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Abstract

This paper proposes the use of a novel control method based on interconnection and damping assignment–passivity-based

control (IDA-PBC) in order to address the aerial physical interaction (APhI) problem for a quadrotor unmanned aerial

vehicle (UAV). The apparent physical properties of the quadrotor are reshaped in order to achieve better APhI perfor-

mances, while ensuring the stability of the interaction through passivity preservation. The robustness of the IDA-PBC

method with respect to sensor noise is also analyzed. The direct measurement of the external wrench, needed to implement

the control method, is compared with the use of a nonlinear Lyapunov-based wrench observer and advantages/disadvan-

tages of both methods are discussed. The validity and practicability of the proposed APhI method is evaluated through

experiments, where for the first time in the literature, a lightweight all-in-one low-cost force/torque (F/T) sensor is used

onboard of a quadrotor. Two main scenarios are shown: a quadrotor responding to external disturbances while hovering

(physical human–quadrotor interaction), and the same quadrotor sliding with a rigid tool along an uneven ceiling surface

(inspection/painting-like task).
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1. Introduction

Aerial physical interaction (APhI) is the field in which a

flying robot maintains stable flight while physically inter-

acting with the environment. This is performed from the

physics point of view by exerting meaningful forces and

torques (wrenches) from the robot side to the environment,

while the flying robot is accepting the wrench reactions in

a stable and desired way.

Robots with flying capabilities, or aerial robots, are

appealing platforms for many researchers and engineers

because of their vast workspace (see Cai et al., 2014). In

particular, those with stationary flight capacity, e.g., the

vertical take-off and landing (VTOL) vehicles, are progres-

sively finding use in robotic tasks (e.g., helicopters as in

Naldi (2008) or ducted-fan designs as in Naldi et al.

(2010)). VTOL robots provide the convenience of hovering

around a fixed position, unlike fixed-wing aerial robots,

which require high cruise velocities for stable flight. This

ability of VTOL robots makes them suitable platforms to

be used for APhI or aerial manipulation tasks.

Quadrotors are one of the most cherished and preferred

VTOL designs in the literature, primarily due to their sym-

metric design, simple mechanics, and broad availability.

Four symmetrically aligned pairwise counter-rotating

propellers allow quadrotors to move in 3D space, which at

the same time makes them underactuated systems.

Although underactuation is a challenge for control of the

mechanical systems (see Fantoni and Lozano, 2002;

Spong, 1998), it has certain benefits, e.g., it paves the way

to low-weight and reduced-energy designs. In particular,

thanks to the underactuation, quadrotors can swiftly accel-

erate along the translational directions, hence perform agile

motions (see Mahony et al., 2016).

Aerial robots are used for many robotic tasks, e.g., for

surveillance, monitoring, filming, etc. All these tasks have

at least one thing in common: they avoid obstacles, hence a

physical interaction with their environment. Recently the

need for APhI has emerged, where the flying robot is

expected to exert meaningful wrenches to its environment

while being resilient to the counter-wrenches (reactions) in
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3LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Corresponding author:
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a stable and desired way. Since few years different methods

and designs for addressing this non-trivial problem have

been developed. Augugliaro and D’Andrea (2013) pre-

sented an admittance control framework allowing quadro-

tors to interact with humans physically. The controller

presented there is proposed for the partially linearized

translational dynamics in near-hovering configuration of

the robot, which provides a local solution in terms of physi-

cal interaction. A hybrid position and wrench control for

quadrotors was presented by Bellens et al. (2012), where

for dealing with poorly structured environment, an impe-

dance control has been exploited. Gioioso et al. (2014)

turned a standard near-hovering controller into a 3D force

controller, and implemented it on a quadrotor for effec-

tively exerting desired forces to its environment via a rigid

tool. Using quadrotors equipped with rigid tools for APhI

was further studied by Ha et al. (2015) and Nguyen and

Lee (2013), where the nonlinear quadrotor dynamics is

exploited for performing tool operations, e.g., screw-driv-

ing. Fumagalli et al. (2012b) presented the design of a

quadrotor VTOL robot for contact inspection purposes.

The controller presented there is a passivity-based control-

ler; shaping the potential energy of the quadrotor for setting

a desired stiffness behavior
1

(see also Mersha et al., 2011).

Developing controllers for nonlinear systems, which are

enjoying the passivity property, has been one of the most

evident methods in the field of control theory (for more

details on passivity and how it relates to the stability of the

linear/nonlinear systems, see Khalil (2001) and Sepulchre

et al. (1997)). Interconnection and damping assignment–

passivity-based control (IDA-PBC) is one of the most pow-

erful passivity-based control methods for controlling the

interactive behavior of physical systems, which allows

shaping the energetic properties of one or interconnected

multi system(s) in a power-preserving manner, such that

the conservation laws of the physics are respected (see the

details and its applicability in Ortega et al. (2002)). Very

recently it has been adopted for controlling aerial robots as

well. Acosta et al. (2014) presented control of an aerial

manipulator using IDA-PBC for tracking the desired trajec-

tories of the center of mass (CoM) of the overall system.

Guerrero et al. (2015) implemented IDA-PBC for suppres-

sing the swing of a cable attached to a quadrotor, which is

carrying a load at the other end of the cable.

For the first time in the literature we have presented an

IDA-PBC method for quadrotor unmanned aerial vehicles

(UAVs) for performing APhI tasks in Yüksel et al. (2014b),

and in Yüksel et al. (2014a) we proposed a novel wrench

estimation technique to be exploited for APhI with IDA-

PBC, where we have shown its effectiveness in simulations.

Differently from the already existing methods, this IDA-

PBC has been developed purely for quadrotors enabling

them to have meaningful physical interactions with their

environments for tasks, e.g., human–robot interaction or

sliding, using a rigid tool for painting, cleaning, or surface

inspection. This article extends our previous work in vari-

ous directions by: (i) studying for the first time the

robustness of this IDA-PBC method for the quadrotor

UAVs with respect to measurement noise in the form of

(34) for all states and in the form of (51) for external

wrench measurements; (ii) comparing experimentally the

wrench estimation strategy proposed in Yüksel et al.

(2014a) with a novel low-cost lightweight 6D force/torque

(F/T) sensor mounted on a quadrotor; (iii) implementing

for the first time a low-cost, lightweight, all-in-one F/T

sensor fully onboard of a free-flying quadrotor UAV for

APhI tasks; (iv) providing the first experimental results of

this IDA-PBC method for demanding APhI tasks, includ-

ing human–robot interaction and sliding on an uneven ceil-

ing surface.

This article is organized as follows. In Section 2.1, we

informally recall the IDA-PBC method for port-

Hamiltonian (PH) systems. Then, in Section 2.2, we pres-

ent the kinematics and dynamics of a quadrotor, where we

rewrite its dynamics in PH form. In Section 2.3, we present

the overall IDA-PBC method for quadrotor UAVs enabling

them for APhI tasks. Section 2.4 is where we study the

robustness of this controller against measurement noises,

e.g., from sensors that are providing positions, orientations,

their velocities, and the external force and torque values. In

Section 3, both estimation and measurement methods of

the external wrenches are presented. Here first a Lyapunov-

based nonlinear external wrench observer is recalled in

Section 3.1 and then in Section 3.2 we explain how to

implement a lightweight all-in-one 6D Force/Torque (F/T)

sensor onboard of a quadrotor. In Section 3.3, we compare

the performances of these two methods over each other

based on the experimental data and favor the use of F/T

sensor for APhI experiments. The experimental results are

provided in Section 4 for: (i) shaping the rotational inertia

of a quadrotor; (ii) sliding on an uneven ceiling surface

with a quadrotor equipped with a rigid tool; demonstrating

the power of IDA-PBC for APhI task of the quadrotor

UAVs and providing the experimental validation for our

theoretical contribution.

2. IDA-PBC for quadrotors

2.1. Preliminaries on IDA-PBC

Mechanical systems can be represented as PH systems, a

generalization of standard classical Hamiltonian mechanics

where the energetic properties are evident. IDA-PBC is a

passivity-based control strategy that allows a desired

dynamics to be assigned to the controlled system that can

be still represented as a PH system (see Ortega et al., 2002).

The most common representation of a PH system is as

follows:

_x= J (x)�R(x)½ � ∂H
∂x

+G(x)u

y=G(x)T ∂H
∂x
;

�
ð1Þ

where x 2 R
n is the state and H(x) : Rn ! Rø 0 represents

the total amount of energy (Hamiltonian) stored in the
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system. Matrices J (x)= � J (x)T and R(x)ø 0 represent

the internal energetic interconnections and the dissipation

of the PH system, respectively. Furthermore, G(x) is the

input matrix and the input–output pair hu, yi represents a

power port, namely a pair of variables whose product gives

the (generalized) power that is either stored or dissipated by

the system. A PH system is passive with respect to the pair

hu, yi (for more details, see, e.g., Secchi et al., 2007).

