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A Systematic Review and Meta-analysis on the Impact of
Proficiency-based Progression Simulation Training on

Performance Outcomes

Elio Mazzone,�y Stefano Puliatti, MD,yz§Y Marco Amato,yz§ Brendan Bunting,� Bernardo Rocco,§

Francesco Montorsi,� Alexandre Mottrie,yz and Anthony G. Gallagher, PhD, DScy�jj

Objective: To analyze all published prospective, randomized, and blinded

clinical studies on the proficiency-based progression (PBP) training using

objective performance metrics.

Background: The benefit of PBP methodology to learning clinical skills in

comparison to conventional training is not settled.

Methods: Search of PubMed, Cochrane library’s Central, EMBASE, MED-

LINE, and Scopus databases, from inception to 1st March 2020. Two

independent reviewers extracted the data. The Medical Education Research

Study Quality Instrument (MERSQI) was used to assess the methodological

quality of included studies. Results were pooled using biased corrected

standardized mean difference and ratio-of-means. Summary effects were

evaluated using a series of fixed and random effects models. The primary

outcome was the number of procedural errors performed comparing PBP and

non-PBP-based training pathways. Secondary outcomes were the number of

procedural steps completed and the time to complete the task/procedure.

Results: From the initial pool of 468 studies, 12 randomized clinical studies with

a total of 239 participants were included in the analysis. In comparison to the non-

PBP training, ratio-of-means results showed that PBP training reduced the number

of performance errors by 60% (P < 0.001) and procedural time by 15% (P ¼
0.003) and increased the number of steps performed by 47% (P < 0.001).

Conclusions and Relevance: Our systematic review and meta-analysis

confirms that PBP training in comparison to conventional or quality assured

training improved trainees’ performances, by decreasing procedural errors

and procedural time, while increasing the number of correct steps taken when

compared to standard simulation-based training.

Keywords: objective performance metrics, procedural errors, procedural

steps, proficiency-based metrics, proficiency-based progression training,

simulation-based training, Surgical training, technology-enhanced training

(Ann Surg 2021;274:281–289)

S imulation-based training had a strong foothold in safety conscious
industries such as aviation,1 nuclear-power,2 and had been used in

anesthesia for more than a decade to give the individuals or teams the
experience of emergency situations before they were actually encoun-
tered in a real-life clinical situation.3 In the field of surgery, the role of
simulation-based training was first introduced by Satava4 and collab-
orators who set-up the first prospective, randomized, and blinded
clinical study [(ie, randomized clinical trial (RCT)] demonstrating
that trainees who underwent a virtual reality (VR)-based simulation
training pathway performed significantly better than traditionally
trained surgeons, thus achieving an optimal performance level before
starting their clinical practice in the operating room.5 Of note, this
study was the first to introduce the ‘‘proficiency-based progression’’
(PBP) training methodology which differs significantly from tradi-
tional training pathways. Specifically, the operative procedure is
characterized in detail to identify intraoperative objective performance
metrics for optimal and suboptimal performance.6 After defining these
objective metrics, trainees are required to continue training until they
demonstrate a quantitatively predefined benchmark or proficiency
level. During this practice, trainees receive continuous formative
feedback in accordance to the concept of deliberate practice.7 The
level of proficiency is based on the mean performance of the experi-
enced practitioners performing the same training tasks.8

During the last 2 decades, the PBP methodology evolved in terms
of the robustness of the metric development and clinical validation
evidence.9,10 Where a VR simulator was not available the metrics were
deployed using simulation models; for example, knot tying models,11,12

silicon models,13 or cadavers.14 The requirement to demonstrate to a
quantitatively predefined proficiency benchmark in training, combined
with simulation-based practice, meant that PBP training was particularly
effective; demonstrated performance improvements >40% in objec-
tively assessed intraoperative errors in comparison to traditional skills-
based training in the areas of laparoscopic surgery,5,8,15 arthroscopic
surgery,16 endovascular interventions,17 anesthesia,18 and communica-
tion skills for deteriorating patients.19

Several focused reviews have attempted to delineate the
impact of simulation-based training specifically for laparoscopic
surgery.20,21 However, each had limitations including ambiguous
classification of comparison interventions, incomplete assessment of
study quality, or no quantitative pooling to derive best estimates of
effect or effect size, focused their evaluation on process measures
such as knowledge, skill time, skill process etc with only 1 study on
patient outcomes.22 Process measures are related to the performance
of the procedure, that is, how long it took, but gives no indication of
the quality of procedure performance. The review reported here
focuses on prospective, RCT specifically on PBP simulation training
and evaluates the impact of PBP on learning clinical skills in
comparison to the traditional approach to training.

