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Abstract Sensor network infrastructures are widely

used in smart cities to monitor and analyze urban traffic

flow. Starting from punctual information coming from

traffic sensor data, traffic simulation tools are used to

create the digital twin” mobility data model that helps

local authorities to better understand urban mobility.

However, sensors can be faulty and errors in sensor data

can be propagated to the traffic simulations, leading

to erroneous analysis of the traffic scenarios. Provid-

ing real-time anomaly detection for time series data

streams is highly valuable since it enables to automat-

ically recognize and discard or repair sensor faults in

time-sensitive processes.

In this paper, we implement a data cleaning pro-

cess that detects and classifies traffic anomalies dis-

tinguishing between sensor faults and unusual traffic

conditions, and removes sensor faults from the input

of the traffic simulation model, improving its perfor-

mance. Experiments conducted on a real scenario for

30 days have demonstrated that anomaly detection cou-

pled with anomaly classification boosts the performance

of the traffic model in emulating real urban traffic.

1 Introduction

Anomaly investigation is an important element in many

application domains such as fault detection, privacy

and cybersecurity, communication networks, and social

media. In a complex system, regular behavior allows us

to investigate the general characteristics of the system,

while anomalies let us discover and analyze unexpected
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behavior, as significant events and patterns, that other-

wise could not be discovered. For this reason, anomaly

detection and classification are universally recognized

and have become very important in data analysis [1].

In the smart city context, through deploying In-

ternet of Things (IoT) technologies, many aspects of

the urban environment can be monitored in real-time

such as mobility, pollution, parking, waste, lighting. Al-

though the technology has evolved greatly and has al-

lowed for a drastic drop in costs and a wide variety

of sensors available, sensors are prone to malfunctions.

Therefore, the big sensor data streams generated in

real-time need to be handled with appropriate tech-

niques to detect erroneous measurements instantly.

Analysis of traffic data is an essential component
of intelligent transportation system applications crucial

for smart cities. Traffic data collected through sensors

such as induction loop detectors often contain anoma-

lies, e.g. due to malfunctioning detectors or anomalous

traffic conditions. Such anomalies can heavily affect the

results of the subsequent analysis like traffic flow analy-

sis, monitoring, and prediction. There are several chal-

lenges regarding anomaly detection, including the ab-

sence of a universal definition of anomaly, change of

traffic pattern over time, as well as unavailability of la-

beled data. Traffic models are essential tools for road

traffic analysis and simulation of urban mobility and the

deployment of intelligent transportation system appli-

cations. Through a traffic model, real-time simulations

can be performed using as input the traffic sensors data

to emulate the traffic flow in the entire urban context.

However, the delay between the acquisition of sensor

data and the generation of the model output should be

reduced as much as possible. Therefore, the detection

of anomalies in the input has to be done in a short time.
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In this paper, a methodology of anomaly detection

and classification on traffic time series data streams is

proposed. This method does not assume labeled histor-

ical data and can be applied in real-time. Since observa-

tions coming from traffic sensors are often used as input

of customized traffic models that simulate urban traf-

fic flows in real-time, this paper also examines and dis-

cusses the improvement provided by the anomaly detec-

tion and classification method by comparing the traffic

model outputs, considering or excluding sensor faults.

The method is exemplified and evaluated by applying

it to real traffic data collected through loop detectors

installed in a medium city road network. Employing

the proposed methodology can increase the accuracy of

sensor observations, as well as ease the learning of dif-

ferent traffic patterns, and improve the performance of

traffic simulations.

The rest of this document is structured as follows.

Related works are introduced in Section 2. While Sec-

tion 3 outlines the context of the use cases. The method-

ology used, introduced in Section 4, is composed of:

filtering and detection of anomalies (Section 5), classi-

fication of anomalies in sensor faults and unusual traf-

fic conditions (Section 6) and the creation of a traf-

fic model for running simulations (Section 7) that take

advantage of the anomalies identified and classified in

the previous steps. The experimentation on a real sce-

nario is reported and discussed in Section 8. Section 9

sketches conclusion and future directions.

This work extends the conference paper [5] that in-

troduced a novel data cleaning process to detect anoma-

lies in real-time traffic data streams, exploiting a traffic

sensor network. In this paper, the data cleaning process,
that previously contained only anomaly detection, is

ameliorated with an anomaly classification phase where

anomalies are classified into sensor faults and unusual

traffic conditions; then, only observations classified as

sensor faults are removed from the input of the traf-

fic model. Several changes and extensions have been

made to the article w.r.t. the previous conference pa-

per. In particular, Section 3 is enriched with two new

subsections (3.3 and 3.4) to help the reader to better

understand the features of traffic data on which the

anomaly detection and classification method is applied;

in Section 4, the proposed methodology is ameliorated

with an anomaly classification phase where anomalies

detected by an anomaly detection algorithm based on

STL are classified. In subsection 5.3, a new version of

the anomaly detection process, that applies RobustSTL

and the inverse function of the logarithm to the resid-

ual values and finally normalizes the obtained values

using the Robust Scaler, is provided and compared to

the original one presented in [5]. A new Section 6 is

inserted to describe the classification of anomalies into

sensor faults and unusual traffic conditions. In the end,

Section 8 has been extensively enriched and restruc-

tured into several subsections; new experiments have

been conducted to test the anomaly classification (sub-

section 8.3), and new traffic simulations have been run

to demonstrate that eliminating anomalies after having

classified them and distinguished among sensor faults

and unusual traffic conditions further improves the re-

sults of the traffic model (subsection 8.4).

2 Related Work

With IoT devices pervading our everyday life, we see an

exponential increase in the availability of data streams.

As known, these devices may have abnormal behavior;

thus, different techniques to perform data cleaning on

sensors’ data have been discussed, classified, and com-

pared.

In the literature, we find supervised [12], unsuper-

vised [20], and semi-supervised algorithms. However,

several anomaly detection methods are formerly cre-

ated for processing data in batches, and unsuitable for

real-time streaming applications.

In [25], constraint-based algorithms are used with a

focus on speed constraints. Then, time series anomaly

detection algorithms are proposed: ARIMA (Autore-

gressive Integrated Moving Average), LSTM (Long Short-

Term Memory), DBSCAN (Density-Based Spatial Clus-

tering), and GANs (Generative Adversarial Networks).

time series anomaly detection can be performed with

several techniques: statistical approaches, machine learn-

ing algorithms, and deep neural networks. In [8], 20
different univariate anomaly detection methods from

the above-mentioned three categories are compared and

evaluated on publicly available datasets. Also, Seasonal-

Trend decomposition using Loess (STL) is exploited

for anomaly detection combined with other methods,

such as Interquartile Range (IQR). In [15], a two-layer

outlier detection approach is proposed: firstly, the non-

stationarity and periodic variation of the time series

are studied, then observable variables in the environ-

ment are used to explain any additional signal variation.

The authors of [14] combine STL decomposition with

the SARIMA model to detect anomalies in non-periodic

time series. In the end, the approach described in [23]

combines STL decomposition with extended isolation

forest. Our method integrates the use of STL decom-

position with a constraint-based filter on the data com-

ing from the sensors. This approach is missing in the

aforementioned methods. The filter identifies anoma-

lous values that would not be recognized as anomalies

by the STL decomposition technique.
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Explaining the causes of anomalous sensor readings

is a tricky issue. An interesting approach that tries to

classify sensor faults is the one proposed in ClariSense+

[11]. ClariSense+ is an automated anomaly clarification

service with the ability to explain sensor anomalies us-

ing social network feeds from Twitter. Authors have

demonstrated the feasibility of explaining the causes of

traffic anomalies by identifying unusual social network

feeds that are correlated with each anomaly in time and

space. In [30], an accurate and transferable accident de-

tection approach is described. The detection methodol-

ogy is based on the relationship between traffic vari-

ables and observed traffic accidents. Authors employ

a deep learning-based method calibrated using part of

the collected traffic variables and the pre-assigned traf-

fic accidents. This methodology is not able to detect

sensor faults but is focused on the discovery of traffic

accidents.

Correlated anomaly detection is a cutting-edge topic.

