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Summary

The present thesis investigates innovative tools for the economic valuation of industrial, engi-

neering, and financial investments and for the selection of technical alternatives, inspired by

principles of economic rationality and value creation. Mingling concepts and techniques from

engineering economics, mathematics, finance, and accounting, the current research introduces,

among other results, i) the development of new theoretical and applicative evaluation models

for investment projects under uncertainty, ii) the definition of new rational criteria and the

implementation of new tools for value-creating investment decisions, iii) the application of the

innovative logical framework introduced in Magni (2020) connecting operating estimates and

financial decisions, iv) new applications of sensitivity analysis to investments for detecting the

most influential economic and technical risk factors, and v) refined tools for the ex-post per-

formance measurement considering interactions among value drivers. The thesis is structured

as a collection of academic papers co-authored during the doctoral course.

Keywords. Engineering economics, investment decisions, value creation, financial efficiency,

sensitivity analysis.
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Title and summary in Italian

Titolo

Analisi di progetti ingegneristici e decisioni di investimento in condizioni di incertezza

Sommario

Questa tesi propone strumenti innovativi per la valutazione economica di investimenti industri-

ali, ingegneristici e finanziari, ispirati ai principi di razionalità economica e creazione di valore.

Fondendo nozioni e tecniche tradizionalmente studiate nelle discipline di ingegneria econom-

ica, matematica, finanza e contabilità, la presente ricerca introduce, tra gli altri risultati, i)

lo sviluppo di nuovi modelli di valutazione sia teorici sia applicativi per progetti di investi-

mento in condizioni di incertezza, ii) la definizione di nuovi criteri e l’implementazione di nuovi

strumenti a supporto di decisioni economicamente razionali, iii) l’applicazione dell’innovativo

sistema logico introdotto in Magni (2020) per interconnettere stime operative e decisioni fi-

nanziarie, iv) nuove applicazioni di analisi di sensibilità alla redditività degli investimenti per

individuare i principali fattori di rischio tecnici ed economici, e v) il raffinamento della mis-

urazione a posteriori dei risultati economici per considerare l’interazione tra le variabili del

modello. La tesi si struttura come una raccolta di articoli scientifici co-autorati durante il

dottorato.

Parole chiave. Ingegneria economica, decisioni di investimento, creazione di valore, efficienza

finanziaria, analisi di sensibilità.
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Introduction

The present thesis is the collection of academic papers co-authored by me during the doctoral

course together with

� Carlo Alberto Magni, professor of Engineering Economics and Financial Management at

the University of Modena and Reggio Emilia

� Moshe Ben-Horin, professor of Finance, president of Ono Academic College

� Yoram Kroll, professor of Finance at Ono Academic College and at Ruppin Academic

Center

� Giovanni Mastroleo, assistant professor at the University of Salento

� Davide Baschieri, doctoral student at the University of Modena and Reggio Emilia and

business analyst at GRAF Spa

� Stefano Malagoli, managing partner of Kaleidos Corporate Finance.

The papers develop and introduce innovative tools for supporting long-term investment deci-

sions under uncertainty, inspired by principles of economic rationality and value creation. Min-

gling notions and methodologies from engineering economics, finance, accounting, and math-

ematics, three fundamental classes of tools have been conjunctionally applied in pursuing our

research objective, with several degrees of integration in the various papers:

Valuation metrics. Many different metrics are used for evaluating investments and making

decisions, including absolute metrics, relative metrics, and risk-adjusted performance ra-

tios, conveying different information from one another: Absolute metrics, such as the

net present value and net final value (also named value added), signal investors’ wealth

increase in monetary units (Brealey and Myers 2000, Ross, Westerfield and Jordan 2011,

Hartman 2007); relative measures, such as rates of return and, among these, the inter-

nal rate of return and the average internal rate of return (AIRR, Magni 2010, 2013),

quantify the economic profitability of a project per unit of invested capital; finally, the

risk-adjusted performance ratios are typically defined as ratios of a portfolio’s excess re-

turn to a quantitative risk measure, such as the Sharpe ratio (Sharpe 1964) which uses

the standard deviation as the risk measure, and the downside-risk-adjusted performance

ratios (see Nawrocki 1999 for a review).

Sensitivity analysis techniques. The evaluation of investment projects depends on large

sets of parameters, so called value drivers, representing sources of variability affecting the

investment results. Sensitivity analysis studies “how the uncertainty in the output of a

model (numerical or otherwise) can be apportioned to different sources of uncertainty in

the model input” (Saltelli et al. 2004), therefore, allowing to identify the most relevant
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value drivers for the investment success, with several applications to investment valuation,

risk analysis, and performance measurement (among others, Borgonovo and Peccati 2006,

Borgonovo, Gatti and Peccati 2010).

Fuzzy-logic expert systems. Expert systems are artificial intelligence techniques which au-

tomatically replicate the evaluation and decision processes performed by human experts,

via a modular approach based on rules blocks and conditional implications. They are

often employed along with the fuzzy logic, suited for providing analyses and for building

models whose parameters are vague and difficult to express into precise real numbers, and

for taking into account both quantitative and qualitative variables, with several applica-

tions to finance and management (among others, Magni et al. 2004, Magni et al. 2006,

Malagoli et al. 2007).

I briefly describe the papers composing this thesis, classified in papers published or submitted

to journals and papers presented at conferences.

Papers published or submitted to journals

� Marchioni, A., Magni, C.A. (2018). Investment decisions and sensitivity analysis: NPV-

consistency of rates of return. European Journal of Operational Research, 268(1), 361-372.

The paper introduces a new, stronger definition of NPV-consistency that takes

into account the influence of value drivers on the metric output. A metric is

strongly NPV-consistent if it signals value creation and the ranking of the value

drivers in terms of impact is the same as that provided by the NPV. Finally, it

shows that the average Return On Investment enjoys strong NPV-consistency

under several methods of sensitivity analysis.

� Magni, C.A., Malagoli, S., Marchioni, A., Mastroleo, G. (2020). Rating firms and sensi-

tivity analysis. Journal of the Operational Research Society, 71(12), 1940-1958.

The paper introduces a model for rating a firm’s default risk based on fuzzy

logic and expert system and an associated model of sensitivity analysis for

managerial purposes, allowing the decomposition of the historical variation of

default risk, identifying the most relevant parameters for the risk variation, and

suggesting actions to be undertaken for improving the firm’s rating.

� Magni, C.A., Marchioni, A. (2020). Average rates of return, working capital, and NPV-

consistency in project appraisal: A sensitivity analysis approach. International Journal

of Production Economics, 229, 107769.

The paper introduces the straight-line rate of return (SLRR), based on the

notion of average rate of change, which overcomes all the problems encountered

by average ROI and IRR taking into explicit account the role of working capital:

viii



The SLRR always exists, is unique, strongly NPV-consistent for both accept-

reject decisions and project ranking, and has an unambiguous financial nature.

� Kroll, Y., Marchioni, A., Ben-Horin, M. (2021). Coherent Portfolio Performance Ratios.

Quantitative Finance. DOI: 10.1080/14697688.2020.1869293.

The paper introduces an axiomatic foundation for coherent portfolio perfor-

mance ratios, suggesting and analyzing four axioms: Monotonicty, size mono-

tonicity, concavity, and portfolio riskless translation invariance (PRTI); then,

it proves that performance ratios with fixed thresholds other than the risk-free

rate do not satisfy PRTI; finally, it introduces a modified threshold eliminating

the above shortcoming.

� Magni, C.A., Marchioni, A., Baschieri, D. (submitted). Value-based performance mea-

surement with the Attribution Matrix and the Finite Change Sensitivity Index.

The paper presents an innovative two-dimensional approach for performance

measurement, based on a newly introduced Attribution Matrix, aimed at de-

tecting the decision effects (measuring the impact of manager/investor choices

on investment performance) and the period effects (measuring the impact of

each period on investment performance).

� Magni, C.A., Baschieri, D., Marchioni, A. (submitted). Impact of financing and payout

policy on the economic profitability of solar photovoltaic plants.

The paper presents a comprehensive evaluation model for appraising an invest-

ment in a solar photovoltaic plant. It illustrates the intricate network of logical

relations among technical (estimated) variables and financial (decision) vari-

ables and shows that establishing transparent links between the former and the

latter enhances the accuracy and soundness of the model for correctly measuring

shareholder value creation.

Papers presented at conferences

� Magni, C.A., Marchioni, A. (2018). Project appraisal and the Intrinsic Rate of Return.

4th International Conference on Production Economics and Project Evaluation, ICOPEV,

Guimaraes, Portugal, September 20-21.

The paper proposes a new rate of return measuring a project’s economic prof-

itability, called the intrinsic rate of return, defined as the ratio of project return

to project’s intrinsic value.

� Magni, C.A., Marchioni, A. (2019). The accounting-and-finance of a solar photovoltaic

plant: Economic efficiency of a replacement project. 4th International Conference on

Energy and Environment, ICEE, Guimaraes, Portugal, May 16-17.
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The paper evaluates the economic profitability of a solar photovoltaic project

whose cash-flow stream is nonnegative via the average ROI, which eliminates

the shortcoming of the non-existent IRR.

� Magni, C.A., Marchioni, A. (2019). Performance measurement and decomposition of

value added. 9th International Conference of the Financial Engineering and Banking

Society, Prague, Czech Republic, May 30-June 1.

The paper decomposes the value added of an actively managed financial invest-

ment according to the influence of the investment choices (i.e., asset selection

and allocation) made in the various periods.

� Kroll, Y., Marchioni, A., Ben-Horin, M. (2020). Sortino(γ): A Modified Sortino Ratio

with Adjusted Threshold. 27th Annual Virtual Conference of the Multinational Finance

Society, June 28-29.

The paper introduces a modified Sortino ratio, Sortino(γ), which is invariant

with respect to the portfolio’s risk-free vs. risky assets mix, eliminating a

deficiency of the original Sortino ratio.

� Baschieri, D., Magni, C.A., Marchioni, A. (2020). Comprehensive financial modeling of

solar PV systems. 37th European Photovoltaic Solar Energy Conference, EU PVSEC,

Lisbon, Portugal, September 7-11.

The paper applies a sensitivity-analysis method, the Finite Change Sensitivity

Index, to the economic evaluation of a real photovoltaic plant, identifying the

contribution of any input factor to the value variation.

� Marchioni, A., Magni, C.A., Baschieri, D. (2020). Investment and financing perspec-

tives for a solar photovoltaic project. 20th Management International Conference, MIC,

Ljubljana, Slovenia, November 12-15.

The paper highlights the role of the distribution policy in the financial model-

ing of a solar photovoltaic plant, by underlining the strict logical connections

between estimated data and decision variables.
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a b s t r a c t 

Investment decisions may be evaluated via several different metrics/criteria, which are functions of a vec- 

tor of value drivers . The economic significance and the reliability of a metric depend on its compatibility 

with the Net Present Value (NPV). Traditionally, a metric is said to be NPV-consistent if it is coherent 

with NPV in signaling value creation. This paper makes use of Sensitivity Analysis (SA) for measuring 

coherence between rates of return and NPV. In particular, it introduces a new, stronger definition of 

NPV-consistency that takes into account the influence of value drivers on the metric output. A metric is 

strongly NPV-consistent if it signals value creation and the ranking of the value drivers in terms of impact 

on the output is the same as that provided by the NPV. The degree of (in)coherence is calculated with 

Spearman (1904) correlation coefficient and Iman and Conover (1987) top-down coefficient. We focus on 

the class of AIRRs (Magni 2010, 2013) and show that the average Return On Investment (ROI) enjoys 

strong NPV-consistency under several (possibly all) methods of Sensitivity Analysis. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In capital budgeting many different criteria are used for eval- 

uating a project, measuring economic efficiency, and making 

decisions. Net Present Value (NPV) is considered the most the- 

oretically reliable tool, since it correctly measures shareholder 

value creation ( Brealey & Myers, 20 0 0; Ross, Westerfield, & Jor- 

dan, 2011 ). However, in practice, many other metrics are used; 

in particular, relative measures of worth such as internal rate 

of return (IRR), profitability index (PI), modified internal rate of 

return (MIRR), Return On Investment (ROI), etc. Recently, a more 

general notion of rate of return, labeled AIRR (Average Internal 

Rate of Return) has been developed by Magni (2010, 2013) , based 

on a capital-weighted mean of holding period rates. The AIRR 

approach consists in associating the capital amounts invested in 

each period with the corresponding period returns by means of a 

weighted arithmetic mean. Magni (2010, 2013) showed that any 

AIRR is NPV-consistent: decisions made by an investor who adopts 

NPV are the same as those made by an investor who adopts AIRR. 

∗ Corresponding author. 

E-mail addresses: andrea.marchioni@unimore.it (A. Marchioni), magni@unimo.it 

(C.A. Magni). 

Magni (2013) showed that many traditional metrics can be viewed 

as belonging to the class of AIRRs, including IRR, PI, MIRR. As a 

special case, this approach makes use of the Return On Investment 

(ROI) to get an average ROI , which is the ratio of the total project 

return to the total invested capital. Whatever the depreciation pat- 

tern, the average ROI exists and is unique, it has the unambiguous 

nature of investment rate, independent of the value drivers, and 

decomposes the economic value created into economic efficiency 

(the difference between average ROI and cost of capital) and 

investment scale (the sum of the committed amounts). 

However, while traditional NPV-consistency is important, under 

uncertainty, an NPV or a rate of return are not the only factors 

that drive a decision. The investigation of the risk factors that 

mainly influence the value of the objective function is no less 

important. 

Sensitivity analysis (SA) investigates the variation of an ob- 

jective function under changes in the key inputs of a model, so 

aiming at identifying the most important risk factors affecting 

the output (and, therefore, the decision) and ranking them. There 

are many different SA techniques (see Pianosi et al., 2016 and 

Borgonovo & Plischke, 2016 ) and, given a technique, different 

objective functions may or may not lead to different results. 

This paper positions itself in the interfaces of operational 

research (OR) and finance. The strict connections between oper- 

https://doi.org/10.1016/j.ejor.2018.01.007 

0377-2217/© 2018 Elsevier B.V. All rights reserved. 
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ations management and finance were recognized long since (e.g., 

Small, 1956, Weingartner, 1963, Adelson, 1965, Hespos & Strass- 

man, 1965, Teichroew, Robichek, & Montalbano, 1965a, Teichroew, 

Robichek, & Montalbano, 1965b, Rivett, 1974, Ignizio, 1976 ) and 

scholarly contributions in the field have grown dramatically in the 

last decades (e.g., Rosenblatt and Sinuany-Stern, 1989 , Grubbström 

& Ashcroft, 1991, Murthi, Choi, & Desai, 1997, Meier, Christofides, 

& Salkin, 2001, Gondzio & Kouwenberg, 2001, Baesens, Setiono, 

Mues, & Vanthienen, 2003, Steuer & Na, 2003, Xu & Birge, 2008, 

Koç et al., 2009, Fabozzi, Huang, & Zhou, 2010, Thomas, 2010 , and 

Seifert, Seifert, & Protopappa-Siekec, 2013 ). 

The relation between OR and finance is bidirectional. On 

one side, finance provides a rich toolkit of theories, criteria, 

and methodologies which enable operational managers to better 

understand the impact of their decisions so as to maximize the 

shareholders’ wealth: “In order to make decisions managers need 

criteria of goodness, decision tools, and an understanding of the 

environment in which they operate ... The main elements of this 

are that the right criterion of goodness is the maximisation of 

shareholder wealth and that firms operate in something close 

to a perfect capital market.” ( Ashford, Berry, & Dyson, 1988 ). On 

the other side, operational research sets the aims and scope of 

financial modeling for managerial purposes: As opposed to finance 

theory which uses financial modeling for describing the behavior 

of the “average” investor and deriving the pricing process of 

financial assets, operational managers use financial modeling from 

the point of view of an individual decision maker with specific 

needs, constraints and preferences ( Spronk & Hallerbach, 1997 ). 

Further, operations research itself provides techniques and tools 

that may be applied to several finance problems ( Board, Sutcliffe, 

& Ziemba, 2003 ). 

This paper is in line with the bidirectional relation between 

operations and finance. Specifically, it recognizes the fundamental 

roles of economic and financial measures of worth such as the NPV 

and the ROI for decision-making and, at the same time, applies 

an OR technique (SA) to such financial measures in order to in- 

vestigate their compatibility. As such, it falls within that strand of 

the OR literature which makes use of various economic efficiency 

measures for managerial purposes, including the NPV (e.g., Yang, 

Talbot, & Patterson, 1993, Baroum & Patterson, 1996, Herroelen, 

Van Dommelen, & Demeulemeester, 1997, Cigola & Peccati, 2005, 

Borgonovo & Peccati, 2006a, Wiesemann, Kuhn, & Rustem, 2010, 

Leyman & Vanhoucke, 2017 ), the IRR ( Nauss, 1988; Rapp, 1980, 

Hazen, 2003, Hazen, 2009, Hartman & Schafrick, 2004, Dhavale & 

Sarkis, 2018 ), the ROI (e.g., Danaher & Rust, 1996, Myung, Kim, & 

Tcha, 1997, Brimberg & ReVelle, 20 0 0, Brimberg, Hansen, Laporte, 

Mladenovic, & Urosevic, 2008, Li, Min, Otake, & Van Voorhis, 2008, 

Menezes, Kim, & Huang, 2015, Magni, 2016 ) and the return to 

outlay ( Kumbhakar, 2011 ). This work is strictly linked with some 

recent methodological papers within this field which evaluate ra- 

tionality and robustness of various efficiency measures and/or their 

sensitivity to changes in the key parameters. Specifically, Magni 

(2015) showed that the average ROI (labeled average ROA) is reli- 

able for measuring economic efficiency in industrial applications; 

Mørch, Fagerholta, Pantuso, and Rakkec (2017) used the average 

ROI as the objective function in a problem of renewal of shippings, 

and compared the results with those obtained from the traditional 

NPV maximization. Borgonovo and Peccati (20 04, 20 06b) stud- 

ied the impact of the key drivers of an industrial project on 

NPV, IRR, and value at any time. Borgonovo, Gatti, and Peccati 

(2010) applied SA in a project financing transaction to assess the 

degree of coherence between NPV and debt service coverage ratio. 

Talavera, Nofuentes, and Aguilera (2010) applied SA to the IRR 

of photovoltaic grid-connected systems. Percoco and Borgonovo 

(2012) applied SA to IRR and NPV and studied the coherence 

between the two metrics in terms of importance of key drivers. 

We investigate the coherence of average ROI and NPV and 

give a new, more stringent, definition of NPV-consistency (strong 

coherence), according to which a metric is strongly NPV-consistent 

under a given SA technique if it is NPV-consistent in the traditional 

sense and, in addition, the ranking of the project’s value drivers 

(in terms of influence on the output) is the same. If a metric is 

not NPV-consistent, the degree of inconsistency may be measured 

by two alternative indices: Spearman (1904) coefficient or Iman 

and Conover (1987) top-down coefficient. 

We find that the average ROI is strongly NPV-consistent under 

many techniques, even in a strict sense (the relevances of the 

parameters are the same). As a result, the average ROI is a reliable 

measure of worth which can coherently be associated with NPV 

in investment evaluation, assessment of economic efficiency, and 

decision-making. 

The remaining part of the paper is structured as follows. 

Section 2 presents the average ROI and the notion of NPV- 

consistency. Section 3 briefly describes some known SA methods 

and Section 4 introduces the notion of pairwise coherence accord- 

ing to which any two functions are strongly coherent if the ranking 

of the model parameters coincides. This section shows that, under 

many SA techniques, a function f and an affine transformation 

of it share the same (ranking and) relevances of parameters, so 

they are strongly coherent in a strict sense. Section 5 shows that 

the average ROI is strongly NPV-consistent in a strict sense under 

many SA techniques. Some numerical examples are illustrated in 

Section 6 . Some concluding remarks end the paper. (An Appendix 

is devoted to some other AIRRs, including non-strongly consistent 

ones such as IRR, MIRR and EAIRR.) 

2. AIRR, average ROI, and NPV consistency 

Let P be a project and let F = (F 0 , F 1 , . . . , F p ) � = 0 its estimated 

stream of free cash flows (FCFs), where F 0 < 0 is the investment 

cost and p is the lifetime of the project. Let τ be the tax rate, R t 
be the revenues, O t be the operating costs, and let Dep t denote 

depreciation, t = 1 , 2 , . . . , p. Then, 

F t = 

operating profit ︷ ︸︸ ︷ 
(R t − O t − Dep t )(1 − τ ) + Dep t 

= (R t − O t )(1 − τ ) + τ · Dep t . (1) 

Revenues and costs are often estimated in terms of some key in- 

puts such as prices, quantity produced and sold, unit costs, growth 

rates, etc. There may be several types of costs, such as energy, 

material, labor, selling, general, and administrative expenses, etc. 

For example, 

F t = 

(
q · p 0 (1 + g p ) 

t −
s ∑ 

j=1 

O 

j 
0 
(1 + g O j ) 

t 
)
(1 − τ ) + τ · Dep t (2) 

where p 0 denotes the initial price, q denotes the annual quantity 

sold, O 

j 
0 

denotes the initial amount of the j -th item of cost, g p 
and g O j are the growth rates, and s is the number of cost items 

involved in the project under consideration. Let k be the (assumed 

constant) cost of capital (COC). We assume that the COC is exoge- 

nously fixed by the decision-maker/analyst. It is well-known that 

net present value (NPV) measures the economic value created: 

NPV = 

∑ p 
t=0 

F t (1 + k ) −t . Therefore, the NPV decision criterion may 

be stated as follows: 

Definition 1. (NPV criterion) A project creates value (i.e., it is worth 

undertaking) if and only if the project NPV, computed at the discount 

rate k , is positive: NPV( k ) > 0 . 

Let C = (C 0 , C 1 , . . . , C n ) be any vector representing some notion 

of capital, such that C 0 = −F 0 and C n = 0 and let I t = F t + C t − C t−1 

be the associated return. An AIRR, denoted as ı̄ , is defined 

5
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as the ratio of the overall return I = 

∑ p 
t=1 

I t (1 + k ) −(t−1) 

earned by the investor to the overall capital committed 

C = 

∑ p 
t=1 

C t−1 (1 + k ) −(t−1) : 

ı̄ = 

I 

C 
(3) 

or, equivalently, as the weighted mean of period rates associated 

with the capital stream C : 

ı̄ = 

∑ p 
t=1 

i t C t−1 d t−1 ∑ p 
t=1 

C t−1 d t−1 

where d t = (1 + k ) −t is the discounting factor and i t = I t /C t−1 is 

the period rate of return, t = 1 , 2 , . . . , p (see Magni, 2010, 2013 ). 

Magni (2010, 2013) defined a project a net investment if C > 0 

and a net financing if C < 0. In such a way, the financial nature 

of any project (and its associated rate of return) can be identified 

as an investment project or a financing project (respectively, an 

investment rate or a financing rate). 

Traditionally, it is widely accepted that a metric/criterion ϕ is 

said to be NPV-consistent if and only if a decision maker adopting 

ϕ makes the same decision suggested by the NPV criterion. We 

can formalize this standard notion as follows. 

Definition 2. (NPV-consistency) A metric/criterion ϕ is NPV- 

consistent if, given a cutoff rate k , the following statements are true: 

(i) an investment project creates value if and only if ϕ > k 

(ii) a financing project creates value if and only if ϕ < k . 

Magni (2010, 2013) showed that, given a cash-flow stream F , 

if ϕ = ̄ı , then the metric is NPV-consistent, since, for any vector C , 

the following product structure holds: 

NPV (1 + k ) = C( ̄ı − k ) . (4) 

The above definition and Eq. (4) are particularly interesting 

because they show that the AIRR approach enables reframing the 

NPV in terms of product of a capital base C and an excess return 

ı̄ − k . This means that the economic value created is determined 

by two factors: The project scale ( C ) and the project’s economic 

efficiency, ı̄ − k . The same NPV can be created either by investing a 

large capital amount at a small rate or investing a small capital at 

a high rate. Furthermore, the general definition stated above en- 

ables the analyst to understand whether value is created because 

capital is invested at a rate of return which is higher than the COC 

or because capital is borrowed at a financing rate which is smaller 

than the COC (see also Magni, 2015 ). 

We now consider the special case of AIRR where C t = B t 
is the capital which remains invested in the project at time 

t : B t = B t−1 − Dep t and B 0 = −F 0 , so that I t is the operating 

profit: I t = F t + B t − B t−1 = F t − Dep t = (R t − O t − Dep t )(1 − τ ) . The 

associated period return rate is the Return on Investment (ROI): 

ROI t = 

Operating profit 

Invested capital 
= 

(R t − O t − Dep t )(1 − τ ) 

B t−1 

. (5) 

Thus, the AIRR becomes 

ı̄ (B ) = 

Total Return 

Total Invested Capital 
= 

I 

B 

(6) 

where I = 

∑ p 
t=1 

((R t − O t − Dep t )(1 − τ )) · d t−1 is the overall oper- 

ating profit generated by the project and B = 

∑ p 
t=1 

B t−1 d t−1 is the 

overall invested capital, expressing the size of the investment. As 

seen above, ı̄ (B ) may be viewed as a weighted average of ROIs: 

ı̄ (B ) = α1 ROI 1 + α2 ROI 2 + · · · + αp ROI p (7) 

where αt = B t−1 d t−1 /B. We call ı̄ (B ) average ROI. 1 As (4) holds for 

any C (and, therefore, for B = (B 0 , B 1 , . . . , B n ) as well), NPV (1 + 

1 Magni (2015) used the expression average ROA for this measure. 

C

�̅ �

k

B

Average 
ROI

Fig. 1. Graph of the AIRR function for a positive-NPV project. 

k ) = B · ( ̄ı (B ) − k ) so the average ROI is NPV-consistent (see also 

Magni, 2015 ). It is also worth noting that the average ROI has the 

compelling property of existence and uniqueness for any project. 

Also, its financial nature does not depend on the value drivers nor 

the cost of capital: It is unambiguously determined as an invest- 

ment rate, since B 0 = −F 0 > 0 and Dep t > 0 , which implies B > 0. 

This makes it a good candidate as a reliable measure of worth. 

Owing to (1) and (2) , the NPV is a function of several variables 

(the prospective revenues and costs). Practically, the analyst selects 

depreciation for every period, Dep 1 , Dep 2 , . . . , Dep p , then esti- 

mates the amount of sales, the initial price(s), the costs for labor, 

material, maintenance, energy, the growth rates, the tax rate, etc. 

These variables are risk factors, also known as value drivers , for 

they affect the FCFs. Hence, given the project COC, the project NPV 

is computed. For example, using (2) , 

NPV 

= F 0 + 

p ∑ 

t=1 

(q · p 0 (1 + g p ) t −
∑ s 

j=1 O 

j 
0 
(1 + g O j ) 

t )(1 − τ ) + τ · Dep t 

(1 + k ) t 
. 

(8) 

It is evident that the average ROI depends on these same value 

drivers, given that ROI t depends on them. From (5) , 

ROI t = 

(q · p 0 (1 + g p ) t −
∑ s 

j=1 O 

j 
0 
(1 + g O j ) 

t − Dep t 

)
(1 − τ ) 

B t−1 

. 

Exploiting (4) , one can describe the AIRR as a function of the 

overall capital C : 

ı̄ = ̄ı (C) = k + 

NPV 

C 
(1 + k ) . (9) 

Fig. 1 graphically describes the AIRR function ı̄ (C) for a value- 

creating project; each pair (C, ̄ı (C)) represents an NPV-consistent 

rate of return; among the infinitely many AIRRs, we highlight 

the average ROI, which is the AIRR associated with the capital 

stream B . 

The project’s aim is to check whether the coherence of average 

ROI and NPV, which is guaranteed in a traditional sense, remains 

valid if changes in value drivers are considered. The analysis of 
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change in a model’s inputs and the impact on the model output is 

the purpose of Sensitivity Analysis (SA). 2 

3. Sensitivity analysis 

In the definition of Saltelli, Tarantola, Campolongo, and Ratto 

(2004 , p. 45), sensitivity analysis (SA) is the “study of how the 

uncertainty in the output of a model (numerical or otherwise) can 

be apportioned to different sources of uncertainty in the model 

input.”

Given a model and a set of inputs (parameters), the SA inves- 

tigates the relevance of parameters in terms of variability of the 

model output. In the literature there exist many SA techniques 

(see Borgonovo & Plischke, 2016 , and Pianosi et al., 2016 , for 

review of SA methods). A model can be described as consisting 

of an objective function f defined on the parameter space A , which 

maps vector of inputs onto a model output y : 

f : A ⊂ R 

n → R , y = f (α) , α = (α1 , α2 , . . . , αn ) . (10) 

The vector α = (α1 , α2 , . . . , αn ) ∈ A ⊂ R 

n is the vector of inputs or 

parameters or key drivers and y ( α) is the output of the model. Let 

α0 = (α0 
1 
, α0 

2 
, . . . , α0 

n ) ∈ A be the base-case , a representative value 

(e.g., mean value, most probable value, etc.). The relevance of a 

parameter αi (also known as importance measure) quantifies the 

impact of αi on the output variation. Let R f = (R 
f 
1 
, R 

f 
2 
, . . . , R 

f 
n ) be 

the vector of the relevances. The latter determines the ranking 

of the parameters in the following way. Input αi is defined to be 

more relevant than αj if and only if | R f 
i 
| > | R f 

j 
| . The parameters 

are equally relevant for f if | R f 
i 
| = | R f 

j 
| . The rank of αi , denoted 

as r 
f 
i 
, depends on the importance measure: αi has a higher rank 

(it has a greater impact on the output) than αj if it has greater 

relevance. Let r f = (r 
f 
1 
, r 

f 
2 
, . . . , r 

f 
n ) be the vector of ranks. 

The average rank is r 
f 
M 

= 

∑ n 
i =1 i 

n = 

n ·(n +1) 
2 
n = 

n +1 
2 . The high param- 

eters (or top parameters) are those whose rank is higher than the 

average rank r 
f 
M 

; the low parameters are those parameters whose 

rank is smaller than r 
f 
M 

. 

Following we briefly describe some well-known (global and 

local) SA techniques. 

(i) Standardized regression coefficient (global SA) 

Let V denote variance and σ denote standard deviation. 

Consider the linear regression with dependent variable f and ex- 

planatory variables αi , ∀ i = 1 , . . . , n, estimated with OLS method: 

f = β f 
0 

+ 

∑ n 
i =1 β

f 
i 

· αi + u . The standardized regression coefficient 

SRC 
f 
i 

measures the importance of αi ( Bring, 1994; Saltelli & 

Marivoet, 1990; Saltelli et al., 2008 ): 

SRC f 
i 

= 

β f 
i 

· σ (αi ) 

σ ( f ) 
. (11) 

(ii) Sensitivity indices in variance-based decomposition meth- 

ods (global SA) In variance-based methods, the importance of a 

parameter is generally represented through the First Order Sen- 

sitivity Index (FOSI) and the Total Order Sensitivity Index (TOSI) 

( Saltelli et al., 2008 ). The FOSI, here denoted as SI 
1 , f 
i 

, measures 

the individual effect of the parameter on the output variance: 

SI 1 , f 
i 

= 

V (E( f | αi )) 

V ( f ) 
, (12) 

2 Ekern (1981) and Foster and Mitra (2003) provide conditions under which a 

project’s NPV is greater than a second project’s NPV irrespective of the COC. Assum- 

ing that the second project is the null alternative, those conditions identify those 

projects which are robust under changes in the COC. Those conditions hold for any 

AIRR as well, given that any AIRR is NPV-consistent in the traditional sense (i.e., 

according to Definition 2 ). In this paper, we measure the robustness of the project 

with respect to the estimates of revenues and costs and focus on their impact on 

NPV and rate of return. 

where V ( E ( f | αi )) is the variance of the expectation of f upon a 

fixed value of αi . 
3 The TOSI, here denoted as SI 

T, f 
i 

, measures the 

total contribution of αi to the output variability, i.e., it is inclusive 

of the interaction effects with other parameters or groups of 

parameters. SI 
T, f 
i 

can be calculated as ( Saltelli et al., 2008 ) 

SI T, f 
i 

= 

E(V ( f | α−i )) 

V ( f ) 
, (13) 

where f | α−i = f | α1 , α2 , . . . , αi −1 , αi +1 , . . . , αn (see also Saltelli 

et al., 2008; Sobol’, 1993; Sobol’, 2001 ). 

(iii) Finite Change Sensitivity Indices (global SA) The Finite Change 

Sensitivity Indices (FCSIs), introduced in Borgonovo (2010a, 2010b) , 

focus on the output change due to a finite input change; there 

exist two versions of FCSIs: First Order FCSI and Total Order FCSI. 

The First Order FCSI of a parameter measures the individual 

effect of the parameter’s variation on f ; the Total Order FCSI 

considers the total effect of a parameter’s variation on f , including 

both the individual contribution and the interactions between a 

parameter and the other parameters. 

Consider a change of parameters from α0 to α1 = 

(α1 
1 
, α1 

2 
, . . . , α1 

n ) ∈ A . The output variation is � f = f (α1 ) − f (α0 ) . 

Let (α1 
i 
, α0 

(−i ) 
) = (α0 

1 
, α0 

2 
, . . . , α0 

i −1 
, α1 

i 
, α0 

i +1 
, . . . , α0 

n ) be obtained 

by varying the parameter αi to the new value α1 
i 
, while the 

remaining n − 1 parameters are fixed at α0 . The individual effect 

of αi on �f is �i f = f (α1 
i 
, α0 

(−i ) 
) − f (α0 ) and the First Order FCSI 

of αi , denoted as �1 , f 
i 

, is (Borgonovo, 2010a) : 

�1 , f 
i 

= 

�i f 

� f 
. (14) 

�f is equal to the sum of individual effects and interactions 

between parameters and groups of parameters. The total effect of 

the parameter αi , denoted as �T 
i 

f, is the sum of the individual 

effect of αi and of the interactions that involve αi . Borgonovo, 

(2010a , Proposition 1) showed that �T 
i 

f can be obtained as 

�T 
i 

f = f (α1 ) − f (α0 
i 
, α1 

(−i ) 
) for all i = 1 , 2 , . . . , n, where (α0 

i 
, α1 

(−i ) 
) 

is the point with all the parameters equal to the new value α1 , 

except the parameter αi , which is equal to α0 
i 

. The Total Order FCSI 

of the parameter αi , denoted as �T, f 
i 

, is ( Borgonovo, 2010a ): 

�T, f 
i 

= 

�T 
i 

f 

� f 
= 

f (α1 ) − f (α0 
i 
, α1 

(−i ) 
) 

� f 
. (15) 

(iv) Helton’s index (local SA) 

Helton (1993) proposed a variance decomposition of f based on 

Taylor approximation. He assumed parameters are not correlated, 

so the variance of f can be approximated by 

ˆ V ( f ) = 

n ∑ 

i =1 

[ f ′ αi 
(α0 )] 2 · V (αi ) . (16) 

The impact of input αi on V ( f ) can be measured by 

H 

f 
i 
(α0 ) = 

[ f ′ αi 
(α0 )] 2 · V (αi ) 

ˆ V ( f ) 
. (17) 

(v) Normalized Partial Derivatives ( local SA ) 

Helton (1993) also proposed the adoption of normalized partial 

derivatives as sensitivity measures. He defined two versions of 

normalized partial derivatives (NPDs): 

NP D 1 

f 
i 
(α0 ) = f ′ αi 

(α0 ) · α0 
i 

f (α0 ) 
, (18) 

NP D 2 

f 
i 
(α0 ) = f ′ αi 

(α0 ) · σ (αi ) 

ˆ σ ( f ) 
, (19) 

3 It can be shown that V (E( f | αi )) = V ( f ) − E[ V ( f | αi )] (see Saltelli et al., 2008 ). 
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where ˆ σ ( f ) is the square root of ˆ V ( f ) defined in (16) . NP D 1 
f 
i 
(α0 ) 

measures the elasticity of f with respect to αi in α0 assuming that 

the relative change in αi is fixed for i = 1 , 2 , . . . , n ( Helton, 1993 , 

p. 329). | NP D 2 
f 
i 
(α0 ) | is the square root of (17) . 

(vi) Differential Importance Measure ( local SA ) 

The total variation f (α0 + d α) − f (α0 ) of a differentiable func- 

tion f due to a local change d α can be approximated by the total 

differential d f = 

∑ n 
i =1 f 

′ 
αi 

(α0 ) · d αi . The Differential Im portance 

Measure (DIM) of parameter αi is the ratio of the partial differen- 

tial of f with respect to αi to the total differential of f ( Borgonovo 

& Apostolakis, 2001; Borgonovo & Peccati, 2004 ): 

DIM 

f 
i 
(α0 , d α) = 

d f a i 
d f 

= 

f ′ αi 
(α0 ) · d αi ∑ n 

j=1 f 
′ 
α j 

( α0 ) · d α j 

. (20) 

The DIM of a parameter represents the percentage of the func- 

tion’s variation due to the variation of that parameter ( Borgonovo 

& Apostolakis, 2001; Borgonovo & Peccati, 2004 ). 

4. Coherence between objective functions 

Risk management problems are often characterized by the defi- 

nition of more than one objective function ( Borgonovo et al., 2010; 

Borgonovo & Peccati, 2006b ). For a given technique, the analysis 

can be applied using different objective functions. A relevant as- 

pect is the evaluation of the coherence (or compatibility) between 

the results of the sensitivity analysis for different functions. 

We consider the objective functions f, g : A → R . The vector 

of importance measures are respectively R f = (R 
f 
1 
, R 

f 
2 
, . . . , R 

f 
n ) and 

R g = (R 
g 
1 
, R 

g 
2 
, . . . , R 

g 
n ) ; the ranking vectors are r f = ( r f 

1 
, r 

f 
2 
, . . . , r 

f 
n ) 

and r g = (r 
g 
1 
, r 

g 
2 
, . . . , r 

g 
n ) . 

Definition 3. (Coherence) Given a technique of SA and two objective 

functions f and g , they are coherent if the ranking vectors coincide: 

r f = r g . If, in addition, the vectors of the relevances coincide, R f = R g , 

they are strictly coherent. 

If two functions f and g are not coherent, the degree of inco- 

herence can be alternatively measured through Spearman’s rank 

correlation coefficient ( Spearman, 1904 ) or top-down correlation 

coefficient ( Iman & Conover, 1987 ). 

Spearman’s rank correlation coefficient (henceforth, Spearman’s 

coefficient) between two stochastic variables is the correlation co- 

efficient between the ranks of the stochastic variables ( Spearman, 

1904 ). In SA, Spearman’s coefficient between two objective func- 

tions f and g , denoted as ρ f , g , is the correlation coefficient of the 

ranking vectors r f and r g : 

ρ f,g = 

Cov (r f , r g ) 

σ (r f ) · σ (r g ) 
= 

∑ n 
i =1 (r f 

i 
− r f 

M 

) · (r g 
i 
− r g 

M 

) √ ∑ n 
i =1 (r f 

i 
− r f 

M 

) 2 ·
√ ∑ n 

i =1 (r g 
i 
− r g 

M 

) 2 
, (21) 

where, as seen, r 
f 
M 

= r 
g 
M 

= 

n +1 
2 . The coefficient ρ f , g attributes the 

same weight to top and low parameters and lies in the interval 

[ −1 , 1] . The coefficient ρ f , g is equal to 1 if and only if f and g 

are coherent according to Definition 3 . Therefore, a value of ρ f , g 

smaller than 1 signals incoherence between f and g : The smaller 

the value of ρ f , g , the higher the degree of incoherence. The 

difference 1 − ρ f,g can be taken as representative of the degree of 

incoherence. 

Iman and Conover (1987) introduced the top-down correlation 

coefficient, a compatibility measure that attributes a higher weight 

to top parameters than to low parameters. This measure is based 

on Savage Score ( Savage, 1956 ). The Savage score of parameter αi is 

S 
f 
i 

= 

∑ n 

h = r f 
i 

1 
h 

. The vector of Savage scores is S f = (S 
f 
1 
, S 

f 
2 
, . . . , S 

f 
n ) . 

4 

The average Savage score is S 
f 
M 

= 

∑ n 
i =1 S 

f 
i 

n = 1 . 

The top-down correlation coefficient between the objective 

functions f and g , denoted as ρS f ,S g , is the correlation coefficient 

between the Savage scores’ vectors S f and S g ( Iman & Conover, 

1987 ): 

ρS f ,S g = 

Cov (S f , S g ) 

σ (S f ) · σ (S g ) 

= 

∑ n 
i =1 (S f 

i 
− S f 

M 

) · (S g 
i 
− S g 

M 

) √ ∑ n 
i =1 (S f 

i 
− S f 

M 

) 2 ·
√ ∑ n 

i =1 (S g 
i 
− S g 

M 

) 2 
, (22) 

where S 
f 
M 

= S 
g 
M 

= 1 . The coefficient ρS f ,S g measures the compati- 

bility between the parameters’ ranking of f and g : The accordance 

between top parameters has a remarkable influence on ρS f ,S g , 

while the discordance between low parameters has a weak 

influence on ρS f ,S g ( Iman & Conover, 1987 ). 

If the aim of the analysis is factor prioritization (i.e., identifi- 

cation of the most relevant parameters), the top-down coefficient 

should be preferred to Spearman’s coefficient. 

The maximum value of ρS f ,S g is equal to 1. In case f and g 

have no ties (i.e., no relevance is equal), the minimum value is −1 

for n = 2 , it increases as n increases, and it tends to −0 . 645 as n 

tends to infinity ( Iman & Conover, 1987 ). 

ρS f ,S g is equal to 1 if and only if f and g are coherent. Therefore, 

a value of ρS f ,S g smaller than 1 signals incompatibility between f 

and g . The smaller the value of ρS f ,S g , the higher the incoherence 

level. The degree of incoherence of f and g can then be measured 

by 1 − ρS f ,S g . 

Borgonovo, Tarantola, Plischke, and Morris (2014) showed that 

an objective function f and a monotonic transformation g of it 

generate the same relevances of the parameters under suitable 

assumptions. This means that they are strictly coherent according 

to Definition 3 . 

We now show that, if g is an affine transformation of f , that is, 

g(α) = l · f (α) + q for all α ∈ A , then f and g are strictly coherent 

under several techniques. 

Proposition 1. A function and an affine transformation of it are 

strictly coherent under the following techniques: 

(i) Standardized regression coefficient 

(ii) Sensitivity Indices in variance-based decomposition methods 

(iii) Finite Change Sensitivity Indices 

(iv) Helton’s index 

(v) Normalized Partial Derivative ( NP D 2 
f 
i 

) 

(vi) Differential Importance Measure. 

Proof. By hypothesis, g(α) = l · f (α) + q . Therefore, 

(i) g = l · (β f 
0 

+ 

∑ n 
i =1 β

f 
i 

· αi + u ) + q = (l · β f 
0 

+ q ) 

+ 

∑ n 
i =1 (l · β f 

i 
) · αi + l · u, whence 

βg 
0 

= l · β f 
0 

+ q, 

βg 
i 

= l · β f 
i 

so that 

SRC g 
i 

= 

βg 
i 

· σ (αi ) 

σ (g) 
= 

l · β f 
i 

· σ (αi ) 

l · σ ( f ) 
= SRC f 

i 
. 

4 For example, if n = 5 and r f = (1 , 2 , 3 , 4 , 5) , then S f = 

(2 . 28 ̄3 , 1 . 28 ̄3 , 0 . 78 ̄3 , 0 . 45 , 0 . 2) . 
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(ii) Denoting as f | αi (and g | αi ) the function f (and g ) conditional 

to a specific value of αi , g| αi = (l · f + q ) | αi = (l · f ) | αi + q = 

l · f | αi + q. Therefore, 

SI 1 ,g 
i 

= 

V (E(g| αi )) 

V (g) 
= 

V (E(l · f | αi + q )) 

V (l · f + q ) 

= 

l 2 · V (E( f | αi )) 

l 2 · V ( f ) 
= SI 1 , f 

i 
. 

Analogously, g| α−i = (l · f + q ) | α−i = l · f | α−i + q. Hence, 

SI T,g 
i 

= 

E(V (g| α−i )) 

V (g) 

= 

E(V (l · f | α−i + q )) 

V (l · f + q ) 
= 

l 2 · E(V ( f | α−i )) 

l 2 · V ( f ) 
= SI T, f 

i 
. 