Then, using IDA-PBC from Ortega et al. (2002) and its

extension proposed in Wang et al. (2009), it is possible to

control a PH system in such a way that it behaves with a

certain target dynamics, i.e., like a new PH system with a

desired interconnection matrix, damping matrix, and energy

function, and even with a different state variable �x 2 R
n.

As reported in Yüksel et al. (2014b), let

x= F(�x, t) ð2Þ

be the map relating �x and x, where F and ∂F
∂�x are invertible

at any time t. Let J d , Rd , and Hd be the desired intercon-

nection matrix, dissipation matrix, and energy function,

respectively. The PH system in (1) can be transformed into

the target PH dynamics described by

_�x= J d(�x)�Rd(�x)½ � ∂Hd

∂�x
ð3Þ

using

u=G+(x)
∂F

∂�x
(J d(�x)�Rd(�x))

∂Hd

∂�x
�(J (x)�R(x)) ∂H

∂x
+

∂F

∂t

� �
;

ð4Þ

with G+(x)= (GT(x)G(x))�1GT(x) is the pseudoinverse

of G(x), if and only if the following matching equation

holds:

G?(x)
∂F

∂�x
(J d(�x)�Rd(�x))

∂Hd

∂�x
+
∂F

∂t
�(J (x)�R(x)) ∂H

∂x

� �
= 0;

ð5Þ

where G?(x) is the full rank left annihilator of G(x).

2.2. Quadrotor Model and its PH Form

A sketch of a quadrotor is presented in Figure 1,

where FW : fPW, xW, yW, zWg is the world frame,

FB : fPB, xB, yB, zBg is the body-fixed frame whose origin

PB is the center of mass (CoM) of the quadrotor. The orien-

tation of FB in FW is represented with a rotation matrix

R(h) 2 SO(3), which is a function of h = ½f u c�T 2 R
3

(roll–pitch–yaw angles) that is a minimal representation of

the orientation. The gravity vector is facing + zW and its

intensity is g 2 R.

The dynamics of a quadrotor is well known (see, e.g.,

Yüksel et al., 2014b). The translational one can be written

as

St : fm€pq = � utR(h)e3 + mge3 + fext ; ð6Þ

Fig. 1. A sketch of a quadrotor. Four propellers are placed

symmetrically on the body frame at a distance of dp 2 R
+ from

the CoM (PB). Each propeller rotates with a velocity Oi 2 R in

opposite direction with respect to its neighbor. Owing to the

design of the propellers, each of them generates a trust force

fi 2 R and a drag torque ti 2 R. Note that these forces and

torques are coupled, because fi = cf O2
i and ti = ctO2

i holds.

Hence, the system is underactuated with four control inputs

fO1,O2,O3,O4g, and it is trivial to find the constant mapping

from these velocities to u 2 R
4 of the system dynamics in

Section 2.2.

Fig. 2. Top: A sketch illustrating pictorially the idea of possibly

transforming the quadrotor into two quadrotors with apparent

different dynamics that react as two new physical systems to the

external solicitation. Bottom: IDA-PBC controller scheme, where

the pre-compensating control input is computed using (8) and all

other blocks are explained in Section 2.3 in detail.
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where pq = ½xq yq zq�T 2 R
3 is the Cartesian position of PB

in FW , m 2 R
+ is the mass of the quadrotor, ut 2 R is the

intensity of the total thrust force of the propellers acting at

PB, fext 2 R
3 represents the external forces acting at PB in

FW , and e3 = ½0 0 1�T. The rotational dynamics is

Sr :
Mqr _v = ½v�^Mqrv + ur + text

_h =T(h)v

�
ð7Þ

where Mqr 2 R
3× 3 is the rotational inertia matrix, v 2 R

3

is the body-frame angular velocity represented in FB,

T(h) 2 R
3× 3 is the transformation matrix from v to the

Euler rates _h, ur 2 R
3 is the total torque input expressed in

FB, and text 2 R
3 is the total external torque. The four-

dimensional control input of the quadrotor is denoted by

u= ½ut u
T
r �

T 2 R
4, and the external wrench by

wext = ½fText tText�
T 2 R

6. Finally, ½H�^ : R3 ! so(3) is the

skew-symmetric operator.

For implementing the IDA-PBC on the quadrotor, we

first bring the quadrotor dynamics into a PH formalization.
2

For this reason, we consider a pre-compensating control

input (similar to that in Lee et al. (2013) and also see

Figure 2) in the form of

ur =MqrT
�1 (� kdI+Q) _h + �ur + (I�M�1

qr )text

h i
Q=T _T�1 +TM�1

qr ½v�^MqrT
�1;

ð8Þ

where I is the identity matrix with proper dimension and

kd 2 R
+. Substituting (8) in (7), we obtain

€h = � kd _h + �ur + text: ð9Þ

Hence, after the pre-compensation given in (8), the

quadrotor dynamics is defined by (6) and (9). This

new system can be modeled as a mechanical PH system.

Let M= diag(½mI, I�) 2 R
6× 6 and define q= ½pTq hT�T =

½q1 � � � q6�T 2 R
6 and p=M _q 2 R

6 as the the configura-

tion and momentum variables, respectively. Furthermore,

let ui = ½ut �uTr �
T 2 R

4 be the input vector (see Figure 2 for

how ui enters the controller). The dynamics (6) and (9) can

be rewritten as

_q
_p

� �
=

0 I

�I 0

� �
� 0 0

0 R

� �� � ∂H
∂q
∂H
∂p

" #
+

0 0

G I

� �
ui

wext

� �
;

ð10Þ

where R= kdI models the dissipation introduced by (8),

and I and 0 stand for the identity and zero matrices of

proper dimensions, respectively. The total energy function

and the control input matrix G are given by

H(q, p)=
1

2
pTM�1p+ V (q)=

1

2
pTM�1p� mgq3; ð11Þ

G=
g1 0

0 I

� �
2 R

6× 4 with g1 = � Re3 2 R
3: ð12Þ

The following proposition holds.

Proposition 1. The system (10) is cyclo-passive with

respect to the pair

ui

wext

� �
,

GT ∂H
∂p

∂H
∂p

" #* +
:

Proof. Consider the energy function defined in (11). Using

(10) we obtain

_H = ∂TH
∂q

∂TH
∂p

h i _q

_p

� �

= � ∂TH

∂p
R ∂H

∂p
+

∂TH

∂p
Gui +

∂TH

∂p
wext:

ð13Þ

Considering that Rø 0 we obtain

_H ł
∂TH

∂p
Gui +

∂TH

∂p
wext ð14Þ

which proves the statement. j

Cyclo-passivity is an extension of the passivity property,

which requires the system to behave as a physical system

from an energetic point of view (i.e., that the energy intro-

duced into the system from the external world is either

stored or dissipated) but does not require the energy func-

tion being lower bounded. The meticulous reader can refer

to Willems (1972) for more details on cyclo-passivity.

2.3. IDA-PBC framework

Now let us show how one can use IDA-PBC method for

bringing the original system dynamics (10) into the desired

(target) one

_q
_�p

� �
=

0 I

�I 0

� �
� 0 0

0 Rd

� �� � ∂Hd

∂q
∂Hd

∂�p

" #
+

0

I

� �
�wext;

ð15Þ

where �p=Md _q is the new momentum associated to the

new inertia matrix Md = diag(½mdI,N�) 2 R
6× 6, md 2 R

+

is the desired mass, and N 2 R
3× 3 is a positive-definite

desired rotational inertia matrix. The desired energy function is

Hd =
1

2
�pTMd�p+ Vd(q); ð16Þ

where Vd is the desired potential energy satisfying the

matching condition of IDA-PBC (see (5)). The desired dis-

sipation matrix Rd has to be designed in order to assign a

desired viscous behavior to the new quadrotor dynamics,

while taking its underactuation into account. Finally
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�wext 2 R
6 is the best external wrench compensation that

can be achieved considering the underactuation of the

system.

The goal of imposing the different target dynamics given

in (15) is to let the system react in a different (desired) way

to the external solicitations, as if it was a physically differ-

ent system. Here we briefly recall the main steps for build-

ing the IDA-PBC controller for quadrotors. A more detailed

description can be found in Yüksel et al. (2014b).

The IDA-PBC control input is ui = ues + udi + uw + uo,

where the four low-level control inputs are defined as: i)

ues, energy shaping input; ii) udi, damping injection input;

iii) uw, external wrench compensation input; and iv) an addi-

tional high-level control input, uo 2 R
4, which can be used

for, e.g., position or F/T tracking. See also Figure 2 for a

sketch showing how all these control inputs are combined.

We start showing the computation of the energy shaping

control input.

