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Abstract

Several beam and plate models have been recently developed in the literature to

accommodate for size-dependence. These are usually obtained starting from a

generalized continuum theory (such as the couple-stress, strain-gradient or non-

local theory or their modifications) and then deducing the governing equations

through Hamilton’s principle and ingenuous kinematical assumptions. This ap-

proach, originated by Kirchhoff, usually fails to reproduce the dispersion features

of the equivalent 3D theory. Besides, it produces a variety of models, in depen-

dence of the different assumptions, such as Kirchhoff’s or Mindlin’s. In contrast,

in this paper we adopt asymptotic reduction: moving from the couple-stress lin-

ear theory of elasticity with micro-inertia, we deduce new models for elongation

and flexural deformation of microstructured plates. The resulting models are

consistent, in the sense that they reproduce the dispersion features of the cor-

responding 3D body. Also, models are unique, for they may only differ by the

order of the approximation. We find that microstructure especially affects in-

ertia terms, which can be hardly captured by a-priori kinematical assumptions.

For static flexural deformations, our results match those already obtained as-

suming plane cross-sections within the modified couple-stress theory. In fact,

we show that couple-stress, reduced couple-stress and strain gradient theories

all lead to equivalent results. Higher order models are also given, that describe

the near first-cut-off behaviour and account for thickness deformations in the
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spirit of Timoshenko.

Keywords: Asymptotic model, Microstructured plate, Couple stress,

Rayleigh-Lamb waves

1. Introduction1

Modern technology heavily relies on micro- and nano-components for sens-2

ing, actuating, filtering and testing. It is an established experimental fact that3

mechanical response of these structures depends on their scale (Chong et al.,4

2001; Radi et al., 2020). However, the classical theory of elasticity lacks an inter-5

nal length-scale and it is therefore incapable of incorporating this dependence.6

Precisely to remedy this deficiency, which leads to several limitations (Nobili7

et al., 2020), many generalized continuous theories (GCT) have been proposed,8

such as surface elasticity (Gurtin and Murdoch, 1975), non-local elasticity (Erin-9

gen, 1984) and strain gradient theories (Yang et al., 2002). Couple stress theory10

is perhaps the simplest micropolar theory (Toupin, 1962; Koiter, 1969), where an11

extra rotational displacement is considered (the micro-motion), that is related12

to the skew symmetric part of the displacement (the macro-motion) gradient.13

In this respect, it is also a strain gradient theory. Recently, adaptations of the14

original theory have been proposed, in an attempt to reduce the number of ma-15

terial parameters, such as the modified or reduced couple stress theory (Yang16

et al., 2002), which postulates a new equilibrium equation for the moment of17

momenta, the symmetric theory (Hadjesfandiari and Dargush, 2011), which re-18

stricts the curvature tensor to being symmetric, and the strain gradient effect,19

originating from plasticity and relating to geometrically necessary dislocations20

(Fleck and Hutchinson, 1993). Also, the majority of studies concerning couple21

stress (CS) theory neglects the role of micro-rotational inertia, owing to the22

increased mathematical complications.23

In this context, a large number of contributions has recently appeared in the24

literature introducing new dimensional-reduced models, such as beams, plates,25

shells, incorporating microstructural features. The generality of these is ob-26
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tained moving from an enhanced continuum theory and then deducing the new27

equilibrium equations through an application of Hamilton’s principle, in con-28

junction with ingenuous kinematical constraints. This is indeed the method29

originally adopted by Kirchhoff (1859) in developing the classical plate theory30

that bears his name, and later extended to shells by Love, see (Love, 1888) and31

the excellent historical introduction therein. Along these lines, Ma et al. (2008)32

developed a Timoshenko-like beam model moving from the differential non-33

local model of Eringen, which was later found to lead to paradoxes Mikhasev34

and Nobili (2020). In Park and Gao (2006), a static Bernoulli-Euler theory of35

size-dependent beams is introduced from the reduced couple stress (RCS) theory36

by the minimum energy principle. Tsiatas (2009) developed a static Kirchhoff37

plate model based on the RCS theory, which was later extended to dynamics38

by Yin et al. (2010) simply by addition of translational inertia. On a similar39

basis, Jomehzadeh et al. (2011) introduced size-dependence in micro-plates, ac-40

counting for plate extension and adding rotational inertia. Mindlin-like models,41

where cross-section rotation is an extra degree of freedom, have been presented42

in Ma et al. (2011); Zhou and Gao (2014), again moving from the modified cou-43

ple stress theory. Similar contributions, but departing from the strain gradient44

(SG) theory, are presented in Lazopoulos (2004) and, successively, in Lazopou-45

los (2009) with the addition of surface elasticity, both being restricted to statics46

and arriving at a higher-order plate theory.47

In this paper, we develop a novel size-dependent plate model by asymp-48

totic reduction of the elastodynamics of a thin strip of couple stress elastic49

isotropic material with micro-inertia, encompassing for extension and flexure.50

As described by Kaplunov et al. (1998) in their excellent monograph, asymp-51

totic reduction is a powerful technique by which dimensional-reduced models are52

built which preserve the fundamental dispersion feature of the original 3D body.53

Precisely in this sense, models are defined consistent. Models are also unique,54

for a given range of approximation (say, long-wave low-frequency). Higher or-55

der (or, better, long-wave high-frequency) models are also constructed, which56

reproduce dispersion near the first cut-on frequency (the first overtone) and add57
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thickness-stretch and thickness-shear effects. In the absence of microstructure,58

models correctly reduce to those developed within classical elasticity. Interest-59

ingly, restriction to statics lends results already obtained by assuming plane60

cross-sections in the context of the RCS theory. In fact, we show that CS, RCS61

and SG theories are all equivalent in terms of asymptotic reduction.62

2. Fundamentals of couple stress theory63

In a linear elastic couple stress solid, the traditional displacement field u

is supplemented by the rotation vector ϕ, which represents the motion at the

micro-level. In contrast to micropolar theories, the latter is related to the former

through

ϕ = 1
2 curlu.