(iii) Since �g = g(α1 ) − g(α0 ) = l · f (α1 ) + q − l · f (α0 ) − q = 

l · ( f (α1 ) − f (α0 )) = l · � f, and 

�i g = g(α1 
i , α

0 
(−i ) ) − g(α0 ) = l · f (α1 

i , α
0 
(−i ) ) 

+ q − l · f (α0 ) − q 

= l · ( f (α1 
i , α

0 
(−i ) ) − f (α0 )) = l · �i f, 

then 

�1 ,g 
i 

= 

�i g 

�g 
= 

l · �i f 

l · � f 
= 

�i f 

� f 
= �1 , f 

i 
. 

As for the Total Indices, 

�T 
i g = g(α1 ) − g(α0 

i , α
1 
(−i ) ) = l · f (α1 ) 

+ q − l · f (α0 
i , α

1 
(−i ) ) − q 

= l · ( f (α1 ) − f (α0 
i , α

1 
(−i ) )) = l · �T 

i f 

so that 

�T,g 
i 

= 

�T 
i 

g 

�g 
= 

l · �T 
i 

f 

l · � f 
= 

�T 
i 

f 

� f 
= �T, f 

i 
. 

(iv) From (16) , 

ˆ V (g) = 

n ∑ 

i =1 

[ g ′ αi 
(α0 )] 2 · V (αi ) 

= 

n ∑ 

i =1 

[ l · f ′ αi 
(α0 )] 2 · V (αi ) 

= l 2 ·
n ∑ 

i =1 

[ f ′ αi 
(α0 )] 2 · V (αi ) 

= l 2 · ˆ V ( f ) . 

Hence, 

H 

g 
i 
(α0 ) = 

[ g ′ αi 
(α0 )] 2 · V (αi ) 

ˆ V (g) 
= 

l 2 · [ f ′ αi 
(α0 )] 2 · V (αi ) 

l 2 · ˆ V ( f ) 

= H 

f 
i 
(α0 ) . 

(v) Straightforward, since | NP D 2 
f 
i 
| is the square root of H 

f 
i 
(α0 ) . 5 

5 It is worth noting that f and g are coherent but not strictly coherent under 

NPD 1 f 
i 

technique: 

NPD 1 g 
i 
(α0 ) = g ′ αi 

(α0 ) · α0 
i 

g(α0 ) 
= l · f ′ αi 

(α0 ) · α0 
i 

g(α0 ) 
· f (α0 ) 

f (α0 ) 

= l · f (α0 ) 

g(α0 ) 
· NPD 1 f 

i 
(α0 ) 

so that | NPD 1 f 
i 
| > | NP D 1 f 

j 
| implies | NP D 1 g 

i 
| > | NPD 1 g 

j 
| . Therefore, the parameters’ 

ranking in f and g is equal: r f = r g . 

(vi) From (20) , 

DIM 

g 
i 
(α0 , d α) = 

g ′ αi 
(α0 ) · d αi ∑ n 

j=1 g 
′ 
α j 

(α0 ) · d α j 

= 

l · f ′ αi 
(α0 ) · d αi ∑ n 

j=1 l · f ′ α j 
(α0 ) · d α j 

= 

f ′ αi 
(α0 ) · d αi ∑ n 

j=1 f 
′ 
α j 

(α0 ) · d α j 

= DIM 

f 
i 
(α0 , d α) . 

(This result is independent of the structure of d α.) �

Remark 1. While we have proved that, for several SA techniques, a 

function and its affine transformation are coherent (even in a strict 

sense), it is intuitive to inductively believe that a function and its 

affine transformation share an absolute coherence, in that they are 

coherent for every existing SA technique. We leave the proof of this 

more general statement for future research. 

5. Coherence between return rates and NPV 

The investment risk can be defined as “the potential variability 

of financial outcomes” ( White, Sondhi, & Fried, 1997 ). The future 

outcomes of an investment are stochastic and the investor has lim- 

ited information. Referring to NPV and IRR, Joy and Bradley (1973 , 

p. 1255) wrote: “It has often been suggested that capital budgeting 

theory has over-emphasized the development of such techniques 

with little regard for the typically poor data used in project eval- 

uation and the effect that errors in capital budgeting inputs have 

on project profitability.” The practice of valuation criteria should 

be corroborated by a careful investment risk analysis. 

Given an investment model based on a set of value drivers, 

SA allows the evaluator to identify the most relevant parameters 

in terms of variation of the value. The most relevant parameters 

are the risk factors that mainly influence the investment. After SA 

has been performed, the investment risk can be reduced through 

information insights on the main risk factors identified by the 

analysis; the collection of extra information on these parameters 

allows more precise estimates and a remarkable uncertainty re- 

duction ( Borgonovo & Peccati, 2006b ). Furthermore, the potential 

investor is able to appreciate the convenience of possible hedging 

strategies. 

As the NPV is the main decision criterion in capital budgeting 

theory, the analysis of the parameters’ relevance on NPV variability 

is fundamental. Any relative measure of worth should be consis- 

tent with NPV not only in terms of classical consistency but also in 

terms of output variability with respect to changes in the inputs. 

Definition 4. (Strong NPV-consistency) Given an analysis technique 

T , a metric ϕ (and its associated decision criterion) is strongly NPV- 

consistent (or coherent with NPV) under T if it fulfills Definition 2 and 

NPV and ϕ are coherent functions according to Definition 3 . The met- 

ric ϕ is strictly NPV-consistent if the coherence is strict. 

If a metric/criterion possesses strong NPV-consistency, the 

investor can equivalently adopt NPV or such a criterion for mea- 

suring value creation under uncertainty. In case a metric is not 

strongly NPV-consistent, the degree of incompatibility can be 

measured through Spearman’s coefficient or through top-down 

coefficient, as seen in Section 4 . 

We now show that the average ROI possesses strong NPV- 

consistency. To this end, we maintain the symbol α = (α1 , . . . , αn ) 

as the vector of the project’s value drivers and α0 is the 

base value. We assume that the initial invested capital is ex- 

ogenously given, as well as the COC (and p ). The economic 

profitability of P depends on the realization of the value 

drivers, which affect the FCFs, as seen in Section 2 : F t = F t (α) , 

9
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t = 1 , 2 , . . . p. We now let f (α) = NPV (α) = −B 0 + 

∑ p 
t=1 

F t (α)(1 + 

k ) −t and g ( α) denotes the average ROI. 

Proposition 2. For any fixed k , p and Dep = ( Dep 1 , . . . , Dep p ) , 
6 av- 

erage ROI and NPV are strongly consistent in a strict sense under the 

following techniques: 

(i) Standardized regression coefficient 

(ii) Sensitivity Indices in variance-based decomposition methods 

(iii) Finite Change Sensitivity Indices 

(iv) Helton’s index 

(v) Normalized Partial Derivative ( NP D 2 
f 
i 

) 

(vi) Differential Importance Measure. 

Proof. The depreciation charge, Dep t , does not depend on the 

value drivers; therefore, B does not depend on α and, using (9) , 

one can write g(α) = q + l · NPV (α) where q = k and l = (1 + k ) /B . 

The thesis follows from Proposition 1 . 7 �

The above proposition guarantees that the value drivers’ effect 

on the variability of ı̄ (B ) and NPV is the same, not only in terms 

of ranks ( r npv = r ̄ı (B ) ) but also in terms of relevances ( R npv = R ̄ı (B ) ). 

Therefore, ρı̄ (B ) , npv = ρS ̄ı (B ) ,S npv = 1 . This means that an investor can 

equivalently employ average ROI or NPV to analyze an investment 

under uncertainty. 

6. Worked examples 

In the previous sections we have shown that, given a depreci- 

ation plan, the average ROI is strongly consistent with NPV. The 

aim of this section is to discuss two models. The first analyzes 

an example with straight-line depreciation. The second one is a 

real-life application, illustrated in Hartman (2007 , p. 344) and is 

based on declining balance depreciation. We will accomplish a SA 

by focusing on two techniques: FCSI and DIM. 

6.1. Straight-line depreciation 

We discuss a simple model, consisting of a firm facing the 

opportunity of investing in a 4-period project whose estimated 

revenues and operating costs are R t and O t . We assume that the 

tax rate is zero, τ = 0 (it is not a risk factor). This implies, from 

(1) , F t = R t − O t . The project’s value drivers are then αi = R i for 

i = 1 , 2 , 3 , 4 and αi = O i −4 for i = 5 , 6 , 7 , 8 . Hence, the value driver’s 

vector is α = { R 1 , R 2 , R 3 , R 4 , O 1 , O 2 , O 3 , O 4 } . NPV is computed 

as: 

NPV (α) = −B 0 + 

R 1 − O 1 

1 + k 
+ 

R 2 − O 2 

(1 + k ) 2 
+ 

R 3 − O 3 

(1 + k ) 3 
+ 

R 4 − O 4 

(1 + k ) 4 
. 

We assume that straight-line (SL) depreciation is employed, 

which implies that the invested capital depreciates linearly with 

time: Dep t = γ B 0 where γ = 1 /p. This means B t = B 0 (1 − γ t) 

and, in turn, B = B 0 ·
∑ p 

t=1 
(1 − t−1 

p )(1 + k ) −(t−1) . This implies 

ROI t = (R t − O t − γ B 0 ) / (B 0 (1 − γ (t − 1))) . The average ROI can be 

computed as a weighted average of the ROIs or as the ratio of 

overall profit to overall capital, B . Equivalently, using NPV, one can 

compute it as the value obtained by the AIRR function at C = B . 

Specifically, ı̄ (B ) = k + NPV (1 + k ) /B . 

Example 1. Assume B 0 = 750 and k = 10% . Table 1 describes the 

base value 

α0 = (R 

0 
1 , R 

0 
2 , R 

0 
3 , R 

0 
4 , O 

0 
1 , O 

0 
2 , O 

0 
3 , O 

0 
4 ) 

and reports the corresponding Free Cash Flows and valua- 

tion metrics. The NPV is 157 . 37 = −750 + 380 / 1 . 1 + 270 / (1 . 1) 2 + 

6 Obviously, to fix Dep is equivalent to fixing B . 
7 Evidently, ı̄ (B ) is strongly NPV-consistent under NPD 1 f 

i 
as well but not in a 

strict sense. 

Table 1 

Investment evaluated in α0 . 

0 1 2 3 4 

R 0 t 580 570 560 400 

O 0 t 200 300 200 300 

F t −750 380 270 360 100 

Valuation 

NPV 157.37 

ı̄ ( B ) 20.11% 

Table 2 

Investment evaluated in α1 . 

0 1 2 3 4 

R 1 t 800 810 780 630 

O 1 t 350 250 380 600 

F t −750 450 560 400 30 

Valuation 

NPV 442.92 

ı̄ ( B ) 38.46% 

360 / (1 . 1) 3 + 100 / (1 . 1) 4 . Considering that depreciation charge is 

750 / 4 = 187 . 5 , the vector of capitals associated with the aver- 

age ROI is B = (750 , 562 . 5 , 375 , 187 . 5 , 0) and B = 1712 . 15 = 750 + 

562 . 5 / 1 . 1 + 375 / (1 . 1) 2 + 187 . 5 / (1 . 1) 3 . Therefore, the average ROI 

is equal to ı̄ (B ) = 10% + 157 . 37 / 1712 . 15 · 1 . 1 = 20 . 11% . 

Let α1 be the vector of new values of revenues and costs 

(see Table 2 ), with the corresponding new values of F t , NPV, and 

ı̄ (B ) . In α1 , NPV is 442.92, ı̄ (B ) is 38.46%. The observed varia- 

tions are: �NPV = 285 . 55 = 442 . 92 − 157 . 37 ; �ı̄ (B ) = 18 . 35% = 

38 . 46% − 20 . 11% . Table 3 shows the First Order FCSIs ( �1 , f 
i 

), the 

ranks ( r 
f 
i 

), and the Savage scores of parameters ( S 
f 
i 

) for NPV and 

ı̄ (B ) . The First Order FCSIs are equal: �1 , npv 
i 

= �1 , ̄ı (B ) 
i 

. Hence, ı̄ (B ) 

and NPV are strongly coherent in a strict sense and the degree of 

coherence is maximum: ρı̄ (B ) , npv = ρS ̄ı (B ) ,S npv = 1 . (Note that, in this 

case, Total Order FCSIs and First Order FCSIs coincide, because the 

value drivers do not interact one another.) 

We now illustrate one numerical example where the DIM tech- 

nique is used. It is a local SA technique, so it measures the value 

drivers’ impact on the objective function in a neighborhood of α0 . 

We assume that changes in the inputs are proportional to the base 

value ( d αi = ξ · α0 
i 

for some ξ � = 0) so the resulting DIM is 

DIM 

f 
i 
(α0 ) = 

f ′ αi 
(α0 ) · ξ · α0 

i ∑ n 
j=1 f 

′ 
α j 

( α0 ) · ξ · α0 
j 

= 

f ′ αi 
( α0 ) · α0 

i ∑ n 
j=1 f 

′ 
α j 

( α0 ) · α0 
j 

(23) 

( Borgonovo & Apostolakis, 2001 , and Borgonovo & Peccati, 2004 ). 

In particular, the first partial derivatives of NPV( α), evaluated in 

α0 , are 

NPV 

′ 
αi 
(α0 ) = 

{
(1 + k ) −i , i = 1 , 2 , 3 , 4 ; 

−(1 + k ) −(i −4) , i = 5 , 6 , 7 , 8 . 
(24) 

The first partial derivatives of ı̄ (B ) , evaluated in α0 , are 

ı̄ (B ) ′ αi 
(α0 ) = NPV 

′ 
αi 
(α0 ) · 1 + k 

B 

. (25) 

Example 2. Consider a four-period investment P , with B 0 = 900 

and k = 8% . Hence, Dep t = 225 which implies B = 2089 . 41 . The base 

value is 

α0 = (90 0 , 10 0 0 , 110 0 , 120 0 , 60 0 , 70 0 , 80 0 , 90 0) . 

The corresponding cash-flow vector is 

F = (−90 0 , 30 0 , 30 0 , 30 0 , 30 0) and NPV = 93 . 64 , ı̄ (B ) = 12 . 84% . 

Table 4 shows the DIMs, the ranks, and the Savage scores. As 

expected, the two metrics share the same rank and even the same 

DIMs. Therefore, they are strictly coherent. 

10



368 A. Marchioni, C.A. Magni / European Journal of Operational Research 268 (2018) 361–372 

Table 3 

Finite change sensitivity indices. 

Parameter NPV Average ROI 

�T, npv 
i 

= �1 , npv 
i 

r npv 
i 

S npv 
i 

�T, ̄ı (B ) 
i 

= �1 , ̄ı (B ) 
i 

r ı̄ (B ) 
i 

S ı̄ (B ) 
i 

R 1 70.04% 2 1.718 70.04% 2 1.718 

R 2 69.46% 3 1.218 69.46% 3 1.218 

R 3 57.89% 4 0.885 57.89% 4 0.885 

R 4 55.01% 5 0.635 55.01% 5 0.635 

O 1 −47.76% 6 0.435 −47.76% 6 0.435 

O 2 14.47% 8 0.125 14.47% 8 0.125 

O 3 −47.36% 7 0.268 −47.36% 7 0.268 

O 4 −71.76% 1 2.718 −71.76% 1 2.718 

Correlations 

ρı̄ (B ) , npv 1 

ρS ̄ı (B ) ,S npv 1 

Table 4 

Coherence under DIM technique. 

Parameter α0 NPV Average ROI 

DIM 

npv 
i 

(α0 ) r npv 
i 

S npv 
i 

DIM 

ı̄ (B ) 
i 

(α0 ) r ı̄ (B ) 
i 

S ı̄ (B ) 
i 

R 1 900 83.87% 4 0.885 83.87% 4 0.885 

R 2 10 0 0 86.28% 3 1.218 86.28% 3 1.218 

R 3 1100 87.88% 2 1.718 87.88% 2 1.718 

R 4 1200 88.77% 1 2.718 88.77% 1 2.718 

O 1 600 −55.91% 8 0.125 −55.91% 8 0.125 

O 2 700 −60.40% 7 0.268 −60.40% 7 0.268 

O 3 800 −63.91% 6 0.435 −63.91% 6 0.435 

O 4 900 −66.58% 5 0.635 −66.58% 5 0.635 

Correlations 

ρı̄ (B ) , npv 1 

ρS ̄ı (B ) ,S npv 1 

Table 5 

Sunoco project: input data. 

Stochastic (value drivers) 

Annual production q 0.55 Million tons 

Price p 0 $350 Per ton 

Price growth rate g p 2% 

Materials M $27.5 Million 

Materials growth rate g m 2% 

Labor L $75 Million 

Labor growth rate g l 5% 

Energy E $20 Million 

Energy growth rate g e 3% 

Overhead O v $7 Million 

Tax rate τ 35% 

Non-stochastic 

Investment $140 Million 

Salvage Value $0 Million 

COC 12% 

Periods 15 Years 

Dep Method DDB-SL 

6.2. Declining-balance depreciation 

We discuss a model based on (2) . In particular, we borrow from 

Hartman (2007 , p. 344), a real-life application. In 2003, Sunoco 

Inc. agreed to build a coke-making plant with an annual capacity 

of 550,0 0 0 tons per year in order to supply plants of International 

Steel Group (ISG) Inc. The cost of the plant was $140 million and 

ISG agreed to purchase the coke (needed for producing steel) for 

the next 15 years. 

Table 5 collects the (stochastic and non-stochastic) rele- 

vant data affecting the project’s economic profitability. The 11 

stochastic parameters are evaluated in the base case α0 . We 

assume that the facility is depreciated in 15 years with a double- 

Table 6 

Sunoco project evaluated in α0 and α1 . 

Parameter α0 α1 

q 0.55 0.57 

p 0 $350 $340 

g p 2.0% 2.5% 

M $27.5 $35.0 

g m 2.0% 3.6% 

L $75 $68 

g l 5.0% 4.0% 

E $20 $25 

g e 3.0% 2.0% 

O $7 $10 

τ 35.0% 38.0% 

Valuation α0 α1 

NPV $120.61 $128.53 

ı̄ (B ) 34.60% 36.08% 

declining balance switching to SL depreciation (DDB-SL), that 

is, Dep t = max (2 /p · C t−1 ;C t−1 / (p − t + 1)) . This implies that the 

depreciation schedule is 

Dep = (18 . 67 , 16 . 18 , 14 . 02 , 12 . 15 , 10 . 53 , 9 . 13 , 7 . 91 , 6 . 86 , 

6 . 37 , 6 . 37 , 6 . 37 , 6 . 37 , 6 . 37 , 6 . 37 , 6 . 37) . 

From (2) the after-tax operating profit is obtained as 

I t = (q · p 0 (1 + g p ) 
t − M(1 + g m 

) t − L (1 + g l ) 
t − E(1 + g e ) 

t 

−O v − Dep t )(1 − τ ) . 

Table 6 describes the value drivers at α0 and α1 and the 

resulting value of NPV and average ROI. The individual and total 

contribution of the value drivers, as well as the ranking, are mea- 

sured via the First Order FCSI and the Total Order FCSI respectively 

( Tables 7 and 8 ). Unlike the previous example, the two FCSIs 

are not equal, owing to nonzero interactions among the value 

11
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Table 7 

Sunoco project: First Order FCSI. 

Parameter NPV Average ROI 

�1 , npv 
i 

r npv 
i 

S npv 
i 

�1 , ̄ı (B ) 
i 

r ı̄ (B ) 
i 

S ı̄ (B ) 
i 

q 442.23% 3 1.520 442.23% 3 1.520 

p 0 −347.47% 6 0.737 −347.47% 6 0.737 

g p 383.60% 4 1.187 383.60% 4 1.187 

M −473.82% 2 2.020 −473.82% 2 2.020 

g m −183.24% 8 0.427 −183.24% 8 0.427 

L 534.84% 1 3.020 534.84% 1 3.020 

g l 357.37% 5 0.937 357.37% 5 0.937 

E −336.21% 7 0.570 −336.21% 7 0.570 

g e 81.31% 11 0.091 81.31% 11 0.091 

O −167.82% 9 0.302 −167.82% 9 0.302 

τ −107.70% 10 0.191 −107.70% 10 0.191 

Correlations 

ρı̄ (B ) , npv 1 

ρS ̄ı (B ) ,S npv 1 

Table 8 

Sunoco project: Total Order FCSI. 

Parameter NPV Average ROI 

�T, npv 
i 

r npv 
i 

S npv 
i 

�T, ̄ı (B ) 
i 

r ı̄ (B ) 
i 

S ı̄ (B ) 
i 

q 422.70% 3 1.520 422.70% 3 1.520 

p 0 −354.32% 5 0.937 −354.32% 5 0.937 

g p 368.36% 4 1.187 368.36% 4 1.187 

M −499.62% 1 3.020 −499.62% 1 3.020 

g m −222.45% 8 0.427 −222.45% 8 0.427 

L 478.34% 2 2.020 478.34% 2 2.020 

g l 309.06% 6 0.737 309.06% 6 0.737 

E −301.30% 7 0.570 −301.30% 7 0.570 

g e 96.95% 11 0.091 96.95% 11 0.091 

O −160.07% 9 0.302 −160.07% 9 0.302 

τ −117.75% 10 0.191 −117.75% 10 0.191 

Correlations 

ρı̄ (B ) , npv 1 

ρS ̄ı (B ) ,S npv 1 

drivers. As expected, the effect of each parameter on average ROI 

is the same as its effect on NPV, in terms of both magnitude and 

direction, which means that the average ROI and the NPV are 

strictly coherent. 8 

We now use Sunoco’s example to show the behavior of the 

two metrics with the DIM technique. The computation of DIMs is 

easy, given that the calculation of the partial derivatives of NPV 

with respect to each parameter is straightforward (see Appendix B 

for the list of derivatives) and the derivatives of the average ROI is 

obtained from (25) . 

The strict coherence obviously holds. It is interesting to note 

that, in this case, there are ties: The first rank is shared by two 

key drivers, the current price, p 0 , and the quantity sold, q . An 

equal relative change of either parameter affects the average ROI 

(and the NPV) in the same way. The operating costs related to 

labor are top drivers (labor cost has rank 3 and its growth rate has 

rank 4). Much less impact have the growth rates in energy and 

materials (rank 10 and 11, respectively) ( Table 9 ). 

7. Concluding remarks 

Many different investment criteria are available to managers, 

professionals and practitioners. NPV is considered a theoretically 

8 It is interesting to note that, while the change in both NPV and average ROI is 

not so large, the effect of each parameter on the two metrics is extremely high. In 

this model, the NPV and the average ROI are highly sensitive to the contributions 

of each driver but, overall, the parameters’ effects reciprocally compensate, in such 

a way that the resulting change is “smoothed”. 

Table 9 

Sunoco project: DIM technique. 

Parameter α0 NPV Average ROI 

DIM 

npv 
i 

(α0 ) r npv 
i 

S npv 
i 

DIM 

ı̄ (B ) 
i 

(α0 ) r ı̄ (B ) 
i 

S ı̄ (B ) 
i 

q 0.55 93.27% 1.5 2.520 93.27% 1.5 2.520 

p 0 350 93.27% 1.5 2.520 93.27% 1.5 2.520 

g p 2% 11.54% 6 0.737 11.54% 6 0.737 

M 27.5 −13.32% 5 0.937 −13.32% 5 0.937 

g m 2% −1.65% 11 0.091 −1.65% 11 0.091 

L 75 −43.95% 3 1.520 −43.95% 3 1.520 

g l 5% −14.26% 4 1.187 −14.26% 4 1.187 

E 20 −10.31% 7 0.570 −10.31% 7 0.570 

g e 3% −1.95% 10 0.191 −1.95% 10 0.191 

O 7 −3.00% 9 0.302 −3.00% 9 0.302 

τ 35% −9.64% 8 0.427 −9.64% 8 0.427 

Correlations 

ρı̄ (B ) , npv 1 

ρS ̄ı (B ) ,S npv 1 

reliable measure of economic profitability. Industrial and financial 

investments are often evaluated through relative measures of 

worth as well. Recently, it has been introduced a new class of 

return rates named AIRR ( Magni, 2010; 2013 ). This class includes 

the average ROI, which plays an important role in the appraisal 

of industrial investments ( Magni, 2015; Mørch et al., 2017 ). The 

average ROI exists and is unique, and is coherent with NPV in the 

sense that it correctly signals value creation or value destruction, 

just like the NPV (and, therefore, the decision made using either 

metric is the same). 

This work provides a new definition of NPV-consistency making 

use of sensitivity analysis (SA). Given an SA technique, a metric is 

strongly consistent or coherent with NPV if it fulfills the classical 

definition of NPV-consistency and generates the same ranking of 

the value drivers as that generated by the NPV. If, in addition, the 

parameters’ relevances are equal to the ones associated with NPV, 

then the metric and NPV are strongly consistent in a strict form. 

We assume that the COC is exogenously fixed by the decision 

maker, as well as the initial investment and the lifetime of the 

project. After proving that an affine transformation of a function 

preserves the ranking, we show that the average ROI, being an 

affine transformation of NPV, is strongly NPV-consistent under 

several (possibly, all) different techniques of SA. 

We have illustrated some simple numerical examples using 

FCSI ( Borgonovo, 2010a ) and DIM ( Borgonovo & Apostolakis, 2001; 

Borgonovo & Peccati, 2004 ), based on different depreciation plans 

(straight-line depreciation and accelerated depreciation). We have 

measured the degree of NPV-consistency via Spearman’s (1904) co- 

efficient and Iman and Conover’s (1987) top-down coefficient. We 

have found that average ROI and NPV show perfect correlation and 

even strict consistency. However, we stress that not all AIRRs enjoy 

strong NPV-consistency, including the economic AIRR and the IRR, 

both showing degrees of incoherence that may be nonnegligible 

(see Appendix A). 

The findings allow us to claim that the average ROI can be 

reliably associated with NPV, providing consistent pieces of in- 

formation. Also, the average ROI is a good candidate for absolute 

NPV-consistency, to be intended as a strong coherence under 

any possible technique of SA (this should hold, given the affine 

relation between the average ROI and NPV). Future researches may 

be devoted to finding other relative measures of worth that enjoy 

strong NPV-consistency. 
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Appendix A. (Non)strong consistency of other AIRRs 

In principle, the class of AIRRs consists of infinitely many rates 

of return (albeit most of them non-economically significant), so 

it is no wonder that many of them are not strongly-consistent. In 

this appendix we briefly focus on four special cases of AIRR, three 

of which are not strongly consistent with NPV. 

Internal rate of return (IRR) . Magni (2010, 2013) shows that the 

internal rate of return (IRR) is a special case of AIRR. Specifically, 

the IRR is a weighted mean of generally time-varying period 

rates, generated by any vector C fulfilling the following condition: 

C = 

∑ p 
t=1 

∑ p 

k = t F k (1 + x ) −(p−t+1) · (1 + k ) −(t−1) . 9 While the IRR is 

traditionally NPV-consistent ( Hazen, 2003 ), it suffers from some 

difficulties that have been extensively investigated in the liter- 

ature. A part of it has been concerned with the necessary and 

sufficient condition for existence and uniqueness (e.g., Bernhard, 

1980 ; De Faro, 1978 ; Soper, 1959 . See also Magni, 2010 , and 

references therein) or with project ranking (see Ekern, 1981 and 

Foster & Mitra, 2003 for ranking of risk-free projects. See Ben- 

Horin and Kroll, 2017 , for ranking of nonequivalent-risk projects). 

In particular, Ekern (1981) and Foster and Mitra (2003) can be 

interpreted as supplying conditions of (non)existence of IRR in 

the interval (0 , + ∞ ) , assuming that a project is ranked against 

the null alternative. Therefore, they provide a tool to measure the 

robustness of a value-creating project under changes in the COC 

and, at the same time, the conditions where IRR does not exist 

and cannot then be employed for ranking value drivers. 10 Percoco 

and Borgonovo (2012) show that, if the IRR exists and is unique, 

the ranking of value drivers provided by IRR is not equal to the 

ranking provided by the NPV, which means that the IRR is not 

strongly NPV-consistent. It is easy to see that its degree of NPV- 

inconsistency, as measured by Spearman’s correlation coefficient 

or Iman and Conover’s top-down coefficient, may be not negligi- 

ble. 11 Also, the financial nature of the IRR is not unambiguously 

determined: An investment project may well turn to a financing 

project if value drivers change, which makes SA meaningless. 

Economic AIRR (EAIRR) . Another relevant AIRR is the economic 

AIRR, based on market values ( Barry & Robison, 2014; Bosch-Badia, 

Montllor-Serrats, & Tarrazon-Rodon, 2014; Magni, 2013, 2014, 

2016 ). It is generated by picking C t = 

∑ p 

k = t+1 
F k (1 + k ) t−k for all 

t = 1 , . . . , p − 1 (while C 0 = −F 0 ), which represents the economic 

value of the project at time t . The EAIRR is NPV-consistent in a 

traditional sense and, unlike the IRR, this AIRR always exists and is 

unique. However, just like the IRR, its financial nature may change 

under changes in the value drivers. 

Strong consistency with NPV is not guaranteed because C t 
(and, therefore, C ) depends on F which, in turn, depends on the 

value drivers. Hence, it is not an affine transformation of NPV. The 

degree of inconsistency may be rather high. 12 

Modified internal rate of return (MIRR) . The MIRR approach, 

also known as the external-rate-of-return approach, consists of 

9 This implies that the assumption i t = x for all t is sufficient but not necessary 

to generate a rate of return equal to IRR. 
10 It is usually believed that the case of no-IRR is very rare. However, in some en- 

gineering projects it is not infrequent that disposal and remedial costs occur at the 

terminal date, which is a necessary condition for inexistence of IRR. Most recently, 

Lima, Silva, Sobreiro, and Kimura (2017) focus on a very common transaction where 

the case of (multiple IRRs and) no IRR is the rule rather than the exception. 
11 For instance, in Example 1 , the ranking generated by IRR with Total Order FCSIs 

is (1, 2, 4, 6, 3, 8, 7, 5) and the top-down coefficient is ρS npv ,S irr = 0 . 409 . In Example 2 , 

where the DIM technique is used, the parameters ranking supplied by IRR is (1, 2, 

3, 4, 8, 7, 5, 6) and the top-down coefficient is ρS npv ,S irr = 0 . 309 . 
12 In Example 1 , the Total Order FCSIs for EAIRR generate the parameters’ ranking 

(1, 2, 4, 6, 3, 8, 5, 7) and ρS npv ,S eairr = 0 . 239 . In Example 2 the ranking is (1, 2, 3, 4, 

8, 7, 5, 6) (equal to the ranking of IRR) and, therefore, the top-down coefficient is 

equal as well: ρS npv ,S eairr = 0 . 309 . 

modifying project P by discounting and/or compounding some 

or all of its cash flows at an external rate so as to generate a 

modified project P ′ (with a modified cash-flow stream F ′ ) bearing 

the same NPV as P but such that F ′ has only one change in sign 

for the cash-flow stream. This guarantees that the IRR of P ′ (i.e., 

the MIRR of P ) exists and is unique. The MIRR suffers from some 

ambiguities of definition: (i) it is not clear what the external 

rate should be, (ii) there are many ways to modify the project 

(resulting in different MIRRs), none of which seems to deserve a 

privileged status, and (iii) it does not actually measure P ’s rate of 

return (see Brealey & Myers, 20 0 0 ; Magni, 2015 ; Ross et al., 2011 ). 

Being an IRR of P ′ , the MIRR is an AIRR of P ′ and is not strongly 

consistent. Further, the external rate from which it depends adds 

a source of uncertainty in the valuation process (it may be equal 

or different from the COC). This implies that the MIRR may not be 

NPV-consistent, not even in the traditional sense (see Magni, 2015 , 

Appendix). 

Profitability Index (PI) . PI is defined as P I = NPV /B 0 . It is a 

well-known and widespread metric that measures the NPV per 

unit of initial investment. It is strongly consistent with NPV in 

a strict sense, as it is an affine transformation of NPV. It is also 

easily seen that the PI is strictly linked with AIRR; namely, if 

cash-flow accounting is used, that is, assets are expensed im- 

mediately (whence B t = 0 for t > 0), then B = B 0 and, from (9) , 

ı̄ (B 0 ) = k + NPV (1 + k ) /B 0 whence P I = ( ̄ı (B 0 ) − k ) / (1 + k ) . There- 

fore, PI is an affine transformation of the average ROI that is 

associated with a cash-flow-accounting depreciation system. 

Appendix B. Partial derivatives 

NPV 

′ 
q (α

0 ) = p 0 · (1 − τ ) ·
15 ∑ 

t=1 

(
1 + g p 

1 + k 

)t 

, 

NPV 

′ 
p 0 

(α0 ) = q · (1 − τ ) ·
15 ∑ 

t=1 

(
1 + g p 

1 + k 

)t 

, 

NPV 

′ 
g p 

(α0 ) = p 0 · q · (1 − τ ) ·
15 ∑ 

t=1 

t · (1 + g p ) t−1 

(1 + k ) t 
, 

NPV 

′ 
M 

(α0 ) = −(1 − τ ) ·
15 ∑ 

t=1 

(
1 + g m 

1 + k 

)t 

, 

NPV 

′ 
g m 

(α0 ) = −M · (1 − τ ) ·
15 ∑ 

t=1 

t · (1 + g m 

) t−1 

(1 + k ) t 
, 

NPV 

′ 
L (α

0 ) = −(1 − τ ) ·
15 ∑ 

t=1 

(
1 + g l 
1 + k 

)t 

, 

NPV 

′ 
g l 
(α0 ) = −L · (1 − τ ) ·

15 ∑ 

t=1 

t · (1 + g l ) 
t−1 

(1 + k ) t 
, 

NPV 

′ 
E (α

0 ) = −(1 − τ ) ·
15 ∑ 

t=1 

(
1 + g e 

1 + k 

)t 

, 

NPV 

′ 
g e 
(α0 ) = −E · (1 − τ ) ·

15 ∑ 

t=1 

t · (1 + g e ) t−1 

(1 + k ) t 
, 

NPV 

′ 
O (α

0 ) = −(1 − τ ) ·
15 ∑ 

t=1 

1 

(1 + k ) t 
, 

NPV 

′ 
τ (α

0 ) = −
15 ∑ 

t=1 

I t 

(1 − τ ) · (1 + k ) t 
. 
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Abstract

This paper introduces a model for rating a firm’s default risk based on fuzzy logic and ex-

pert system and an associated model of sensitivity analysis (SA) for managerial purposes.

The rating model automatically replicates the evaluation process of default risk per-

formed by human experts. It makes use of a modular approach based on rules blocks and

conditional implications. The SA model investigates the change in the firm’s default risk

under changes in the model inputs and employs recent results in the engineering litera-

ture of Sensitivity Analysis. In particular, it (i) allows the decomposition of the historical

variation of default risk, (ii) identifies the most relevant parameters for the risk variation,

and (iii) suggests managerial actions to be undertaken for improving the firm’s rating.
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1 Introduction

This paper presents a model for rating firms combined with a model for accomplishing

sensitivity analysis (SA). The rating model is based on a fuzzy expert system, the SA

model is based on recent results aiming at quantifying the impact of the model’s input

factors on the model’s output change.

Several recent works analyze credit rating under managerial and financial perspectives

(Bonsall IV et al. 2017, Griffin, Hong and Ryou 2018, Kouvelis and Zhao 2017, Kisgen

2006, Karampatsas et al. 2014, An and Chan 2008, Lim et al. 2017).

The evaluation of credit rating may be performed via several different quantitative

methods (Hwang 2013a, 2013b, Pfeuffer et al. 2019, Doumpos et al. 2015, Doumpos

and Zopounidis 2011, Angilella and Mazzù 2019). However, financial (quantitative) data

are often insufficient or even unreliable for measuring the credit rating of an enterprise

where judgmental, qualitative information is to be considered (Angilella and Mazzù 2015).

Fuzzy logic is suited for providing financial analyses and for building rating models whose

functioning is influenced by human judgment and whose parameters are vague and difficult

to express into precise real numbers (Chen and Chiou 1999, Syau et al. 2001, Jiao et al.

2007. See also Levy et al. 1991, Peña et al. 2018, Bai et al. 2019).

Fuzzy logic is often employed along with techniques of artificial intelligence. Typically,

expert systems, artificial neural networks, machine learning, and hybrid intelligence sys-

tems are applied to almost every area of management (see Ignizio 1990 for an overview

of expert systems). Several studies show that artificial intelligence achieves high perfor-

mance in predicting credit rating, in terms of explanatory power and stability (e.g., Lee

2007, Kim and Ahn 2012, Huang et al. 2004). As for finance, applications of artificial

intelligence are numerous (Brown et al. 1990, Matsatsinis et al. 1997, Bahrammirzaee

2010, Dirks et al. 1995, Ferreira et al. 2019, Dawood 1996, Volberda and Rutges 1999,

Lincy and John 2016, Chen and Li 2014).

Fuzzy expert systems have been advanced as well in several areas of finance and

management (Magni et al. 2004, Marzouk and Aboushady 2018, Magni et al. 2006,

Malagoli et al. 2007, Cheng et al. 2013, Doumpos and Figueira 2018, Vassiliou 2013,

Agliardi and Agliardi 2009).

We present a rating model which is an input-output model formally represented by a

fuzzy expert system: It automatically provides a firm’s default risk (model output) and

its associated credit rating on the basis of 18 selected key drivers (model inputs). The

latter are aggregated in a modular approach via “if-then” implications applied to fuzzy

numbers. As such, it is capable of taking into account both quantitative and qualitative

financial and managerial variables. The proposed rating model is a judgmental expert-

based system for credit risk assessment, differing from widely adopted statistical and

machine learning approaches. Statistical models are based on mathematical descriptions

aiming at representing the patterns in the economic data via selecting an optimal method

a priori; machine learning techniques are computational-based, data-driven algorithms,

less relying on assumptions about data (Galindo and Tamayo 2000). In contrast, judg-

mental expert-based systems reproduce the evaluation and decision processes performed
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by human experts, through logical inference, knowledge base, and heuristics. More specif-

ically, in comparing machine learning with expert systems, both belong to the artificial

intelligence techniques class, but machine learning is an adaptive information processing

system using learning and generalization capabilities whereas an expert system is a com-

puter system containing a well-structured, static body of knowledge imitating expert skills,

capable to solve difficult problems requiring significant human expertise (Bahrammirzaee

2010).

In addition, we associate the fuzzy expert system with a sensitivity analysis (SA)

model which enables performing a detailed financial and managerial analysis, proposing a

combination method which has been analogously applied to other research areas of man-

agement and policy making, such as the assessment of ecological and human sustainability

of countries (Grigoroudis et al. 2014, Andriantiatsaholiniaina et al. 2004). In particular,

given a change in the output of a model and given two associated sequences of input

parameters, a SA technique enables measuring the impact of each input parameter on the

output change. Also, it enables ranking the parameters according to their importance. In

such a way, it is possible to understand the reasons why the output change has occurred

and the appropriate actions that may lead the decision maker toward an improvement in

the output change by a proper management of the key drivers.

SA techniques are widely employed in various areas of finance and management (Huefner

1972, Luo et al. 2015, Donders et al. 2018, Madu 1988, Borgonovo and Peccati 2004,

2006, Borgonovo et al. 2010, Délèze and Korkeamäki 2018, Talavera et al. 2010, Percoco

and Borgonovo 2012, Marchioni and Magni 2018, Chapman et al. 1984, Vázquez-Abad

and LeQuoc 2001, Parnes 2010).

Among the various SA techniques, a recent approach is based on the notion of Finite

Change Sensitivity Index (FCSI) (Borgonovo 2010a, 2010b), which we employ in our

model. The FCSI represents a powerful analytical tool, which is used for studying a finite

change in the model output. We aim at applying this SA technique to the rating model

in order to identify the causes of variation in the default risk and then analyze the effects

of different financial and managerial actions on the prospective rating.

However, while the FCSIs provide the correct ranking of the input factors in terms of

their impact on the output change, they are not aimed at providing an exact decompo-

sition of the output change, in the sense that the sum of the contributions of the input

factors to the output change is not equal to the output change, owing to some double-

counting of interactions among variables. In other words, given a change in the default

risk and given a set of n economic parameters that affect the model output, the FCSI

provides the parameter’s contribution to an output change which includes individual con-

tribution and joint interactions with the other model inputs. However, the sum of all the

FCFIs does not equate the output change.1 For this reason, we fine-tune the FCSI notion

via a duplication-free procedure and supply a “clean FCSI”. We apply it to the rating

model for managerial and financial analysis for exactly decomposing the contributions

1For example, suppose the selected inputs are n = 3. It might turn out that 45% of the output change has
been generated by the change of parameter 1, 35% has been generated by the change of parameter 2, and 30%
has been generated by the change of parameter 3. The sum of the contributions is 0.45 + 0.35 + 0.30 = 1.1 6= 1.
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of the input factors to the output change. We call the combined model (fuzzy expert

system + SA model) the “Default Risk & Sensitivity Model” (DRSM): It rates the firm

and, at the same time, ranks the parameters affecting the risk change in terms of their

importance. We show how the DRSM may be applied for (i) rating a firm automatically,

based on a given set of input parameters, (ii) identifying the causes of the change of the

default risk in two different years, (iii) decomposing the change in the default risk and

ranking the key drivers in terms of impact on such a change. For illustrative purposes, we

also apply the DRSM to an Italian-controlled industrial company. We provide its rating

in various years and analyze the change of the default risk and the change in rating in

different years. Furthermore, while DRSM merges a fuzzy expert system with a model of

sensitivity analysis, we stress that the proposed SA application for credit rating can be

usefully combined to any approach for rating firms such as statistical and machine learn-

ing techniques adopting analogous fuzzy-logic models; in particular, SA may be applied

as a tool enhancing the interpretability and comprehensibility of fuzzy models, whose

comprehension is often hard because of the adoption of complex rule bases. Furthermore,

SA is helpful for testing and validating the representativeness of the underlying credit

scoring model: Additional simulation runs which measure the sensitivity of the output

under changes in the various inputs may corroborate the model or reveal the need for

revising some of the choices made in the model setup (Pianosi et al. 2016).

The remainder of the paper is structured as follows. Section 2 presents the fuzzy expert

system. Section 3 illustrates the basic notions of sensitivity analysis and defines the FCSI

and its use. Section 4 fine-tunes the FCSI via a duplication-free procedure and provides

an exact decomposition of the output change of a model. Section 5 applies the DRSM

(rating model + clean FCSI) to an Italian-controlled industrial company and shows some

possible uses of it. Some remarks conclude the paper.

2 Fuzzy-logic expert system for credit rating

The current work introduces a credit rating model based on fuzzy logic and expert sys-

tem, which derives the default risk and the rating class of a corporation according to

rules blocks based on conditional implications. Our fuzzy-logic rating model considers a

set of 18 economic and financial variables (the model inputs), both quantitative (such as

Leverage, OCF-to-Debt, EBITDA on Sales) and qualitative (as Product Positioning and

Industry Prospects), which are grouped under a managerial and financial perspective in

first-level intermediate variables which are in turn gathered to form second-level interme-

diate variables which are in turn grouped to form a third level of intermediate variables.

Finally, the latter determine the firm’s default risk (model output). Figure 1 represents

the conceptual map of variables aggregation from the model inputs to the Default Risk

through the various intermediate steps (see also descriptions of input and intermediate

variables in the Appendix).2

2The inputs may themselves be considered 0-level intermediate variables, determined by lower-level basic
parameters. For example, the Return On Investment (ROA) is a function of three parameters: NOPAT, R&D
and invested capital (see Appendix).
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The approach is then modular and gives rise to an evaluation tree that is run from

branches to trunk. The link between the set of the input parameters and the output may

be represented as a function of the 18 variables, xi, i = 1, 2, . . . , 18 affecting the dependent

variable, y (Default risk), so that y = f(~x), where ~x = (x1, x2, . . . , x18). For any given

value of ~x, the model automatically provides the default risk. Mathematically, the model

is a composed function. There are 4 composing functions, whose values represent the four

steps through which the inputs are processed and the output is fleshed out:

~x→ f1(~x)→ f2(f1(~x))→ f3(f2(f1(~x)))→ f4(f3(f2(f1(~x)))) = y.

As shown in Figure 2, starting from 18 parameters, one gets a vector of 7 components (via

f1), then a vector of 3 components (via f2), then a vector of 2 components (via f3) and,

finally one single component, the model’s output (via f4). Figure 1 is the representation

of the fuzzy expert system as a conceptual map, Figure 2 is the same expert system

described as a composed function.

Each composing function is either monotonically increasing or monotonically decreas-

ing with respect to prior-level intermediate variables. Figure 1 indicates monotonicity

via plus (+) or minus (−) sign. Specifically, a given variable z may affect the next-level

variable q positively (+) or negatively (−). Variable z affects variable q positively if q

increases (decreases) whenever z increases (decreases); it affects q negatively if q decreases

(increases) whenever z increases (decreases).