Especially from streaming data, it is an essential task

in several real-time data mining applications. In [9], a

framework is introduced for better detection of corre-

lated anomalies from large streaming data of various

correlation strengths. The experiment shows balanced

recall and estimated accuracy of the framework that

was applied to the U.S. stock daily price data set. In

the traffic context, the correlation among traffic sen-

sors to detect anomalies has been analyzed in [24]. The

authors exploited a statistical baseline method, along

with a sensor correlation analysis. They evaluated the

approach by comparing the detected anomalies against

traffic alerts, which are emitted by Traffic Agents on

Twitter.

Another possible approach is described in [31]; in

this study, faulty readings from traffic sensors are iden-

tified by examining the correlations among them and

by taking advantage of the ubiquitous citizens through

crowd-sourced data. The authors evaluate cross-correla-

tion between sensors using, firstly, the Pearson metric,

and then employing a multivariate ARIMA model to

detect anomalies considering correlated sensors. In our

work, we use a different correlation metric and employ

correlation to perform anomaly classification once the

anomalies have already been detected with our com-

bined anomaly detection methodology.

3 Context

This section is devoted to describing the urban context

and the traffic sensor network in the city of Modena.

Moreover, a statistical overview of the traffic data is

provided, including an analysis of the stationarity of

the traffic sensors’ time series.

The discussed use case consists of the traffic sensor

network of Modena, a medium Italian city of 184, 727

inhabitants with a population density of 1, 017 inhab-

itants/km2 and more than 900 km of public roads.

Data coming from around 400 traffic sensors are given

as input to a customized traffic model that simulates

traffic flows on the whole road network in real-time.

The improvement provided by the data cleaning process

has been evaluated through a comparison between the

model output, considering or excluding sensor faults.

3.1 Sensor network

Smart Cities employ sensors to share information with

the public, businesses, city managers, and other smart

systems. For traffic management, there are plenty of

sensors, that exploit different technologies, able to de-

termine the number of vehicles traversing the city streets

(e.g. induction loop, preformed loop, pressure sensor,

radar, video). Induction loops are the most commonly

used sensors, introduced 50 years ago, that are still

present in a lot of cities. An induction loop sensor con-

sists of wire “coiled” to form a loop that is installed

into or under the surface of the roadway. In Modena, in-

duction loop detectors are spread in different locations,

usually near traffic lights. These sensors collect traffic

data (i.e. the number of vehicles and the average speed)

with different frequencies according to the provider of

the data. In Modena, we have two data providers for

traffic information: the sensors located in the urban

area are managed by the city council and send data

every 1 minute; while the sensors in provincial and re-

gional roads are owned by the Region and their data

are distributed by a regional company with a frequency

of 15 minutes.

Sensors data are collected and exploited to emulate

real routes of vehicles in a traffic model [2,17,18]. Mod-

ena sensor map1 displays all the traffic sensors available

in the city of Modena, the ones in green are used as in-

put to the traffic model. The others, excluded from the

input of the traffic model, might be unreliable sensors

(i.e. they obtain only a few measurements in a day in-

terval, or most of their measurements are zero values)

or sensors located in streets that are outside the urban

area where we run the traffic model.

3.2 Sensor data collection

The sensors’ data coming from the two data providers

are collected in real-time into a PostgreSQL database

1 Modena Sensor Map: https://trafair.eu/

modenasensormap/

https://trafair.eu/modenasensormap/
https://trafair.eu/modenasensormap/
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[17]. The database exploits two extensions: PostGIS to

handle geospatial data and Timescale to perform better

with a huge amount of data. From September 2018 till

now (June 2021) the database collected more than 457

million observations recorded by urban traffic sensors

in Modena. For each observation, the database stores

a record composed of the identifier of the sensor, the

flow measured by the sensor, the speed, the type of the

vehicles (only for provincial and regional sensors), and

the time slot of the measurement. The process to parse

data coming from the traffic sensors and store them has

been implemented in Python.

3.3 Statistical overview of traffic sensors observations

In order to detect anomalies in data streams, a statisti-

cal analysis of the data distribution can help to deter-

mine the best methodology for the use case. Consider-

ing all the measurements from October 2018 till May

2020, we discover that 33 out of 400 sensors did not pro-

vide any measurement. Then, the observations provided

by the remaining sensors were aggregated every 15 min-

utes and for each sensor median, mean, standard devia-

tion, and interquartile range (IQR) were evaluated. As

a result of this evaluation, 35 sensors were consider-

ing malfunctioning since their mean, median, and IQR

of traffic flow were zeros. Observing the value of IQR

of traffic flow, some sensors have an IQR equal to zero.

This means that there is no difference between first and

third percentile, and all the measurements have a very

similar value. This is not the regular behavior of a traf-

fic sensor, where measurements are supposed to vary

during the day. Thus, the 6 sensors with IQR equal to

zero were excluded. Moreover, for 8 sensors the rate of

measurements with a flow value equal to zero was above

the 90%; thus, they cannot be considered reliable. To

summarize, the total number of untrustworthy traffic

sensors is 49 in addition to 33 not working sensors, as

reported in Table 1. These sensors were not included

in the data cleaning procedure and their data were not

given as input to the traffic model. The number of reli-

able sensors is 318.

Traffic sensors installed in Modena 400

Not working sensors (no measurements) 33
Sensors with zero mean, median, and IQR 35
Sensors with zero IQR 6
Untrustworthy sensors (90% rate of zero values) 8

Reliable sensors 318

Table 1: Analysis of the reliability of traffic sensors.

The Table in Figure 1 shows some statistical eval-

uation for the distribution of IQR, median, and stan-

dard deviation considering only the 318 reliable traffic

sensors. The median of the traffic flow values has an

average value of 30 vehicles in 15 minutes; however,

there are sensors with a median equal to zero and sen-

sors with a median equal to 132. Observing the graph

showing the distribution of the median, the majority

of sensors have a traffic flow median value between 0

and 25. This happens because the time series of mea-

surements of traffic flow also includes the night period

where the traffic flow values are all near zero and the

standard deviation and the IQR are significantly re-

duced. Besides, the graphs show that the distribution

of median, IQR, and standard deviation values is right-

skewed: mean is higher than mode. Thus, there are few

sensors with high values and more sensors with lower

values.

3.4 Stationary study

If we think about vehicle traffic in a city, many trends

come to mind: a daily trend, a weekly trend, a similar

trend in working days that is different in the weekend,

and also seasonal trends. Here, we want to introduce the

concept of stationary and study the stationary of the

time series provided by the traffic sensors in Modena.

In a stationary time series, each time series mea-

surement reflects a system in a steady state. A series

Xt is called “stationary” if, loosely speaking, its statis-

tical properties (mean, variance and covariance) do not

change over time [19]. A stationary time series does not

exhibit trends or patterns based on time, or periodic

fluctuations (seasonality). There are three types of sta-

tionary: (1) a strict stationary series satisfies the defini-

tion as mentioned above of stationary; (2) a trend sta-

tionary series exhibits a trend, that, if removed, makes

the resulting series strict stationary; in the end, (3) a

difference stationary series can be transformed into a

strict stationary series by differencing. Before applying

any prediction model to a non-stationary time series,

the time series has to be converted into a strict sta-

tionary series. For this reason, we tried to study our

time series stationary. The easiest way to do this is by

differencing, which means to compute the difference of

consecutive terms in the series, following the formula

Yi = Xi −Xi−1, where i is the time instant and Xi is

the value of the time series at instant t.

The most popular tests to check if a time series is

stationary or non-stationary are:

– Augmented Dickey Fuller test (ADF);

– Kwiatkowski Phillips Schmidt Shin test (KPSS).
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Fig. 1: Statistics of IQR, median and standard deviation considering 318 trustworthy traffic sensors.

ADF test is a statistical test and, in particular, a

unit root test that aims at determining how strongly

a time series is defined by a trend. A unit root is a

characteristic element of a time series that makes it

non-stationary; Besides, the number of unit roots in

a time series corresponds to the number of differenc-

ing operations required to make the series stationary.

Since the ADF test is a statistical test, there are two

hypotheses to be tested: a null hypothesis (H0) and an

alternate hypothesis (H1). The null hypothesis is that

the time series is not stationary and has some time-

dependent structure that can be represented by a unit

root. The alternate hypothesis instead is that the time

series is stationary. The p-value obtained by the ADF

test is exploited to interpret the result of the test, i.e.,

whether to reject the null hypothesis or not. In statis-

tical, the p-value is a probability score that establishes

the significance of an observed effect. In other words, it

is the probability of seeing the effect E when the null

hypothesis is true (p−value = P (E|H0)). If the p-value

is lower than a threshold, the time series is stationary

(H0 rejected); otherwise, it is non-stationary (H0 not

rejected). Typically, the threshold is set to 0.05.

