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The coprime commutators γ∗
j and δ∗j were recently intro-

duced as a tool to study properties of finite groups that
can be expressed in terms of commutators of elements of co-
prime orders. Every element of a finite group G is both a
γ∗
1 -commutator and a δ∗0 -commutator. Now let j � 2 and

let X be the set of all elements of G that are powers of
γ∗
j−1-commutators. An element g is a γ∗

j -commutator if there
exist a ∈ X and b ∈ G such that g = [a, b] and (|a|, |b|) = 1.
For j � 1 let Y be the set of all elements of G that are pow-
ers of δ∗j−1-commutators. An element g is a δ∗j -commutator
if there exist a, b ∈ Y such that g = [a, b] and (|a|, |b|) = 1.
The subgroups of G generated by all γ∗

j -commutators and
all δ∗j -commutators are denoted by γ∗

j (G) and δ∗j (G), re-
spectively. For every j � 2 the subgroup γ∗

j (G) is precisely
the last term γ∞(G) of the lower central series of G, while
for every j � 1 the subgroup δ∗j (G) is precisely the last
term of the lower central series of δ∗j−1(G), that is, δ∗j (G) =
γ∞(δ∗j−1(G)).
In the present paper we prove that if G possesses m cyclic sub-
groups whose union contains all γ∗

j -commutators of G, then
γ∗
j (G) contains a subgroup Δ, of m-bounded order, which is

normal in G and has the property that γ∗
j (G)/Δ is cyclic.
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If j � 2 and G possesses m cyclic subgroups whose union
contains all δ∗j -commutators of G, then the order of δ∗j (G) is
m-bounded.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A covering of a group G is a family {Si}i∈I of subsets of G such that G =
⋃

i∈I Si. If
{Hi}i∈I is a covering of G by subgroups, it is natural to ask what information about G

can be deduced from properties of the subgroups Hi. In the case where the covering is
finite actually quite a lot about the structure of G can be said. In particular, as was first
pointed out by Baer (see [10, p. 105]), a group covered by finitely many cyclic subgroups
is either cyclic or finite. More recently Fernández-Alcober and Shumyatsky proved that
if G is a group in which the set of all commutators is covered by finitely many cyclic
subgroups, then G′ is either finite or cyclic [4]. This suggests the question about the
structure of a group in which the set of all γj-commutators (or of all δj-commutators) is
covered by finitely many cyclic subgroups. Here the words γj and δj are defined by the
positions γ1 = δ0 = x1, γj+1 = [γj , xj+1] and δj+1 = [δj , δj ].

In [3] Cutolo and Nicotera showed that if G is a group in which the set of all
γj-commutators is covered by finitely many cyclic subgroups, then γj(G) is finite-by-
cyclic. They also showed that γj(G) can be neither cyclic nor finite. It is still unknown
whether a similar result holds for the derived words δj .

In [11] the coprime commutators γ∗
j and δ∗j were introduced as a tool to study prop-

erties of finite groups that can be expressed in terms of commutators of elements of
coprime orders. For the reader’s convenience we recall here the definitions. Let G be a
finite group. Every element of G is both a γ∗

1 -commutator and a δ∗0-commutator. Now
let j � 2 and let X be the set of all elements of G that are powers of γ∗

j−1-commutators.
An element g is a γ∗

j -commutator if there exist a ∈ X and b ∈ G such that g = [a, b]
and (|a|, |b|) = 1. For j � 1 let Y be the set of all elements of G that are powers of
δ∗j−1-commutators. The element g is a δ∗j -commutator if there exist a, b ∈ Y such that
g = [a, b] and (|a|, |b|) = 1. The subgroups of G generated by all γ∗

j -commutators and
all δ∗j -commutators will be denoted by γ∗

j (G) and δ∗j (G), respectively. One can easily
see that if N is a normal subgroup of G and x an element whose image in G/N is a
γ∗
j -commutator (respectively a δ∗j -commutator), then there exists a γ∗

j -commutator y

in G (respectively a δ∗j -commutator) such that x ∈ yN .
It was shown in [11] that γ∗

j (G) = 1 if and only if G is nilpotent and δ∗j (G) = 1 if and
only if the Fitting height of G is at most j. It follows that for every j � 2 the subgroup
γ∗
j (G) is precisely the last term of the lower central series of G (which throughout the

paper will be denoted by γ∞(G)) while for every j � 1 the subgroup δ∗j (G) is precisely
the last term of the lower central series of δ∗j−1(G), that is, δ∗j (G) = γ∞(δ∗j−1(G)).

In the present paper we prove the following theorem.
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Theorem 1.1. Let j be a positive integer and G a finite group that possesses m cyclic
subgroups whose union contains all γ∗

j -commutators of G. Then γ∗
j (G) contains a sub-

group Δ, of m-bounded order, which is normal in G and has the property that γ∗
j (G)/Δ

is cyclic.