METHODS

Study Identification and Evaluation
A systematic review of the literature was conducted using the

PubMed, Cochrane library’s Central, EMBASE, MEDLINE, and
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Scopus databases (Supplementary Material Appendix 1, http://links.
lww.com/SLA/C803). We searched from inception of the databases
up to 1st March 2020. All the references of key reviews on
training were also screened. Keywords used for the research
were: ‘‘Proficiency-based AND progression AND training, Profi-
ciency AND based AND progression, Proficiency-based AND train-
ing.’’ This systematic review is reported in accordance with the
preferred reporting items for systematic reviews and meta-analyses
protocols (PRISMA-P) guidelines23 and is registered with the inter-
national prospective registry of systematic reviews (PROSPERO,
CRD42020182400).

Initial Screening, Eligibility Criteria, and Risk of Bias
Assessment

After identifying all eligible studies, 2 independent reviewers
(MA, SP) screened all titles and abstracts (or full text, for further
clarification) for inclusion in the study. Literature reviews, editorial,
comments, and non-PBP-based studies (other than as a control
condition) were excluded at the initial screening (Fig. 1). Only
studies that used objective binary scored performance-based metrics

and a PBP methodology were included for the final quantitative
synthesis.8,11,15–17,19,24–27 Disagreements regarding eligibility were
resolved by discussion between the 2 investigators until consensus
was reached.

Methodological quality of the included studies was graded
using the Medical Education Research Study Quality Instrument
(MERSQI).28 Two investigators (EM and SP) independently
assessed the risk of bias for all studies and the inter-rater reliability
(IRR) of the assessors was calculated (ie, IRR¼Agreements/Agree-
ments þ Disagreements).29

Intervention and Comparison Arms
The training tasks/procedures considered for the meta-analytic

comparison were categorized as, medical procedure, surgical pro-
cedure, basic skill, and clinical communication skill. The interven-
tion outcome was considered to be the direct or post-training result
related to the training pathway.

For meta-analytic evaluation, the PBP simulation-based train-
ing arm was considered as the experimental arm. The group which
received a non-PBP simulation-based training represented the

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 
PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 

For more informa�on, visit www.prisma-statement.org.

Records iden�fied through 
database searching

(n = 519)

Full-text ar�cles assessed 
for eligibility

(n = 38)

Records excluded (n = 430)

Characteris�cs of excluded records: Review, 
editorial, comments, no PBP training studies, PBP 
training non-randomized studies, non-compara�ve 
studies

Studies included in 
qualita�ve synthesis

(n =12)

Full-text ar�cles excluded, with reasons (n =26)

Characteris�cs of excluded records: RCT on PBP 
training with Likert scale assessment only, RCT not 
comparing PBP to other training models, RCT on 
PBP with different outcomes from superiority/not 
inferiority, data non-extractable for quan�ta�ve 
synthesis
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FIGURE 1. Flow-chart of studies through the screening process according to the PRISMA methodology. PBP indicates proficiency-
based progression; RCT, randomized clinical trial.
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comparison arm (Table 1). For both arms, studies including
any simulation, VR simulators, other technology-enhanced training
models, or human cadaveric specimens, were considered eligible.