Also, the KPSS test is a unit root test to study

the stationary of the time series around a deterministic

trend. A time series exhibits a deterministic trend if the

slope of the trend does not change permanently; even

if the series goes through a shock, it tends to regain its

original path. The difference from the ADF test is that

the null hypothesis of the KPSS test is the stationary of

the series. Therefore, the p-value must be interpreted

Fig. 2: Traffic flow of sensor “R030 S2” in the first week

of April 2019.

oppositely: if the p-value is lower than the threshold,

the series is non-stationary.

We decided to apply both the tests to be sure of

the stationary of the time series. In some cases, the

results of the two tests could conflict with each other.

In particular, if the result of KPSS test is “stationary”

and the one of ADF test is “non-stationary”, then the

series will be trend stationary; on the other hand, if the

result of KPSS test is “non-stationary” and the one of

ADF test is “stationary”, the series will be difference

stationary.

Our goal is to study the stationary of the time series

of traffic data in Modena to find the best way to look

for anomalies. By way of example, Figure 2 shows the

number of vehicles measured by one traffic sensor; data
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is related to the period from 1st to 8th April 2019 and

is grouped over 15 minutes. Looking at the curve, it is

straightforward to identify the weekly and daily trends.

To check the stationary of these time series, we applied

both the ADF and the KPSS tests to the 15-minutes

aggregated measurements of April 2019; we exploited

the statsmodels package in Python. Then, we compared

the p-values of each daily time series to the commonly

used significance threshold of 0.05. All the p-values are

far less than the threshold. Therefore the time series

are classified as stationary, as expected.

4 Proposed methodology

Our goal is to perform data cleaning on traffic observa-

tions by identifying anomalies among the data coming

from the traffic sensors to exclude them from the in-

put of the traffic simulation model. As represented in

Figure 3, the methodology consists of several steps: (1)

filtering observations with an anomalous flow - speed

correlation (these observations are stored as “filtered”

in the database) (described in more details in Section

5.1), (2) anomaly repairing by replacing “filtered” ob-

servations with average values, (3) anomaly detection

through STL decomposition following two different ap-

proaches, (4) classification of anomalies in sensor faults

and unusual traffic conditions, (5) generation of the in-

put for the traffic simulation model by removing sensor

faults, and (6) running the model.

The effects derived from the data cleaning will be

investigated, comparing the performance of the traffic

model excluding anomalies from the input data or in-

cluding them.

5 Filtering and anomaly detection

In this Section, we describe the first three steps of the

proposed methodology, namely filtering, anomaly re-

pairing, and anomaly detection of Figure 3.

5.1 Flow - speed correlation filter

The values of flow and speed provided by the traffic sen-

sors are strongly correlated with each other. Assuming

that a sensor is located in a single lane, as in our case,

there is a maximum number of vehicles that can pass

over a sensor with a certain average speed in a fixed

time interval. This number is provided by the following

formula:

num vehicles =
speed[Km/h] ∗ 1000

vehicle length+ safe distance[m]

where speed is the average speed provided by the sensor,

vehicle length is the average length of different types of

vehicles, and safe distance is the safe driving distance

that should be kept between every couple of vehicles

based on the vehicle speed (calculated as speed/3.6).

We set the value of vehicle length to 4.

The value of num vehicles represents the maximum

number of vehicles in one hour based on the average

speed of the vehicles. The upper bound for allowed val-

ues of flow is obtained by dividing the value of num ve-

hicles by 60 or by 4 based on the time interval which the

observation is related to (1 minute or 15 minutes, re-

spectively). If the flow provided by the sensor is higher

than this number, the observation is considered an a-

nomaly and marked as “filtered”, therefore it will not

be considered in the following steps.

We apply this filter in real-time, that is, every time

an observation is stored in our database we add a mark

“filtered” or “non-filtered” on it.

5.2 Anomaly repairing

The majority of sensors provide measurements every

minute, and the filtering is applied to this time inter-

val. Then, data need to be aggregated every 15 minutes

to be used by the traffic model. For this reason, once

sensor measurements have been labeled as filtered, they

cannot be simply removed from the traffic sensor ob-

servations. To evaluate the aggregated flow in a bigger

time interval, flow values are summed up, thus remov-

ing the observation is like considering that zero vehicles

are passing in that time interval. This assumption is not

correct, thus an alternative solution needs to be found.

Since the measured value in the filtered observation is

not reliable, it is substituted considering the values ob-

served in the proximal time interval by the same sen-

sor. We decide to consider a time interval of 15 minutes.

The flow of filtered observation is thus replaced with the

average of the reliable (non-filtered) flows measured by

the sensor in the same time interval.

The aggregated speed is more difficult to evaluate;

since the measure provided by the sensor is an aver-

age speed, we assume that filtered observations have

a speed equal to the weighted averaged speed evalu-

ated considering only the non-filtered measurements in

the 15 minutes time interval. This anomaly repairing

technique cannot be applied when less than 2 reliable

observations are available for a sensor in the 15 min-

utes time interval. In this case, the aggregated flow and

speed of that 15 minutes time interval are classified as

anomalies, and they are not used in the following steps.
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Fig. 3: Workflow of the proposed methodology.

5.3 Anomaly detection through STL decomposition

The Seasonal-Trend Decomposition using Loess (STL)

is a filtering procedure for decomposing a time series

into three components: the trend, the seasonal, and the

remainder (also called residual) [10]. Splitting the time

series into components can help in identifying anoma-

lies.

The additive decomposition considers the time se-

ries model described by the following formula:

yt = τt + st + rt, t = 1, 2, ..., N

where yt represents the observation at time t, τt is the

trend in time series, st is the seasonal signal with period

T , and rt is the remainder component.

The trend component consists of the low-frequency

variations in the data with non-stationary, long-term

changes, i. e. continuous increase or decrease. The sea-

sonality instead is composed of the variations (periodic

patterns) in the data near a baseline. Typically, trend

changes faster than seasonal. The remaining variations
are included in the residual.

The decomposition of the time series is obtained by

applying the locally-weighted regression (Loess smooth-

er) several times, iteratively. The result of these applica-

tions is a curve representing a smoothing of the original

time series, computed taking into account the value of

a variable number of observations in the neighborhood.

A variant of STL is the RobustSTL [26], defined

as a robust and generic seasonal-trend decomposition

method able to extract seasonality from data with a

long seasonality period and high noises. The method

applied by the RobustSTL consists of four steps:

1. noise removal by applying bilateral filtering and us-

ing neighbors in a window of 2H + 1 observations

with similar values to smooth the time series;

2. trend extraction by using the least absolute devia-

tions (LAD) loss with sparse regularization;

3. seasonality extraction through non-local seasonal fil-

tering which takes into consideration K seasonal

neighborhoods of 2H + 1 observations with differ-

ent weights according to their distance in the time

dimension and their seasonality values;

4. final adjustment by calculating the mean of season-

ality, which is added to trend and removed from

seasonality.

Several configuration parameters must be provided

to the algorithm: the period T , that is the number of

observations in each cycle of seasonality, the hyper-

parameters of the bilateral filter of step 1 (dn1 and

dn2), the number of the neighborhood (H), the reg-

ularization parameters for trend extraction (reg1 and

reg2), the number of past season samples (K), and the

hyper-parameters of the bilateral filter in seasonality

extraction step (ds1 and ds2).

After each step, the input signal is updated by re-

moving the component extracted in that specific step.

After step 4, the steps are repeated until you get con-

vergence between the remainder of the current iteration

and the one of the previous iteration. The convergence

is computed by the following formula:

convergence =

√
(ri − ri−1)2, i = 1, 2, ..., N

where ri is the remainder at iteration i (current it-

eration) and ri−1 is the remainder at iteration i − 1

(previous iteration). If the convergence is higher than a

threshold, the process will continue with another iter-

ation, otherwise, the decomposition obtained is consid-

ered definitive. In the latter case, the results are 3 time

series representing trend, seasonal, and residual.

Once the decomposition is concluded, the curve of

residual can be analyzed to detect anomalies by using

different methods. A solution could be the application

of the interquartile range (IQR), which allows the cal-

culation of the two fences to define reliable values. More

details are provided in the following.

