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ABSTRACT This paper shows the inefficiency of TCP BBR in exploiting the Wi-Fi bandwidth. This
limitation of BBR has been observed with both IEEE 802.11n and IEEE 802.11ac, where the mechanism
of frame aggregation is used to boost the throughput of data transmission. In the last years, many TCP
variants have been introduced to limit the bufferbloat phenomena and bound the latency through a reduction
of the queue backlog injection rate. However, this mechanism impacts on the Wi-Fi frame aggregation logic,
impeding TCP congestion controls to reach the full throughput potential of a Wi-Fi interface. While this
problem can be solved with TCP Cubic by allowing the sender node to enqueue more packets, for TCP BBR
the fix is not the same, as it has a customized pacing algorithm. With this contribution we propose BBRp,
a new BBR version that allows for fine-tuning the congestion control pace, achieving between four and six
times more throughput over IEEE 802.11n and IEEE 802.11ac channels, at the cost of an increased latency
that is however always less than the latency obtainable with loss-based TCP congestion controls.

INDEX TERMS BBR, latency, TCP, TSQ, WLAN.

I. INTRODUCTION
The increase of Wi-Fi users is demanding new opti-
mized standards, as well as refinements in the current
ones [1]–[3]. Considering the two most used technolo-
gies for WLAN environments, namely IEEE 802.11n and
IEEE 802.11ac, the concept of frame aggregation has
been introduced to increase the overall throughput [4].
Simultaneously, several solutions to limit the end-to-end
latency have been introduced to overcome the bufferbloat
phenomena [5]. The developers of the Linux kernel have
been very active in the last years introducing several fea-
tures and modules related to TCP communications, with new
congestion controls like BBR [6], proposed by Google LLC
(Google) at the beginning of 2017. BBR is currently available
on many Linux’s distributions, Google has incrementally
applied it to its YouTube servers, and it is in the process of
being improved to BBR v2.0 in order to deal with several
limitations highlighted by the research community in the last
years [7]–[10]. Moreover, Google has also introduced a new
mechanism called TCP Small Queues (TSQ) that limits the
number of packets that a TCP socket can push down in the
stack until packets have been truly dispatched by the Network

The associate editor coordinating the review of this manuscript and

approving it for publication was Mubashir Husain Rehmani .

Interface Card (NIC). Even if the TSQ performance over
wired links is remarkable, this is not the case for WLAN
environments in which TSQ could break the frame aggrega-
tion logic, impeding all the TCP variants to discover the full
link potential correctly. This limitation has been discovered
and solved for TCP Cubic, and it led to a new solution for
boosting BBR v2.0 throughput on Wi-Fi paths [11]–[13].
Unfortunately, applying the same fix to the BBR algorithm
is not enough to get a decent throughput from the Wi-Fi
interface. The reason is that another essential TCP part of
BBR is breaking theWi-Fi frame-aggregation logic, i.e., TCP
Pacing, which is a delay between the transmission of TCP
segments. While all the TCP variants use a shared pacing
structure, BBR has a customized one, hardcoded in the Linux
kernel, that takes precedence over the default one.

A. CONTRIBUTION
In this paper, we highlight the challenges that arise combin-
ing TCP BBR, TSQ and TCP Pacing on a wireless bottle-
neck, providing real tests on several wireless technologies.
We present a modified version of BBR called BBRp, able
to exploit the Wi-Fi bottleneck without braking the frame-
aggregation logic at the bottleneck. BBRp has been tested on
a real test-bed, with a Wi-Fi access technology, over different
use-cases and compared to several TCP congestion controls.
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TABLE 1. Related work contributions summarized.

We demonstrated the ability of BBRp to discover the full
Wi-Fi bandwidth reaching almost optimal throughput values,
outperforming the standard BBR algorithm, while still main-
taining better latency performance when compared to TCP
Cubic. A key contribution of BBRp is, indeed, to maximize
the efficiency of a data transfer, increasing the throughput
with a minimum latency increment, regardless of the bot-
tleneck Wi-Fi position (i.e., proximal to the sender or the
receiver). Moreover, the outcome of this research paved the
way for BBR v2.0 and allowed users using long-term-support
Linux kernels such as 4.14 and 4.19 to boost the BBR perfor-
mance on the Wi-Fi path.