Each variable of the model (inputs, intermediate variables, model output) can be

associated with several attributes, which are represented graphically by fuzzy numbers

and a membership function. For instance, the input factor Fixed Charge Ratio (FCR,

defined in the Appendix) is characterized by the membership function reported in Figure

3. The horizontal axis collects the numerical values of FCR, while the vertical axis reports

the membership degrees (or activation levels) of each linguistic attribute. For each value

of FCR, all the attributes are activated at a certain degree, ranging from 0 to 1. For

example, a FCR equal to 1.05 is at the same time:

� low at degree 0;

� medium low at degree 0.22;

� medium high at degree 0.78;

� high at degree 0.

The intermediate variables at any level and the model output Default Risk are eval-

uated using rules blocks built upon conditional (“if-then”) implications which map the

variables attributes at the previous level onto the attributes of the next level through a

modular approach. For instance, in Table 1 we report the rules block for determining (the

risk of) the Capital Structure (first-level intermediate variable), depending on the input

variables Leverage, Long-Term Leverage, and FFO-on-Debt. For example, the first four-

rule block informs about the degree of risk of the capital structure under changes in the

FFO-on-Debt while Leverage and Long-Term Leverage are kept at low levels. Note that,

for increasing value of FFO-on-Debt, the risk level of the Capital Structure increases (i.e.,
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Figure 3: Membership function of FCR

the capital structure becomes riskier), meaning that the weight of debt becomes higher.

For example, the fourth rule may be read as follows:

IF

Leverage is Low

Long-Term Leverage is Low

FFO-on-Debt is High

THEN

(Risk of) Capital Structure is Very High

Each rule of any block is activated simultaneously, at a certain degree, precisely be-

cause each variable has a certain membership degree for each attribute. All variables

(including the output, Default Risk) are fuzzy numbers which are associated with mem-

bership degrees.

Reading Figure 1 backward from output to inputs, one can see that the Default Risk

depends on two variables, Financial Risk and Operating Risk. Financial Risk depends

in turn by Financial Vulnerability and Operating Efficiency, each of which in turn de-

pends on other variables; specifically, Financial Vulnerability depends on (Risk of) Cap-

ital Structure, Interest Coverage, Debt Coverage while Operating Efficiency depends on

WC Managament and Profitability. In turn, each of the latter depends on some group of

inputs. Likewise, Operating Risk depends on Strategic Risk and Specific Risk,3 which in

turn depend on different groups of inputs.

Whenever the input vector is selected, the output (Default Risk) is automatically

provided. Table 2 reports the rules block for Default Risk, conditionally to Financial

Risk and Operating Risk (e.g., focusing on the fourth rule, if Financial Risk is AAA

and Operating Risk is BBB, then the Default Risk is evaluated at AA). Note that the

Financial Risk, the Operating Risk, and the Default Risk are described in terms of eight

rating classes, from the safest one, AAA, to the riskiest one, CC. The output provided by

the rule block, the Default Risk, is a fuzzy number. Through a defuzzification procedure,

the default risk is automatically converted into a crisp (real) number in the normalized

3Operating Risk is associated to Financial Risk to determine the Default Risk, so it is repeated as a 2nd-level
and 3rd-level intermediate variable. In terms of composing function, one may interpret it as an identity function.

25



Table 1: Rules block for (Risk of) Capital Structure

IF THEN

Leverage Long-Term Leverage FFO-on-Debt (Risk of) Capital Structure

low low low high
low low medium-low high
low low medium-high very-high
low low high very-high
medium-low low low medium-high
medium-low low medium-low high
medium-low low medium-high high
medium-low low high very-high
medium-high low low medium-low
medium-high low medium-low medium-high
medium-high low medium-high high
medium-high low high high
high low low medium-low
high low medium-low medium-low
high low medium-high medium-high
high low high high
low medium-low low medium-high
low medium-low medium-low high
low medium-low medium-high high
low medium-low high very-high
medium-low medium-low low medium-low
medium-low medium-low medium-low medium-high
medium-low medium-low medium-high high
medium-low medium-low high high
medium-high medium-low low medium-low
medium-high medium-low medium-low medium-low
medium-high medium-low medium-high medium-high
medium-high medium-low high high
high medium-low low low
high medium-low medium-low medium-low
high medium-low medium-high medium-low
high medium-low high medium-high
low medium-high low medium-low
low medium-high medium-low medium-high
low medium-high medium-high high
low medium-high high high
medium-low medium-high low medium-low
medium-low medium-high medium-low medium-low
medium-low medium-high medium-high medium-high
medium-low medium-high high high
medium-high medium-high low low
medium-high medium-high medium-low medium-low
medium-high medium-high medium-high medium-low
medium-high medium-high high medium-high
high medium-high low very-low
high medium-high medium-low low
high medium-high medium-high medium-low
high medium-high high medium-low
low high low medium-low
low high medium-low medium-low
low high medium-high medium-high
low high high high
medium-low high low low
medium-low high medium-low medium-low
medium-low high medium-high medium-low
medium-low high high medium-high
medium-high high low very-low
medium-high high medium-low low
medium-high high medium-high medium-low
medium-high high high medium-low
high high low very-low
high high medium-low very-low
high high medium-high low
high high high medium-low
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Table 2: Rules block for Default Risk

IF THEN

Financial Risk Operating Risk Default Risk

AAA AAA AAA
AAA AA AAA
AAA A AAA
AAA BBB AA
AAA BB AA
AAA B AA
AAA CCC AA
AAA CC AA
AA AAA AA
AA AA AA
AA A AA
AA BBB A
AA BB A
AA B A
AA CCC A
AA CC A
A AAA A
A AA A
A A A
A BBB A
A BB BBB
A B BBB
A CCC BBB
A CC BBB
BBB AAA A
BBB AA BBB
BBB A BBB
BBB BBB BBB
BBB BB BBB
BBB B BB
BBB CCC BB
BBB CC BB
BB AAA BBB
BB AA BB
BB A BB
BB BBB BB
BB BB BB
BB B BB
BB CCC B
BB CC B
B AAA BB
B AA BB
B A BB
B BBB BB
B BB BB
B B BB
B CCC BB
B CC B
CCC AAA B
CCC AA B
CCC A B
CCC BBB CCC
CCC BB CCC
CCC B CCC
CCC CCC CCC
CCC CC CCC
CC AAA CCC
CC AA CCC
CC A CCC
CC BBB CC
CC BB CC
CC B CC
CC CCC CC
CC CC CC
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interval [0, 1].4

Finally, a conversion table (Table 3) converts the (crisp) default risk into a rating

class. Given a sequence of inputs, there automatically corresponds a firm’s default risk

and, hence, a class of rating. The logical chain is then as follows:

Inputs (fuzzy numbers) ~x

=⇒ first-level intermediate variables (fuzzy numbers) f1

=⇒ second-level intermediate variables (fuzzy numbers) f2

=⇒ third-level intermediate variables (fuzzy numbers) f3

=⇒ Default Risk (fuzzy number) f4 = y

=⇒ Default Risk (crisp number) defuzzification

=⇒ Rating class (letter) conversion

Table 3: Conversion table from default risk to rating class

Default risk Rating class

[0, 0.125) AAA
[0.125, 0.25) AA
[0.25, 0.375) A
[0.375, 0.5) BBB
[0.5, 0.625) BB
[0.625, 0.75) B
[0.75, 0.875) CCC
[0.875, 1] CC

The 18 attributes selected represent a minimum set of meaningful risk components and

profiles. The choice depends on our operational experience in corporate finance practice

(debt restructuring in particular) and on the fact that they are commonly used by rating

agencies’ models. Therefore, the choice of this minimum set reflects the knowledge base

of the experts. However, the fuzzy expert system is flexible enough for customization: It

may be augmented with other appropriate input factors, which may be aggregated via

if-then rules in a modular approach, as previously seen.

In general, statistical data might be collected and processed to determine and tune

memberships degrees and decisions rules. Industry prospects, for example, might be

based on data available from accredited sources; product positioning might be based

on data from interviews to a statistically significant sample of customers; accounting

data such as ROA might be compared with a sample of comparable firms of the same

sector and membership degrees might be evaluated on the basis of the sample mean.

Even in our model, study sectors and comparisons with industry means as well as our

expertise have been relevant for determining the membership degrees. Decision rules in our

model are based on our expertise as advisors and academics, but automatic extensions

may be conceived in several ways, with the purpose of automatically infer the fuzzy

4The defuzzification procedure applied to the Default Risk uses the Center of Maximum method (CoM) (von
Altrock 1995).

28



rules based on large samples of historic data. Large amounts of historical data make it

possible to use different types of approaches, based on the knowledge or technology or

types of analysis software available; for example, neuro-fuzzy models, used to model the

membership functions as well as to create the blocks of rules, or genetic algorithms or the

widely employed fuzzy-clustering methods. This is particularly important if the model

is enriched with a high number of inputs, which would make the work of the experts

extremely burdensome and characterized by a significant degree of inaccuracy. In this

respect, there may be a trade-off between interpretability and automatic learning methods

and several authors have dealt with the problem of rule generation (see Guillaume 2001,

Gómez-Skarmeta et al. 1999, Zhang et al. 2009, Xiao and Liu 2005). In Guillaume and

Charnomordic (2011) a free software is proposed, available on the web, which allows the

interpretation of systems built automatically from the data, in all phases of design.

3 Sensitivity Model and FCSI

In this section, we associate the fuzzy expert system described above with a model of

sensitivity analysis (SA). The expert system and the SA model form what we call the

Default Risk & Sensitivity Model (DRSM).

SA is the “study of how the uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of uncertainty in the model input”

(Saltelli et al. 2004, p. 45). Given a model and a set of inputs (parameters), SA measures

the parameters’ influence in terms of variability of the model output. Specifically, SA

models aim to investigate the variation of the objective function (in our case, the firm’s

default risk) under changes in the model inputs, also aiming at identifying the most

influential risk factors affecting the model output.

Many SA techniques are defined in the literature (see Borgonovo and Plischke 2016,

Pianosi et al. 2016, for review of SA methods) and the choice of technique depends on

several factors, among which the purpose of the analysis and the size of the variation of

the parameters.

In our case, the default risk variation caused by changes in key drivers or groups of

key drivers, is analyzed in both chronological and managerial perspectives:

� DRSM decomposes the historical realized variation of the enterprise default risk

into the effects of key parameters and identifies the main reasons of rating variation

across time

� DRSM suggests managerial actions which should be undertaken for improving the

rating, especially for increasing the success of complex financial operations such as

bond issues, mergers and acquisitions, and debt restructuring.

The scope of DRSM is multiple and concerns several dimensions of analysis:

� it supports the evaluator in identifying the effects of each parameter on the rating

variation

� it enables accomplishing a selective analysis in terms of groups of parameters. For

example, it measures the impact of the following main groups on the default risk
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profile: (i) Financial Vulnerability, (ii) Operating Efficiency, (iii) Operating Risk

� it enables ranking any group of variables according to their relevance on the default

risk variation

� it enables identifying the maximum effect of a variable or group of variables on the

default risk

� it supports the financial manager in her/his activities of financial planning and

optimization, and in functions of programming, control and capital structuring

� it offers managerial actions for improving and controlling the credit risk profile of

the enterprise.

It is worth noting that

� the DRSM can be performed even starting from primitive, 0-level economic and

financial variables as they result from the operations (such as revenues, COGS, long-

term debt), not just from worked drivers such as indices and ratios (e.g. Leverage,

Long-Term Leverage, FFO-on-Debt. See also footnote 2)

� the application of SA is independent of the adopted rating model: While we present

it in conjunction with the fuzzy expert system illustrated in the previous sections, the

SA model is readily available for any algorithm and any set of parameters defining

any possible rating model (i.e., the SA model does not depend on the credit rating

model).

Finite Change Sensitivity Indices (FCSIs; Borgonovo 2010a, 2010b) represent a Sensitivity

Analysis technique focusing on the output change due to a finite variation of the inputs.

The FCSI technique is applicable for whatever parameters variation; it does not require

any peculiar variation scheme or sufficiently small parameters changes.5

Let f be the objective function, defined on the parameter space X, which maps the

vector of inputs (or parameters or key drivers) x = (x1, x2, . . . , xn) ∈ X onto the model

output y(x):

f : X ⊂ Rn → R, y = f(x), x = (x1, x2, . . . , xn) . (1)

Let x0 = (x0
1, . . . , x

0
n) be the base (or initial) value of the parameters and f(x0) be the

corresponding model output. The parameters vary from x0 to x1 =
(
x1

1, x
1
2, . . . , x

1
n

)
∈ X,

the so-called realized value, and the related output is f(x1). The output variation is

∆f = f(x1)− f(x0).

Let (x1
i , x

0
(−i)) = (x0

1, x
0
2, . . . , x

0
i−1, x

1
i , x

0
i+1, . . . , x

0
n) be obtained by varying the param-

eter xi to the new value x1
i , while the remaining n−1 parameters are fixed at x0. Similarly,

(x1
i , x

1
j , x

0
(−i,j)) = (x0

1, x
0
2, . . . , x

0
i−1, x

1
i , x

0
i+1, . . . , x

0
j−1, x

1
j , x

0
j+1, . . . , x

0
n) is the vector of in-

puts assuming that xi and xj are set to the new values, while the remaining n − 2 are

unvaried, and so forth for all j-tuples of inputs, j = 1, 2, . . . , n.

Two viable definitions of Finite Change Sensitivity Indices are First Order FCSI and

Total Order FCSI. The First Order FCSI of parameter xi considers the individual effect

5FCSIs are based on the properties of functional ANOVA decomposition for finite changes (Rabitz and Alis
1999, Borgonovo 2010b).
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of xi on the variation of f (Borgonovo 2010b):

∆1
i f = f(x1

i , x
0
(−i))− f(x0) (2)

and, in normalized version, Φ1,f
i = ∆if

∆f .

The Total Order FCSI of a parameter, instead, measures the total effect of the input on

f , including both the individual contribution and the interactions between the parameter

and the other parameters. The interaction between xi and xj , denoted as ∆i,jf , is the

portion of f(x1
i , x

1
j , x

0
(−i,j))−f(x0) that is not explained by the individual effects ∆1

i f and

∆1
jf : ∆i,jf = f(x1

i , x
1
j , x

0
(−i,j))−f(x0)−∆1

i f−∆1
jf . Likewise, the interaction between the

triplet of inputs xi, xj and xh, identified as ∆i,j,hf , is the portion of f(x1
i , x

1
j , x

1
h, x

0
(−i,j,h))−

f(x0) that is not explained by the individual effects and by the interactions between any

pair of inputs xi, xj and xh:

∆i,j,hf = f(x1
i , x

1
j , x

1
h, x

0
(−i,j,h))− f(x0)−∆1

i f −∆1
jf −∆1

hf −∆i,jf −∆i,hf −∆j,hf

(analogously for a group of s > 3 parameters). The variation of f between the base and

the realized case, ∆f , can be written as the sum of individual effects and interactions

between parameters and groups of parameters (Borgonovo 2010b):6

∆f =

individual effects︷ ︸︸ ︷
n∑

i=1

∆1
i f +

pairs︷ ︸︸ ︷∑
i1<i2

∆i1,i2f +

triplets︷ ︸︸ ︷∑
i1<i2<i3

∆i1,i2,i3f + · · ·+

s-tuples︷ ︸︸ ︷∑
i1<i2···<is

∆i1,i2,...,isf + · · ·+
n-tuple︷ ︸︸ ︷

∆i1,i2,...,inf︸ ︷︷ ︸
interactions

,

(3)

where the general term
∑

i1<i2···<is
∆i1,i2,...,isf is the sum of the interactions between

groups of s parameters.

The Total Order FCSI of xi, denoted as ∆T
i f , is defined as the sum of the individual

effect of xi and the interaction effect of xi, which is the sum of any interaction involving

xi, identified as ∆I
i f :

∆T
i f = ∆1

i f+∆I
i f = ∆1

i f+
∑
i1<i2

i∈{i1,i2}

∆i1,i2f+· · ·+
∑

i1<i2···<is
i∈{i1,i2,...,is}

∆i1,i2,...,isf+· · ·+∆i1,i2,...,inf

(4)

and the normalized Total Order FCSI is ΦT
i =

∆T
i f

∆f .

Borgonovo (2010b, Proposition 1) showed that ∆T
i f is also obtained as

∆T
i f = f(x1)− f(x0

i , x
1
(−i)), ∀i = 1, 2, . . . , n, (5)

where (x0
i , x

1
(−i)) is the point with each parameter equal to the realized value x1, except

for the parameter xi which is equal to x0
i .

Considering a subset of parameters Sk = {xi1 , xi2 , . . . , xis}, the relevance of the sub-

set is defined from the notion of importance measures of a single parameter in (2) and

(5). The First Order FCSI of Sk is ∆1
Sk
f = f(x1

(i1,i2,...,is), x
0
(−(i1,i2,...,is))) − f(x0), that

6Each interaction between parameters and group of parameters is counted only once in this formula.
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we denote as f(x1
Sk
, x0

(−Sk)) − f(x0), and the Total Order FCSI is ∆T
Sk
f = f(x1) −

f(x0
(i1,i2,...,is), x

1
(−(i1,i2,...,is))), which can be denoted as f(x1)− f(x0

Sk
, x1

(−Sk)).

Furthermore, given a pair of disjoint subsets of parameters (i.e. whose intersection is the

empty set), here denoted as Sk and Sl, the interaction between Sk and Sl is ∆Sk,Sl
f =

f(x1
Sk
, x1

Sl
, x0

(−Sk,Sl)
)− f(x0)−∆1

Sk
f −∆1

Sl
f ; the interaction between an increasing group

of disjoint subsets (e.g., a triplet of subsets) can be calculated similarly to an increasing

group of parameters.

Finally, consider a group of d disjoint subsets whose union is the whole set of pa-

rameters; ∆f can be decomposed in the sum of individual effects of any subset and the

interactions between any group of subsets, similarly to (3). The Total Order FCSI of

the subset Sk, ∆T
Sk
f , can be calculated as the sum of its individual effect ∆1

Sk
f and its

interaction effect ∆I
Sk
f , defined as the sum of any interaction involving Sk, consistently

with equation (4):

∆T
Sk
f = ∆1

Sk
f + ∆I

Sk
f = ∆1

Sk
f +

∑
k1<k2

k∈{k1,k2}

∆Sk1
,Sk2

f + . . .

+
∑

k1<k2···<ks
k∈{k1,k2,...,ks}

∆Sk1
,Sk2

,...,Sks
f + · · ·+ ∆Sk1

,Sk2
,...,Skd

f.

Despite its usefulness, the definition of Total Order FCSI does not provide a clean decom-

position of the output change in terms of Total FCSIs. In other words, the sum of the

parameters’ effects is not equal to the function variation.

The reason is that (4) includes duplications of the interactions between pairs, triplets,

s-tuples. More precisely, the summand
∑

i1<i2
∆i1,i2f includes twice the interaction be-

tween any pair of parameters, the summand
∑

i1<i2<i3
∆i1,i2,i3f contains three times the

interaction between any triplet of parameters, and, in general,
∑

i1<i2···<is
∆i1,i2,...,isf con-

tains s times the interactions between any s-tuple of parameters. Conversely, in (3), the

interaction terms only appears once. As a result:

∆T
1 f + ∆T

2 f + . . .+ ∆T
nf 6= ∆f

or, dividing by ∆f ,

ΦT
1 + ΦT

2 + . . .+ ΦT
n 6= 1.

This means that the Total FCSIs do not sum up to 100% of the output change: It either

explains less or more than 100%.

Example 1. Let f be the market value of the equity of a firm, depending on the share

price p and the number of shares q. The vector of inputs is x = (p, q) and the equity market

value is f(p, q) = p · q. We assume that the initial state is x0 = (p0, q0) = (10, 200),

which implies that the equity value is f(p0, q0) = p0 · q0 = 10 · 200 = 2, 000; we also

assume that, after one year, price and number of share have changed to x1 = (p1, q1) =

(13, 300), so that the market value of equity is f(p1, q1) = 13 · 300 = 3, 900. The change

in the equity value is then ∆f = f(x1) − f(x0) = 3, 900 − 2, 000 = 1, 900. We aim

at identifying the relevance of the share price and the number of share in terms of the
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variation of the market value of equity. From eq. (2), the First Order FCSI of share price

is ∆1
pf = f(p1, q0)− f(p0, q0) = 13 · 200− 10 · 200 = 600 and the First Order FCSI of q is

∆1
qf = f(p0, q1)− f(p0, q0) = 10 · 300− 10 · 200 = 1, 000. The interaction between p and

q, ∆p,qf is equal to the interaction effect of both the parameters:

∆p,qf = f(p1, q1)− f(p0, q0)−∆1
pf −∆1

qf

= 13 · 300− 10 · 200− 600− 1, 000

= 300

= ∆I
pf = ∆I

qf.

However, from (4), the Total Order FCSI of the share price is ∆T
p f = ∆1

pf + ∆I
pf =

600+300 = 900 and the Total Order FCSI of the number of shares is ∆T
q f = ∆1

qf+∆I
qf =

1, 000 + 300 = 1, 300.7 Therefore, the sum of the Total Order FCSIs is different from ∆f :

∆T
p f + ∆T

q f = 900 + 1, 300 = 2, 200 6= 1, 900 = ∆f.

The reason is that the interaction term between price and number of shares is included in

both ∆T
p f and ∆T

q f , so there is double-counting that prevents the correct decomposition

of the output change. Equivalently, one may write

ΦT
p + ΦT

q = (900/1, 900) + (1, 300/1, 900) = 0.4737 + 0.6842 = 1.1579 6= 1.

In this case, the Total FCSI explains too much. ♦

We now solve the problem by introducing a duplication-cleaning procedure which elim-

inates the redundant, multiple interactions and allows a complete and exact decomposition

of the output change through the Clean Total Order FCSIs.

4 Cleaning the Total Order FCSI

We fine-tune the FCSI by defining the clean interaction effect of parameter xi, as the

interaction effect ∆I
i f multiplied for a special corrective factor α. Denoting as ∆I∗

i f the

clean interaction effect:

∆I∗
i f = ∆I

i f · α, (6)

where we define α as

α =

∑
j1<j2

∆j1,j2f + · · ·+
∑

j1<j2···<js
∆j1,j2,...,jsf + · · ·+ ∆j1,j2,...,jnf∑n

j=1 ∆I
jf

. (7)

Since α is the ratio of the sum of the true interaction effects over the total imputed

interaction effect, it measures the degree of redundancy (if it is smaller than 1) or deficiency

7The Total Order FCSIs can also be determined from (5): ∆T
p f = f(p1, q1)−f(p0, q1) = 13·300−10·300 = 900

and ∆T
q f = f(p1, q1)− f(p1, q0) = 13 · 300− 13 · 200 = 1, 300.
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(if it is greater than 1) of the Total Order FCSI. From (3), α can be rewritten as

α =
∆f −

∑n
j=1 ∆1

jf∑n
j=1 ∆I

jf
(8)

whence

∆I∗
i f = ∆I

i f ·
∆f −

∑n
j=1 ∆1

jf∑n
j=1 ∆I

jf
=

interaction imputed to parameter i︷ ︸︸ ︷
∆I

i f∑n
j=1 ∆I

jf
·

overall interaction︷ ︸︸ ︷(
∆f −

n∑
j=1

∆1
jf
)

(9)

The clean interaction effect ∆I∗
i f can then be interpreted as the component of ∆f −∑n

j=1 ∆1
jf according to the proportion of ∆I

i f over the sum of ∆I
jf for any parameter.

We can now define the Clean Total Order FCSI of parameter xi, ∆T∗
i f , as the sum of

individual contribution and clean interaction effect of xi:

∆T∗
i f = ∆1

i f + ∆I∗
i f (10)

and, in normalized version, ΦT∗
i =

∆T∗
i f
∆f . We now show that the clean indeces perfectly

decompose the output change, explaining the 100% of the variation.

Proposition 1. The sum of Clean Total Order FCSIs is equal to the variation of the

model output f :
∑n

i=1 ∆T∗
i f = ∆f . In normalized version,

∑n
i=1 ΦT∗

i = 1.

Proof. From (9),

n∑
i=1

∆I∗
i f =

n∑
i=1

∆I
i f∑n

j=1 ∆I
jf
·
(

∆f −
n∑

j=1

∆1
jf
)

= ∆f −
n∑

j=1

∆1
jf. (11)

From (10) and (11),

n∑
i=1

∆T∗
i f =

n∑
i=1

∆1
i f +

n∑
i=1

∆I∗
i f =

n∑
i=1

∆1
i f + ∆f −

n∑
i=1

∆1
i f = ∆f. (12)

Diving both terms of the equality by ∆f , one gets
∑n

i=1 ΦT∗
i = 1.

The duplication-cleaning procedure is applicable not also for measuring the relevance of

single drivers but also for determining the importance of disjoint subsets of parameters.

The clean interaction effect of a subset Sk, denoted as ∆I∗
Sk
f , can be obtained from (6) and

(9) just considering interactions between subsets, interaction effect and individual effect

of the subset, instead of the effects of single parameters:

∆I∗
Sk
f = ∆I

Sk
f ·
∑

l1<l2
∆Sl1,Sl2

f + · · ·+
∑

l1<l2···<ls
∆Sl1,Sl2,...,Sls

f + · · ·+ ∆Sl1,Sl2,...,Sld
f∑d

l=1 ∆I
Sl
f

=
∆I

Sk
f∑d

l=1 ∆I
Sl
f
·
(

∆f −
d∑

l=1

∆1
Sl
f
)
.

(13)
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Similarly, the Clean Total Order FCSI of Sk, represented as ∆T∗
Sk
f , can be determined

from (10) by summing up the individual effect and the clean interaction effect of the

subset:

∆T∗
Sk
f = ∆1

Sk
f + ∆I∗

Sk
f. (14)

Example 2. Consider Example 1. From (9), the clean interaction effect attributable to

the price, p, is

∆I∗
p f =

∆I
pf

∆I
pf + ∆I

qf
·
(

∆f −∆1
pf −∆1

qf
)

=
300

300 + 300
·
(

(13 · 300− 10 · 200)− 600− 1, 000
)

= 150

and is equal to the clean interaction effect of q: ∆I∗
q f = ∆I∗

p f = 150. From (10), the clean

Total Order FCSI of p is ∆T∗
p f = ∆1

pf+∆I∗
p f = 600+150 = 750 and the clean Total Order

FCSI of q is ∆T∗
q f = ∆1

qf + ∆I∗
q f = 1, 000 + 150 = 1, 150.8 The sum of the clean Total

Order FCSIs is equal to the variation of f : ∆T∗
p f + ∆T∗

q f = 750 + 1, 150 = 1, 900 = ∆f .

5 A case study

We apply DRSM to an Italian-controlled industrial company, mainly operating in the

automotive business. We have used real, publicly available, consolidated financial state-

ments of the company in recent years. We denote as 0 the base year, and rating has been

determined for four years: 0, 3, 5, and 6. The vector of inputs x = (x1, x2, . . . , xn) ∈ X
consists of the 18 economic and financial variables (rating model inputs) which we have

described in Section 2. The model output y(x) is the default risk. We calculate the de-

fault risk and the credit rating of the company in the four periods via the application of

the fuzzy-logic expert rating model introduced in this work and determine the changes

in default risk from period to period. The evolution of the default risk, rating and risk

variation across time is summarized in the following table:

Year Default Risk Rating Risk variation

0 0.8185 CCC −
3 0.7143 B −0.1042

5 0.5079 BB −0.2064

6 0.5714 BB +0.0635

In the first two intervals (0, 3) and (3, 5) the company has reduced its default risk and

improved the credit rating from class CCC (in 0) to B (in 3) and from class B (in 3) to

BB (in 5); in the last interval (5, 6) the default risk has increased, but the rating class

has not varied.

8In this trivial case, interaction effect is split up in half, but this is not so in general.
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Decomposition of the change in default risk and ranking of parameters.

We focus on the decrease in default risk from year 0 to year 3. Specifically, the change

in default risk in this time interval has been ∆f = −0.1042 (see Table 4). The (clean)

importance measures of the 18 key parameters are reported in Table 5. Note that

� many variables have no individual effect whatsoever nor interaction effects (e.g.

FFO-on-Debt and Interest Coverage 2): Their influence on the change in default

risk is zero

� for all inputs (except Interest Coverage 1), First Order FCSI and interaction effect

have opposite sign, which means that they tend to offset each other

� one input (Interest Coverage 1) has no First Order effect but (slightly) affects the

change in default risk via the interaction effect.

As now evident, the sum of Clean Total Order FCSIs is equal to the variation of the default

risk (∆f = −0.1042). Table 5 ranks the input variables according to their relevance on

the change in default risk. It turns out that

� the decrease in default risk (and the related rating improvement) is mainly de-

termined by the increase of OFC-to-Debt (rank 2), which improves the financial

vulnerability profile, by the increase of OWC Intensity (rank 3), which determines

an efficiency enhancement, and by reduction of Leverage and Long-Term Leverage

(ranks 4 and 5), which contribute to decrease the financial vulnerability of the firm

� the improvement in rating is smoothed by the increase of EBITDA Standard De-

viation, which increases the Operating Risk via the Specific Risk. The standard

deviation of EBITDA is the most relevant variable of the set of parameters (rank 1).

The improvement in rating is also negatively affected by the decrease of Operating

Leverage and Interest Coverage 1 (however, their effect on the output change is very

mild)

� all the remaining variables have no influence on the default risk variation.

Figure 4 is the graphical representation of Table 5. The parameters are reported on

the horizontal axis, sorted by decreasing influence on rating variation (hence, rank of

parameters decreases from left to right); as for the vertical dimension, the Clean Total

Order FCSIs (∆T∗
i f) are reported: A bar above the axis informs that the parameter has

increased the default risk, while a bar below the axis informs that the parameter has

decreased the default risk.

Impact on output change of one key driver as opposed to the residual

drivers. As the most determinant parameter for risk reduction in (0, 3) is OCF-to-Debt,

a viable application of DRSM is to investigate the role of OCF-to-Debt as compared with

the residual input factors. To this end, we divide the set of parameters into OCF-to-Debt,

on one side, and the subset of the residual 17 drivers, on the other side. We determine

(i) the individual contribution of OCF-to-Debt, (ii) the individual effect of the above

mentioned subset, and (iii) the interaction between OCF-to-Debt and the subset. It is

worth noting that the individual effect of the subset consisting of the residual drivers
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Table 4: Values of the parameters in 0 and 3

Variable 0 3 Variation

1 Leverage 0.8589 0.7249 −0.1340
2 Long-Term Leverage 0.8126 0.5295 −0.2831
3 FFO-on-Debt 0.0959 0.1143 0.0184
4 Interest Coverage 1 0.7292 2.0779 1.3487
5 Interest Coverage 2 −0.2502 0.5485 0.7987
6 OCF-to-Debt −0.0518 0.0919 0.1437
7 FCR 0.2790 0.3118 0.0328
8 Debt Service Coverage −0.2915 0.2869 0.5784
9 OWC Intensity 0.0404 0.3073 0.2669
10 Financial Cycle 0.6250 0.6438 0.0188
11 EBITDA on Sales 0.0399 0.0182 −0.0217
12 ROA −0.0122 0.0256 0.0378
13 Customer Concentration 0.6063 0.6250 0.0187
14 Product Positioning 0.6438 0.6250 −0.0188
15 Industry Prospects 0.5188 0.6063 0.0875
16 EDITDA Standard Deviation 0.3550 0.7313 0.3763
17 Operating Leverage 0.3550 0.3750 0.0200
18 Industrial Coverage 2.0836 2.2674 0.1838

Output
Default Risk 0.8185 0.7143 −0.1042

quantifies the change in the default risk in case all variables except OCF-to-Debt vary

from the initial value at time 0 to the realized value at time 3 (with OCF-to-Debt kept

constant at its initial value at 0). Table 6 shows that the individual variation of OCF-

to-Debt explains the 62.76% of the change in default risk in the interval (0, 3), while

the individual effect of the other 17 variables, taken together, determines the 89.44% of

the default risk variation. Therefore, the OCF-to-Debt has a relative impact equal to

70.17% = 62.76%/89.44% of the impact of the other 17 parameters considered together,

thereby confirming the crucial influence of OCF-to-Debt on risk variation.

Analysis of groups of variables. A further useful application of the DRSM consists

of analyzing the role of selective groups of variables bearing special importance, aiming

at identifying the influence of different areas of financial management on default risk

variation. This analysis aims at pointing out the most effective managerial actions and

policies for the evolution of the enterprise credit risk across time. For example, referring

to Figure 1, consider the following areas pinpointed by the second-level intermediate

variables, namely, Financial Vulnerability, Operating Efficiency, and Operating Risk:

� Financial Vulnerability represents the degree at which the firm is exposed to risk

owing to an excessive debt. It is a second-level intermediate variable and is affected

by 8 input factors. We denote it as V ;

� Operating Efficiency represents the degree at which the firm is able to manage the

operations in an efficient way. It is a second-level intermediate variable which has
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Table 6: The role of OCF-to-Debt

Effect Description Change in risk %

Individual effect
of OCF-to-Debt

OCF-to-Debt varies,
residual drivers are constant

−0.0654 +62.76%

Individual effect
of residual drivers

OCF-to-Debt is constant,
residual drivers vary

−0.0932 +89.44%

Interaction effect
Interaction between
OCF-to-Debt and residual drivers

+0.0544 −52.20%

Sum −0.1042 100.00%

to do with the economic profitability (EBITDA, ROA) and the ability of collecting

cash from customers early and delaying payments to suppliers (operating cycle, cash

cycle). It is affected by 4 input factors. We denote this group as E;9

� Operating Risk joins two kinds of risk: The strategic risk, related to such drivers

as the customer concentration, the product positioning, the industry prospects, and

the specific risk, referred to specific features of the firm under analysis (standard

deviation of EBITDA, operating leverage, industrial coverage). It is a second-level

intermediate variable which is affected by 6 key drivers. We denote it as R.

For each subset Sk we determine the First Order FCSI (∆1
Sk
f) and any interaction involv-

ing Sk. For instance, the individual effect of the Financial Vulnerability on the risk change

from 0 to 3 is ∆1
V f = f(x1

V , x
0
(−V ))− f(x0) = −0.1078, meaning that it has played a posi-

tive role. As for the pairwise interaction, the interaction of this group with the Operating

Efficiency is ∆V,Ef = f(x1
V , x

1
E , x

0
R)− f(x0)−∆1

V f −∆1
Ef = 0.0535, meaning that it has

negatively (albeit very slightly) affected the rating; the interaction with the Operating

Risk has acted positively, since ∆V,Rf = f(x1
V , x

1
R, x

0
E)− f(x0)−∆1

V f −∆1
Rf = −0.0798.

The interaction between the three groups is ∆V,E,Rf = f(x1) − f(x0) − ∆1
V f − ∆1

Ef −
∆1

Rf−∆V,Ef−∆V,Rf−∆E,Rf = 0.0388. Individual effects and interactions are collected

in Table 7. Using the duplication-cleaning procedure, we perfectly decompose the change

in default risk. Indeed, the sum of any contribution (individual effect and interaction),

counted just once, is equal to the change in risk, ∆f = −0.1042. The ranking is shown in

Table 8 and in Figure 5. As can be gleaned from inspection of table and figure,

� the better rating at time 3 is primarily driven by the reduction in the Financial

Vulnerability (V ), which is the most influential area of financial management in the

analysis, and by the decrease of the Operating Risk (R), which represents the second

most relevant subset of parameters

� the better rating is curbed by the worsening of the Operating Efficiency (E), which

is, however, the least influential management area.

Maximum effect of a variable. Another possible use of DRSM is the study of the

maximum effect of a variable or a subset of variables on the default risk. For example,

9Note that Financial Vulnerability and Operating Efficiency are the antecedents of the (third-level interme-
diate variable) Financial Risk.
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Table 7: First Order FCSIs and interactions of the subsets of parameters

First Order FCSIs

∆1
V f −0.1078

∆1
Ef −0.0535

∆1
Rf 0.0834

Interactions

∆V,Ef 0.0535
∆V,Rf −0.0798
∆E,Rf −0.0388
∆V,E,Rf 0.0388

Sum = ∆f −0.1042

Table 8: Ranking of the subsets of parameters

Subset
First Order

FCSI
Interaction

Total Order
FCSI

Normalized Total
Order FCSI

Rank

V Financial Vulnerability −0.1078 0.0242 −0.0836 80.25% 1
R Operating Risk 0.0834 −0.1533 −0.0700 67.13% 2
E Operating Efficiency −0.0535 0.1029 0.0494 −47.38% 3

Sum of contributions −0.0780 −0.0262 −0.1042 100.00%
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0.0494

-0.0700

-0.1000

-0.0800
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Figure 5: Group Analysis: (Clean) Total Order FCSIs (∆T∗
Sk
f)
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consider the parameter Fixed Charge Ratio (FCR), which represents a significant synthetic

ratio of the firm’s capacity to service the debt and, probably, the most informative index

of financial stability. We analyze the effects of the improvement in FCR, compared to

the base-case year 0, while all the residual parameters are fixed at their initial value in

0. Table 9 collects the levels of default risk and credit rating corresponding to increasing

values of FCR. The first line of the table describes the base-case and reports the values

of FCR, default risk and credit rating in year 0; in the second line FCR is evaluated in

3, while all the residual parameters are equal to their initial value; the following lines

are obtained by increasing FCR by 0.06 starting from the base case, with all the other

variables evaluated in 0. From inspection of the table,

� other things equal, the improvement in FCR is able to decrease the default risk to

a minimum of 0.57142 and increase the rating to a maximum of BB, corresponding

to a 30.19% risk reduction and a two-classes rating improvement

� values of FCR greater than 1.659 are uninfluential, so that a further improvement

in rating must be accomplished by improving some other input factors.

The relationship between the increase of FCR and the decrease in default risk is repre-

sented in Figure 6. The relatively high impact of FCR on credit risk resulted from this

analysis (assuming other things equal) is not surprising if one considers that FCR is an

important measure of financial stability. While we have shown the impact of a single key

driver, the analysis may be extended to considering the maximum effect of a subset of

the parameters. This is accomplished by improving each variable belonging to the subset

while all the parameters outside the relevant subset are kept fixed at their initial value

in 0. The analysis becomes less trivial (because interaction effects among the group’s

variables occur) but the DRSM easily manages any such case and the change in risk may

be exactly decomposed.

6 Concluding remarks

This paper introduces a credit rating model based on fuzzy logic and expert system, able

to replicate and attribute logical consistency to the evaluation process of default risk

and credit rating which is usually performed by human experts on the basis of available

data. The expert system uses available data (knowledge base) and an inferential engine

to produce the output. We consider a set of 18 economic and financial variables, both

quantitative and qualitative. The system determines the default risk and the rating class

in various years through a modular approach which aggregates the variables under a

managerial and financial perspective.

We associate the rating system with the Finite Change Sensitivity Indices (Borgonovo

2010a, 2010b), a recent addition to the techniques of Sensitivity Analysis (SA) which aims

at measuring the impact of the model inputs on the output change occurred passing from

a base value (e.g., the output value at a given date) to a realized value (the output value

at a subsequent date). We fine-tune FCSIs by eliminating some duplication effects and

provide a clean, exact decomposition of the output change.
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Table 9: Maximum effect of FCR on default risk and rating

FCR Default risk Rating

(year 0) 0.279 0.8185 CCC
(year 3) 0.312 0.8185 CCC

0.339 0.8185 CCC
0.399 0.8185 CCC
0.459 0.8185 CCC
0.519 0.7784 CCC
0.579 0.75574 CCC
0.639 0.73256 B
0.699 0.73256 B
0.759 0.73256 B
0.819 0.73256 B
0.879 0.73256 B
0.939 0.73256 B
0.999 0.73256 B
1.059 0.73256 B
1.119 0.73256 B
1.179 0.72640 B
1.239 0.71428 B
1.299 0.71428 B
1.359 0.71428 B
1.419 0.71428 B
1.479 0.70386 B
1.539 0.67882 B
1.599 0.57834 BB
1.659 0.57142 BB

> 1.659 0.57142 BB
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Figure 6: Increase of FCR and decrease in default risk

We use the results for giving rise to the Default Risk Sensitivity Model (DRSM) which

investigates the variation of the enterprise default risk under changes in the model inputs

for ex post analysis and for managerial decision-making. As for the former perspective,

the DRSM allows the decomposition of the historic change of default risk and identifies

the most relevant parameters which generated the change; as for the latter perspective,

it suggests suitable managerial actions to be undertaken for improving the prospective

rating and/or increasing the success of complex financial operations that are to be taken.

Overall, a sensitivity analysis module, such as the one presented in this work, is a valuable

tool to enhance the understanding of a complex fuzzy-logic model by providing insights

into how the inputs affect the outputs of such models, thus strengthening the confidence

of credit analysts in using such method in practice. From this point of view, sensitivity

analysis is also crucial in model testing/validation: Additional simulation runs may be

used for corroborating and, when necessary, calibrating the model.

Several categories of companies may benefit from the application of DRSM: Firms

aiming at controlling and/or reducing their credit risk profile, enterprises needing a dy-

namic and mindful debt management, and public companies which are willing to inform

the financial markets about the firm’s present economic results and future prospects.

We have applied the DRSM to an Italian-controlled industrial company. We have

identified the effects of parameters on the default risk and the rating change through time,

then have determined the aggregate effects of groups of variables (specifically, Financial

Vulnerability, Operating Efficiency, Operating Risk), have analyzed the impact of the

ratio of the operating cash flow to the debt amount as opposed to the impact of the other

variables taken together, and have calculated the maximum effect of a variable (FCR) on
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default risk.

Finally, it is worth noting that the sensitivity model is detached from the expert sys-

tem: They are reciprocally autonomous in that each of them may be used independently.

In particular, the sensitivity model presented does not depend on the fuzzy expert sys-

tem: It is suitable for applications with any possible rating model and, therefore, any set

of parameters (symmetrically, the rating model may also be adopted in association with

other SA techniques). A potential scenario of future development is the combination of

sensitivity analysis with automatic machine-learning algorithms for rating firms, aiming

at melting the high learning and generalization capabilities of adaptive, computational-

based, data-driven system with the promising feature of increasing the comprehensibility

of complex models via the application of sensitivity analysis. Future researches may also

be conducted for formal testing/validation of machine-learning approaches using data-

driven schemes.
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Appendix

This Appendix reports a legend of accounting and financial terminology, a list of primary

relations involving the main dimensions of the analysis, the description of the 18 model

inputs, and the structure of the intermediate variables of the rating system.
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Legend

COGS = Cost of Goods Sold

D&A = Depreciation and Amortization Expenditures

EBIT = Earnings Before Interest and Taxes

EBITDA = Earnings Before Interest, Taxes, Depreciation and Amortization

FCR = Fixed Charge Ratio

FE = Financial Expenses

FFO = Funds from Operations

NI = Net Income

NOPAT = Net Operating Profit After Taxes

OCF = Operating Cash Flow

OWC = Operating Working Capital

PBT = Profit Before Taxes

R&D = Research and Development expenses

ROA = Return on Assets

SG&A = Selling, General and Administrative Expenses

T = Taxes

Primary relations

Gross Profit = Revenues − COGS

EBITDA = Gross Profit − SG&A

EBIT = EBITDA − D&A

NOPAT = EBIT·(1−tax rate)

PBT = EBIT − FE + Interest Income ± Extraordinary Items

NI = PBT − T

OCF = EBIT + D&A − investments + disposals − ∆OWC
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Model inputs

The definition of the model inputs is reported in the following table:

INPUT DESCRIPTION

1 Leverage Total Debt/(Total Debt + Equity Value)

2 Long-Term Leverage Long-Term Debt/(Long-Term Debt + Equity Value)

3 FFO-on-Debt (NOPAT + D&A + other noncash items)/Total Debt

4 Interest Coverage 1 (EBITDA − R&D)/ Financial Expenses

5 Interest Coverage 2 (EBIT − R&D)/ Financial Expenses

6 OCF-to-Debt OCF/Total Debt

7 Fixed Charge Ratio (FCR) (EBITDA − R&D)/(Debt Service + Taxes + Capital Expenditures)

8 Debt Service Coverage OCF/Debt Service

9 OWC Intensity qualitative

10 Financial Cycle qualitative

11 EBITDA on Sales (Adjusted) (EBITDA − R&D)/Revenues

12 ROA (Adjusted) (EBIT − R&D)/Total Assets

13 Customer Concentration qualitative

14 Product Positioninig qualitative

15 Industry Prospects qualitative

16 EBITDA Standard Deviation Standard deviation of EBITDA (last five years)

17 Operating Leverage Fixed Costs/Total Costs

18 Industrial Coverage Gross Profit/Capital Expenditure

Notes

1. R&D are deducted from EBIT and EBITDA only if they are capitalized.

2. Total assets in ROA is net of minority participations.

3. Industry prospects is related to the market risk.

4. OWC intensity is the average amount of accounts receivable as opposed to the accounts payable.

5. Product positioning is an indicator of the product quality as perceived by the customers.

6. Customer concentration refers to the percentage of revenues of the 4 most important buyers

(the higher the concentration, the higher the risk). Depending on the sector and on the case at hand,

an index of geographic concentration may also be used in place or along with this metric.

