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ABSTRACT: Bioactive glasses (BGs) for biomedical applications are doped with therapeutic inorganic ions (TIIs) in order to
improve their performance and reduce the side effects related to the surgical implant. Recent literature in the field shows a rekindled
interest toward rare earth elements, in particular cerium, and their catalytic properties. Cerium-doped bioactive glasses (Ce-BGs)
differ in compositions, synthetic methods, features, and in vitro assessment. This review provides an overview on the recent
development of Ce-BGs for biomedical applications and on the evaluation of their bioactivity, cytocompatibility, antibacterial,
antioxidant, and osteogenic and angiogenic properties as a function of their composition and physicochemical parameters.
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1. INTRODUCTION

The treatment of bone injuries from trauma or disease requires
materials with specific mechanical and chemical properties.1

Among them, bioactive glasses (BGs) have been widely used
for the treatment of bone defects due to their ability to bond
and integrate with the soft and hard tissues of the living body.
This property is associated with the formation of a

hydroxycarbonate apatite (HCA) layer on the surface of the
glass, following initial glass dissolution. HCA is similar to
mineral bone and is thought to interact with collagen fibrils to
bond with the host bone; in this process, the release of active
ions from the BGs is paramount for bone regeneration.2

The first BG (45S5 Bioglass, hereafter abbreviated as 45S5)
was developed in 19691,3,4 with a weight composition of 45%
SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5. “Bioglass” was
trade-marked by the University of Florida for the 45S5
composition.4 BGs were doped with therapeutic inorganic ions
(TIIs)5−8 (Figure 1) to improve their properties and reduce
postimplantation problems and thus the need for lengthy drug
treatments and long recovery times. The addition of TIIs to
the BG composition can improve the osteogenesis, angio-
genesis, antibacterial activity, and cementogenesis of the
material.5

The rekindled interest toward rare earth elements and
toward cerium and its catalytic properties in particular
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Figure 1. Biological effects of the addition of TIIs to BGs.
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prompted the investigation of cerium and its compounds for
therapeutic applications.9−11 Cerium compounds have been
known for some time to have relevant pharmacological
properties12 and have been used, for example, as antiemetics,13

bacteriostatics,14 and antitumorals.15 There are nevertheless
limitations to the use of such compounds in biomedicine,
namely, their nonspecific biodistribution, limited cell perme-
ability, and low solubility.16 These limitations can be overcome
by the use of cerium oxide nanoparticles (CeNPs),17 which are
cell permeable and can be potentially targeted to specific
tissues; furthermore, their solubility can be modulated by
coating the material with water-soluble polymers.15,18 CeNPs
can act as both oxidation and reduction catalyst, depending on
the Ce3+/Ce4+ ratios and the oxygen defects on the surface.19

Their redox activity is due to the quick alternation between the
two oxidation states. CeNPs can thus act as a multienzyme
mimic or radical scavengers (Figure 2) by dismutating or

scavenging reactive oxygen species (ROS) and reactive
nitrogen species (RNS).19 In the former case, the Ce3+/Ce4+

surface ratio is critical in determining the profile of the system,
as CeNPs with high Ce3+/Ce4+ surface ratios are effective at
catalyzing the dismutation of the superoxide anion O2

•−

(superoxide dismutase (SOD) mimetic activity), while
CeNPs with low Ce3+/Ce4+ surface ratios are effective at
catalyzing the dismutation of H2O2 (catalase (CAT) mimetic
activity). Furthermore, CeNPs can act as scavengers of other
ROS such as the peroxide radical (OH•) and RNS like the
nitric oxide radical •NO.20

The toxicity of NPs in general is a major concern for their
biomedical applications.21 Although still controversial, CeNPs
are generally considered as low toxicity or biocompatible
materials.22 CeNPs are thought not to induce DNA damage or
genotoxicity at certain doses.16 However, there are also a few
reports suggesting that these NPs may be toxic depending on
their shape, size, and oxidative status. Their in vivo ADMET
(adsorption, distribution, metabolism, excretion, and toxicity)
behavior needs thus to be carefully investigated before their
biomedical application is granted.16,23,24

Conversely, conventional BGs doped with TIIs represent a
viable therapeutic strategy for the treatment of a range of
conditions and diseases and are routinely used in otology,
orthopedics, and dentistry.5,25,26 Other potential applications
include treatment of ear diseases (1977, in vivo and clinical
trial),27 treatment of liver cancer (1987, in vivo and clinical
trial),28 peripheral nerve repair (1998, in vivo),29 wound
healing (2000, in vivo),30 lung tissue engineering (2004, in
vitro),31 skeletal muscle and ligament repair (2005, in
vitro),32,33 gastrointestinal applications (2005, in vitro),31

cardiovascular tissue engineering (2010, in vitro),34 emboliza-
tion of uterine fibroids (2012, in vitro and in vivo),35 spinal
cord repair (2012, in vivo),36 and treatment of metastatic
colorectal carcinoma of the liver (2018, clinical trial).37

The recent literature reports several detailed studies on
cerium-doped bioactive glasses (Ce-BGs) that differ by
compositions, synthetic methods, features, and in vitro tests.
The purpose of this review is to provide a critical overview on
the development and applications of Ce-BGs.