The rest of the paper is organized as follows: Section II
describes the related work, while Section III enhances the
critical points of a wireless bottleneck. Section IV presents
the current TCP stack available on Linux systems and
Section V describes the testbed used to produce the results
available in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK
Several scientific contributions have analyzed BBR perfor-
mance in different scenarios and technologies. As an exam-
ple, some recent works have tried to answer this question:
‘‘will TCP work in mmWave 5G cellular networks?’’. One
work is based on simulations and also includes BBR among
the TCP congestion controls investigated [19]. A general
issue for mmWave is that, for the currently available TCP
variants, it is challenging to exploit the available bandwidth
during ‘‘irregular’’ time intervals. Continuing on the cellular
network topic, with currently available technology such as
4G, BBR has been tested in [20], [21]; both the papers
conclude that TCP BBR outperforms TCP Cubic and TCP
NewReno in terms of throughput and latency trade-off, but
in some network conditions BBR struggles in maintaining
fairness between flows. Another work confirms a latency
reduction on mobile edge computing for BBR with respect
to Cubic [22].

Concerning fairness, when different RTT flows are in
place, BBR has been discovered to provide better treat-
ment for higher-RTT flows, while another work shows
that it is hard to achieve fairness between BBR and

Cubic [14], [23], [24]; thanks to FQ-Codel, the unfairness
gap can be reduced remarkably [25]. General performance
on the impact of TCP BBR versus TCP Cubic traffic has
also been investigated in [26]. A variant of BBR, called
Modest-BBR,modifies BBR, reducing its aggressiveness and
increasing fairness with Cubic while still maintaining similar
performance to the original BBR [10]. Another variant of
BBR called, instead, DA-BBR, focuses on the RTT-fairness
achieving fair throughput between short-RTT flows and long-
RTT flows where RTT is five times higher [16]. DA-BBR
works on top of the BBQ algorithm, which has been the first
attempt to address the problem of RTT fairness of the original
BBR [15]. BBQ continuously detected the excess queues
and limited the time for probing when a queue was created
to prevent long RTT flows from transmitting a considerable
amount of traffic to the pipe. To conclude the picture, two
works investigate the behavior of mixed BBR and Cubic traf-
fic dealing with the internal parameters of BBR, in particular
with its cycle [27], [28].

Considering real tests of BBR over Linux systems, BBR
and Cubic have been tested over standard Gigabit Ethernet
wired networkswith a 4.9 kernel version [8]. The paper shows
that BBR does not meet its standard behavior when multiple
flows are in place, both in terms of fairness and latency reduc-
tion due to high queue occupancy. On the other side, the frame
aggregation over WLAN technologies has been investigated
mainly through analytical models and simulations, initially
on IEEE 802.11n and, recently, on IEEE 802.11ac [29], [30].

To the best of our knowledge, the only scientific contri-
bution investigating the performance of BBR over WLANs
has been proposed by the author of BBR, Neal Cardwell with
a RFC, proposing a BBR patch that we name BBR-DEV
hereafter [17]. BBR-DEV can operate, increasing the BBR
throughput, in the case where the TCP sender is on Ethernet
and the receiver is on a Wi-Fi network. To do it, BBR-DEV
instructs the sender to put extra data in flight to keep the
bottleneck utilized. Moreover, BBR-DEV introduces also an
adaptive drain technique that has the goal of lowering queuing
delays. We overcome the limitations of BBR-DEV, concern-
ing the throughput increment on theWi-Fi path, by proposing
a solution that works also in the scenarios in which the sender
is directly attached to a Wi-Fi interface. Our investigation
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FIGURE 1. Data-rate and round-trip time as a function of the amount of
data inflight: aggregation vs. non aggregation.

involves not only the congestion control alone but also other
new mechanisms such as TSQ and TCP Pacing that both play
a crucial role in the frame aggregation stage.

III. WIRELESS BOTTLENECK
To understand the limits of BBR, we refer to Figure 1 in
which is depicted the difference between a standard wired
bottleneck and a wireless 802.11n/ac one. The Figure reports
the delivery rate and the Round-Trip Time (RTT) of one
flow, according to the amount of data inflight. The typical
RTT/throughput tradeoff, reported in bold, guided the design
principle of all the ‘‘bufferbloat-oriented’’ solutions and have
been presented in the original BBR paper [6]. Indeed, in wired
networks, after reaching the point A (corresponding to the
Bandwidth-Delay Product - BDP - known as Kleinrock’s
optimal operating point) of the Figure, increasing the amount
of data inflight has the sole effect of increasing the RTT, due
to the formation of queues of packets and queueing delays at
the bottleneck buffer, while the delivery rate remains constant
and equal to the bottleneck bandwidth (BtlBw). Another
essential operating point for wired networks is C, which is
the loss-based congestion control operating point, where the
queue at the bottleneck gets full, and packets start to be

dropped, allowing the sender to moderate the amount of data
inflight once the losses are registered.