2.3.1. Energy shaping. Consider the original system

dynamics (10) in the absence of any dissipative elements

and for now not considering any external disturbances:

_q
_p

� �
=

0 I

�I 0

� � ∂H
∂q
∂H
∂p

" #
+

0

G

� �
ues; ð17Þ

where the input ues has to be designed in order to obtain an

undamped controlled system with the desired energy func-

tion Hd and with the desired momentum �p, i.e., to obtain

_q
_�p

� �
=

0 I

�I 0

� � ∂Hd

∂q
∂Hd

∂�p

" #
: ð18Þ

It has been shown in Yüksel et al. (2014b) that for the sys-

tem at hand, the map (2) relating x= ½qT pT�T to

�x= ½qT �pT�T is actually

x= F(�x), F(�x)=F�x, F=
I 0

0 MM�1
d

� �
; ð19Þ

which implies that ∂F
∂�x =F, and ∂F

∂t
= 0: Under this circum-

stances, by choosing the energy shaping control input as

ues =G+ ∂H

∂q
�MM�1

d

∂Hd

∂q

� �
ð20Þ

we can modify the original undamped system (17) into the

target dynamics (18) if and only if the matching condition

given in (5) holds. In Yüksel et al. (2014b) we have shown

that choosing

Vd(q)= � mdgq3 + �Vd(h) ð21Þ

is one way to meet (5), when there are no singularities in

the quadrotor’s configuration and �Vd(h) is a ‘‘well-

behaved’’
3

energetic function from physics point of view,

e.g.,

�Vd =
1

2
hT

e Kphe

he = h� h�;
ð22Þ

where R
3× 3 3 Kp . 0 and the desired attitude

h�= ½f� u� c��T 2 R
3 is an orientation equilibrium away

from singularities, where the rotational potential reaches its

minimum.

Now we show how one can shape the dissipative beha-

vior of the quadrotor by using damping injection.

2.3.2. Damping injection. The IDA-PBC input can be

written as ui = ues + urest, where urest = udi + uw + uo. In

Yüksel et al. (2014b) it was shown that considering the

mapping in (19) and the fact that ∂H
∂p

= ∂Hd

∂�p , implementing

the control input ui = ues + urest (considering also (20)) on

the original system dynamics (10) will result in

_qq

_�p

" #
=

0 I

�I 0

� � ∂Hd

∂q

∂Hd

∂�p

" #
�

0 0

0 MdM
�1R

� � ∂H
∂q

∂Hd

∂�p

" #

+
0

MdM
�1G

� �
urest +

0

MdM
�1

� �
wext:

ð23Þ

Now decomposing the control input urest = udi + u
0

with

u
0
= uw + uo (see Figure 2) and setting

udi = � Kvy1; ð24Þ

where

y1 =GTM�TMT
d

∂Hd

∂�p
, Kv =

kT 0

0 KR

� �
2 R

4× 4

and implementing udi in (23) we obtain

_q

_�p

� �
=

0 I

�I 0

� �
�

0 0

0 Rd

� �� � ∂Hd

∂q

∂Hd

∂�p

" #

+
0

MdM
�1G

� �
u
0
+

0

MdM
�1

� �
wext;

ð25Þ

where Rd denotes the desired dissipation matrix, achieved

via damping injection for assigning a target viscous beha-

vior to the system.

Remark 1. The choice of Kv 2 R
4× 4 in (24) has to be

done in a way that the desired dissipation matrix Rd in

(25) is positive definite. It was shown in Yüksel et al.

(2014b) that this can be achieved for Kv = diag(½kT KR�),
where kT 2 R

+ and R
3× 3 3 KR . 0, with

kT = m
md

� �2
�kT

KR =N�1 �KR � kdNð ÞN�1;

(
ð26Þ

for any �kT 2 R
+ and R

3× 3 3 �KR . 0.
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2.3.3. External wrench compensation. The change of the

momentum for the desired (target) dynamics and the under-

actuation of the system introduces a scaling not only to the

control of the system, but also to the way the external

wrench wext influences the evolution of the system. Ideally

this wrench should influence the controlled system

dynamics in the same way it does for the original system

given in (10). Hence, a control action, called external

wrench compensation, needs to be taken into account to

eliminate this scaling. In Yüksel et al. (2014b) it was shown

that this can be done by applying the following control

input further in (25)

u
0
= uw + uo

uw =G+(MM�1
d (I�MdM

�1)wext);
ð27Þ

which leads to the following closed-loop system

_q

_�p

� �
=

0 I

�I 0

� �
�

0 0

0 Rd

� �� � ∂Hd

∂q

∂Hd

∂�p

" #
+

0

I

� �
�wext

+
0

MdM
�1G

� �
uo;

ð28Þ

that is the physically reshaped quadrotor with desired

(target) dynamics. Note that for uo = 0, (28) is identical

to (15).

Summarizing, the IDA-PBC control input in the form of

ui = ues + udi + uw + uo

ues =G+ ∂H

∂q
�MM�1

d

∂Hd

∂q

� �
udi = � KvG

TM�TMT
d

∂Hd

∂�p

uw =G+MM�1
d (I�MdM

�1)wext;

ð29Þ

brings the system described in (10) into (28), which has

desired ‘‘apparent’’ physical properties.

The control loop providing ui can be considered as a

low-level one, which is responsible for controlling the

APhI, and also accepts a high-level control input,

uo 2 R
4, which can be computed for, e.g., position or F/T

tracking.

Proposition 2. The controlled system (28) is cyclo-passive

with respect to the input–output pair:

uo

~wext

� �
,

GTM�TMT
d
∂Hd

∂�p
∂Hd

∂�p

" #* +
:

Proof. Consider the energy function defined in (16). Using

(28) we obtain:

_Hd = ∂THd

∂q
∂THd

∂�p

h i _q

_�p

� �

= � ∂THd

∂�p
Rd

∂Hd

∂�p
+

∂THd

∂�p
MdM

�1Guo

+
∂THd

∂�p
~wext:

ð30Þ

Considering that Rd ø 0 by taking Remark 1 in to

account, we obtain that

_Hd ł
∂THd

∂�p
MdM

�1Guo +
∂THd

∂�p
~wext ð31Þ

which proves the statement. j

2.4. Robustness of IDA-PBC

In this section, we provide a robustness analysis of the

IDA-PBC strategy presented above (considering the ui as

computed in (29)) against noisy measurements.
4

Remember

that this controller consists of three steps: (i) energy shap-

ing; (ii) damping injection; (iii) external wrench compensa-

tion. Our goal is to keep the analysis simple and isolate the

effects of disturbances on the single components of the

control action. Let us consider the PH formalization of the

system, which is not yet damped, and in which no external

wrench is apparent:

_q
_p

� �
=

0 I

�I 0

� � ∂H
∂q
∂H
∂p

" #
+

0

G

� �
ues; ð32Þ

where

G=
�R(h)e3 0

0 I

� �
, G+ =

�eT3RT(h) 0

0 I

� �
; ð33Þ

with G+ = (GTG)�1GT. Consider the noisy states, which

are used for computing the control inputs:

~q=
~pq

~h

� �
=

pq

h

� �
+

pqN

hN

� �
_~q=

_~pq

_~h

" #
=

_pq

_h

� �
+

_pqN

_hN

� �
;

ð34Þ

where ~q and _~q indicate the noisy measurements of the con-

figuration and of the velocity of the quadrotor CoM.

Furthermore, the terms pqN
, hN , _pqN

, and _hN indicate the

bounded noises/disturbances affecting the measurements.

2.4.1. Energy shaping analysis. For now, consider only the

energy shaping control input ues as given in (20), which can

be re-formalized as

ues =G+(h)
g
0

� �
�MM�1

d

gd

rhVd(h)

� �� �
; ð35Þ
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where g = ½0 0 � mg�T 2 R
3, gd = ½0 0 � mdg�T 2 R

3,

and r�f denotes ∂f

∂�.
Considering the noises in the measurements, the noisy

control input becomes

~ues =G+(~h)
g
0

� �
�MM�1

d

gd

r~hVd(~h)

� �� �
: ð36Þ

Now, considering the last three rows of (32), we can write

_p= �rqH(h)+G(h)ues = � g
0

� �
+G(h)ues: ð37Þ

Then, the way ~ues affects the system in (32) is

_p= �
g

0

� �
+G(h)~ues

= �
g

0

� �
+G(h)ues +G(h)(~ues � ues):

ð38Þ

Let us compute the explicit expression of the term G(h)ues.

Considering (35) together with (33), we can say

G(h)ues =G(h)G+(h)
g

0

� �
�MM�1

d

gd

rhVd(h)

� �� �

= �G(h)G+(h)
0

N�1rhVd(h)

� �

= �
0

N�1rhVd(h)

� �
:

ð39Þ

Thus, we can write (38) as

_p= � g
0

� �
� 0

N�1rhVd(h)

� �
+G(h)(~ues � ues): ð40Þ

Energy shaping control input reshapes the physics of the

system by not only by assigning a desired inertia but also

by changing its state from p=M _q to �p=Md _q, which con-

sidering (40) leads to

_�p=MdM
�1 _p

= �
gd

0

� �
�

0

rhVd(h)

� �
+ MdM

�1G(h)(~ues � ues)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wes

;

ð41Þ

where wes is the wrench due to the effect of the noisy state

disturbance to the energy shaping control input. Recalling

from (39) that

G(h)ues = � 0

N�1rhVd(h)

� �

G(h)~ues = � 0

N�1r~hVd(~h)

� �

and placing them in wes shown in (41), we can explicitly

compute the effect of the disturbance as

wes =MdM
�1

0

N�1rhVd(h)

� �
�

0

N�1r~hVd(~h)

� �� �

=
0

rhVd(h)

� �
�

0

r~hVd(~h)

� �
:

ð42Þ

Now, for a desired energy in the form of (21) and (22), we

can say that rhVd(h)=Kph and r~hVd(~h)=Kp~h. In

addition, recalling from (34) that ~h = h + hN , we can write

wes in (42) as

wes =
0

�KphN

� �
: ð43Þ

Thus, we can conclude that the effect of the noisy states on

the energy shaping step is given by a bounded torque only

and it does not generate disturbing forces for the transla-

tional dynamics.