Outcomes Definition
PBP training has been previously described in detail.30–32

According to PBP-related definitions, metrics are explicitly defined
units of measurement that characterize elements of procedure/task
performance that are scored in a binary fashion (ie, occurred/did not
occur). The metrics are quantitative assessments and are used for
objective evaluations to make comparisons or to track performance.
This included performance errors and steps as metrics and were
objectively assessable. Error was defined as a ‘‘deviation from
the optimal performance.’’ Steps were defined as component tasks
and the series was aggregated because they constitute the completion
of a specific procedure.16 Only the studies that specified those
parameters in their analysis were included within the qualitative
analysis The quantitative analysis was limited to studies that

specified step and error metrics in their analysis and used those
metrics to define a proficiency benchmark that trainees were required
to demonstrate before training was deemed completed. Time was
also considered as additional outcome. Assessment by Likert scales
was not included in the current analyses, because of the potential for
inherent ambiguity.

All studies meeting these criteria are shown in Table 2. The
primary outcome used for pooled meta-analysis was the number
of procedural errors made since errors provide an objective measure
of performance quality.16,30,32,33 Secondary outcomes were the
number of steps performed and time to completion of the task/
procedure. Both are considered process measures of task/procedure
performance.

Data Synthesis and Statistical Analysis
Data not suitable for meta-analytic evaluation was presented

in narrative fashion (qualitative analysis). Reported results for con-
tinuous outcomes were pooled using biased corrected standardized

TABLE 1. General Characteristics of 12 Randomized Clinical Trials Studies Included in the Final Qualitative Analysis of the
Systematic Review

Study
Subjects
N; Type Comparison Arm

Task/Procedure
Trained

Intraoperative
Patient

Performance
Outcomes
Compared

Other
Scale
Used MERSQI

Ahlberg et al 13;
Residents

Swedish National Surgical
Residency Training Program

Laparoscopic
Cholecystectomies

Yes Errors — 16

Ahmed et al 18;
Medicine Students

Self-Guided Ultrasound-
Guided Peripheral Nerve

Block Simulation Practice

Ultrasound-Guided
Peripheral

Nerve Block

No Errors, Steps — 15

Angelo et al 44;
Residents

ACGME approved
Orthopedic Residency &

Arthroscopy Association of
North America Shoulder

Course

Arthroscopic
Bankart

Procedure

Yes Errors, Steps,
Time

— 16

Breen et al 90;
Medicine and

nursing students

National and certified
ISBAR training Program

Clinical
Communication

No Errors, Steps — 15

Cates et al 12;
Attendings

Industry sponsored CASES
education and training

system

Carotid Artery
Angiography

Yes Errors, Time — 15

Jensen et al 16;
Residents

ESC Core Curriculum for
the General Cardiologist

Coronary Angiography No Errors, Steps,
Time

— 17

Palter, et al 25;
Residents

ACGME approved General
Surgery Residency Training

Program

Laparoscopic Right
Colectomy

Yes Steps OSATS 16

Pedowitz et al 44;
Residents

ACGME approved
Orthopedic Residency &

Arthroscopy Association of
North America Shoulder

Course

Knot-Tying No Errors — 14.5

Peeters, et al 10;
Residents

National Obstetrics and
Gynecology Residency

Program

Fetoscopy Laser
Surgery

No Steps, Time — 16.5

Seymour et al 16;
Residents

ACGME approved General
Surgery Residency Training

Program

Laparoscopic
Cholecystectomy

Yes Errors, Time — 15

Srinivasan et al 17;
Residents

Irish National Anesthesia
Training Program

Epidural Analgesia Yes Errors GRS, TSCL 17

Van Sickle et al 22;
Residents

ACGME approved General
Surgery Residency Training

Program

Nissen Fundoplication Yes Errors, Time — 14.5

ACGME indicates Accreditation Council for Graduate Medical Education; ESC, European Society of Cardiology; GRS, Global rating scales; ISBAR, Identification, Situation,
Background, Assessment, Recommendation; MERQI, Medical Education Research Study Quality Instrument CASES, Carotid Artery Stenting Education System; OSATS, objective
structured assessment of technical skills; TSCL, Task-specific checklists.
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mean difference (SMD) (Hedges’ g effect size) according to previous
established methodology.22,34 Thus, the bias-corrected SMD and
odds ratio (OR) were used to compare continuous and dichotomous
variables, respectively. Additionally, for continuous outcomes, ratio
of means (ROM) was applied to provide an estimation of the pooled
effect of PBP on the considered outcomes.35,36 All results were
reported with 95% confidence intervals. Preplanned subgroups anal-
yses were performed in studies with or without intraoperative patient
performance assessment.