The assumptions behind this tradeoff, unfortunately, fall
when considering a wireless bottleneck where the aggrega-
tion technique is enabled (this is the case of the standards
IEEE 802.11n and 802.11ac). In a Wi-Fi bottleneck, having
more than one packet enqueued is exploited opportunistically
by aggregating data in a single large frame to reduce the
protocol overhead and increase the efficiency of the trans-
mission, increasing the ratio between the payload size and
the total frame size. In other words, this is done by reducing
the fixed MAC layer overhead and medium contention over-
head, which results in less airtime consumption and higher
throughput. This mechanism has an upper limit, known as
the maximum aggregation size; after that, it is necessary to
form a new aggregate, i.e., a new frame. Considering the
aggregation mechanism, it is not valid anymore that enqueue-
ing more packets has no impact on the delivery rate; indeed,
the delivery rate increases as a function of the aggrega-
tion size, up to the maximum bottleneck bandwidth reached
with the maximum aggregation size (BtlWw+agg) [31], [32].
Simultaneously, the RTT increases less than linearly, unlike
that in wired bottlenecks, because the larger is the number of
packets enqueued (i.e., the larger the aggregate), the higher
will be the data rate, while the RTT increment will be lower,
reducing the slope. This introduces a new optimal point B,
which is the equivalent of A but for a wireless bottleneck.
After reaching B, increasing the amount of data inflight has,
again, the sole effect of increasing the RTTwithout increasing
the throughput. Similarly, loss-based variants operate at the
point D, which is the equivalent of C moving from wired to
wireless bottlenecks, where losses are generated. An exper-
imental validation of Wi-Fi bottleneck curves is provided in
Section VI-A.

The most critical difference between the two bottlenecks,
and the two optimal points A and B, is that in B, reaching
the maximum delivery rate, comes at the expense of an RTT
increment equal to the transmission time of a packet with the
maximum aggregation size.

IV. STACK
This section describes the current TCP/IP stack of the Linux
kernel, including all the new parts subject of this paper,
like TSQ and TCP Pacing. To accurately present these new
modules, the queueing discipline (QDisc) layer and the driver
are also reported. Indeed, Figure 2 models the TCP Linux
subsystem with the new features, the QDisc block, and the
Driver block. The section also reports details on BBR and
BBRp.

The current Linux TCP module is composed of three main
algorithms, namely TCP Congestion Control, TCP Small
Queues, and TCP Pacing. On top of this module, there is
the TCP Socket, which manages the ACKs and deals with
physical packets. Every TCP connection is mapped with a
specific TCP socket, and the packets are managed according
to the three algorithms.
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FIGURE 2. Linux TCP sender architecture.

Congestion Control: it is a well-known part of the TCP
module, rich in literature contribution with many possible
algorithms that can be used. In this paper are tested TCP
Cubic, the current default Linux solution, TCP BBR, the con-
gestion control algorithm designed by Google and incre-
mentally deployed in many nodes, but also TCP New Reno
and TCP New Vegas, a standard loss-based solution and a
delay-based one respectively. These four algorithms are well
different in terms of the approach: on one side we have BBR,
a rate-based variant where the concept of time is stressed to
reduce latency as the main goal, and NewVegas, a pure delay-
based variant that presaged many elements of BBR; on the
other side, instead, we have loss-based variants such as Cubic
and New Reno. Each congestion control is responsible for
fundamental operations like the computation of the sending
rate and the congestion window size, as well as the compu-
tation of the TCP parameters in the presence of congestion
events or packet losses.

TCP Small Queues (TSQ): it is the algorithm introduced
by Google to mitigate each TCP flow latency. To achieve
this result, each TCP socket is allowed to enqueue in the
node stack a limited number of packets mitigating the
Bufferbloat [5] phenomena and avoiding the accumulation
of packets in the sender node queues; only when the NIC
finalizes the dispatch of a packet, the TCP socket is informed
and is allowed to enqueue a new packet in the stack. The
standard TSQ behavior on wired networks is to allow each
TCP socket to enqueue a number of packets that is equivalent
to the number of packets that would be sent in 1 ms at the
current sending rate; this mechanism helps in maintaining
an upper bound of the queueing delay of the sending node
as a function of the flow throughput. This global constraint
of 1 ms has been proved in [11] to be too strict in a Wi-Fi
environment where the frame aggregation is not possible with
such a limit.

TCP Pacing: it is the algorithm that defines the pace used
to push the packets from the TCP module to the lower layers
of the stack. While the TSQ limits the number of packets
enqueued, the TCP Pacing limits the internal rate for moving
packets, forcing a time interval between an enqueue and
another; in this sense, both TSQ and TCP Pacing help avoid-
ing the formation of bursts mitigating the Bufferbloat effect.