We evaluated two versions of the anomaly detec-

tion process: ADP1 and ADP2. The operations of each

version are explained in Figure 4. In ADP1, we apply

the logarithm to the flow values obtained after anomaly
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Fig. 4: The two versions of anomaly detection process: ADP1 and ADP2.

repairing and provide it to RobustSTL. Then, remain-

der values are normalized by using mean and standard

deviation, as follows:

r normalizedt =
rt −mean

standard deviation

where mean and standarddeviation are computed on

the remainder. Thus, the first (Q1) and third (Q3) quar-

tiles are calculated on the normalized residual to find

lower and upper fences with the following formulas:

lowerfence = Q1− k ∗ IQR

upperfence = Q3 + k ∗ IQR

where IQR is the difference between third and first

quartiles, and k is a multiplier. The observations with

a residual value lower than lowerfence or higher than

upperfence are outliers. The higher the multiplier value,

the fewer outliers are found. The value of k depends on

which type of outliers we want to detect; high values of

k are used for extreme outliers.

In ADP2, after the application of RobustSTL, the

inverse function of the logarithm is applied to the resid-

ual values. The obtained values are normalized using

the Robust Scaler, as follows:

r normalizedt =
rt −median

IQR

where median and IQR are evaluated on the remainder

after the inverse logarithm function. Then, the lower

fence and upper fence are calculated on the normalized

remainder values and the IQR filter is applied to them.

Again, the observations with residual value out of the

range between the lower fence and the upper fence are

outliers.

We set up n processes to apply STL decomposition

to sensors data in real-time, where n is the number of

sensors in our dataset. Indeed the decomposition of the

time series of one sensor is independent of the others.

We exploited an implementation of RobustSTL avail-

able online.2

2 https://github.com/LeeDoYup/RobustSTL

In both anomaly detection process versions, the de-

composition is performed every 15 minutes. The time

series, used as input, is generated grouping by 15 min-

utes the logarithm of one-week flow measurements of a

specific sensor. After the application of IQR, only the

anomalies of the last 15 minutes are taken into account

since the anomalies on the previous time slots have al-

ready been extracted by the previous applications of the

decomposition. We choose to aggregate observations ev-

ery 15 minutes since the traffic model takes in input

this type of aggregation, as described in Section 7. The

choice of using one week observations is a trade-off be-

tween the need to provide context for decomposition

and the requirement of having results in a short time.

Indeed, the time required for one month decomposition

(on average 12 minutes) is far greater than the one for

week decomposition (on average 15 seconds). Therefore,

we set the period T to the number of observations in

the week divided by 7. After several experiments, we

decided to set the values of the other configuration pa-

rameters in this way: dn1=1, dn2=1, H=3, reg1=10,

reg2=0.5, K=1, ds1=50, ds2=1. In the end, we initial-

ized the value of k in the IQR method to 3 since we

want to avoid that real unusual traffic conditions are

labeled as anomalies. Using a lower value for k in the

IQR method to 3 since we want to exclude those obser-

vations that are real anomalies. Using a lower value for

k, we noticed that a lot of observations were considered

anomalies and, checking the values of flow and speed,

they did not seem like real anomalies. Probably this

is due to the fact that our sensors are located near the

traffic lights, therefore, the presence of peaks is possible

and could be related to the turned green of the traffic

light.

6 Anomaly Classification

In this section, we introduce the methodology we ap-

plied to classify anomalies and distinguish between sen-

sor faults and unusual traffic conditions.
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Fig. 5: Examples of correlated sensors: in a junction (on

the left), and on a road (on the right).

Firstly, the correlation among traffic sensors was

studied: in this phase, groups of sensors that have sim-

ilar trends are identified. Anomalies are classified as

unusual traffic conditions when they occurred contem-

porary in correlated sensors, otherwise, they are labeled

as sensor faults. In the road traffic environment, an

anomaly can be caused by traffic accidents, road clo-

sures, and road works that create an unusual traffic

condition, or by faulty sensors, i.e. sensors that are not

able to measure correctly, vehicles in the streets. In the

case of unusual traffic condition, the measurement col-

lected by the sensor is a real value; on the other hand,

in the case of a sensor fault, the measured value is an

error and do not correspond to the real number of vehi-

cles crossing the street in the sensor’s position. In [13],

a description of how these faults may occur is given.

Induction loop sensors are composed of inductive

and capacitive elements that may encounter open or

short circuit faults during measurements. Such faults

lead to erroneous interpretation of data acquired from

the loops. The idea behind the classification of anoma-

lies is the following: if an anomaly occurs only in the

time series of a sensor and, at the same time, it is not

recorded by other sensors correlated to the sensor itself,

then it is a sensor fault. Given a sensor A, B is a corre-

lated sensor of A if its observations of traffic flow are in

relation with the observations recorded by A. Usually,

B can be placed in proximity of A. For example, sen-

sors placed in the same junctions are often correlated

or sensors on the same road and lane are correlated sen-

sors (as shown in Figure 5). Otherwise, if the anomaly

recorded by the sensor occurs in the same period as the

anomalies recorded by the correlated sensors, then it is

an unusual traffic condition.

In order to distinguish between sensor faults and un-

usual traffic conditions, the correlation evaluated with

DCCA (described in Section 6.1) was taken into ac-

count. Each anomaly was associated with anomalies

that happened in an adjacent time interval. The am-

plitude of this time interval is a parameter that should

be defined considering the frequency of observations.

For each anomaly, the number of traffic sensors that

had simultaneous anomalies (ns) was calculated, then

the number of correlated sensors was counted (nc). If

an anomaly happened in adjacent time intervals for cor-

related sensors, the anomaly is considered an unusual

traffic condition.

The anomalies observed for sensors with a low num-

ber of correlated sensors are more likely to be classified

as sensor faults, even if ns is high. For this reason, we

take into account not only correlated sensors but also

proximal sensors. For each anomaly classified as sensor

fault, the distance between the sensor it belongs to and

each traffic sensor showing a simultaneous anomaly was

evaluated; if there are at least two other sensors experi-

encing an anomaly in a radius of 1500 meters from the

sensor, the anomaly is classified as an unusual traffic

condition. The distance was evaluated directly, query-

ing the PostgreSQL database where sensor locations are

collected. This allows us to identify additional spatial

correlations between traffic sensors located nearby that

may appear in specific traffic conditions (i.e., traffic ac-

cidents that caused re-routing of vehicles) but were not

detected by the DCCA coefficient that mainly explores

the temporal dimension. An overview of the classifica-

tion process is shown in Figure 6.

6.1 Correlation

If sensors are placed nearby one another, an unusual

traffic condition will be recorded by the majority of

sensors in the area. Instead, if the anomaly is caused

by sensor fault, the majority of sensors located nearby

will not observe any anomaly. The relation between sen-

sors is not completely dependent on their spatial dis-

tance. The road network has a complex structure, and

two sensors can be distant but placed on two connected

roads. For this reason, a way to deeply understand the

relation between two or more sensors is to take into

account historical data and evaluate their correlation

with a representative metric.

Considering measurements referring to one month

(April 2019), the correlation between sensors was inves-

tigated. Sensors’ observations are collected every minute

at different timestamps, and to compare them, we need

a common timestamp. Thus, we aggregate values every

15 minutes. Moreover, the traffic sensors available in

Modena are located near traffic lights, and their mea-

surements are affected by the traffic light logic and the

presence of the red light. When the traffic light is red,

vehicles cannot move; thus the number of vehicles that

can be counted is one (if there is a vehicle that stops on

the sensor) or zero. Aggregating data every 15 minutes
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Fig. 6: Classification process.

reduces this effect and allows us to better understand

the real traffic flow.

Firstly, the correlation between sensors was studied

on the 15-minutes aggregated time series with Pear-

son coefficient, as described in Section 6.2. Then, since

Pearson correlation is not suitable for skewed distribu-

tions, in order to ameliorate the correlation study and

obtain a more reliable result, DCCA was studied (Sec-

tion 6.3).

6.2 Pearson Correlation

Firstly, we evaluate the correlation between sensors us-

ing Pearson correlation metrics. The Pearson coeffi-

cient measures the strength and direction of linear re-

lationships between pairs of continuous variables. As

described in [6], the Pearson coefficient is easily com-
puted, dividing the correlation between the two vari-

ables for the product of the square of their variance.