Heterogeneity between studies was measured using the I2

statistic 37 and the between-study variance (t2) from the random-
effect analyses. I2 values >50% indicate large inconsistency. Unless
otherwise indicated all models have allowed for different effect sizes
(random effects). In case of large heterogeneity, random effect
models (using the DerSimonian and Laird approach38) were priori-
tized. For the assessment of small study effects and publication bias,
values of the SMD or OR were plotted against their standard error in
a contour-enhanced funnel plot. The latter bias represents the error in
connection with whether a study is published or not depending on the
characteristics and result of individual studies.39 This error is caused
because statistically significant study results generally have a higher
likelihood of being published. Furthermore, Eggers asymmetry test40

was used to explore statistically the presence of publication bias.
Statistical significance for all analyses was defined as 2-sided P <
0.05. Statistical analysis was performed with the R software (version
3.6.3; http://www.r-project.org/).

RESULTS

Study Selection Flow-chart
Figure 1 shows the flow of studies through the screening

process. Five hundred nineteen papers were blindly screened by 2
reviewers (MA, SP) by reading all the titles and abstracts with 463 of
these records included for further evaluation based on predefined
eligibility criteria. Of these, 38 studies were considered eligible for
final inclusion in qualitative analysis. At this point, final evaluation
for the inclusion in the quantitative synthesis was carried out by 3
reviewers (AGG, EM, SP). At the end of the process, 12 and 11
manuscripts have been included for, respectively, the qualitative
synthesis and the quantitative meta-analysis (Tables 1 and 2; Sup-
plementary Material Appendix 3A, http://links.lww.com/SLA/
C803). A summary of the 26 excluded manuscripts 41,42,51–

60,43,61–65,44–50 is reported in Supplementary Material Appendix
3B, http://links.lww.com/SLA/C803

Study Quality and Risk of Bias
The Supplementary Material Appendix 2, http://link-

s.lww.com/SLA/C803 summarises the quality criteria assessed for
each RCT using the MERSQI tool. The overall methodological
quality of the studies was high, with all the studies having low risk
of bias. The overall mean score of the RCTs was 15.5 (range 14.5 and
17). The mean IRR of quality scores between assessors was 96%
(range 90%–100%).

Evidence Synthesis
Tables 1 and 2 summarize general and design characteristics

of the selected studies. Primary analysis included 12 papers for
qualitative review and 11 studies for quantitative synthesis. The
final screened manuscripts reported outcomes based on 5 full
surgical procedures, 3 surgical skill tasks (ie, steps or part of a
procedure, knotting and/or suturing), 3 nonsurgical medical pro-
cedures, and 1 clinical communication skill task. Overall, 12
attendings in practice (1 study), 161 residents (10 studies), and
66 medical students (2 studies) were evaluated in the includedT
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RCTs. Of these, 85 participants had been allocated to a PBP
condition and n ¼ 76 were in a non-PBP-based training pathway.
According to the primary outcome (ie number of errors), 8 studies
(151 participants) were included in the quantitative synthesis (ie,
meta-analysis). For steps, time, and proficiency assessment on
the procedure, 5 studies (86 participants), 6 studies (100 partic-
ipants), and 2 studies (56 events) were included in the quantitative
comparisons.