2.4.2. Damping injection analysis. A similar analysis can

be done for the damping injection. From (24) we have that

udi =S(h) _q,

S(h)= � KvG
T(h)M�TMT

d

KV =
kT 0

0 KR

� �
;

ð44Þ

where the explicit expression of S(h) is

S(h)= � �kT
md

m
eT3 R

T(h) 0

0 KRN
T

� �
: ð45Þ

Now, similar to Section 2.4.1, and also recalling (10), the

way udi affects the system dynamics _p is through

G(h)udi. It affects the energy shaped system dynamics _�p
through MdM

�1G(h)udi. By proceeding as in the previ-

ous section, and considering the damping injection con-

trol input computed using the noisy states, i.e., ~udi, we

can write

MdM
�1G(h)~udi =MdM

�1G(h)S(~h) _~q

=MdM
�1G(h)(S(h) _q+ (S(~h) _~q� S(h) _q));

ð46Þ

from which we can see that the wrench generated by the

state noises in the damping injection control input is

wdi =MdM
�1G(h)(S(~h) _~q� S(h) _q): ð47Þ

After straightforward computations we can show that this

wrench is in the form of

wdi = � kT
m2

d

m2 R(h)e3e
T
3 (R

T(~h) _~pq � RT(h) _pq)

NKRN
T _hN

" #
: ð48Þ
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Thus, wdi is given by a bounded torque and by a force.

Since torques are fully actuated, the torque disturbances are

counter-actuated by the elastic potential and their effect is

only to change the equilibrium point. Forces are more dan-

gerous, because there may act along the underactuated

directions (x and y). However, note that these forces vanish

with a decreasing damping parameter kT , which is as

expected from any damping-based control action. In the

case of high noise magnitudes that might lead to destabiliz-

ing disturbance forces, a simple straightforward (and practi-

cal) solution may be reducing the damping gain kT ! 0. In

this way we do not inject additional damping on the trans-

lational direction and we keep only the aerodynamic damp-

ing that is acting on all directions, i.e., the system is still

cyclo-passive.

2.4.3. Wrench compensation analysis. From (27) the con-

trol input for external wrench compensation is

uw =K(h)wext

K(h)=G+(h)MM�1
d (I�MdM

�1);
ð49Þ

which, as the others before, enters to the original system

dynamics as G(h)uw, and to the desired (target) system

dynamics as MdM
�1G(h)uw.

Although we will follow the same procedure as before,

note that this time there could be two means of the noise

disturbance affecting the control input;
5

either on h or wext.

With this in mind, the noisy control input ~uw enters the

desired system dynamics as

MdM
�1G(h)~uw =MdM

�1G(h)K(~h)~wext; ð50Þ

where

~wext =wext +wextN =
fext

text

� �
+

fextN

textN

� �
ð51Þ

indicates the noisy wrench measurement with

wextN 2 R
6 is the bounded noise/disturbance affecting

this measurement. Then, following the same procedure

as in the previous section, we can find the wrench

appearing due to the noises in the wrench compensat-

ing control inputs as

wco =MdM
�1G(h)(K(~h)~wext � K(h)wext): ð52Þ

Now, let us analyze this wrench in different cases:

� noise only on wext

wco =MdM
�1G(h)K(h)(~wext � wext)

=
R(h)e3e

T
3 R

T(h)D 0

0 (I�N)

" #
wextN

ð53Þ

� noise only on h

wco =MdM
�1G(h)(K(~h)� K(h))wext

=
R(h)e3e

T
3 (R

T(~h)� RT(h))D 0

0 0

" #
wext

ð54Þ

� noise only on both wext and h

wco =MdM
�1G(h)(K(~h)� K(h))(~wext � wext)

=
R(h)e3e

T
3R

T(~h)D 0

0 (I�N)

" #
~wext

� R(h)e3e
T
3R

T(h)D 0

0 (I�N)

" #
wext

=
R(h)e3e

T
3 (R

T(~h)� RT(h))DfextN

(I�N)textN

" #
ð55Þ

where D= I m�md

m
.

Note that the effect of the measurement noises on the

external wrench compensating control input along the fully

actuated directions (rotational) are either bounded (which

can always be counteracted), or they never appear. On the

other hand, the disturbing forces due to the measurement

noises along the underactuated directions can be danger-

ous, which in each scenario can be canceled when setting

md = m ) D= 0.

In summary, dividing the IDA-PBC control input into

its components explicitly shows which part of it is more

problematic in terms of robustness against the noises (or

inaccuracy) on the measurements. The energy shaping

input ues is not affected by the noises along the underactu-

ated directions, and for the actuated directions the effect of

noise is bounded. The damping injection control input is

affected by the noises along the underactuated directions,

which is harder to deal with (it is also affected by the

noises along the actuated directions, but their effect only

disturbs the system around its equilibrium, which can

always be counteracted). However, by choosing kT ! 0,

one can avoid the wrenches caused by the noise. Similarly,

the external wrench compensating control input is also

affected by the noises, and it is again not trivial to compen-

sate for the disturbing forces along the underactuated direc-

tions. One idea might be to set md = m) D= 0, which

removes the effects of the noises along the underactuated

directions, however this would be a conservative action

since in this case one cannot assign a desired mass to the

quadrotor.

Note that the high-level external control input uo is still

free to use for dealing with the effects of the measurement

noises, which is a potential field of study in the scope of

our future works.

Remark 2. Here we presented a robustness analysis of the

control input ui against the noisy state and wrench mea-

surements. To this end, note that both the controller
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presented in Section 2.3 and the external wrench estima-

tion (to be presented in Section 3.1) are done for the CoM

of the system, namely the dynamics representing the

motion of point PB, that is the center of the quadrotor

body-fixed frame. Although the physical interaction consid-

ered in this paper is always through an interaction tool

(see Figure 3), its impact on the CoM dynamics is a matter

of kinematics (with negligible tool mass) and subject to the

rigid-body transformations, as also studied in Section 3.2.

Remark 3. We note that quantitative analysis on the

robustness of the proposed controller to parametric uncer-

tainties (e.g., mass, moment of inertia) is in the scope of

our future works. Moreover, considering the dynamics of

the interaction tool and controlling the tool-tip dynamics

instead of the CoM of the quadrotor is another direction

that extends the results of this paper.

3. External wrench: estimation versus

measurement

To achieve meaningful control of APhI, knowledge of the

external wrench is essential. Here we discuss two methods:

indirect (estimation) and direct (measurement). Each

method can overcome the other for different reasons. By

estimating the external wrench, one can avoid additional

hardware cost and weight (and, thus, increase the duration

of flight). In particular, for miniature VTOL quadrotors, the

load capacity is quite limited and they are not suited for car-

rying a heavy F/T transducer and its electronics. Moreover,

an estimator can be developed for any point on the flying

robot, whereas the information provided by the transducer

is limited to its location,
6

On the other hand, F/T sensors provide typically more

reliable measurements which are not affected by any

modeling or estimation error. While an estimator must rely

on the measurements of the other sensors, e.g., camera or

IMU, F/T sensors give accurate and independent measure-

ments. In particular, for outdoor implementations of the

quadrotors, using F/T sensors can be indispensable, because

the state estimation is already a challenging problem in out-

door environments.

In this section, we describe the external wrench estima-

tor proposed in Yüksel et al. (2014a). Then we provide a

measurement method using a low-cost lightweight 6D F/T

sensor placed onboard of a quadrotor. Finally, we compare

the results of these two methods in an experimental sce-

nario, and promote the use of the F/T sensors for APhI

tasks.

3.1. External wrench estimation

Wrench estimation for flying robots has been studied by

different robotics groups. In Augugliaro and D’Andrea

(2013) a Kalman filter is used to estimate the external force.

A more general method was proposed in Ruggiero et al.

(2014), where a residual momentum-based wrench estima-

tor for quadrotors is presented. This method was further

analyzed by Tomic and Haddadin (2014). In McKinnon

and Schoellig (2016) an algorithm based on unscented qua-

ternion estimator was used for estimating the external

wrenches acting on a quadrotor body.