The correlation was firstly evaluated considering whole

traffic observations of April 2019. Only traffic sensors

with a correlation coefficient higher or equal to 0.8 and

with a distance between them lower than 2000 m are

considered correlated; these thresholds were selected

considering the necessity of a strong correlation and

the mutual distance of the sensors in our urban area.

There were a lot of high correlation scores. Observing

Figure 7 showing the correlation between two highly

correlated sensors, the comparison between correlation

studied considering night period or not shows that the

high number of zero values registered during the night

strongly influences the distribution of each sensor. For

this reason, the correlation was evaluated by removing

night hours (between midnight and five in the morn-

ing). For the two sensors in Figure 7, the exclusion of

night hours strongly decreases the observed correlation

to 0.74, which is lower than 0.8. Thus the two sen-

sors will no more be considered correlated. The sensors

correlated with sensor “R013 SM21” are represented in

Figure 8. For each of the traffic sensors that collect at

least one measure every 15 minutes in the reference pe-

riod (they were 310 out of the 318 reliable sensors),

the correlated sensors have been evaluated with the

presented methodology. For each sensor, the average

number of correlated sensors is 21. In Table 2, can be

observed that sensor showing at least three correlated

sensors are 242, 196 of them considering a threshold

for the Person coefficient of 0.8 and 46 relaxing this

threshold to 0.7. The sensors that have less than three

correlated sensors, but at least one correlated sensor,

are 30. Finally, the isolated sensors are 38.

Pearson correlation assumes that the two variables

are individually normally distributed [22], thus it is not

suitable for skewed distributions. Since we aim to find

outliers, we can assume outliers are present in our data.

The Pearson correlation coefficient is also very sensitive

to outliers.

6.3 Detrending Cross-Correlation Analysis Coefficient

(DCCA)

In [28], a new coefficient is proposed to quantify the

level of cross-correlation between non-stationary time

series but can be employed to study traffic flow fluctu-

ations in the presence of outliers also in stationary time

series [27]. This cross-correlation metric is called DCCA

(Detrending Cross-Correlation Coefficient). Since traf-

fic sensors data have nonlinear behavior, their correla-

tion can be studied by taking into account the prop-

erties of fractals. DFA (Detrended Fluctuation Anal-

ysis) is a method for determining the statistical auto-

correlation of a trend-stationary signal. DCCA is a gen-

eralization of DFA which measures cross-correlation be-

tween two time series. The presence of outliers can in-
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Fig. 7: Correlation between two traffic sensors, considering traffic sensor data of April 2019: the results are evaluated

on the 24 hours of the day (on the left) and on daylight hours only (on the right).

Pearson C. DCCA

Number of traffic sensors analyzed 310 310
Correlated sensors 242 266

Strongly correlated sensors (corr. thr. = 0.8) 196
Weakly correlated sensors (corr. thr. = 0.7) 46

Loosely correlated sensors (3>correlated sensors>1) 30 21
Isolated sensors 38 23

Strongly isolated sensors 17

Table 2: Pearson correlation and DCCA correlations evaluated among the reliable traffic sensors in April 2019.

troduce noise in a stationary time series; thus, DCCA

is preferred for the traffic flow correlation analysis. To

evaluate the DCCA coefficient between two time series

of equal length, four steps are necessary:

– integrating each time series;

– dividing the integrated sequence into non-overlap-

ping segments and finding a polynomial function

representing the trend of each segment for each time

series;

– evaluating the local detrended covariance between

the two time series in each segment;

– calculating the mean between the fluctuation eval-

uated for each segment to obtain a unique value.

In the integration step, for each time series, the total

mean is subtracted from each value of the sequence,

and then a cumulative sum is performed. This step is

performed to obtain from each time series its profile.

The two resulting profiles of length N (the same as

the two original time series) are then divided into se-

quences of n values obtaining Nn = N/n segments for

each profile. The obtained segments are enumerated as

s=1,..Nn. Then, each segment s is taken singularly to

evaluate its trend and define a polynomial function (T )

that approximates its sequence of values. The degree

of the polynomial function is a parameter that can be

fitted. Each sequence s starts at element (s− 1) ∗n+ 1

of the profile and ends at s∗n. The polynomial function

has a value for each element of s and each profile. In the

third step, the covariance of each segment is evaluated

as follows [29]:

f(s, n)2 = 1/n

n∑
i=1

∆1 ×∆2

∆1 = Y(s−1)∗n+i
(1) − T(s−1)∗n+i

(1)

∆2 = Y(s−1)∗n+i
(2) − T(s−1)∗n+i

(2)

where T(s−1)∗n+i is the value of the polynomial func-

tion in position (s − 1) ∗ n + 1 of the s segment, and

Y(s−1)∗n+i is the value in the sequence. ∆1 and ∆2

are the values of the detrended signal respectively in
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Fig. 8: Location of the sensors that are considered corre-

lated to sensor “R013 SM21” (blue arrow) taking into

account Pearson correlation. The red arrows indicate

the position of the sensors and the traffic direction.

the first and second profile. In the last step, the av-

erage between all the evaluated fluctuations (one for

each segment) is calculated to obtain a unique covari-

ance that represents the correlation between the two

time series. To quantify the level of cross-correlations,

a dimensionless measure, the DCCA cross-correlation

coefficient, needs to be evaluated. This coefficient is

the ratio between the previously calculated covariance

and the product of two detrended standard deviations.

The DCCA method allows us to select a value of n.

Thus, it is possible to evaluate the covariance consider-
ing segments of a given length. This is important for our

use case, sensor measurements can be correlated daily

but their correlation can be less evident considering a

shorter period. We are mostly interested in the short-

term correlation between sensors. The daily trend can

be similar (peak hours in the morning, fewer vehicles

during the evening), even weekly trend can be easily

detected (fewer vehicles during the weekend and more

during working days) but to identify sensor faults we

need to find sensors that are correlated considering a

time interval of maximum one hour. For this reason,

the DCCA correlation coefficient was evaluated con-

sidering segments of length n = 2 (corresponding to 30

minutes). Two sensors are considered correlated if their

DCCA correlation coefficient is higher or equal to 0.7,

and their spatial distance is lower than 2000 m. The

choice of these thresholds is the result of several empir-

ical tests. The mean number of correlated sensors for

each sensor is 42, a higher value than the one obtained

with the Pearson correlation. The number of isolated

sensors decreases in comparison with the Pearson cor-

relation to 23. Comparing the isolated sensors detected

by Pearson and DCCA, we found that 18 of them are in

common. The DCCA methodology reduced the number

of isolated sensors and better investigated the correla-

tion between sensors. For the 23 isolated sensors, we de-

cided to change the segment length n = 4 to cover one

hour and to set the condition on the distance between

correlated sensors at 2500 m. In this way, the isolated

sensors became 17 (indicated as strongly isolated sen-

sors in Table 2); 9 of them are located far away from

any other sensors, one of them is a sensor that counts

only busses and appears to have different behavior. For

these sensors, we were not able to find correlated sen-

sors.

A comparison of the results of correlation analy-

sis conducted with Pearson Correlation and DCCA is

shown in Table 2. It can be observed that DCCA meth-

odology not only better fits our data but also allows

us to discover more correlation patterns and reduce

the number of isolated sensors. For these reasons, the

DCCA correlation cohefficient is the one employed in

our data cleaning process to classify anomalies.

7 Traffic Model

Traffic simulation models are mathematical tools that

help to plan, manage and analyze urban mobility. Dy-

namic traffic models create a detailed evolution over

time of traffic situations. The model employed is a dy-

namic microscopic model. In microscopic models, the

movement of each vehicle is the result of individual

choices depending on: interactions with other vehicles,

road environments, and traffic signals. The vehicle’s

movements do not depend on macroscopic or probabilis-

tic laws. Every single vehicle in the model is a unique

entity with its own goals and behavioral characteris-

tics; each possessing the ability to interact with other

entities in the model. We employed the open-source

micro-simulation model SUMO3 [16], configured to gen-

erate the routes of the vehicles starting from traffic sen-

sors data as described in [2]. This model produces data

about vehicle counts and their average speed in every

road of the city of Modena taking as input the mea-

surements of the traffic sensors.

7.1 Input Generation

Vehicles routes are created taking into account real traf-

fic sensors data aggregated into 15-minutes time slots.