FIGURE 3. Linux TCP BBR block.

A standard TCP Pacing algorithm is used by almost all the
TCP congestion controls except TCP BBR, which imple-
ments its own solution. The Linux kernel uses two default
rates for pacing, expressed as a percentage of the current rate
of a TCP flow. These two values are equal to 200% during
the slow-start phase (allowing to enqueue packets at a rate
which is twice the current one) and equal to 120% in the
congestion avoidance phase (allowing to enqueue packets at
a rate which is 20% higher than the current one). TCP BBR
uses a similar value called TCP Pacing Gain, hardcoded in
the BBR algorithm and not tunable in user space, equal to a
rate which is 25% higher of the current one.

TCP BBR: if BBR is selected as TCP congestion control,
the TCP block of Figure 2 behaves following the Figure 3
description. The core feature of BBR is to be model-based,
and it behaves following a state-machine composed by four
states: Sturtup, Drain, ProbeBW and ProbeRTT. The first
two states belong to the initial part of a connection, then
BBR moves to a steady-state phase composed by the last
two states [16]. The input for the state machine are the last
10 RTT samples and the last estimated bandwidth, while the
output consists of the congestion window size, and the pacing
rate for the sending engine. The sending engine is the last
step before enqueueing the packets in the lower layer of the
stack, which is the QDisc one of Figure 2. The sending engine
is similar to the mechanism used by all the TCP congestion
controls, the difference is that all the algorithms, except BBR,
use global pacing rate, while BBR uses the one provided by
its model, and it cannot be tuned in user-space. During the
sending engine stage, each TCP congestion control knows
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the amount of data that can be enqueued, limited by the
congestion window size and, in particular, by the TSQ policy,
and then the data is delivered to the lower layers pacing it at
the current pacing rate. The higher the pacing rate, the shorter
will be the distance, in terms of time, between the packets in
the final stage of Figure 3.

TCP BBRp: It differs from BBR for the ProbeBW state.
The ProbeBW is the most critical one in terms of bandwidth
estimation, indeed BBR spends most of the time in this
state to probe the available bandwidth. The ProbeBW state
consists of eight cycles in which the pacing_gain variable
assumes the eight values, cyclically, of [1.25, 0.75, 1, 1, 1, 1,
1, 1]. At the first cycle, the standard BBR pacing_gain
is placed at 1.25, which is not enough to guarantee a proper
bandwidth estimation if the bottleneck uses aggregation poli-
cies. The general idea of the first cycle is to send more
data to check if the available bandwidth is greater than the
one estimated so far. Continuing, the subsequent value of
the pacing_gain variable is 0.75, to drain the bottleneck
queue by removing the excess of packets generated by the
previous probing cycle. The remaining six cycles consist,
instead, of a steady-state in which data is sent at a constant
pacing_gain of 1 with the bottleneck bandwidth obtained
in the previous probing cycle. The critical change in the
ProbeBW state of BBRp is described in Algorithm 1, where
the standard first value of 1.25 for the pacing_gain is
replaced by the bbrp_pace variable. Indeed, our patch
allows to tune the first pacing_gain value for tuning
bandwidth probe. In our test we used 1.5 instead of 1.25,
providing a bbrp_pace of 6. We remind that BBRp falls-
back to the standard BBR behavior with a bbrp_pace of 5.
The BBRp patch is available, together with our open-data,
with more tests with different bbrp_pace values [18].

Algorithm 1 BBRp Algorithm.
Input: UNIT, bbrp_pace
1: int pacing_gain[] = {

UNIT × bbrp_pace / 4, // probe for more bw
UNIT × 3 / 4, // drain queue
UNIT, UNIT, UNIT, // cruise at bw
UNIT, UNIT, UNIT // without bloating

};
[. . .]

2: bw = get_bbr_max_bw();
3: min_rtt = get_bbr_min_rtt(); // BBR model parameters
4: if pacing_gain > UNIT then
5: cwnd = bw × min_rtt × pacing_gain; // BDP × gain
6: end if

Once the TCP socket generates a packet, the packet is
moved into the QDisc layer of Figure 2 that can be both a
separate block in case of a wired connection, as well as a
black-box integrated into the driver as is the case with the
ath9k and ath10k drivers. Figure 2 reports the standard
structure of the FQ-Codel [25] algorithm as the default option
of many Linux distributions. The last block is the driver,

FIGURE 4. Physical testbed layout.

TABLE 2. Testbed parameters.

the piece of code that interacts with the Network Interface
Card (NIC) and deliver packets on the medium. A very last
queue is present in the driver; it is typically a FIFO and
is ruled by a Byte Queue Limit (BQL) [33], [34] to avoid
excessive queueing. This limit is hard-coded in the kernel and
not part of our tests.

