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Since the pioneering NCI-60 panel of the late’80’s, several major screenings of genetic

profiling and drug testing in cancer cell lines have been conducted to investigate how

genetic backgrounds and transcriptional patterns shape cancer’s response to therapy

and to identify disease-specific genes associated with drug response. Historically,

pharmacogenomics screenings have been largely heterogeneous in terms of investigated

cell lines, assay technologies, number of compounds, type and quality of genomic

data, and methods for their computational analysis. The analysis of this enormous and

heterogeneous amount of data required the development of computational methods for

the integration of genomic profiles with drug responses across multiple screenings. Here,

we will review the computational tools that have been developed to integrate cancer

cell lines’ genomic profiles and sensitivity to small molecule perturbations obtained from

different screenings.

Keywords: genomics, pharmacogenomics, integration, bioinformatics, online databases

INTRODUCTION

Clinical responses to cancer treatment are strongly influenced by the patient’s genomic landscape,
pushing modern therapeutics toward a more personalized approach (1). To this end, despite
their inability to reflect many aspects of a drug’s behavior in the human body, cancer cell lines
have been the most widely used models to explore the molecular basis of drug activity. Indeed,
since the NCI-60 project, several major screenings of unite genetic profiling and drug testing
have been created to investigate how genomic portraits can shape cancer response to therapy.
These efforts required the definition of integrated frameworks that, leveraging on high-throughput
technologies and computational methods, addressed the identification of genomic factors of
cancer vulnerability associated with drug sensitivity. The NCI-60 project (https://dtp.cancer.gov/
discovery_development/nci-60/) has been the first extensive screening of a massive number of
chemical compounds (>50,000) on a well-defined set of cancer cell lines (60 across nine different
tumoral tissues) (2, 3). Building on the NCI-60 approach, several other projects investigated the
interplay between genomic backgrounds and responses to drug treatment in cancer cell lines
(Figure 1A). All cancer cell line screenings basically adopt two approaches. In the first strategy,
the molecular profiles of untreated cells and their response to various compounds are investigated
in parallel to assess or predict how the molecular portraits determine intrinsic cell sensitivity and
resistance to drugs or potential drugs. In the second, cell lines are profiled both before and after
treatment to assess how their expression profiles respond to perturbation by the various agents
tested. In particular, the Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/
ccle) project fully characterized themolecular profiles of more than 1,000 untreated cancer cell lines
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along with their response to a panel of 24 Food and Drug
Administration (FDA)-approved drugs (4–6). Similarly, the
Genomics of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org) and the Cancer Therapeutics Response
Portal (CTRP, http://portals.broadinstitute.org/ctrp/) linked
genomic features of more than 800 cancer cell lines to their
sensitivity to hundreds of chemical compounds comprising
FDA-approved drugs, clinical candidates, and small molecules
(7–11). Conversely, the Connectivity Map (CMap) and its
recent development, L1000 (CLUE, https://clue.io), profiled
cancer cell lines before and after the treatment with several
chemical compounds and genomic perturbagens, retrieving
gene signatures directly associated to their administration
(12–14). Although these screenings share a similar experimental
pipeline, most of the produced data are heterogeneous and
lack concordance in terms of investigated cell lines, tested
compounds, and genomic information. In this review, we will
describe some computational tools for the integrative analysis of
data from different pharmacogenomics resources.

INTEGRATIVE ANALYSIS OF GENOMICS
AND PHARMACOLOGICAL DATA

Inspired by the NCI-60 project, several collaborative efforts
scaled up the number of cancer cell lines investigated in
pharmacogenomics studies from the original 60 to more than
1,400, planning to reach over 10,000 publicly available cancer
models in the near future (15). The massive amount of
genomic and drug response data generated by these screenings
are commonly collected in databases that, through dedicated
web portals, provide direct insights into potential interactions
between the analyzed cancer cell lines and the tested drugs.
These databases are commonly equipped with computational
resources specifically designed for the navigation and the analysis
of the pharmacogenomics data, as for instance GDSCTools (16),
CellMiner (17), Enrichr (18), L1000 Viewer (19), PharmacoGx,
and PharmacoDB (20, 21), and the recently deployed RING (22).
However, most of these tools are database specific and have
limited capabilities in integrating data obtained from different
screenings. This limitation is mostly due to the heterogeneity
of data provided by the various studies, with drug tests not
standardized across projects and genomic profiling not always
available for the entire panel of cell lines. In addition, data are
often unbalanced, with experiments comprising a high number
of cell lines screened on few drugs (e.g., CCLE and GDSC) and,
vice versa, screenings of large pools of chemical compounds
performed on small cohorts of cancer cell lines (as in the NCI-
60). Finally, while genomic data are rather homogeneous and can
be easily integrated across studies after removing batch effects,
pharmacological data derived from distinct experimental designs
must be kept separate as they are profoundly different in terms
of analytical assays, tested drug concentration, and retrieved
inhibitory potential (23, 24). Despite these intrinsic limitations,
several approaches have been proposed for the integrative
analysis of genomics and pharmacological data collected from
different screenings (Figure 1B). In particular, CellMinerCDB

combines genomic profiles from NCI-60, CCLE, GDSC, and
CTRP with the pharmacological data provided by the NCI-60
screening (25); the Genomics and Drugs integrated Analysis
portal (GDA) integrates pharmacological data derived from the
NCI-60 with the genomic information of NCI-60 and CCLE
(26); and the CMap enables the investigation of the L1000
data through the correlation of gene lists and transcriptional
signatures modulated by the drug treatment (12, 14, 27).