In Yüksel et al. (2014a) we presented a nonlinear

Lyapunov-based disturbance observer for estimating the

external wrenches acting on a quadrotor. For that, we have

considered the Lagrange dynamics of the system as

wext =B(q)€q+C(q, _q) _q+ g�G(q)u; ð56Þ

with

Fig. 3. Placement of the interaction tool tip on top of the quadrotor: IMU (turquoise), F/T sensor (orange), and the rigid tool (gray)

and its tip (blue). This setup is later realized both as a CAD model and in reality as shown in Figure 4. The distances shown here

match with the real design.
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B(q)=
mI �
0 WMqr(h)

� �
=BT 2 R

6× 6;

G(q)=
�R(h)e3 0

0 I

� �
2 R

6× 4

C(q, _q)=
0 0

0 Cr(h, _h)

� �
2 R

6× 6, g=
�mge3

0

� �
;

ð57Þ

where WMqr(h)=T(h)TMqrT(h) 2 R
3× 3 is the rotational

inertia matrix with respect to FW and Cr(h, _h) 2 R
3× 3 is

the matrix representing the Coriolis terms for the rotational

dynamics. See more details in Yüksel et al. (2014a) and

Yüksel (2017).

It has been shown in Chen et al. (2000) and Nikoobin and

Haghighi (2009) that for a similar model (serial manipulator

arm), the following disturbance observer can be proposed

_̂wext =L(q, _q)(wext � ŵext)

= � L(q, _q)ŵext +L(q, _q)(B(q)€q+C(q, _q) _q

+ g�G(q)u);

ð58Þ

where ŵext = ½̂f
T

ext t̂Text�
T 2 R

6 is the estimated wrench and

L(q, _q) 2 R
6× 6 will be designed in order to ensure the con-

vergence of the observer. Note that we do not have any spe-

cific model of the external disturbance, hence we assume

_wext = 0. Then the observer error and its dynamics are

eo =wext � ŵext

_eo = _wext � _̂wext =L(q, _q)ŵext � L(q, _q)wext;
ð59Þ

which can be expressed as

_eo +L(qq, _qq)eo = 0: ð60Þ

This means that the choice of L(q, _q) will directly affect the

asymptotic stability of the error dynamics.

Note that in order to implement (58) one needs knowl-

edge of _q, _q, and €q, where for many platforms acceleration

measurements might not be reliable or not even available

(e.g., for quadrotors the angular accelerations are not avail-

able for the common platforms). For this purpose, we

define the auxiliary vector:

C = ŵext � g( _q): ð61Þ

Now, by taking the time derivative of (61) and equating it

to (58), and choosing

∂g( _q)

∂ _q
=L(q, _q)B(q); ð62Þ

we can find the dynamics of the nonlinear observer as

_C = � L(q, _q)C

+L(q, _q)(C(q, _q) _q+ g�G(q)u� g( _q))

ŵext = C + g( _q):

ð63Þ

As can be seen from (60), we must choose L(q, _q) in such a

way that the error dynamics become asymptotically stable.

Moreover, the decision made in (62) brings a strict depen-

dency of L(q, _q) on the choice of g( _q). We make the fol-

lowing choice:

g( _qq)= co _qq

L(q, _q)= coB(q)
�1;

ð64Þ

for co. 0 is the observer gain.

Proposition 3. Consider the wrench estimator (63) and

assume that the roll and pitch velocities are bounded, i.e.,

j _fj\~f and j _uj\~u, where ~f, ~u 2 R
+. If _wext = 0 holds and

if L(q, _q) is defined as in (64), then it is possible to have

ŵext ! wext.

Proof. We provide a sketch of the proof here; more details

can be found in Yüksel et al. (2014a). To do so, we will

show that the estimation error defined in (59) will asymp-

totically vanish because the error dynamics (60) is asymp-

totically stable at e= 0. Let

V (eo, q)= eTo B(q)eo ð65Þ

be a positive-definite candidate Lyapunov function.

Considering (60) and (62), we can write

_V = 2eToB _eo + eTo
_Beo = � 2eTo BLeo + eTo

_Beo

=� 2coe
T
o eo + eTo

_Beo:
ð66Þ

The first component of the right-hand side of (66) is nega-

tive definite for co 2 R
+. The second component has an

indefinite sign. Nevertheless, because B(q)=BT(q),
_B(q, _q) is symmetric and, therefore, its eigenvalues are real.

As j _fj\~f and j _uj\~u, from Yüksel et al. (2014a) and

Yüksel (2017), it is easy to find two finite numbers

a,b 2 R such that a\ _Bij\b, i, j 2 f1, . . . , 6g, where _Bij

is the ijth element of _B. Thus, as shown in Zhan (2006), it

is always possible to find a finite upper bound lB for all

the possible eigenvalues of _B(qq, _qq):

max
q, _q

lM
_B(q, _q)

 �

ł lB\‘; ð67Þ

where lMf _B(q, _qq)g is the maximum eigenvalue of _B(q, _q).
Thus, we have that

eTo
_Beo ł lBe

T
o eo: ð68Þ

It is therefore possible to choose a co. lB

2
that implies

_V is negative definite and that, therefore, eo(t)! 0, which

proves the statement. j

3.2. External wrench measurement

Measuring contact forces and torques is possible using F/T

sensors, which are already in use for robotic manipulators

and humanoids (see Siciliano and Khatib, 2008). Recently,
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they have been in use also in aerial robots. In Gioioso et al.

(2014), it was shown how a quadrotor can be turned into a

3D force tool, and for the experimental setup an F/T sensor

was used. In that work, like many others, the F/T sensor is

either placed in the environment, e.g., mounted on a wall,

or on the robot but only when it is not completely flying,

i.e., when the robot is fixed to a test bench as in Yu and

Ding (2012) and Schiano et al. (2014). One of the main

reasons why these sensors are not yet used on board of a

flying aerial vehicle is because of their weight. In particu-

lar, considering their electronics, e.g., the data acquisition

box, most of the aerial robots used in research projects are

not capable of flying with these sensors on board.

However, recently some lightweight 6D F/T sensors

appeared on the market. For the experiments of this paper,

we have decided to use the FTSens 6D F/T sensor, devel-

oped by the Italian Institute of Technology (IIT), as intro-

duced in Fumagalli et al. (2012a). This sensor weights

0.122 ½kg� including all the electronics and its costs is rela-

tively low w.r.t its pairs in the market. All these factors

make this sensor a suitable candidate to be used on board

of an aerial robot. This paves the way of using them as

direct measurement sources, which feed the wrench mea-

surements back to the control algorithms (e.g., the one

sketched in Figure 2). The details of the hardware and soft-

ware for the FTsens F/T sensor is given in Section 4.2, and

the experimental setup consisting of a quadrotor equipped

with this sensor is shown in Figure 4. To our best knowl-

edge, this is the first quadrotor setup in the literature, which

can freely fly with a 6D F/T sensor and its all electronics

onboard, and perform APhI tasks.

Now let us give the details of its usage on board of a

quadrotor VTOL. A sketch of our quadrotor and the F/T

sensor setup is given in Figure 3. On top of the F/T sensor

a rigid tool is placed, intended to be used as the interaction

tool with the environment (note that the mass of the manip-

ulation tool is part of the overall quadrotor mass, but it is

not considered separately for the controller.). We intention-

ally placed this rigid tool in a way, that there is jp=4j½rad�
between the tool tip and the quadrotor frame; so that the

propellers will be away from the obstacles when the tool-

tip is interacting with its environment. The CAD design of

this setup is shown in Figure 4, where we also present its

realization in detail.

Unlike a model-based indirect estimation method, e.g.,

that presented in Section 3.1, with using transducers our

measurements are limited to the location of the sensor.

Hence, now our goal is to compute the external wrenches

acting on different parts of the quadrotor, using the mea-

surements acquired from the F/T sensor and rigid-body

coordinate transformation methods. We had previously

defined FW : fPW, xW , yW , zWg as the world frame, and

FB : fPB, xB, yB, zBg as the body-fixed frame of the quad-

rotor. Now, let us define F S : fPS, xS , yS , zSg as the F/T

sensor frame. Assume that the inertial measurement unit

(IMU) frame is the same as FB. Then define

F Sb : fPS, xSb, ySb, zSbg as the frame of the F/T sensor,

after its orientation is aligned with the orientation of the

body-fixed frame. Then let us define the following wrench

information.

� The external wrench acting at and about the tip point of

the tool (PT ) is defined with wt 2 R
6 in FW , because

the external forces and torques are coming from the

world frame.
� The wrench measured by the sensor is defined with

~ws 2 R
6 in F S , because the measurements are taken in

the sensor frame.
� The wrench measured by the sensor and adapted to the

body frame is defined with ws 2 R
6 in F Sb, because

the sensor is fixed to the body of the quadrotor.
� The wrench entering the quadrotor dynamics is defined

with wext 2 R
6, where the forces are defined in FW

and the torques are in FB so equivalently in F Sb. This

is because of the choice made when writing the quad-

rotor equations of motion in Section 2.3, where the

translational dynamics is written in the world frame,

whereas the rotational dynamics is in the body

frame. Note also that the controller developed in this

paper accepts this wrench as an input (see also

Figure 2).