V. TESTBED
This section describes our testbed, which is depicted in Fig-
ure 4. Each test involves three nodes, one wireless client, one
wired server, and the router in the middle that provides the
connectivity to both the other nodes. All the nodes deploy
Arch Linux as the operating system with a 4.19 kernel ver-
sion. This testbed represents a typical home/office connection
with a desktop or a laptop connected to a Wi-Fi Access Point
using the IEEE 802.11n or IEEE 802.11ac standard, while
the rest of the network is then typically wired as in our case.
The wireless connectivity is given by PCIe Atheros chipsets
supported by the ath9k and ath10k open drivers.
This testbed allows configuring typical connections with

different bottleneck positions. One example is a fast
home/office connection with 1 Gbit/s backhaul that suffers
a local bottleneck, which is the wireless interface between
the client and the access point. Another example, instead,
considers a backhaul of 100 Mbit/s imposed by the Internet
Service Provider (ISP), and the wireless access network is not
the bottleneck anymore, which is, instead, represented by the
wired connection between the access point and the server.

The client uses one of the five possible TCP congestion
control algorithms reported in Table 2, namely: BBR, BBRp,
New Vegas, Cubic, and New Reno. The client can also set
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different possible TSQ limits [11], [13]: it can be the standard
dynamic value of 1 ms of data at the current rate, or it can
be relaxed with the configuration of 2TSQ, 4TSQ and 8TSQ
that accommodate 2 ms, 4 ms and 8 ms of data, respectively.
The incremental steps follow the powers of 2 because, at the
kernel level, the TSQ size is managed as a bits shift operation.

The most critical parameter introduced in this paper is the
TCP Pacing rate. Since BBR does not react to any modifi-
cation to the standard pacing value offered by the current
Linux systems, we patched it, exposing the TCP Pacing
Gain variable used internally. We named this patched version
BBRp and changed the default pacing rate, increasing its
value, moving from the standard BBR TCP Pacing Gain
equal to a rate which is 25% higher of the current one, to a
BBRp TCP Pacing Gain equal to 50%. BBRp enables a fine-
grained tuning of the pacing rate and details about our BBRp
patch, the results not included here for space limitations, and
several other possible pacing ratios can be found in [18]. The
proposed solution is steering the design of BBR v2.0 [7].

All the experiments reported in this paper have been orga-
nized by using the Flent [35] tool, a flexible network tester
that gives the possibility tomanage different traffic typologies
efficiently as well as to collect many performance metrics.
Tests are organized as follows.We start a standard TCP traffic
in upload or download between the wireless client and the
server. Each test runs for 40 seconds, 5 initial seconds with
only ICMP traffic, 30 middle seconds in which also the actual
TCP transmission is performed, and 5 final seconds where,
again, only the ICMP traffic is maintained. In this way, it is
possible to highlight the impact of the TCP traffic on the
ping RTT, as well as many other parameters related to the
TCP traffic itself, like throughput and TCP RTT. Similar to
the simple TCP upload or download, the Realtime Response
Under Load (RRUL) test is designed in the same way, but it
uses 4 TCP flows in upload, and other 4 TCP flows in down-
load, all simultaneously active during the 30 central seconds
of each test. The parameters used to configure the testbed of
our experiments are summarized in Table 2.

VI. RESULTS
This section reports the results collected during our experi-
ments. A first suite of test validate theWi-Fi bottleneck curve
of Figure 1 through experimental analysis then, the rest of
the result section is divided into three groups, one for each
experiment investigated: TCP upload, TCP download, and
RRUL, used for analyzing network performance under the
heavy workloads that typically induce bufferbloat and other
networking problems. Each experiment has been replicated
10 times. The recorded data are reported as candlesticks,
which are the result of the aggregation of each iteration.
The central box of each candlestick reports the 10th and
90th percentiles, while the horizontal line inside each box
represents the median value.

A. WI-FI BOTTLENECK VALIDATION
To validate Figure 1, we provided experimental analysis by
running a single TCP New Reno upload varying the TSQ

FIGURE 5. Data-rate and round-trip time as a function of the data
inflight: experimental data on IEEE 802.11ac.

size at the sender side. To do so, we used a feature of our
TSQ patch which allows to control the amount of data at
the sender side in a static way, controlling the amount of
packets that the TCP socket can enqueue, regardless of the
flow data-rate; this ease the comparison with the theoretical
curve seen in Section I that is usually plotted as a function
of the data inflight. Figure 5 shows the result of this exper-
imental analysis dividing the output of the RTT, plotted in
red in Figure 5a, to the output of the bandwidth, plotted in
blue in Figure 5b. The experiment validates the bandwidth-
limited and the buffer-limited area of Figure 1. Moreover,
we enhanced on Figure 5 the operating points that correspond
to A, B and D of Figure 1.