2. SYNTHESIS
Ce-BGs are produced by various synthetic methods, each of
which corresponds to a specific Ce-BG category. The three
most significant categories are discussed below and illustrated
in Figure 3, starting with melt-quenching glasses (MQGs),
discovered by Hench in 1969,1 followed by the bioactive sol−
gel glasses (SGGs), also proposed by Hench in 1991,38 and
most recently by bioactive mesoporous glasses (MBGs),
designed and reported independently by Zhao and Vallet-
Regi in 2004 and 2006, respectively.39,40

2.1. Melt-Quenching Glasses (MQGs). In the melt-
quenching technique, the glass precursors are melted and
successively quenched; the first BG of this kind was 45S5.1,38

Ions belonging to the rare-earth group are used to improve the
properties of BGs;5,6 these ions possess a high field strength
and thus tend to aggregate in clusters when melted with other
elements.41,42 The solubility of rare-earth ions in pure silicate
glass is less than 1 mol % but increases in phosphate-based
glass, where the formation of clusters is reduced.41−45

In the particular case of cerium, the easy switch between
Ce3+ and Ce4+ oxidation states is the basis of its catalytic
activity. The high temperatures required for melt-quenching
influence the Ce3+/Ce4+ ratio, which depends also on melting
isotherm, glass composition, and the partial pressure of O2 in
the oven atmosphere.46−48 Moreover, a higher concentration
of cerium in the glass favors the increment of Ce4+

concentration, while higher temperature promotes Ce3+

formation.49 At temperatures >1000 °C, in low-alkali borate
and silicate glasses, the Ce3+ state prevails, while the Ce4+ is
favored at higher alkali content.50 In sodium phosphate derived
glasses, the Ce3+ state is favored and oxidation does not occur
in the presence of oxygen, even when melting temperature
reaches 1000 °C.51 Several papers reported that the presence
of phosphate (calcium meta-phosphate glasses with high silica)
favors the Ce3+ state independently of the maximum melting
temperature.52,53

The first Ce-BGs were synthesized by Lusvardi et al. in
200254,55 using CeO2 as the cerium precursor. The glass
composition was based on 45S5 doped with different CeO2
amounts (1.5, 3.2, 5.3, or 13.5 wt %). Although the
introduction of the rare earth decreases the viscosity of the
melt,56 the higher amount of CeO2 (13.5 wt %) and its low
solubility in silicate glasses required higher temperature and

Figure 2. Antioxidant properties of CeNPs.
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longer isotherm. Attempts were also made to produce glasses
with higher CeO2 contents, which resulted in an opaque
material with a clear phase separation; higher CeO2 content
favors the monazite (CePO4) formation in the glass system
15SiO2−15Al2O3−70P2O5−(0 + x)CeO2 (x = 0−25 mol %).57

2.2. Sol−Gel Glasses (SGGs). Since the 1990s, the interest
toward the sol−gel synthesis has increased;58,59 in 1991 some
BGs in ternary SiO2−CaO−P2O5 systems were synthesized by
the sol−gel method. The main steps involved are preparation
of sol, casting, gelation, aging, drying, and thermal stabiliza-
tion.5,60 The addition of an acid catalyst (acid water-based
solutions, such as HCl, HNO3, and CH3COOH

61) during the
sol−gel process is necessary in order to obtain a 3D reticulated
structure. With respect to MQGs, SGGs are purer, more
homogeneous in composition, and more porous and have
higher specific surface area (SSA, usually ∼100−650 m2/g). In
contrast, MQGs have no porosity, and their low SSA (∼1−2
m2/g) depends only on the particle size resulting from the
grinding of the materials. The porosity of SGGs allows the
formation of a hydrated layer inside the material, where
biological moieties can enter, maintaining their structural
configuration and biological activity; SGGs then can become
an indistinguishable part of the host tissue. For example, it has
been shown that when trabecular rabbit bone was proliferated
on 45S5, large particles were still present even if a structure
similar to normal bone was obtained. Conversely, no residual
particles were observed when SGGs were utilized.62 The
formation of HCA takes place much faster on the surface of
SGGs than on MQGs; furthermore, HCA formation is
observed in SGGs with a SiO2 content up to 90 wt %, while
it is only observed in MQGs with 60% or less SiO2.

63

The most common precursors of cerium in SGGs are
Ce(NO3)3·H2O for Ce3+ and (NH4)2Ce(NO3)6 or Ce(SO4)2
for Ce4+.64 Also, for sol−gel synthesis, the equilibrium between
Ce3+ and Ce4+ mainly depends on thermal treatment, glass
composition, and the O2 partial pressure during the thermal

stabilization. When a Ce3+ precursor is used, trivalent state
normally prevails at room temperature; over 100 °C partial
oxidation to Ce4+ starts, and from 200 to 1000 °C, cerium is
completely oxidized to Ce4+. In the case of Ce4+ precursor, at
room temperature a partial reduction to Ce3+ takes place, and
over 100 °C, it tends to be reoxidized.

2.3. Mesoporous Glasses (MBGs). The discovery of silica
mesoporous materials (SMMs) in 1991 by company scientists
of Mobil Oil Corporation was recognized as a breakthrough
that could lead to a number of important applications as host−
guest systems.65,66 SMMs are ordered porous structures of
SiO2 that show high surface area and pore volume. The pore
arrangement is regularly ordered in different geometrical
shapes with narrow pore size distribution ranging from 2 to
50 nm that can be controlled and modified by using different
synthetic strategies.67

The synthesis of MBGs is based on the sol−gel method-
ology, but the procedure involves the addition of a nonionic
surfactant (structure directing agent, SDA) to the alcohol or
aqueous solvent before the addition of oxide precursor and the
subsequent evaporation-induced self-assembly (EISA) proc-
ess.68,69

The most used SDAs are cetyltrimethylammonium bromide
(CTAB), Pluronic F127, and Pluronic P123.70,71 In particular,
cerium-containing MBGs (Ce-MBGs) were synthesized by
using Pluronic P123.72

After solvent evaporation, the SDA concentration increases
and eventually exceeds the critical micelle concentration
(cmc), causing micelles to form in the solution. Subsequently,
the co-self-assembly of micelle and silicate matrix leads to the
formation of the mesophase. The final MBG is obtained after
gelling, drying, and surfactant calcination (700 °C). The
calcination of surfactant promotes a porous structure that can
be ordered (mesoporous ordered structure) or not-ordered
(worm-like structure), and this depends on the glass
composition.