We introduce the classical measure of deformation (strain tensor)

ε = Sym gradu,

alongside the torsion-flexure or curvature tensor, which is typical of higher gra-

dient theories (the wryness tensor)

χ = gradϕ.

For an isotropic hyperelastic material, we introduce the stored elastic potential

U = U(ε,χ) and obtain the constitutive equations

σ =
∂U

∂ε
⇒ σ = 2Gε+ Λ(tr ε)1, (1a)

µ =
∂U

∂χ
⇒ µ = 2G`2

(
χT + ηχ

)
, (1b)

where 1 is the identity tensor and ` > 0, −1 < η < 1 is a pair of material64

constants connected to the microstructure, while G and Λ are the traditional65

Lamé parameter. Eqs.(1) specify the symmetric part of the stress tensor, σ =66

Sym t, and the couple stress tensor µ, respectively. The latter is a deviatoric67

tensor, which becomes symmetric simply by taking η = 1, that is indeed the68
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assumption in the RCS theory. Similarly, the case η = 1
2 yields the strain69

gradient effect.70

The equations of motion express equilibrium of linear and angular momen-

tum

div t = ρü, (2a)

2 axial t+ divµ = Jϕ̈, (2b)

where ρ is the mass density and J ≥ 0 is the micro-inertia, with physical di-71

mensions of mass over length. Here, div operates on the first tensor component72

and (axial t)i = eijktkj denotes the axial vector attached to any skew symmetric73

tensor (here eijk is the permutation tensor).74

Hereinafter, we restrict our analysis to plane-strain conditions75

u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t) = 0, (3)

whence, the non-zero components of ε, ϕ and χ read

ε11 = u1,1, ε12 = 1
2 (u1,2 + u2,1) = ε21, ε22 = u2,2, (4a)

ϕ3 = 1
2 (u2,1 − u1,2), (4b)

χ31 = 1
2 (u2,11 − u1,21), χ32 = 1

2 (u2,12 − u1,22). (4c)

Together, Eqs.(4) with the constitutive equations (1) give

σ11 = 2Gu1,1 + Λ(u1,1 + u2,2), σ22 = 2Gu2,2 + Λ(u1,1 + u2,2), (5a)

σ33 = Λ(u1,1 + u2,2), (5b)

σ12 = σ21 = G(u1,2 + u2,1), (5c)

µ13 = G`2(u2,11 − u1,21), µ23 = G`2(u2,12 − u1,22), (5d)

µ31 = G`2η(u2,11 − u1,21), µ32 = G`2η(u2,12 − u1,22), (5e)

In plane strain, Eqs.(2) become

σ11,1 + σ21,2 + τ21,2 = ρü1, (6a)

σ12,1 + τ12,1 + σ22,2 = ρü2, (6b)

2τ12 + µ13,1 + µ23,2 = Jϕ̈3, (6c)
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and the last, with the help of (5e), directly lends the skew-symmetric part of76

the stress tensor τ = Skw t77

τ12 = −τ21 = − 1
2G`

2(4̂u2,1 − 4̂u1,2) + J
4 (ü2,1 − ü1,2). (7)

Here, the notation 4̂ indicates the 2-D Laplace operator in the x1, x2 coor-

dinates. Substituting (5) and (7) into (6a) and (6b) leads to the following

expression for the governing equations in terms of displacement

(Λ +G)(u1,11 + u2,12) +G(u1,11 + u1,22) + J
4 (ü1,22 − ü2,12)

+ 1
2G`

2(u2,1222 + u2,1112 − u1,1122 − u1,2222) = ρü1,

(Λ +G)(u1,12 + u2,22) +G(u2,11 + u2,22) + J
4 (ü2,11 − ü1,12)

+ 1
2G`

2(u1,1222 − u2,1122 + u1,1112 − u2,1111) = ρü2.

In vector form, the governing equation of plane strain elastodynamics of couple78

stress bodies with micro-inertia reads79

(Λ +G) grad2(div2 u) +G4̂u+ J
4 curl2(curl2 ü)− 1

2G`
24̂ [curl2(curl2 u)] = ρü,

(8)

where grad2 and div2 indicate the gradient and the divergence in the x1, x280

coordinates, respectively, whereas curl2 operates differently on a vector and on81

a scalar, i.e. 2ϕ3 = curl2 u = u2,1 − u1,2 and curl2 f = (−f,2, f,1). To the best82

of the author’s knowledge, Eq.(8) is original. It correctly particularises to the83

expressions reported in Graff and Pao (1967) in the absence of micro-inertia.84

Naturally, upon letting ` = J = 0, we retrieve the classical Navier’s equations.85

Eq.(8) may be rewritten in the equivalent form86

(Λ + 2G) grad2(div2 u) + J
4 curl2(curl2 ü) +G

[
1− 1

2`
24̂
]

curl2(curl2 u) = ρü,

(9)

which, again in the absence of micro-inertia, reduces to Eq.(141) of Hadjesfan-87

diari and Dargush (2011) (provided that our ` is replaced by
√

2` and that we88

understand ∇×∇× u as − curl2 curl2 u = −εαβεγδuδ,γβ).89
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Figure 1: Plate in plane strain setting: the co-ordinate plane (x1, x3) is the plate mid-plane

2.1. Boundary conditions90

We follow Koiter (1969) and introduce the reduced force traction vector, p,91

and the CS traction vector, q. For the latter, only the tangential part may be92

prescribed at any point of a smooth surface with unit normal n, the longitudinal93

component being absorbed into the traction vector. Accordingly, we have94

p = tTn+ 1
2∇µnn × n, (10a)

with µnn = n · µn, and95

q = µTn− µnnn. (10b)

We now consider a flat plate in plane strain, see Fig.1. At the top/bottom

face of the plate, x2 = ±h, the unit normal vector is n = (0,±1, 0) such that,

by referring to Eqs.(10), we have (µnn = 0)

p1 = ±t21 = ±(σ21 + τ21), (11a)

p2 = ±t22 = ±σ22, (11b)

q3 = ±µ23. (11c)

2.2. Potentials96

We may express the displacement field by introducing the scalar potential97

φ(x1, x2, x3, t) and the vector potential H(x1, x2, x3, t), such that (Graff and98