CellMinerCDB: Integrative Cross-Database
Genomics and Pharmacogenomics
Analyses
CellMinerCDB (https://discover.nci.nih.gov/cellminercdb/)
expands the analysis power of CellMiner, the original NCI-60
analysis tool, with the integration of the cancer cell line data
from the Sanger/Massachusetts General Hospital GDSC, the
Broad/Novartis CCLE, and the Broad CTRP (25, 28). The
integrated database comprises all molecular profiles of almost
1,400 different cancer cell lines, together with drug activity for
more than 20,000 compounds. The guiding element, used to link
pharmacological information to genomic data from different
sources, is the set of common cancer cell lines between the
NCI-60 and the other resources, with 55 NCI-60 lines shared
with GDSC, 44 with CCLE, and 671 in common between CCLE
and GDSC. CellMinerCDB performs correlation analyses to
investigate and visualize relationships between the drug activity
of a compound and the specific profile of a selected molecular
feature across all the available cell lines (univariate analysis). In
addition, linear regression methods are implemented for the
integrative analysis of multiple identifiers (multivariate analysis).
The confidence of the associations is assessed by statistical
analyses conducted through a basic linear regression model or
using least absolute shrinkage and selection operator (LASSO).
An interesting feature of CellMinerCDB is the possibility to
compare patterns associated to either drug activity or molecular
data via the Compare Pattern function of the univariate analysis
search. This analysis allows the identification of genomic
determinants of drug response, as exemplified by the connection
found between the expression of Schlafen 11 (SLFN11) and the
response to several DNA-targeted anticancer drugs as platinum
derivatives, topoisomerase inhibitors, and poly (ADP-ribose)
polymerase (PARP) inhibitors (25).

Genomics and Drugs Integrated Analysis
GDA (gda.unimore.it/) is a web-based tool designed for the
integrative analysis of drug response, mutations, and gene
expression profiles derived from the NCI-60 consortium and
the CCLE (26, 29). GDA comprises 73 cancer cell lines shared
by NCI-60 and CCLE and treated with 50,816 compounds and
integrates the drug response data from the NCI-60 screening
with the mutations and genomic information derived from
both CCLE and NCI-60. GDA allows four different types of
analyses, namely, from drug to gene, from gene to drug, from
signature to drug, and from drug to signature. Pharmacological
and genomic data can be queried to identify drugs correlated to
gene mutations (from gene to drug), gene mutations associated
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FIGURE 1 | (A) Summary of the major resources of pharmacogenomics data in terms of number of cell lines with genomic data, represented tissues, tested

compounds, and type of genomic information. NCI-60; CCLE, Cancer Cell Line Encyclopedia; GDSC, Genomics of Drug Sensitivity in Cancer; CTRP, Cancer

Therapeutic Response Portal; CMap, Connectivity Map. (B) Main characteristics of CellMinerCDB, Genomics and Drugs integrated Analysis portal (GDA), and CMap,

the computational resources for the integrative analysis of pharmacogenomics data that are described in this review. LASSO, least absolute shrinkage and

selection operator.

to drug responses (from drug to gene), and drugs associated to
active gene signatures (from signature to drug). Starting from
a drug correlated to gene mutations, gene expression profiles
can be used to identify genes differentially expressed in cell
lines sensitive to the selected compound. The statistics behind
GDA is based on drug response data. Basically, all pairs of
cell lines and drugs are defined as responsive if the relative
sensitivity is smaller than two standard deviations of the left
tail of the distribution of all relative sensitivities, and non-
responsive otherwise. Based on genomic data, cell lines are
classified as mutant if treated with the compound and carrying
the selected set of mutations and as wild type if treated with the
compound but without the specific set of mutations. Given these
classifications, compounds are ranked using a score defined by

the fraction of responsive in mutant multiplied by the fraction
of non-responders in wild type. This score ranks each drug
based on the enrichment of responsive in the mutant group.
The statistical significance of this ranking is computed using a
one-tailed Fisher’s exact test for the enrichment of responsive
in mutant as compared to non-responsive in wild type, given
the number of non-responsive in mutant and responsive in
wild type. Results are accessible through interactive graphical
representations and tables and can be directly fed to external
tools as Enrichr for functional annotation (18). When used to
identify compounds able to inhibit the proliferation potential of
cancer cell lines with aberrant nuclear YAP/TAZ activation, GDA
retrieved imatinib analogs and statins as potentially active drugs.
Following GDA indications, in vitro studies demonstrated that
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the combination of statins with dasatinib, an imatinib analog
enhances YAP/TAZ nuclear exclusion, is able to block YAP/TAZ
transcriptional activity, and is much more active in inducing
apoptosis in different tissues (29).