Figure 3. Schematic representation of three synthetic method of Ce-BGs.
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The resulting materials present a high SSA (usually ∼300−
800 m2/g) and a significantly larger pore volume (∼1 cm3/g)
with respect SGGs. However, the MQGs have enhanced
mechanical properties like hardness and flexural strength with
respect both SGGs and MBGs.73

MBGs exhibit higher bioactivity than SGGs due to their
outstanding textural properties; moreover, MBGs can most
easily incorporate species of biological importance, which can
be released in controlled manner, thus acting as a drug delivery
system.74

The formation of ordered mesoporous arrangements is
regulated by factors like, among others, surfactant nature,
concentration of precursors, solvent, pH, and temper-
ature.75−77 In the case of SiO2−CaO−P2O5 system, CaO
acts as a network modifier disrupting the silica network
connectivity; when CaO increases, the inorganic/organic
volume ratio of the micelles increases with the formation of
hexagonal phases rather than cubic.40 P2O5 leads to a decrease
in the inorganic/organic volume ratio of the micelles resulting
in a cubic structure.69,78,79

For Ce-MBGs, the glass composition influences the Ce3+/
Ce4+ ratio. The presence of P2O5 favors the Ce3+ state: in
ternary SiO2−P2O5−CeO2 MBG calcined at 700 °C, the Ce3+

amount is 80.0 wt %, while in ternary SiO2−CaO−CeO2 and
binary SiO2−CeO2 MBGs, the Ce3+ amount decreases to 37.5
and 58.0 wt %, respectively.79

The introduction in the glass network of cerium ions
decreases the SSA and the porosity order degree;80 in fact it is
possible to obtain a hexagonal ordered structure until 1 mol %
of CeO2 addition, while for higher concentration, decreased
SSA and a worm-like porous structure is obtained. However, it
is still possible to enhance the SSA by increasing the
concentration of surfactant: during the synthesis of Ce-
MBGs the SSA increase around 2.5 times upon the
introduction of twice the amount of surfactant (Pluronic
P123).81

Similar results were obtained for MBGs without cerium,
where the introduction of higher P123 amounts increases SSA,
pore diameter, and volume.82

It is also possible to obtain MBGs as nanoparticles by basic
catalysis (aqueous ammonia);83,84 the cerium-doped MBG

Table 1. Evaluation of Bioactivity for Ce-BGs

composition synthesisa
features (dimensions or shape, maximum time of SBF

soaking) refs

45S5 doped with CeO2 (0.75, 1.5, 3.2, 10, 13 wt %) M powders, 250−500 μm, 30 days 54,55
3:7 (wt %) Ca10(PO4)6F2/K2Mg3AlSi3O10F2 doped with CeO2 (1 wt %) M glass-ceramics, 28 days 112
(80 − x)SiO2−15CaO−5P2O5−xCe2O3 (x = 0.2, 1, 2, 3.5 mol %) SGE MBG, pellets, Ø = 6 mm, 7 days 72
(80 − x)SiO2−15CaO−5P2O5−xCe2O3 (x = 0.2, 1, 2, 3.5 mol %) SGE MBG, powders, <50 μm,15 days 98
(80 − x)SiO2−15CaO−5P2O5−xCe2O3 (x = 0.2, 1 mol %) SGE MBG, scaffolds, 7 days 97
(80 − x)SiO2−15CaO−5P2O5−xCe2O3 (x = 1, 2 mol %) SGE MBG, powders, <32 μm, 7 days 99
50SiO2−(45 − x)CaO−5P2O5−xCeO2 (x = 1, 5, 10 mol %) SG MBG, 14 days 100
xCeO2−(100 − x)[0.5P2O5−0.2CaO−0.2SrO−0.1Na2O] (x = 1, 2, 5,
7.5 mol %)

M powders, 300−500 μm, 7 days 106

56.6B2O3−18.5CaO−5.5Na2O−11.1K2O−4.6MgO−3.7P2O5 doped with
Ce2O3 (1, 3, 5 wt %)

M scaffolds, d50 = 13.2 μm, 30 days 113

(53 − x)SiO2−20CaO−6Na2O−12K2O−5MgO−4P2O5−xCe2O3 (x = 0, 1,
3, 5 wt %)

SG electrospun fibers, Ø = 583 nm; powders, 69 < d50 < 145
μm, 30 days

105,123

79SiO2−15CaO−5P2O5−Ce2O3 (mol %) SGE MBG (Ø = 10 μm), 30 days 101
50SiO2−(45 − x)CaO−5P2O5−xCeO2 (x = 1, 5, 10 mol %) SG nanofibers (Ø = 158 nm), 7 days 107
52SiO2−24SrO−16Na2O−8CeO2 and 52SiO2−24SrO−16Na2O−4CeO2−
4Y2O3 (mol %)

M disks, SA 100 mm2, 14 days 108

45S5 doped with CeO2 (1.2, 3.6, 5.3 mol %) M powders, 250−500 μm, 28 days 91,94
K50S doped with CeO2 (1.2, 3.6, 5.3 mol %)
15CaF2−10CaO−5B2O3−(65 − x)P2O5−5BaO−xCe2O3 (x = 0, 1, 2, 3,
4 mol %)

M slices, 1.0 cm × 1.0 cm × 2.5 cm, 30 days 109

70SiO2−(26 − x)CaO−4P2O5−xCeO2 (x = 0, 1, 5 mol %) SGE MBG pellets (Ø = 8 mm), 28 days 81
60SiO2−(10 − x)B2O3−25CaO−5P2O5−xCeO2, (x = 5 mol %) SG pellets (Ø = 8 mm), 15 days 115
80SiO2−15CaO−5P2O5 doped with CeO2 (5.3 mol %) SGE MBG powders, <250 μm, 14 days 80
80SiO2−20CaO doped with CeO2 (5.3 mol %)
80SiO2−20P2O5 doped with CeO2 (5.3 mol %)
100SiO2 doped with CeO2 (5.3 mol %)
80SiO2−15CaO−5P2O5 doped with CeO2(1.2, 3.6, 5.3 mol %) SGE MBG/alginate beads: powders, <250 μm; beads, Ø = 2 mm,