Pao, 1967, Eq.(13))99

u = gradφ+ curlH, with divH = 0. (12)
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In particular, under plane strain conditions (3), we have100

u1 =
∂φ

∂x1
+
∂H

∂x2
, u2 =

∂φ

∂x2
− ∂H

∂x1
, (13)

where we have let the shorthand H = H3(x1, x2, t), given that the other pair

of components of H vanish. We observe that the gauge condition divH = 0 is

trivially satisfied. By substituting Eqs. (13) in (8) we obtain

G
(

1− 1
2`

24̂
)
4̂H = ρḦ − J

4 4̂Ḧ, (14a)

(2G+ Λ)4̂φ = ρφ̈, (14b)

which, in the absence of micro-inertia, correspond to Eqs.(3) of Sengupta and101

Ghosh (1974) and Eqs.(8) of Wang et al. (2017).102

Boundary conditions (11) may now be rewritten as

p1 = ±
[
G(H,22 + 2φ,12 −H,11) + J

4 4̂Ḧ −
1
2G`

24̂2H
]
, (15a)

p2 = ±
[
Λ4̂φ+ 2G(φ,22 −H,12)

]
, (15b)

q3 = ∓G`24̂H,2, (15c)

where 4̂2 = ∇4 indicates the bi-harmonic operator.103

3. Travelling wave solutions104

In order to develop dimensional-reduced models, we need a good understand-

ing of wave propagation in a thin plate. We begin by looking at solutions in the

form of travelling waves

φ(x1, x2) = Φ(x2) exp[ı(kx1 − ωt)],

H(x1, x2) = H(x2) exp[ı(kx1 − ωt)].

These, plugged into Eqs.(14), lends a pair of ODEs for the amplitude functions105

Φ(x2) and H(x2) = H1(x2) +H2(x2)106

Φ′′ − 1

`2
λ2LΦ = 0, H′′1 −

1

`2
λ2z1H1 = 0, H′′2 −

1

`2
λ2z2H2 = 0, (16)

whereupon `−1λL and `−1λz1,2 are wavenumbers in the x2 direction.107
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We let the dimensionless frequency Ω = ωT , where T = `/c̃S is a refer-108

ence time and c̃S =
√
G/ρ is the classical shear wavespeed. Also, we let the109

dimensionless wavenumber κ = k`, the rotational inertia characteristic length110

~ = 1
2

√
J/ρ, as well as the dimensionless counterpart111

J = ~/`. (17)

With this, it is112

λL =
√
κ2 − θ2L, θ2L = Ω2/ψ2, (18)

and113

λz1 =
√
κ2 − θ21, λz2 =

√
κ2 + θ22, (19)

where114

θ21,2 =

√
(J2Ω2 − 1)

2
+ 2Ω2 ± (J2Ω2 − 1) ≥ 0.

±(θL, θ1, ıθ2) define the branch points of the square roots. In the absence of115

rotational inertia, θ1,2 reduce to
√

2`(p, q) of Sengupta and Ghosh (1974) and116

to
√

2`β1,2 of Graff and Pao (1967), respectively (just substitute our ` with
√

2`).117

For κ = 0, we get the so-called thickness-stretch or thickness-shear resonance118

frequencies (see Fig.5), with real wavenumber θL and θ1. We also have the119

non-classical evanescent thickness mode with wavenumber ıθ2 (for a definition120

of evanescent modes see (Graff, 2012, §1.5.4)).121

We observe that the classical limit is obtained taking `→ 0 and, if necessary,

J = 0. This limit, in terms of Ω and κ, amounts to taking Ω ∼ κ � 1,

i.e. it is the long-wave low-frequency (LWLF) approximation. Within this

approximation, we get

θ1 = Ω− 1
2 ( 1

2 − J2)Ω3 + . . .

θ2 =
√

2 + 1√
2
( 1
2 − J2)Ω2 + . . . ,

whence it is clear that, comparing with the classical results, for instance in the122

notation of (Graff, 2012, §8), we have123

λ2L → −`2α2, λ21 → −`2β2, λ22 → 2. (20)
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Figure 2: Phase (left) and group (right) speed of shear bulk waves, respectively Eq.(25)
and (26), normalized over the classical wave speed, c̃S . Propagation is regular inasmuch as
J > Jcrit = 1/

√
2

This limit corresponds to Case I of Sengupta and Ghosh (1974), although there124

it is claimed that the wavelength L = 2π/k is large compared to h, while it125

really should be L� `.126

We let the ratio between the longitudinal and the transversal wavespeed in127

classical media ψ = c̃L/c̃S , with c̃L =
√

(2G+ Λ)/ρ. It is important to observe128

that θ1 > θL demands129

0 < Ω < ψ

√
ψ2 − 1

1
2 − J2ψ2

, (21)

provided130

J <
1√
2ψ

, (22)

otherwise θ1 > θL always.131

The general solutions of Eqs.(16) are132

Φ(ξ2) =
A1

λL
sinh (λLξ2) +A2 cosh (λLξ2) , (23a)

133

H(ξ2) =
B1

λz1
sinh (λz1ξ2) +B2 cosh (λz1ξ2) +

C1

λz2
sinh (λz2ξ2) +C2 cosh (λz2ξ2) ,

(23b)

where we have let the dimensionless transversal coordinate ξ2 = x2/`.134

3.1. Bulk waves135

Bulk waves are travelling homogeneous waves, whence we get the dimension-136

less speed of longitudinal waves setting λL = 0137

υL = ψ, (24)
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which is obviously non-dispersive. Similarly, we get the wavespeed of shear138

waves139

υS =

√
1 +

1
2 − J2

1 + J2κ2
κ2, (25)

that generalizes the result (Ottosen et al., 2000, Eq.(33)), obtained in the ab-140

sence of micro-inertia. Depending on the latter, two regimes are possible: when141