We note that the above result seems to be new even in the case where j = 1. Thus, one
immediate corollary of Theorem 1.1 is that a finite group covered by m cyclic subgroups
has a normal subgroup Δ of m-bounded order with the property that G/Δ is cyclic. This
can be easily extended to arbitrary groups.

Corollary 1.2. Let G be a (possibly infinite) group covered by m cyclic subgroups. Then
G has a finite normal subgroup Δ, of m-bounded order, such that G/Δ is cyclic.

Indeed, let G be as in the above corollary. The classical result of B.H. Neumann [8]
tells us that G has a cyclic subgroup of finite index. Therefore G is residually finite and
all finite quotients of G satisfy the hypothesis of Theorem 1.1. Hence, G has a normal
subgroup Δ of m-bounded order with the property that G/Δ is cyclic.

We also mention that in Theorem 1.1 the subgroup γ∗
j (G) is (of bounded order)-by-

cyclic and so we observe here a phenomenon related to what was proved by Cutolo and
Nicotera for the verbal subgroups γj(G).

Having dealt with Theorem 1.1, it is natural to look at finite groups in which
δ∗j -commutators can be covered by few cyclic subgroups. Since for j � 1 any
δ∗j -commutator is a γ∗

j+1-commutator, the interesting cases occur when j � 2.

Theorem 1.3. Let j � 2 and G be a finite group that possesses m cyclic subgroups whose
union contains all δ∗j -commutators of G. Then the order of δ∗j (G) is m-bounded.

Throughout the paper we use the expression “(a, b, . . .)-bounded” to mean that the
bound is a function of the parameters a, b, . . .. Henceforth all groups considered in this
paper will be finite and the term “group” will mean “finite group”.

2. Preliminaries

We begin with some results about coprime actions of groups. Let H and K be sub-
groups of a group G. We denote by [K,H] the subgroup of G generated by {[k, h]: k ∈ K,

h ∈ H}, and by [K,i H] the subgroup [[K,i−1 H], H] for i � 2. If G is a p-group, we denote
by Ω1(G) the subgroup of G generated by its elements of order p.

Lemma 2.1. (See [5], Theorems 5.2.3, 5.2.4 and 5.3.6.) Let A and G be groups with
(|G|, |A|) = 1 and suppose that A acts on G. Then we have

(1) [G,A,A] = [G,A];
(2) If G is an abelian p-group, then G = CG(A) × [G,A];
(3) If G is an abelian p-group and A acts trivially on Ω1(G), then A acts trivially on G.
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Lemma 2.2. Let G be an abelian p-group and α a coprime automorphism of G. If [G,α]
is cyclic, then [G,α] = [G,αi] for any integer i such that αi �= 1.

Proof. By Lemma 2.1(2) we have G = CG(α) × [G,α]. Suppose that αi �= 1 and
[G,α] �= [G,αi]. Then C[G,α](αi) �= 1. Since [G,α] is cyclic, we conclude that Ω1([G,α]) �
C[G,α](αi) and therefore αi acts trivially on [G,α]. This implies that αi = 1, a contra-
diction. �
Lemma 2.3. Let G be a cyclic group faithfully acted on by a group A. The following holds.

(1) The group A is abelian;
(2) If G is a p-group and A is a p′-group, then A is cyclic.

Proof. Both claims are immediate from the well-known fact that the group of automor-
phisms of the additive cyclic group Z/nZ is isomorphic with the multiplicative group
(Z/nZ)∗. �
Lemma 2.4. Let j � 2 and G be a group containing a normal subgroup N . If N � δ∗j (G)
and δ∗j (G)/N is cyclic, then δ∗j (G) = N .

Proof. We pass to the quotient G/N and without loss of generality assume that N = 1.
Therefore δ∗j (G) is cyclic and so by Lemma 2.3(1) we have δ∗j (G) � Z(G′). It follows
that δ∗j−1(G) is nilpotent and, since δ∗j (G) = γ∞(δ∗j−1(G)), we deduce that δ∗j (G) = 1.
This completes the proof. �

The following lemma is well-known. The proof can be found for example in [1].

Lemma 2.5. Let G be a metanilpotent group, P a Sylow p-subgroup of γ∞(G) and H a
Hall p′-subgroup of G. Then P = [P,H].

The next lemma will be very useful.

Lemma 2.6. Let y1, . . . , yj+1 be powers of δ∗j -commutators in G. Suppose that the elements
y1, . . . , yj+1 normalize a subgroup N such that (|yi|, |N |) = 1 for every i = 1, . . . , j + 1.
Then for every g ∈ N the element [g, y1, . . . , yj+1] is a δ∗j+1-commutator.