28 days
116

20Na2O−14CaO−xCeO2−(66 − x)P2O5 (x = 0.1, 0.3, 0.7, 1 wt %) M cubic shape, 21 days 110
K50S doped with of CeO2 (1.2, 3.6, 5.3 mol %) M slices (thickness = 3 mm, surface area = 1 cm2), 30 days 96
34SiO2−8P2O5−17MgO−xCeO2·(41 − x)CaO (x = 0.5, 2.5, 5 mol %) SG powders, 130−190 nm, 14 days 111
45S5 doped with CeO2 (4, 5 mol %) M, SGE 45S5, K50S, MBG/alginate beads: powders <250 μm; beads

Ø = 2 mm, 28 days
92

K50S doped with CeO2 (3.6 mol %)
80SiO2−15CaO−5P2O5 doped with CeO2 (5.3 mol %)
(45 − x)SiO2−24.5Na2O−24.5CaO−6P2O5 (x = 0.5, 1, 1.5, 2 wt %) equal
amount of CeO2 and La2O3

M powders <60 μm, 19 days 93

aM = melt-quenching; SG = sol−gel; SGE = sol−gel EISA.
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nanoparticles are obtained by immersion in a solution of
cerium nitrate after the thermal calcination at 700 °C. This
process favors the exchange of Ce3+ ions from the solution with
the Ca2+ ions in the glass structure; the final MBGs contain
cerium ions on the glass surface.84

3. PROPERTIES OF BIOACTIVE GLASSES

3.1. Bioactivity. In the context of synthetic bone grafts,
bioactivity concerns the formation of a bond with bone. In the
field of bone repair, it is more appropriately defined as a
“stimulation of a beneficial biological response”.85 45S5 was
the first biomaterial able to bond with bone, rather than be
encapsulated by fibrous tissue; the bond was so strong that
could not be removed without breaking it.1 The mechanism of
the bioactivity1,86 is divided into two macrostages:87 bone-like
apatite layer formation88 and ionic dissolution products from
BGs and osteogenesis.4

The general mechanism of formation of the HCA layer is
well-known and thus not covered here; we focus instead on the
influence of cerium on the bioactivity of Ce-BGs.
As reported in the section 2, the use of different synthetic

methods modifies the SSA and the reactivity of BGs. Table 1
reports the features of the Ce-BGs studied for their bioactivity
as a function of compositions, dimensions and shape (not
always reported), synthetic methods, and maximum soaking
time in simulated body fluid (SBF).89

In vitro studies have been carried out on BGs of different
types, namely, 45S5,55,90−94 Kokubo glass (N25C25S50,
hereafter abbreviated as K50S),92,95,96 MBGs,74,81,85,93,97−102

13-93,103−105 and other BGs106−111 doped with different
amounts of cerium and synthesized by melt-quench-
i n g , 5 4 , 5 5 , 9 1 − 9 3 , 9 6 , 1 0 6 , 1 0 8 − 1 1 0 , 1 1 2 , 1 1 3 s o l −
g e l , 1 0 0 , 1 0 3 , 1 0 5 , 1 0 7 , 1 1 1 , 1 1 4 , 1 1 5 a n d s o l − g e l
EISA72,80,81,97−99,101,102,116 methods.
The first comments are related to Ce-MQGs in Lusvardi et

al.55 where the cerium content was first reported as improving
the chemical durability and retarding the HCA layer formation,
mainly due to two factors: (i) the increase in chemical
durability and (ii) the formation of insoluble crystalline
CePO4, competitive with HCA. CePO4 is very insoluble
(KspCePO4 = 10−23),117,118 and this hampers further solubiliza-
tion of the glass matrix. This effect is correlated with the CeO2
amount in the glass: for CeO2 content up to 1 mol %, HCA
formation was detectable after 7−14 days, while with higher
CeO2 content (5.3 mol %), the formation of HCA was delayed
up to 28 days.92 In this study, the formation of insoluble Ce-
phosphate phase was detected by SEM analysis, with typical
flower-like crystals on the glass surface after SBF soaking
(Figure 4).
Subsequently, a similar behavior was detected for SGGs and

MBGs.100,103,105,107,111,114,115

In particular, MBGs containing up to 5.3 mol % CeO2
showed HCA after 7−14 days of SBF soaking.116 Here, the
simultaneous presence of both HCA and CePO4 confirmed
that the Ce3+ ions released by the glass surface react quickly
with the phosphate ions of the SBF forming the CePO4
insoluble phase. This also explains the low level of cerium
ions in SBF72 (cerium concentration <0.05 ppm). In summary,
the presence of cerium does not inhibit HCA formation but
can delay it at high concentrations due to the competitive
cerium phosphate phase, sometimes identified as
CePO4.