7. Financial cycle is the lapse of time between when cash is paid to suppliers and cash is received from customers.
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Intermediate variables

Figure 7 represents the sequence of the intermediate variables of the rating system until

reaching the model output Default Risk (see also Figure 1).

(Risk of) Capital Structure

Interest Coverage

Debt Coverage

WC Management

Profitability

Strategic Risk

Specific Risk

Financial Vulnerability

Operating Efficiency

Operating Risk

Financial Risk

Operating Risk

Model output
(4-th level)

Default Risk

Intermediate variables
(1-st level)

Intermediate variables
(2-nd level)

Intermediate variables
(3-rd level)

Figure 7: Intermediate variables
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A B S T R A C T

In project appraisal under uncertainty, the economic reliability of a measure of financial efficiency such as a
rate of return depends on its strong NPV-consistency, meaning that the performance metric (i) supplies the
same recommendation in accept–reject decisions as the NPV, (ii) ranks competing projects in the same way
as the NPV, (iii) has the same sensitivity to perturbations in the input data as the NPV. In real-life projects,
financial efficiency is greatly affected by the management of the working capital. Using a sensitivity analysis
approach and taking into explicit account the role of working capital, we show that the average return on
investment (ROI) is not strongly NPV-consistent in accept–reject decisions if the working capital is uncertain
and changes under changes in revenues and costs. Also, it is not strongly NPV-consistent in project ranking.
We also show that the internal rate of return (IRR) is not strongly NPV-consistent and economic analysis may
even turn out to be impossible, owing to possible nonexistence and multiplicity caused by perturbations in the
input data, as well as to possible shifts in the financial meaning of IRR under changes in the project’s value
drivers. We introduce the straight-line rate of return (SLRR), based on the notion of average rate of change,
which overcomes all the problems encountered by average ROI and IRR: It always exists, is unique, strongly
NPV-consistent for both accept–reject decisions and project ranking, and has an unambiguous financial nature.

1. Introduction

In capital asset projects, economic profitability may be measured
with absolute metrics, such as the net present value (NPV), expressing
value increase in monetary units, or relative metrics, expressing rates
of return or profitability indices which aim at identifying a project’s
financial efficiency.

The preference for absolute metrics or relative metrics in practice
may depend on several factors. Capital rationing is one such factor. It
may occur in several different forms; for example, the firm may face
an upper limit to borrow from banks; headquarters may impose budget
limits on expenditures of a division; the firm may have more positive
NPVs that it can finance; the firm’s owners may exclude issuance of new
shares to avoid loss of the firm’s control; a given amount of monetary
resources may be freed out of current operations and be available for
new investments. Other kinds of constraints (limits in management
time, skilled labor, equipment, know-how, etc.) and agency conflicts
are also frequent in capital investment decisions. These (soft or hard)

✩ This paper is the result of a joint contribution of the two authors.
∗ Corresponding author at: Department of Economics ‘‘Marco Biagi’’, University of Modena and Reggio Emilia, Italy.

E-mail address: magni@unimo.it (C.A. Magni).

constraints often induce managers to focus on relative metrics mea-
suring the marginal efficiency of capital (see Pike and Ooi, 1988;
Berkovitch and Israel, 2004; Ross et al., 2011; Brealey et al., 2011).

Functional areas and educational background of decision makers
play also a role. For instance, practitioners seem to be at ease with the
intuitive appeal of a rate of return (Evans and Forbes, 1993; Graham
and Harvey, 2001; Sandahl and Sjögren, 2003; Lindblom and Sjögren,
2009). Managers with a strong financial background generally do not
encounter difficulties in using absolute metrics, whereas managers
with a traditional accounting or engineering imprinting may be more
confident in using rates of return instead of monetary values.

Therefore, the coherence or incoherence between absolute and rel-
ative metrics is, comprehensibly, an important theoretical and applica-
tive issue. Net-present-value (NPV) consistency of a performance metric
means that the decisions recommended by the metric are the same
as the ones recommended by the NPV criterion. The literature on
NPV-consistent (or NPV-compatible) measures is enormous and spans
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over several decades (e.g., see Hajdasinski, 1995, 1997; Hartman, 2000;
Hartman and Schafrick, 2004; Pfeiffer, 2004; Gow and Reichelstein,
2007; Lindblom and Sjögren, 2009; Chiang et al., 2010; Pasqual et al.,
2013).

Recent studies take a different view on NPV-consistency. Percoco
and Borgonovo (2012) and Borgonovo and Peccati (2004, 2006) an-
alyze the influence on the NPV and the internal rate of return (IRR)
of the value drivers (also called key parameters or input data, which
are the sources of investment risk) via the application of Sensitivity
Analysis (SA). They show that the parameters whose uncertainty is
most influential on NPV are not the same as the IRR’s. More recently,
using the average-internal-rate-of-return (AIRR) approach Marchioni
and Magni (2018) (henceforth, MM, 2018) proposed a relative metric,
the average Return On Investment (ROI), which enjoys strong NPV-
consistency, in the sense that changes in the key parameters have the
same effects on NPV and on average ROI, overcoming the deficiency
of IRR described in Percoco and Borgonovo (2012) and Borgonovo and
Peccati (2004, 2006). However, all these authors implicitly assumed a
working capital equal to zero throughout the project’s life. Also, they
did not cope with project ranking.

The influence of working capital (WC) management on financial
performance is suggested by several recent works. Among others, Ca-
ballero et al. (2014) find a significant link between working capital
management and corporate performance. Chauhan (2019) highlights
the long-term role of working capital management, as opposed to the
traditional short-term view of working capital. Bian et al. (2018) study
the effect of working capital requirements on the company’s financial
situation via a discounted cash flow model over the planning horizon,
and Luciano and Peccati (1999) present the application of adjusted
present value techniques to an inventory management problem. Huang
et al. (2020) analyze the role of the supply chain finance to alleviate
financing problems of small and medium enterprises and the beneficial
effect of efficient working capital management on the selection of rea-
sonable financing modes. Song et al. (2020) analyze the role of supply
chain finance in reducing information asymmetry and increasing the
possibility to raise WC. Pirttilä et al. (2020) underline the importance
of the supply chain finance on the competitive advantage in the Russian
automotive industry. Furthermore, Peng and Zhou (2019) propose
three different models describing different level of cooperations into
the supply chain and suggest to manage WC according to a supply
chain-oriented solution. Moreover, Protopappa-Sieke and Seifert (2010)
investigate the advantages of interrelating operational and financial
aspects in decision-making about supply chain and working capital. In
addition, Wetzel and Hofmann (2019) realize an exploratory network
analysis about supply chain finance, financial constraints and corporate
performance. Wu et al. (2019) consider the role of the payment term
and of the payment approach on the financial performance of the
supplier and retailer through cash flow optimization.

We build upon the SA literature as a tool for managing risk and we
specifically focus on the recent subset of papers which study the recip-
rocal consistency of different performance metrics. At the same time,
we take into explicit account the role of working capital management in
selecting an economically significant and reliable measure of efficiency
for making financial analyses and capital investment decisions. In
particular, we

• show that the average ROI is not strongly NPV-consistent in
presence of WC

• introduce a new performance metric, the Straight-Line Rate of
Return (SLRR), which allows for nonzero (uncertain) WC while
retaining strong NPV-consistency

• extend the notion of strong NPV-consistency to project ranking,
showing that the SLRR’s ranking is strongly NPV-consistent, if the
initial outlays are equal

• measure the degree of inconsistency of the average ROI and the
IRR and show that the SLRR outperforms these indices

• introduce some previously unknown pitfalls of the IRR.

Specifically, we show that, if one relaxes the assumption of zero
WC, the average ROI is strongly NPV-consistent in accept–reject only
if the WC is exogenous, that is, it does not change under changes in
the value drivers. However, this case is not frequent, given the strong
link which usually occurs between accounts receivable and revenues,
between accounts payable and operating costs, and between inventory
and production and sales. Also, the average ROI is not strongly NPV-
consistent in project ranking. Moreover, albeit a rare case, the average
ROI might not exist.

We use the notion of Chisini mean (Chisini, 1929) to find possible
substitutes for the average ROI: The internal rate of return and the
straight-line rate of return. We prove, via several counterexamples,
that the IRR is not strongly NPV-consistent (see also Battaglio et al.,
1996; Borgonovo and Peccati, 2006; Percoco and Borgonovo, 2012
on divergence between IRR and NPV) with non-negligible degrees of
inconsistency, as measured via Spearman’s (1904) correlation coeffi-
cient and Iman and Conover’s (1987) top-down coefficient. We discover
new, previously unknown deficiencies of IRR in project appraisal under
uncertainty: Even in those cases where it exists and is unique, a simple
perturbation of the key parameters may cause the IRR to disappear or
generate multiple IRRs, with the unpleasant implication of making it
impossible to assess the impact of a change in value drivers on the
IRR; furthermore, the IRR may change its financial nature (investment
rate versus financing rate) under changes in the key parameters, which
makes IRR unhelpful.

In contrast, we find that the SLRR is strongly NPV-consistent, even
in a strict sense (the relevances of the value drivers are the same as the
NPV’s) in accept–reject decisions and, if the competing projects share
the same initial investment, in project raking. Also, it always exists, is
unique, and has an unambiguous meaning.

The remaining part of the paper is structured as follows. Section 2
recalls the definition of strong NPV-consistency proposed in MM (2018)
for accept–reject decisions, based on sensitivity analysis, and shows
that the strong NPV-consistency of the average ROI rests on the as-
sumption of zero WC or, alternatively, the assumption that WC is
exogenously determined (i.e., it does not depend on revenues and
costs); without either assumption, strong NPV-consistency of average
ROI is not guaranteed. Section 3 uses the notion of Chisini mean to
find alternative candidates enjoying strong NPV-consistency. Chisini’s
invariance requirement supplies the internal rate of return and the
straight-line rate of return. The SLRR is shown to exist, be unique, and
be strongly NPV-consistent in a strict form for accept–reject decisions,
whereas the IRR is not. In Sections 4 and 5 we introduce new types
of difficulties suffered by IRR under uncertainty. Section 6 proves, via
counterexamples, that, in general, the average ROI is not strongly NPV-
consistent under uncertain WC, and it further measures its level of
inconsistency. Section 7 extends the notion of strong NPV-consistency
to project ranking and shows that, unlike average ROI and IRR, the
SLRR fulfills it if the projects’ initial investment is the same. Some
concluding remarks end the paper and summarize the difference among
the three performance metrics.

2. Accept–reject decisions and NPV-consistency of average ROI

2.1. Economic setting of investment decisions

Consider a capital asset project, 𝑃 , and let 𝐹 = (𝐹0, 𝐹1,… , 𝐹𝑝), 𝐹0 ≠
0, be its estimated stream of free cash flows (FCFs), where 𝑝 is the
number of periods in which the firm operates the project. A positive
cash flow means that the capital providers (i.e., shareholders and
debtholders) receive money from the firm (i.e., money flows out of the
firm), a negative cash flow means that the capital providers contribute
money to the firm (i.e., money flows in the firm). The project’s net
present value (NPV) is the algebraic sum of the discounted cash flows,
and represents the economic value created: NPV =

∑𝑝
𝑡=0 𝐹𝑡(1 + 𝑘)−𝑡. The
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discount rate 𝑘 is the so-called cost of capital (COC) (or minimum
attractive rate of return).1

Definition 1 (NPV Citerion for Accept/reject Decisions). A project creates
value (i.e., it is worth undertaking) if and only if NPV > 0.

Following we define the classical notion of NPV-consistency for a
rate of return. It provides a notion of weak NPV-consistency based on
the decision recommended by a given metric.

Definition 2 (Weak NPV-consistency for Accept/reject Decisions). A rate
of return 𝜑 is weakly NPV-consistent if and only if a decision maker
adopting 𝜑 makes the same decision suggested by the NPV criterion. In
formal terms, 𝜑 is NPV-consistent if, given a cutoff rate 𝑘, the following
statements are true:

– an investment project creates value if and only if 𝜑 > 𝑘
– a financing project creates value if and only if 𝜑 < 𝑘.

In real-life applications, to evaluate a project and make a deci-
sion on project acceptability, the analyst draws, for each period, the
project’s pro forma financial statements (balance sheets and income
statements) where prospective incomes and book values are deter-
mined. More precisely, the analyst estimates, for every 𝑡 = 0, 1,… , 𝑝,
the incomes, 𝐼𝑡, and the book values, 𝑏𝑡, which represents the amount
of invested capital at the beginning of period [𝑡, 𝑡+ 1]. The initial book
value coincides with the initial investment (i.e., 𝑏0 = −𝐹0) and the
terminal book value (after liquidation) is equal to zero (i.e., 𝑏𝑝 = 0).
After estimating incomes and book values, the analyst derives the cash
flows, often called free cash flows (FCF), by subtracting the changes in
book value from the incomes:

𝐹𝑡 = 𝐼𝑡 − 𝛥𝑏𝑡, (1)

where 𝛥𝑏𝑡 = 𝑏𝑡 − 𝑏𝑡−1. The pro forma financial statements along
with Eq. (1) represent a standard tool in finance and in industry and
are the basis for the financial modeling of capital asset projects.2 Hence,
the NPV may be framed in terms of incomes and changes in book value:
NPV = −𝑏0 +

∑𝑝
𝑡=1(𝐼𝑡 − 𝛥𝑏𝑡)∕(1 + 𝑘)𝑡.

Magni (2010) proved that, for any stream 𝑪 = (𝐶0, 𝐶1, 𝐶2,… , 𝐶𝑝−1)
of capital amounts such that 𝐶0 = −𝐹0 and any stream
𝑱 = (0, 𝐽1, 𝐽2,… , 𝐽𝑝) of profits such that

𝐹𝑡 = 𝐽𝑡 − 𝛥𝐶𝑡, (2)

the following equality holds:

NPV(1 + 𝑘) = 𝐶(𝚤 − 𝑘) (3)

1 The COC can be determined in various way, using some asset pricing
models, which may be integrated by (or even replaced by) subjectively
determined thresholds (see Magni, 2010, 2020). In finance, the recommended
COC is the weighted average cost of capital (WACC). Its significance, estimation
and relation with the cost of equity and the cost of debt have been extensively
investigated in the literature (see, for example, Arditti and Levy, 1977; Miles
and Ezzell, 1980; Cigola and Peccati, 2005, Block, 2011, Massari et al., 2008;
Dempsey, 2013. See also Magni, 2020 and references therein). Consistently
with MM (2018), we assume 𝑘 is exogenously given and time-invariant (a
usual assumption in finance).

2 ‘‘The first thing we need when we begin evaluating a proposed investment
is a set of pro forma, or projected, financial statements. Given these, we can
develop the projected cash flows from the project. Once we have the cash
flows, we can estimate the value of the project’’ (Ross et al., 2011, p. 271);
‘‘free cash flow is the total amount of cash available for distribution to the
creditors who have loaned money to finance the project and to the owners
who have invested in the equity of the project. In practice this cash flow
information is compiled from pro forma financial statements’’ (Titman et al.,
2011, p. 383). Eq. (1) is also known as clean surplus relation (Anon, 1996).

where

𝚤 = 𝐽
𝐶

(4)

is an Average Internal Rate of Return (AIRR) and 𝐶 =
∑𝑝

𝑡=1 𝐶𝑡−1(1 +
𝑘)−(𝑡−1) and 𝐽 =

∑𝑝
𝑡=1 𝐽𝑡(1 + 𝑘)−(𝑡−1) (see also Magni, 2013).

If 𝐶 > 0 the project is defined a net investment, whereas if 𝐶 < 0 the
project is defined a net financing (Magni, 2010, 2013). Therefore, the
financial nature of any project (and its associated average ROI) can be
identified as an investment project or a financing project (respectively,
an investment rate or a financing rate).

Eq. (1) is a special case of (2). MM (2018) precisely used eq. (4)
picking up the book value capitals invested in the project (i.e., 𝐶𝑡 = 𝑏𝑡)
and the vector of pro forma accounting incomes (i.e., 𝐽𝑡 = 𝐼𝑡).

With this choice, (4) becomes the so-called average Return On Invest-
ment (ROI), here denoted as 𝚤(𝑏):

𝚤(𝑏) = 𝐼
𝑏
=

Total profit
Total invested capital (5)

where 𝐼 =
∑𝑝

𝑡=1 𝐼𝑡(1 + 𝑘)−(𝑡−1) represents the overall profit which the
project is expected to generate and 𝑏 =

∑𝑝
𝑡=1 𝑏𝑡−1(1 + 𝑘)−(𝑡−1) represents

the total invested capital (pro forma book values).
It is important to stress that, in an industrial project, the invested

capital, quantified by 𝑏𝑡, may consist of net fixed assets or working
capital (or both):

– net fixed assets (NFA) are depreciable assets (property, plant and
equipment)

– working capital (WC) is made up of inventories and accounts
receivables, net of accounts payable.

Therefore, 𝑏𝑡 = NFA𝑡 + WC𝑡.
Let 𝑅𝑡 and OpC𝑡 be the revenues and operating costs, respectively

(excluding depreciation and taxes); let Dep𝑡 = −𝛥NFA𝑡 be the depreci-
ation charge for the fixed assets with 𝛥NFA𝑡 = NFA𝑡−NFA𝑡−1, and let 𝜏
be the company tax rate.3 Therefore, the project’s (operating) income,
𝐼𝑡, is equal to

𝐼𝑡 = (Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏).

This income is often called in finance net operating profit after taxes
(NOPAT). Using (1), the FCF is

𝐹𝑡 =

𝐼𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏) −

𝛥𝑏𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝛥NFA𝑡 + 𝛥WC𝑡) (6)

where 𝛥WC𝑡 = WC𝑡 − WC𝑡−1, 𝛥WC0 = WC0. According to eq. (6),
the NPV depends on several key parameters, including the working
capital (via 𝛥WC𝑡). However, in their formulation of the book value
capital, MM (2018) implicitly assumed that the working capital is zero,
implying that 𝑏𝑡 = NFA𝑡 and

𝐹𝑡 = (Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏) −

𝛥𝑏𝑡
⏞⏞⏞
𝛥NFA𝑡

= (Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏) + Dep𝑡

(7)

which is eq. (6) with 𝛥WC𝑡 = 0 (see MM, 2018, eq. (1)).4

3 The rate 𝜏 is the company’s marginal tax rate, which is applied to the incre-
mental gross operating profit generated by the project. If it is positive, it means
that the project-with-the-firm will pay additional taxes as opposed to the firm-
without-the-project; if it is negative, it means that, the firm-with-the-project
will pay less taxes than the firm-without-the-project.

4 As opposed to the zero-WC case, and assuming other things unvaried,
nonzero WC affects cash flows (and, therefore, NPV) in the following way.
If, in a given period [𝑡 − 1, 𝑡], WC increases (i.e., 𝛥WC𝑡 > 0), the FCF is
smaller than in the zero-WC case. In contrast, if WC decreases (i.e., 𝛥WC𝑡 < 0),
the FCF is greater than in the zero-WC case. Overall, the role of working
capital on NPV depends on the timeline of signs and magnitudes of changes,
(𝛥WC0, 𝛥WC1,… , 𝛥WC𝑝) with 𝛥WC0 = WC0.
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2.2. Strong NPV-consistency of rates of return

MM (2018) introduced a stronger definition of NPV-consistency
presented by taking into account the sources of investment risk. Their
definition is based upon the project’s value drivers and sensitivity
analysis (SA). Specifically, let 𝑓 be a valuation metric defined on the
parameter space 𝐴, which maps the vector of inputs (or parameters or
value drivers) 𝛼 =

(

𝛼1, 𝛼2,… , 𝛼𝑛
)

∈ 𝐴 ⊂ R𝑛 onto the model output
𝑦(𝛼):

𝑓 ∶ 𝐴 ⊂ R𝑛 → R, 𝑦 = 𝑓 (𝛼), 𝛼 =
(

𝛼1, 𝛼2,… , 𝛼𝑛
)

. (8)

The vector of value drivers, 𝛼, collects the key assumptions on sales rev-
enues and costs, including labor costs, energy costs, materials, selling,
general, and administrative expenses, etc. Let 𝛼0 =

(

𝛼01 , 𝛼
0
2 ,… , 𝛼0𝑛

)

∈
𝐴 be the base-case value, a representative value for the parameters.
The relevance of a parameter 𝛼𝑖, also known as importance measure,
quantifies the effect on 𝑦 of a change in 𝛼𝑖. Let 𝑅𝑓

𝑖 be the relevance
of parameter 𝛼𝑖 and let 𝑅𝑓 =

(

𝑅𝑓
1 , 𝑅

𝑓
2 ,… , 𝑅𝑓

𝑛

)

be the vector of the
relevances: If |𝑅𝑓

𝑖 | > |𝑅𝑓
𝑗 |, then parameter 𝛼𝑖 has a rank higher than

𝛼𝑗 . We denote as 𝑟𝑓𝑖 the rank of parameter 𝛼𝑖 and denote as 𝑟𝑓 =
(

𝑟𝑓1 , 𝑟
𝑓
2 ,… , 𝑟𝑓𝑛

)

the rank vector.

Example 1. Consider the NPV of a project and let 𝜑 be a different
valuation metric. Assume the vector of relevances are

𝑅npv = (0.1, −0.3, 0.2, 0.05, 0.35)

for NPV and

𝑅𝜑 = (0.07, 0.35, 0.15, 0.03, 0.40)

for 𝜑. Since the rank is determined by the absolute value of the
importance measure, NPV and 𝜑 determine the same ranking: 𝑟npv =
𝑟𝜑 = (4, 2, 3, 5, 1), which means that parameter 5 has the highest rank,
followed by parameter 2, then parameter 3, parameter 1, and, finally,
parameter 4, which has the smallest impact. ⋄

MM (2018) supplied the following definition of strong NPV-
consistency.

Definition 3 (Strong NPV-consistency for Accept–reject Decisions). Given
an SA technique, a metric 𝜑 (and its associated decision criterion) is
strongly NPV-consistent if

– 𝜑 is weakly NPV-consistent (Definition 2)
– the rank vector of 𝜑 is equal to the rank vector of NPV: 𝑟npv = 𝑟𝜑.

If 𝜑 is strongly NPV-consistent and, in addition, the vectors of the
relevances coincide, 𝑅npv = 𝑅𝜑, then 𝜑 is strictly NPV-consistent.

In Example 1, 𝜑 is strongly NPV-consistent, since 𝑟npv = 𝑟𝜑. How-
ever, it is not strictly NPV-consistent, for the relevances are different.
For instance, focusing on parameter 1, the relevance is 𝑅npv

1 = 0.1 for
NPV and 𝑅𝜑

1 = 0.07 for 𝜑.
There are many ways of defining a vector of relevances, each one

associated with a specific SA technique (see Borgonovo and Plischke,
2016; Pianosi et al., 2016, for review of SA methods). MM (2018)
coped with several different techniques. The authors showed that, if
𝜑 is an affine transformation of NPV, that is, 𝜑(𝛼) = 𝑚 ⋅ NPV(𝛼) + 𝑞
for all 𝛼 ∈ 𝐴 with 𝑚, 𝑞 ∈ R, then 𝜑 is strictly NPV-consistent under
the following techniques: (i) Standardized regression coefficient (ii)
Sensitivity Indices in variance-based decomposition methods (iii) Finite
Change Sensitivity Indices (iv) Helton’s index (v) Normalized Partial
Derivative (NP2) (vi) Differential Importance Measure.

Finally, the authors showed that the average ROI, 𝚤(𝑏), is an affine
transformation of NPV. Precisely, they showed that

𝚤(𝑏) = 𝑘 +
NPV(𝛼)(1 + 𝑘)

𝑏
(9)

where NPV(𝛼) highlights the dependence of NPV on 𝛼, the vector of
value drivers. Therefore, they concluded that the average ROI is strictly
NPV-consistent.

However, note that the typical stream of value drivers 𝛼 in a capital
asset project may be partitioned into three groups:

– sales revenues (prices, quantity, growth rates)
– cost of goods sold (labor costs, material, energy, overhead, etc.)
– selling, general and administrative costs.

All these items affect cash flows. In many cases, working capital is
present, either because inventory is needed (e.g., manufacturing firms)
and/or because purchases of material is made on credit (so that ac-
counts payable are nonzero) and/or because sales are made on credit
(so that accounts receivable are nonzero). If WC is present, it may or
may not be affected by the above mentioned value drivers. Overall,
there are three possibilities:

1. WC is zero for all 𝑡
2. WC is nonzero for some 𝑡 and is unaffected by revenues and costs

(i.e., it is, so to say, exogenous)
3. WC is nonzero for some 𝑡 and is affected by revenues and/or

costs (i.e., it is, so to say, endogenous).

As mentioned above, MM (2018) assumed zero WC (case 1), which
implies that 𝑏 =

∑𝑝
𝑡=1 NFA𝑡(1 + 𝑘)−(𝑡−1) does not depend on 𝛼. Case

2 might occur, for example, when WC is estimated to be a given
percentage of NFA. Or, alternatively, when WC is managed so as to
remain constant until the liquidation date (e.g., Hartman, 2007). In the
latter case, 𝛥WC𝑡 = 0 for all 𝑡 (except 𝑡 = 0 and 𝑡 = 𝑝). Case 3 may occur,
for example, whenever inventory and accounts payable are estimated
to be a percentage of operating costs, while accounts receivable are a
percentage of the sales revenues (e.g., see Titman and Martin, 2011).
In this case, FCF is obtained as

𝐹𝑡 = (Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏) −

𝛥𝑏𝑡(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝛥NFA𝑡 + 𝛥WC𝑡(𝛼)) . (10)

Note that in this case the book value depends on 𝛼: 𝑏𝑡 = 𝑏𝑡(𝛼) =
NFA𝑡 + WC𝑡(𝛼). This means that the average ROI,

𝚤(𝑏) = 𝚤
(

𝑏(𝛼)
)

= 𝑘 +
NPV(𝛼)(1 + 𝑘)

𝑏(𝛼)
(11)

ceases to be an affine transformation of NPV, since (1 + 𝑘)∕𝑏(𝛼) is not
constant under changes in 𝛼. Therefore, strong NPV-consistency of av-
erage ROI is not guaranteed. Also, note that, regardless of dependence
on 𝛼, the overall book value may be equal to zero. In this case, the
average ROI does not exist.

Contrary to MM (2018), we allow for the more general case of
nonzero working capital (WC𝑡 ≠ 0) and, in the next section, we
investigate a performance metric which is strongly NPV-consistent.

3. Searching for strongly NPV-consistent measures: IRR and SLRR

The strong NPV-consistency of a rate of return, 𝜑, introduced in MM
(2018), enables the analyst to enrich the economic analysis or even
replace NPV with a measure which precisely quantifies the economic
efficiency of the project, something which the NPV is not capable to
convey.5 Therefore, the use of rates of return and, in general, relative
measures, is especially suitable for project valuation and selection
under budget constraints, where capital amounts are managed as scarce
resources (see also the Introduction). However, contrary to MM (2018),
we now allow for nonzero WC and, in particular, for the case where WC
is endogenous, meaning that it depends on revenues and costs, which
is a most usual case in industrial applications.

5 NPV is affected by the project scale and correctly provides the sharehold-
ers wealth increase, but it does not tell how efficiently money is managed. For
this, one needs a rate of return.
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Since the average ROI does not guarantee strong NPV-consistency
in the presence of uncertain WC, in this work we search for alternative
valuation metrics. To this end, we consider the possibility of using the
average rate of change of the book value to build an economically
significant capital base and a related rate of return which may be
strongly NPV-consistent, as opposed to the average ROI, whenever WC
is nonzero and is not exogenously determined. In this respect, we stress
that the rate of change in pro forma book values is time-varying.

To this end, we make use of Chisini’s (1929) invariance require-
ment: Given a function 𝑔(𝑦1, 𝑦2,… , 𝑦𝑝) of 𝑝 data, one replaces the 𝑝
data with a unique value �̄� such that the value of the function remains
unvaried: 𝑔(𝑦1, 𝑦2,… , 𝑦𝑝) = 𝑔(�̄�, �̄�,… , �̄�). The number �̄� is called the
Chisini mean of 𝑦1, 𝑦2,… , 𝑦𝑝.6

We consider the rate of change of the book value between 𝑡− 1
and 𝑡. Now, the initial invested capital is 𝐶0 = 𝑏0 and there are (at
least) two ways to formalize the rate of change of the invested capital,
in geometric or linear shape. In the former case, the rate of change,
denoted as 𝑥𝑡, is such that 𝐸𝑡 = 𝐶𝑡−1(1 + 𝑥𝑡), where 𝐸𝑡 = 𝐶𝑡 + FCF𝑡 is
the end-of-period capital value; in the latter case, the rate of change,
denoted as 𝜆𝑡, is such that 𝐶𝑡 = 𝐶𝑡−1 − 𝜆𝑡𝐶0 = 𝐶𝑡−1 − 𝜆𝑡𝑏0. These two
mutually exclusive framings imply, respectively,

1. 𝐶𝑝 = −
∑𝑝

𝑡=0 𝐹𝑡(1 + 𝑥𝑡+1) ⋅ (1 + 𝑥𝑡+2) ⋅… ⋅ (1 + 𝑥𝑝)
2. 𝐶𝑝 = 𝑏0(1 − 𝜆1 − 𝜆2 −⋯ − 𝜆𝑝).

Applying Chisini invariance requirement upon both, one gets the equa-
tions
𝑝
∑

𝑡=0
𝐹𝑡(1 + 𝑥𝑡+1) ⋅ (1 + 𝑥𝑡+2) ⋅… ⋅ (1 + 𝑥𝑝) =

𝑝
∑

𝑡=0
𝐹𝑡(1 + 𝑥)𝑝−𝑡

𝑏0(1 − 𝜆1 − 𝜆2 −⋯ − 𝜆𝑝) = 𝑏0 (1 − 𝜆 − 𝜆 −⋯ − 𝜆)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1−𝑝𝜆

.

The first equation is not solvable analytically. However, recalling that
𝐶𝑝 = 0, it may be rewritten as
𝑝
∑

𝑡=0
𝐹𝑡(1 + 𝑥)−𝑡 = 0. (12)

The solution of this equation, 𝑥, is the well-known internal rate of
return (IRR). As a result, the first candidate for replacing the average
ROI is the IRR. We denote the associated overall average capital as
𝐶𝑥 =

∑𝑝
𝑡=1

∑𝑝
𝑗=𝑡 𝐹𝑗 (1 + 𝑥)𝑡−1−𝑗 ⋅ (1 + 𝑘)−(𝑡−1).

As for the second equation, it has a (unique) solution, 𝜆, such that

𝜆 =
∑𝑝

𝑡=1 𝜆𝑡
𝑝

= 1
𝑝
.

This means that the average capital, denoted as 𝐶𝑠𝑙
𝑡 , is 𝐶𝑠𝑙

𝑡 = 𝐶𝑠𝑙
𝑡−1 −

𝑏0∕𝑝 = 𝑏0(1 − 𝑡∕𝑝). Hence, the overall average capital is 𝐶𝑠𝑙 =
∑𝑝

𝑡=1
𝑏0
(

1 − 𝑡−1
𝑝

)

(1 + 𝑘)−(𝑡−1). Picking 𝐶𝑡 = 𝐶𝑠𝑙
𝑡 in (2), and denoting as 𝐼𝑠𝑙𝑡 the

corresponding ‘‘average’’ profit 𝐽𝑡,7 one gets

𝐼𝑠𝑙𝑡 = 𝐶𝑠𝑙
𝑡 + 𝐹𝑡 − 𝐶𝑠𝑙

𝑡−1 = 𝐹𝑡 − 𝜆𝑏0 = 𝐹𝑡 −
𝑏0
𝑝
.

Following Eq. (4), one divides the overall profit 𝐼𝑠𝑙 by the total average
capital 𝐶𝑠𝑙. The result is the second candidate for substituting the
average ROI:

𝚤(𝐶𝑠𝑙) = 𝐼𝑠𝑙

𝐶𝑠𝑙 =

∑𝑝
𝑡=1(𝐹𝑡 −

𝑏0
𝑝 ) ⋅ (1 + 𝑘)−(𝑡−1)

∑𝑝
𝑡=1 𝑏0 ⋅

(

1 − 𝑡−1
𝑝

)

(1 + 𝑘)−(𝑡−1)
. (13)

6 For example, in financial mathematics the compounding factor for a three-
period investment is 𝑔(𝑦1, 𝑦2, 𝑦3) = (1+𝑦1)(1+𝑦2)(1+𝑦3), where 𝑦𝑖 is the capital
growth rate in period 𝑖. The Chisini mean of 𝑦1, 𝑦2, 𝑦3 with respect to 𝑔 is that
unique value �̄�, named average growth rate, such that (1 + 𝑦1)(1 + 𝑦2)(1 + 𝑦3) =
(1 + �̄�)3 that is, �̄� = 3

√

(1 + 𝑦1)(1 + 𝑦2)(1 + 𝑦3) − 1.
7 More precisely, this is the profit which is associated with the average

capital.

Fig. 1. Average depreciation.

We call 𝚤(𝐶𝑠𝑙) the average, straight-line rate of return (SLRR). For simplic-
ity, we henceforth denote it with the symbol 𝚤𝑠𝑙.

Example 2. A 4-period investment project has book value capitals
represented by the vector 𝐛 = (100, 60, 70, 15, 0). Therefore, in linear
shape the period depreciation rates are 𝜆1 = 40%, 𝜆2 = −10%, 𝜆3 =
55%, 𝜆4 = 15%. The invested capital at time 0 is 𝑏0 = −𝐹0 = 100 and
the average rate of change is the Chisini mean of period depreciation
rates: 𝜆 = 25% = (40% − 10% + 55% + 15%)∕4 = 1∕4; the average capital
is then 𝑪𝑠𝑙 = (100, 75, 50, 25, 0). Fig. 1 represents the dynamics of the
book value and the average capital. ⋄

As (3) holds for any 𝑪 and associated 𝑱 , both IRR and SLRR are
weakly NPV-consistent (see Hazen, 2003; Magni, 2010).

This means that both are good candidates as substitutes for the
average ROI whenever WC depends on the value drivers.

We now need analyze whether they are strongly NPV-consistent or
not and, if not, we aim at measuring their degree of inconsistency,
which is a signal of their reliability.

However, we anticipate that, regardless of strong NPV-consistency,
IRR is known to be subject to some difficulties. Among others, owing to
the way it is derived, it may not exist or multiple IRRs may arise: For
instance, engineering projects with considerable length and numerous
changes in sign of cash flows, possibly due to disposal and remediation
costs, may have no IRR or multiple IRRs (Magni, 2013; Hartman, 2007).
More simply, any project which does not require investment in equity
(i.e., outflows are financed with either debt or liquid assets or both)
has no IRR for shareholders.8

Also, the financial nature of the IRR depends upon the COC, 𝑘, as
𝐶𝑥 is not necessarily invariant under changes in 𝑘 (see Magni, 2013 for
a compendium).

Contrary to IRR and average ROI, the SLRR has the nice property of
existence. It always exists, because 𝑏0 = −𝐹0 ≠ 0.9 Also, contrary to IRR,
it is unique, since it is derived from a linear equation. Furthermore,

8 For example, suppose a firm purchases a piece of equipment for an
amount of $10 in order to increase production and sales. Suppose it is
financed by withdrawing cash from the firm’s bank account (or by selling some
marketable securities). Incremental cash flows are expected to be equal to $3,
$6, $12 at times 1, 2, and 3, respectively. Suppose the firm’s liquid assets are
currently invested at 1%. Therefore, there is no incremental outflow for the
firm’s shareholders ($10−$10 = 0) and the prospective incremental inflows for
shareholders will be $3, $6, and $1.7 (= 12−10(1.01)3). The resulting cash-flow
stream is (0, 3, 6, 1.7), which possesses no real-valued IRR.

9 Even if 𝐹0 = 0, one may redefine 𝑏0 as the first nonzero book value and
neglect the previous zero cash flows. For example, if 𝑭 = (0, 0, 0,−200, 100, 140),
one may reframe the cash-flow stream as 𝑭 = (−200, 100, 140) and set 𝑏0 = 200.
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its financial nature is not affected by the revenues and costs, being
unambiguously determined by the sign of 𝑏0, which coincides with the
sign of 𝐶𝑠𝑙 for any given 𝑘: 𝐶𝑠𝑙 > 0 if and only if 𝑏0 > 0.

Example 3. Consider a project 𝑃 such that 𝐹 = (−10, 23, −17, 24, −22)
and a COC equal to 𝑘 = 32%. The NPV is 0.86 = −10 + 23 ⋅ 1.32−1 −
17 ⋅ 1.32−2 + 24 ⋅ 1.32−3 − 22 ⋅ 1.32−4; therefore the project is worth
undertaking. Two IRRs exist: 𝑥1 = 11.2% and 𝑥2 = 67%. The former
is associated with the stream 𝑪𝑥1 = (10,−6.3, 6.5,−13.2, 0), the latter
is associated with the stream 𝑪𝑥2 = (10,−11.9, 3.8,−19.8, 0). The overall
capital associated with 𝑥1 is 𝐶𝑥1 = 2.4 > 0, the overall capital associated
with 𝑥2 is 𝐶𝑥2 = −4.1 < 0. Therefore, IRR does not unambiguously
determine the financial nature of the project: According to the first
IRR, the project is an investment, according to the second IRR the
project is a financing. The first IRR is a rate of return, the second
IRR is a rate of cost. Conversely, the SLRR exists and is unique in
any case, and unambiguously identifies the project as an investment,
since the associated capital stream is 𝑪𝑠𝑙 = (10, 7.5, 5, 2.5, 0) so that
the total average capital is 𝐶𝑠𝑙 = 14.9 > 0. The SLRR is then 𝚤𝑠𝑙 =
0.32 + 0.86(1 + 0.32)∕14.9 = 37.8%. ⋄

We now show that SLRR is strongly NPV-consistent, in a strict sense.

Proposition 1. For any fixed 𝑘, 𝐶0, and 𝑝, SLRR is strictly NPV-consistent
for accept–reject decisions.

Proof. Recalling that (3) holds irrespective of the capital stream 𝑪
and picking 𝐶 = 𝐶𝑠𝑙, one gets NPV(𝛼)(1 + 𝑘) = 𝐶𝑠𝑙(𝚤𝑠𝑙 − 𝑘) where
𝐶𝑠𝑙 =

∑𝑝
𝑡=1

(

𝑏0(1 − (𝑡 − 1)∕𝑝)(1 + 𝑘)−(𝑡−1)
)

does not depend on 𝛼. This
implies

𝚤𝑠𝑙 = 𝑘 +
NPV(𝛼)(1 + 𝑘)

𝐶𝑠𝑙 . (14)

This means 𝜑 = 𝑞 +𝑚 ⋅NPV(𝛼) where 𝜑 = 𝚤𝑠𝑙, 𝑞 = 𝑘 and 𝑚 = (1+ 𝑘)∕𝐶𝑠𝑙.
Therefore, the SLRR is an affine transformation of NPV. The thesis
follows from MM (2018, Proposition 1). □

The proposition above shows that SLRR and NPV are identically
influenced by the variation of the project’s value drivers, not only in
terms of ranks (𝑟npv = 𝑟slrr) but also in terms of relevances (𝑅npv =
𝑅slrr). This ensures the equivalence of NPV and SLRR criteria for
investment decisions even when working capital is nonzero and is
estimated on the basis of revenues and costs.

As for IRR, note that it is an implicit function of the value drivers,
since it depends on revenues and costs, both directly (via Rev𝑡 and
OpC𝑡) irrespective of whether WC is zero or not and irrespective of how
it is estimated:
𝑝
∑

𝑡=0

(

(Rev𝑡−OpC𝑡−Dep𝑡)(1−𝜏)−(NFA𝑡−NFA𝑡−1)−(WC𝑡−WC𝑡−1)
)

(1+𝑥)−𝑡 = 0.

Therefore, in general, it is not possible to determine an analytical
relationship between NPV and IRR (see also Borgonovo and Peccati,
2006, 2004; Percoco and Borgonovo, 2012). Indeed, let 𝛼∗ ∈ 𝐴 be
a given value of parameters and 𝑥∗ be the associated IRR, such that
NPV(𝛼∗, 𝑥∗) = 0.10 If there exists a neighborhood of 𝛼∗ where function
NPV(𝛼, 𝑘) is a continuously differentiable function and 𝜕NPV

𝜕𝑘 (𝛼∗, 𝑥∗) ≠
0, then there exists a neighborhood 𝑉 (𝛼∗) ⊂ 𝐴 and a neighborhood
𝑊 (𝑥∗) ⊂ R such that 𝑥(𝛼) ∶ 𝑉 → 𝑊 is the implicitly-defined function
from the equation NPV(𝛼, 𝑘) = 0 and

𝑥(𝛼∗) = 𝑥∗,

NPV(𝛼, 𝑥(𝛼)) = 0, ∀𝛼 ∈ 𝑉 ,

10 Let 𝛼 be a generic value belonging to a neighborhood of 𝛼∗. NPV(𝛼, 𝑘) is
the NPV calculated with discount rate 𝑘.

𝜕𝑥
𝜕𝛼𝑖

(𝛼) = −
𝜕NPV
𝜕𝛼𝑖

(𝛼, 𝑥(𝛼))

𝜕NPV
𝜕𝑘 (𝛼, 𝑥(𝛼))

, ∀𝛼 ∈ 𝑉 .

In particular,

𝜕𝑥
𝜕𝛼𝑖

(𝛼∗) = −
𝜕NPV
𝜕𝛼𝑖

(𝛼∗, 𝑥∗)

𝜕NPV
𝜕𝑘 (𝛼∗, 𝑥∗)

. (15)

Therefore, IRR is not an affine transformation of NPV. In the next
section, we demonstrate, via some counterexamples, that IRR may not
be used for accomplishing ex ante risk analysis or ex post performance
measurement for several different reasons:

• it is not strongly NPV-consistent
• it may not exist in some scenario
• multiple IRRs may arise
• the financial nature of IRR may change under changes in the value

drivers.

In contrast, the SLRR always exists, is unique, possesses an unam-
biguous financial nature, and enjoys strong NPV-consistency.

For reasons of space, we limit the analysis to two SA techniques:
The Finite Change Sensitivity Index (FCSI) (Borgonovo, 2010a) and
Differential Importance Measure (DIM) (Borgonovo and Apostolakis,
2001; Borgonovo and Peccati, 2004). The FCSI index is particularly
useful when two different scenarios for the value drivers are compared,
namely, 𝛼0 (base value or base case) and 𝛼1 (perturbed value). It may
be used for ex ante analysis, when the analyst aims to compare a base
case and a possible different scenario or, more compellingly, for ex post
auditing, when the analyst wants to investigate the source of variation
of the actual performance (𝛼1) with respect to the expected one (𝛼0).
The DIM is useful when not-so-large deviations around the base value
are assumed; therefore, it is most useful in ex ante decision-making to
measure the major sources of risk in terms of key parameters.

Furthermore, we need avail ourselves of a measure for quanti-
fying the degree of NPV-inconsistency of average ROI or IRR: The
higher the degree of inconsistency, the smaller the reliability of average
ROI or IRR. We comply with MM’s (2018) choice of the Spearman’s
rank correlation coefficient (Spearman, 1904) and top-down correla-
tion coefficient (Iman and Conover, 1987). Spearman’s coefficient is
the correlation coefficient of the rank vectors 𝑟npv and 𝑟𝜑: 𝜌npv,𝜑 =
Cov(𝑟npv ,𝑟𝜑)
𝜎(𝑟npv)⋅𝜎(𝑟𝜑) . The top-down correlation coefficient, introduced by Iman
and Conover (1987), attributes a higher weight to top parameters than
to low parameters, based on Savage Score (Savage, 1956). The Savage
score of parameter 𝛼𝑖 is 𝑆npv

𝑖 =
∑𝑛

ℎ=𝑟npv
𝑖

1
ℎ . For example, considering a

vector of 𝑛 = 8 value drivers, such that 𝛼 = (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8)
and assuming 𝛼2 has rank 𝑟npv

2 = 3, then its Savage score will be

𝑆npv
2 =

8
∑

ℎ=3

1
ℎ

= 1
3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
= 1.218.