Proof. We note that all elements of the form [g, y1, . . . , yi] are of order prime to |yi+1|.
An easy induction on i shows that whenever i � j the element [g, y1, . . . , yi+1] is a
δ∗i+1-commutator. The lemma follows. �
Lemma 2.7. Let G be a group, P a normal p-subgroup of G and x a p′-element in G. Let
j � 1 be an integer. Then we have
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(1) The subgroup [P, x] is generated by γ∗
j -commutators.

(2) If P is abelian, then every element of [P, x] is a γ∗
j -commutator.

(3) If x is a power of a δ∗j−1-commutator, then [P, x] is generated by δ∗j -commutators.
(4) If x is a power of a δ∗j−1-commutator and P is abelian, then every element of [P, x]

is a δ∗j -commutator.

Proof. In view of Lemma 2.1(1) [P, x] = [P, x, . . . , x︸ ︷︷ ︸
j−1

]. Suppose first that P is abelian.

Note that every element of the form [g, x, . . . , x︸ ︷︷ ︸
j−1

], with g ∈ P , is a γ∗
j -commutator. Since

P is abelian, every element of [P, x] is of the form [g, x, . . . , x︸ ︷︷ ︸
j−1

] for a suitable g ∈ P and

therefore every element of [P, x] is a γ∗
j -commutator. Now drop the assumption that P

is abelian. We wish to show that [P, x] is generated by γ∗
j -commutators. Passing to the

quotient G/Φ(P ) we may assume that P is elementary abelian and use the result for the
abelian case. This proves Claims (1) and (2).

The proof of Claims (3) and (4) follows a similar argument using Lemma 2.6. �
The well-known Focal Subgroup Theorem [5, Theorem 7.3.4] states that if G is a group

and P a Sylow p-subgroup of G, then P ∩ G′ is generated by the set of commutators
{[g, z] | g ∈ G, z ∈ P, [g, z] ∈ P}. In particular, it follows that P ∩G′ can be generated
by commutators lying in P . This observation led to the question on generation of Sylow
subgroups of verbal subgroups of finite groups. The main result of [2] is that P ∩ w(G)
is generated by powers of w-values, whenever w is a multilinear commutator word. More
recently an analogous result on the generation of Sylow subgroups of δ∗j (G) in the case
where G is soluble was proved in [1]. More precisely we have the following lemma that
we will need later on.

Lemma 2.8. (See [1], Lemma 2.6.) Let j � 0. Let G be a soluble group and P a Sylow
p-subgroup of G. Then P ∩ δ∗j (G) is generated by powers of δ∗j -commutators.

It is natural to conjecture that Lemma 2.8 actually holds for all finite groups. In
particular, the corresponding result in [2] was proved without the assumption that G is
soluble. It seems though that proving Lemma 2.8 for arbitrary groups is a complicated
task. Indeed, one of the tools used in [2] is the proof of the Ore Conjecture by Liebeck,
O’Brien, Shalev, and Tiep [7] that every element of any nonabelian finite simple group
is a commutator. Recently it was conjectured in [11] that every element of a finite
simple group is a commutator of elements of coprime orders. If this is confirmed, proving
Lemma 2.8 for arbitrary groups would be easy. However the conjecture that every element
of a finite simple group is a commutator of elements of coprime orders is proved only for
the alternating groups [11] and the groups PSL(2, q) [9].
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Lemma 2.9. Let G be a noncyclic p-group that can be covered by m cyclic subgroups.
Then |G| is m-bounded.

Proof. To start with, we consider the case where G is abelian. We notice that the minimal
number of generators of G is at most m and therefore it is sufficient to bound the exponent
of G. The group G contains an elementary abelian subgroup, say J , of order p2. One
requires precisely p+ 1 cyclic subgroups to cover J . Hence p+ 1 � m. Let the exponent
of G be pn. Since p � m−1, it is sufficient to bound n. We assume that n � 2. Choose an
element a ∈ G whose order is pn and an element b ∈ G\ 〈a〉 of order p. Set H = 〈a, b〉. It
is clear that any covering of H by cyclic subgroups requires some subgroups of order pn.
Further, the element apb has order pn−1 and it is not contained in any cyclic subgroup of
order pn. Therefore any covering of H by cyclic subgroups requires also some subgroups
of order pn−1. Assuming that n � 3 we now consider the element ap

2
b. This has order

pn−2 and is not contained in any cyclic subgroup of order pn−1. Thus any covering of H
by cyclic subgroups requires some subgroups of order pn−2. It now becomes clear that
any covering of H by cyclic subgroups requires some subgroups of all possible orders
pn, pn−1, . . . , p. It follows that n � m and in the case where G is abelian the lemma is
proved.

