 [104], the current of the
cathodic peak of the LP His-His species invariably increases, with almost no change in peak
potential, as observed for the urea-unfolded wt and KtoA cytc immobilized on anionic and
hydrophilic SAMs [101,102]. This demonstrates that the ferrous LP conformer can mediate
the electrocatalytic reduction of O2 and H2O2, according to the same catalytic mechanisms
discussed above for urea-unfolded species (Equations (4) and (5), respectively), which
assume the dissociation of one of the axial His from the iron(II) center. Unfortunately, the ca-
thodic peak of the HP conformer is barely detectable in the applied experimental conditions
and cannot be considered in the analysis of the observed electrocatalytic activity [103,104].
The catalytic activity of free and CL-bound cytc immobilized on the SAM of decane-1-thiol
(1-DT) for the reduction of H2O2 can be estimated using the usual Michaelis–Menten
approach, yielding KM and jmax values comparable to those of urea-unfolded wt and KtoA
cytc immobilized on negatively charged SAMs (Table 2). The CL adducts invariably feature
a slightly higher electrocatalytic efficiency, due to an increased KM and jmax [104]. Hence, in
the presence of CL, a slight decrease in the accessibility of the catalytic center is observed,
whereas a larger jmax should reflect an enhancement of kcat.

Since high concentrations of O2
− can trigger cell death, and spontaneous bursts of

superoxide generation in mitochondria are early signals initiating oxidative stress-related
apoptosis [103]; the ability to catalytically reduce O2 to O2

− conferred on the cytc/CL
adducts by immobilization on 1-DT can be physiologically relevant, possibly suggesting
a direct involvement of cytc and O2 in superoxide ion generation during pre-apoptotic
processes in mitochondria [103].
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4. Combining Point Mutations with Unfolding

The M80A and M80A/Y67A variants of yeast cytc were immobilized on a MUA/MU
modified Au electrode and denatured with urea [44]. SERR spectra show that the two
immobilized (folded) mutants contain a low-spin six-coordinate heme, the axial coor-
dination positions of which are occupied by the proximal His residue and a hydroxide
ion [44], as observed in solution [9,37,122,123,127]. The same heme axial coordination is
maintained upon urea-induced unfolding at neutral pH, although an increased accessibility
of the heme pocket to the solvent is observed [44]. Most importantly, the two immobilized
mutants can catalyze the reduction of H2O2 (pseudo-peroxidase activity) and NO2

− (nitrite-
reductase activity), in both folded and urea-unfolded states [44]. As observed for other
mutant/surface combinations, the electrocatalytic activity towards H2O2 was irreversibly
lost for substrate concentrations above 7 µM, while at lower concentrations the adduct
was found to be both reusable and stable, which are crucial requirements for operation
in real life scenarios. The KM values for the pseudo-peroxidase activity were 1.38 and
5.36 µM for the urea-unfolded M80A and M80A/Y67A, respectively [44], which are both
lower than the corresponding values for the folded mutants in the absence of urea (Table 2).
This finding was ascribed to an increased kinetic instability of the Fe(III)-hydroperoxide
complex that should be formed during the catalytic cycle, which is also responsible for
the larger catalytic activity of the unfolded immobilized mutants compared to the folded
species, as indicated by their larger jmax/KM ratios [44]. On the contrary, the opposite effects
of urea unfolding on the jmax of the two mutants could not be unambiguously explained.

Moreover, with respect to the nitrite-reductase activity observed with NO2
− concen-

trations in the 1–6 µM range, urea-induced unfolding yields a decrease in KM if compared
to the folded species (Table 1). This finding can again be explained by invoking the higher
accessibility of the heme iron to exogenous substrates [92]. The effect is more pronounced
for M80A than for M80A/Y67A, with the latter displaying much lower kinetic instability,
most likely due to a more hydrophobic catalytic pocket (following the Tyr-to-Ala mutation)
that impacts on the accessibility to the ionic substrate [44].