Connectivity Map and the CMap Linked
User Environment
CMap (https://www.broadinstitute.org/connectivity-map-cmap)
was one of the first computational resources developed for the
investigation of connections between transcriptomics and drug-
induced perturbations (12). As extensively reviewed in Musa
et al. (30), the goal of CMap is to identify drug or disease-
associated gene signatures correlating with transcriptomics
changes induced by the administration of drugs or chemical
compounds (31, 32). The original project comprised the gene
expression profiling of three cancer cell lines before and after
the treatment with 164 different small molecules, obtaining drug-
associated gene signatures for each cell line. This initial version
has been recently scaled up through the L1000 Assay Platform,
a method to analyze the expression levels of 978 selected
landmark transcripts (assayed with 1,058 probes, including 80
controls) that have been shown to be sufficient to recover more
than 80% of the information relative to the full transcriptome
(14). This new approach translated into the screening of 86
different cancer cell lines using 27,927 unique perturbagens,
including 19,811 small molecules and 7,494 genetic perturbations
(consisting of overexpression or knockdown of different genes
associated with human diseases or biological pathways). This
large-scale screening finally resulted in a collection of 476,251
gene expression signatures that can be analyzed through the
CMap Linked User Environment (CLUE, https://clue.io). In
CLUE, the Query tool allows to input a gene signature (i.e.,
a list of genes upregulated and downregulated) and search for
perturbagens (chemical and/or genetic) that induce a similar (or
opposite) expression profile in the treated cells. The statistical
significance of the association is assessed through a connectivity
score that takes into account the strength of the similarity
between the query and the induced signature as compared to
the enrichment of all other signatures in the database (14). This
approach proved its efficacy in the identification of a novel
inhibitor for the serine-threonine kinase CSNK1A, an enzyme
essential in specific subtypes of myelodysplastic syndrome and
acute myeloid leukemia. Starting from the loss of function
signature of CSNK1A1, authors searched CMap for compounds
mimicking the loss of this kinase and identified one compound
(BRD-1868) with a high connectivity score relative to this
signature. Further enzymatic assays confirmed both the binding
between BRD-1868 and CSNK1A1 and its inhibitory effect on
enzymatic activity (14). From its first publication, CLUE has
been expanded to include also proteomics analysis ranging from
expression arrays to histone modification signatures.

CONCLUDING REMARKS

Efforts to decipher the molecular mechanisms of cancer
stimulated scientists to explore the interconnection between

the genomic landscape of cancer models and their response
to drug treatments. This resulted in large pharmacogenomics
screenings that, with the advent of high-throughput technologies,
generated large amounts of genomics and pharmacological
data. However, the integration of these precious information
is still challenging due to the variable type and number of
drugs and cancer cell lines that have been screened by the
various projects and the heterogeneous assays used for drug
testing in the different studies (23, 24, 33–35). Despite these
intrinsic difficulties, several computational approaches have
been developed for the integrative analysis of genomics and
pharmacological data. Their application allowed to discover
several new connections between drug sensitivity and genomic
backgrounds, enabling the potential repurposing of commercially
available drugs to cancer treatment (36–38). However, these
computational resources, although proven effective, still suffer
the limitations of the original studies as the sparsity of the
drug and cell interaction matrices, the effective impossibility
to merge drug response data across different screenings,
and the criticalities of cancer cell lines as a reliable cancer
model (39–41). To this end, the project for a Patient-Derived
Model Database (PDMB) launched in 2012 by the NCI might
represent a potential breakthrough as genomic and drug
response data directly collected from patients and patient-
derived xenografts (PDXs) will reproduce more accurately
the cancer disease and its environment than any cell line
model (42). Furthermore, while novel experimental models
are generating more accurate data, advanced computational
methods are under development to enhance the analytical
potential of existing algorithms. As recently discussed (43–
45), artificial intelligence approaches as network-based models,
deep-learning frameworks, and machine-learning techniques
are increasingly applied to investigate pharmacogenomics
connections and drug repositioning. These methods can be
effective not only for data integration but also to predict new
interactions and applications of already approved drugs (46–
48). In summary, computational approaches for the integration
of genomic and pharmacological data have the potential
to become crucial for the systematic identification of new
biomarkers of drug sensitivity and the discovery of novel
anticancer drugs on the basis of specific genetic abnormalities,
as long as reliable cellular models and highly curated data
become available.
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