We now drop the assumption that G is abelian. Let N be a maximal normal abelian
subgroup. Then N = CG(N). If N is noncyclic, then by the previous argument |N | is
m-bounded and, since G/N embeds in Aut N , the order of G is m-bounded, too. Hence
we assume that N is cyclic of order pn. The quotient G/G′ is abelian and noncyclic.
Hence G/G′ contains an elementary abelian subgroup of order p2. We have remarked in
the previous paragraph that the existence of such a subgroup implies that p � m − 1
and so now it is sufficient to bound n. Let y be an element of least order in G \ N . In
view of [5, Theorem 5.4.4] the order of y is either p or 4. Let P = N〈y〉. Since CP (y) is
abelian, the previous paragraph shows that |CP (y)| is m-bounded. Hence, it is sufficient
to bound the index of CN (y) in N . This is precisely the order of the subgroup [N, y].
Observe that all elements in the coset [N, y]y−1 are conjugate to y−1 and so P contains
at least |[N, y]| elements of order |y| (which is either p or 4). Any nontrivial cyclic p-group
contains exactly p−1 elements of order p and at most two elements of order 4. Therefore
one requires at least |[N, y]|/p cyclic subgroups in P to cover the coset [N, y]y−1. Hence
|[N, y]|/p � m and since p � m − 1, we deduce that |[N, y]| � m(m − 1). The proof is
complete. �

We close this preliminary section with the following results about coprime actions.

Lemma 2.10. Let j be a positive integer, P a p-group of class c and α a p′-automorphism
of P . Suppose that P has m cyclic subgroups whose union contains all elements of
the form [x, α, . . . , α︸ ︷︷ ︸

j

], with x ∈ P . If [P, α] is noncyclic, then the order of [P, α] is

(c,m)-bounded.
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Proof. By Lemma 2.1(1) we have P = [P, α] = [P, α, . . . , α︸ ︷︷ ︸
j

]. We argue by induction on

the nilpotency class c. If c = 1, then P is abelian and it consists of elements of the form
[x, α, . . . , α︸ ︷︷ ︸

j

]. It follows that P can be covered by m cyclic subgroups and by Lemma 2.9

the order of P is m-bounded.
Assume c � 2 and pass to the quotient P = P/P ′. Of course P is not cyclic

and abelian. Hence by the argument in the previous paragraph the order of P is
m-bounded and since P is nilpotent of class c, it follows that |P | is (c,m)-bounded,
as desired. �

Lemma 2.11. Let A be a noncyclic p′-group of automorphisms of a noncyclic abelian
p-group G. Then there exists a ∈ A such that [G, a] is noncyclic.

Proof. Suppose that the lemma is false and [G, a] is cyclic for every a in A.
Firstly we consider the case where A is abelian. Choose a nontrivial element a1 ∈ A.

The cyclic subgroup [G, a1] is A-invariant and, by Lemma 2.3, the quotient A/CA([G, a1])
is cyclic. In particular CA([G, a1]) �= 1 so we choose a nontrivial element a2 ∈ CA([G, a1]).
Since a2 centralizes [G, a1], it follows that [G, a1][G, a2] is not cyclic. Moreover, it is clear
that a1 centralizes [G, a2]. Hence, [G, a1][G, a2] � [G, a1a2] and this is a contradiction.
Thus, in the case where A is abelian the result follows.

Suppose now that A is nilpotent. If A contains a noncyclic abelian subgroup, then the
result follows from the previous paragraph. Hence, without loss of generality, we suppose
that every abelian subgroup of A is cyclic. It follows (see for example [5, Theorem 4.10(ii),
p. 199]) that A is isomorphic to Q×C, where Q is the generalized quaternion group and
C is a cyclic group of odd order. By Lemma 2.2 for any a in A and any integer i such
that ai �= 1 we have [G, a] = [G, ai]. Let a0 be the unique involution of A. It is clear that
a0 is contained in all maximal cyclic subgroups of A. It follows that [G, a] = [G, a0] for
all a in A. Hence we conclude that [G,A] = [G, a0] which is cyclic. By Lemma 2.1 A acts
faithfully on [G, a0] and, in view of Lemma 2.3(2), the group A must be cyclic. This is
a contradiction.

Finally we can drop the assumption that A is nilpotent. If A contains at least one
noncyclic nilpotent subgroup, we use the previous case. Thus, we assume that all nilpo-
tent subgroups in A are cyclic and in this case A is soluble. Let F = F (A) be the
Fitting subgroup of A. Of course we can assume that A is not nilpotent and so we
can choose a subgroup Q of F of prime order q such that Q is not contained in Z(A).
Then there exists a q′-element a in A such that [Q, a] = Q. The element a acts on
[G,Q], which is a cyclic p-group. Thus Q〈a〉 acts on [G,Q], but this leads to a con-
tradiction since by Lemma 2.3(1) the group of automorphisms of a cyclic group is
abelian. �
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3. Theorem 1.3

Turull introduced in [12] the concept of an irreducible B-tower and showed that a
soluble group G has Fitting height h if and only if h is maximal such that there exists
an irreducible tower of height h consisting of subgroups of G (see Lemmas 1.4 and 1.9(3)
in [12]). We will now remind the reader some of the properties of subgroups forming an
irreducible tower (we require only the case B = 1 and refer to these objects simply as
“towers”).