Upon immobilization on gold electrodes modified with a SAM of decane-1-thiol,
the M80A and M80A/Y67A yeast cytc mutants and their CL-adducts show the same
behavior as the wt protein and its triple KtoA in the same conditions [39]. In particular,
the same low potential (LP) low-spin six-coordinated His/His and high potential (HP)
high-spin five-coordinated His/− conformers are observed, which are more stable in the
oxidized and reduced states, respectively [39]. Hence, immobilization on the hydrophobic
surface invariably results in the release of the OH− ion, which replaces the native Met80
as heme axial ligand in both mutants, either in solution or electrostatically bound to a
negatively charged SAM of MUA/MU [44]. Interestingly, the interconversion of the LS
6c His/His (LP) species to the HS 5c His/− (HP) conformer is favored by increasing
temperature [39]. This effect was not observed for the wt protein and its triple KtoA
mutant [103,104]. Overall, the above results indicate that (i) the heme axial ligation in free
or CL-bound M80A and M80/Y67A immobilized on a hydrophobic surface is different
from that observed in solution and upon electrostatic immobilization on a MUA/MU SAM,
and (ii) the coordination of the heme center in both mutants is not appreciably affected by
CL binding [39].

In the presence of micromolar concentrations of H2O2 and NO2
−, the M80A and

M80A/Y67A mutants and their CL-adducts immobilized on decane-1-thiol-modified Au
electrodes show good pseudo-peroxidase and nitrite-reductase activities, which are ob-
served up to H2O2 and NO2

− concentrations of about 5 µM and 1.75 µM, respectively [39].
Below these concentrations, elimination of substrates restores the voltammetric signal
of the protein, while catalytic currents could be re-obtained upon addition of hydrogen
peroxide and sodium nitrite. Hence, under the applied conditions, the protein layer is
stable and re-usable.

For both substrates, the ferrous His/His-ligated forms are the catalytically active
species, indicating that their catalytic reduction by M80A and M80A/Y67A immobilized
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on 1-DT requires detachment of the 6th His ligand from the Fe(II) heme [39]. Therefore, the
catalytic mechanism for H2O2 reduction is the same as suggested for wt cytc and its triple
KtoA variant subjected to the same immobilization [90], while the following mechanism is
proposed for NO2

− reduction [39]:

cytc-Fe(III)-His + e− → cytc-Fe(II) − − − His
cytc-Fe(II) − − − His + NO2

− + H2O→cytFe(III)-His + NO + 2OH−
(6)

The usual approach based on the Michaelis–Menten equation expressed in terms
of current density is used to estimate the catalytic activity of free and CL-bound M80A
and M80A/Y67A immobilized on the SAM of decane-1-thiol (1-DT) for H2O2 and NO2

−

reduction. The resulting KM for both substrates are sensibly larger than those for other
immobilized heme proteins (Tables 1 and 2) and the KM for H2O2 are comparable to those
of wt cyt and its triple KtoA mutant (Table 2).

The effects on the electrocatalytic activity of the mutation(s) within the heme site and
CL binding are reaction-specific (Figure 6). For hydrogen peroxide reduction, the different
hydrogen bonding network within the heme crevice disfavors access of the substrate to
the heme iron in the M80A mutant and facilitates it in the M80A/Y67A species, resulting
in a larger and a lower KM compared to the wild type protein (Table 2) [39]. Likewise,
the different heme environment is responsible for the opposite effect being exerted by CL
binding on the KM of wt cytc and the two mutants (Figure 6). It is important to stress
that the observed nitrite-reductase activity results from the M80A mutation, since the
wt protein is catalytically inactive [39] (Figure 6 and Table 1). Contrary to the pseudo-
peroxidase reaction, the KM value for nitrite reduction increases upon addition of the Y67A
mutation and/or formation of the CL-adducts (Figure 6 and Table 1), possibly reflecting
the enhanced hydrophobicity of the heme crevice, which would hamper the access of the
negatively charged NO2