J ≶ Jcrit ≡ 2−1/2, the shear bulk speed is greater/lesser than the classical bulk142

wave speed c̃S , while the particular case J = Jcrit corresponds to non-dispersive143

waves. This behaviour has already been observed for antiplane shear waves144

Nobili et al. (2019). The bulk shear wave speed asymptotes to145

υSlim =
Jcrit

J
,

which may be greater than the longitudinal wave speed υL = ψ if (22) holds. We146

conclude that shear waves are generally slower than bulk waves, unless condition147

(22) holds, in which case they still are but only in the frequency range expressed148

by (21). Therefore, the case where micro-inertia disappears is very special, in149

that shear waves are always dispersive and they eventually become faster than150

longitudinal waves, see Fig.2.151

Looking at group velocity152

VgS = υS +
J2crit − J2

υS(1 + J2κ2)2
κ2, (26)

we see that it is always positive. Besides, propagation is regular (i.e. group

velocity is less than phase speed) inasmuch as J > Jcrit, see Fig.2. The corre-

sponding dimensional speeds easily follow through

c =
ω

k
=

Ω

κ
c̃S = υc̃S ,

whereupon we see that the phase speed of longitudinal waves cL corresponds153

to the classical result c̃L. In the absence of micro-inertia, longitudinal (24)154

and transversal (25) wave speeds match the corresponding results (Sharma and155

Kumar, 2014, Eq.(7)). Dimensionalizing factors have been chosen such that in156

the classical limit, that is for J and ` tending to zero, we rightly get υS → 1.157
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We conclude that, in CS materials, two bulk wave speeds are admitted, one158

longitudinal and one transversal, just like in classical media, the difference being159

that the latter is now dispersive and supports two families of thickness-stretch160

modes. In fact, when it comes to partial waves (and equally localized waves,161

Rayleigh-Lamb waves and all forms of non-uniform waves), shear waves comes162

in family pairs.163

4. Rayleigh waves164

Assuming an exponentially decaying solution and imposing free boundary

conditions

p1(x1, 0, t) = p2(x1, 0, t) = q3(x1, 0, t) ≡ 0,

we obtain the Rayleigh equation in CS elasticity with micro-inertia165

R(κ,Ω) = 0.

Here, we let

d0 = −4κ2
(
θ21 + θ22

)
,

d1 = θ22
(
Ω2 − 2κ2

)2
,

d2 = −θ21
(
Ω2 − 2κ2

)2
,

together with the Rayleigh function166

R(κ,Ω) =
d0λLλz1λz2 + d1λz2 − d2λz1

λz1 − λz2
. (27)

This function should be compared with Eq.(75) Graff and Pao (1967) of which it

is a generalization in that (i) it encompasses for micro-inertia and (ii) it extracts

the factor λz1 − λz2 which cancels out spurious branch-cuts. The Rayleigh

function may be rewritten as

R0(κ,Ω) =
(
Ω2 − 2κ2

)2 [
1− θ21

λz2 (λz1 + λz2)

]
− 4κ2λLλz1.

which, in the limit as ` goes to zero (and letting J = 0), corresponds, at leading167

order, to the classical Rayleigh function. Indeed, we have κ ∼ Ω→ 0 and168

R0(κ,Ω) =
(
λ2z1 + κ2

)2 − 4κ2λLλz1 +O(Ω6).
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Figure 3: Frequency spectrum of Rayleigh waves (solid, black) superposed onto the approxi-
mation (28) (dashed, red) for the parameter set ψ = 1.5, J = 1.5

Rayleigh wave are perturbations of bulk shear waves and, as such, they may169

be sought in their close neighbourhood: for θ1 > θL we have170

κ2R = θ21 +

(
θ21 + θ22

)
θ42
(
Ω2 − 2θ21

)4
θ41 (4θ41 − 4θ21 (S + Ω2)− 4θ22S + Ω4)

2 , (28)

where we let the shorthand S =
√

(θ21 + θ22) (θ21 − θ2L). The quality of this171

approximation is excellent at both ends of the wavelength spectrum (i.e. for172

both short and long waves), as illustrated in Fig.3.173

5. Rayleigh-Lamb waves174

For Rayleigh-Lamb (R-L) waves, we now impose free boundary conditions

p1(x1,±h, t) = p2(x1,±h, t) = q3(x1,±h, t) ≡ 0.

where h is the plate half-thickness, and consider symmetric and anti-symmetric175

waves separately.176

5.1. Symmetric waves177

For symmetric waves we obtain the frequency equation178

Ds = d0λL tanh (HλL) +
d1
λz1

tanh (Hλz1)− d2
λz2

tanh(Hλz2), (29)

being H = h/`. It is straightforward matter to recognize that, in either the179

short-wave (SW) or high-frequency (HF) limit, respectively κ � 1 or Ω � 1,180
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waves (red, dashed) with the parameters ψ = 1.5, J = 1.5 and H = 10. Clearly, the fun-
damental mode quickly asymptotes to Rayleigh waves. Thickness-stretch (red, large dots),
thickness-shear (blue, small dots) cut-offs and standing modes (green dots) are also shown.

Ds reduces to the numerator of the Rayleigh function (27), whence the first181

branch in the spectrum asymptotes to the Rayleigh branch. In fact, in such182

limit, the phase speed of all branches tends to that of Rayleigh waves, and this183

is in contrast to CE, where branches other than the first tend to the bulk shear184

wave speed. Similarly, in the classical limit (20), we have, at leading order,185

d0 = −8`2k2, d1 = 2`4
(

2k2 − ω2

c̃2S

)2
= 2`4(k2 − β2)2, d2 = O(`6),

whence Eq.(29) reduces to the classical result (Graff, 2012, Eq.(8.1.54))186

8`3k2α tan(hα) +
2`3(k2 − β2)2

β
tan(hβ) +O(`6) = 0.