3 https://sumo.dlr.de
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The model includes objects called calibrators. Calibra-

tors are part of the SUMO suite and are like virtual traf-

fic sensors calibrated considering the real measurements

of the on-road sensors. Each calibrator can produce the

aspired traffic flow, i.e. the number of vehicles counted

by the sensor associated with that calibrator. For each

real traffic sensor in the city, a correspondent calibrator

is inserted in the simulation. Vehicle counts and speed

from the traffic sensor are the values the calibrator as-

pires to reach. If no information about the traffic flow

in a specific time interval is provided to the calibrator,

vehicles are not added or subtracted. Instead, if any in-

formation about the vehicle flow to be reached is given,

the calibrator acts adding or removing vehicles to reach

the given traffic flow. For this reason, removing sensors

faults from the input data is of fundamental importance

to obtain a more realistic simulation.

We use OSM (OpenStreetMap) as the source of ge-

ographical data to define our road network and store

it in our database. Every road section is a line object

composed of several points. The road section is then di-

vided into smaller segments that are the piece of road

between two consecutive points.

7.2 Output

Simulations are performed on an HPC resource. Once a

simulation is finished, its output is stored in the database.

The values of flow (veh/h) and average speed (m/s) are

collected for each lane segment (more than 17000 in our

use case) every 15 minutes of simulation. An analysis

of the traffic data obtained from several simulations is

described in [3]. An additional output is provided for

every sensor location: a time series of 15 minutes ag-

gregated vehicle counts and speeds observed during the

simulation at that point.

7.3 Traffic model evaluation

The main goal of a traffic model is to simulate a traf-

fic flow close enough to real values observed in urban

streets. The model provides as output the number of

vehicles counted in the exact position where the traffic

sensor is located. The vehicles number simulated in a

point where a traffic sensor is located must be compared

with real vehicle counts. Even if traffic sensor data are

used to feed the model, calibrators are not always able

to insert the required number of vehicles: the vehicles

inserted in the simulation and the vehicles counted by

real sensors can be different. This mainly happens when

a sensor measures a very high flow and its calibrator in-

serts many vehicles causing a jam in the simulation and

avoiding other calibrators, placed nearby, to eventually

add additional vehicles. This very high flow could be

caused by a sensor fault that affects the performance of

the entire simulation.

The evaluation method of the presented traffic mod-

el is described in [4]. For each sensor, whose measure-

ments are employed as input for the model, the distance

between the two time series, i.e. real flows observed

by the sensors and simulated flow, is calculated with

three different metrics: the fast Dynamic Time Warp-

ing (DTW), the PointWise Distance (PWD), and the

Count Time slots Distance (CTD).

The DTW is evaluated using FastDTW, a less com-

plex version of DTW described in [21]. This metric al-

lows sequences to be stretched along the time axis, is

able to find corresponding regions in time series, and

can tolerate noise, time shifts, and scaling in the y

axis [7]. PWD is evaluated by summing all the differ-

ences between the measured flow and the simulated flow

in all the time steps of the simulation. We do not use ab-

solute distance, but we sum distances considering their

sign since a subsequent time slot can compensate for

the difference observed in a previous one. The CTD is

the number of time slots in which the absolute differ-

ence between the measured and simulated flow is higher

than 2 vehicles per minute.

Calibrators have been classified considering the pre-

sented metrics in “aligned” and “not aligned”. A cali-

brator is considered “not aligned” if the DTW distance

between real measurements and simulated flow is higher

than 1200, the PWD is higher than 30, and the CTD

is higher than half of the total time steps of the sim-

ulation. A calibrator classified as “not aligned” cannot

correctly insert the expected number of vehicles as re-

quired by the given input.

To evaluate the performances of the simulation, we

need to produce metrics that can summarize with a

unique value the distances observed in each sensor po-

sition. We defined 5 metrics that help us to compare

simulations performed considering or excluding anoma-

lies referring to the whole simulation: percentage of

aligned calibrators, mean Root Mean Squared Error

(RMSE), mean DTW reduction, mean PWD reduc-

tion, and mean CTD reduction. For each simulation,

the number of calibrators classified as aligned has been

divided by the total number of calibrators to obtain

the percentage of aligned calibrators. A value of the

percentage of aligned calibrators is calculated for the

simulation performed including anomalies and the sim-

ulation of the same period excluding anomalies from the

input of the model. A higher percentage means a higher

number of aligned calibrators, thus an optimization of

model performance. The RMSE between the real mea-
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surements and the simulated flows is evaluated for each

sensor position and averaged. For each simulation with

and excluding anomalies, a value of mean RMSE is cal-

culated. A higher mean RMSE means a bigger error and

thus a decrease in the performance of the model. Mean

DTW reduction, mean PWD reduction, and mean CTD

reduction are obtained comparing the performances of

two simulations: the simulations with all the available

measurements (we will refer to this simulation as “Stan-

dard”), and the simulation excluding anomalies (we will

refer to this simulation as “Cleaned”). The DTW dis-

tance between real measurements and simulated flow

time series is evaluated in each sensor position for the

two simulations as follows:

1

N

N∑
i=1

(DTW (mi,1, si,1)−DTW (mi,2, si,2))

where mi,1 is the real measurements time series of sen-

sor i, si,1 is the simulated flow in the sensor position,

and N is the total number of sensors. The difference

between the DTW distances observed by the two sim-

ulations in each location is evaluated and the mean of

these differences is called mean DTW reduction. If the

value is positive, the distance has been reduced, thus

the cleaned simulation performed better; otherwise, the

standard simulation has better performances. Similarly,

mean PWD reduction and mean CTD reduction are

obtained by evaluating the difference between values of

PWD distances or CTD distances of the two simula-

tions referring to the same period for each sensor loca-

tion and averaging these differences to obtain a unique

value. If the value is positive, the distance was reduced

and the cleaned simulation performed better than the

standard one.

8 Experiment and result

To demonstrate the effectiveness of our methodology,

the traffic model performances without a data cleaning

procedure (standard simulation) and excluding anoma-

lies (cleaned simulation) are compared for each day of

April 2019. In Section 8.1, we show the results of flow-

speed correlation filter. While in Section 8.2, the results

of ADP1 without anomaly classification are discussed.

Moreover, in Section 8.3, the results of the classification

applied to both ADP1 and ADP2 will be compared and

examined. Finally, in Section 8.4, the performances of

the simulations obtained excluding anomalies detected

by ADP2 and classified as sensor faults are presented.

(a) Traffic sensor observations in the urban area (1
minute time interval).

(b) Traffic sensor observations in provincial and regional
roads (15 minutes time interval).

Fig. 9: Flow - speed scatter plots representing the ob-

servations of traffic sensors in April 2019 with filtered

observations in red.

8.1 Flow-speed correlation filter

In April 2019, the number of observations coming from

the traffic sensors was 13 millions, and they were pro-

duced by338 sensors.

Using the flow-speed correlation filter, 450845 ob-

servations are filtered out (3% of the total number of

observations). These filtered observations are related to

259 sensors. The scatter plots in Figure 9 show the val-

ues of flow and speed of the observations of urban sen-

sors (Figure 9a) and sensors outside the urban area, in

provincial or regional roads (Figure 9b) in April 2019;

the red points are the filtered observations. As can be

seen, no filtered observations are found among data

coming from provincial and regional sensors. In Fig-

ure 9a, we can notice that very high values of speed

are considered “non-anomalous” for low values of flow.

Indeed, if there is no traffic (low flow), it could be pos-

sible that vehicles move at high speed, especially at

night. However, for higher values of flow, an observa-

tion with a very high speed is considered “anomalous”

and filtered. Then, the filtered flow values are replaced

as described in Section 5.2.
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(a) Decomposition of the time series.

(b) time series with anomalies (i.e. the orange dots).

(c) Remainder with anomalies (i.e. the orange dots).

Fig. 10: The STL decomposition of the time series re-

lated to the observations of the sensor “R124 S2” from

April 8th, 2019 to April 14th, 2019 and anomalies de-

tected by ADP1.

8.2 Improvement in traffic simulation with anomaly

detection (ADP1)

In this subsection, we discuss the anomalies identified

by ADP1 and the performance of traffic simulation ob-

tained excluding these anomalies (ADP1 SIM).

After the anomaly repairing phase is applied to one

minute filtered data, all sensor observations are aggre-

gated every 15 minutes. The STL decomposition, ap-

plied to aggregated traffic data by using the IQR method,

detects 13932 anomalies (less than 0.1% of the obser-

vations) related to 310 sensors. Figure 10a shows an

example of decomposition which refers to the observa-

tions of one sensor from April 8th to April 14th, 2019.