In general, the Savage scores’ vector of 𝑓 is 𝑆𝑓 =
(

𝑆𝑓
1 , 𝑆

𝑓
2 ,… , 𝑆𝑓

𝑛

)

. The
top-down correlation coefficient between NPV and 𝜑 is the correlation
coefficient between the Savage scores’ vectors 𝑆npv and 𝑆𝜑 (Iman and
Conover, 1987): 𝜌𝑆npv ,𝑆𝜑 = Cov(𝑆npv ,𝑆𝜑)

𝜎(𝑆npv)⋅𝜎(𝑆𝜑) .
The coefficients 𝜌npv,𝜑 and 𝜌𝑆npv ,𝑆𝜑 are equal to 1 if and only

if 𝜑 is strongly NPV-consistent. The smaller the value of 𝜌npv,𝜑 and
𝜌𝑆npv ,𝑆𝜑 , the higher the degree of NPV-inconsistency. The differences
1 − 𝜌npv,𝜑 and 1 − 𝜌𝑆npv ,𝑆𝜑 can be taken as representative of the degree
of inconsistency.

4. Comparison of SLRR and IRR using FCSI

In this section, as well as in Section 5, we assume that working
capital is equal to zero (e.g., customers pay in cash, suppliers are
paid in cash, and no inventory exists) (in Section 6 we will remove
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Table 1
Investment evaluated in 𝛼0.

0 1 2 3 4

Rev0
𝑡 580 570 560 400

OpC0
𝑡 200 300 200 300

𝐹𝑡 −750 380 270 360 100

Valuation

NPV 157.37
𝚤𝑠𝑙 20.11%
𝑥 20.86%

this assumption). We also assume 𝜏 = 0. Therefore, FCF𝑡 = Rev𝑡 −
OpC𝑡, ∀𝑡 > 0. We focus on the FCSI technique (see Eqs. (17)–(18) in
the Appendix of this paper) and illustrate four numerical applications,
aimed at presenting the problems of the IRR:

1. in the first application, IRR exists and is unique but is not
strongly NPV-consistent11

2. in the second application, despite IRR exists and is unique in
the base case 𝛼0, it does not exist in 𝛼1 (or vice versa), making
it impossible to perform the SA

3. in the third application, multiple IRRs arise for 𝛼 = 𝛼1

4. in the fourth application, IRR changes its financial nature from
investment rate (in 𝛼0) to financing rate (in 𝛼1).

No such problems will arise with (average ROI and) SLRR, which is
strictly NPV-consistent.12

We will consider the simple model described in MM (2018), consist-
ing of a firm facing the opportunity of investing in a 4-period project
whose estimated revenues and costs are denoted as Rev𝑡 and OpC𝑡. As
anticipated, the FCF is FCF𝑡 = Rev𝑡 − OpC𝑡. The project’s value drivers
are then 𝛼𝑖 = Rev𝑖 for 𝑖 = 1, 2, 3, 4 and 𝛼𝑖 = OpC𝑖−4 for 𝑖 = 5, 6, 7, 8.
Hence, the value drivers’ vector for the base case is

𝛼0 = (Rev01,Rev02,Rev03,Rev04,OpC0
1,OpC0

2,OpC0
3,OpC0

4)

while the value drivers’ vector for the alternative (perturbed) case is

𝛼1 = (Rev11,Rev12,Rev13,Rev14,OpC1
1,OpC1

2,OpC1
3,OpC1

4).

NPV is computed as:

NPV(𝛼) = −𝐶0 +
Rev1 − OpC1

1 + 𝑘
+

Rev2 − OpC2

(1 + 𝑘)2
+

Rev3 − OpC3

(1 + 𝑘)3
+

Rev4 − OpC4

(1 + 𝑘)4
.

Example 4 (NPV Inconsistency). Assume 𝐶0 = 750 and 𝑘 = 10%.
Table 1 describes the base value 𝛼0 and reports the corresponding
FCFs and valuation metrics. The NPV is 157.37 = −750 + 380∕1.1 +
270∕(1.1)2 + 360∕(1.1)3 + 100∕(1.1)4, the vector of average capitals is
𝑪𝑠𝑙 = (750, 562.5, 375, 187.5, 0) and the overall average capital is 𝐶𝑠𝑙 =
1,712.15 = 750+562.5∕1.1+375∕(1.1)2 +187.5∕(1.1)3. Therefore, SLRR is
equal to 𝚤𝑠𝑙 = 10% + 157.37∕1, 712.15 ⋅ 1.1 = 20.11%. The IRR exists and
is unique, 𝑥 = 20.86%.

Table 2 reports the alternative scenario 𝛼1 and the corresponding
new values of 𝐹𝑡, NPV, SLRR, and IRR. In 𝛼1, NPV is 442.92, SLRR is
38.46%, IRR is 41.12% (it exists and is unique). The observed variations
are: 𝛥NPV = 285.55 = 442.92 − 157.37; 𝛥𝚤𝑠𝑙 = 18.35% = 38.46% − 20.11%;
𝛥𝑥 = 20.25% = 41.12% − 20.86%.

Table 3 shows the First Order FCSIs (𝛷1,𝑓
𝑖 ), the ranks (𝑟𝑓𝑖 ), and the

Savage Scores (𝑆𝑓
𝑖 ) for NPV, SLRR and IRR. The (ranks and) importance

measures of NPV and SLRR are equal, 𝛷1,npv
𝑖 = 𝛷1,slrr

𝑖 , meaning that

11 Examples of this kind of shortcoming for IRR are also described in
Borgonovo and Peccati (2004, 2006), Percoco and Borgonovo (2012), which
show that parameter rankings for NPV and IRR are different.

12 To compute SLRR, one may either use the definition in (13) or the shortcut
in (14).

Table 2
Investment evaluated in 𝛼1.

0 1 2 3 4

Rev1
𝑡 800 810 780 630

OpC1
𝑡 350 250 380 600

𝐹𝑡 −750 450 560 400 30

Valuation

NPV 442.92
𝚤𝑠𝑙 38.46%
𝑥 41.12%

SLRR is strictly NPV-consistent. The relevances of NPV and IRR are
different, 𝛷1,npv

𝑖 ≠ 𝛷1,irr
𝑖 , as well the ranks, 𝑟npv ≠ 𝑟irr, implying that

the IRR is not strongly NPV-consistent according to Definition 3. The
degree of NPV-inconsistency, measured via (one minus) Spearman’s
coefficient or top-down coefficient, is 1 − 𝜌irr,npv = 1 − 0.857 = 0.143
and 1 − 𝜌𝑆irr ,𝑆npv = 1 − 0.77 = 0.23.

Table 4 shows Total Order FCSIs (𝛷𝑇 ,𝑓
𝑖 ), ranks (𝑟𝑓𝑖 ), and Savage

scores (𝑆𝑓
𝑖 ) for the three metrics. The (ranks and) Total Order FCSIs

of NPV and SLRR are equal, 𝛷𝑇 ,npv
𝑖 = 𝛷𝑇 ,slrr

𝑖 , therefore SLRR is strictly
NPV-consistent, whereas the ranks (and relevances) of NPV and IRR
are different, implying that the IRR is not strongly NPV-consistent with
degree of incoherence equal to 1 − 𝜌irr,npv = 1 − 0.667 = 0.333 and
1 − 𝜌𝑆irr ,𝑆npv = 1 − 0.409 = 0.591. This is especially due to the ranking
distortion of OpC4, with rank 1 according to NPV and SLRR, and rank
5 in terms of IRR. ⋄

Example 5 (Nonexistence of IRR in 𝛼1). Consider a project 𝑃 such that
𝐶0 = 750 and 𝑘 = 10%. Hence 𝐶𝑠𝑙 = 1, 712.15. The base value is
described in the revenue–cost vector 𝛼0 = (630, 740, 850, 600, 180, 390,
490, 550); the revenue–cost vector for the perturbed scenario is 𝛼1 =
(600, 700, 800, 500, 200, 400, 500, 850), a worse situation in terms of
both revenues and costs. Table 5 reports cash flows, NPV, SLRR, and
IRR. In 𝛼0 IRR exists, is unique, and is equal to 28.52%. In 𝛼1 IRR does
not exist. This implies that the sensitivity analysis cannot be applied
for IRR: 𝛥𝑥 is not defined, hence the First Order and Total Order FCSIs
of IRR do not exist.

SLRR does not suffer from this problem because it always exists and
is unique. Table 6 shows the First Order and Total Order FCSIs of NPV
and SLRR: As expected, SLRR is strictly NPV-consistent.

The opposite case may also occur, whereby the IRR does not ex-
ist in 𝛼0 while it exists in 𝛼1, resulting in the same kind of pitfall
(e.g., just reverse the base-case value and the perturbed value of this
example). ⋄

Example 6 (Nonuniqueness of IRR). Consider a project 𝑃 , with 𝐶0 = 800
and 𝑘 = 15%. Therefore, 𝐶𝑠𝑙 = 1, 755.70. The base value is described in
the input vector 𝛼0 = (2300, 1100, 1400, 2000, 1300, 1200, 1600, 1300);
the input vector in the perturbed state is 𝛼1 = (2960, 500, 400, 2300,
600, 1440, 2750, 550). Table 7 shows the cash flows and the valuation
metrics in 𝛼0 and 𝛼1. In 𝛼0, the IRR function supplies a unique value
and is equal to 36.72%. For 𝛼1, there exist three different IRRs: 𝑥1(𝛼1) =
8.07%, 𝑥2(𝛼1) = 25.0%, 𝑥3(𝛼1) = 61.93% so the sensitivity analysis is
problematic: It is not clear which one IRR should be the relevant one,
if any.

Table 8 shows the First Order and Total Order FCSIs of NPV and
SLRR: As obvious, SLRR is strictly NPV-consistent. ⋄

Example 7 (Financial Nature of IRR). Consider a project 𝑃 such that
𝐶0 = 500 and 𝑘 = 5%. Therefore 𝐶𝑠𝑙 = 1, 191.88. The base case is
described in the input vector 𝛼0 = (800, 2,150, 950, 850, 1,500, 805, 915,
510). The perturbed vector is 𝛼1 = (600, 2,000, 800, 800, 1,000, 305, 415,
2,010). The difference between 𝛼0 and 𝛼1 lies in lower revenues for 𝛼1

and in intertemporal cost allocation: The total amount of costs is the

62



International Journal of Production Economics 229 (2020) 107769

8

C.A. Magni and A. Marchioni

Table 3
First Order FCSI.
Parameter NPV SLRR IRR

𝛷1,npv
𝑖 𝑟npv

𝑖 𝑆npv
𝑖 𝛷1,slrr

𝑖 𝑟slrr𝑖 𝑆slrr
𝑖 𝛷1,irr

𝑖 𝑟irr𝑖 𝑆 irr
𝑖

Rev1 70.04% 2 1.718 70.04% 2 1.718 79.78% 1 2.718
Rev2 69.46% 3 1.218 69.46% 3 1.218 64.05% 3 1.218
Rev3 57.89% 4 0.885 57.89% 4 0.885 45.56% 5 0.635
Rev4 55.01% 5 0.635 55.01% 5 0.635 37.68% 7 0.268
OpC1 −47.76% 6 0.435 −47.76% 6 0.435 −46.93% 4 0.885
OpC2 14.47% 8 0.125 14.47% 8 0.125 13.68% 8 0.125
OpC3 −47.36% 7 0.268 −47.36% 7 0.268 −45.25% 6 0.435
OpC4 −71.76% 1 2.718 −71.76% 1 2.718 −76.83% 2 1.718

Correlations

𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv 0.857
𝜌𝑆 irr , 𝑆npv 0.770

Table 4
Total Order FCSI.
Parameter NPV SLRR IRR

𝛷𝑇 ,npv
𝑖 𝑟npv

𝑖 𝑆npv
𝑖 𝛷𝑇 ,slrr

𝑖 𝑟slrr𝑖 𝑆slrr
𝑖 𝛷𝑇 ,irr

𝑖 𝑟irr𝑖 𝑆 irr
𝑖

Rev1 70.04% 2 1.718 70.04% 2 1.718 75.79% 1 2.718
Rev2 69.46% 3 1.218 69.46% 3 1.218 65.33% 2 1.718
Rev3 57.89% 4 0.885 57.89% 4 0.885 44.78% 4 0.885
Rev4 55.01% 5 0.635 55.01% 5 0.635 34.09% 6 0.435
OpC1 −47.76% 6 0.435 −47.76% 6 0.435 −57.78% 3 1.218
OpC2 14.47% 8 0.125 14.47% 8 0.125 13.18% 8 0.125
OpC3 −47.36% 7 0.268 −47.36% 7 0.268 −31.29% 7 0.268
OpC4 −71.76% 1 2.718 −71.76% 1 2.718 −34.93% 5 0.635

Correlations

𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv 0.667
𝜌𝑆 irr , 𝑆npv 0.409

Table 5
IRR not existing in 𝛼1.

𝛼0 𝛼1

Cash flows

𝐹0 −750 −750
𝐹1 450 400
𝐹2 350 300
𝐹3 360 300
𝐹4 50 −350

Valuation

NPV 252.97 −152.09
𝚤𝑠𝑙 26.25% 0.23%
𝑥 28.52% –

Table 6
IRR not existing in 𝛼1: First Order and Total Order FCSIs.

Parameter NPV SLRR IRR

𝛷𝑖
𝑇 ,npv = 𝛷𝑖

1,npv 𝑟𝑖npv 𝛷𝑖
𝑇 ,slrr = 𝛷𝑖

1,slrr 𝑟𝑖slrr 𝛷𝑖
𝑇 ,irr 𝑟𝑖 irr

Rev1 6.73% 5 6.73% 5 – –
Rev2 8.16% 4 8.16% 4 – –
Rev3 9.27% 3 9.27% 3 – –
Rev4 16.86% 2 16.86% 2 – –
OpC1 4.49% 6 4.49% 6 – –
OpC2 2.04% 7 2.04% 7 – –
OpC3 1.85% 8 1.85% 8 – –
OpC4 50.59% 1 50.59% 1 – –

same in the two cases, but in 𝛼1 costs are highly concentrated in period
4 (one may assume remedial costs at the end of the project have been
paid). Table 9 shows the project’s cash flows and the corresponding
NPV, SLRR, and IRR in 𝛼0 and 𝛼1. In the base case IRR exists, is unique,
and is equal to 22.17% and the IRR-implied capital vector is 𝑪𝒙 =

Table 7
Multiple IRR in 𝛼1.

𝛼0 𝛼1

Cash flows

𝐹0 −800 −800
𝐹1 1,000 2,360
𝐹2 −100 −940
𝐹3 −200 −2,350
𝐹4 700 1,750

Valuation

NPV 262.67 −3.20
𝚤𝑠𝑙 32.21% 14.79%
𝑥 36.72% 8.07%; 25.0%; 61.93%

Table 8
Multiple IRR in 𝛼1: First Order and Total Order FCSIs.
Parameter NPV SLRR IRR

𝛷𝑖
𝑇 ,npv = 𝛷𝑖

1,npv 𝑟𝑖npv 𝛷𝑖
𝑇 ,slrr = 𝛷𝑖

1,slrr 𝑟𝑖slrr 𝛷𝑖
𝑇 ,irr 𝑟𝑖 irr

Rev1 −215.86% 4 −215.86% 4 – –
Rev2 170.64% 5 170.64% 5 – –
Rev3 247.31% 2 247.31% 2 – –
Rev4 −64.51% 8 −64.51% 8 – –
OpC1 −228.94% 3 −228.94% 3 – –
OpC2 68.26% 7 68.26% 7 – –
OpC3 284.40% 1 284.40% 1 – –
OpC4 −161.29% 6 −161.29% 6 – –

(500, 1,310.85, 256.45, 278.30, 0) whence 𝐶𝑥(𝛼0) = 2,221.44; therefore,
IRR is an investment rate in 𝛼0. In 𝛼1, IRR exists, is unique, and is equal
to 10%, associated with the vector 𝑪𝒙 = (500, 950, −650, −1,100, 0),
implying 𝐶𝑥(𝛼1) = −135.03 < 0 which means that the IRR is a financing
rate in 𝛼1. This proves that a change in the value drivers’ vector may
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Table 9
IRR changes its financial nature.

𝛼0 𝛼1

Cash flows

𝐹0 −500 −500
𝐹1 −700 −400
𝐹2 1,345 1,695
𝐹3 35 385
𝐹4 340 −1,210

Valuation

NPV 363.24 −6.43
𝚤𝑠𝑙 37.00% 4.43%
𝑥 22.17% 10.00%
𝑥 (Investment rate) (Financing rate)

cause IRR to change financial nature (from investment rate to financing
rate or vice versa). The decomposition of the output variation with
FCSIs is economically dubious, as the model output does not merely
change in quantitative terms, but it changes in meaning: No more a
rate of return but a financing rate.

SLRR does not suffer from this problem, because its financial nature
only depends on the sign of 𝐶0. In this case, SLRR is an investment rate,
regardless of changes in the value drivers.

It is worth noting that two or more of the above mentioned problems
may occur simultaneously. For instance, IRR changes financial nature
from 𝛼0 to 𝛼1 and, at the same time, the importance measure of one of
the value drivers, namely the costs in period 4, suffers from a problem
of nonexistence: 𝑥(𝛼18 , 𝛼

0
(−8)) is not defined because the associated cash

flows vector (−500, −700, 1,345, 35, −1,160) does not admit any real IRR
> − 1, therefore 𝛷1,irr

8 does not exist. Consequently, the parameters
ranking for IRR is not possible and correlation coefficients are not
computable (see Table 10). ⋄

5. Comparison of IRR and SLRR using DIMs

In this section, we analyze the behavior of IRR and SLRR under
the DIM technique, which presupposes small perturbations in the input
data and makes use of derivatives (see Eq. (21)). In this model, the first
partial derivatives of NPV(𝛼), evaluated in 𝛼0, are

𝜕NPV
𝜕𝛼𝑖

(𝛼0) =

{

(1 + 𝑘)−𝑖, 𝑖 = 1, 2, 3, 4;
−(1 + 𝑘)−(𝑖−4), 𝑖 = 5, 6, 7, 8

(16)

(see also MM, 2018). Using (14), the first partial derivatives of SLRR,
evaluated in 𝛼0, are
𝜕𝚤𝑠𝑙

𝜕𝛼𝑖
(𝛼0) = NPV′

𝛼𝑖
(𝛼0) ⋅

(1 + 𝑘)
𝐶𝑠𝑙 .

This implies that SLRR and NPV share the same DIMs and, therefore,
SLRR is strictly NPV-consistent, as already stated in Proposition 1.

The case with IRR is more problematic. From (15) and (16),

𝜕𝑥
𝜕𝛼𝑖

(𝛼0) =

{

−(1 + 𝑥0)−𝑖 ⋅ (NPV′
𝑘(𝛼

0, 𝑥0))−1, 𝑖 = 1, 2, 3, 4;
(1 + 𝑥0)−(𝑖−4) ⋅ (NPV′

𝑘(𝛼
0, 𝑥0))−1, 𝑖 = 5, 6, 7, 8

where

𝜕NPV
𝜕𝑘

(𝛼0, 𝑥0) = −
Rev01 − OpC0

1

(1 + 𝑥0)2
− 2 ⋅

Rev02 − OpC0
2

(1 + 𝑥0)3

− 3 ⋅
Rev03 − OpC0

3

(1 + 𝑥0)4
− 4 ⋅

Rev04 − OpC0
4

(1 + 𝑥0)5
.

This suggests that IRR is not strongly NPV-consistent.
We now illustrate a numerical application of DIM technique which,

being a counterexample, shows that the IRR is indeed NPV-inconsistent
under DIM according to Definition 3.

Example 8. We consider an investment 𝑃 , with 𝐶0 = 900 and 𝑘 = 8%.
Therefore 𝐶𝑠𝑙 = 2,089.41. The base value is 𝛼0 = (900, 1,000, 1,100,

1 1,200, 600, 700, 800, 900). The corresponding cash-flow vector is 𝐹 =
(−900, 300, 300, 300, 300) and NPV(𝛼0) = 93.64, 𝚤𝑠𝑙(𝛼0) = 12.84%, 𝑥(𝛼0) =
12.59%. Table 11 shows the DIMs, the ranks, and the Savage scores. The
DIMs for NPV and IRR are different: 𝐷𝐼𝑀npv

𝑖 (𝛼0) ≠ 𝐷𝐼𝑀 irr
𝑖 (𝛼0). Not

even the ranking is equal, therefore IRR is NPV-inconsistent according
to Definition 3 and, since 1 − 𝜌irr,npv = 0.262 and 1 − 𝜌𝑆irr ,𝑆npv = 0.691,
the degree of NPV-inconsistency is remarkable when using top-down
coefficient. ⋄

6. Non-strong NPV-consistency of average ROI

In the previous sections, we have shown, by means of counterex-
amples, that the IRR is not strongly NPV-consistent, even though the
WC is not present. With this assumption, the average ROI is strictly
NPV-consistent, as shown in MM (2018).

In this section, we deal with nonzero WC and assume it depends
on value drivers. This implies that the average ROI is not an affine
transformation of NPV. It is then natural to make the conjecture that the
average ROI is not strongly NPV-consistent. To prove the conjecture,
it suffices to provide one counterexample. For illustrative purposes,
we will deal with the FCSI technique and will illustrate two simple
applications, where we compare average ROI, IRR, and SLRR:

1. in the first application, working capital is exogenous. Average
ROI and SL rate of return are both strictly NPV-consistent; IRR
is not strongly NPV-consistent

2. in the second application, working capital is endogenous (it
changes under change in 𝛼). Average ROI and IRR are not
strongly consistent with NPV, whereas SLRR is strictly NPV-
consistent.

(Importance measures, ranks, and correlation coefficients inherent to
average ROI are denoted with the superscript ‘‘roi’’.)

Example 9 (Exogenous WC). Consider a project 𝑃 with initial invest-
ment in fixed assets equal to NFA0 = 500. Depreciation is equal to
Dep1 = 250, Dep2 = 100, Dep3 = 50, and Dep4 = 100 so that NFA1 =
250, NFA2 = 150, NFA3 = 100. The working capital is assumed to be
50% of the net fixed assets in each period, WC𝑡 = 50% ⋅NFA𝑡. Therefore
WC0 = 250, WC1 = 125, WC2 = 75, WC3 = 50. Hence, the vector of book
value capitals is 𝐛 = (750, 375, 225, 150, 0), while the vector of average
capital is 𝑪𝑠𝑙 = (750, 562.5, 375, 187.5, 0). Assuming that cost of capital
is 𝑘 = 6%, the overall book value capital is 𝑏 = 1,429.97 and the overall
SL capital is 𝑪𝑠𝑙 = 1,771.84. Revenues and costs in the base case and
in the perturbed case are 𝛼0 = (420, 460, 480, 520, 300, 290, 280, 260)
and 𝛼1 = (450, 428, 512, 487, 329, 321, 249, 292), respectively. From the
estimates of book value capitals and incomes, the cash flow streams
in 𝛼0 and 𝛼1 are calculated via (6) and reported in Table 12. Average
ROI, SL rate of return, and IRR are calculated from (5), (14), and (12)
respectively. The book value of working capital (and, hence, the book
value of invested capital) does not depend on revenues and costs, which
implies, from (9), that the average ROI is an affine transformation
of NPV and, therefore, from MM (2018, Proposition 1), is strictly
NPV-consistent under FCSI and DIM. The same applies to SL rate of
return, since 𝐶𝑠𝑙 does not depend on the value drivers. Results of the
analysis via Total Order FCSI are shown in Table 13. Since average
ROI and SLRR are strictly NPV-consistent, their correlation with NPV
is equal to 1 (with Spearman’s and top-down coefficients): 𝜌roi,npv =
𝜌𝑆roi ,𝑆npv = 𝜌slrr,npv = 𝜌𝑆slrr ,𝑆npv = 1. As expected, IRR is not strongly
NPV-consistent, with 𝜌irr,npv = 0.857 and 𝜌𝑆irr ,𝑆npv = 0.611. ⋄

Example 10 (Endogenous WC). We consider an investment project 𝑃
with initial investment in fixed assets equal to NFA0 = 500. Revenues
and costs in the base case and perturbed case are, respectively,

𝛼0 = (420, 460, 480, 520, 300, 290, 280, 260)
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Table 10
First Order FCSI: IRR changes its financial nature.
Parameter NPV SLRR IRR

𝛷1,npv
𝑖 𝑟npv

𝑖 𝑆npv
𝑖 𝛷1,slrr

𝑖 𝑟slrr𝑖 𝑆slrr
𝑖 𝛷1,irr

𝑖 𝑟irr𝑖 𝑆 irr
𝑖

Rev1 51.53% 5 0.635 51.53% 5 0.635 79.64% – –
Rev2 36.80% 6 0.435 36.80% 6 0.435 53.16% – –
Rev3 35.05% 7 0.268 35.05% 7 0.268 45.59% – –
Rev4 11.13% 8 0.125 11.13% 8 0.125 12.17% – –
OpC1 −128.81% 2 1.718 −128.81% 2 1.718 −268.88% – –
OpC2 −122.68% 3 1.218 −122.68% 3 1.218 −175.42% – –
OpC3 −116.84% 4 0.885 −116.84% 4 0.885 −127.90% – –
OpC4 333.82% 1 2.718 333.82% 1 2.718 – – –

Correlations

𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv –
𝜌𝑆 irr , 𝑆npv –

Table 11
Coherence under DIM technique.
Parameter 𝛼0 NPV SLRR IRR

𝐷𝐼𝑀npv
𝑖 (𝛼0) 𝑟npv

𝑖 𝑆npv
𝑖 𝐷𝐼𝑀 slrr

𝑖 (𝛼0) 𝑟slrr𝑖 𝑆slrr
𝑖 𝐷𝐼𝑀 irr

𝑖 (𝛼0) 𝑟irr𝑖 𝑆 irr
𝑖

Rev1 900 83.87% 4 0.885 83.87% 4 0.885 88.82% 1 2.718
Rev2 1000 86.28% 3 1.218 86.28% 3 1.218 87.65% 2 1.718
Rev3 1100 87.88% 2 1.718 87.88% 2 1.718 85.64% 3 1.218
Rev4 1200 88.77% 1 2.718 88.77% 1 2.718 82.97% 4 0.885
OpC1 600 −55.91% 8 0.125 −55.91% 8 0.125 −59.21% 8 0.125
OpC2 700 −60.40% 7 0.268 −60.40% 7 0.268 −61.36% 7 0.268
OpC3 800 −63.91% 6 0.435 −63.91% 6 0.435 −62.28% 5 0.635
OpC4 900 −66.58% 5 0.635 −66.58% 5 0.635 −62.23% 6 0.435

Correlations

𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv 0.738
𝜌𝑆 irr , 𝑆npv 0.309

Table 12
Exogenous WC: Average ROI, SLRR, and IRR.

𝛼0 𝛼1

Cash flows

𝐹0 −750 −750
𝐹1 245 246
𝐹2 220 157
𝐹3 225 288
𝐹4 310 245

Valuation

NPV 111.39 57.68
𝚤 (b) 14.26% 10.28%
𝚤𝑠𝑙 12.66% 9.45%
𝑥 12.08% 9.22%

and

𝛼1 = (450, 428, 513, 487, 329, 321, 249, 292).

The NFA is assumed to depreciate uniformly, that is, Dep𝑡 = 500∕7 =
62.5. The initial investment in working capital is WC0 = 250. In the
following periods, the working capital is equal to 20% of revenues:
WC𝑡 = 20% ⋅ Rev𝑡, with 0 < 𝑡 < 𝑝. With such an assumption, the
working capital (and, hence the book value of assets) changes under
changes in the value drivers: 𝑏𝑡 = 𝑏𝑡(𝛼). Cost of capital is assumed to
be 𝑘 = 10%. Tables 14 and 15 report the book values, 𝑏𝑡 (sum of fixed
assets and working capital), the average capitals, 𝐶𝑠𝑙

𝑡 , the FCFs, 𝐹𝑡, and
the valuation metrics in the base case and perturbed case, respectively.
The FCF streams in 𝛼0 and 𝛼1 are derived from the estimates of incomes
and book value capitals. Results of the analysis via Total Order FCSI
are collected in Table 16, which shows that average ROI and IRR are
not strongly NPV-consistent. The degree of NPV-inconsistency of IRR

Table 13
Exogenous WC: Total Order FCSIs of average ROI, SLRR, and IRR.

Parameter NPV Average ROI SLRR IRR

𝛷𝑇 ,npv
𝑖 𝑟npv

𝑖 𝛷𝑇 ,roi
𝑖 𝑟roi𝑖 𝛷𝑇 ,slrr

𝑖 𝑟slrr𝑖 𝛷𝑇 ,irr
𝑖 𝑟irr𝑖

Rev1 −52.69% 2 −52.69% 2 −52.69% 2 −56.26% 1
Rev2 53.02% 1 53.02% 1 53.02% 1 55.75% 3
Rev3 −50.02% 5 −50.02% 5 −50.02% 5 −51.76% 5
Rev4 48.66% 6 48.66% 6 48.66% 6 47.03% 7
OpC1 50.93% 4 50.93% 4 50.93% 4 55.99% 2
OpC2 51.36% 3 51.36% 3 51.36% 3 54.01% 4
OpC3 −48.45% 7 −48.45% 7 −48.45% 7 −50.12% 6
OpC4 47.19% 8 47.19% 8 47.19% 8 45.64% 8

Correlations

𝜌roi, npv 1
𝜌𝑆aroi , 𝑆npv 1
𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv 0.857
𝜌𝑆 irr , 𝑆npv 0.611

is higher than the inconsistency of average ROI: 1 − 𝜌irr,npv = 0.286,
1 − 𝜌𝑆irr ,𝑆npv = 0.646, 1 − 𝜌aroi,npv = 0.048, and 1 − 𝜌𝑆aroi ,𝑆npv = 0.201. As
expected, the SLRR is strictly NPV-consistent. ⋄

7. Strong NPV-consistency for project ranking

In this section we deal with the ranking of independent projects
available to the firm. We first recall the NPV criterion.

Definition 4 (NPV Criterion for Project Ranking). Consider a bundle of
𝑁 projects which share the same risk. Project 𝑗 is preferable to project
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Table 14
Endogenous WC: Average ROI, SLRR, and IRR in 𝛼0.

0 1 2 3 4

Capital amounts

𝑏𝑡 750 334 242 146 0
NFA𝑡 500 250 150 50 0
WC𝑡 250 84 92 96 0

𝐶𝑠𝑙
𝑡 750 562.5 375 187.5 0

Overall capital

b 1,403.06
𝐶𝑠𝑙 1,771.84

Cash flows

𝐹𝑡 −750 286 162 196 356

Valuation

NPV 110.54
𝚤 (b) 14.35%
𝚤𝑠𝑙 12.61%
𝑥 12.02%

Table 15
Endogenous WC: Average ROI, SLRR, and IRR in 𝛼1.

0 1 2 3 4

Capital amounts

𝑏𝑡 750 340 235.6 152.6 0
NFA𝑡 500 250 150 50 0
WC𝑡 250 90 85.6 102.6 0

𝐶𝑠𝑙
𝑡 750 562.5 375 187.5 0

Overall capital

b 1,408.56
𝐶𝑠𝑙 1,771.84

Cash flows

𝐹𝑡 −750 281 111.4 247 297.6

Valuation

NPV 57.35
𝚤 (b) 10.32%
𝚤𝑠𝑙 9.43%
𝑥 9.18%

ℎ if and only if the NPV of 𝑗 is greater than the NPV of ℎ: NPV𝑗 > NPVℎ,
𝑗, ℎ ∈ {1, 2,… , 𝑁}.

The notion of weak NPV-consistency for project ranking may be
stated as follows.

Definition 5 (Weak NPV-consistency for Project Ranking). A rate of
return 𝜑 is weakly NPV-consistent for project ranking if and only if the
ranks of projects derived from 𝜑 is the same as the ranks of projects
derived from NPV. Formally, 𝜑 is NPV-consistent for project ranking if
the following statements are true:

– for every pair of investment projects 𝑗 and ℎ, NPV𝑗 > NPVℎ if and
only if 𝜑𝑗 > 𝜑ℎ

– for every pair of financing projects 𝑗 and ℎ, NPV𝑗 > NPVℎ if and
only if 𝜑𝑗 < 𝜑ℎ.

We now define strong NPV-consistency for project ranking and then
show that, contrary to IRR and average ROI, the SLRR fulfills it under
suitable assumptions.

Definition 6 (Strong NPV-consistency for Project Ranking). Given an SA
technique, a metric 𝜑 (and its associated decision criterion) is strongly
NPV-consistent for project ranking if

– 𝜑 is weakly NPV-consistent for project ranking (Definition 5)
– the parameters’ rank vector of 𝜑 is equal to the parameters’ rank

vector of NPV for every project: 𝑟npv𝑗 = 𝑟𝜑𝑗 , 𝑗 ∈ {1, 2,… , 𝑁}.

Table 16
Endogenous WC: Total Order FCSIs (Average ROI, SLRR, IRR)

Parameter NPV Average ROI SLRR IRR

𝛷𝑇 ,npv
𝑖 𝑟npv

𝑖 𝛷𝑇 ,roi
𝑖 𝑟roi𝑖 𝛷𝑇 ,slrr

𝑖 𝑟slrr𝑖 𝛷𝑇 ,irr
𝑖 𝑟irr𝑖

Rev1 −52.61% 2 −51.96% 1 −52.61% 2 −55.56% 2
Rev2 52.94% 1 51.87% 2 52.94% 1 54.84% 3
Rev3 −51.50% 4 −50.87% 5 −51.50% 4 −52.73% 5
Rev4 49.14% 6 48.75% 6 49.14% 6 47.21% 7
OpC1 51.44% 5 51.02% 4 51.44% 5 56.14% 1
OpC2 51.87% 3 51.45% 3 51.87% 3 54.17% 4
OpC3 −48.94% 7 −48.54% 7 −48.94% 7 −50.22% 6
OpC4 47.66% 8 47.27% 8 47.66% 8 45.81% 8

Correlations

𝜌roi, npv 0.952
𝜌𝑆roi , 𝑆npv 0.799
𝜌slrr, npv 1
𝜌𝑆slrr , 𝑆npv 1
𝜌irr, npv 0.714
𝜌𝑆 irr , 𝑆npv 0.354

If 𝜑 is strongly NPV-consistent for project ranking and, in addition, the
vectors of the relevances coincide, 𝑅npv𝑗 = 𝑅𝜑𝑗 , 𝑗 ∈ {1, 2,… , 𝑁}, then
𝜑 is strictly NPV-consistent for project ranking.

It is worth noting that, if the metric 𝜑 is not weakly NPV-consistent,
the degree of NPV-(in)consistency is irrelevant. That is, even if the
degree of NPV-consistency is 1, the fact that the impact of input changes
on 𝜑 is the same as the impact of input changes on NPV does not heal
the project ranking error, and, therefore, a high degree of correlation in
the parameter ranking is useless.13 Conversely, if the metric 𝜑 is weakly
NPV-consistent but not strongly NPV-consistent, then it is important to
assess its degree of (in)consistency with NPV.

In general, none of the three performance metrics (SLRR, average
ROI, and IRR) is weakly NPV-consistent for project ranking (let alone
strongly NPV-consistent). However, SLRR is strongly (even strictly)
NPV-consistent if the competing projects have the same initial cash
flows.

Proposition 2. Suppose 𝐹 𝑗
0 = 𝐹0 for every 𝑗 ∈ {1, 2,… , 𝑁}. Then, the

SLRR is strictly NPV-consistent for project ranking.

Proof. Owing to Proposition 1, given a project 𝑗, the rank vector of
𝜑𝑗 is equal to the rank vector of NPV𝑗 and the vectors of relevances
coincide.

We then only have to show that 𝜑 = 𝚤𝑠𝑙 is NPV-consistent according
to Definition 5. The overall average capital of project 𝑗 is 𝐶𝑠𝑙𝑗 =
∑𝑝

𝑡=1 𝑏
𝑗
0(1−(𝑡−1)∕𝑝)(1+𝑘)−(𝑡−1) =

∑𝑝
𝑡=1 −𝐹0(1−(𝑡−1)∕𝑝)(1+𝑘)−(𝑡−1) = 𝐶𝑠𝑙

and is constant for every 𝑗 ∈ {1, 2,… , 𝑁}. If 𝐹0 < 0, it results that
𝐶𝑠𝑙𝑗 > 0 for every 𝑗 ∈ {1, 2,… , 𝑁}; therefore, every project is an
investment project. If 𝐹0 > 0, then 𝐶𝑠𝑙𝑗 < 0 for every 𝑗 ∈ {1, 2,… , 𝑁}
and every project is a financing project. According to eq. (14), 𝚤𝑠𝑙𝑗 =
𝑘 + NPV𝑗 (𝛼)(1+𝑘)

𝐶𝑠𝑙 ∀𝑗 ∈ {1, 2,… , 𝑁}. This implies that the coefficients of
the affine transformation 𝑞 = 𝑘 and 𝑚 = (1 + 𝑘)∕𝐶𝑠𝑙 are equal for all
projects. If 𝐹0 < 0, it results that 𝑚 > 0 and, therefore, NPV𝑗 > NPVℎ

if and only if 𝚤𝑠𝑙𝑗 > 𝚤𝑠𝑙ℎ ; if 𝐹0 > 0, it derives that 𝑚 < 0 and, therefore,
NPV𝑗 > NPVℎ if and only if 𝚤𝑠𝑙𝑗 < 𝚤𝑠𝑙ℎ . □

The proposition says that, whenever the firm has a given amount of
capital 𝑏0 = −𝐹0 to be invested, then the SLRR may be employed as a
substitute for NPV (or be used in conjunction with it) for selecting the
preferred alternative.

In contrast, if initial outlays 𝐹 𝑗
0 differ across the investments, SLRR

and NPV are not consistent for project ranking and the selection of

13 Indeed, the degree of NPV-(in)consistency if the metric is not weakly
consistent is hardly interpretable in one sense or another.
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the adequate valuation metric may depend on the presence of capital
budget constraints: In case of capital rationing, decision makers may
choose the SLRR in place of the NPV, whereas NPV is appropriate if no
budget constraints exist and if absolute increase in wealth is set as the
objective function instead of financial efficiency.

We now illustrate two simple numerical applications with 𝑁 = 2.
They serve as counter-examples for proving that the average ROI and
the IRR are not strongly NPV-consistent for project ranking. We use
Total Order FCSI to assess degrees of NPV-inconsistency. In the first
example, both average ROI and IRR are weakly NPV-consistent for
project ranking but not strongly NPV-consistent. In the second example,
both the average ROI and the IRR are not even weakly NPV-consistent
for project ranking.14

Example 11 (Weak NPV-consistency for Project Ranking). Consider
projects 𝐴 and 𝐵 with equal initial fixed assets, NFA0 = 500, and
equal initial working capital, WC0 = 250. We assume that the book
values of fixed assets are different, such that NFA𝐴

1 = 300, NFA𝐴
2 =

100, NFA𝐴
3 = 50 and NFA𝐵

1 = 450, NFA𝐵
2 = 350, NFA𝐵

3 = 150. The
working capital of the two projects is assumed to amount to 20% of
revenues, WC𝑗

𝑡 = 20% ⋅ Rev𝑗𝑡 , 𝑗 = 𝐴,𝐵, for 𝑡 = 1, 2, 3 (and WC4 = 0 for
working capital is recovered at the end of the project).

On the basis of the input data, reported in Tables 17–18, the book
values are calculated in the two scenarios: 𝐛𝐴(𝛼0) = (750, 380, 184, 140,
0) ≠ 𝐛𝐵(𝛼0) = (750, 520, 426, 220, 0) and 𝐛𝐴(𝛼1) = (750, 382, 186.122,
142.246, 0) ≠ 𝐛𝐵(𝛼1) = (750, 522, 428.122, 222.248, 0). Assuming 𝑘 = 6%,
the overall book value capitals of 𝐴 are 𝑏𝐴(𝛼0) = 1, 389.80 and 𝑏𝐴(𝛼1) =
1, 395.46 and the overall book value capitals of 𝐵 are 𝑏𝐵(𝛼0) = 1, 804.42
and 𝑏𝐵(𝛼1) = 1, 810.08. The initial invested capital is 𝐶0 = NFA0+WC0 =
500 + 250 = 750, implying that the average capital vectors of 𝐴 and 𝐵
coincide: 𝑪𝑠𝑙 = (750, 562.5, 375, 187.5, 0) such that 𝐶𝑠𝑙 = 1, 771.84. The
performance metrics are collected in Tables 17–18 (the bold typeface
represents the higher value of each performance metric). Project 𝐴 is
preferred to 𝐵, since NPV𝐴 > NPV𝐵 . All the three relative criteria
average ROI, IRR, and SLRR satisfy the weak NPV-consistency for
project ranking, since 𝚤𝐴(𝑏) > 𝚤𝐵(𝑏), 𝚤𝑠𝑙𝐴 > 𝚤𝑠𝑙𝐵 , and 𝑥𝐴 > 𝑥𝐵 . However,
the parameter ranking of average ROI and IRR is different from the
NPV’s parameter ranking. In particular, the degrees of NPV-consistency
of average ROI for project 𝐴 are 𝜌𝐴roi,npv = 0.857 and 𝜌𝐴

𝑆roi ,𝑆npv = 0.553
and, for project 𝐵, are 𝜌𝐵roi,npv = 0.857 and 𝜌𝐵

𝑆roi ,𝑆npv = 0.553. The degrees
of NPV-inconsistency for IRR are very high. Specifically, 𝜌𝐴irr,npv = 0.571
and 𝜌𝐴

𝑆irr ,𝑆npv = 0.483 for project 𝐴; 𝜌𝐵irr,npv = 0.048 and 𝜌𝐵
𝑆irr ,𝑆npv = 0.126

for 𝐵. Therefore, while weakly NPV-consistent, average ROI and IRR
are not strongly NPV-consistent for project ranking and their degree of
NPV-inconsistency (especially, the IRR’s) is remarkable. ⋄

Example 12 (NPV-inconsistency for Project Ranking). Suppose, again,
that projects 𝐴 and 𝐵 have the same initial fixed assets and same initial
working capital: NFA0 = 500 and WC0 = 250. We assume that the two
projects have different book values of fixed assets: NFA𝐴

1 = 250, NFA𝐴
2 =

150, NFA𝐴
3 = 50 and NFA𝐵

1 = 40, NFA𝐵
2 = 20, NFA𝐵

3 = 10. Tables 19–20
describe the input values in base case and perturbed case, respectively.
We assume that the working capital of the two projects is endogenously
determined: Specifically, it is equal to 20% of revenues in every period,
WC𝑗

𝑡 = 20% ⋅Rev𝑗𝑡 , where 𝑗 = 𝐴,𝐵 and 𝑡 = 1, 2, 3 (WC𝑗
4 = 0). The vectors

of book value capitals are different for both cases: In the base case,
𝐛𝐴(𝛼0) = (750, 334, 242, 146, 0) ≠ 𝐛𝐵(𝛼0) = (750, 120, 88, 90, 0) and

14 It is worthy of attention that, if working capital is zero or exogenous and
if every project shares the same capital depreciation schedule, 𝐛𝑗 = 𝐛, ∀𝑗 ∈
{1, 2,… , 𝑁}, then average ROI is indeed an affine transformation of NPV,
𝚤𝑗 (𝑏) = 𝑘 + NPV𝑗 (𝛼)(1 + 𝑘)∕𝑏 with coefficients 𝑞 = 𝑘 and 𝑚 = (1 + 𝑘)∕𝑏 equal
for every project 𝑗 ∈ {1, 2,… , 𝑁}; therefore, under these assumptions, average
ROI is strictly NPV-consistent for project ranking.

Table 17
Weak NPV-consistency for project ranking in 𝛼0.

A B

Rev1 400 350
Rev2 420 380
Rev3 450 350
Rev4 500 350
OpC1 300 220
OpC2 290 210
OpC3 280 195
OpC4 260 190

Valuation A B

NPV 15.95 5.77
𝚤 (b) 7.22% 6.34%
𝚤𝑠𝑙 6.95% 6.35%
𝑥 6.89% 6.36%

Table 18
Weak NPV-consistency for project ranking in 𝛼1.