Eq.(29) does not correspond to (16) of Sengupta and Ghosh (1974) because187

the latter is obtained taking a linear approximation in `. However, it is observed188

that, owing to the scaling, ` never appears explicitly in Eq.(29). This means189

that, within the natural scaling and in plane-strain conditions, the couple-stress190

problem becomes self-similar. The frequency spectrum for symmetric waves is191

drawn in Fig.4.192

Cut-on frequencies (below which the wave is evanescent and no longer prop-193
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(a) (b) (c) (d)

Figure 5: Thickness modes: (a) symmetric thickness-stretch, (b) antisymmetric thickness-
stretch, (c) symmetric thickness-shear and (d) antisymmetric thickness-shear

agate Bhaskar (2009)) are determined setting κ = 0 in (29), which lends194

cos (HθL)

[
θ32 tan(Hθ1)

θ31 tanh(Hθ2)
+ 1

]
= 0. (30)

The presence of two factors is a consequence of the block structure of the linear195

system. Consequently, there are two families of modes (Graff, 2012, §8.7.5):196

1. thickness-stretch modes, related to the first factor in (30),197

Ωsn =
(
1
2 + n

)
π
ψ

H
, n = 0, 1, 2, . . . , (31)

which are purely classical, cf.(Kaplunov et al., 1998, Eq.(1.2.22)) and198

(Graff, 2012, Eq.(8.1.99)). For these modes, A2 is arbitrary and B1 =199

C1 = 0, i.e. the displacement is irrotational. In this case, u1 ≡ 0 for κ = 0200

and indeed this is thickness-stretch, as in Fig.5(a).201

2. thickness-shear modes, which are non-classical. For such modes, A2 = 0,

whence φ ≡ 0 and the displacement field is solenoidal according to the

decomposition (12), with rotational potential

H(ξ2) =

(
λ2z2
λz1

sinh (λz1ξ2)

cosh (λz1H)
− λ2z1
λz2

sinh (λz2ξ2)

cosh (λz2H)

)
R,

where R is a free parameter. Displacement easily follows from Eqs.(13),202

which give u2 ≡ 0 at cut-off (because κ = 0) and confirm that this is203

indeed thickness-shear, as in Fig.5(c)204

We observe that, for both thickness mode families, cut-on frequencies areO(H−1).205

Standing modes, i.e. wave solutions for which Ω = 0, are given by either κ =

0, corresponding to rigid body motions, or by the solutions of the transcendental
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Figure 6: Frequency spectrum of antisymmetric (flexural) Rayleigh-Lamb waves (black, solid)
superposed onto Rayleigh waves (red, dashed). The fundamental mode quickly asymptotes to
Rayleigh waves. Antisymmetric thickness-shear (blue, small dots) and thickness-stretch (red,
big dots) are shown, for the parameter set ψ = 1.5, J = 1.5 and H = 10.

equation in k2 = =(k)

2Hk2
(
ψ2 − 1

)
−
((
k22 − 1

)
ψ2 + 1

)
sin (2Hk2)

+
2k32ψ

2√
2− k22

cos2 (Hk2) tanh

(
H
√

2− k22
)

= 0.

Assuming H−1 � 1, these may be found as perturbations of classical standing

modes

κ = ±ı
√

2 + ( 1
2 + j)2

π2

H2
+O(H−2), j = 0, 1, 2, . . . .

Standing modes are associated with a displacement field where C1 = 0 and A2206

is linearly proportional to B1. Unlike cut-ons, standing modes are O(1) even207

when H is large and cannot be captured in a long-wave approximation.208

5.2. Antisymmetric waves209

Similarly, for anti-symmetric waves, we get210

Do = d0λL coth (HλL) +
d1
λz1

coth (Hλz1)− d2
λz2

coth (Hλz2) , (32)

whose first branch, once again, collapses into Rayleigh waves (27) in the short-211

wave regime, see Fig.6. Proceeding as for symmetric waves, it is easily shown212
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that, in the classical limit, the frequency equation (32) reduces to the well-known213

result214

−8`3k2α tan(hα) +
2`3(k2 − β2)2

β
tan(hβ) +O(`6) = 0.

Cut-on frequencies are given by215

sin (HθL)

[
θ32 cot(Hθ1)

θ31 coth(Hθ2)
− 1

]
= 0, (33)

whence, again, two families of modes arise216

1. antisymmetric thickness-stretch modes, purely classical, with frequency217

(Kaplunov et al., 1998, Eq.(1.2.25))218

Ωon = nπ
ψ

H
, n = 0, 1, 2, . . . .

for which A1 is arbitrary and B2 = C2 = 0, i.e. the displacement is219

irrotational. The last feature accounts for the fact that u1 ≡ 0 at cut-off220

and this is thickness-stretch, as in Fig.5(b).221

2. antisymmetric thickness-shear modes, non-classical, for which A1 = 0 and

the displacement field is solenoidal, with potential

H(ξ2) =

(
λ3z2
λz1

cosh (λz1ξ2)

sinh (λz1H)
− λ3z1
λz2

cosh (λz2ξ2)

sinh (λz2H)

)
R,

where R is a free parameter. For a solenoidal field, only u1 can be non-222

zero at cut-off, and again we have thickness-shear, although this time in223

antisymmetric fashion, as in Fig.5(d).224

Standing modes are given by225

κ = ±ı
√

2 + n2
π2

H2
, n = 1, 2, . . . , (34)

and are non-classical. They are associated with eigenforms where B2, C2 are226

linear functions of A1.227

6. Construction of the asymptotic models228

Asymptotic models are constructed on the assumption that the wavelength229

of interest is much greater than the microstructural parameter `, i.e. κ� 1, and230
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Figure 7: Frequency spectrum of symmetric Rayleigh-Lamb waves superposed onto the leading
order (blue, dot-dashed) and first correction approximation (red, dashed) for the parameter
set ψ = 1.5, J = 1.5 and H = 10.

that the time scale of wave propagation is much greater than T , i.e. Ω� 1. We231

emphasize that this not necessarily corresponds to the classical limit, whereby232