B. TCP UPLOAD
One critical problem that we have observed and solved in [11]
is related to the TCP upload in an IEEE 802.11n/ac network.
Indeed, the recently adopted TSQ mechanism breaks the
aggregation logic at the local Wi-Fi bottleneck, and this is the
reason why we did different experiments considering differ-
ent TSQ sizes, to relax the limit on the number of packets to be
enqueued and, consequently, boost the throughput. We used a
single TCP flow in upload because it is the most challenging
scenario in which a single flow is in charge of exploiting
the entire bandwidth of the Wi-Fi bottleneck. To demonstrate
it, we present in Figure 6 the global throughput reached
by one, four and eight simultaneously active TCP flows
in Figures 6a, 6b and 6c, respectively. In this experiment we
disabled the TSQ logic, and so there is no limitation in the
amount of data that each socket can enqueue in the node.
The higher is the amount of flows competing for the Wi-Fi
bottleneck, the higher is the amount of packets that the NIC
can use to exploit the channel bandwidth through forming
large aggregate frames. This moves the focus to a simple
worst-case scenario: a single TCP aiming to use the entire
wireless bandwidth.
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FIGURE 6. Standard TCP upload: one, four and eight flows.

FIGURE 7. One TCP flow in upload with different TCP & TSQs: Goodput vs ping, ath9k-htc.

FIGURE 8. One TCP flow in upload with different TCP & TSQs: Goodput vs ping, ath9k.

Our solution previously proposed in [11] worked properly
for loss-based congestion controls, but BBR did not react with
a throughput increment when relaxing the TSQ limits, due to
a mild TCP pacing rate, unable to support the aggregation
logic at the bottleneck. This can be observed in the three
Figures 7, 8, and 9. The difference between these Figures is
the chipset used to create the Wi-Fi connectivity:

• In Figure 7 it is used the chipset Atheros AR9271
1 × 1 MIMO, which is a USB dongle, and due to this,
the Linux kernel manages the wireless connection with
the ath9k-htc driver, that deals with IEEE 802.11n
connectivity.

• In Figure 8 it is used the chipset Atheros AR5BHB116
2 × 2 MIMO, which is a PCIe wireless card managed

with theath9k driver by the Linux kernel to deal, again,
with IEEE 802.11n networks.

• In Figure 9, instead, it is mounted a Qualcomm
QCA6178 1 × 1 MIMO, a PCIe wireless card able to
create or join IEEE 802.11ac Wi-Fi networks through
the ath10k driver.

These Figures, compared together, report that BBR is
unable to boost the throughput even by relaxing the TSQ
constraints. The reason is the pacing rate adopted by BBR
that impedes the formation of bursts at the bottleneck, which
in this case is clearly the wireless sender interface, with
the consequence of breaking the Wi-Fi aggregation logic
forcing the inability to increase the throughput. The other
loss-based variants, Cubic and New Reno, quickly reach
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FIGURE 9. One TCP flow in upload with different TCP & TSQs: Goodput vs ping, ath10k.

FIGURE 10. One TCP flow in upload with different TCP & TSQs: Wi-Fi
aggregation size, ath9k.

their respective maximum throughput by relaxing the TSQ
constraints. The price to pay for this throughput increment,
as seen in Section III, is an RTT increment measured with
the ICMP ping protocol. Even New Vegas, which is the
delay-based congestion control at the base of the BBRmodel,
is able to increase and even double its throughput with all the
technologies. This because the pacing rate adopted by New
Vegas is the same pacing rate adopted by all the congestion
controls except BBR. As a matter of fact, New Vegas can
not achieve the maximum throughput because it limits the
RTT increments at 1 ms, limiting the data delivery-rate after
this threshold. BBRp is reported in the center of each figure;
thanks to our patch that increases the pacing rate, increasing
its value, BBRp is able to increase the Wi-Fi upload through-
put like loss-based congestion controls, up to the optimal val-
ues, without significative latency reductions nor increments.
The distance between the minimum and the maximumRTT is
limited at 5 ms by the FQ-CoDel queueing discipline used in
the sender node. We chose to use a 1.5 factor for the pacing
rate by analyzing the tradeoff of throughput and delay with
different wired and wireless technologies. Indeed, our BBRp
patch allows us to fine-grained tuning the pacing rate to the
desired value, as can be observed in the data source [18].