70,71,82−84,86,87,102

In order to manufacture BGs with higher bioactivity, a
suitable morphology can be selected. Some authors38,116,119,120

used Ce-MBGs as a bioactive filler in alginate beads to increase
their bioactivity and pro-osteogenic activity. The results
indicate that beads with 1.2 and 3.6 mol % CeO2 are excellent
candidates as biocompatible scaffolds.
A final general consideration concerns SBF tests. Direct

comparison of literature data on the HCA layer formation is
often problematic as the protocols used for SBF testing can
vary between research groups. The ISO standard currently in
use121 refers to materials of standard shape but does not take
into account that BGs can have very different specific surface
areas and the required amount of SBF should be appropriately
chosen. A unified assessment method based on an ISO
modified procedure, considering the ratio between BG mass
and SBF solution, has been recently proposed.122

3.2. Cytocompatibilty. Cell culture methods are the main
in vitro tool to predict the biological response of the host
organism to a biomaterial (Table 2). The cell lines selected for
these assays are then typically chosen to model the response
likely observed in vivo upon the surgical implant of BGs.122,124

Accordingly, the cell types commonly employed to assess the
cytocompatibility of BGs have a role in wound healing
(fibroblasts),81,93 ,115,125,126 bone structure (osteo-
cytes),96,127,128 and bone maintenance and formation (osteo-
clasts and osteoblasts).108,111,116,129 As cell cultures are
sensitive to changes in variables such as temperature, pH,
and nutrient concentration, careful control of the experimental
conditions is crucial in correlating cell death to toxicity of the
biomaterial rather than to changes in the culture conditions.122

The assessment of cellular response to BGs, and their
cytotoxicity in particular is performed by direct tests, carried
out in the presence of the BGs, and indirect ones, in which
filtered extracts of BGs are added to the cell culture.130 Among
the latter, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide test (MTT) is the method of choice for the
quantification of metabolically active cells upon incubation
with BG eluates.81,96,108,125,127,131 MTT is a rapid colorimetric
test based on the cleavage of a yellow tetrazolium salt to purple
formazan crystals by mitochondrial enzymes in metabolically
active cells.122 Another indirect assay reported on BG extracts
is the alamarBlue assay for cell viability (applicable both as a
direct and indirect test).116 All the BGs studied show excellent
biocompatibil ity regardless of their cerium con-
tent81,96,108,116,125−127 with specific exceptions for reused
materials.127 Lactate dehydrogenase (LDH) activity is also
used to assess the cytotoxicity of BGs in indirect assays;81,116

both studies show no significant difference between control

Figure 4. SEM micrographs BG-13 Ce glass after 30 days of soaking
in SBF Reproduced with permission from ref 55. Copyright 2003
Elsevier.
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medium and extracts, confirming the lack of cytotoxicity of
BGs.
Direct cytocompatibility has been assessed by a range of

assays, including MTT,83,93,111,115,125,126,129,131 alamarBlue,116

and neutral red (NR)96,127,128 for cell viability, bromo-2-
deoxyuridine (BrdU) for cell proliferation,96,127 and LDH
activity for cytotoxicity.81,116 Remarkably, all the BGs
investigated show little93,115 or no83,96,111,126,127,129 effect on

Table 2. Evaluation of Cytocompatibility for Ce-BGs

composition assays and cell lines features ref

10CaF2−10Na2CO3−15CaO-60P2O5−5CeO2 (mol %) MTT, human osteoblastic-like cells MG63
cells (ATCC, CRL-1427)

enhanced cell adhesion and proliferation 129

52SiO2−24SrO−16Na2O−8CeO2 (mol %) osteoblast viability, cell adhesion MC-3T3-
E1 osteoblasts (ATCC CRL-2593)

cell viability unaffected 108
52SiO2−24SrO−16Na2O−4CeO2−4Y2O3 (mol %)
70SiO2−(26 − x)CaO−4P2O5−xCeO2 (x = 1, 5 mol %) MTT, LDH, mouse fibroblast cells

(NCTC clone L929)
cell viability above 80% noncytotoxic 81

60SiO2−(10 − x)B2O3−25CaO−5P2O5−xCeO2, (x = 0,
5 mol %)

MTT cell viability improved 115
human lung fibroblast normal cells
(WI-38 cells)

80SiO2−15CaO−5P2O5 (mol %) doped with CeO2 (1.2,
3.6, 5.3 mol %)

MTT, LDH, ALP cell viability unaffected, cerium enhances cells
proliferation and reduces cell differentiation

116
mouse calvaria preosteoblastic cells
(MC3T3-E1)

45S5 doped with CeO2 (1.2, 3.6, 5.3 mol %) NR, XTT, BRdU, MLO-Y4, NIH/3T3 cell
lines

cell uptake and viability enhanced 128
cerium enhances cells proliferation

K50S doped with CeO2 (1.2, 3.6, 5.3 mol %) MTT, NR, BrDU cell proliferation and vitality enhanced 96
osteocyte-like cell lines murine long bone
(MLO-Y4)

34SiO2−8P2O5−17MgO−xCeO2−(41 − x)CaO (x = 0.5,
2.5, 5 mol %)

MTT cerium reduces apoptosis and increases cell
viability

111
human osteosarcoma cells (MG-63)

(45 − x)−SiO2−24.5Na2O−24.5CaO−6P2O5 (wt %)
x = 0.5,1.0, 1.5, 2.0, equal wt % of CeO2 and La2O3

MTT cerium reduces apoptosis and increases cell
proliferation

93
mouse fibroblast L929 cell lines

45S5 doped with CeO2 (1.2, 3.6, 5.3 mol %) NR, MTT, BRdU cell uptake and viability enhanced 127
MLO-Y4, NIH/3T3 cell lines cell proliferation reduced in the second use

46.10SiO2−2.60P2O5−16.90CaO−10.00MgO−
19.40Na2O−5.00CeO2(mol %)

MTT, human fibroblast BJ cells (ATCC,
CRL-2522)

cell viability around 90% 125

60SiO2−28CaO−4P2O5−8Ce2O3 (mol %) MTT, NIH 3T3 mouse fibroblast cells cerium enhances cell adhesion and spreading 126
70SiO2−30CaO impregnated (Ce 0.05, 0.2 M) MTT no cytotoxic 83

cerium reduces expression of oxidative stress
related genes

34SiO2−P2O5−17MgO−xCeO2−(41−x)CaO MTT, osteoblasts (rats) cerium enhances cell vialability 111