A B

Rev1 410 360
Rev2 430.61 390.61
Rev3 461.23 361.24
Rev4 511.67 361.76
OpC1 290.24 210.26
OpC2 279.66 199.67
OpC3 269.05 184.05
OpC4 248.39 178.39

Valuation A B

NPV 89.97 79.85
𝚤 (b) 12.83% 10.68%
𝚤𝑠𝑙 11.38% 10.78%
𝑥 10.92% 10.83%

in the perturbed case 𝐛𝐴(𝛼1) = (750, 340, 235.6, 152.6, 0) ≠ 𝐛𝐵(𝛼1) =
(750, 114, 94.34, 84, 0). Assuming 𝑘 = 6%, the overall book value cap-
itals of 𝐴 are 𝑏𝐴(𝛼0) = 1, 403.06 and 𝑏𝐴(𝛼1) = 1, 408.56; the overall
book value capitals of 𝐵 are 𝑏𝐵(𝛼0) = 1, 017.09 and 𝑏𝐵(𝛼1) = 1, 012.04.
Given the input data, the initial invested capital is the same for 𝐴
and 𝐵, 𝐶0 = NFA0 + WC0 = 500 + 250 = 750; therefore, the vectors
of average capital are the same, 𝑪𝑠𝑙 = (750, 562.5, 375, 187.5, 0). The
overall SL capital is the same for the two projects and does not depend
on the state: 𝐶𝑠𝑙 = 1, 771.84, regardless of the scenario considered.
The valuation metrics in the two cases are reported in Tables 19–20,
respectively. Project 𝐴 creates more value than 𝐵, since NPV𝐴 > NPV𝐵 .
The SLRR provides the same answer as the NPV, since 𝚤𝑠𝑙𝐴 > 𝚤𝑠𝑙𝐵 . Also,
considering Total Order FCSI, the parameters’ relevances of NPV and
SLRR are equal, implying that the SLRR is strictly NPV-consistent for
project ranking. Conversely, the average ROI and the IRR provide an
error in ranking projects, since 𝚤𝐴(𝑏) < 𝚤𝐵(𝑏) and 𝑥𝐴 < 𝑥𝐵 , so they are
not even weakly NPV-consistent.15 ⋄

8. Concluding remarks

This paper builds upon three strands of literature, namely, (i) a
methodological one, dealing with the NPV-consistency of measures of
financial efficiency, (ii) a managerial one, dealing with management
of uncertainty and sensitivity-analysis application to project appraisal,
and (iii) an accounting one, dealing with the impact of working capital
on financial performance. We introduce a new performance metric

15 The correlation coefficients of average ROI for project 𝐴 are 𝜌𝐴roi,npv = 0.952
and 𝜌𝐴𝑆roi ,𝑆npv = 0.799 and, for project 𝐵, are 𝜌𝐵roi,npv = 0.976 and 𝜌𝐵𝑆roi ,𝑆npv = 0.953.
IRR’s correlation coefficients are, for project 𝐴, 𝜌𝐴irr,npv = 0.714 and 𝜌𝐴𝑆 irr ,𝑆npv =
0.354 and, for project 𝐵, 𝜌𝐵irr,npv = 0.976 and 𝜌𝐵𝑆 irr ,𝑆npv = 0.995. However, these
degrees are not relevant, given the error in project ranking.
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Table 19
NPV-inconsistency for project ranking in 𝛼0.

A B

Rev1 420 400
Rev2 460 340
Rev3 480 400
Rev4 520 450
OpC1 300 200
OpC2 290 200
OpC3 280 352
OpC4 260 100

Valuation A B

NPV 110.54 105.16
𝚤 (b) 14.35% 16.96%
𝚤𝑠𝑙 12.61% 12.29%
𝑥 12.02% 12.03%

Table 20
NPV-inconsistency for project ranking in 𝛼1.

A B

Rev1 450 370
Rev2 428 371.7
Rev3 513 370
Rev4 487 370
OpC1 329 190
OpC2 321 189.3
OpC3 249 347
OpC4 292 80

Valuation A B

NPV 57.35 55.80
𝚤 (b) 10.32% 11.84%
𝚤𝑠𝑙 9.43% 9.34%
𝑥 9.18% 9.37%

for project appraisal, the straight-line rate of return (SLRR), which
takes into explicit consideration the presence of (uncertain) working
capital. We measure its NPV-consistency in both accept–reject decisions
and project ranking and compare it with the average ROI introduced
in Marchioni and Magni (2018) and the traditional Internal rate of
Return (IRR). To this end, we analyze the impact on them of changes
(perturbations) in the input data, also known as value drivers or key
parameters (i.e., project’s revenues and costs).

We find that the average ROI is not strongly NPV-consistent when-
ever working capital (WC) is present, uncertain, and endogenously
dependent on the value drivers. We use the notion of Chisini mean to
search for a measure which possesses strong NPV-consistency, thereby
improving upon the average ROI. Two candidates arise: The well-
known IRR and the newly-introduced SLRR, based on the (linear)
average rate of change of the invested capital.

We find that the IRR is problematic, for its existence and uniqueness
may depend on the project’s key assumptions, and its financial nature
may turn out to be ambiguous. In other words, a change in the value
drivers may turn an investment IRR to a financing IRR (or vice versa)
or generate multiple IRRs or make the IRR nonexistent. Further, even in
favorable cases (as already displayed in Borgonovo and Peccati, 2004,
2006; Percoco and Borgonovo, 2012) the IRR is not strongly NPV-
consistent for accept–reject decisions. For project ranking, we show that
it is not NPV-consistent, not even in a weak sense.

In contrast, the SLRR is strongly NPV-consistent in a strict form
for accept–reject decisions, regardless of whether the working capital
is zero or not and regardless of whether it is endogenous or exoge-
nous. Furthermore, its existence and uniqueness is guaranteed in every
case. Moreover, the SLRR also enjoys strict NPV-consistency in project
ranking if the initial cash flows of the competing projects are equal.

To wrap things up, as compared to the strand of literature about
sensitivity analysis and project valuation, we make different and incre-
mental findings:

– we show that a necessary condition for the average ROI to be
strongly NPV-consistent in accept–reject decisions is that no use
of WC is made in the operations (e.g., no inventory, and sales
and purchases are made on a cash-only basis) or that the nonzero
WC is managed by the firm’s managers in such a way that it is
unaffected by the value drivers (sales revenues and costs). In all
other cases, the average ROI is not strongly consistent

– we introduce the SLRR (associated with the average invested
capital) and show that it is strongly NPV-consistent, regardless
of whether WC is present or not

– we compare the SLRR, the IRR, and the average ROI and measure
the degree of NPV-inconsistency of IRR and average ROI

– we extend the study to project ranking and show, that, contrary
to average ROI and IRR, the SLRR is (not only strongly but also)
strictly NPV-consistent if the competing projects have the same
initial outflow.

We illustrate these results by taking into account two sensitivity anal-
ysis techniques: FCSI (Borgonovo, 2010a) and DIM (Borgonovo and
Apostolakis, 2001; Borgonovo and Peccati, 2004), and assess the degree
of NPV-inconsistency of average ROI and IRR via Spearman’s (1904)
correlation coefficient and Iman and Conover’s (1987) top-down coef-
ficient and find that the degree of inconsistency of IRR and average ROI
may vary case by case and may be very high.

The properties of average ROI, SLRR, and IRR are summarized in
the following table.

Property Average
ROI

SLRR IRR

Existence guaranteed no yes no
Uniqueness guaranteed yes yes no
Unambiguous financial nature yes yes no
Accept–reject decisions

Weak NPV-consistency yes yes yes
Strong NPV-consistency

with exogenous WC yes yes no
with endogenous WC no yes no

Project ranking
Weak NPV-consistency (if 𝐹 𝑗

0 = 𝐹0 ∀𝑗) no yes no
Strong NPV-consistency (if 𝐹 𝑗

0 = 𝐹0 ∀𝑗) no yes no

These findings show that

• the IRR meets new, previously unknown difficulties in several
respects

• the average ROI is more reliable than IRR, but it may incur NPV-
inconsistency for both accept–reject decisions and project ranking
as well as possible nonexistence

• the SLRR, based on the average rate of change, is reliable and
robust and is an appropriate candidate for economic analysis in
accept–reject decisions. It is also sound for project ranking if the
initial cash flows of the competing projects are equal.

Appendix. Finite change sensitivity index and differential impor-
tant measure

Finite Change Sensitivity Indices.
The Finite Change Sensitivity Indices (FCSIs) study the effect of a

finite change in the inputs on the model output (Borgonovo, 2010a,b).
Two versions of FCSIs are defined: First Order FCSI and Total Order
FCSI. The First Order FCSIs measure the individual effects of the
parameters on 𝑓 , whereas the Total Order FCSIs consider both the
individual contributions and the interactions between parameters. The
parameters change from the base value 𝛼0 to 𝛼1 =

(

𝛼11 , 𝛼
1
2 ,… , 𝛼1𝑛

)

∈
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𝐴. The corresponding output variation is 𝛥𝑓 = 𝑓 (𝛼1) − 𝑓 (𝛼0). The
individual effect of 𝛼𝑖 on 𝛥𝑓 is

𝛥𝑖𝑓 = 𝑓 (𝛼1𝑖 , 𝛼
0
(−𝑖)) − 𝑓 (𝛼0)

where (𝛼1𝑖 , 𝛼
0
(−𝑖)) = (𝛼01 , 𝛼

0
2 ,… , 𝛼0𝑖−1, 𝛼

1
𝑖 , 𝛼

0
𝑖+1,… , 𝛼0𝑛 ) is obtained by varying

the parameter 𝛼𝑖 to the new value 𝛼1𝑖 , while the remaining 𝑛 − 1
parameters are fixed at 𝛼0. The First Order FCSI of 𝛼𝑖, denoted as 𝛷1,𝑓

𝑖 ,
is

𝛷1,𝑓
𝑖 =

𝛥𝑖𝑓
𝛥𝑓

(17)

(Borgonovo, 2010a). The total effect of the parameter 𝛼𝑖, denoted as
𝛥𝑇
𝑖 𝑓 , is

𝛥𝑇
𝑖 𝑓 = 𝑓 (𝛼1) − 𝑓 (𝛼0𝑖 , 𝛼

1
(−𝑖)), ∀𝑖 = 1, 2,… , 𝑛,

(Borgonovo, 2010a, Proposition 1) where (𝛼0𝑖 , 𝛼
1
(−𝑖)) is the point with

all the parameters equal to the new value 𝛼1, except the parameter 𝛼𝑖,
which is equal to 𝛼0𝑖 . The Total Order FCSI of the parameter 𝛼𝑖, denoted
as 𝛷𝑇 ,𝑓

𝑖 , is (Borgonovo, 2010a):

𝛷𝑇 ,𝑓
𝑖 =

𝛥𝑇
𝑖 𝑓
𝛥𝑓

=
𝑓 (𝛼1) − 𝑓 (𝛼0𝑖 , 𝛼

1
(−𝑖))

𝛥𝑓
. (18)

Differential Importance Measure. The Differential Importance Mea-
sure (DIM) of parameter 𝛼𝑖 is the ratio of the partial differential of
𝑓 with respect to 𝛼𝑖 to the total differential of 𝑓 (Borgonovo and
Apostolakis, 2001; Borgonovo and Peccati, 2004):

𝐷𝐼𝑀𝑓
𝑖 (𝛼

0,d𝛼) =
d𝑓𝑎𝑖
d𝑓 =

𝜕𝑓
𝜕𝛼𝑖

(𝛼0) ⋅ d𝛼𝑖
∑𝑛

𝑗=1
𝜕𝑓
𝜕𝛼𝑗

(𝛼0) ⋅ d𝛼𝑗
. (19)

Two versions of DIM are defined, according to the assumption
made upon the variation structure of parameters: Uniform variation
assumption (H1) or proportional variation assumption (H2).

H1 implies d𝛼𝑖 = d𝛼𝑗 , ∀𝛼𝑖, 𝛼𝑗 ; the resulting DIM is

𝐷𝐼𝑀1𝑓𝑖 (𝛼
0) =

𝜕𝑓
𝜕𝛼𝑖

(𝛼0) ⋅ d𝛼𝑖
∑𝑛

𝑗=1
𝜕𝑓
𝜕𝛼𝑗

(𝛼0) ⋅ d𝛼𝑗
=

𝜕𝑓
𝜕𝛼𝑖

(𝛼0)
∑𝑛

𝑗=1
𝜕𝑓
𝜕𝛼𝑗

(𝛼0)
. (20)

H2 implies d𝛼𝑖 = 𝜉 ⋅ 𝛼0𝑖 for some 𝜉 ≠ 0; the resulting DIM is

𝐷𝐼𝑀2𝑓𝑖 (𝛼
0) =

𝜕𝑓
𝜕𝛼𝑖

(𝛼0) ⋅ 𝜉 ⋅ 𝛼0𝑖
∑𝑛

𝑗=1
𝜕𝑓
𝜕𝛼𝑗

(𝛼0) ⋅ 𝜉 ⋅ 𝛼0𝑗
=

𝜕𝑓
𝜕𝛼𝑖

(𝛼0) ⋅ 𝛼0𝑖
∑𝑛

𝑗=1
𝜕𝑓
𝜕𝛼𝑗

(𝛼0) ⋅ 𝛼0𝑗
. (21)
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ABSTRACT 

In Quantitative Finance 2016, Chen, Hu and Lin (CHL) claimed the following: ‘…there is yet 

no coherent risk measure related to investment performance.’ (p. 682). Our paper suggests and 

analyzes four coherence axioms that portfolio performance ratios should satisfy.  

 

Our Portfolio Riskless Translation Invariance axiom must be satisfied to assure separation of 

the objective decision to optimize a portfolio’s risky composition from the subjective decision 

to optimize the weight of the portfolio's level of risk-free asset. Performance ratios with fixed 

thresholds other than the risk-free rate do not satisfy this axiom, allowing portfolio managers 

to affect an ex-ante performance ratio merely by changing the proportion of the risk-free asset 

in the portfolio rather than by improving the composition of the portfolio’s risky components. 

The magnitude of this potential drawback is examined using the S&P-500 stock index data.  

 

Replacing the fixed threshold, T, with a threshold 𝑇(𝛾, 𝛼) that equals γ times the portfolio’s 

risk premium plus (1- 𝛾) times the risk-free rate, eliminates the above shortcoming for any 

selected 𝛾. In addition, using performance ratios with the threshold 𝑇(𝛾, 𝛼) rather than the fixed 

T, assures consistency of the performance ratios with the effective stochastic dominance with 

the risk-free asset rules. 

 

Keywords.  Coherent performance ratios, Coherent risk measures, Downside risk measures, 

Lower partial moments, Sortino ratio, Omega ratio, Kappa ratio, stochastic dominance, FSDR 

and SSDR rules. 
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I. INTRODUCTION 

 

A performance ratio is typically defined as the ratio of a portfolio’s excess return to a 

quantitative risk measure. The most commonly used performance ratio is the Sharpe ratio 

(Sharpe 1966), which uses the standard deviation (StD) as the risk measure. However, the StD 

of returns is a proper measure of risk only in the limited case of normal return distributions (or 

where the utility function is quadratic). For all other distributions, the preference by the mean-

variance criterion (MVC) is neither a necessary nor sufficient condition for preference by all 

expected utility investors1. Indeed, the StD as a measure of risk has been heavily criticized, 

even by its originator, Markowitz 1959 (pp. 286-288), and by many other researchers who 

suggested downside risk measures that consider only deviations below a minimum acceptable 

threshold2.  

 

In an attempt to rectify the shortcomings of the standard deviation as a risk measure, several 

alternative risk-adjusted performance measures were suggested (Carles 2015). A general 

expression of downside-risk-adjusted performance ratios is the n-th degree Kappa ratio (Kaplan 

and Knowles 2004), which uses the n-th root of the lower partial moment (LPMn) as the 

measure of risk, and is defined as follows: 

 

(1)     𝐾𝑛(�̃�, 𝑇) =
𝐸(�̃�)−𝑇

[𝐿𝑃𝑀𝑛(�̃�,𝑇)]
1
𝑛

 

 

where �̃� is the (random) rate of return on the investment. The numerator of the Kappa ratio 

equals the expected risk premium over the investor’s (subjective) threshold, T, where all returns 

lower than T are considered to be in the “loss” range. The threshold T could be equal to the 

risk-free rate, Rf, or different from it. The risk measure is the n-th root of the lower partial 

moment of the n-th degree, 𝐿𝑃𝑀𝑛(�̃�, 𝑇), which is measured as follows: 

 

(2)    𝐿𝑃𝑀𝑛(�̃�, 𝑇) = ∫ |�̃� − 𝑇|
𝑛

𝑓(�̃�)𝑑�̃�
𝑇

−∞
. 

  

The Kappa ratio incorporates other downside-risk-based performance ratios. Kazemi, 

Schneeweis, and Gupta 2004 show that the Kappa ratio of the first degree (n = 1), which they 

call the Omega-Sharpe ratio, provides exactly the same information that Omega provides and 

always leads to the same ranking as Omega. The Kappa ratio of the second degree (n = 2) is, 

in fact, identical to the Sortino ratio (Sortino and Van del Meer 1991). 

About two decades ago, Artzner, Dalbaen and Eber 1999 (ADE) introduced four axioms that a 

risk measure must satisfy to qualify as a coherent measure of risk. Their study was followed 

by many who extended their work in different directions. Recently, Koumou and Dionne 2019 

(KD) presented an axiomatic foundation for coherent portfolio diversification measures of 

correlation,𝛷, as functions of the portfolio’s weights, w, and the assets’ returns, �̃�. KD’s work 

compliments the work of ADE on coherent risk measures, integrating the requirements of 

coherent correlation and coherent risk measures to define axioms for coherent diversification. 

KD affirms that their axioms for coherent diversification measures are only a first step toward 

a rigorous theory of correlation diversification measures. The current paper defines axioms that 

 

1  The stochastic dominance rules for all rational investors (First degree Stochastic Dominance rule - FSD) and for 

all rational risk averse investors (Second degree Stochastic Dominance rule - SSD), respectively, provide the 

necessary and sufficient (optimal) efficiency rules for preferences. However, the practical application of these 

rules for constructing optimal portfolios and obtaining market equilibrium conditions is quite limited. 
2 For a review of the history of downside risk measures, see Nawrocki 1999. 
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must be satisfied by a performance ratio to qualify as a coherent performance ratio. It examines 

the coherence (or the lack of it) of existing portfolio performance ratios (PPRs) and suggests a 

modification of the threshold that guarantees the coherence of the PPRs for a wide range of 

selected thresholds.  

As an element of our original set of axioms, the Portfolio Riskless Translation Invariance 

(PRTI) axiom implies that a coherent performance ratio must be invariant with respect to the 

(subjectively selected) proportion of the risk-free asset in the portfolio. We show that PPRs 

that use 𝑇 ≠ 𝑅𝑓 are coherent according to PRTI if and only if the selected threshold is a specific 

combination of the risk-free rate and the portfolio’s risk premium. Note that if a performance 

ratio does not satisfy this PRTI axiom, portfolio managers may increase the ratio simply by 

changing the portfolio’s proportion of the risk-free asset rather than by selecting a better 

composition of the portfolio’s risky assets. In other words, if the threshold is different from the 

risk-free rate, increasing or decreasing the portfolio’s leverage using the risk-free asset affects 

the performance measure for any given composition of the portfolio’s risky assets component.  

 

In terms of applied financial value, the adoption of coherent performance metrics will drive 

portfolio managers to maximize the ex-ante ratios of an investment portfolio by optimizing the 

composition of the portfolio’s risky component, independent of the portfolio’s proportion of 

the riskless asset, focusing on their technical skills of asset allocation and selection under risk 

while avoiding value-neutral decisions regarding the employment of the riskless asset that can 

be easily taken by their clients.  

Our paper is organized as follows. The next section presents the major relevant literature on 

coherent risk and coherent diversification measurement. Section three presents our axioms for 

the coherence of portfolio performance ratios. In section four, we examine whether some well-

known performance ratios satisfy our required axioms. It is shown that the original Sharpe ratio 

and some of its variants are not coherent. They do not satisfy either the monotonicity axiom or 

the PRTI axiom. In addition, portfolio performance ratios that use downside risk measures with 

𝑇 ≠ 𝑅𝑓 do not satisfy the PRTI axiom. We present empirical evidence demonstrating the effect 

of the equity level on the performance ratio indicating a lack of coherence of these ratios. In 

section five, we suggest a replacement for the constant threshold using a more economically 

logical threshold, T(𝛾,α), which is responsive to the portfolio’s risk level. This suggested 

threshold guarantees that all the performance ratios examined in this paper satisfy the set of 

required axioms and qualify as coherence ratios. Section six shows how performance ratios 

that use downside risk measures and employ our responsive threshold, can be maximized by 

minimizing the coefficient of risk, and demonstrates the maximization process using the 

Sortino ratio and the Reward-to-VaR ratio.  In section seven, we prove that dominance by first 

degree stochastic dominance with the riskless asset rule (FSDR) and by second degree 

stochastic dominance with the riskless asset rule (SSDR) of Levy and Kroll 1976, imply 

dominance by performance ratios that employ our T(𝛾,α) threshold. In the final section, we 

present a summary and some conclusions.  

  

II. PRELIMINARIES: AXIOMS FOR COHERENT RISK AND CORRELATION 

DIVERSIFICATION MEASURES 

  

In this section, we present previously suggested sets of axioms for coherent risk and coherent 

diversification measures, some of which we modify and adapt for our set of axioms for coherent 

performance ratios.  
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The seminal study by ADE (1999) presents the following four axioms that a risk measure 𝜌 

should satisfy in order to be considered a coherent risk measure for ranking two random loss 

variants �̃�𝑥 and �̃�𝑦: 

 

1.   Monotonicity: If �̃�𝑥 ≥ �̃�𝑦, then  𝜌(�̃�𝑥) ≤ 𝜌(�̃�𝑦);    

2.   Positive homogeneity: 𝜌(𝜆�̃�𝑥) = 𝜆𝜌(�̃�𝑥)  𝑓𝑜𝑟 𝜆 > 0; 

3.   Riskless translation invariance: 𝜌(�̃�𝑋 + 𝑀) = 𝜌(�̃�𝑋) − 𝑀; and 

4.   Risk subadditivity:  𝜌(�̃�𝑥 + �̃�𝑦) ≤ 𝜌(�̃�𝑥) + 𝜌(�̃�𝑦). 

Föllmer and Schied (2002) proposed an extension of the notion of a coherent risk measure by 

introducing the definition of a convex measure of risk. They augment axioms 2 and 4 above, 

and account for the fact that large positions may introduce liquidity risk by defining the 

following convexity axiom: 

 

5. Convexity:  𝜌[𝛼�̃�𝑥 + (1 − 𝛼)�̃�𝑦] ≤ 𝜌(𝛼�̃�𝑥) + 𝜌[(1 − 𝛼)�̃�𝑦].  

The above axioms are reasonable for rational investors who prefer more money to less, 

although the monotonicity and subadditivity axioms can be weakened without losing any 

practical importance by employing stochastic dominance (hereafter, SD) rules. We denote 

dominance of �̃�𝑥 over �̃�𝑦 by first degree stochastic dominance (FSD) or by second degree 

stochastic dominance (SSD), respectively, as follows: �̃�𝑥 𝐷
𝐹𝑆𝐷

�̃�𝑦  or �̃�𝑥 𝐷
𝑆𝑆𝐷

�̃�𝑦. Then, the 

monotonicity axiom may thus be written as follows. 

Monotonicity for all rational risk averse expected utility maximizers: If �̃�𝑥 𝐷
𝐹𝑆𝐷

�̃�𝑦 or only 

�̃�𝑥 𝐷
𝑆𝑆𝐷

�̃�𝑦, then 𝜌(�̃�𝑥) ≥ 𝜌(�̃�𝑦).  

We thus replace ADE’s monotonicity axiom with a weaker but perhaps more applicable 

monotonicity axiom, by which a performance ratio is higher for a return distribution �̃�𝑥 than 

for a return distribution �̃�𝑦 if �̃�𝑥 dominates �̃�𝑦 by either FSD or only by SSD.  

This two-tiered monotonicity requirement yields a two-tiered coherence of risk measures that 

depend on the investor’s utility. Risk measures that are coherent for all rational expected utility 

maximizers are coherent for all rational risk averse expected utility maximizers. On the other 

hand, risk measures that are coherent for all rational risk averse expected utility maximizers 

are not necessarily coherent for all rational expected utility maximizers. If the vast majority of 

investors are risk averse, the weaker requirement, �̃�𝑥 𝐷
𝑆𝑆𝐷

�̃�𝑦, is relevant to the vast majority of 

investors, and, in general, it potentially produces a larger group of coherent risk measures. 

Several different contributions have enriched the knowledge in the field of coherent risk 

measures. Among others, Denault 2001 introduced an axiomatic foundation of coherence for 

risk capital allocation, Delbaen 2002 extended the notion of coherent risk measures in ADE to 

general probability spaces and related the theory of coherent risk measures to game theory, 

Föllmer and Schied 2002 proposed an extension of the notion of a coherent risk measure by 

introducing the definition of a convex measure of risk (as mentioned above), Artzner et al 2007 

defined coherence in risk management in a multiperiods setting with intermediate stopping 

times, and Chen and Wang 2008 constructed a class of two-sided coherent risk measures for 

controlling the asymmetry and fat-tail characteristics. The development of coherent 

performance measures, to the best of our knowledge, includes a limited series of academic 

contributions. Among these, Cherny and Madan 2009 proposed an axiomatic foundation of 

coherent trading performance in a static one-time period setup, linked to positive expectations 
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resulting from a stressed sampling of the cash-flow distribution, based on the eight axioms of 

quasi-concavity, monotonicity, scale invariance, Fatou’s property, law invariance, consistency 

with second order stochastic dominance, arbitrage consistency, and expectations consistency. 

Then, Bielecki, Cialenco, and Zhang 2014 built upon Cherny and Madan 2009, changing the 

mathematical framework to a dynamical multiperiod setup, where cash flows are treated as 

random processes, and considering the cumulative cash flows at each intermediate time. 

Furthermore, it is also worth noting the work of CHL 2016. Although they did not propose an 

axiomatic foundation for coherent performance measurement, they developed and analyzed the 

performance ratios based on coherent risk measures and obtained a portfolio selection model 

that, considering transaction costs, empirically performed much better than the corresponding 

alternative optimal portfolio. 

 

As noted above, KD presented an axiomatic foundation for coherent portfolio diversification 

measures of correlation, as functions of the portfolio’s weights w and the assets’ returns�̃�, that 

compliments the work of ADE on coherent risk measures. Below we list KD’s axioms for 

coherent portfolio diversification measures of correlation 𝛷.  

 

i. Concavity: The 𝛷 of a portfolio is not less than the sum of the weighted average of the 𝛷s 

of the portfolio’s single assets. 

ii. Size degeneracy: The 𝛷s of all single-assets portfolios are minimal and equal �̱�. 

iii. Risk degeneracy: In case all the individual assets have the same distribution, 

diversification has no benefit and the 𝛷 of any portfolio is equal to �̱� . 

iv. Reverse risk degeneracy: If diversification has no benefit, then for any portfolio 

composition, the diversification measure is equal to �̱�. 

v. Duplication invariance: If some assets in the portfolio have identical distributions, the 

optimal weights of the other assets should consider the total weights of the identical assets as 

if they were one. 

vi. Size Monotonicity: Increasing the size of the portfolio does not decrease𝛷. 

vii. Translation Invariance (TI): Adding a given amount, a, to returns 𝑅𝐴 does not change𝛷. 

Namely, 𝛷(𝑤|𝑅𝐴+𝑎) = 𝛷(𝑤|𝑅𝐴). 

viii.  Homogeneity: Multiplying returns �̃�𝐴 by a positive constant, b, does not change the 

optimal diversification: 𝛷(𝑤|𝑅𝑏𝐴) = 𝑏𝑘𝛷(𝑤|𝑅𝐴). 

ix. Symmetry: A portfolio diversification measure must be symmetric with respect to the 

exchangeable variates of w. 

 

KD correctly asserted that their nine axioms are only related to the measurement of the isolated 

impact of correlations through diversification where the overall value of portfolio 

diversification is generated from other sources such as the law of large numbers and the beta 

with the market portfolio.  

 

III. THE AXIOM SET FOR COHERENT PERFORMANCE RATIOS, 𝜳. 

 

In this section, we adapt and modify the relevant axioms proposed by ADE and KD in an 

attempt to put forth a set of axioms for coherent portfolio performance ratios. We then show 

that the existing performance measures, even when based on coherent risk measures with 

thresholds different from the risk-free rate, violate the Portfolio Riskless Translation Invariance 

axiom (PRTI), which is an essential requirement for the separation between the optimal 

composition of the portfolio’s risky component3 and the subjective choice of splitting the 

portfolio into its risk-free and the risky components. 
 

3 We interchangeably refer to the “risky component” as the “equity component” or the “equity level”. 
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Recall that ADE's coherence axioms are relevant for risk measures and not for performance 

ratio measures. Similarly, KD’s coherence axioms are relevant for the partial mutual impact of 

diversification and correlation on portfolio performance but they are not intended to guarantee 

the coherence of the overall performance of a portfolio. Consequently, some of their axioms 

may be irrelevant for the axiomatic base of coherent portfolio performance ratios and the 

relevant axioms may be inadequate for guaranteeing the coherence of performance ratios.   

 

We now introduce our axioms for coherent portfolio performance ratios, 𝛹. Assume two 

portfolio return distributions �̃�𝑥 and �̃�𝑦. Coherent performance ratios must satisfy the 

following four axioms.  

 

A.  Monotonicity: If �̃�𝑥 𝐷
𝑆𝐷(𝑛)

�̃�𝑦, then 𝛹(�̃�𝑥) ≥
(𝑛)

𝛹(�̃�𝑦). 

Here, n stands for the degree of stochastic dominance. The essence of this axiom is to create 

consistency between the rankings of investment portfolios on the one hand, and the investors’ 

expected utility on the other hand. A SD rule divides the potential distributions into an 

“efficient set” and an “inefficient” set. It follows that �̃�𝑥 𝐷
𝑆𝐷(𝑛)

�̃�𝑦 indicates dominance of �̃�𝑥 

over �̃�𝑦 according to the SD rule of the n-th degree and 𝛹(�̃�𝑥) ≥
(𝑛)

𝛹(�̃�𝑦) indicates that �̃�𝑥 is 

ranked higher than (or equal to) �̃�𝑦 by the relevant performance ratio, and the ranking applies 

to distributions that belong to the “efficient” set as defined by the relevant SD rule. 

 

The need for screening potential return distributions using SD rules stems from the fact that 

performance ratios may potentially rank an “inefficient” return distribution higher than an 

“efficient” return distribution, resulting in an erroneous ranking in the sense that, for the 

relevant utility group (rational expected utility maximizers, rational as well as risk averse 

expected utility maximizers and so on), there is at least one distribution in the “efficient set” 

which provides a higher expected utility than all the return distributions in the “inefficient set” 

for all the relevant utilities belonging to the group.  

 

In principle, the application of SD rules and coherent performance ratios represents two types 

of screening tests in the performance evaluation process. The SD tests, defining the first kind 

of controls, apply to the potential distributions from which an investment is to be selected. 

These tests do not provide a complete ranking, but they rather identify the set of dominated 

distributions that need not be evaluated by a performance ratio since they are clearly 

“inefficient” for the defined group of investors. A performance ratio that satisfies the 

monotonicity axiom, is capable of ranking alternative return distributions, knowing that a 

distribution from the “inefficient set” will not be preferred to a distribution from the “efficient 

set”. 

 

With respect to the SD of n degree, recall that when a given number of return distributions are 

evaluated, the number of distributions in the “efficient set” is generally decreasing with n. 

Therefore, on the one hand, as n increases there are likely to be less potential conflicts between 

the SD ranking and performance ratios ranking, but on the other hand, as n increases, the 

analysis is relevant for a smaller group of utilities due to the additional constraints on the utility 

function of the investors belonging to that group4.  

 
4 FSD applies to investors whose utility functions are not decreasing with wealth (positive first derivative). SSD 

applies to the utility functions of risk avert investors (positive first derivative and negative second derivative). 

In general, SD rules of the n-th degree apply to utilities with positive odd derivatives and negative even 

derivatives. (For more details, see Levy 2006, Theorem 3.5, page 131.) In Section VII of this paper we show 

that when borrowing and lending at the riskless rate is allowed, the monotonicity requirement is less restrictive 
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Finally note that our monotonicity axiom is much weaker than ADE’s monotonicity axiom, 

which may be interpreted as requiring that the returns of one distribution are higher than the 

returns of an alternative distribution under all states of nature. Although our monotonicity 

axiom is not part of KD’s axioms, their size monotonicity is directly relevant to our set of 

axioms for coherent PPRs. 

 

B. Size Monotonicity: 𝛹(𝜆(1 + �̃�𝑥)) = 𝛹(1 + �̃�𝑥) = 𝛹(�̃�𝑥) 𝜆 > 0 

Our size monotonicity axiom implies that the performance ratio per unit of invested capital 

must remain invariant with respect to the invested amount. The positive constant, 𝜆, is thus 

interpreted as a wealth multiplier. With respect to the Sharpe ratio, for example, we get: 

 

(3)     𝑆𝑅(𝜆(1 + �̃�𝑥)) =
𝐸(𝜆(1+�̃�𝑥))−𝜆(1+𝑅𝑓)

𝑆𝑡𝐷(𝜆(1+�̃�𝑥))
= 

   =
𝐸(𝜆�̃�𝑥) − 𝜆𝑅𝑓

𝑆𝑡𝐷(𝜆�̃�𝑥)
=

𝐸(�̃�𝑥) − 𝑅𝑓

𝑆𝑡𝐷(�̃�𝑥)
= 𝑆𝑅(�̃�𝑥) 

 

It follows that the Sharpe performance ratio is invariant with respect to the wealth level. In fact, 

as detailed in Table 1, all the other performance ratio that are analyzed in this paper (as well as 

perhaps all other common performance ratios), satisfy this size monotonicity axiom. Note that 

this axiom is obviously entirely different from the corresponding positive homogeneity axiom 

put forth by ADE, according to which, as the size of the portfolio increases, the risk of the 

invested amount increases proportionally. The difference is rooted in the fact that while ADE 

consider the investment amount, performance ratios focus on performance per unit of invested 

capital. 

 

C. Portfolio Riskless Translation Invariance (PRTI): 𝛹(𝛼�̃�𝑥 + (1 − 𝛼)𝑅𝑓) = 𝛹(�̃�𝑥), 

where 0 < 𝛼 ≤ 1 is the proportion of the risky assets in the portfolio and Rf is the risk-free 

rate5.  

  

This PRTI axiom is different from ADE’s RTI axiom. Their axiom correctly asserts that the 

additional riskless amount, M, reduces risk by M. The interpretation of KD’s TI axiom is also 

different from our interpretation. KD asserts that adding a riskless amount of money to a 

portfolio does not change the advantage of diversification through correlation. Our PRTI axiom 

is based on the following assumptions. 

 

1. A portfolio manager cannot generate value for investors using a strategic long term holding 

of a risk-free asset since there is no required professional expertise for this holding. 

Investment in the risk-free asset is a trivial investment, readily accessible to the ultimate 

investor, and yields a known return. Hence, the performance evaluation ratio should be 

limited solely to the risky component of the portfolio6. 

2. The selection of the level of risk is a subjective decision of the investor. In principle, any 

choice of the proportion of the risk-free vs. the risky component by the professional 

 
than would seem at first glance, since the inefficient set tends to increase with the use of Stochastic Dominance 

with Riskless Asset Rules.   
5  The case where 𝛼 = 0  is redundant since in this case the entire portfolio’s capital is invested in the riskless 

asset, there is no risk and a ratio of reward to variability is undefined. 
6 This axiom is related only to the expected strategic level of the riskless asset in the portfolio. It does not preclude 

the potential gains and a higher performance ratio due to successful timing in entering or exiting the risky market, 

as well as selecting a high beta portfolio before a bullish market, even though several empirical studies indicate 

that investment professionals lack a return timing ability (see: Sherman, O’Sullivan and Gao 2017, Bodson, 

Cavenaile and Sougné 2013, Cuthbertson, Nitzsche and O'Sullivan 2010, Friesen and Sapp 2007). 
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portfolio manager can be offset by the ultimate investor. Hence, the axiom postulates a 

separation between the optimal composition of the portfolio’s risky component (usually 

determined by a professional portfolio manager) and the overall portfolio split between the 

risky component and the risk-free component (usually determined by the ultimate 

investor)7. 

 

The above PRTI requirement is extremely important since in its absence the ex-ante expected 

performance ratio may be increased (or perhaps manipulated) by merely changing the 

portfolio’s proportion of the risk-free asset while it should only reflect the performance of the 

portfolio’s risky component. 

 

D. Concavity: 𝛹[𝛼�̃�𝑥 + (1 − 𝛼)�̃�𝑦] ≥ 𝛼𝛹(�̃�𝑥) + (1 − 𝛼)𝛹(�̃�𝑦)             

This axiom reflects the potential advantage of diversification due to correlation. Equality in the 

concavity relationship is a corner situation where �̃�𝑥 and �̃�𝑦 are identically distributed and 

perfectly positively correlated. It is trivially tantamount to holding two shares of the same 

company.  Note that the axiom is equivalent to KD’s concavity axiom and to ADE’s convexity 

axiom (Föllmer and Schied 2002).  

 

IV. THE COHERENCE OF SOME KNOWN PERFORMANCE RATIOS 

 

In this section, we examine whether some well-known performance ratios satisfy the above 

coherence axioms and especially the PRTI and monotonicity axioms by focusing on a portfolio 

that consists of a risk-free asset and a (portfolio of) risky asset(s). The return of the overall 

portfolio and the return of the portfolio’s risky (equity) component are denoted �̃�𝑃 and �̃�𝑒, 

respectively. The portfolio’s weights are 𝛼 for the proportion invested in the risky equities and 

(1 − 𝛼) for the proportion invested in the risk-free asset. The ratios we examine are Sharpe, 

Kappa, Omega, Reward-to-VaR, and Reward-to-CVaR as listed below. 

 

Sharpe ratio. The portfolio’s Sharpe ratio is defined as follows: 

 

(4)     𝑆𝑅(�̃�𝑃) ≡
𝐸(�̃�𝑃)−𝑅𝑓

𝑆𝑡𝐷(�̃�𝑃)
 

 

Kappa ratio. From Eq. (1), the generalized nth degree Kappa portfolio performance ratio (for 

𝑛 ≥ 1) is as follows: 

(5)     𝐾𝑛(�̃�𝑃, 𝑇) ≡
𝐸(�̃�𝑃)−𝑇

[𝐿𝑃𝑀𝑛(�̃�𝑃,𝑇)] 1/𝑛
 

where the lower partial moment is defined by Eq. (2). Note that the Kappa ratio of the second 

degree is, in fact, the Sortino ratio: 

(6)       SOR(�̃�𝑝, 𝑇) =
𝐸(�̃�𝑝)−𝑇

[∫ (𝑇−�̃�𝑝)
2

𝑓(�̃�𝑝)𝑑(�̃�𝑃)
𝑇

−∞
]

1
2

= 𝐾2(�̃�𝑝, 𝑇)   

Omega ratio. The first degree Omega is given by the following: 

 
7  The monetary separation theorem is the basis of the Sharpe-Lintner-Mossin Capital Asset Pricing Model 

(CAPM). 
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(7)      𝛺1(�̃�𝑝, 𝑇) ≡
∫ [1−𝐹(�̃�𝑝)]𝑑�̃�𝑝

∞

𝑇

∫ 𝐹(�̃�𝑝)𝑑�̃�𝑝
𝑇

−∞

=
𝐸[max(�̃�𝑃−𝑇,0)]

𝐸[max(𝑇−�̃�𝑃,0)]
 , 

Where 𝐹(�̃�𝑃) represents the cumulative distribution function of the portfolio return �̃�𝑃. The 

Omega ratio of the nth degree is given by the following: 

(8)       𝛺𝑛(�̃�𝑝, 𝑇) =
{𝐸[max(�̃�𝑃−𝑇,0)𝑛]}

1
𝑛

{𝐸[max(𝑇−�̃�𝑃,0)𝑛]}
1
𝑛

. 

Kaplan and Knowles 2004 proved that 𝛺1(�̃�𝑃, 𝑇) belongs to the Kappa group such that the 

following holds: 

(9)      𝛺1(�̃�𝑝, 𝑇) =
𝐸(�̃�𝑝)−𝑇

𝐿𝑃𝑀1(�̃�𝑝,𝑇)
+ 1 = 𝐾1(�̃�𝑝, 𝑇) + 1   

 

Reward-to-VaR. The next ratio to be examined is the Reward-to-VaR ratio: 

(10) RVaR(�̃�𝑝, 𝑞, 𝑇) =
𝐸(�̃�𝑝)−𝑇

𝑉𝑎𝑅(�̃�𝑃,𝑞,𝑇)
 

𝑉𝑎𝑅(�̃�𝑃, 𝑞, 𝑇) is given by Equation (11), where 𝑄𝑃(𝑞) is the portfolio’s q quantile, such that the 

probability that the portfolio’s return will be less than or equal to 𝑄𝑃(𝑞) is equal to q.  

(11)     𝑉𝑎𝑅(�̃�𝑃, 𝑞, 𝑇) = 𝑇 − 𝑄𝑃(𝑞) 
 

Reward-to-CVaR. The last ratio we consider is the Reward to CVaR ratio: 

(12)    𝑅𝐶𝑉𝑎𝑅(�̃�𝑃, 𝑇) ≡
𝐸(�̃�𝑃)−𝑇

𝑇−∫ 𝑄𝑃(𝑞)𝑑𝑞
𝐹𝑃(𝑇)

0

  

Where 𝐹𝑃(𝑇) is the cumulated probability of the portfolio’s return up to the threshold T, and 

the CVaR is given by the denominator of Eq. (12):  𝐶𝑉𝑎𝑅(�̃�𝑃, 𝑇) = 𝑇 − ∫ 𝑄𝑃(𝑞)𝑑𝑞
𝐹𝑃(𝑇)

0
. 

We now test the coherence of the five ratios with respect to the four axioms. Beginning with 

the Sharpe ratio, we note that it clearly complies with our PRTI axiom since the following 

holds: 

(13) 𝑆𝑅(�̃�𝑃) ≡
𝐸(�̃�𝑃)−𝑅𝑓

𝑆𝑡𝐷(�̃�𝑃)
=

𝐸[𝛼�̃�𝑒+(1−𝛼)𝑅𝑓]−𝑅𝑓

𝑆𝑡𝐷(𝛼�̃�𝑒)
=

𝐸(�̃�𝑒−𝑅𝑓)

𝑆𝑡𝐷(�̃�𝑒)
= 𝑆𝑅(�̃�𝑒)  

 

Indeed, this ratio obeys the separation between the decision to include the risk-free asset as part 

of the investment portfolio and the decision with respect to the composition of the portfolio’s 

risky component, a separation that is a central premise of the CAPM. On the other hand, it is 

well known that the Sharpe ratio does not comply with the monotonicity axiom, even at the 

basic level of the FSD rule, since it is possible that �̃�𝑥 dominates �̃�𝑦 according to FSD so that 

all rational expected utility investors prefer �̃�𝑥 to �̃�𝑦, but yet the Sharpe ratio falsely ranks �̃�𝑦 

as a better performing distribution: 𝑆𝑅(�̃�𝑦) > 𝑆𝑅(�̃�𝑥)8. The four performance ratios other than 

the Sharpe ratio may fail to satisfy the PRTI axiom unless 𝑇 = 𝑅𝑓 , as stated in Proposition 1. 

 
8    For example, assume two uniform distributions as follows: �̃�𝑦 ∼ 𝑈(0.05,0.07) and �̃�𝑥 ∼ 𝑈(0.10,0.20) and 

Rf = 0. Clearly, x dominates y according to FSD since even the lowest return of x is higher than the highest 
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Proposition 1. The four portfolio performance ratios, i.e., the Kappa ratio 𝛫𝑛(�̃�𝑃), the Omega 

ratio 𝛺𝑛(�̃�𝑝, 𝑇), the Reward-to-VaR ratio RVaR(�̃�𝑝, 𝑞, 𝑇) and the Reward-to-CVaR ratio 

RCVaR(�̃�𝑝, 𝑞, 𝑇) are coherent with the PRTI axiom (invariant with respect to α changes) if and 

only if 𝑇 = 𝑅𝑓. Furthermore, they increase (decrease) with α if and only if 𝑇 > 𝑅𝑓 (𝑇 < 𝑅𝑓). 