In quantitative synthesis testing for procedural errors, a pooled
meta-analysis on 151 trainees was conducted (Fig. 2A,B), using
random-effects models. Overall, PBP training reduced the number of
errors when compared to standard training [SMD –2.93, 95%
confidence intervals (CI): –3.80; –2.06; P < 0.001]. In a ROM
analysis, PBP was estimated to reduce the mean rate of errors by
approximately 60%, when compared to standard training (ROM
0.40, 95% CI: 0.30; 0.54; P < 0.001). Funnel plot and Egger linear

Study

Random effects model
Heterogeneity: I2 = 66%, τ2 = 0.9625, p < 0.01
Residual heterogeneity: I2 = 70%, p < 0.01

Intraoperative assessment = Yes

Intraoperative assessment = No 

Random effects model

Random effects model

Heterogeneity: I2 = 76%, τ2 = 1.9013, p < 0.01

Heterogeneity: I2 = 40%,   τ         2 = 0.2954, p = 0.19

Ahlberg et al.
Angelo et al.
Cates et al.
Seymour et al.
Van Sickle et al.

Ahmed et al.
Jensen et al.
Pedowitz et al.

Total

77

43

34

 6
12
 6
 8

11

10
 8

16

Mean

28.4
2.6
7.7
1.2

25.9

1.5
15.0
0.6

SD

2.9
0.7
1.6
0.3
9.3

0.9
2.7
0.3

PBP
Total

74

44

30

 7
12
 6
 8
11

 8
 8
14

Mean

86.2
6.1

15.1
7.4

37.1

4.0
27.0
1.5

SD

17.0
1.5
2.0
1.8

10.2

1.5
3.0
0.3

Standard

−6 −4 −2 0 2 4 6
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FIGURE 2. Standardized mean difference (A) and ratio of means (B) between studies assessing the effect of proficiency-based
progression versus standard training on procedural errors.
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regression estimates both showed evidence for potential publication
bias (Supplementary Material Appendix 4A-B, http://links.lww.com/
SLA/C803). In subgroup analyses, focusing on studies with intra-
operative patient performance assessment (n ¼ 87), PBP training
outperformed standard training (SMD –3.11, 95% CI: –4.54; –1.68;
P < 0.001), with an estimated reduction in mean rates of errors of
62% (ROM 0.38, 95% CI: 0.25; 0.58; P < 0.001).

For secondary outcomes, in quantitative synthesis testing for
number of steps completed, a pooled meta-analysis on 86 trainees
was conducted. Overall, trainees who completed PBP training per-
formed more procedural steps than those who completed a standard
training pathway (SMD 3.90, 95% CI: 2.96; 4.85; P < 0.001)
(Fig. 3A). At ROM analysis, PBP increased the mean rate of steps
performed by an average of 43%, when compared to standard
training (ROM 1.47, 95% CI: 1.19; 1.81; P < 0 .001) (Fig. 3B).
Funnel plot and Egger linear regression estimates recorded a mar-
ginal effect for potential publications bias (Supplementary Material
Appendix 4C-D, http://links.lww.com/SLA/C803). In the two studies
reporting the effect of PBP on steps performed in intraoperative
patient procedure, PBP was shown to increase the number of steps
performed (SMD 3.90, 95% CI: 1.79; 6.02; P < 0.001) but in ROM
analysis such a difference failed to achieve statistical significance
(ROM 1.28, 95% CI: 0.94; 1.74; P ¼ 0.1).

In quantitative synthesis testing for procedural time, a pooled
meta-analysis on 100 trainees was conducted. Overall, trainees who
completed PBP training performed the task/procedure in less time
than those who completed a standard training pathway (SMD –0.93,
95% CI: –1.55; –0.30; P ¼ 0.003) (Fig. 3C). The reduction of
procedural time was less pronounced compared to other outcomes,
such as the number of errors or steps completed. Indeed, at ROM
analysis, PBP reduced the mean procedural time by approximately

15%, when compared to standard training (ROM 0.85, 95% CI:
0.75–0.96, P ¼ 0.009) (Fig. 3D). Funnel plot and Egger linear
regression estimates demonstrate an absence of potential publication
bias (Supplementary Material Appendix 4E-F, http://links.lww.com/
SLA/C803). In subgroup analyses focusing on studies with intraop-
erative patient procedure assessment, PBP training slightly outper-
formed standard training (SMD –0.86, 95% CI: –1.65, –0.08; P ¼
0.03), with an estimated decrease in mean completion time of 19%
(ROM 0.81, 95% CI 0.65; 1.01; P ¼ 0.06).