Table 3. Evaluation of Antibacterial Activity for Ce-BGs

composition bacterial strain antibacterial effect ref

50SiO2−(45 − x)CaO−5P2O5−xCeO2(x = 1, 5, 10 mol %) E. coli (ATCC25922) increasing the amount of cerium increases the antibacterial
activity

100

10CaF2−10Na2CO3−15CaO-60P2O5−5CeO2 (mol %) S. aureus (ATCC 25923) antibacterial effect against S. aureus and S. epidermidis 129
S. epidermidis (ATCC
35984/RP62A)

P. aeruginosa no effects against P. aeruginosa
56.6B2O3−18.5CaO−5.5Na2O−11.1K2O−4.6MgO−3.7P2O5
doped with Ce2O3 (1, 3, 5 wt %)

E. coli no antibacterial response 123
S. aureus

(53 − x)SiO2−20CaO−6Na2O−K2O−MgO−P2O5−xCe2O3
(x = 3, 5 wt %)

S. aureus (ATCC25923) no antibacterial response 105
E. coli (ATCC25922)

50SiO2−(45 − x)CaO−5P2O5−xCeO2 (x = 1, 5, 10 mol %) E. coli (ATCC25922) no antibacterial response 107
60SiO2−(10 − x)B2O3−25CaO−5P2O5−xCeO2
(x = 5 mol %)

E. coli (ATCC 25922) antibacterial activity did not depend on cerium presence 115
P. aeruginosa (ATCC
27853)

Bacillus subtilis (ATCC
6633)

S. aureus (ATCC 6538)
20Na2O−14CaO−xCeO2−(66 − x)P2O5 (x = 0.1, 0.3, 0.7,
1 wt %)

S. aureus antibacterial activity enhanced significantly against E. coli and S.
aureus as cerium amount increases

110

B. cereus no antimicrobial behavior against B. cereus, B. subtilis, and C.
albicansB. subtilis

E. coli
C. albicans

46.1SiO2−2.6P2O5−16.9CaO−10.0MgO−19.4Na2O−
5.0CeO2 (mol %)

E. coli (K12-MG1655) high antibacterial activity for coatings obtained by PLD 125
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cell viability and are cytotoxic regardless of the amount of
cerium in the glass composition;81,116,128 in some instances, the
amount of cerium in the glass composition increases the
biocompatibility of the materials.93,115,128,129 At very long (14
days) culture times, cell viability is reported to decrease, and
BGs with a higher amount of cerium show better
cytocompatibility.126 Conversely, when H2O2 is added to the
culture medium to simulate conditions of oxidative stress, the
presence of cerium has a marked positive effect on cell viability,
consistent with the antioxidant properties of Ce-BGs.111,116

Specific assays are also used to study hemolysis,93 cell
apoptosis,93,111 and alkaline phosphatase (ALP) as a marker
of osteoblast activity.116,129 Ce-BGs induced lower hemolysis93

and apoptosis111 than nondoped BGs, while decreasing ALP
activity, as to be expected by their cell proliferation effect.116

Recently it has been also demonstrated that the incorporation
of cerium into mesoporous bioactive glass nanoparticles
(MBGNs) reduces the expression of oxidative stress-related
genes in macrophages (J774a.1).83

Finally, SEM or confocal microscopy are used to evaluate
changes in cell morphology and cell adhesion to the surface of
the BGs. The cell morphology is generally unchanged upon
interaction with BGs96,116,125,126,128 if not at higher BG
concentration;115 the presence of cerium reduces morpho-
logical changes115 and gives better performance over
unfunctionalized BGs.96,126 Cell attachment is also favored
by the presence of cerium.108,129

3.3. Antibacterial Activity. The efficiency of BGs in bone
regeneration is also related to the prevention of bacterial
adhesion and proliferation that can occur on the implant
surface. While BGs are considered good candidates for
preventing or reducing this problem,132 the mechanisms
underlying their antibacterial activity are still under study.
Among the reported modes of action are the disruption of
prokaryotic cell membranes by glass debris133,134 and changes
in environmental pH and osmotic pressure.135 Both those
mechanisms are linked to the reactivity of BGs in aqueous
solutions, with produces a toxic environment for bacteria. This
behavior is associated with an increase of pH and osmolarity in

the surrounding environment; an alkaline pH reduces the
viability of bacterial suspensions and causes morphological and
ultrastructural changes in the bacteria.136 The antibacterial
properties can also be induced or improved by the addition of
metal ions with bactericidal effects. BGs doped with silver,
copper, zinc, or gallium are considered potential candidates as
antibacterial agents.4,5 Ce-BGs as well are reported as having
antibacterial properties, with microbicidal effects toward
Escherichia coli100,110,125 and Staphylococcus aureus129 (Table
3), albeit some studies report the lack of such properties
instead.5,93,94,97 The antibacterial activity of cerium com-
pounds is linked to the inhibition of the oxidation and
assimilation of glucose and of endogenous respiration.137

Various modes of action of cerium compounds on bacteria
have been proposed, some of which are based on the direct
contact between cerium and the bacterial membrane.138 These
include the impairment of transport exchange through the
bacterial membrane followed by reduced growth,110,139

reaction of cerium with proteins or transporters within the
cell,134 and induction of oxidative stress.140,141

More recent studies, performed between 2014 and 2020,
suggest that the antibacterial activity of Ce-BGs is a function of
glass composition, cerium amount, and morphology.
Ce-BGs possess higher antibacterial activity if the concen-

tration of cerium oxide is in the 5−10 mol % range rather than
1 mol %.100 Ce-BG-reinforced hydroxyapatite showed a
remarkable decrease of bacterial adhesion only for the
Staphylococcus strains.129 Electrospun fibers and powders
based on 13-93 glasses doped with cerium105,123 and
electrospun poly(lactic acid) (PLA)/chitosan nanofibers
coated with cerium-doped glasses are inactive in antibacterial
tests; this lack of antibacterial activity can be attributed to the
slow release of ions from glass and to the small amount of
material adsorbed onto the nanofibers.107 The antibacterial
activity of Ce-nano-BGs is not dependent on the presence of
cerium in the glass but rather on the presence of boron, which
shows antibacterial activity against a wide range of
pathogens.115 For cerium-containing phosphate glasses, the
increase of cerium concentration enhanced the antibacterial

Table 4. Evaluation of Antioxidant Activity for Ce-BGs

composition antioxidant activity features ref.