Let Pi, where i = 1, . . . , h be subgroups of G forming a tower of height h. Then we
have

(1) Pi is a pi-group (pi a prime) for i = 1, . . . , h.
(2) Pi normalizes Pj for i < j.
(3) pi �= pi+1 for i = 1, . . . , h− 1.
(4) [Pi, Pi−1] = Pi for i = 2, . . . , h.
(5) Let P̄i = Pi/CPi

(P̄i+1) for i = 1, . . . , h − 1 and P̄h = Ph. Then φ(φ(P̄i)) = 1,
φ(P̄i) � Z(P̄i). Moreover Pi−1 centralizes φ(P̄i) for i = 2, . . . , h. Here φ denotes the
Frattini subgroup.

In the next few lemmas we will assume that δ∗j+1(G) = 1. Therefore δ∗j (G) is nilpotent
and so any Sylow subgroups of δ∗j (G) is normal in G.

Lemma 3.1. Let p be a prime, j a positive integer and G a group such that δ∗j+1(G) = 1.
Suppose that δ∗j (G) is a nontrivial abelian p-group. Then either there exists a p′-element
x which is a power of a δ∗j−1-commutator with the property that [δ∗j (G), x] is noncyclic,
or δ∗j (G) is cyclic and j = 1.

Proof. For simplicity denote δ∗j (G) by P . Suppose first that P is cyclic. If j � 2, then
in view of Lemma 2.4 we deduce that P = 1, a contradiction. Hence, if P is cyclic, we
have j = 1. Now assume that P is noncyclic.

Consider the case where j = 1. We wish to show that there exists a p′-element x ∈ G

with the property that [P, x] is noncyclic. Let L be a Hall p′-subgroup in G and suppose
that [P, x] is cyclic for every x ∈ L. If L/CL(P ) is not cyclic, we obtain a contradiction
with Lemma 2.11. Therefore assume that L/CL(P ) is cyclic. Let a be an element of L
such that 〈a,CL(P )〉 = L. We have P = [P,L] = [P, a], which is again a contradiction
since [P, a] is cyclic.

Hence we may assume that j � 2. Moreover we assume that G is a counter-example
with minimal possible order. Since δ∗j+1(G) = 1, it follows that G is soluble and the
Fitting height precisely j + 1. By [12] G possesses a tower of height j + 1, i.e., a sub-
group P0 . . . Pj−2Pj−1Pj , where Pj � P . Again Pj is noncyclic and therefore, in view of
minimality of |G|, we have G = P0 . . . Pj−2Pj−1Pj and Pj = P .
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By [11, Lemma 2.5], each subgroup Pi of the tower is generated by δ∗i−1-commutators
contained in Pi. Set H = Pj−1. We know that P = [P,H]. Let B be the set of all
elements of H which can be written as powers of δ∗j−1-commutators and assume that
[P, b] is cyclic for any b in B. First we consider the case where H has odd order.

Let b1, b2 be elements of B and B0 = 〈b1, b2〉. We have [P,B0] = [P, b1][P, b2]. Consider
now the subgroup Ω1([P,B0]). Obviously, Ω1([P,B0]) can be viewed as a linear space of
dimension at most two over the field with p elements. It is well-known that the nilpotent
subgroups of odd order of GL(2, p) are abelian. Hence, we conclude that the derived group
of B0 centralizes Ω1([P,B0]) and, by Lemma 2.1(3), also centralizes P . Recall that B0 is
a subgroup generated by two arbitrarily chosen elements b1, b2 ∈ B. By Lemma 2.8 we
have H = 〈B〉, and so we conclude that H ′ centralizes P . Let Ḡ = G/CG(P ). There is a
natural action of Ḡ on P and so we will view Ḡ as a group of automorphisms of P . We
already know that H̄ is abelian and it is clear that δ∗j (Ḡ) = 1.

Suppose first that H̄ is cyclic and choose an element b ∈ B such that H̄ is gener-
ated by bCG(P ). We have P = [P, H̄] = [P, b] which is cyclic, a contradiction. Hence,
H̄ is not cyclic. Let q be the prime such that H has q-power order. By induction
the group Ḡ contains a q′-element y which is a power of δ∗j−2-commutator with the
property that [Q̄, y] is noncyclic. Moreover, Lemma 2.7(4) shows that [Q̄, y] consists en-
tirely of δ∗j−1-commutators. For any element t ∈ [Q̄, y] we can choose bt ∈ B such that
[P, t] = [P, bt]. Therefore [P, t] is cyclic for each t ∈ [H̄, y]. In view of Lemma 2.11 this
leads to a contradiction.