Finally, in the quantitative synthesis testing for the rate of
proficiency benchmark achievement on the procedure, a pooled
meta-analysis on 56 trainees was conducted (Supplementary Mate-
rial Appendix 5, http://links.lww.com/SLA/C803). Overall, trainees
who completed PBP were more likely to reach the proficiency
benchmark when compared to those who completed a standard
training pathway (OR 6.92, 95% CI: 1.71; 28.02; P < 0.001 using
a fixed-effect model). Funnel plot and Egger linear regression
estimates demonstrated absence of potential publication bias (Sup-
plementary Material Appendix 4G, http://links.lww.com/SLA/
C803). Only one study reported results based on intraoperative
patient procedure assessment, and it confirmed the protective effect
of PBP training on achieving the final proficiency benchmark (OR
7.50, 95% CI 1.31; 43.03; P ¼ 0.02 in a fixed effect model).

DISCUSSION

In this systematic review of peer-reviewed, published, pro-
spective, randomized, and blinded clinical studies we report the
meta-analysis and results from 12 studies. As measured with the
MERSQI instrument the quality of the studies was high. PBP training
consistently showed significant improvements in performance by
trainees. Significant improvements in performance/procedure time
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FIGURE 3. Standardized mean difference and ratio of means between studies assessing the effect of proficiency-based progression
versus standard training on procedural steps (A,B) and procedural time (C,D).
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and procedure steps completed were observed. The largest and most
consistent improvements, however, were found for error perfor-
mance, particularly intra-operative errors on patients. In studies that
evaluated intraoperative errors, we found a 60% reduction in com-
parison to the standard training group. For studies outside the
operating room or clinical environment, we found a 50% reduction
in errors. The aforementioned results are of particular importance if
we consider the crucial impact that PBP exerted on procedural errors.
Indeed, the number of steps completed by the clinician is fundamen-
tal to the completion of the procedure, and the completion of the
procedure will inevitably take a certain amount of time. Both
measures, however, provide little substantiation regarding the quality
of performance. For example, all of the steps of a procedure may be
completed, but done badly. Likewise, a procedure can be performed
quickly but unsafely, or phases of the procedure can be omitted
resulting in faster completion times.16,30,32 Neither measures give a
reliable indication of the quality of the operator’s performance. In
contrast, objectively assessed performance error in the PBP meth-
odology gives direct, objective, transparent, and fair measures
of quality.

All performance metrics in a PBP approach are developed
with experienced surgeons/clinicians and cumulative validation evi-
dence derived from them (e.g., a Delphi consensus meeting, objective
assessment of performance),66,67 following the recommendation of
the American Psychological Association guidelines68 (see Supple-
mentary Material Appendix 6, http://links.lww.com/SLA/C803 for
metric examples). The experienced clinicians reach a consensus on a
safe and effective way for a trainee to learn to perform the procedure/
task at the start of the learning curve (i.e., procedure steps). These are
a sequence of actions that enable execution and completion of the
procedure/task. Similarly, they reach consensus on performance
errors (error or critical error). In laparoscopic surgery, for example,
having the working end of an instrument out of view or the second
instrument not assisting is not necessarily a serious slip-up but it is
deemed to be (by very experienced clinicians) task execution ‘‘that
deviates from optimal performance.’’ Likewise, the tip of the catheter
scraping against the vessel wall, as it is being advanced in the
majority of situations, leads to no serious consequences. It does,
however, unnecessarily run the risk of dislodging plaque from the
vessel wall which may travel up into the brain and cause a stroke. In
contrast, poor catheter control and advancing into the lesion is a
much more serious event. In the communication on a deteriorating
patient (Supplementary Material Appendix 3A, http://link-
s.lww.com/SLA/C803), information on an elevated white cell count
should be conveyed but a much more serious error is to fail to
communicate that the deteriorating patient has sepsis. These clinical
situations are quite different but what the error metrics have in
common is that they capture performance characteristics that are
recognized by very experienced surgeons and clinicians’ as sub-
optimal (ie, errors) or which compromise the integrity of the pro-
cedure or the safety of the patient and are thus more likely to impact
on procedure quality and patient outcomes. Procedure steps and
errors are units of performance that are specifically targeted in PBP
training, but errors seem to be impacted more. This means that
quantitative ‘‘mathematization’’ of the different steps and errors
makes this methodology similarly applicable for different tasks.
There was 1 study that directly assessed the impact of PBP training
on a clinical outcome. Srinivasan et al18 assessed the impact of PBP
simulation training on the effectiveness and success of epidural
analgesia administration during labor. They found that the PBP
trained group had a 54% lower epidural failure rate than the
simulation trained group.