45S5 doped with CeO2 (1.2, 3.6,
5.3 mol %)

CMA antioxidant activity increases with the increase of cerium amount, decreases in
presence of phosphate ions, and changes with the environment (higher in water
than in SBF)

91, 94,
149−151

K50S doped with CeO2 (1.2, 3.6,
5.3 mol %)

SOD

80SiO2−15CaO−5P2O5 doped
with CeO2 (5.3 mol %)

CMA antioxidant activity decreases with high P2O5 amount 80

80SiO2−20CaO doped with CeO2
(5.3 mol %)

SOD Ce3+/Ce4+ ratio opposite effects for CMA and SOD

80SiO2−20P2O5 doped with CeO2
(5.3 mol %)

100SiO2 doped with CeO2
(5.3 mol %)

80SiO2−15CaO−5P2O5 doped
with CeO2 (1.2, 3.6, 5.3 mol %)

CMA antioxidant activity increases with the increase of cerium amount 116
SOD alginate matrix does not influence antioxidant activity

34SiO2−8P2O5−17MgO−xCeO2−
(41 − x)CaO (x = 0.5, 2.5,
5 mol %)

oxidative stress induced
by H2O2 on MG-63
cells

cerium-containing glasses exhibit maximum cell viability 111

45S5 doped with CeO2 (4,
5 mol %)

CMA CMA increases with (i) reduction of glass dimensions and (ii) increment of SSA;
alginate coating (beads) does not inhibit CMA

92

K50S doped with CeO2
(3.6 mol %)

80SiO2−15CaO−5P2O5 doped
with CeO2 (5.3 mol %)
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activity against E. coli and S. aureus, but not against Bacillus
cereus, B. subtilis, and Candida albicans.110

Preliminary tests performed on coatings obtained by the
laser ablation method and enriched with Ce-BGs suggested
high antibacterial activity due to the presence of partially
crystallized layers with cerium cations embedded in a glassy
matrix, which was more prone to degradation.125

3.4. Antioxidant Properties. Oxidative stress is related to
the excessive production of ROS, and these species play an
important role in the regulation of cellular functions: inhibition
of the differentiation and mineralization of osteoblasts,
enhancement of osteoclast activity, and consequent pro-
inflammatory bone resorption.142 Their excess can have
deleterious effects on the organism with a reduction of
antioxidant capacity.143 The implantation of biomedical
devices is performed by surgical procedures, which are often
followed by tissue damage and inflammation. ROS production
linked to inflammation increases and causes a condition of
oxidative stress, which in turn enhances inflammation, causing
further generation of ROS. Due to this feedback, postsurgery
inflammation could need a long time to achieve complete
recovery.
The ability to convert ROS to nondangerous species must

be a key feature of a biomaterial.
In the case of nanoparticles, CeNPs have been widely

studied for their antioxidant enzyme-mimetic activity and
radical scavenging ability.19,20 In the site of the inflammation,
CeNPs favor the conversion of excess free radicals, bringing a
faster postsurgery recovery;144 their antioxidant properties are

effective against ROS generated in the human body.18 CeNPs
can mimic the activity of catalase (CAT)145 and superoxide
dismutase (SOD)146 enzymes present in the human body146

(Figure 2).
The antioxidant properties of BGs are strictly correlated to

their composition and reactivity. For example, the addition of
fluorine (5−15 mol %) to 45S5 increases lipid peroxidation
and ROS production in MG-63 osteoblast cells and induces
other signs of oxidative stress such as inhibition of the pentose
phosphate pathway, the glucose 6-phosphate dehydrogenase
activity, and the glutathione activity.147 Similarly, the
introduction of copper (1−2.5 wt %) into 45S5 increases
ROS production in human osteosarcoma (HOS) cells.148

Table 4 summarizes the results related to Ce-BGs and their
potential antioxidant activity.
CeO2 (1.2, 3.6, 5.3 mol %) has been added to 45S5 and

K50S;91,94,149−151 CAT, evaluated by H2O2 degradation,
increases with cerium content and decreases in the presence
of phosphate groups. Cerium ions play different structural
roles: in phosphate-free glasses cerium is coordinated by
nonbridging oxygens (NBOs) originating from the disruption
of the silicate network, whereas in phosphate-containing
glasses, the NBOs around cerium ions belong to orthophos-
phate groups. The latter groups stabilize the Ce3+ species
subtracting them from the interconversion process between
Ce3+ and Ce4+, which is of fundamental importance for CAT.
Good catalytic activities were confirmed from SOD mimic
activity tests.152 An increase in the cerium content also leads to
a significant reduction of the glass in vitro bioactivity, which

Figure 5. (A) Morphological evaluation of cell viability of preosteoblast cells after 1 d of culture using indirect and direct assays. (B) Cell viability
(Alamar Blue) of preosteoblastic cells after 1 and 4 d of culture. (* = significant differences between control and samples after 4 d, p < 0.05).
Reproduced with permission from ref 116. Copyright 2019 Elsevier.
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can be associated with the formation of an insoluble CePO4
phase82 that delays or inhibits HCA formation. An optimal
compromise between the ability to degrade H2O2 and HCA
formation was observed with addition of 1.2 and 3.6 mol %
CeO2.
In the case of Ce-MBGs, good bioactivity and antioxidant

properties were confirmed.80,116 In analogy to what was
observed for other BGs, the presence of a high concentration
of phosphate groups decreased the catalytic properties.
Similarly to CeNPs, also in the case of Ce-BGs the Ce3+/