Now consider the case where H is a 2-subgroup. In this case the properties of towers
listed before the lemma play an important role in our arguments. As before we have
[P,H] = P and we wish to show that H contains a δ∗j−1-commutator x with the property
that [P, x] is noncyclic. We can pass to the quotient G/CH(P ) and assume that H acts on
P faithfully. Choose a δ∗j−2-commutator b ∈ Pj−2. Suppose that b normalizes an abelian
subgroup A in H. If [A, b] �= 1, then [A, b] is a noncyclic abelian subgroup which, by
Lemma 2.7(4), entirely consists of δ∗j−1-commutators. By Lemma 2.11 [P, x] is noncyclic
for some x ∈ [A, b] and we are done. Therefore [A, b] = 1 for every abelian subgroup A

of H which is normalized by b.
We know that [h, b, . . . , b︸ ︷︷ ︸

j−1

] is a δ∗j−1-commutator for every h ∈ H. Therefore we

can choose a ∈ H such that a and [a, b] are both nontrivial δ∗j−1-commutators. If
both a and [a, b] have order 2, then the subgroup 〈a, [a, b]〉 is abelian and consists of
δ∗j−1-commutators. By Lemma 2.11 [P, x] is noncyclic for some x ∈ 〈a, [a, b]〉 and we
are done. Therefore we can choose a ∈ H such that a and [a, b] are both nontrivial
δ∗j−1-commutators, the element [a, b] being of order four. Since a2 ∈ Z(H) and since
[Z(H), b] = 1, we have [a2, b] = 1. So we have

1 =
[
a2, b

]
= [a, b][a, b]a

and in particular a inverts [a, b]. It follows that a normalizes [P, [a, b]] which is a cyclic sub-
group. Now consider the action of the subgroup D = 〈a, [a, b]〉 on [P, [a, b]]. By Lemma 2.3
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D′ centralizes [P, [a, b]]. So in particular [a, b]2 is nontrivial and it centralizes the cyclic
subgroup [P, [a, b]]. Thus we get a contradiction by Lemma 2.2. The proof is now com-
plete. �
Lemma 3.2. Let p be a prime, j a positive integer and G a group such that δ∗j+1(G) = 1.
Let P be the Sylow p-subgroup of δ∗j (G) and assume that [P, x] is cyclic for every
p′-element x which is a power of a δ∗j−1-commutator. Then P is cyclic.

Proof. By passing to the quotient G/Op′(δ∗j (G)) we may assume that δ∗j (G) is a p-group
and that P = δ∗j (G). If P is abelian, the result is immediate from Lemma 3.1. Thus, we
assume that P is not abelian and use induction on the nilpotency class of P . We consider
the quotient G/Z(P ) and by induction we conclude that P/Z(P ) is cyclic. However this
implies that P is abelian and we get a contradiction. �
Lemma 3.3. Let p be a prime, j a positive integer and G a group such that δ∗j+1(G) = 1.
Suppose that G possesses m cyclic subgroups whose union contains all δ∗j -commutators of
G and that the Sylow p-subgroup P of δ∗j (G) is nilpotent of class c. Let x be a p′-element
which is a power of δ∗j−1-commutator in G such that [P, x] is noncyclic. Then the order
of [P, x] is (c,m)-bounded.

Proof. The conjugation by the element x induces a p′-automorphism of P . Since every
element of the form [y, x, . . . , x︸ ︷︷ ︸

j

], with y ∈ P is a δ∗j -commutator, Lemma 2.10 shows that

the order of [P, x] is (c,m)-bounded, as desired. �
Lemma 3.4. Let j be a non-negative integer and G a group such that δ∗j (G) is nilpo-
tent of class c. Suppose that G possesses m cyclic subgroups whose union contains all
δ∗j -commutators of G. Then δ∗j (G) contains a subgroup Δ of (c,m)-bounded order which
is normal in G and has the property that δ∗j (G)/Δ is cyclic. If j � 2, then δ∗j (G) = Δ.

Proof. We argue by induction on j. Suppose first that j = 0. In this case G is nilpotent
of class c and it is covered by m cyclic subgroups. The result is rather straightforward
applying Lemma 2.9 to each Sylow subgroup of G.

So we assume that j � 1. Let P be a Sylow p-subgroup of δ∗j (G) for some prime p.
Denote by Δp the subgroup generated by all subgroups of the form [P, y], where y ranges
over the set of all p′-elements which are powers of δ∗j−1-commutators in G such that [P, y]
is noncyclic. By Lemma 3.3 the orders of all such subgroups [P, y] have a common bound,
which depends only on c and m. We observe that Δp is a group which is nilpotent of class
at most c and is generated by elements of (c,m)-bounded order. Hence the exponent of
Δp is (c,m)-bounded. Moreover, by Lemma 2.7(3) Δp is generated by δ∗j -commutators
that are all contained in m cyclic subgroups, and so we conclude that Δp has at most
m generators. It follows that the order of Δp is (c,m)-bounded. We further observe that
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since the bound on the order of Δp does not depend on p, it follows that Δp = 1 for all
primes p which are bigger than certain number depending only on c and m.