Now, it is clear that the only measurement we get is

~ws 2 R
6 in F S , but we need wext 2 R

6 for the controller

presented in Section 2.3, and maybe also wt 2 R
6 in FW

for visualization or for another type of controller. Then let

Fig. 4. Quadrotor with F/T sensor (FTSens) on board. This is

the experimental setup. Note that the CAD model is developed

based on the description in Figure 3, and so is the real robot.

Both the F/T sensor and the interaction tool are placed on top of

the quadrotor. The hardware for the CAN–USB communication,

is placed on the bottom of the robot. For this setup, m = 1:49kg,

and Mqr = diag(½0:01708, 0:0172, 0:0274�) 2 R
3× 3 in units of

kgm2.
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us clarify the following relationship between the different

wrench information.

� Find ws 2 R
6 in F Sb. To do so, change the F/T sensor

frame from F S to F Sb. Note that it can be done using

time invariant rotations only (see Figure 3 for the orien-

tations of the frames). More specifically, remembering

that F S : fPS, xS , yS, zSg and F Sb : fPS, xSb, ySb, zSbg,
we have

xSb

ySb

zSb

2
4

3
5=RB

S

xS

yS

zS

2
4

3
5, RB

S =RxS
(p)RzS

(p=4); ð69Þ

where R�S
is the rotation matrix defined in F S and around

the �-axis. Hence, if ~ws 2 R
6 is the measurement of the F/

T sensor defined in F S (because it is fixed in the sensor

frame), then

ws =
RB

S 0

0 RB
S

� �
~ws ð70Þ

is the measurement but defined
7

in F Sb. Note that RB
S is a

constant (time invariant) matrix, and 0 is a matrix that con-

sists of only zeros.

� Find wt 2 R
6 in FW . To do so, let us use the recently

computed ws. This can be done using the following

relation:

ws =
RB

W (h) 0

½dl�RB
W (h) RB

W (h)

� �
wt; ð71Þ

where RB
W (h) is the rotation matrix representing the orien-

tation of FW in FB, which is time variant owing to the

dependency of the quadrotor orientation h 2 R
3. Note that

dl 2 R
3 is the distance between PT and PS in F Sb frame,

8

and ½H�^ : R3 ! so(3) is the skew-symmetric operator.

Hence, using ws from (70), we can compute wt using the

relation in (71).

� Find wext 2 R
6. To do so, use the rigid transformation

from ws to wext:

wext =
RW

B (h) 0

½ds�RW
B (h) I

� �
ws; ð72Þ

where RW
B (h) is the rotation matrix representing the orien-

tation of FB in FW , I is an identity matrix, and ds is the

distance between PS and PB in FB, which is

ds = ½0 0 � 0:05� m.

Hence, for finding the effect of wt (defined in FW ) to

the body-fixed frame of the quadrotor (this effect is named

as wext in our convention), one can first use the F/T sensor

measurements ~ws in F S , then compute ws in F Sb, and then

finally use (72). For finding what wt exactly is, one can use

(71).

Note that when using the North, East, Down (NED) con-

vention, the rotation matrix from body to the world frame is

RW
B (h)=R where R 2 SO(3) as mentioned in Section 2.3

and it is true that RB
W (h)=RWT

B (h).

3.3. Comparison between estimation and direct

measurement

In Yüksel et al. (2014a) the numerical (simulative) results

of the wrench estimation (Section 3.1) have been presented.

There, decent wrench estimation performances have been

achieved, even when the noises of the other measurements

are taken into account. The performance of the proposed

Fig. 5. Comparison between the F/T sensor (see Section 3.2) and the observer (see Section 3.1). Only the measured/estimated forces

are shown, in units of Newtons. Raw sensor readings are depicted with blue curves, and the output of the observer is depicted with red

curves. Green is used for the measured forces that are low-pass filtered. Black curves are used when the bias of this low-pass filtered

data is removed in real time (which we used in our experiments in Section 4 when implementing the IDA-PBC method, with also

considering the transformations explained in Section 3.2). The magnified plots of each grayed box are placed close by for better

comparison of the different values.
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observer strongly relies on the choice of the observer gain

(see Yüksel et al., 2014a).

Although tuning this gain in the numerical simulations

was relatively easy, for the real experiments it was difficult

to find a compromise between the convergence of the esti-

mation and its performance, as will be shown in the follow-

ing comparison.

For the experimental setup, we used the aerial robot in

Figure 4, where the overall quadrotor is controlled using the

IDA-PBC controller (explained in Section 2.3). We then imple-

mented the nonlinear wrench observer (given in Section 3.1).

For the experiment we have disturbed the hovering quadrotor

by changing external forces and torques at the tip point of the

rigid link (see Figure 4), which is rigidly attached to the F/T

sensor that is placed on board of the quadrotor (more details of

the experimental setup are given in Section 4).

The online collected external force data are presented in

Figure 5, where the F/T sensor measurements (see the sen-

sor details in Section 4.2) are compared with the wrench

observer values.
9

The blue curves show the raw sensor

measurements and the green curves are low-pass filtered

versions of the blue ones. Further fine-tuning is done by

removing the sensor bias online and the result is depicted

with black curves. The observer data are shown in red. As

can be seen from Figure 5, the observer follows the sensor

data (which one may consider also as the ground truth), but

with some oscillations and even with some offset. This is

mainly due to the poor tuning of the observer gain co, and

partly due to the small imprecision of the mathematical

model. In particular for fex
and fey

, the observer performs

worse than the sensor data. However, note that for fez
, the

observer tracks the sensor data much better, because it is

the direction where the aerial platform is fully actuated.

Note that although the model errors, e.g., imprecise mass

of the system still causes some offsets, the overall estima-

tion is less oscillatory compared with fex
and fey

.

We also note that different estimation methods, e.g., that

in [McKinnon and Schoellig (2016)], might perform better

under certain conditions. However, it is noticeable that

using an F/T sensor allows the exact wrench information to

be acquired, independent from any system model.

Moreover, in this case the wrench information would not

be corrupted by any other sensor measurement, e.g., those

that provide the state of the robot (see ‘‘IMU’’ and

‘‘MoCap’’ in Section 4.1). There could be a case in which

the state of the robot might be miscalculated, which might

not be crucial when the robot is in free flight, i.e., not in

APhI, but in the case of APhI this might bring instability if

the wrench estimation is used in the controller. Such a case

can occur more frequently, especially when the robot is per-

forming an outdoor task, where accurate state estimation of

the flying robot is already a major challenge considering

different weather, light, and environmental conditions.

Consequently, using a low-cost, lightweight F/T sensor

could be a beneficial choice, providing robust and accurate

measurements for the indoor and future outdoor

experiments. For all these reasons, we chose to use the F/T

sensor setup for our APhI experiments in this paper.

4. Experiments

The experiments are managed using a stationary PC with

Linux 14.04 on it, which communicates with the experi-

mental setup (robot in Figure 4) through serial channels. In

addition to the codes embedded on board of the quadrotor

setup, all experiments are programmed in this PC in ROS-

Indigo environment and TeleKyb framework: an open-

source end-to-end ROS-based software for general-purpose

mobile robot control developed at Max Planck Institute for

Biological Cybernetics, Tübingen (for details, see Grabe

et al., 2013). High-level decisions, e.g., hovering, trajectory

assigning, or landing, are indicated to the robot using a

custom joystick.

The experimental setup consists of a quadrotor equipped

with various sensors including an F/T sensor on board. This

sensor is connected to a rigid interaction tool (see Figure 4).

We describe the individual parts of this setup in the following.

4.1. Quadrotor

The main body of the quadrotor setup is manufactured by

HiSystems GmbH, and named as a Mikrokopter

Quadrotor.
10

The overall setup (including the F/T sensor

and its electronics) weighs 1:49kg and from its CAD

model we computed its moment of inertia as

Mqr = diag(½0:01708, 0:0172, 0:0274�) 2 R
3× 3 in units

of kgm2.

The quadrotor has four rigid bars, connecting four

brushless motors (referred to as BL-Motors or BLDC)

and their propellers to the main body of the robot (see

Figure 4). Note that propellers are rigidly attached to

their motors, as well as the motors to the bars, and bars

to the body. On top of them there are four brushless

motor controllers (BL-CTRL), a flight controller with an

IMU on it and markers for a motion capture (MoCap)

system, in this order. Below the rigid bars there is a bat-

tery as the energy source.

Each BL-CTRL has one ATMEGA168 m-controller,
11

which is connected via I2C bus to a flight controller includ-

ing an IMU. All brushless motors, hence propeller veloci-

ties, depicted with Oi in Figure 1, are controlled using a

motor controller developed at LAAS-CNRS
12

(see also

Franchi and Mallet, 2017). Through a serial channel we

communicate with the flight controller, allowing us to read/

write data from/to both the flight controller and the brush-

less motor controllers.