− to the metal center [39].
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Figure 6. Histograms depicting the KM (µM, black bar), Jmax (µA pmol−1, red bar) and Jmax/KM × 10
(µA pmol−1 µM−1, green bar) values for the reductive electrocatalysis of (A) H2O2 and (B) NO2

−,
carried out by wt yeast iso-1 cytochrome c and its M80A and M80A/Y67A variants immobilized on
a gold electrode functionalized with a hydrophobic SAM of decane-1-thiol (DT) and a negatively
charged SAM of MUA/MU, along with the corresponding adducts with cardiolipin (this work) and
the same species in 7M urea immobilized under the same conditions. Figure (A left frame): 1, wt;
2, wt + CL, 3, M80A; 4, M80A + CL; 5, M80A/Y67A; 6, M80A/Y67A + CL. Figure (A right frame):
1, wt; 2, wt + Urea 7M, 3, M80A; 4, M80A + Urea 7M; 5, M80A/Y67A; 6, M80A/Y67A + Urea 7M.
Figure (B left frame): 1, M80A; 2, M80A + CL; 3, M80A/Y67A; 4, M80A/Y67A + CL. Figure (B right
frame): 1, M80A; 2, M80A + Urea 7M; 3, M80A/Y67A; 4, M80A/Y67A + Urea 7M. Reprinted with
permission from ref. [39]. Copyright 2020 Elsevier.

Comparison of the data reported in Tables 1 and 2 unequivocally demonstrates that
the electrocatalytic ability of wt cytc and its M80A and M80A/Y67A mutants is strongly
affected by the nature of the SAM used for protein immobilization. In particular, the
absence of pseudo-peroxidase activity for wt yeast cytc on MUA/MU SAM [102] is related
to the persistence of the Met-Fe(II) axial bond, which hampers substrate binding, whereas
the weaker and more labile His-Fe(II) bond observed upon immobilization on DT allows
for H2O2 binding and turnover [39]. On the other hand, the different mutation-induced
changes in the catalytic activity observed for the same species upon immobilization on
the two different SAMs show that the influence of protein-SAM interactions on protein
conformation extends to the H-bonding network, polarity, solvation, and electrostatics of
the heme environment [39].

5. Conclusions

We have shown that two main routes can be followed to turn cytochrome c into a
redox enzyme to be immobilized on an electrode for biosensing applications. The first
is the design and production of ad hoc designed mutants. To this end, the most widely
explored mutation has been the substitution of the axial heme iron ligand Met80 into a
non-coordinating alanine to yield a free position in the iron coordination sphere [8,9,37].
Other mutations have been explored, mainly aimed at altering the hydrogen bond network
in the heme pocket (Tyr67) [9] or introducing a His residue on the protein surface (Lys73)
that can serve as weak axial ligand in a pH-switchable, low potential conformer [15,38].

The second strategy is to unfold cytc. In this respect, urea-induced unfolding has
been often preferred, generating a His-His conformer possessing catalytic properties ab-
sent in the folded species [101,102]. Cytc can also be turned into a redox enzyme upon
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immobilization on a hydrophobic SAM [103,104]. Moreover, site directed mutagenesis and
chemical- or adsorption-induced unfolding can also be used in synergy [39,44]. Dioxy-
gen, hydrogen peroxide, and nitrite anions are the three main substrates that have been
successfully investigated. The catalytic activity of the novel, non-native species have
been described using the Michaelis–Menten equation, expressed in terms of current den-
sity [8,9,15,38,39,44,101,102,104]. The combination of the main structural features of cytc
(e.g., a covalently bound heme, stability over a large range of conditions) with the enzymatic
properties introduced ad hoc make this protein a strong candidate for biosensing applica-
tions, provided the issues related to its lower catalytic activity and selectivity compared to
redox enzymes can be effectively solved.
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