Let Δ be the product of the subgroups Δp over all prime divisors of |δ∗j (G)|. It is
clear that |Δ| is (c,m)-bounded. Consider the quotient G/Δ. For simplicity, we just
assume that Δ = 1. Then [P, x] is cyclic for every p′-element x which is a power of a
δ∗j−1-commutator. Then, by Lemma 3.2, P is cyclic. Thus all Sylow subgroups of δ∗j (G)
are cyclic. It follows that δ∗j (G)/Δ is cyclic. Of course, if j � 2, then by Lemma 2.4 we
have δ∗j (G) = Δ. �

We are now ready to complete the proof of Theorem 1.3.

Proof. Recall that j � 2 and G possesses m cyclic subgroups whose union contains
all δ∗j -commutators of G. We wish to show that the order of δ∗j (G) is m-bounded. Let
C1, . . . , Cm be the cyclic subgroups whose union contains all δ∗j -commutators of G. With-
out loss of generality we assume that each subgroup Ci is generated by δ∗j -commutators
(not necessarily by a single δ∗j -commutator). Thus, δ∗j (G) = 〈C1, . . . , Cm〉 and in particu-
lar it follows that δ∗j (G) can be generated by m elements. Let x ∈ G be a δ∗j -commutator.
For any g ∈ G the conjugate xg is again a δ∗j -commutator and so xg ∈ Ci for some i.
Since Ci is cyclic, it contains only at most one subgroup of any given order and we
conclude that the cyclic subgroup 〈x〉 has at most m conjugates. Therefore the index of
the normalizer of 〈x〉 in G is at most m. Let N be the intersection of all normalizers of
cyclic subgroups generated by a δ∗j -commutator and set K = δ∗j (G) ∩N . Since δ∗j (G) is
m-generated, it follows that the number of subgroups of δ∗j (G) whose index is at most
m is m-bounded [6, Theorem 7.2.9] and so we deduce that the index of K in δ∗j (G) is
m-bounded as well. It is clear that K normalizes each of the subgroups C1, . . . , Cm. This
implies that K is nilpotent of class at most 2. Indeed, since Aut Ci is abelian for every
i = 1, . . . ,m, we deduce that K/CK(Ci) is abelian. So K ′ centralizes δ∗j (G) and therefore
K ′ � Z(K).

Recall that given a group G, the last term of the upper central series of G is called the
hypercenter of G. It will be denoted by Z∞(G). Let us show that K � Z∞(δ∗j (G)). Choose
a Sylow p-subgroup P of K. It is clear that P is normal in G. If all the subgroups Ci have
p-power order, then all δ∗j -commutators of G are p-elements and by [11, Theorem 2.4] G is
soluble and δ∗j (G) is a p-subgroup. Thus δ∗j (G) is nilpotent and so, we have Z∞(δ∗j (G)) =
δ∗j (G) and the inclusion P � Z∞(δ∗j (G)) is clear. Otherwise, choose a p′-element x ∈ Ci

for some i which is a power of a δ∗j -commutator. Since P normalizes 〈x〉, it follows
that x centralizes P . Therefore δ∗j (G)/Cδ∗j (G)(P ) is a p-group and again the inclusion
P � Z∞(δ∗j (G)) follows. Thus, P � Z∞(δ∗j (G)) for every prime p and hence indeed
K � Z∞(δ∗j (G)).

Therefore the index of Z∞(δ∗j (G)) in δ∗j (G) is m-bounded. Thus, by Baer’s Theo-
rem [10, Corollary 2, p. 113], γ∞(δ∗j (G)) has m-bounded order. Passing to the quotient
G/γ∞(δ∗j (G)) we can assume that δ∗j (G) is nilpotent. Hence δ∗j (G) is the direct product
of its Sylow subgroups. It is sufficient to show that any Sylow subgroup of δ∗j (G) has
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bounded order. Let us choose p a prime that divides |δ∗j (G)| and pass to the quotient
G/Op′(δ∗j (G)). So we assume that δ∗j (G) is a p-group. In view of Lemma 3.4 it is now
sufficient to bound the nilpotency class of δ∗j (G). It has already been mentioned that
K ′ centralizes δ∗j (G) and therefore we can pass to the quotient G/K ′ and, without loss
of generality, assume that K is abelian. Choose generators x1, . . . , xm of the subgroups
C1, . . . , Cm and let t be the index of K in δ∗j (G). Since each subgroup K〈xi〉 is nilpo-
tent of class at most 2 and since xi

t ∈ K, it follows that Kt centralizes xi for each
i = 1, . . . ,m. In other words Kt � Z(δ∗j (G)). Passing again to the quotient G/Z(δ∗j (G))
we can assume that Kt = 1. Since the index t of K in δ∗j (G) is m-bounded and since
δ∗j (G) can be generated by m elements, we conclude that the minimal number of gener-
ators for K is m-bounded. Combining this with the fact that Kt = 1, we immediately
deduce that the order of K and therefore that of δ∗j (G) are m-bounded. Of course, this
implies that so is the nilpotency class of δ∗j (G). The proof is complete. �
4. Theorem 1.1

In this section we will deal with Theorem 1.1. The proof is similar to that of Theo-
rem 1.3 but in fact it is easier. Therefore we will not give a detailed proof here but rather
describe only some steps.