For state estimation of the robot, we use an external

MoCap system (with six near-infrared cameras) and an

IMU on board of the quadrotor. The MoCap system pro-

vides the pose of the quadrotor, q= ½pTq ,hT�T 2 R
6 in the

world frame at 120Hz, whereas the IMU is giving the lin-

ear acceleration, €pq 2 R
3, in the world frame and the

Yüksel et al. 415



angular velocity of the body (in the body frame), v 2 R
3,

both at 1kHz. However, for the controller in Section 2.3

and the wrench estimator in Section 3.1 we need the state

of the quadrotor, i.e., q and _q, which is computed using an

unscented Kalman filter (UKF) developed at LAAS-

CNRS.
13

. This algorithm fuses both IMU and MoCap data

and provides an estimate of the quadrotor state at 1kHz.

4.2. F/T sensor

In our experiments we used the FTSens F/T sensor, pro-

duced by the Italian Institute of Technology (IIT) originally

for the ICub humanoid robots (see Fumagalli et al., 2012a)

There are two reasons why we chose this sensor: first, it

was relatively cheaper than its peers in the market; and, sec-

ond, it only weights 0:122kg together with its electronics.

This is definitely in the load range of our quadrotor. The

sensor is provided with proper calibrations by IIT for the

measurement range of interest. A challenge of using this

sensor was implementing the software for acquiring the

meaningful F/T measurements, from scratch. The FTSens

communicates through the controller area network (CAN)

bus channel, in which it receives the commands and sends

the sensor data based on the CAN protocol.

For this setup to work, both the computer and the sensor

need to be programmed properly. The software package we

have created for this sensor is available for the public use.
14

There we provide a description and the source codes for:

� setting up your computer (for both Intel or ARM pro-

cessors) for using the CAN–USB converter;
� getting the calibration data from the sensor and letting

it send the raw data to the computer.

The details on the communication protocol of the sensor

are available in the wiki-page of the ICub.
15

Using this

driver it is possible to receive the raw data from the

FTSens F/T sensor.

For processing this raw data, we implemented a ROS

(C++)-based software within the TeleKyb framework.
16

This software is tested with ROS-Indigo in Ubuntu 14.04

OS. It receives the raw data from the serial channel the sen-

sor is connected to (through a CAN–USB converter) and

as output returns the force and torque measurements in

meaningful units as a ROS message. In this way the output

can also be used by other ROS-based packages, e.g., the

controller tested in Sections 4.4 and 4.5. Note that this

code is strongly depended on both ROS and TeleKyb mes-

sage types and their existing packages. Its usage for our

experiments is also made available to the public,
17

but for

the initial access a permission from Max Planck Society

would be needed.

4.3. Position tracker

A high-level position tracker is used for steering the VTOL

quadrotor to a desired trajectory, while letting IDA-PBC

shape its physical properties. This tracking controller is

developed based on a position controller, as presented in

Lee et al. (2013). From the decoupling property of the

quadrotor, the rotational dynamics in (7) can be computed

independently from the translational dynamics given in (6).

Let us consider a desired position trajectory of the quadro-

tor as pd
q = ½xd

q yd
q zd

q �
T 2 R

3, and assume that fext = 0.

Then, following from Lee et al. (2013), and from the third

row of (6), the thrust input

uot
= � md

cfcu

(g +€zd
q + kdz

(_zd
q � _zq)+ kpz

(zd
q � zq)) ð73Þ

ensures the local exponential stability of (zd
q � z), as long

as cfcu 6¼ 0, which is violated only when the quadrotor

configuration is in a singularity that we avoid all the time.

The control gains kd� 2 Rø 0 and kp� 2 Rø 0 are used for

removing the velocity and position errors along the �-axes,

respectively, where �= fx, y, zg. From the first two rows

of (6) we have

md

€xq

€yq

� �
= � uot

cfcc sc

cfsc �cc

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
= :W(f,c)2R2× 2

su

sf

� �
; ð74Þ

where W is always invertible as long as cf 6¼ 0, which

means that the system is not in singularity. Then choosing

the following roll and pitch commands will make

(xd
q � xq, yd

q � yq) locally exponentially stable

�uc = sud

�fc = sfd

� �
= � mdW

�1

uot

€xd
q + kdx

( _xd
q � _xq)+ kpx

(xd
q � xq)

€yd
q + kdy

( _yd
q � _yq)+ kpy

(yd
q � yq)

" #
:

ð75Þ

In this step of the computations, let us define some

maximum boundaries to both roll and pitch commands,

preventing the system coming close to its singularities. In

our experiments, we choose fmax
c = umax

c = sin (rl), where

rl = 0:52326rad. Then let us implement the following soft

saturation for both roll and pitch commands:

fc =
2fmax

p
arctan (

�fc

2fmax
c

)

Fig. 6. Sketch of the control framework used for the

experiments. The position tracker is developed based on a

position controller, sending the desired attitude equilibrium h�

and the high-level control input uo to the IDA-PBC controller.
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uc =
2umax

c

p
arctan (

�uc

2umax
c

):

Then, the desired roll and pitch angles to steer the system

to the desired x and y configurations are

f�= arctan (fc), u�= arctan (uc): ð76Þ

Now, remember that in (22), we showed how one can

change the desired attitude equilibrium h�= ½f� u�c��T 2 R
3,

which shapes the desired potential energy of the system as,

Vd(q). Then using the desired attitude equilibrium f�, u�

from (76), and c� is chosen any arbitrary number, e.g.,

c�= 0, and placing this desired potential energy �Vd in (22)

and ultimately using in Vd(q); we make sure that the IDA-

PBC controller can steer the system to a desired xW � yW

configuration using the control input in (29), with the

desired physical behavior we have assigned to it. Moreover,

by choosing the high-level control input as

uo = ½uot
01× 3�T 2 R

4, and implementing it in (29), we can

let the quadrotor track a trajectory along the zW -axis with

desired physical properties. A sketch of this control scheme

is depicted in Figure 6 for fixing the ideas.

Remark 4. Note also from Figure 6 that the high-level

control input uo is providing only the additional thrust

input for tracking zd
q and its derivatives. Other desired tra-

jectories along the underactuated directions, i.e., xW and

yW , are tracked using solely the control inputs generated

by IDA-PBC, i.e., ui. However, to generate this input, we

actively compute a new desired attitude h�, which is done

using the near-hovering scheme presented in Section 4.3.

4.4. Shaping the inertia

As explained in Section 2.3, IDA-PBC is a powerful

method for controlling the physical interaction of the quad-

rotor by shaping its physical properties, through

Fig. 7. Top: Quadrotor equipped with an F/T sensor (see details of the setup in Section 3.2) is about to be disturbed by an external

interaction from the tip point of the rigid tool, during the hovering condition. For security reasons, a cable with no tension is

connected to the system from the top. Bottom: System response (second-order rotational dynamics) to the external disturbances

around the yB-axis. Two cases are compared: system with bigger desired inertia (denoted with superscript �b) and system with smaller

desired inertia (denoted with �s). Our proposed controller is used to assign the desired inertial properties, together with a high-level

position controller described in Section 4.3.
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passivation. To test this in real experiments, we first bring

the quadrotor to a hovering condition using the controller

depicted in Figure 6. Then the flying system is disturbed

with an external interaction on top of its tool tip, as

shown in the top of Figure 7. We repeat this twice: first,

the IDA-PBC controller is tuned for a smaller desired iner-

tia (for the target dynamics) N= diag(½0:008, 0:008,
0:0274�) 2 R

3× 3, and then it is tuned for a bigger desired

inertia N= diag(½0:03, 0:03, 0:0274�) 2 R
3× 3, only around

the xB- and yB-axes. Remember from Figure 4 that the

mass of the real system is m = 1:49kg, and its rotational

inertia is Mqr = diag(½0:01708, 0:0172, 0:0274�) 2 R
3× 3.

The results are given on the bottom of Figure 7. For

brevity, we only show the response of the second-order

rotational dynamics to the external torque around the yB-

axis. In the figure, superscript �s denotes the measurements

of the smaller desired inertia case, whereas �b denotes the

bigger desired inertia case. Note that the external torques

for both cases (i.e., ts
ey
, tb

ey
, depicted with black solid and

dashed magenta lines, respectively) are the same. However,

the pitch orientations (i.e., us, ub, depicted with gold and

purple solid lines, respectively) are different from each

other. Owing to the position tracker implemented

together with IDA-PBC (see Figure 6), in both cases the

quadrotor returns to its equilibrium after the distur-

bances. This creates a virtual rotational spring effect,

making the system oscillate around its equilibrium until

it reaches a region of attraction. Note the difference

between the settling times of the two different cases;

when the desired inertia is bigger, it takes longer for the

Fig. 8. Top: A series of snapshots (from (a) to (f)) from the experiments. The quadrotor setup as shown in Figure 4 is sliding on a

blue-colored uneven ceiling surface. The tip of the rigid tool is in contact with the ceiling, and its bottom is rigidly attached to the F/T

sensor and the quadrotor body frame. The overall system is secured with a slack cable connected to a stick, to avoid any dangerous

crashes. Bottom: Experimental results for a quadrotor + rigid tool sliding on an uneven surface. Results for the system with the

smaller desired inertia are depicted with gold curves, and the system with bigger desired inertia with purple curves. Three important

time instants for zq are highlighted with black dashed vertical lines; the moment before the dent (c), at the end of the dent and before

the bulge (e), and the moment at the end of the bulge (f). Clearly, the system with bigger desired inertia follows the profile of the

ceiling better than the one with the smaller desired inertia.
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system to reach its steady state than when the desired

inertia is smaller. This is in line with the fact that for a

rotational mass–spring–damper system with constant

spring,
18

returning to its equilibrium would take longer

when the rotational mass is greater.