Time series decomposition involves thinking of a series

as a combination of trend, seasonality, and remainder

(also called noise or residual) components. Figure 10b

draws anomalies, highlighted in orange, on the time se-

ries of all observations; while Figure 10c shows anoma-

lies on the remainder component of the time series. This

last Figure highlights that the anomalies are detected

in positive and negative peaks on the remainder com-

ponent of the time series.

Analyzing the time distribution of the anomalies,

most of them are detected at night, as can be seen in

Figure 11. Figure 12 shows the percentage of anomalies

for every day of April 2019: in one day (April 6th, 2019)

the percentage exceeds 2%.

Fig. 11: Time distribution of anomalies in April 2019.

Once the anomalies have been detected by ADP1,

they are stored in the database. Each anomaly is linked

to the 15-minutes time interval of the aggregated ob-

servations and the sensor it belongs to.

For each day of April 2019, two simulations have

been performed. The STD SIM uses as input all the

available sensors observations (no data cleaning is per-

formed on them). The cleaned simulation ADP1 SIM,

instead, is obtained applying ADP1 to traffic data and

removing anomalous observations from the input. We

Fig. 12: Percentage of anomalies above the total number

of observations for every day of April 2019.
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Fig. 13: Comparison between observed time series (orange) and simulated flows (blue) in three locations for the

1st of April. Standard traffic simulation (STD SIM - on the top) is compared to the traffic simulation that takes

advantage of the data cleaning process with ADP1 (ADP1 SIM - on the bottom).
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1 0.86 0.88 28.79 27.50 3.59 1.30 2 9821 404

2 0.85 0.85 28.96 27.28 88.03 2.41 2 9512 589

3 0.83 0.86 30.86 29.37 142.05 0.46 2 9979 603

4 0.84 0.82 29.19 30.15 -131.43 -0.98 4 9931 624

5 0.79 0.81 33.07 30.84 114.21 1.90 1 10188 1026

6 0.82 0.83 27.26 27.08 10.05 2.05 2 11185 681

7 0.91 0.94 19.41 19.12 -14.50 0.85 3 10914 784

8 0.83 0.85 27.83 30.38 6.26 -1.21 5 9678 116

9 0.83 0.81 28.35 28.56 -59.62 -0.39 2 9770 254

10 0.83 0.85 29.28 29.21 66.02 0.84 3 9908 309

11 0.81 0.84 30.04 29.76 73.66 -0.02 3 9758 212

12 0.81 0.79 29.73 32.06 -114.46 -1.19 5 10393 449

13 0.83 0.83 25.84 26.63 -16.12 0.13 3 11092 677

14 0.92 0.94 18.52 18.55 87.98 1.00 2 10664 723

15 0.82 0.84 29.21 30.05 -118.95 0.41 4 9514 114

16 0.83 0.83 30.95 30.15 33.93 1.15 3 9500 274

17 0.82 0.83 31.87 33.02 -67.18 -0.33 3 10001 225

18 0.84 0.84 30.33 28.40 -294.32 1.47 -1 9950 243

19 0.85 0.87 29.83 24.01 -29.10 -1.13 1 10364 336

20 0.84 0.89 23.76 19.87 50.86 0.22 1 10753 600

21 0.93 0.96 15.53 13.00 -42.23 -1.08 1 10262 543

22 0.93 0.96 17.69 13.88 37.32 0.37 0 9980 35

23 0.84 0.89 27.67 20.46 78.73 1.32 -2 10182 371

24 0.80 0.90 29.56 21.98 171.81 1.75 0 10099 176

25 0.91 0.94 18.11 14.35 7.75 0.21 0 10432 250

26 0.82 0.85 29.22 23.17 7.01 0.16 -1 10048 178

27 0.84 0.85 25.28 21.78 -135.00 -0.61 1 11026 139

28 0.86 0.90 29.69 27.63 19.99 -0.46 1 10587 360

29 0.81 0.85 31.49 25.35 28.37 -1.66 1 9694 42

30 0.82 0.84 32.57 25.85 -89.27 -0.50 1 9517 173

Table 3: Comparison of traffic model evaluation metrics

between standard simulations (STD SIM) and simula-

tions after removing anomalies of ADP1 (ADP1 SIM).

simply remove the anomalous observations from the in-

put of the traffic model and calibrators simulate vehi-

cles considering previous and next observations. Clas-

sification of anomalies is not applied in this case. The

evaluation of both the standard simulation (STD SIM)

and the ADP1 SIM are performed considering only the

non-anomalous points. This because we assume that

the real measurements labeled as anomalous are not

reliable and cannot be used to estimate the error.

In Table 3, all the evaluated metrics are displayed

for each day of April 2019. Comparison metrics de-

scribed in Section 7.3 are evaluated, considering as the

first simulation the standard simulation (STD SIM),
and as the second simulation the simulation without

anomalies detected by ADP1 (ADP1 SIM). In the 77%

of daily simulations, the percentage of aligned calibra-

tors increased excluding anomalies (as can be seen in

the third column of Table 3), only on 3 days the num-

ber of aligned calibrators decreases. In the 73% of cases,

the mean RMSE error decreases (as can be seen in the

fifth column of Table 3). If mean DTW reduction has a

positive value, the exclusion of anomalies reduces mean

DTW distance. In only the 60% of daily simulations,

the mean DTW reduction is positive (as can be seen

in the sixth column of Table 3). Moreover, the mean

PWD reduction is positive in the 60% of daily simula-

tions (as can be seen in the seventh column of Table

3), this means that in the majority of days, the mean

PWD was reduced through the data cleaning process.

Finally, the mean CTD reduction is positive in the 90%

of daily simulations (as can be seen in the eighth col-

umn of Table 3), thus the mean number of time slots in

which the distance between the simulated flow and the
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real measurements was higher than 2 (veh/minute) is

significantly reduced. Overall, the 83% of days shows an

improvement on at least 3 out of 5 metrics in the ADP1

SIM. For each day, the number of filtered one-minute

data and the number of anomalies detected using STL

is calculated. The days with the highest number of fil-

tered values and anomalies are the ones with better

performances (see for example 5th, 6th, and 20th April

in Table 3).

The reason for this enhancement of performances

was further investigated, observing the time series of

measurements and simulation’ flows in the more af-

fected locations. In Figure 13, the comparison between

the observed and the simulated flow on the 1st April,

without excluding anomalies (STD SIM) and removing

anomalies detected by ADP1 (ADP1 SIM) shows that

the performances in 3 sensors locations are significantly

affected by the anomaly detection process. The cali-

brators located in the position of sensors “R137 S11”,

“R047 S4” and “R027 SM125” before the data clean-

ing process were not able to correctly follow real mea-

surements: “R137 S11” had some time slot with very

high flow, “R047 S4” had zero flow for the most part

of the simulation, and “R027 SM125” was not able to

follow the real flow in the second half of the STD SIM.

For these reasons, they were all classified as not aligned

calibrators. After the data cleaning process, the similar-

ity between the observed and the simulated flow rises,

and the calibrators were classified as aligned. Finally,

the outputs (flow and speed in every road section) of

the simulations were compared. Since we removed some

high flow values detected as anomalies, the expected re-

sult was a decrease in the total number of vehicles. Yet,

the number of vehicles increased globally and the to-

tal number of vehicles per day increased on average in

the 57% of road sections. The daily mean speed has a

difference with an absolute value higher than 10 km/h

for only 11% of road sections. Calculating the sum of

the values of speed increment and speed reduction due

to anomaly detection, the final result is that the data

cleaning process speeds up the vehicles in the simula-

tion. The road sections whose flow is more affected by

the data cleaning process are displayed in the flow vari-

ation map in Figure 14. Roads with an increase in the

mean daily flow for at least 20 days on 30 are colored

in red; while roads with a decrease are colored in blue.

8.3 Anomaly classification for tuning the anomaly

detection process

Anomalies detected by ADP1 in April 2019 were classi-

fied. Firstly, the DCCA correlation coefficient was em-

ployed to identify for each sensor a group of correlated

Fig. 14: The flow variation map built comparing the

flow simulated by STD SIM and the one obtained by

ADP1 SIM. The map can be seen in more detail at

https://trafair.eu/flowvariationmap/.

sensors referring to the measurements collected in April

2019, as described in Section 6.1. Then, anomalies of

April 2019 were classified as described in Section 6.