 

The proofs are provided in Appendix A, where we furthermore analyze these ratios for their 

compliance with the size monotonicity and concavity axioms, showing that the ratios 

considered do, in general, satisfy these axioms. The compliance with the monotonicity axiom 

is analyzed in Section VII of the paper. 

 

Figure 1 presents an example of the empirical consequence of Proposition 1. The significant 

effect of a portfolio’s 𝛼 level on performance ratios is demonstrated using the S&P-500 index 

monthly returns over the 240 months during the period from 02.2000 to 01.2020. The risk-free 

rate was estimated to equal 0.1% per month. Figure 1 contains three panels. Panel A exhibits 

the ratios where the threshold is set at 𝑇 = 0.5 × 𝑅𝑓 = 0.05% per month. The ratios shown in 

Panel B use the threshold 𝑇 = 1.5 × 𝑅𝑓 = 0.15% per month and in Panel C the threshold is set 

to be 𝑇 = 𝑅𝑓 = 0.1% per month. It is evident that the 𝛼 level has a significant and even 

dramatic effect on the ratios, particularly at relatively low levels of 𝛼9. In line with Proposition 

1, only in the case where the threshold is set equal to the risk-free rate, i.e., 𝑇 = 𝑅𝑓 (Panel C), 

do we see that the weight of the risky asset, 𝛼, has no effect on the performance ratio. Given 

these results, one may assume that where 𝑇 < 𝑅𝑓, portfolio managers who wish to maximize 

any of these performance ratios have a significant incentive to decrease the portfolio’s weight 

of the risky asset, an incentive that is evidently stronger over the lower 𝛼 range. The opposite 

holds where 𝑇 > 𝑅𝑓. As exhibited in Panel B, the ratios increase significantly with the level of 

𝛼 such that a portfolio manager might want to increase the weight of the risky asset if they wish 

to increase their portfolio’s performance ratio.  

 

V. THE MODIFIED PORTFOLIO PERFORMANCE RATIOS 

 

Rather than using fixed thresholds, we now modify the ratios and employ thresholds that are 

responsive to the portfolio’s 𝛼. Specifically, we use the threshold 𝑇(𝛾, 𝛼) which is set equal to 

the weighted average of the expected portfolio return and the risk-free return, as follows:  

 

(14) 𝑇(𝛾, 𝛼) = 𝛾𝐸(�̃�𝑃) + (1 − 𝛾)𝑅𝑓 = 𝛾[𝐸(�̃�𝑃) − 𝑅𝑓] + 𝑅𝑓 
 

where 𝛾 ∈ ℝ. Eq. (14) may be rewritten also as follows:    
      

(15)    𝑇(𝛾, 𝛼) = 𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓 

 

 

 

 

 

 
return of y, leading to the preference of x over y by every rational investor. However, calculating the Sharpe 

ratios, we obtain the following: 𝑆𝑅(�̃�𝑦) =
0.06

0.01
= 6 > 3 =

0.15

0.05
= 𝑆𝑅(�̃�𝑥). Namely, according to the Sharpe 

ratio, �̃�𝑦  is a better performing investment than�̃�𝑥. 
9  Note that as α decreases, the portfolio’s risk-free asset weight increases and the portfolio’s return gets closer to 

the risk-free rate. If 𝑇 > 𝑅𝑓, the ratios are zero at some low level of α and negative at even lower α levels.   
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Figure 1 

Portfolio Performance Ratios and the proportion of the portfolio’s risky asset, α. 
The ratios were calculated using 240 monthly returns 

 of the S&P-500 index from 02.2000 to 01.2020. 

The risk-free rate was estimated as a constant 0.1% per month. 

 

Panel A: 𝑻 = 𝟎. 𝟓 × 𝑹𝒇 = 𝟎. 𝟎𝟓%  

 

 
 

 

Panel B: 𝑻 = 𝟏. 𝟓 × 𝑹𝒇 = 𝟎. 𝟏𝟓% 
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Panel C: 𝑻 = 𝑹𝒇 = 𝟎. 𝟏% 

 
      

where 𝐸(�̃�𝑒) is the expected return of the portfolio’s risky component. The economic logic for 

choosing 𝑇(𝛾, 𝛼) as a threshold rate is that the threshold for measuring the downside risk of a 

portfolio should adjust in response to the portfolio’s risk premium. This is because it is likely 

that as the selected overall expected volatility of the portfolio increases, the investor’s 

propensity to absorb losses increases as well. Of course, this is not a necessary behavioral 

attitude of all investors. However, we will prove in Proposition 2 below that it is necessary for 

measuring the portfolio’s performance when one subjectively sets a threshold that differs from 

the risk-free rate since otherwise the PRTI axiom is not satisfied. Additionally, note that the 

responsive threshold, as defined in Equation (14) or (15), is a weighted average between the 

portfolio’s risky component fixed threshold 𝑇(𝛾, 𝛼 = 1),and the risk-free return: 

 

(16)    𝑇(𝛾, 𝛼) = 𝛼[𝑇(𝛾, 𝛼 = 1)] + (1 − 𝛼)𝑅𝑓 = 

 = 𝛼[𝛾(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓] + (1 − 𝛼)𝑅𝑓 = 𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓 

 

Equation (16) implies that as the portfolio’s threshold changes, the threshold for the risky 

component remains unchanged at 𝑇(𝛾, 𝛼 = 1) = 𝛾(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓. 

 

Proposition 2. For every γ, PPRs that use the responsive threshold 𝑇(𝛾, 𝛼) are invariant with 

respect to the portfolio’s equity level, α, and hence they satisfy the PRTI axiom. 

 

The proofs are presented in Appendix B. Note that γ is a subjective loss aversion factor. 

Assuming a positive expected equity risk premium, a higher γ leads to a higher threshold for 

any given proportion α of the portfolio’s risky equity investment. Using the modified 

performance ratios in the financial practice, entails the need to estimate the subjective loss 

aversion of the client, γ, instead of the fixed threshold T. The other parameters, 𝐸(�̃�𝑒), 𝑅𝑓 and 

𝛼, are generally available and required for measuring the traditional performance ratios. It is 

worth noting that non-positive thresholds exist for the following γ values: 

 

(17)         𝛾 ≤ −
𝑅𝑓

𝛼[𝐸(�̃�𝑃)−𝑅𝑓]
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Selecting a negative γ while the expected risk premium 𝐸(�̃�𝑒) − 𝑅𝑓 is positive and α is positive, 

implies a threshold below the risk-free rate.  

 

VI. THE PORTFOLIO’S OPTIMAL RISKY COMPONENT FOR A GIVEN γ 

 

As claimed by Proposition 2, performance ratios that use the responsive threshold 𝑇(𝛾, 𝛼) are 

invariant with respect to α. Therefore, they sustain the important separation between the 

composition of the portfolio’s risky component and the weight given to the risk-free asset 

without affecting the performance ratios. As a result, one is able to maximize the ex-ante ratios 

only by optimizing the composition of the portfolio’s risky component.  

 

In all our PPRs that uses 𝑇(𝛾, 𝛼) the numerator is 1-γ times the expected equity risk premium 

in excess of the risk-free rate(𝐸(�̃�𝑒) − 𝑅𝑓) and the denominator is the expected risk measure of 

the relevant performance ratio. Denote the ratio of this expected portfolio risk measure to the 

expected equity risk premium by Coefficient of Risk (CR)10. Thus, maximization of the 

expected PPR can be expressed by the following proposition. 

 

Proposition 3. The five PPRs examined in this paper that use the responsive threshold𝑇(𝛾, 𝛼), 

can be maximized by minimizing the expected relative risk measure of the equity, CR. 

 

The proof is rooted in the fact that the responsive threshold, 𝑇(𝛾, 𝛼), creates a separation 

between the composition of the risky portion of a portfolio and the extent to which the riskless 

asset is employed in the portfolio. Let us demonstrate the application of such an optimization 

process using, as an example, the Sortino ratio, SOR(�̃�𝑃, 𝑇(𝛾, 𝛼)). A similar optimization 

process may be applied to the other performance ratios presented here since they all satisfy the 

PRTI axiom when using the responsive threshold 𝑇(𝛾, 𝛼). Additional demonstration of the 

maximization of the PPRs by minimizing the relevant coefficient of risk, is provided in the 

proof of proposition 5 below, which focuses on the Reward-to-VaR ratio. 

 

The modified Sortino ratio SOR(�̃�𝑃, 𝑇(𝛾, 𝛼)) is as follows:  

 

(18)        SOR (�̃�𝑃, 𝑇(𝛾, 𝛼)) =
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

{𝐸 [𝑀𝑎𝑥(𝑇(𝛾,𝛼)−�̃�𝑃,0)]2}
1
2

. 

     

This is the same as the following: 

(19)        SOR(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
𝛼(𝐸(�̃�𝑒)−𝑅𝑓)−𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)

⟨𝐸{max[𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)−𝛼(�̃�𝑒−𝑅𝑓),0] }
2

⟩

1
2

= 

  =
(1 − 𝛾)[𝐸(�̃�𝑒) − 𝑅𝑓]

⟨𝐸{max[𝛾(𝐸(�̃�𝑒) − 𝑅𝑓) − (�̃�𝑒 − 𝑅𝑓), 0]}
2

⟩

1
2

 

 

We define the “risk premium ratio” of the risky component as the ratio of the (random) risky 

component’s risk premium to its expected value, and denote it as 𝑟𝑝𝑟𝑒̃ : 

(20)    𝑟𝑝𝑟𝑒 =̃
�̃�𝑒−𝑅𝑓

𝐸(�̃�𝑒)−𝑅𝑓
  

 
10  We use this notation as a homage to the well-known "Coefficient of Variation" risk measure which is defined 

as a variable’s standard deviation divided by its expected return.  
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Proposition 4. For a given γ, a performance ratio, including the Sortino ratio that uses the 

threshold 𝑇(𝛾, 𝛼), is maximized by minimizing the expected downside square deviations of the 

"risk premium ratio" from γ, namely, the following: 

 

(21)     min
�̱�

{𝐸[max(𝛾 − 𝑟𝑝𝑟𝑒̃ , 0)]2} 

where �̱� is the vector of the proportions invested in the individual risky securities.  

The proof is based on Eq. (19) that can be rewritten (for the Sortino ratio example) as follows: 

(22)     SOR(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
1−𝛾

{𝐸[max(𝛾−𝑟𝑝𝑟�̃�,0)]2}
1
2

 

 

As argued, the conventional Sortino ratio is not invariant with respect to α (except for T = Rf) 

and, therefore, its reward vs. downside risk frontier changes with α as well. In contrast, 

SOR(�̃�𝑃, 𝑇(𝛾, 𝛼)) is invariant with respect to α; thus, one may apply Eq. (21) subject to any 

given expected return and obtain the minimum downside risk for each expected return, thereby 

creating the efficient mean-downside risky frontier of the risky portion of the portfolio for the 

chosen γ. Consequently, for any 𝑇(𝛾, 𝛼), one can use the minimization process of Eq. (21) to 

find the optimal composition of the risky component of the portfolio. The portfolio’s optimal 

split between the risk-free asset and the optimal risky component is determined subjectively by 

the investor.  
 

Figure 2 depicts the result of such an optimization process. It shows the trade-off between the 

expected return and the downside risk for a given positive γ. The portfolio’s optimal equity-

only component has an expected return of 𝐸(�̃�𝑒
∗). This optimal portfolio is determined 

objectively and is applicable only for investors who select a specific γ. The overall optimal 

subjective combination of the risky asset component vs. the risk-free asset for the investor who 

selected the said γ has an expected rate of return 𝐸(�̃�𝑃
∗ ) and a downside risk that is found at the 

tangency point between the investor’s relevant indifference curve and the tangent line that runs 

from Rf  toward the tangency point with the efficient risky frontier at point O.  

 

Proposition 5 below presents a second example of optimization process, applying it to the 

RVaR ratio which uses the responsive threshold𝑇(𝛾, 𝛼).  

 

Proposition 5. For a given γ, The RVaR(�̃�𝑃, 𝑞, 𝑇(𝛾, 𝛼)) performance ratio, is maximized by 

minimizing the coefficient of risk in Eq. 23:   

 

(23)        
𝑅𝑓−𝑄𝑒(𝑞)

𝐸(�̃�𝑒)−𝑅𝑓
=

𝑉𝑎𝑅𝑒(𝑞)

𝐸(�̃�𝑒)−𝑅𝑓
 

 

The numerator of Eq. 23 is again a measure of risk in terms of VaR of only the equity portion 

of the portfolio where the VaR is the difference between the riskless return and the q order 

quantile 𝑄𝑒(𝑞) of the equity risky component. Namely, there is a probability of q that the equity 

component’s return will be below 𝑅𝑓 by more than 𝑅𝑓 − 𝑄𝑒(𝑞). Minimizing the equity 

Coefficient of Risk (i.e., expected equity risk over expected equity premium), leads to the 

maximization of the PPR. To prove this, note that in Appendix B we show that  

RVaR(�̃�𝑃, 𝑇(𝛾, 𝛼))  can be written as: 
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Figure 2 

The efficient risky asset frontier; the optimal expected rate of return of the  

portfolio’s risky component, 𝑬(�̃�𝒆
∗); and the optimal expected  

rate of return of the overall portfolio 𝑬(�̃�𝒑
∗ ) for a chosen 𝜸  

 

 

 

(24)      RVaR(�̃�𝑃, 𝑞, 𝑇(𝛾, 𝛼)) ≡
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

𝑉𝑎𝑅(𝑄𝑃(𝑞))
=

(1−𝛾)(𝐸(�̃�𝑒)−𝑅𝑓)

𝛾(𝐸(�̃�𝑒)−𝑅𝑓)−(𝑄𝑒(𝑞)−𝑅𝑓)
  

 

Eq. 23 is directly developed from the right hand side of Eq. 24. Using the expressions presented 

in Appendix B for the other PPRs, it is easy to show that minimizing the relevant coefficient 

of risk, leads to the maximization of the PPRs provided they apply our responsive threshold. 

 

 

VII. CONSISTENCY OF OUR PORTFOLIO PERFORMANCE RATIOS THAT USE 

𝑻(𝜸, 𝜶) WITH STOCHASTIC DOMINANCE WITH A RISKLESS ASSET (SDR) 

RULES. 

 

To simplify the notation, let X and Y be the names and returns of two alternative portfolios with 

returns that formerly were denoted by �̃�𝑥 and �̃�𝑌, respectively, whose performance are to be 

evaluated by applying PPRs. We denote the q order quantile of X and Y as X(q) and Y(q), 

respectively.11 Let the preference of X over Y according to a performance ratio that employs a 

fixed threshold T  be denoted as 𝑋 𝐷
𝛹(𝑇)

𝑌  and let the same preference according to a performance 

ratio that uses 𝑇(𝛾, 𝛼) as a threshold be denoted as 𝑋 𝐷
𝛹(𝑇(𝛾,𝛼))

𝑌. These preferences present a 

complete ordering that, a priori, may be inconsistent with SD rules. Thus, in general, a 

performance ratio’s ordering may not be sufficient for dominance according to SD rules12. 

Levy and Kroll (1976) extended the SD rules to portfolios of risky assets that could be 

diversified with the risk-free asset and denoted them as SDR rules (i.e., Stochastic Dominance 

with Riskless asset rules). The First and Second degree SDR rules are denoted as FSDR and 

 
11    The quantile function is the inverse of the cumulative distribution function (CDF) and the q order quantile 

𝑋(𝑞) of a random variate �̃� satisfies the following probability condition: 𝑃𝑟(�̃� ≤ 𝑋(𝑞)) = 𝑞. 
12  With respect to SOR(T), Balder and Schweizer 2017 showed that if 𝑋 𝐷

𝑆𝑆𝐷
𝑌and 𝐸(𝑋) ≥ 𝑇 ≥ 𝐸(𝑌), then 

𝑋 𝐷
SOR(𝑇)

𝑌. 
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SSDR rules, respectively. They proved that if a portfolio consists of proportions α and (1-α) 

invested in 𝑋 and in the riskless asset, respectively, such that this portfolio dominates 

𝑌according to FSD or SSD, then for any combination of 𝑌 with the riskless asset, there is at 

least one other combination of 𝑋 with the riskless asset that dominates it according to the 

relevant FSD or SSD rules, respectively.  

 

It should be noted that the partial ordering according to SDR rules is potentially more effective 

than the ordering according to SD rules. For example, assume that 𝑋 and 𝑌 are uniformly 

distributed returns such that: 𝑋 ∼ 𝑈(0.0,0.2) and𝑌 ∼ 𝑈(0.05,0.10). In this example, there is 

no FSD or SSD dominance relationships between 𝑋 and 𝑌. The expected return of 𝑋 is greater 

than that of 𝑌 (0.10 >0.075); hence, 𝑌 clearly does not dominate 𝑋. In addition, 𝑋’s lowest 

outcome is smaller than that of 𝑌’s (0.00 < 0.05) and thus 𝑋 does not dominate 𝑌. However, if 

each of the risky assets could be diversified with a risk-free asset whose return is 7.2%, then, 

for example, a portfolio of 30% 𝑋 and 70% Rf is also distributed uniformly, 𝑋𝛼=30% ∼
𝑈(0.0504,0.1104), and it dominates 𝑌 according to FSD. Likewise, according to SDR rules, 

for any combination of 𝑌 and Rf, one can find at least one combination of 𝑋 with Rf that 

dominates it.  

 

This example shows that by considering the diversification opportunities of the risky and risk-

free alternatives, a lack of dominance according to the FSD or SSD rules between two 

distributions may nevertheless exhibit a dominance relationship according to the FSDR or 

SSDR rules, respectively.   

 

Note that dominance by SD rules (FSD, SSD, FSDR and FSDR rules) guarantees that all  

expected utility investors who fulfil  the appropriate general utility assumptions (U'>0 or also 

U''<0 for risk averters), will select the dominating alternative. A more effective SD rule tends 

to generate more cases of dominance out of the feasible set of alternatives. Thus if dominance 

by the SD rules implies also dominance by the PPR rule there will be also less conflicts between 

the PPR rule and the SD rules as conflicts can be accrue only between the PPR and SD 

dominance for  the smaller group of alternatives which belong to the efficient set.  

 

Proposition 6. If 𝑋 𝐷
𝐹𝑆𝐷

𝑌 and there are no short sales of either 𝑋 or 𝑌, then 𝑋 𝐷
𝛹(𝑇)

𝑌 for every T 

and 𝑋 𝐷
𝛹(𝑇(𝛾,𝛼))

𝑌 for every 𝛾 < 1, where the set 𝜓 includes the Kappa ratios of all degrees (and 

the Sortino ratio as a special case), the Omega ratios of all degrees, RVaR and RCVaR13. 

Proof: The proof is almost immediate, as is evident from Figure 3 that graphically depicts a 

case where 𝑋 𝐷
𝐹𝑆𝐷

𝑌. Such dominance implies that for each quantile of order 0 ≤ 𝑞 ≤ 1, 𝑋(𝑞) ≥

𝑌(𝑞). Thus, for each constant T or T(γ,α), we have 𝑇 − 𝑋(𝑞) ≤ 𝑇 − 𝑌(𝑞). We denote 

𝑃𝑟(�̃� ≤ 𝑋(𝑞) = 𝑇) and 𝑃𝑟(�̃� ≤ 𝑌(𝑞) = 𝑇) as the q order probabilities that lead to the T value 

under 𝑋 and 𝑌, respectively (see Figure 3). Due to the FSD assumption, 𝑃𝑟(�̃� ≤ 𝑇) ≤

𝑃𝑟(�̃� ≤ 𝑇); hence, the lower partial moment of any degree n under 𝑋 with respect to T , is 

smaller than the respective lower partial moment of degree n under 𝑌. 

 

 

 
13   Note that propositions 4 through 7 hold for the Kappa ratio of all 𝑛 ≥ 1 degrees. Recall that the Omega ratio 

of the first degree is identical to 1 plus the Kappa ratio of the first degree and the Sortino ratio is identical to the 

Kappa ratio of the second degree.  
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Figure 3 

Presentation of the FSD of X and Y 

 

In general, dominance according to FSD is relatively scarce among competing return 

distributions in competitive markets. Thus, it is expected that there will be many cases of 

conflicts between the complete rankings of the ratios that are included in 𝜓 and many 

distributions that belong to the “efficient set” according to the FSD rule. These cases of 

conflicts can be reduced by including the opportunity to diversify the portfolio’s risky 

component with the risk-free asset14 and by using higher moment stochastic dominance rules 

such as SSD and TSD. 

In the following three propositions, we extend proposition 6 to allow the opportunity to 

diversify the portfolio with a risk-free asset and by employing FSDR, SSD and SSDR rules. 

Proposition 7. If 𝑋 𝐷
𝐹𝑆𝐷𝑅

𝑌, then 𝑋 𝐷
𝛹(𝑇(𝛾,𝛼))

𝑌 for all 𝛾 < 1, where the set 𝜓 includes the Kappa 

ratios of all degrees (and the Sortino ratio as a special case), the Omega ratios of all degrees, 

the RVaR and the RCVaR. 

 

Proof. If there is FSDR of 𝑋 over 𝑌, then there is a combination of X and the risk-free asset 

that dominates a given combination of Y with the risk-free asset; thus, we are back in a situation 

that is presented in Proposition 6. FSDR guarantees that for any other combination of Y with 

the risk-free asset, there is at least one other dominating combination of X with the risk-free 

asset, and the conditions of Proposition 6 hold again.  

 

Proposition 8. If 𝑋 𝐷
𝑆𝑆𝐷

𝑌 and there are no short sales of either X or Y, then 𝑋 𝐷
𝛹(𝑇)

𝑌 for every T 

and 𝑋 𝐷
𝛹(𝑇(𝛾,𝛼))

𝑌 for every 𝛾 < 1, where the set 𝜓 includes the Kappa ratios of all degrees (and 

the Sortino ratio as a special case), the Omega ratios of all degrees and the RCVaR but not the 

RVaR. 

 

 
14   Additionally, the diversification of the risky assets with other risky assets can reduce the number of conflicts, 

but the analysis of these diversification possibilities is related more to the determination of the parametric 

optimal portfolio. 

Quantiles of X and YT

1

CDF

FY

FY(T)

FX(T)
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Proof: For every quantile of order 0 ≤ �̂� ≤ 1, the relationship 𝑋 𝐷
𝑆𝑆𝐷

𝑌is equivalent to the 

following:  

(25)    ∫ 𝑋(𝑞)
�̂�

0
𝑑𝑞  ≥   ∫ 𝑌(𝑞)

�̂�

0
𝑑𝑞       for all 0 ≤ �̂� ≤ 1 

Thus, for every �̂� and T, we have the following:  

(26)     ∫ [𝑇 − 𝑋(𝑞)]𝑑𝑞
�̂�

0
≤   ∫ [𝑇 − 𝑌(𝑞)]𝑑𝑞

�̂�

0
 

 

Eq. (26) holds since the variables 𝑇 − 𝑋(𝑞) and 𝑇 − 𝑌(𝑞) are integrated only over their 

respective positive domains, and the SSD of X over Y implies that the integral from zero to q 

under X(q) is greater (in the weak sense) than the respective integral under Y(q). Thus, the 𝑞𝑋
∗  

and 𝑞𝑌
∗  for which 𝑋(𝑞∗) = 𝑇 and 𝑌(𝑞∗) = 𝑇 must satisfy the relationship 𝑞𝑋

∗ ≤ 𝑞𝑦
∗ . It follows 

that the average lower partial moment of degree n of 𝑋 with respect to T for all 𝑋 ≤ 𝑇 , is 

smaller than the respective average lower partial moment of degree n of 𝑌 with respect to T: 

 

(27)   {∫ [𝑇 − 𝑋(𝑞)]𝑛𝑑𝑞
�̂�𝑋

∗

0
}

1

𝑛
≤ {∫ [𝑇 − 𝑌(𝑞)]𝑛𝑑𝑞

�̂�𝑌
∗

0
}

1

𝑛
 

Note that Proposition 8 does not hold for the RVaR performance ratio since the VaR measures 

the value of the CDF at T without integrating the CDF below T. It is therefore possible that at 

a specific probability level 𝑞∗, 𝑋(𝑞∗) < 𝑌(𝑞∗) so that at that point 𝑉𝑎𝑅𝑋(𝑞∗) > 𝑉𝑎𝑅𝑌(𝑞∗), 

even though X dominates Y according to SSD, and Eqs. (25) and (26) hold. Additionally, note 

that the non-coherence of the RVaR performance ratio with respect to the SSD rule may or 

may not cause conflicting SSD and RVaR ranking. For example, if X dominates Y according 

to SSD, then necessarily 𝐸(𝑋) ≥ 𝐸(𝑌). However, a conflict between SSD dominance and 

RVaR ranking is possible only if the following holds: 

(28) 
𝐸(𝑋)−𝑇

𝑉𝑎𝑅𝑋(𝑞∗)
<

𝐸(𝑌)−𝑇

𝑉𝑎𝑅𝑌(𝑞∗)
 

Namely, the ratio of the expected risk premium of X over its appropriate VaR is lower than the 

respective ratio under Y. The incoherency of RVaR as a performance ratio is analogous to the 

incoherency of VaR as a risk measure. 

Proposition 9. If  𝑋 𝐷
𝑆𝑆𝐷𝑅

𝑌 and there are no short sales of either X or Y, then 𝑋 𝐷 𝑌
𝜓(𝑇(𝛾,𝛼))

 for every  

𝛾 < 1, where the set 𝜓 includes the Kappa ratios of all degrees (and the Sortino ratio as a 

special case), the Omega ratios of all degrees, and the RCVaR but not the RVaR. 

Proof. If there is SSDR of 𝑋 over Y, then there is a combination of 𝑋 and the risk-free asset 

that dominates a given combination of Y with the risk-free asset, and thus we are back in the 

situation that is presented in Proposition 8. It is guaranteed that for any other combination of Y 

with the risk-free asset, there is at least one other dominating combination of X with the risk-

free asset, and the conditions of Proposition 8 hold again. 

Table 1 below summarizes the relationships between the five PPRs examined in this paper and 

our coherence axioms. 
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Table 1 

Analysis of five common Portfolio Performance Ratios (PPRs) given  

a set of axioms that renders coherence  

(“Yes” indicates that the axiom is satisfied; “No” indicates that the axiom is not satisfied) 

 

Panel A: Portfolio Performance Ratios with a fixed threshold, T 

 

Reward-to-

Standard 

Deviation 

Kappa Ratio of the 

nth degree (𝒏 ≥ 𝟏 ) 

Omega Ratio of the 

nth degree (𝒏 ≥ 𝟏 ) 
Reward-to-VaR Reward-to-CVaR 

Monotonicity with 

respect to FSD and 

SSD* 

No  Yes Yes No Yes. 

Monotonicity with  

respect to FSDR and 

SSDR* 

No No, if 𝑇 ≠ 𝑅𝑓 No, if 𝑇 ≠ 𝑅𝑓 No No, if 𝑇 ≠ 𝑅𝑓 

Size monotonicity Yes  Yes Yes Yes Yes 

PRTI 
No,  

except if 𝑇 = 𝑅𝑓 

No,  

except if 𝑇 = 𝑅𝑓 

No,  

except if 𝑇 = 𝑅𝑓 

No,  

except if𝑇 = 𝑅𝑓 

No,  

except if 𝑇 = 𝑅𝑓 

Concavity Yes Yes Yes, if n = 1 Yes Yes 

 

Panel B: Portfolio Performance Ratio with a responsive threshold, 𝑻(𝜸, 𝜶) 

 

Reward-to-

Standard 

Deviation 

Kappa Ratio of the 

nth degree (𝒏 ≥ 𝟏 ) 

Omega Ratio of the 

nth degree (𝒏 ≥ 𝟏 ) 
Reward-to-VaR 

Reward-to-

CVaR 

Monotonicity with 

respect to FSD and 

SSD* 

No Yes Yes No  Yes 

Monotonicity  with 

respect to FSDR and 

SSDR* 

No Yes Yes No Yes 

Size monotonicity Yes Yes Yes Yes Yes 

PRTI Yes Yes Yes Yes Yes 

Concavity Yes Yes Yes, if n = 1 Yes Yes 

 

 Monotonicity of a PPR with respect to a given SD rule means that if �̃�𝑥 dominates �̃�𝑦 by that SD rule, the PPR 

of �̃�𝑥 is surely not less than the PPR of �̃�𝑦. 

Table 1 exposes the two main contributions of our portfolio performance ratios with adjustable 

thresholds.  First, the PRTI axiom is satisfied by all the five PPRs examined, when using the 

responsive threshold 𝑇(𝛾, 𝛼). This is not so when the ratios employ a fixed threshold, 𝑇 ≠ 𝑅𝑓. 

This change is due to the fact that the responsive threshold restores the separation between the 

decision concerning the composition of the portfolio’s risky component and the extent to which 

the riskless asset is used. The second main benefit is apparent with respect to the monotonicity 

axiom when riskless borrowing and lending is available. Two ratios do not satisfy the 

monotonicity axiom with respect to FSDR and SSDR for any fixed threshold T, and three ratios 

(Kappa, Omega and RCVaR) satisfy the axiom only for 𝑇 = 𝑅𝑓. On the other hand, these latter 

ratios satisfy the monotonicity axiom with respect to FSDR and SSDR, given that the ratios 

employ the responsive threshold 𝑇(𝛾, 𝛼).   
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VIII. SUMMARY AND CONCLUSIONS  

 

This paper suggests four axioms for coherent PPRs and examines whether some well-known 

PPRs are coherent with respect to these axioms. In addition, the paper proposes the use of a 

responsive threshold, 𝑇(𝛾, 𝛼), which equals γ times the expected return of the portfolio plus 

(1-γ) times the risk-free rate. As shown, the responsive threshold for the portfolio ensures that 

the threshold for the equity (risky) component of the portfolio remains unchanged when the 

portfolio’s equity level changes. The use of the responsive threshold ensures the coherence of 

most of the PPRs that are analyzed in this paper reflecting the fact that, unlike the fixed 

threshold, the responsive threshold maintains the desired premise of separation between the 

objective optimal composition of the portfolio’s risky component and the subjective optimal 

portfolio’s equity level.   

 

The Portfolio Riskless Translation Invariance (PRTI) axiom, which is one of our four axioms, 

requires that the degree to which the risk-free asset is used in a portfolio will not have an effect 

on the performance measure. We prove theoretically and demonstrate empirically that common 

performance ratios that employ fixed thresholds other than the risk-free rate, do not satisfy this 

necessary axiom. The severity of the above PRTI incoherence is demonstrated by examining 

the performance ratios of portfolios of treasury bills and the S&P-500 index returns that span 

over 240 months, from 02.2000 to 01.2020. Four different ratios, that often use fixed thresholds 

other than the risk-free rate, are examined: the Kappa ratios of all degrees (including the Sortino 

ratio as a special case), the Omega ratios of all degrees, the Reward-to-VaR and the Reward-

to-CVaR ratios. If the fixed threshold T is set to be higher (lower) than the risk-free rate, all the 

examined ratios increase (decrease) substantially with the portfolio’s equity level. This 

undesirable shortcoming enables funds managers to increase the portfolio performance ratio 

by simply changing the portfolio’s degree of leverage rather than by better selection of the 

risky assets. Thus, we suggest and rationalize a remedy that renders the above performance 

measures coherence by replacing the fixed portfolio’s threshold with a threshold that responds 

to the portfolio’s equity level. We recall that the required informational content is the same as 

for determining the traditional performance ratio with fixed threshold T, except for the 

subjective loss aversion γ in place of the assumption on T. 

 

It should be noted that using the risk-free rate as a fixed threshold, is a specific case, in which 

𝑇(𝛾 = 0, 𝛼) = 𝑅𝑓. Given that the expected ex-ante return of a risky portfolio is higher than the 

risk-free return, the threshold 𝑇(𝛾, 𝛼) which reflects the investor’s sensitivity to loss, increases 

with γ.  

 

In contrast to conventional ratios, our modified performance ratios are invariant with respect 

to the portfolio’s equity level, α, and depend only on the selected subjective "loss benchmark" 

γ. Hence, they satisfy the PRTI axiom and thus cannot be changed by merely changing the 

portfolio’s weight of the risk-free asset. 

 

Stochastic dominance with the riskless asset rules (SDR) are more effective (i.e., generally 

generate smaller efficient sets) relatively to SD rules that do not consider diversification 

between the risky and the risk-free assets. With the exception of RVaR(γ), dominance by SDR 

rules implies dominance by PPRs that use 𝑇(𝛾, 𝛼), but not necessarily by PPRs that use fixed 

thresholds. Thus, conflicts between the preferences of expected utility investors and our PPRs 

that employ the responsive thresholds can occur only among return distributions belonging to 

the smaller SDR efficient set.  
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APPENDIX A 

 

THE COHERENCE AXIOMS AND SOME COMMON PORTFOLIO 

PERFORMANCE RATIOS WITH FIXED THRESHOLDS  

 

In this appendix, we examine the coherence of five common portfolio performance ratios with 

respect to our axiomatic foundation. We show that they do not satisfy the PRTI axiom except 

for the case where 𝑇 = 𝑅𝑓. They do satisfy the size monotonicity and concavity axioms. 

Monotonicity with respect to FSD, SSD, FDSR and SSDR was analyzed in the text. The ratios 

examined are the following: 

 

1. Reward to standard deviation ratios,  

2. The Kappa family ratios, 

3. The Omega family ratios, 

4. The Reward-to-VaR ratio, and 

5. The Reward-to-CVaR ratio. 

 

Part 1: Reward to standard deviation ratios 

This part of the appendix examines whether ratios that use the StD as its risk measure satisfy 

our PRTI axiom. We denote the standard deviation of the portfolio’s rate of return as 𝑆𝑡𝐷(�̃�𝑃) 

and the standard deviation of the risky component’s rate of return as 𝑆𝑡𝐷(�̃�𝑒). A general 

expression for a Sharpe-like ratio, denoted 𝑆(�̃�𝑃, 𝑇), that uses a fixed threshold 𝑇 = 𝑅𝑓 + 𝛥 is 

as follows: 

(A1)   𝑆(�̃�𝑃, 𝑇) =
𝐸(�̃�𝑃)−𝑇

𝑆𝑡𝐷(�̃�𝑃)
=

𝐸(�̃�𝑃)−(𝑅𝑓+𝛥)

𝑆𝑡𝐷(�̃�𝑃)
= 

  =
[𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓] − (𝑅𝑓 + 𝛥)

𝛼𝑆𝑡𝐷(�̃�𝑒)
= 

  =
𝛼[𝐸(�̃�𝑒) − 𝑅𝑓] − 𝛥

𝛼𝑆𝑡𝐷(�̃�𝑒)
=

𝐸(�̃�𝑒) − 𝑅𝑓 −
𝛥
𝛼

𝑆𝑡𝐷(�̃�𝑒)
= 

  =
𝐸(�̃�𝑒) − 𝑅𝑓

𝑆𝑡𝐷(�̃�𝑒)
−

𝛥

𝛼𝑆𝑡𝐷(�̃�𝑒)
 

Equation (A1) shows that if 𝛥 = 0 ⇒ 𝑇 = 𝑅𝑓 , the ratio 𝑆(�̃�𝑃, 𝑇) is the familiar Sharpe ratio, 

𝑆𝑅(�̃�𝑒), and it is invariant with respect to 𝛼. However, if 𝛥 ≠ 0  ⇒ 𝑇 ≠ 𝑅𝑓 , the ratio is not 

invariant with respect to changes in 𝛼 and therefore it does not satisfy the PRTI axiom.  

For  𝛼  >  0,  and a positive Δ, the Sharpe ratio increases with α, and the opposite holds for a 

negative Δ.   

 

Size monotonicity is satisfied by the Sharpe-like ratios as is easily verified by Eq. (A2): 
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(A2)   𝑆(𝜆(1 + �̃�𝑃), 𝑇) =
𝐸(𝜆(1+�̃�𝑃))−𝜆(1+𝑇)

𝑆𝑡𝐷(𝜆�̃�𝑃)
=

𝐸(1+�̃�𝑃)−(1+𝑇)

𝑆𝑡𝐷(�̃�𝑃)
=

𝐸(�̃�𝑃)−𝑇

𝑆𝑡𝐷(�̃�𝑃)
= 𝑆(�̃�𝑃, 𝑇) 

 

Finally, concavity is satisfied since the numerator is a weighted average of the respective 

numerators of the ratios of the individual securities while the denominator is less than (or equal 

to) the weighted average of the standard deviations of the individual securities due to 

diversification.  

 

Part 2: The Kappa family ratios  

This part of the appendix examines whether the Kappa ratios satisfy the PRTI axiom, the size 

monotonicity and the concavity axioms, starting with the PRTI axiom.  

Recall that the Kappa ratio of the first degree relates to the Omega ratio of the first degree so 

that 𝛺1(�̃�𝑃, 𝑇) = 𝛫1(�̃�𝑃 , 𝑇) + 1, and the Kappa ratio of the second degree is identical to the 

Sortino ratio. It is reasonable to assume 𝑇 = 𝑅𝑓 + 𝛥 < 𝐸(�̃�𝑃) since otherwise the expected 

reward to risk is negative. The nth degree Kappa ratio is given by the following: 

 

(A3)      𝛫𝑛(�̃�𝑃, 𝑇) =
𝐸(�̃�𝑃)−𝑇

{𝐸[max(𝑇−�̃�𝑃,0)]𝑛}
1
𝑛

= 

  =
𝐸[𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓] − (𝑅𝑓 + 𝛥)

⟨𝐸{max[(𝑅𝑓 + 𝛥) − (𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓), 0]}
𝑛

⟩

1
𝑛

 

For 𝛼 > 0, we may write the following: 

(A4)      𝛫𝑛(�̃�𝑃, 𝑇) =
𝐸(�̃�𝑒−𝑅𝑓−

𝛥

𝛼
)

{𝐸[max(
𝛥

𝛼
−�̃�𝑒+𝑅𝑓,0)]

𝑛
}

1
𝑛

  

Denoting �̃�𝛼 = �̃�𝑒 − 𝑅𝑓 −
𝛥

𝛼
 , we rewrite the ratio as follows:  

(A5)        𝛫𝑛(�̃�𝑃, 𝑇) =
𝐸(𝑢𝛼)

{𝐸[max(−�̃�𝛼,0)]𝑛}
1
𝑛

 

Since 𝐸(�̃�𝑝) > 𝑇, for 𝛼 > 0, we get 𝐸(�̃�𝛼) > 0: 

(A6)       𝐸(�̃�𝑃) > 𝑇 ⇒ 𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓 > 𝑅𝑓 + 𝛥 ⇒ 

     ⇒ 𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) − 𝛥 > 0 

     ⇒ 𝐸(�̃�𝑒) − 𝑅𝑓 −
𝛥

𝛼
> 0 ⇒ 𝐸(�̃�𝛼) > 0 

In addition, we note that 
𝜕𝐸(𝑢𝛼)

𝜕𝛼
=

𝜕𝑢𝛼

𝜕𝛼
=

𝛥

𝛼2. For 𝛥 = 0, we have 𝑇 = 𝑅𝑓, and from Eq. (A4), 

the ratio is invariant with respect to 𝛼: 

 

(A7)      𝛫𝑛(�̃�𝑃, 𝑇) =
𝐸(�̃�𝑒−𝑅𝑓)

{𝐸[max(𝑅𝑓−�̃�𝑒,0)]
𝑛

}

1
𝑛

 ⇒
𝜕𝛫𝑛(�̃�𝑃,𝑇)

𝜕𝛼
= 0 
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For 𝛥 ≠ 0, from Eq. (A5), we obtain the following:  

 

(A8) 
𝜕𝛫𝑛(�̃�𝑃,𝑇)

𝜕𝛼
= 

=

𝛥
𝛼2 {{𝐸[max(−�̃�𝛼 , 0)]𝑛}

1
𝑛 + 𝐸(�̃�𝛼) × (

1
𝑛) × {𝐸[max(−�̃�𝛼, 0)]𝑛}

1
𝑛

−1 × 𝑛 × 𝐸[max(−�̃�𝛼, 0)]𝑛−1}

{{𝐸[max(−�̃�𝛼, 0)]𝑛}
1
𝑛}

2  

The denominator of the derivative is clearly positive (in the weak sense – here and in what 

follows). The expression in the numerator’s curly brackets is positive as well since 𝐸(𝑢𝛼) > 0, 

as noted above. It follows that the sign of the derivative, 
𝜕𝛫𝑛(�̃�𝑃,𝑇)

𝜕𝛼
, is determined by the sign of 

𝛥. A positive 𝛥 indicates a threshold higher than the risk-free rate, in which case the derivative 

is positive; meanwhile, a negative 𝛥 indicates a threshold lower than the risk-free rate, in which 

case the derivative is negative. It follows that the Kappa ratios do not satisfy the PRTI axiom 

for all 𝑇 ≠ 𝑅𝑓. 

 

The size monotonicity axiom is satisfied by the Kappa ratio, since it is expressed in terms of 

rates of return, and indeed, 𝛫𝑛(𝜆�̃�𝑃, 𝑇) =
𝐸(𝜆�̃�𝑃)−𝜆𝑇

[𝐸[max(𝜆𝑇−𝜆�̃�𝑃,0]𝑛]
1
𝑛

= 𝛫𝑛(�̃�𝑃, 𝑇).   

 

The concavity axiom is satisfied by the Kappa ratio since the ratio’s numerator is a weighted 

average of the individual securities in the portfolios while the denominator is less than (or equal 

to) the weighted average of the downside deviations of the individual securities due to 

diversification.  

 

Part 3: The Omega family ratios  

We first analyze the compliance of the n-th degree Omega ratio as in Eq. (A9), with the PRTI 

axiom: 

 

(A9) 𝛺𝑛(�̃�𝑃, 𝑇) =
{𝐸[max(�̃�𝑃−𝑇,0)]𝑛}

1
𝑛

{𝐸[max(𝑇−�̃�𝑃,0)]𝑛}
1
𝑛

 

 

As T increases, the Omega ratio’s numerator decreases (in the weak sense, here and in what 

follows) and its denominator increases. Therefore, clearly, the ratio decreases. Hence, if 𝑇 >

𝑅𝑓, then 𝛺𝑛(�̃�𝑃, 𝑇) < 𝛺𝑛(�̃�𝑃, 𝑅𝑓); and if 𝑇 < 𝑅𝑓, then 𝛺𝑛(�̃�𝑃, 𝑇) > 𝛺𝑛(�̃�𝑃, 𝑅𝑓).  

 

To determine if the Omega ratio increases or decreases with 𝛼, we take the ratio’s first 

derivative with respect to 𝛼. We first rewrite the ratio as follows: 

 

(A10)  𝛺𝑃
𝑛(𝑇) =

{𝐸[max(�̃�𝑃−𝑇,0)]𝑛}
1
𝑛

{𝐸[max(𝑇−�̃�𝑃,0)]𝑛}
1
𝑛

=
{𝐸[max(𝛼�̃�𝑒+(1−𝛼)𝑅𝑓−𝑇,0)]

𝑛
}

1
𝑛

{𝐸[max(𝑇−𝛼�̃�𝑒−(1−𝛼)𝑅𝑓,0)]
𝑛

}

1
𝑛

 

For 𝛼 > 0 and using 𝑇 = 𝑅𝑓 + 𝛥, we may write the following: 
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(A11)      𝛺𝑛(�̃�𝑃, 𝑇) =
{𝐸[max(�̃�𝑒−𝑅𝑓−

𝛥

𝛼
,0)]

𝑛
}

1
𝑛

{𝐸[max(
𝛥

𝛼
−�̃�𝑒+𝑅𝑓,0)]

𝑛
}

1
𝑛

  

Using �̃�𝛼 = �̃�𝑒 − 𝑅𝑓 −
𝛥

𝛼
 again, we rewrite the ratio in a more compact way as follows:  

(A12)      𝛺𝑛(�̃�𝑃, 𝑇) =
{𝐸[max(�̃�𝛼,0)]𝑛}

1
𝑛

{𝐸[max(−�̃�𝛼,0)]𝑛}
1
𝑛

 

For 𝛥 = 0, we have 𝑇 = 𝑅𝑓; and from Eq. (A11), the ratio is invariant with respect to 𝛼: 

(A13)      𝛺𝑛(�̃�𝑃, 𝑇) =
{𝐸[max(�̃�𝑒−𝑅𝑓,0)]

𝑛
}

1
𝑛

{𝐸[max(𝑅𝑓−�̃�𝑒,0)]
𝑛

}

1
𝑛

 ⇒
𝜕𝛺𝑛(�̃�𝑃,𝑇)

𝜕𝛼
= 0 

We now take the derivative of the Omega ratio with respect to 𝛼assuming 𝛥 ≠ 0. From Eq. 