This experiment and its results can be imagined for a

human–robot physical interaction scenario, where we wish

the flying robot to be able to physically interact with a

human, and return to its equilibrium position as swiftly as

possible. In such case one should aim at a flying robot with

a smaller inertia than the original system has. Our control-

ler provides here a controlled system with a desired physi-

cal interactive behavior.

4.5. Sliding on an uneven ceiling surface

Here we present some experimental results of the quadro-

tor + rigid tool setup, sliding on an uneven ceiling surface.

The purpose of the experiments is to show that by reshap-

ing the inertia of the system using our proposed method, we

can change the performance of the APhI task, e.g., letting

the quadrotor slide on the ceiling surface with a better con-

tact profile.

The quadrotor + rigid tool setup is controlled using the

method depicted in Figure 6, where the system is steered

via joystick commands, which are provided by a human

observer. Although the physical interaction is controlled

autonomously, by bringing the human into the loop we aim

at bringing some level of security to the system for avoid-

ing an unexpected crash, and also pave the way for future

human-in-the-loop experiments for APhI. The latter is

especially in the scope of our future research, by consider-

ing the utilization of a haptic device, which allows bilateral

control of the robot (see Franchi et al., 2012).

The results of the experiments are given in Figure 8.

There, we compare two cases: quadrotor controlled with a

small desired inertia, i.e., N= diag(½0:004, 0:004,
0:0274�) 2 R

3× 3, and with a big desired inertia, i.e.,

N= diag(½0:014, 0:014, 0:0274�) 2 R
3× 3. Note that the

desired inertias are assigned only around xB- and yB-axes,

whereas for the rotations around zB it is same as the origi-

nal system. On the top of Figure 8 several snapshots from

the experiments are given, where: (a) the quadrotor + rigid

tool is first time in contact with the ceiling surface; (b) it is

sliding on the even part of the ceiling; (c) just before the

dent; (d) right after the dent; (e) just before a bulge which

is built smoothly; (f) right after the bulge.
19

The bottom of the figure shows the results, where gold

solid curves show the response of the system with smaller

desired inertia, and the purple solid curves for the system

with bigger desired inertia. The contact forces acquired

from the F/T sensor along the z-axis are given as the first

plot, and below it the zq position of the quadrotor is shown.

Two plots in the second column show the roll (f) and pitch

(u) values. Note that the system with a bigger desired iner-

tia (purple) preserves its contact with the ceiling much

better than that with a smaller desired inertia (gold), despite

the uneven profile of the surface. A smaller desired inertia,

in this case N= diag(½0:004, 0:004, 0:0274�) 2 R
3× 3,

causes more oscillations for the system along the zW axis

(zq, up and down) and also around its rotational axes (see

f, u). When we implement the controller to obtain a

bigger desired inertia, i.e., N = diag(½0:014, 0:014,
0:0274�) 2 R

3× 3, these oscillations are reduced and the

contact with the surface during sliding became much better

(note especially the plot of the contact forces in Figure 8).

This result is in line with the numerical simulations of both

Yüksel et al. (2014b) and Yüksel et al. (2014a).

This experiment and its results can be interpreted as a

robot–environment physical interaction scenario, where we

wish the flying robot to slide on a ceiling surface, e.g., for

cleaning or painting task. In such a case, we might wish

for a flying robot with a greater inertia than the original

system, and our proposed method can provide this while

ensuring the passivity (with strong implication of stability)

of the controlled system.

We note that in Figure 8, even when the system is con-

trolled for a bigger desired inertia, some small oscillations

appear during the contact. This can be further improved by

shaping the dissipation of the system, changing, e.g., kT ,

given in (26).

We refer the reader to Extension 1 for a better visualiza-

tion of the experimental results.

5. Conclusions

In this paper, we have presented an IDA-PBC method for

reshaping the physical properties of a quadrotor, a robust-

ness analysis, and the first experimental results for different

APhI tasks. For performing APhI, the controller requires

knowledge of the external forces and torques, and in this

paper we have implemented and discussed two methods:

(indirect) estimation and (direct) measurement of the exter-

nal wrenches. Although each method overcomes another

for different reasons, we chose to use a lightweight low-cost

6D F/T sensor on board of a quadrotor for APhI, because

of the results presented in Figure 5, and considering future

outdoor APhI applications. To the best of the authors’

knowledge, this is the first study of a quadrotor flying

freely and performing an APhI task, with a 6D F/T sensor

and its complete electronics on board of this flying plat-

form. Moreover, for the first time we have presented the

experimental results of controlling a quadrotor with IDA-

PBC for APhI, in which the system is sliding on an uneven

ceiling surface. This task can be interpreted in a later stage

as surface inspection, painting, or cleaning.

There are several possible future extensions of this work.

First, thus far we have not really taken advantage of the

high-level control input uo, except in the way shown in

Section 4.3. The employment of this control input for, e.g.,

F/T tracking or accounting for noise effects mentioned in

Section 2.4 is in the scope of our future work. Furthermore,
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looking at the results in Figure 8, the contact profile with

an uneven surface during sliding can be further improved

by changing the dissipative parameters, e.g., kT , and also

the desired mass md , but considering the limitations

imposed by the robustness analysis from Section 2.4.
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Notes

1. Potential energy is only one of the factors affecting the way a

mechanical system interacts with the environment. Inertial

properties and damping also play a major role for determin-

ing the interactive behavior. Furthermore, because the direc-

tion of the thrust of a quadrotor depends on the orientation

of the system, it is not sufficient to shape the Cartesian impe-

dance for achieving an effective control of interaction. In

light of this, we improved this controller in Yüksel et al.

(2014b), which is recalled and reformulated in Section 2.

2. Even though IDA-PBC has been extended to generic affine

systems in Astolfi and Ortega (2009), starting from a PH

dynamics is helpful for achieving simpler matching equations.

3. That is, it is a positive-definite differentiable energy function

with a minimum at the desired equilibrium.

4. Note that the robustness of the pre-compensating control

input in (8) was evidenced in Section III of Lee et al. (2013).

5. Clearly from (49), the noises on the other states do not affect

the wrench compensating control input.

6. Note that the external wrench information acquired from dif-

ferent parts of the robot except its CoM can still be used for

the IDA-PBC framework presented in Section 2 by applying

rigid transformations. In addition, note that the control can

also be reformulated for points of interest different than the

CoM.

7. This implies the following: from the F/T sensor we get

~ws 2 R
6 which is naturally given in the sensor body frame,

F S . However, for our convenience we want to transform it

into ws defined in F Sb, because it has the same orientation

as the body frame of the quadrotor. To do so, we apply (70).

8. Note that if �dl is the distance between PT and PS in F S , then

according to Figure 3 it is true that dl =RB
S
�dl, where

�dl = ½0:2 0 0:15�T m.

9. Note the zoomed grayed-out parts of the figure, which are

clearly showing the superior performance of the F/T sensor

measurements over the estimations. Although the estimation

performance can be improved by better tuning, this would

be a model-dependent approach, which might be a challen-

ging task if the system is hard to model.

10. See http://www.mikrokopter.de/en/home

11. See http://wiki.mikrokopter.de/en/BL-Ctrl_2.0

12. See https://git.openrobots.org/projects/tk3-mikrokopter

13. See http://robotpkg.openrobots.org/robotpkg/localization/

pom-genom3/index.html

14. See https://redmine.laas.fr/projects/byueksel/repository/ftsens_ iit

15. See http://wiki.icub.org/wiki/FT_sensor

16. See https://svn.tuebingen.mpg.de/humus-telekyb/hydro/trunk/

packages/telekyb_users/tk_byueksel/src/ftsens_subpub.cpp

17. See https://svn.tuebingen.mpg.de/humus-telekyb/hydro/trunk/

packages/telekyb_users/tk_byueksel/

18. Note that the spring effect is due to the choice of the rota-

tional desired inertia �Vd , damping is due to the damping

injection implemented inside of the IDA-PBC, and the angu-

lar mass is the desired inertia N.

19. Note that the experiments are performed in a limited envi-

ronment, because the artificial ceiling we have built in-house

has a limited size (1:73m in longitudinal direction). On the

other hand, this was not the case for the simulations of

Yüksel et al. (2014b), where the quadrotor was able to slide

on a surface for a couple of hundred meters.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Visualization of the experimental
results
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