Several experiments have been conducted changing the

amplitude of the time interval to define the best setup,

considering that anomalies are detected on time series

with a data rate of 15 minutes; the final choice was to

consider an interval from 30 minutes before to 30 min-

utes after the detected anomaly. Section 8.2 pointed

out that ADP1 detects a lot of anomalies during night

hours. When these anomalies were classified, the major-

ity of them (70%) are labeled as unusual traffic condi-

tions. Moreover, 82% of unusual traffic conditions were

during night hours. However, only 49% of anomalies

classified as sensor faults were at night.

Furthermore, the corresponding value of flow in de-

tected anomalies is very low during the night, suggest-

ing that the unusual traffic conditions can be acceptable

values that should not be excluded from the input of

the traffic model.

The results of the classification on the anomalies

detected by ADP1 underline the necessity of some im-

provement; hence, a new version of the anomaly detec-

tion algorithm that includes classification was gener-

ated: ADP2.

In Figure 15, the results of the classification for the

two versions of the anomaly detection process can be

compared; the value of traffic flow is very low for both

sensor faults and unusual traffic conditions in ADP1. In

ADP2 instead, the traffic flow values are significantly

higher for sensor faults and remain lower for unusual

traffic conditions. Besides, in ADP2 the percentage of

unusual traffic conditions detected during night hours

is reduced to 68% and 44% for sensor faults.

https://trafair.eu/flowvariationmap/
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In Figure 16, the time series of measurements of

sensor “R124 S2” is displayed, with sensor faults and

unusual traffic conditions.

When unusual traffic conditions appear during night

hours, they generally are a consequence of the inabil-

ity of the STL decomposition to correctly extract the

seasonality of night hours; thus, they are not significant

for traffic evaluation. Instead, when unusual traffic con-

ditions are detected during the day they may indicate

traffic congestion or a real traffic event (e.g a road ac-

cident).

In Figure 17, the number of unusual traffic condi-

tions during daylight hours for each day of April 2019 is

displayed. The highest number of unusual traffic con-

ditions is detected on Fridays (the 5th and the 12th)

and Saturdays (the 6th and the 20th). The 23rd is a

Tuesday, and it was the day after Easter Monday in

Italy. Therefore, when a day is different from the days

before, a high number of unusual traffic conditions is

detected. This is a consequence of the STL parameters

(the number of seasonality used by this version is 3),

thus, if the day curve is different from the seasonality of

the three days before, the remainder will be larger and

more anomalies will be detected. As can be seen in Fig-

ure 18, this effect is not present in sensor faults; thus,

the classification discriminates between anomalies that

are a consequence of the adopted algorithm (classified

as unusual traffic conditions) and real anomalies.

Fig. 15: Boxplots with the distribution of sensor faults

(on the left) and unusual traffic conditions (on the

right) with ADP1 (in green) and ADP2 (in orange).

Fig. 16: “R124 S2” measurements time series with sen-

sor faults in red and unusual traffic conditions in green.

The depicted anomalies have been detected by ADP2.

Fig. 17: Number of unusual traffic conditions during

daylight hours for each day of April 2019.

Fig. 18: Number of sensor faults during daylight hours

for each day of April 2019.

8.4 Improvement in traffic simulation with anomaly

detection and classification (ADP2+CLASS)

Different from experiments in subsection 8.2, in this

part, we test the application of anomaly detection and

classification in order to exclude from the input of the

traffic simulation not all the anomalies but only the

sensor faults.

ADP2 was used to detect anomalies in April 2019.

Then, the detected anomalies were classified and only

the ones labeled as sensor faults were removed from

the traffic model input. Thus, in this case, we combine

ADP2 with the anomaly classification.

ADP2 detected 26792 anomalies, which are related

to 333 sensors. Compared to the number of anomalies

detected by ADP1in the same period (as reported in

subsection 8.2), ADP2 finds twice as many anomalies.
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(a) Anomalies on the time series (i.e. the orange dots).

(b) Anomalies on the remainder of the time series (i.e.
the orange dots).

Fig. 19: Anomalies found by ADP2 on sensor

“R124 S2” observations from April 8th, 2019 to April

14th, 2019.

Figure 19.a shows anomalies detected by ADP2 on the

time series observations of the sensor “R124 S2” from

April 8th to April 14th, 2019, while Figure 19.b reports

the same anomalies on the remainder component after

the application of the inverse logarithm function (the

red lines represent the lower fence and the upper fence).

These figures can be compared with the ones of Fig-

ure 10. Obviously, the remainder values of Figure 19.b

and Figure 10.c are different since they are calculated

in different ways, as described in Section 5.3. We can

notice that anomalies on the high values of April 10th

are identified by both anomaly detection processes; in

addition, ADP2 finds another very high value in April

10th. Not all the anomalies on low flow values are de-

tected by ADP2; indeed, we can notice that the low

flow observations on the nights between 13th and 14th,

and 14th and 15th are not highlighted as anomalies.

Besides, at the end of April 10th ADP2 manages to

identify anomalies on two positive peaks.

After anomaly detection, the traffic of each day of

April 2019 was simulated using the traffic model de-

scribed in Section 7. We compared the results of the

simulation considering anomalous values (STD SIM)

and the simulation excluding them (ADP2+CLASS SIM)

for all days of April 2019. As displayed in Table 5, the

average value of Mean DTW reduction is very high:

76.71. This is a significant improvement, considering

that the same value was negative (-2.82) using ADP1.
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4 0.83 0.82 31.19 29.66 -2.73 0.62 1

9 0.82 0.85 31.19 29.18 138 0.22 -1

12 0.80 0.77 32.14 31.93 -104.73 -2.07 4

17 0.81 0.82 35.70 32.00 111.12 1.19 0

Table 4: Comparison of traffic model evaluation metrics

between traffic simulation including anomalies (STD

SIM) and traffic simulation excluding sensors faults

(ADP2+CLASS SIM).

Moreover, the average value of mean PWD reduction

is 0.68 (it was 0.28 with ADP1); however, the average

value of mean CTD reduction is 1 and is lower than the

one in ADP1 (2).

Concerning the days with the worst performances

using ADP1 (red values in Table 4), the values of the

metrics described in Section 7.3 are evaluated consid-

ering only non-anomalous measurements for both the

standard simulation (STD SIM) and the simulation per-

formed removing sensor faults detected with ADP2

(ADP2+CLASS SIM). Since the anomalies detected by

the two versions of the anomaly detection algorithm

are different and the performances are evaluated only

on non-anomalous values, the performances of the STD

SIMs are different from the ones in Table 3 even if the

simulation is the same.

The results show that ADP2 combined with classi-

fication significantly improves the performances of 4th,

9th, and 17th of April; however, removing anomalies

still reduces the performance of April 12th, only the

mean RMSE error is reduced.

9 Conclusion and future work

In this paper, we have presented a methodology to de-

tect and classify anomalies in traffic sensor data streams.

The proposed data cleaning process consists of three

main components. The first one is a flow-speed correla-

tion filter that removes unrealistic observations where

the number of counted vehicles in a certain time inter-

val is not related to the corresponding average speed.

The second one is the anomaly detection algorithm that

is based on the Seasonal-Trend Decomposition using

Loess (STL). Two versions of the anomaly detection

algorithm are defined and tested: ADP1 and ADP2.

Anomaly classification performed investigating the cor-
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ADP1 SIM 0.84 0.87 27.33 25.32 -2.82 0.28 2

ADP2+CLASS SIM 0.86 0.86 29.83 24.99 76.71 0.68 1

Table 5: Comparison of average metrics on all April

2019 for STD SIM, ADP1 SIM and ADP2+CLASS

SIM.

relation between sensors is the third component. The

combination of ADP2 and anomaly classification has

been proved to be the most effective in identifying the

anomalies, as confirmed by experimental results.

Experiments proved that the classification of anoma-

lies between sensor faults and unusual traffic conditions

allows removing sensor faults from the input of the traf-

fic simulation model, improving its performance, and

ensuring that it can better emulate real urban traffic

conditions.

The proposed solution that employs ADP1 is cur-

rently employed in real-time to detect anomalies on

traffic sensor data. In the future, also ADP2 will be

employed in real-time on our dataset of traffic sensor

measurements. Moreover, we plan to experiment with

different solutions for anomaly detection in multivariate

time series considering both flow and speed.
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