`→ 0. In the following, unless otherwise stated, we assume H ∼ 1.233

6.1. Extensional plate model234

Looking at the frequency spectrum of the symmetric fundamental mode, we

see that Ω ∼ κ and we write the LWLF approximation

Ds = Ω2 − 4(1− ψ−2)κ2 +O(κ4)

corresponding to classical longitudinal waves in a plate235

�P1u = c−2P1

∂2u

∂t2
− ∂2u

∂x21
= 0, (35)

being �P1 the wave (or D’Alambert’s) operator with wave speed cP1 (sometimes236

denoted c3)237

c2P1 = 4c̃2S(1− ψ−2) =
E

ρ(1− ν2)
=

2

1 + ν
c̃2S ,

where E = G(2G+ 3Λ)/(G+ Λ) is Young’s modulus and ν = 1
2Λ/(Λ +G) Pois-

son’s ratio. The wave phase speed cP1 > c̃S corresponds to that of classical plate

theory, see (Graff, 2012, Eq.(8.3.57)), and indeed Eq.(35) is the plane-strain

counterpart of the classical equation of extensional vibrations of thin plates,
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originally developed by Poisson (1829), Cauchy (1828) and Filon (Mindlin and

Yang, 2006, Eq.(4.043))

�P1u =
1− ν2

2hE
b1,

where b1 is the longitudinal force acting on the plate. This linear approximation

(of the dispersion relation) is very robust (see Fig.7) and classical, for it is

independent of `, H and J. As it might be expected, rotational inertia appears

when accounting for the first order correction terms in the asymptotic expansion

of the frequency equation. Indeed, we have

Ds = Ω2 − 4(1− ψ−2)κ2

+

(
1− 2ψ−2

)2
4(1− ψ−2)

[
4
3 (1− ψ−2)H2 +

√
2
H tanh

(√
2H
)
− 2
]

Ω2κ2 + . . .

whence we obtain the asymptotic model238

EA

1− ν2
∂2u

∂x21
− Itgu = 0, (36)

where we have defined the operator of modified tangential inertia in analogy

with (Kaplunov et al., 1998, §7)

Itg = ρA

{
1− ν2

2(1− ν)

[
2

3(1− ν)
h2 − `2

(
2−
√

2 `h tanh
√
2h
`

)] ∂2

∂x21

}
∂2

∂t2
.

Remarkably, the contribution of the microstructure affects plate elongation by239

reducing rotational inertia (that is the term with the mixed derivative), inde-240

pendently of J . Indeed, the term in round bracket is always positive and ranges241

from 0 to 2, respectively at H = 0 and as H →∞. As a result, the fundamental242

spectrum decays less than in the classical situation.243

In the classical limit `→ 0, we get

EA

1− ν2
∂2u

∂x21
− Itgu = 0,

where A = 2h is the transversal thickness of the plate and244

Itg = ρA

(
1− h2 ν2

3(1− ν)2
∂2

∂x21

)
∂2

∂t2
,
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Figure 8: Frequency spectrum of antisymmetric (flexural) Rayleigh-Lamb waves superposed
onto the leading order (green, dashed) and first correction approximation (red, dotted) for the
parameter set ψ = 1.5, J = 1.5 and H = 10.

corresponds to the result given in (Kaplunov et al., 1998, Eq.(7.4.3)) in the245

context of classical elasticity.246

The asymptotically consistent result (36) differs from any engineering theory247

of plate extensional vibrations. For example, by analogy with (Kaplunov et al.,248

1998, Eq.(7.4.3)), we can easily generalize our result outside plane strain249

EA

1− ν2

(
1

1 + ν
4̂+

1

1− ν
grad2 div2

)
u− Itgu = o, (37)

and this equation is in disagreement with Eqs.(16a,b) of Jomehzadeh et al.250

(2011). In fact, they differ by the very way microstructure operates: by affect-251

ing elastic stiffness and disregarding inertia there, the opposite occurring here.252

Interestingly, models agree to leading order under plane strain.253

We now consider the limit H → 0 of a plate whose thickness is much smaller254

than the microstructural length `. Then, we have255

EA

1− ν2
∂2u

∂x21
− ρA

{
1 +

ν2(1− 2ν)

3(1− ν)2
h2

∂2

∂x21

}
∂2u

∂t2
= 0, (38)

and rotational inertia operates in the same direction as translational inertia, i.e.256

the spectrum grows. Remarkably, in this limit, ` drops out.257
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6.2. Flexural plate model258

As in the classical situation, we seek for a quadratic approximation for the

fundamental flexural branch Ω ∼ κ2 � 1

Do = Ω2 − 2

[
1 +

2

3
H2(1− ψ−2)

]
κ4 +O(κ6),

corresponding to dispersive waves in a flexural plate

Lw =

[
ρA

∂2

∂t2
+
(
D` +D

) ∂4

∂x41

]
w = 0,

where L is the biharmonic wave operator, D = 2
3
Eh3

1−ν2 is the classical flexural259

rigidity of the plate and D` = 2AG`2 is the contribution of rotation gradients260

to bending rigidity. It is worth mentioning that the lack of the factor 2 in the261

expression for D` given in (Tsiatas, 2009, Eq.(23b)) is a consequence of the fact262

that the modified couple stress theory is adopted, whose curvature tensor off-263

diagonal components are half those given by the couple stress theory. Also, we264

note that D` = 3(1− ν)DH−2, whereupon this term is significant when H ∼ 1.265

In contrast, for H−1 � 1, the classical term dominates.266

Micro-inertia appears when first order correction terms are incorporated

Do = Ω2 − 2

[
1 +

2

3
H2(1− ψ−2)

]
κ4 +

[
2 + 4J2 +

3

2H2 (1− ψ−2) + 3
×

×
(

2
45

(
1− ψ−2

) (
27− 20ψ−2

)
H4 − 2 +

H√
2

coth
(√

2H
))]

κ2Ω2 + . . . ,

which corresponds to the asymptotic model267

(
D` +D

) ∂4w
∂x41

+ Itrw = 0. (39)

where we have defined the operator of modified transverse inertia

Itr = ρA

{
1−

[
2`2 +

J

ρ
+

D`

D +D`
×(

17− 7ν

45 (1− ν)
2

h4

`2
− `2

(
2− h√

2`
coth

√
2h
`

))] ∂2
∂x21

}
∂2

∂t2
.
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Here, microstructure adds to rotational inertia directly through 2`2 + J/ρ, but

it also contribute to/subtract from the classical term inasmuch as H ≷ 2.8265.