To validate our analysis, we also report Figure 10, which
includes the Wi-Fi aggregation size registered by the sender

interface during the experiment of Figure 8. We included
such data because, with the ath9k driver, the possibility
to collect the aggregation statistics is enabled by default.
With this Figure, it is possible to notice how loss-based
congestion controls and BBRp can increase the aggregation
size as a function of the TSQ limit; New Vegas increases the
aggregation size as well but sharply limiting the maximum
reachable aggregation, while, as a last conclusion, BBR never
aggregates more than one packet, excluding few statistical
outliers unable to steadily boost the throughput.

We reported first the TCP upload experiments because it is
chronologically the first problem that we have dealt with as a
consequent outcome of our previous work on TSQ [11]. Our
patch has been included in the Linux kernel, and now ath9k
and ath10k relax by default the TSQ limit at 4 ms of data.

We also considered a different scenario in which the wired
connectivity between the access point and the server is limited
at 100 Mbit/s by the ISP. This situation lets to migrate the
bottleneck position from the wireless interface of the access
network to the wired backhaul one. The same experiment
described before has been run on this second scenario, and
results are reported in Figure 11. One key characteristic of
BBRp, in this scenario, is the ability to reach the 100 Mbit/s
provided by the bottleneck with just a TSQ value equal to
2 ms, without an excessive queuing delay, while TCP Cubic
needs a TSQ value equal to 4 ms to obtain the same result.
Even TCP New Vegas is able to get close to the bottleneck
bandwidth relaxing the TSQ constraints, and, as seen before,
only BBR is not able to exploit the capacity of the path, saving
1 ms of ping RTT, but paying the price of a throughput well
below 40 Mbit/s.

C. TCP DOWNLOAD
For what concerns a TCP download, we considered our
Testbed in Figure 4 to model a standard scenario in which the
server is connected through a Gigabit Ethernet to the Access
Point, forming a reliable high-speed network, in which the
sender (the server) does not have any TSQ issues related to
aggregation. Indeed, in this case, we do not need to take the
TSQ as a testing parameter because it does not affect the
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FIGURE 11. One TCP flow in upload with different TCP: Goodput vs ping, ath9k and 100 Mbit/s wired bottleneck.

FIGURE 12. One TCP flow in download with different TCP: Goodput vs
ping, ath9k.

communication in terms of TCP throughput. Instead, is the
TCP Pacing difference between BBR and BBRp that affects
the throughput by interactingwith the aggregation logic of the
remoteWi-Fi bottleneck. Indeed, from the point of view of the
server, which is transmitting the TCP stream, the bottleneck
is not the local interface, so it is clearly the typical condition
in which the bottleneck is a remote segment of the end-
to-end path, and there is no trivial control of it with back-
pressure mechanisms. Moreover, this scenario allows a fair
comparison with the BBR-DEV algorithm, because of the
position of the wireless bottleneck not directly connected to
the transmitting node [17].

The measurements collected during a single TCP down-
load are reported in the two Figures 12 and 13. The
difference between these Figures is, even in this case,
the chipset used to create the Wi-Fi connectivity: Figure 12
uses the chipset Atheros AR5BHB116 2 × 2 MIMO, while
Figure 13 uses a Qualcomm QCA9880v2 2 × 2 MIMO
chipset. To enhance the difference between the TCP conges-
tion controls performance, we configured the Access Point
to use the pfifo_fast queueing discipline at the wireless
bottleneck, which allows appreciating the different operating
points of each TCP variant with respect to the wireless bot-
tleneck model in Figure 1 of Section III.

The first important thing to notice is the inefficiency
of TCP BBR and New Vegas to exploit the wireless

FIGURE 13. One TCP flow in download with different TCP: Goodput vs
ping, ath10k.

FIGURE 14. One TCP flow in download, BBR-DEV vs BBRp: pacing rate
and BBR BW model.

bottleneck bandwidth. Indeed, TCP New Vegas reaches less
than 100 Mbit/s in Figure 12 and 250 Mbit/s in Figure 13
with an 802.11n and 802.11ac wireless bottleneck, respec-
tively. Similarly, BBR reaches even lower values of 75Mbit/s
in Figure 12 and 200 Mbit/s in Figure 13, respectively. These
behaviors, recalling the wireless bottleneck discussion of
Section III, correspond to the operating point A of Figure 1.
The second important thing to notice is that TCP loss-based