Ce4+ ratio influences the catalytic properties. For Ce-MQGs,
during CAT tests, the Ce3+/Ce4+ ratios reached an optimal
value around 1−1.5. In the case of Ce-SGBs and Ce-MBGs
more oxidized surfaces show improved CAT and lower SOD
mimetic activity. CAT increases with smaller dimensions of the
BGs and with SSA; while alginate coating (beads) seems to not
inhibit the catalytic activity of the glass.92 CAT changes also
with the environment, being higher in water than in
SBF.91,94,149−151

3.5. Osteogenesis and Angiogenesis. BGs are also
known in the field of tissue engineering because of their
osteoinductivity and osteoconductivity, which are higher than
those of conventional ceramics.153,154 TIIs, including cerium,
have been added do BGs to improve their biological
properties.2,6 The osteogenic properties of cerium compounds
and CeNPs are well-known5,155 and linked to the ability of
cerium to activate specific cellular pathways such as tumor
necrosis factor (TNF)11 and sucrose nonfermentable (SNF).10

Ce-MBGs116 are used as bioactive filler in alginate beads to
increase bioactivity and pro-osteogenic activities (Figure 5).
Zheng et al.83,84,156 incorporated cerium into MBGNPs by a

two-step approach via post modification method: the nano-
particles exhibited anti-inflammatory response and pro-
osteogenic activity (Figure 6)
Most of the studies on Ce-BGs for application in bone tissue

regeneration report positive results with regard to osteogenic
properties.9,81,83,104 Recently Westhauser et al.84 demonstrated
that in MBGNs cerium had a positive influence on the viability
and the cellular osteogenic differentiation of human bone
marrow derived mesenchymal stromal cells exposed to the
ionic dissolution products (IDPs) of the respective glasses. The
formation and calcification of the osseous extracellular matrix
was stimulated in the presence of IDPs of Ce-MBGNs in a
positive concentration dependent manner.

Regarding angiogenesis, cerium oxide could improve the

vascularization of bone grafts by activating the calcium channel

of mesenchymal stem cells.157 Ce-BGs can modulate the

oxygen level in vitro, suggesting their angiogenic potential.91

Ce doped borate BGs exhibited enhanced in vivo blood vessel

formation, which was considered to be due to the presence of

cerium.104

In vivo studies on rat cranial defect models revealed that

hollow mesoporous Ce-BG scaffolds accelerated collagen

deposition, osteoblast formation, and bone regeneration as

compared to BG scaffolds (Figure 7); these results indicate

these scaffolds a promising platform for healing critical-sized

bone defects.158

Figure 6. (A) SEM and (B) TEM images of the morphology of MBGN, 0.05 M Ce−MBGN, and 0.2 M Ce−MBGN. MBGN, mesoporous
bioactive glass nanoparticle. Reproduced with permission from ref 83. Copyright 2020 Elsevier.

Figure 7. In vivo evaluation of bone formation in rat cranial defects
implanted with BG (A) and (B) Ce-BG at 8 weeks postimplantation.
The reconstruction images of micro-CT in defect regions.
Reproduced with permission from ref 158. Copyright 2019
IOPScience.
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4. CONCLUSIONS

BGs are able to stimulate bone regeneration and are used as
bone fillers, scaffolds, and implant coatings. To improve their
biocompatibility and reduce postimplantation complications,
BGs are doped with TIIs; among these, cerium is of
particularly interest due to its biological properties. The
purpose of this review is to provide an overview of the state of
the art of Ce-BGs by reviewing the effects of cerium on
bioactivity, cytocompatibility, and antibacterial, antioxidant,
osteogenic, and angiogenic activities of BGs reported in the
recent literature.
In order to explain the behavior of a Ce-BG in a biological

setting, it is necessary to take into account all the
manufacturing and physicochemical parameters that can
influence its behavior. For instance, Ce-BG reactivity changes
according to the method of synthesis described in section 2,
with SGGs being more reactive than MQGs and MBGs being
the most reactive glass type. We propose that a correct
evaluation of the bioactivity should be performed according to
the updated ISO standard and moreover that the bioactivity
should be evaluated considering the composition, synthesis,
and soaking time in SBF of the material (Table 1).
Cytocompatibility and antibacterial and antioxidant activities
are reported as a function of the composition with the most
important remarks (Tables 2, 3, and 4). While in general the
addition of cerium does not alter significantly the in vitro
bioactivity of Ce-BGs, except when added in large amounts, it
has a positive effect on their biocompatibility, improving their
cytotoxicity and antioxidant and antibacterial properties.
Recently, Ce-BGs were also reported to have significant

osteogenic properties and to help bone tissue regeneration,
while Ce-doped borate BGs exhibited enhanced in vivo blood
vessel formation, showcasing the potential benefits of these
materials for a range of therapeutic areas.
In comparison with CeNPs, we can say first that CeNPs can

have a large range of biomedical applications; even if it is worth
considering that their employment, as with all NPs, is quite
recent when compared to more established materials like the
BGs that have been used for decades in tissue engineering. In
addition, the compositional limitations of CeNPs reduce their
versatility compared to traditional biomaterials, and the risk of
cytotoxicity may be a hurdle for their approval for clinical use
and subsequent commercialization.
In summary, the past decade has seen significant progresses

in the application of Ce-BGs for therapeutics. Their field of
application has broadened considerably and is not limited to
the reconstruction of hard tissues such as bone and teeth. Ce-
BGs are now explored as therapeutic options for soft tissue and
are promising for adding antioxidant, antibacterial, osteogenic,
and angiogenic properties.
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