Eqs.(36) and (40) extend to microstructured plates the classical Kirchhoff-Love

theory with modified inertia presented in Kaplunov et al. (1998). Indeed, in the

limit as `→ 0 and setting J = 0, we get

D
∂4w

∂x41
+ Itrw = 0,

where Itr is the operator defined in (Kaplunov et al., 1998, Eq.(7.4.2)) for clas-268

sical elasticity and a general situation of strain (in contrast to plane-strain)269

Itr = ρA

(
1− h2 17−7ν

15(1−ν)
∂2

∂x21

)
∂2

∂t2
.

When we consider the first dispersion branch of the Timoshenko theory (Bhaskar,

2009, Eq.(2.7))

DT = Ω2 − 4

3
H2(1− ψ−2)κ4

(
1− (1 + ς)

I2
A
κ2
)
, I2 = 2

3h
3 = 1

3Ah
2,

we immediately see that the contribution of rotational inertia differs from that270

of the Kirchhoff-Rayleigh theory by the factor 1 + ς, where ς = E/(κTG) =271

2(1 + ν)κ−1T and κT is the shear correction factor. Assuming, with Bhaskar272

(2009), that ς ≈ 4, the final contribution is close to the asymptotic result for273

ν = 1
2 .274

Extension outside plane strain is straightforward275

(
D` +D

)
∇4w + Itrw = 0, (40)

where ∇4 is the bi-harmonic operator and Itr is generalized with the rotational276

inertia term 4̂ ∂2

∂t2 . Again, this result is at variance with the engineering theo-277

ries. In particular, in the classical limit, it does not correspond to the classical278

Kirchhoff-Rayleigh theory of plates279 [
D∇4 + ρA

(
1− I2

A
4
)
∂2

∂t2

]
w = 0,

by the factor 12
5 ≤

17−7ν
5(1−ν) ≤

27
5 in the rotational inertia term. Even more280

it disagrees with the engineering theory with size-dependence. For example,281
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Figure 9: Thickness-stretch modes in a plate: real wavespeed (a) and evanescent mode for a
semi-infinite domain (b)

according to (Jomehzadeh et al., 2011, Eq.(16c)), microstructure only affects282

the plate flexural rigidity and contributes nothing to rotational inertia, that is283

purely geometrical, just as in the classical case of Kirchhoff-Rayleigh plates. The284

same occurs, among many, in Ma et al. (2008) and in the Mindlin-like model285

Ma et al. (2011).286

Finally, we consider the limit H → 0, corresponding to the microstructure-287

dominated regime. Then, we find288

D` ∂
4w

∂x41
+ ρA

{
1−

(
1
2`

2 +
J

ρ

)
∂2

∂x21

}
∂2w

∂t2
= 0, (41)

which is independent of h. It so appears that, in this limit, flexural and elonga-289

tional waves depend in disjoint fashion on ` and h, respectively.290

7. High order modes291

We now consider the second branch of the spectrum (the first overtone) and292

its leading order approximation for Ω, κ� 1. This limit, which is named long-293

wave high-frequency (Kaplunov et al., 1998, §1.2), is capable of capturing the294

first cut-on frequency inasmuch as ε ∼ Ω� 1 and, as it will be presently seen,295

ε = H−1 for elongation or ε =
√
H2 + π2

4 J2 for flexural vibrations.296

7.1. Symmetric waves297

For symmetric waves, we assume Ω ∼ κ ∼ ε and find the expansion298

D2s = Ω2 − ψ2κsκ2 − Ω2
s0, (42)

where Ωs0 is the first cut-on frequency for symmetric waves (31) and refers to a299

thickness-stretch mode. In terms of the reduced model, this mode corresponds300

to squeezing and thickening of the cross-section, see Fig.9. The coefficient κs301
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may be given in closed form, but its expression is cumbersome and it is not302

reported here. Instead, we write it in the form of an asymptotic expansion in ε,303

namely κs = κ(0)
s + ε2κ(2)

s + . . . , and find304

κs = 1 +
16

πψ3
cot( 1

2πψ) + . . . , (43)

which corresponds to (Kaplunov et al., 1998, Eq.(1.2.23)). As expected, mi-305

crostructural effects only appear as first order correction terms. It is worth306

emphasizing that two regimes are possible: for κ(0)
s > 0, Ω2

s0 is really a cut-on307

and we have the wave equation308 [
�2s +

π2

4h2κ(0)
s

]
u = 0, (44)

where the wave operator �2s is connected to the real wave speed c2s = c̃L

√
κ(0)
s .

In this regime, the first branch describes a travelling thickness-stretch deforma-

tion mechanism as a tout string with the addition of pre-stress. In contrast,

for κ(0)
s < 0 (that first occurs in the range 1.21612 < ψ < 2), Ω2

s0 is locally

a cut-off and we obtain a decaying (evanescent) mode, which is important for

semi-infinite or finite domains, Fig.9(b) Nobili et al. (2020). Thus, an asymp-

totically consistent theory accounting for the first two branches of symmetric

waves is purely classical (
�2s +

π2

4h2κ(0)
s

)
�P1u = 0,

to leading order in ε.309

When moving to first correction terms, it may be observed that the coefficient310

of κ4 in the expansion of the frequency equation is O(ε2) and therefore simply311

the correction term312

κ(2)
s =

π

ψ

[
π
(
1
2 − J2

)
ψ +

(
J2 + 1

2

)
sin(πψ)

]
csc2

πψ

2
(45)

needs to be considered in (43). The quality of this refined approximation is313

very good and, in Fig.10, it is compared with the leading order approximation314

κ(0)
s and the full coefficient κs. It is most interesting to observe that there are315

special values for ψ, the first of which being ψ = 1.21612, such that κ(0)
s = 0316

and the correction term (45) becomes leading order.317
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Figure 10: Frequency spectrum for symmetric R-L waves (solid, black) superposed onto the
approximation (42) taking the leading order term (43) (green, dashed), the first correction
approximation κ(0)

s +ε2κ(2)
s (blue, dot-dashed) and the full coefficient κs (red, solid). It is clear

that the first order approximation is very efficient. Here, 1.21612 < ψ = 1.5 < 2 and we see
spectrum decay, which means that this is an evanescent mode for the plate (H = 10, J = 1.5)

7.2. Antisymmetric waves318

We now consider the second branch for antisymmetric waves, which is an319

antisymmetric thickness-shear mode. In terms of the cross-section of a plate320

model, this resembles shear-warping in the fashion considered by Timoshenko321

theories. Although now an explicit solution for the cut-on frequency equation322

(33) is not available, we can observe that, for H = 0, we have the single solution323

Ωo0 = J−1, while for H−1 → 0, we have the expansion324

Ωo0 =
π

2H

(
1 +

1
2 − J2

8H2
+ . . .