variants, i.e., TCP Cubic and TCP New Reno, are able to
boost the throughput close to the optimal limit imposed by
the wireless bottleneck, which is slightly less than 200Mbit/s
in Figure 12 and 550 Mbit/s in Figure 13. The drawback is
the RTT registered by these two congestion controls; indeed,
the operating point of these loss-based variants is marked
as D in Figure 1.
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A third important thing is to acknowledge the improvement
introduced by the BBR-DEV algorithm, the improved ver-
sion of BBR that mitigates the performance limitation of the
original BBR algorithm on Wi-Fi links. BBR-DEV almost
doubles the data-rate of standard BBR in both the technolo-
gies investigated, introducing a queueing delay smaller than
BBRp in the ath9k scenario and equal to BBRp in the
ath10k scenario.
The fourth and final thing to notice is the almost optimal

tradeoff of TCP BBRp in both the IEEE 802.11n and IEEE
802.11ac scenarios. In fact, in Figure 12, BBRp reaches
150 Mbit/s with less than 20 ms of RTT while, in Figure 13,
it reaches 400 Mbit/s with less than 10 ms of RTT. Compar-
ing BBRp to BBR, the former triplicates the throughput in
both cases with smaller impacts on latency increments. This
happens because BBRp works at the operating point B of
Figure 1, increasing the throughput as soon as it is possi-
ble while impeding an RTT increment when the bottleneck
bandwidth is reached.

Concluding the comparison between BBR-DEV and
BBRp, Figure 14 reports the pacing rates (solid lines) and
the BBR bandwidth values (dashed lines) collected during
the IEEE 802.11n test. BBRp is able to maintain a higher
bandwidth to fully exploit theWi-Fi bottleneck capacity, with
a data rate that is 100 Mbps higher than BBR-DEV; to do so,
BBRp maintains a pacing rate between 300 and 400 Mbps
in order to keep the bandwidth on 200 Mbps. Furthermore,
a key characteristic of BBR-DEV is visible in the Figure:
the absence of spikes corresponding to the draining phases.
While BBRp manifests spikes of pacing rate reduction in
conjunction with the 15th and 25th second of test (BBR base
model, in fact, drains the queues every 10 seconds of activity),
BBR-DEV does not reproduce the same trend, because of an
adaptive drain mechanism.

D. RRUL TEST
To conclude our experimental section, we report here the
results obtained by the different TCP congestion controls
during an RRUL test. The testbed is configured exactly like
the previous experiment, the TCP download, and we report
in Figure 15 only the results obtained in the IEEE 802.11n
scenario, for brevity. Considering that the test involves both
4 TCP streams in download and 4 TCP streams in upload,
we configured the client to operate with the current Linux
default TSQ value at 4 ms. In general, the unfairness between
the download path and the upload path is clear, with the
download streams that take a higher portion of the wireless
bottleneck bandwidth. This is a consequence of the TSQ
behavior, which is still a limit, even if it has been relaxed,
of 4 ms for the upload path, while it is not a limit for the
download path where the server, connected to the Access
Point through a wired interface, can increase the throughput
more easily. This characteristic has already been observed
with TCP Cubic in [11], and Figure 15 confirms the trend
also for the other congestion controls. The only exception is
BBRp, which registers remarkable results. BBRp is the sole

FIGURE 15. RRUL test: Goodput vs ping, ath9k, 4TSQ.

TCP congestion control that guarantees fairness between the
upstream and the downstream and, at the same time, it is able
to limit the latency to the value of BBR and NewVegas at less
than 10 ms. As a last note, even in this case, TCP loss-based
variants suffer a high RTT due to their operating point D of
Figure 1.

VII. CONCLUSION
This paper showed the inefficiency of TCP BBR over IEEE
802.11n and IEEE 802.11ac, the two most used Wi-Fi
technologies. The reason for this inefficiency lies in the
impossibility of performing frame aggregation with the stan-
dard BBR algorithm. We then introduced BBRp, which
permits to tune the BBR pacing speed, allowing the con-
gestion control to correctly aggregate packets at the wireless
bottleneck and exploit the bottleneck bandwidth. Our exper-
iments let us validate the BBRp performance in different
scenarios concluding that our proposed variant solves the
BBR inefficiency, reaching almost optimal TCP throughput
while maintaining better performance in terms of latency
when comparing it with both BBR-DEV and TCP loss-
based variants like Cubic or New Reno. We demonstrate that
BBRp behaves remarkably in several scenarios, considering
TCP uploads with a local wireless bottleneck or a remote
wired bottleneck, TCP downloads with a remote wireless
bottleneck, and challenging RRUL scenarios with a highly
congested environment. In particular, we have proved through
real tests that BBRp increases the BBR throughput between
3 and 6 times over both the IEEE 802.11n and IEEE 802.11ac
technologies, while preserving fairness by balancing the
upstream and the downstream paths; simultaneously, BBRp
minimizes the ICMP latency to values lower than those of
TCP New Vegas and the standard TCP BBR.
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