The next lemma is similar to Lemma 3.1.

Lemma 4.1. Let p be a prime and G a metanilpotent group. Suppose that the Sylow
p-subgroup P of γ∗

2(G) is abelian and noncyclic. Then there exists a p′-element x with
the property that [P, x] is noncyclic.

Proof. By Lemma 2.5 there is a Hall p′-subgroup H of G such that P = [P,H]. Now we
consider the quotient H/CH(P ) with acts faithfully on P . If H/CH(P ) is noncyclic, then
by Lemma 2.11 there exists an element x in H such that [P, x] is noncyclic. Therefore
we assume that H/CH(P ) is cyclic and let x be an element in H such that xCH(P )
generates H/CH(P ). Then P = [P, x] is noncyclic and x is the required element. �

The proof of the next lemma follows word-by-word that of Lemma 3.2. Therefore we
omit the details.

Lemma 4.2. Let p be a prime and G a metanilpotent group. Let P be the Sylow p-subgroup
of γ∗

2(G) and assume that [P, x] is cyclic for every p′-element x. Then P is cyclic.

The next results are similar to Lemmas 3.3 and 3.4. Their proofs can be obtained in
the same way as those of Lemmas 3.3 and 3.4 with only obvious changes required.

Lemma 4.3. Let p be a prime, j a positive integer and G a metanilpotent group. Suppose
that G possesses m cyclic subgroups whose union contains all γ∗

j -commutators of G, and
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that the Sylow p-subgroup P of γ∗
j (G) is nilpotent of class c. Let x be a p′-element in G

such that [P, x] is noncyclic. Then the order of [P, x] is (c,m)-bounded.

Lemma 4.4. Let j be a positive integer and G a group such that γ∗
j (G) is nilpotent

of class c. Suppose that G possesses m cyclic subgroups whose union contains all
γ∗
j -commutators of G. Then γ∗

j (G) contains a subgroup Δ, of (c,m)-bounded order, which
is normal in G and has the property that γ∗

j (G)/Δ is cyclic.

From this we deduce our Theorem 1.1.

Proof of Theorem 1.1. Recall that G has m cyclic subgroups whose union contains all
γ∗
j -commutators of G. We wish to prove that γ∗

j (G) contains a subgroup Δ, of m-bounded
order, which is normal in G and has the property that γ∗

j (G)/Δ is cyclic. Let C1, . . . , Cm

be the cyclic subgroups whose union contains all γ∗
j -commutators of G. We assume

that each subgroup Ci is generated by γ∗
j -commutators. Thus, γ∗

j (G) = 〈C1, . . . , Cm〉
and in particular it follows that γ∗

j (G) can be generated by m elements. Let N be
the intersection of all normalizers of cyclic subgroups generated by a γ∗

j -commutator
and K = γ∗

j (G) ∩ N . Arguing as in the proof of Theorem 1.3 we deduce that the
index of K in γ∗

j (G) is m-bounded. It is clear that K is nilpotent of class at most 2
and K � Z∞(γ∗

j (G)). By Baer’s Theorem γ∞(γ∗
j (G)) has m-bounded order. Passing

to the quotient G/γ∞(γ∗
j (G)) we can assume that γ∗

j (G) is nilpotent and, with further
reductions, that γ∗

j (G) is a p-group. In view of Lemma 4.4 it is now sufficient to bound the
nilpotency class of γ∗

j (G). Since K ′ centralizes γ∗
j (G), we can pass to the quotient G/K ′

and without loss of generality assume that K is abelian. Choose generators x1, . . . , xm

of the subgroups C1, . . . , Cm and let t be the index of K in γ∗
j (G). Since each subgroup

K〈xi〉 is nilpotent of class at most 2 and since xi
t ∈ K, it follows that Kt centralizes

xi for each i = 1, . . . ,m. In other words Kt � Z(γ∗
j (G)). Passing again to the quotient

G/Z(γ∗
j (G)) we can assume that Kt = 1. Since the index t of K in γ∗

j (G) is m-bounded
and γ∗

j (G) can be generated by m elements, we conclude that the minimal number of
generators for K is m-bounded. Combining this with the fact that Kt = 1, we deduce
that the order of K and therefore that of γ∗

j (G) are m-bounded. Of course, this implies
that so is the nilpotency class of γ∗

j (G). The proof is complete. �
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