)
.

Consequently, to leading order, we adopt the composite expansion325

Ωo0 =
π

2
√
H2 + π2

4 J2
, (46)

which proves extremely accurate for ε = (H2 + π2

4 J2)−1/2 small, see Fig.11.326

Clearly, this expression for the first cut-on is non-classical. Thus, we assume327

Ω ∼ ε and the dispersion relation takes the form328

D2o = Ω2 − π2

4H2 + π2J2
− κoκ2. (47)

For the coefficient κo, an explicit expression is available but it is rather329

involved and we do not present it here. Instead, we observe that, in the330
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Figure 11: Cut-on frequencies for antisymmetric waves as a function of H for J = 0.2 (left)
and as a function of h for H = 0.2 (right), superposed onto the composite expansion (46) for
the first branch (red, dashed)
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microstructure-dominated regime,331

κo = 4 +
1

2J2
+

8J2
(
− 2
ψ2 + 60

π2 − 5
)

+ 60
π2 − 7

12J4
H2 + . . . , H � 1, (48)

while, in the classical limit, we retrieve (Kaplunov et al., 1998, Eq.(1.2.27))332

κo = 1 +
16

πψ
cot π

2ψ + . . . , H →∞.

Hence, we introduce the composite expansion333

κo =

(
1 + 16

πψ cot π
2ψ

)
H2 + π2

8

(
1 + 8J2

)
H2 + π2

4 J2
≥ 0, (49)

which is O(1) and achieves excellent accuracy for ε small, see Fig.12. Thus,

we have κ = O(ε) and we disregard the closest neighbourhood of the cut-on

frequency, that is to say that Ω − Ωo0 ∼ ε, see Erbaş et al. (2018) for more

details in the context of a Kirchhoff plates resting on a Winkler foundation.

Therefore, we retrieve the wave equation

�ow +
π2

(4h2 + π2

4 J/ρ)κo
w = 0,

with real speed co = c̃S
√κo > c̃S .334

In this equation, microstructure appears mostly (but not only) through

micro-inertia. In the classical limit, this approximation becomes purely clas-

sical and it can be compared with the second branch of the Timoshenko theory.

As observed in Bhaskar (2009), this second branch is able to capture the cut-on

frequency upon letting κT = π2/12, whence the requirement σ ≈ 4 demands

ν = 0.644, which is unacceptable. Besides, with this choice, Timoshenko second

branch has the form (Bhaskar, 2009, Eq.(2.7))

D2o = Ω2 − Ω2
o0

(
1 +

1 + σ

6
h2κ2

)
,

where Ωo0 = π
2H . This expression is clearly missing the O(ε2) term, in favour335

of the higher order contribution Ω2
o0κ

2.336

We conclude that an higher order theory accounting for the first two branches

of flexural waves is given by(
�o +

π2

(4h2 + π2

4 J/ρ)κo

)[(
D` +D

)
∇4 + ρA

∂2

∂t2

]
w = 0,

27



to leading order in ε.337

8. Conclusions338

We develop a new model for plate elongation and flexure, incorporating size-339

dependence, by asymptotic reduction of the elastodynamics of a thin plate made340

of elastic isotropic couple-stress material with micro-inertia. This model is con-341

sistent, in that it reproduces the dispersion features of the fundamental mode342

of the 3D body. It is also unique, it being only possible to refine the degree343

of approximation or the number of modes it captures. This is in contrast with344

the numerous models recently presented in the literature, which are obtained345

enforcing specific kinematical assumptions onto Hamilton’s principle (engineer-346

ing models). Consequently, these models may well differ in the elastic part,347

depending on the assumed kinematics, be it either Kirchhoff’s or Mindlin’s or348

many other’s. Conversely, models are very similar in the inertia terms, in which349

microstructure usually does not appear. This is because it is hardly possible to350

anticipate the actual distribution of inertia forces. Asymptotic reduction shows351

that the opposite holds true, in that the classical solution is the leading order352

approximation, while microstructure appears, as the first order correction, in353

the form of rotational inertia terms. As a noticeable exception, couple stresses354

contribute at leading order to the flexural rigidity of the plate, and this is indeed355

a result that we share with the engineering models.356

It is also noteworthy that asymptotic results are independent of the specific357

modification of the couple-stress theory that we may start from, namely reduced358

couple-stress or strain gradient effect. This shows that all couple-stress origi-359

nated models are equivalent, when it comes to dimensional-reduced theories.360

Conversely, micro-inertia plays an important role in some fundamental features361

of the Rayleigh-Lamb spectrum, and it cannot be neglected.362

When we turn to higher order models, we see that symmetric modes are fun-363

damentally classical, and therefore microstructure appears, again, as a correc-364

tion term. This is perhaps expected, since couple-stress theory provides results365

very similar to classical elasticity in terms of longitudinal waves. Conversely,366
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microstructure already determines the leading term approximation for antisym-367

metric thickness-shear modes. The resulting size-dependent approximation can368

be intended to incorporate shear deformations, in the spirit of Timoshenko.369

Finally, it is perhaps useful to compare the asymptotic approach with Mindlin’s370

(Mindlin and Yang, 2006; Graff, 2012), which adopts Taylor expansions in the371

thickness direction (an idea originally proposed by Poisson, cf.Love (1888)). De-372

spite the two methods being vastly different, the latter still exploits consistency373

with the 3D body dispersion features to set tunable parameters (Graff, 2012,374

§8.3.1). We conclude that spectrum consistency is a transversal concept, which375

is not tied to the realm of asymptotic reduction.376
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