The effectiveness of the PBP simulation training is probably
accounted for by a number of factors. The first is that the

performance characteristics on which training is based are derived
from very experienced and practicing clinicians. They identify the
characteristics and performances necessary for trainees at the start of
their learning curve, and hence provide a reference approach to the
successful performance of the procedure 10,33,69,70 and provide the
basis for a performance metrics that can be systematically investi-
gated with the collation of validation evidences.24,31 Once supported
with robust validation evidences, a proficiency benchmark is estab-
lished based on the mean performance of experienced practi-
tioners.5,8,15–17,19,31,32 Another fundamental aspect of PBP
training is that the detailed metrics are used to provide the trainees
with objective, transparent and constructive feedback on their per-
formance, thus affording trainees the opportunity to engage in
deliberate practice training rather than repeated practice.7 This said,
PBP training is not complete until the trainee has demonstrated a
level of proficiency-based on predefined benchmarks. They also have
demonstrated that they can adequately undertake the task under
conditions of a simulation or training model, and that they can
achieve a quantitatively defined proficiency benchmark on simula-
tions. The pretrained novice never completes the medical procedure
on a live patient until they have shown that they can adequately
perform the task within a training context. Evidence reviewed here
suggests that PBP ensures that trainees are significantly better
prepared than more traditionally trained clinicians.

There are other approaches to training skill that seem con-
ceptually similar to PBP, for example, mastery learning (ML) and
proficiency-based learning (PBL).71 Like ML and PBL, PBP training
starts with an online module and then the trainee progresses through
practical tasks which may include high fidelity models such as
porcine model, canine cadaver model, or human cadavers. Moreover,
other fundamental concepts that are related with educational activi-
ties (ie, deliberate practice), formative testing, and advancement in
performances are similarly applied to the ML and PBL methodolo-
gies. On the other hand, there seems to be residual heterogeneity in
the different ML and PBL methodologies study designs reported in
the literature.71,72 For instance, ML is based on a different approach
for establishing the performance goal: specifically, ML relies on the
use of ‘‘minimum passing mastery standard’’72 for each unit, whereas
PBP uses a proficiency benchmark based on the objectively assessed
performance of experienced surgeons as the quantitatively defined
benchmark for trainees. Despite these differences, ML and PBL
methodologies are based on concepts that are almost identical to
those concerning PBP. Therefore, since the solidity of ML method-
ology was proven in previous publications,72 the similarity between
PBP and ML or PBL corroborates the efficacy of PBP and the
importance of the results recorded in the current analysis.

Despite the strength of our findings, few limitations of the
current systematic review need to be acknowledged. First, despite
statistical adjustment using random-effect models, there is residual
heterogeneity between studies due to differences in population, study
protocols, and tasks/procedures which may have been remained
unaccounted for. Second, the limited number of studies included
in the current review may reduce the generalizability of these
findings and might increase the risk of residual biases. On the other
hand, it is important to note that all the included studies were high-
quality RCTs, a factor which corroborates the robustness of
our findings.

CONCLUSIONS

Our systematic review and meta-analysis of RCTs confirms
that PBP training improves trainees’ performances when compared
to high-quality simulation-based training programs. Notably, PBP
decreases procedural errors by 60% compared to conventional/
traditional training and such a positive impact on trainees’
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performances is higher when focusing on intraoperative performance
assessment. These results reinforce the need to fully implement PBP
methodology in surgical and procedure-based medical treatment
training pathways.
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