(A12), we obtain the following:  

(A14) 
𝜕𝛺𝑛(�̃�𝑃,𝑇)

𝜕𝛼
=

{(
1

𝑛
)[𝐸(max(�̃�𝛼,0))

𝑛
]

1
𝑛

−1
(𝑛)[𝐸(max(�̃�𝛼,0))𝑛−1](

𝛥

𝛼2)}{𝐸[(max(−�̃�𝛼,0))𝑛]
1
𝑛}

{[𝐸(𝑀𝑎𝑥(−�̃�𝛼,0))𝑛]
1
𝑛}

2  

 −

{(
1
𝑛) {𝐸[(max(−�̃�𝛼, 0))𝑛]

1
𝑛

−1} (𝑛)[𝐸(max(−�̃�𝛼, 0))]𝑛−1 (−
𝛥

𝛼2)} {𝐸[max(�̃�𝛼 , 0)]𝑛}
1
𝑛

{[𝐸(max(−�̃�𝛼, 0))𝑛]
1
𝑛}

2  

Clearly, the sign of the derivative is determined by the sign of 𝛥. For 𝛥 > 0, the sign of the 

derivative is positive; and for 𝛥 < 0, the sign is negative.  

 

The size monotonicity axiom is satisfied by the Omega family ratios, since from eq. (A9), it 

follows that the ratio is unaffected by the size in the investment.   

 

The concavity axiom is satisfied by the Omega ratio provided n = 1 since the ratio’s numerator 

is a weighted average of the individual securities in the portfolios while the denominator is less 

than (or equal to) the weighted average weighted average of the downside deviations of the 

individual securities due to diversification.  

 

Part 4: The Reward-to-VaR ratio 

This part of the appendix shows that the Reward-to-VaR ratio that uses a fixed threshold does 

not satisfy our PRTI axiom. However, the size monotonicity and the concavity axioms are 

satisfied by the ratio. As noted in Eq. (11), a portfolio’s value-at-risk is given by the following: 

𝑉𝑎𝑅(�̃�𝑃, 𝑞, 𝑇) = 𝑇 − 𝑄𝑃(𝑞), where 𝑄𝑃(𝑞) is the portfolio’s q quantile such that the probability 

that the portfolio’s return will be less than or equal to 𝑄𝑃(𝑞) is equal to q. It follows that 

(A15)   Pr[�̃�𝑃 ≤ 𝑄𝑃(𝑞)] = 𝑞 

and the value-at-risk of an all-equity portfolio is as follows: 
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(A16)   Pr[�̃�𝑒 ≤ 𝑄𝑒(𝑞)] = 𝑞.  

Since �̃�𝑃 = 𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓 when 𝛼 > 0 is a positively monotone transformation of �̃�𝑒, the 

portfolio’s q quantile corresponds to the risky component’s q quantile such that 

(A17) 𝑄𝑃(𝑞) = 𝛼𝑄𝑒(𝑞) + (1 − 𝛼)𝑅𝑓.  

From here and Eq. (10), we obtain that 
  

(A18) RVaR(�̃�𝑃, 𝑞, 𝑇) =
𝐸(�̃�𝑃)−𝑇

𝑉𝑎𝑅(�̃�𝑃,𝑞,𝑇)
= 

 =
𝐸(�̃�𝑃) − (𝑅𝑓 + 𝛥)

(𝑅𝑓 + 𝛥) − 𝑄𝑃(𝑞)
=

[𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓] − (𝑅𝑓 + 𝛥)

(𝑅𝑓 + 𝛥) − [𝛼𝑄𝑒(𝑞) + (1 − 𝛼)𝑅𝑓]
= 

 =
𝛼[𝐸(�̃�𝑒) − 𝑅𝑓] − 𝛥

𝛥 − 𝛼(𝑄𝑒(𝑞) − 𝑅𝑓)
=

𝐸(�̃�𝑒) − 𝑅𝑓 −
𝛥
𝛼

𝛥
𝛼 + 𝑅𝑓 − 𝑄𝑒(𝑞)

⇒ 

 ⇒ {
𝑖𝑓𝛥 > 0 RVaR(�̃�𝑃, 𝑞, 𝑇) < RVaR(�̃�𝑒 , 𝑞, 𝑇)

𝑖𝑓𝛥 < 0 RVaR(�̃�𝑃, 𝑞, 𝑇) > RVaR(�̃�𝑒 , 𝑞, 𝑇)
} 

 

Note that the denominator of (A18) is positive since 𝑄𝑒(𝑞) is typically negative and clearly 

𝑄𝑒(𝑞) − 𝑅𝑓 is more negative. 

Equation (A18) shows that if 𝛥 = 0, the Reward-to-VAR ratio is invariant with respect to 

changes in 𝛼, in which case it satisfies the PRTI axiom. However, when 𝛥 > 0, the term 𝛥/𝛼 

decreases as 𝛼 increases; therefore, the numerator of RVaR(�̃�𝑃, 𝑞, 𝑇) increases and its 

denominator decreases so that RVaR(�̃�𝑃, 𝑞, 𝑇) increases as 𝛼 increases. Conversely, when 𝛥 <

0, the term 𝛥/𝛼 increases (i.e., becomes less negative) as 𝛼 increases; therefore, the numerator 

of RVaR(�̃�𝑃, 𝑞, 𝑇) decreases and its denominator increases so that VaR(�̃�𝑝, 𝑞, 𝑇) decreases as 

𝛼 increases. Hence, if 𝛥 ≠ 0, the ratio is not invariant with respect to changes in 𝛼and therefore 

it does not satisfy the PRTI axiom.  

The size monotonicity axiom is satisfied by the RVaR ratio, since it is expressed in terms of 

return and is unaffected by the size in the investment.   

 

The concavity axiom is satisfied by the RVaR ratio since the numerator of the ratio is a 

weighted average of the similar numerators for the individual securities in the portfolios while 

the denominator is equal to the weighted average of the similar denominators of the individual 

securities.  

 

Part 5: The Reward-to-CVaR ratio 

The CVaR(�̃�𝑃, 𝑇) is the cumulative difference between T and the quantiles below it. Namely, the 

CVaR measure the average downside loss that has a probability of p. 

We now show that the Reward-to-CVaR ratio with a fixed threshold does not satisfy the PRTI 

axiom when 𝑇 ≠ 𝑅𝐹.  
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A(19)    RCVaR(�̃�𝑃, 𝑇) =
𝐸(�̃�𝑃)−𝑇

𝐶𝑉𝑎𝑅(�̃�𝑃,𝑇)
= 

 =
𝐸(�̃�𝑃) − (𝑅𝑓 + 𝛥)

𝐸[max( 𝑅𝑓 + 𝛥 − 𝑄𝑃(𝑞),0)]
=

[𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓] − (𝑅𝑓 + 𝛥)

𝐸[max( 𝑅𝑓 + 𝛥 − 𝛼𝑄𝑒(𝑞) − (1 − 𝛼)𝑅𝑓, 0)]
= 

 =
𝐸(𝑅𝑒) − 𝑅𝑓 −

𝛥
𝛼

𝐸[max(
𝛥
𝛼 + 𝑅𝑓 − 𝑄𝑒(𝑞),0)]

= 

Equation (A19) shows that only in the case where 𝛥 = 0 do we get the result that the ratio is 

invariant with respect to 𝛼, in which case it satisfies the PRTI axiom. If 𝛥 ≠ 0, the ratio is not 

invariant with respect to 𝛼 and therefore the PRTI axiom is not satisfied. Specifically, assuming 

𝛼 > 0, if 𝑇 > 𝑅𝑓   ⇒ 𝛥 > 0, then RCVaR(�̃�𝑝, 𝑇) is smaller than RCVaR(�̃�𝑒 , 𝑇). If 𝑇 < 𝑅𝑓   ⇒

𝛥 < 0, then RCVaR(�̃�𝑝, 𝑇) is higher than RCVaR(�̃�𝑒 , 𝑇).  

The size monotonicity axiom is satisfied by the RCVaR ratio, since it is expressed in terms of 

of return and is unaffected by the size in the investment.   

 

The concavity axiom is satisfied by the RCVaR ratio since the numerator of the ratio is a 

weighted average of the similar numerators for the individual securities in the portfolios while 

the denominator is equal to the weighted average of the similar denominators of the individual 

securities.  
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APPENDIX B 

 

THE COHERENCE OF SOME COMMON PORTFOLIO 

PERFORMANCE RATIOS WITH A RESPONSIVE THRESHOLD  

 

In this appendix, we show that the portfolio performance ratios that use our responsive 

threshold satisfy our PRTI axiom. The ratios examined are the following: 

 

1. Reward to standard deviation ratios, 

2. The Kappa family ratios, 

3. The Omega family ratios, 

4. The Reward-to-VaR ratio,  

5. The Reward-to-CVaR ratio. 

 

Part 1: Reward to standard deviation ratio 

This part of the appendix proves that Sharpe-like ratios that use the STD for a risk measure in 

conjunction with our responsive threshold, 𝑇(𝛾, 𝛼), as defined in Eqs. (13) and (14), satisfy our 

PRTI axiom. To see this, note that the Sharpe ratio of an all-equity portfolio with 𝛾 = 0  is 

given by the following: 

(B1)    SR(�̃�𝑒 , 𝑇(𝛾 = 0, 𝛼 = 1)) =
𝐸(�̃�𝑒)−𝑅𝑓

𝑆𝑡𝐷(�̃�𝑒)
  

In the general case where 𝛾 ≠ 0 and/or 𝛼 ≠ 1, from Eq. (14), the Sharpe-like ratio is as follows: 

(B2)      𝑆(�̃�𝑃, 𝑇(𝛾, 𝛼)) ≡
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

𝑆𝑡𝐷(�̃�𝑝)
= 

  =
{𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓} − {𝛾𝛼[𝐸(�̃�𝑒) − 𝑅𝑓] + 𝑅𝑓}

𝛼𝑆𝑡𝐷(�̃�𝑒)
= 

  =
𝛼[𝐸(�̃�𝑒) − 𝑅𝑓] − 𝛾𝛼[𝐸(�̃�𝑒) − 𝑅𝑓]

𝛼𝑆𝑡𝐷(�̃�𝑒)
=

(1 − 𝛾)(𝐸(�̃�𝑒) − 𝑅𝑓)

𝑆𝑡𝐷(�̃�𝑒)
= 

  = (1 − 𝛾)SR(�̃�𝑒 , 𝑇(𝛾 = 0, 𝛼 = 1)) 

This relationship demonstrates that for any chosen 0 ≤ 𝛾 < 1, the Sharpe-like ratio is invariant 

with respect to changes in 𝛼 and thus it satisfies the PRTI axiom. 

Part 2: The Kappa family ratios with 𝑻(𝜸, 𝜶) 

We now examine the Kappa ratios where the threshold is equal to 𝑇(𝛾, 𝛼) of Equation (13) and 

demonstrate that the PRTI axiom is satisfied. 

 

(B3)    𝛫𝑛(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

{𝐸[max(𝑇(𝛾,𝛼)−�̃�𝑃,0)]𝑛}
1
𝑛

 

Eq. (B3) can be specified as follows: 
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(B4)   𝛫𝑛(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
𝛼(𝐸(�̃�𝑒)−𝑅𝑓)−𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)

⟨𝐸{max[𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)−𝛼(�̃�𝑒−𝑅𝑓),0] }
𝑛

⟩

1
𝑛

 

This is the same as the following: 

(B5) 𝛫𝑛(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
(1−𝛾)[𝐸(�̃�𝑒)−𝑅𝑓]

⟨𝐸{max[𝛾(𝐸(�̃�𝑒)−𝑅𝑓)−(�̃�𝑒−𝑅𝑓),0] }
𝑛

⟩

1
𝑛

 

 

The last formulation of 𝛫𝑛(�̃�𝑃, 𝑇(𝛾, 𝛼)) is invariant with respect to α.  

 

Part 3: The Omega family ratios with 𝑻(𝜸, 𝜶). 

The Omega ratio of the nth degree with our responsive threshold is given by the following: 

 

 

(B6) 𝛺𝑛(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
{𝐸[max(�̃�𝑃−𝑇(𝛾,𝛼),0)]𝑛}

1
𝑛

{𝐸[max(𝑇(𝛾,𝛼)−�̃�𝑃,0)]𝑛}
1
𝑛

= 

  =
⟨𝐸{max[(𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓) − 𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) − 𝑅𝑓 , 0]}

𝑛
⟩

1
𝑛

⟨𝐸{max[𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓 − (𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓), 0]}
𝑛

⟩

1
𝑛

= 

  =
⟨𝐸{max[(�̃�𝑒 − 𝑅𝑓) − 𝛾(𝐸(�̃�𝑒) − 𝑅𝑓), 0]}

𝑛
⟩

1
𝑛

⟨𝐸{max[𝛾(𝐸(�̃�𝑒) − 𝑅𝑓) − (�̃�𝑒 − 𝑅𝑓), 0]}
𝑛

⟩

1
𝑛

 

 

As seen, the resulting ratio is invariant with respect to 𝛼. 

Part 4: The Reward-to-VaR ratio with 𝑇(𝛾, 𝛼). 

This part of the appendix shows that the RVaR ratio that uses the threshold 𝑇(𝛾, 𝛼) satisfies 

our PRTI axiom. Using 𝑇(𝛾, 𝛼), we have the following: 

 

(B7) RVaR(�̃�𝑃, 𝑞, 𝑇(𝛾, 𝛼)) =
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

𝑉𝑎𝑅(𝑄𝑃(𝑞))
= 

 =
𝐸[(𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓)] − [𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓]

𝛾𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) + 𝑅𝑓 − [𝛼𝑄𝑒(𝑞) + (1 − 𝛼)𝑅𝑓]
= 

 =
(1 − 𝛾)(𝐸(�̃�𝑒) − 𝑅𝑓)

𝛾(𝐸(�̃�𝑒) − 𝑅𝑓) − (𝑄𝑒(𝑞) − 𝑅𝑓)
 

 

Clearly, RVaR(�̃�𝑃, 𝑞, 𝑇(𝛾, 𝛼)) is invariant with respect to 𝛼 and satisfies our PRTI axiom. As 

noted in the text, the RVaR ratio may be inconsistent with the claim of Proposition 6. 

Part 5: The RCVaR ratio with 𝑇(𝛾, 𝛼). 

This part of the appendix shows that RCVaR(�̃�𝑃, 𝑞, 𝑇(𝛾, 𝛼)) is invariant with respect to 𝛼 and 

thus satisfies our PRTI axiom. 
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(B8) RCVaR(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
𝐸(�̃�𝑃)−𝑇(𝛾,𝛼)

∫ 𝑉𝑎𝑅(𝑄𝑃(𝑞))
𝑞

0

=
𝐸[(𝛼𝐸(�̃�𝑒)+(1−𝛼)𝑅𝑓)]−[𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)+𝑅𝑓]

∫ {𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)+𝑅𝑓−[𝛼𝑄𝑒(𝑞)+(1−𝛼)𝑅𝑓]}𝑑𝑞
𝑞

0

=

(1−𝛾)(𝐸(�̃�𝑒)−𝑅𝑓)

𝛾 ∫ {[(𝐸(�̃�𝑒)−𝑅𝑓)−(𝑄𝑒(𝑞)−𝑅𝑓)]}
𝑞

0 𝑑𝑞
.  

 

This results in the following: 

(B9) RCVaR(�̃�𝑃, 𝑇(𝛾, 𝛼)) =
(1−𝛾)

𝛾
RCVaR(�̃�𝑃, 𝑇(1,0)).  

Equation (B9) shows that for any chosen 𝛾, the ratio is invariant with respect to 𝛼 and therefore 

the ratio satisfies the PRTI axiom. Thus, maximizing the relative risk ratio (coefficient of risk 

of equity 
(𝑄𝑒(𝑞)−𝑅𝑓)

(𝐸(�̃�𝑒)−𝑅𝑓)
 ) is equivalent to maximizing RCVaR(�̃�𝑃, 𝑇(𝛾, 𝛼)).  

102



Value-based performance measurement with the Attribu-

tion Matrix and the Finite Change Sensitivity Index

Magni, C.A., Marchioni, A., Baschieri, D. (submitted). Value-based performance measurement

with the Attribution Matrix and the Finite Change Sensitivity Index.

103



Value-based performance measurement

with the Attribution Matrix and

the Finite Change Sensitivity Index

Carlo Alberto Magni * Andrea Marchioni � Davide Baschieri �

Abstract

We present a model of performance measurement and attribution for delegated invest-

ments that summarizes the manager effect and the client effect on value creation. In

particular, we introduce an innovative two-dimensional approach that, on one hand, de-

tects the (manager and client) decision effects, measuring the impact of manager/investor

choices on the overall investment performance and, on the other hand, detects the (man-

ager and client) period effects, measuring the impact of all the (manager and client)

decisions on the investment performance in a given assessment interval. As for the de-

cision effects, the value added of an active investment portfolio is broken down in terms

of the value generated by the decisions made by the manager (manager decision effect)

and the value generated by the client/investor (client decision effect). As for the period

effects, we quantify the impact of all the decisions made in the assessment interval on the

value creation generated in a single period by the manager (manager period effect) and

the client (client period effect), so that the sum of the periods’ attribution values is the

investment’s value added.

In order to accomplish the task, we employ the Finite Change Sensitivity Index (FCSI),

which enables one to quantify the impact of the most influential decisions made by man-

ager and investor, and a truncation approach which is equivalent to the well-known

residual-income approach. We then combine the two attribution dimensions into an At-

tribution Matrix (AM). Each element of the AM provides the amount of value added

generated in a given period by the decisions made by the manager or by the investor in

(the same or) another period.

Keywords. Value added, performance measurement, attribution matrix, sensitivity analysis,

FCSI, manager effect, client effect.
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1 Introduction

A number of metrics are used in practice for measuring the performance of a financial

investment and a substantial amount of contributions have recently dealt with pros and

cons of various metrics from several points of view, all of which taking into account the role

of a benchmark return in assessing the investment’s value added. Most of these measures

are return-based, that is, expressed as relative measures of worth (see Long and Nickels

199; Gredil et al. 2014; Magni 2014; Altshuler and Magni 2015; Jiang 2017; Cuthbert and

Magni 2018).

Investment performance of a delegated portfolio depends on two sets of decisions: In-

vestment decisions made by the manager and cash-flow decisions made by the client/investor.

Notwithstanding this double dependence and the prosperous development of mathemati-

cal techniques for the optimization of portfolio allocation and selection (Jin and Yu Zhou

2008; Lim et al 2011; Low et al 2012; Wang and Yu Zhou 2020; Cerny 2020), the role

of client’s performance has been somewhat disregarded, and a long-standing tradition in

academic literature has been mainly focused on the empirical measurement of managerial

skills such as the ability to invest/disinvest in undervalued/overvalued securities (asset

allocation and selection policy) or the capability to anticipate market behaviour and vary

the levels of risk exposures in upward and downward markets accordingly (market tim-

ing) (Angelidis, Giamouridis, and Tessaromatis 2013; Spaulding 2014, Andreu Sánchez,

Matalĺı-Sáez, and Sarto Marzal 2018, Crane and Crotty 2018, Elton and Gruber 2020, Bali

et al 2020. See also Banker, Chen, and Klumpes 2016 for the asymmetric ability of man-

agers in buying and selling), as well as the ability to control expenses and transaction costs

(Andreu, Serrano, and Vicente 2019, Galagedera et al. 2020). With a similar attitude,

Levy (1968) segregated (more precisely, cleaned) the manager’s results from the client’s

contribution and distribution decisions. Considering the client’s perspective, strong em-

pirical evidence has been found about the relation between past investment performance

and investors’ contribution-and-distribution decisions (Del Guercio and Tkac 2002; Ip-

polito 1992; Chevalier and Ellison 1997; Bollen 2007, Goyal, and Wahal 2008; Goriaev,

Nijman, and Werkel 2008). Futrhermore, Rakowski (2010) analysed the effect of daily

mutual fund flow volatility on fund performance, Jones and Martinez (2017) studied the

impact on asset allocation decisions of the investors’ expectations about the fund’s fu-

ture performance, and Kostovetsky and Warner (2015) found evidence on how past fund

investment perfomance and past cash contributions and distributions predict managerial

turnover.

Bagot and Armitage (2004) moved a step forward, from the analysis of managerial

skills to the contributions to value creation, however still concentrating just on managerial

performance. They noted that return-based methods of performance measurement and

attribution, such as the time-weighted return (TWR), do not answer the question about

‘What has the manager done for me, given my initial investment and the cash inflows and

outflows by me along the way?’, since these metrics assess the manager’s skills but do not

measure the manager’s contribution to the investment’s value added. Bagot and Armitage

(2004) and Armitage and Bagot (2009) endorsed a value-based method to answer this
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question about managerial contribution, since multiperiod attribution analysis is easier

using values than using returns. Furthermore, in a multiperiod relationship between a

fund manager and a client, Heinkel and Stoughton (1994) studied the contracts and the

client’s retention policies that most motivate the manager to acquire valuable information.

Despite the considerable attention drawn on the appropriateness of a performance

criterion and on the role of the manager in affecting the performance, financial models

explicitly measuring the impact of the investor’s decisions and the interaction between

the two kinds of decisions are lacking in literature. This paper aims to fill the gap. We

elaborate on the question by Bagot and Armitage (2004) and further ask, ‘What has

the client done for himself, with his own decisions on the intermediate cash deposits and

withdrawals into the investment portfolio, given the previous and future realized returns

derived from the investment policies of the managers?’.

More precisely, our paper measures the manager effect and the client effect, respec-

tively defined as the impact of the decisions made by the manager and by the investor on

the value added by an actively managed investment as opposed to a passively-managed

investment in the benchmark over a pre-selected assessment interval [0, n].

We identify, for each period and for each decision maker (manager and investor), the

decisions and the group of decisions that have been the most influential performance

drivers; we also attribute a specific value for each decision made in every period and rank

the decisions according to their impact on the investment’s performance.

Since the decisions by the fund manager about selection and allocation of assets in

a given period generate a well-determined holding period rate and the decisions of the

investor gives rise to a cash flow (into or out of the investment), the problem of measuring

the impact of decisions boils down to measuring the impact of the holding period rates

and the intermediate cash flows on the investment’s value added. Holding period rates

and interim cash flows will then give rise to the set of input parameters of the model, the

output being the investment’s value added. The analysis is then refined so as to assess

the impact of the decisions on each period performance. As a result, we propose a two-

dimensional model which enables one to understand in which periods and by whom the

most important (and less important) decisions have been made. The first dimension of

the analysis addresses the problem of assessing the impact of the investment decisions and

contribution-and-distribution decisions made in a given period onto the investment’s value

added in the assessment interval [0, n]. To accomplish this objective, the active investment

derived from the decisions of manager and client is compared with a passive investment

in a benchmark portfolio with no intermediate cash flows. We make use of a recently-

conceived technique of sensitivity analysis, which apportions a discrete change in a model

output to the discrete changes in the model inputs, the Finite Change Sensitivity Index

(FCSI), introduced in Borgonovo (2010a, 2010b). We suitably supplement this technique

with the fine-tuning of the FCSI procedure introduced in Magni et al. (2020) which allows

a perfect (i.e., 100%) decomposition of the value added. In the following step, we address

the second analytical dimension, namely, the determination of the effects of the decisions

made in the assessment interval [0, n] onto the value created in one single period. To

accomplish this objective, we use a truncation approach whereby truncated projects are
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generated under the assumption of liquidation of the investment at the various dates of the

assessment interval. We show that this truncation approach is equivalent to the residual-

income approach, well-known in finance and accounting (Lundholm and O’Keefe 2001;

Magni 2009). Finally, combining the two attribution analyses we obtain an Attribution

Matrix (AM) whose cells are the attribution values; an attribution value measures the

value added in a period t by the decisions made by the manager or the investor in a (same

or other) period. The sum of the elements of a row of the AM attributable to the manager

is the manager decision effect, whereas the sum of the elements of a row attributable to

the client is the client decision effect. The sum of the manager decision effect and the

client decision effect referred to the same period is the joint decision effect. Furthermore,

the sum of the elements of a column is the period effect, which may be partitioned into

manager period effect and client period effect.

We prove that the investment’s value added is equal to the sum of the decision effects,

which is also equal to the sum of the period effects. As a result, the model generates a

twofold decomposition of the investment’s value added in terms of decisions and in terms

of periods.

The remainder of the paper is structured as follows. Section 2 presents the setting and

Section 3 defines the investment’s performance in terms of finite changes. This enables

us to apply the (Clean) Finite Change Sensitivity Index (FCSI), which is described in

Section 4. Section 5 uses the Clean FCSI technique for finding what we call the (man-

ager and client) decision effects, that is, the impact of the investment decisions and the

contribution-and-distribution decisions made in a given period onto the overall perfor-

mance of an actively-managed investment. Section 6 presents a truncation approach to

find what we call the period effects, that is, the impact of the investment decisions and

contribution-and-distribution decisions made in the overall assessment interval onto the

value created in a single period; we show that such an impact is equal to the investment’s

residual income. Section 7 illustrates the procedure with a numerical example for an

eight-period investment. Section 8 builds the Attribution Matrix (AM) which combines

the two dimensions decomposing the decisions effects and the period effects and giving

rise to the aforementioned attribution values. Section 9 continues the example previously

introduced and completes it by building and commenting its AM. Some remarks conclude

the paper.

2 Economic setting

We analyze an investment (a fund or a portfolio of assets), starting at time t = 0 and

liquidating at time t = n, involving a client/investor who endows the fund manager a

monetary amount for actively managing the investment. Cash flows into and out of the

fund at time t are denoted as Ft, where Ft < 0 represents a net contribution into the

fund (outflow for the investor) and Ft > 0 represents a distribution from the fund (inflow

for the investor), with t = 0, 1, 2, . . . , n. While the investor makes the periodic decisions

on contributions and distributions, the fund manager makes periodic decisions on the

selection and allocation of the amount that remains invested in the fund. These decisions
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affect the beginning-of-period capital invested (investor’s decisions) and the single-period

rate of return of the fund managed (manager’s decisions). Consider period t (i.e., the

interval [t−1, t]) and let Et be the end-of-period portfolio value at time t (i.e., before cash

movement) and Bt denote the beginning-of-period portfolio value at time t (i.e., after cash

movement). The rate of return is calculated as

it =
Et
Bt−1

− 1. (1)

This relation says that the investment’s holding period rate it represents the relative

increase in the investment value. For example, if Bt−1 = 100, Et=110, then the increase

in value is it = 110/100− 1 = 10%. Therefore, one may also write

Et = Bt−1 · (1 + it) (2)

which says that the end-of-period value is equal to the beginning value marked up by the

return rate it.

The beginning-of-period value at time t (i.e., at the beginning of period t+ 1) may be

obtained from the end-of-period value by deducting the cash withdrawal from the fund

or adding the capital injections into the fund. This may be expressed formally as

Bt = Et − Ft
Bt = Bt−1(1 + it)− Ft.

(3)

Completing the numerical example, if Ft = 20, the portfolio value at the beginning of

period t+ 1 will be Bt = 110− 20 = 90 or, equivalently, 100(1 + 10%)− 20 = 90.

The above relation formally describes the change in portfolio value caused by both

the fund manager and the client/investor. More precisely, eq. (3) depends on both the

manager’s decisions, which affect it via the allocation and selection choices, and the client’s

decisions, which determine Ft via the contribution and distribution choices. The two

effects are intertwined, since Bt−1 is determined by past decisions of both manager and

investor. This means that the manager’s decisions and the investor’s decisions interact in

each period to determine the next-period investment value (see also Table 1).

Table 1: Breakdown of beginning-of-period investment value, Bt

decisions made by the manager and the investor in the interval [0, t−1] =⇒ Bt−1

decisions made by the manager in period t, i.e. in the interval [t−1, t] =⇒ it

decisions made by the investor at the end of period t, i.e. in date t =⇒ Ft

At time 0, the beginning-of-period value is B0 = −F0 > 0, and the ending value

of the portfolio at the liquidation time n, denoted as En, is entirely distributed to the

investor (i.e., Fn = En), so that the cash-flow stream for the investor is (F0, F1, . . . , En).

We denote as F = (F1, F2, . . . , Fn−1) ∈ Rn−1 the vector collecting the intermediate cash

flows, from t = 1 to t = n− 1, while i = (i1, i2, . . . , in) ∈ Rn denotes the vector collecting

the single-period rates of return from t = 1 until the liquidation date t = n.
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Focusing on the terminal date n, and using (1)-(3), one can express the net terminal

value En as a function of the return rates and the cash flows prior to n, collected in vectors

i and F , respectively:

En = En(i, F ) = −
n−1∑
t=0

(1 + it+1)(1 + it+2) . . . (1 + in) · Ft. (4)

The above relation tells us that the portfolio’s terminal value En is the result of the

previous decisions made by both the manager (who affects it) and the client (who affects

Ft), and it is formally equal to the difference between the future value of the contributions

and the future value of the distributions.

Consider now a benchmark index traded on the financial market and let i∗ = (i∗1, i
∗
2, . . . , i

∗
n)

be the vector collecting the benchmark single-period returns. The benchmark is used as

a reference index, and the single-period benchmark returns i∗t are used to capitalize, to a

given point in time, the interim contributions and distributions as well as the portfolio’s

net terminal value. If the point in time is t = 0, the discounting process leads to the

investor’s Net Present Value (NPV):

NPV =

n∑
t=0

Ft
(1 + i∗1)(1 + i∗2) . . . (1 + i∗t )

. (5)

If the point in time is t = n, the compounding process leads to the investor’s Net Future

Value, also known as Value Added (VA):

VA =
n∑
t=0

(1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n) · Ft = NPV · (1 + i∗1)(1 + i∗2) . . . (1 + i∗n). (6)

Since we aim at measuring the economic value created by the investment ex post, we will

focus on the latter. The investment creates value for the client if and only if the value

added is positive: VA > 0.

3 Value added: Active vs. passive investment

For a given vector of benchmark rates i∗ = (i∗1, i
∗
2, . . . , i

∗
n) and a given initial contribution

F0, (6) may be reframed in terms of i and F as follows:

VA = f(i, F ) =
(n−1∑
t=0

(1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n) · Ft
)

+ En =

=
(n−1∑
t=0

(1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n) · Ft
)

+
(
−
n−1∑
t=0

(1 + it+1)(1 + it+2) . . . (1 + in) · Ft
)

=
n−1∑
t=0

(
(1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n)− (1 + it+1)(1 + it+2) . . . (1 + in)

)
· Ft.

(7)
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Abusing notation, we denote as 0 ∈ Rn−1 the null vector, whose components are all

equal to zero. It is then worth noting that f(i∗, 0) denotes the value added of a passive

investment whereby an investor invests in the benchmark index and does not make any

contribution nor distribution between t = 1 and t = n. Replacing i with i∗ and F with 0

in (7) one finds that the value added by such a passive investment is zero (as expected):

f(i∗, 0) =
(

(1 + i∗1)(1 + i∗2) . . . (1 + i∗n)− (1 + i∗1)(1 + i∗2) . . . (1 + i∗n)
)
F0 = 0. (8)

In other words, the passive investment is value neutral. This implies that the value added

by the investment under consideration, VA, may be viewed as the result of switching from

a passive investment where the single-period rate is i∗t and the interim cash flows are zero

to an active investment where the single-period rate is it and the interim cash flows are

equal to F . Switching from (i∗, 0) to (i, F ) means to switch from a passive investment in

the benchmark (with no interim contributions nor distributions) to an active investment

where

(i) the fund manager selects assets and allocates the endowed amounts to the various

assets

(ii) the client selects the time and the size of contributions and distributions.

As a result, the value added changes from f(i∗, 0) to f(i, F ). Since f(i∗, 0) = 0, eq. (6)

may be rewritten as

VA =

value added
by the active investment︷ ︸︸ ︷

f(i, F ) −

value added
by the passive investment︷ ︸︸ ︷

f(i∗, 0). (9)

We now analyze and interpret (9) in some detail.

Given a generic initial outflow y0 and a vector of benchmark returns i∗, consider an

asset with a set of single-period rates x = (x1, x2, . . . , xn) and a set of interim contributions

and distributions y = (y1, y2, . . . , yn−1). The terminal asset value, denoted as En(x, y), is

En(x, y) = −
n−1∑
t=0

(1 + xt+1)(1 + xt+2) . . . (1 + xn) · yt (10)

while the value added is

f(x, y) =
n−1∑
t=0

(
(1 + i∗t+1)(1 + i∗t+2) · · · (1 + i∗n)− (1 +xt+1)(1 +xt+2) · · · (1 +xn)

)
· yt. (11)

Therefore, (9) expresses the difference between the function f evaluated at the point

(x1, y1) = (i, F ) and the same function evaluated at the point (x0, y0) = (i∗, 0), assuming

y0 = F0. Hence, (9) tells us that the economic value created by any investment is the

change in the value added obtained by turning from a passive strategy to an active

strategy, which shifts the value added from f(i∗, 0) to f(i, F ).

From now on, we will use eq. (9), not eq. (6). The reason is that, analytically, eq. (9) is

more useful for our ends, because it represents a finite change: The change of f(x, y) when

the independent variables shift from the point (x0, y0) = (i∗, 0) to the point (x1, y1) =
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(i, F ). This fact enables us to apply a most recent technique of sensitivity analysis to

f(x, y) so as to measure the effects of the decisions made by the manager and the investor

on VA (i.e., the manager decision effects and the client decision effects). In Section 4, we

describe the technique, so-called Finite Change Sensitivity Index and, then, in Section 5,

we show how to derive the (manager and client) decision effects.

4 Finite Change Sensitivity Indices

Sensitivity analysis (SA) is the study of how the variance of the output of a model (nu-

merical or otherwise) can be apportioned to different input key parameters (Saltelli et al.

2004). As such, it aims at quantifying how much of an output change is attributed to

a given parameter or a set of parameters. It is widely employed in finance and manage-

ment (Huefner 1972), for instance in analyzing the value creation of industrial projects

(Borgonovo and Peccati 2004, 2006; Borgonovo, Gatti, and Peccati 2010; Percoco and

Borgonovo 2012; Marchioni and Magni 2018; Magni and Marchioni 2020), the composi-

tion of optimal financial portfolios (Luo, Seco and Wu 2015), and the effects of corporate

debt (Donders, Jara and Wagner 2018; Délèze and Korkeamäki 2018).

There exist several SA techniques defined in the literature (see Borgonovo and Plischke

2016; Pianosi et al. 2016; Saltelli et al. 2008, 2004 for reviews of SA methods). Among

others, the Finite Change Sensitivity Indices (FCSIs) have been recently introduced in

Borgonovo (2010a, 2010b) for analyzing the impact of a finite change in the model inputs

on the model output and apportioning the influence of each input on the output change.

Formally, let f be the objective function, which maps the vector of inputs (also called pa-

rameters, or key drivers) α = (α1, α2, . . . , αp) ∈ Rp onto the model output f(α) ∈ R. Let

the inputs vary from α0 = (α0
1, . . . , α

0
p), the so-called base value, to α1 =

(
α1

1, α
1
2, . . . , α

1
p

)
,

the realized value. The corresponding model outputs are f(α0) and f(α1), so that the

output variation is

∆f = f(α1)− f(α0). (12)

Let (α1
j , α

0
(−j)) = (α0

1, α
0
2, . . . , α

0
j−1, α

1
j , α

0
j+1, . . . , α

0
p) be the vector consisting of all the

inputs set at their base value α0, except parameter αj which is given the realized value

α1
j . Analogously, let

(α1
j , α

1
k, α

0
(−j,k)) = (α0

1, α
0
2, . . . , α

0
j−1, α

1
j , α

0
j+1, . . . , α

0
k−1, α

1
k, α

0
k+1, . . . , α

0
p)

be the input vector where αj and αk are set to the realized values, while the remaining p−2

parameters are set at their base value, and so forth for all s-tuples of inputs, s = 1, 2, . . . , p.

Borgonovo (2010a, 2010b) defines two versions of FCSIs: First Order FCSI and Total

Order FCSI. The First Order FCSI of parameter αj measures the individual effect of αj

(Borgonovo 2010a) on the output change and is obtained as

∆1
jf = f(α1

j , α
0
(−j))− f(α0) (13)

or, in normalized version, Φ1
jf =

∆1
jf

∆f . The Total Order FCSI quantifies the total effect of
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αj , including both its individual contribution and its interactions with the other param-

eters. Before giving the definition of the Total Order FCSI, we need to understand the

interaction effects. Let ∆j,kf be the interaction between αj and αk, that is, the portion of

f(α1
j , α

1
k, α

0
(−j,k)) − f(α0) which is not explained by the individual effects ∆1

jf and ∆1
kf .

Specifically,

change in f caused by αj and αk︷ ︸︸ ︷
f(α1

j , α
1
k, α

0
(−j,k))− f(α0) =

individual contributions of αj and αk︷ ︸︸ ︷
∆1
jf + ∆1

kf +

interaction effect of αj and αk︷ ︸︸ ︷
∆j,kf

whence the interaction effect can be calculated as

∆j,kf = f(α1
j , α

1
k, α

0
(−j,k))− f(α0)−∆1

jf −∆1
kf.

Similarly, let ∆j,k,hf be the interaction among the inputs αj , αk and αh, which is the

portion of f(α1
j , α

1
k, α

1
h, α

0
(−j,k,h)) − f(α0) not explained by the individual effects and by

the interactions between any pair:

change in f caused by αj , αk, and αh︷ ︸︸ ︷
f(α1

j , α
1
k, α

1
h, α

0
(−j,k,h))− f(α0) =

individual contributions
of αj , αk, and αh︷ ︸︸ ︷

∆1
jf + ∆1

kf + ∆1
hf

+

pairwise interaction effect

of αj , αk, and αh︷ ︸︸ ︷
∆j,kf + ∆j,hf + ∆k,hf +

threewise interaction effect
of αj , αk, and αh︷ ︸︸ ︷

∆j,k,hf (14)

whence

∆j,k,hf = f(α1
j , α

1
k, α

1
h, α

0
(−j,k,h))− f(α0)−∆1

jf −∆1
kf −∆1

hf −∆j,kf −∆j,hf −∆k,hf

(analogously for a s-tuple, with s > 3). Switching from α0 to α1, the output change is

equal to the sum of all the individual effects and all the s-wise interactions, s = 1, 2, . . . , p

between parameters:

∆f =

individual contributions︷ ︸︸ ︷
p∑
i=j

∆1
jf +

pairs︷ ︸︸ ︷∑
j1<j2

∆j1,j2f +

triplets︷ ︸︸ ︷∑
j1<j2<j3

∆j1,j2,j3f + · · ·+

s-tuples︷ ︸︸ ︷∑
j1<j2···<js

∆j1,j2,...,jsf + . . .+

p-tuple︷ ︸︸ ︷
∆j1,j2,...,jpf︸ ︷︷ ︸

overall interaction effects

,

where
∑

j1<j2···<js ∆j1,j2,...,jsf is the sum of the interactions between s-tuples.

Borgonovo (2010a) defines the Total Order FCSI of αj , denoted as ∆Tj f , as the sum of

First Order FCSI of αj , ∆1
jf , and the interaction effect of αj , denoted as ∆Ij f and called
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Interaction FCSI, which is the sum of every interaction involving αj :

∆Ij f =
∑
j1<j2

j∈{j1,j2}

∆j1,j2f + . . .+
∑

j1<j2...<js
j∈{j1,j2,...,js}

∆j1,j2,...,jsf + . . .+ ∆j1,j2,...,jpf.

Therefore,

∆Tj f = ∆1
jf+∆Ij f = ∆1

jf+
∑
j1<j2

j∈{j1,j2}

∆j1,j2f+. . .+
∑

j1<j2···<js
j∈{j1,j2,...,js}

∆j1,j2,...,jsf+. . .+∆j1,j2,...,jpf

(15)

and, in normalized version, ΦTj f =
∆T

j f

∆f .

Computationally, the calculation of the Interaction FCSIs (and, therefore, the Total

Order FCSIs) may be extremely burdensome if the model does not contain a very small

number of inputs.1 However, Borgonovo (2010a, Proposition 1) provides a useful result

for reducing the number of calculations:

∆Tj f = f(α1)− f(α0
j , α

1
(−j)), ∀j = 1, 2, . . . , p, (16)

where (α0
j , α

1
(−j)) denotes the vector with each input equal to the realized value α1, except

for αj which is set equal to α0
j . This enables computing the total FCSI of αj without

calculating the Interaction FCSI of αj .

Unfortunately, the Total Order FCSI has an unpleasant feature: It does not provide

a complete decomposition of the output change. That is,

p∑
l=1

∆Tl f 6= ∆f = f(α1)− f(α0) or, equivalently,

p∑
l=1

ΦTl f 6= 1.

In other words, the sum of Total FCSIs explains less (or more) than 100% of the output

change.2 Recently, Magni et al. (2020) introduced a duplication-clearing factor which

eliminates the redundant, multiple interactions and allows a complete and exact decom-

position of the output change. The Clean Interaction FCSI of αj , here denoted as ∆I
jf ,

is defined as the product of the Interaction FCSI ∆Ij f and a suitable correction factor,

defined as the ratio of the overall interaction effects over the sum of Interaction FCSIs

1The number of individual contributions is p and the number of the interactions between parameters and
groups of parameters is equal to 2p − p− 1.

2To understand why this happens, consider that, in the sum of the Interaction FCSIs,
∑p

l=1 ∆Il f , the pairwise
interactions of αj and αk, appear twice (in ∆Ij f and in ∆Ikf); the three-wise interactions of αj , αk, and αh

appear three times (in ∆Ij f , in ∆Ikf , and in ∆Ihf); and so on for all the s-wise interactions, s = 2, 3, . . . , p. This
implies that the sum of Interaction FCSIs does not equate the overall interaction effects:

p∑
l=1

∆Il f︸ ︷︷ ︸
sum of Interaction FCSIs

6=

pairs︷ ︸︸ ︷∑
j1<j2

∆j1,j2f +

triplets︷ ︸︸ ︷∑
j1<j2<j3

∆j1,j2,j3f + · · ·+

s-tuples︷ ︸︸ ︷∑
j1<j2···<js

∆j1,j2,...,jsf + . . .+

p-tuple︷ ︸︸ ︷
∆j1,j2,...,jpf︸ ︷︷ ︸

overall interaction effects

and, therefore,
∑p

l=1 ∆Tl f 6= ∆f .
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(Magni et al. 2020):

∆I
jf = ∆Ij f ·

overall interaction effects︷ ︸︸ ︷∑
j1<j2

∆j1,j2f + · · ·+
∑

j1<j2···<js

∆j1,j2,...,jsf + · · ·+ ∆j1,j2,...,jpf

p∑
l=1

∆Il f︸ ︷︷ ︸
sum of Interaction FCSIs

. (17)

Considering that ∆Ij f = ∆Tj f −∆1
jf and

∑
j1<j2

∆j1,j2f + · · ·+
∑

j1<j2···<js

∆j1,j2,...,jsf + · · ·+ ∆j1,j2,...,jpf = ∆f −
p∑
j=1

∆1
jf,

one may reframe (17) as

∆I
jf =

∆Tj f −∆1
jf∑p

l=1(∆Tl f −∆1
l f)
·
(
∆f −

p∑
l=1

∆1
l f
)
. (18)

In other words, the Clean Interaction FCSI is computed by imputing a share of the overall

true interaction effect (∆f −
∑p

l=1 ∆1
l f) to parameter αj . This share is obtained as the

ratio of the Interaction FCSI of αj and the sum of all Interaction FCSIs (Magni et al.

2020).

The Clean Total Order FCSI of parameter αj , denoted as ∆T
j f , is defined as the sum

of individual contribution and Clean Interaction FCSI of αj (Magni et al. 2020):

∆T
j f = ∆1

jf + ∆I
jf (19)

and, in normalized version, ΦT
j f =

∆T
j f

∆f . It is easy to see that the Clean Total FCSIs

completely explain the output variation:

p∑
l=1

∆T
l f = ∆f, (20)

and, in normalized version,
∑p

l=1 ΦT
l f = 1.

The sign of a Clean Total FCSI, ∆T
j f , signals the directional effect of an input change

onto the output change: A positive (negative) index signals that the change in the input

has the effect of increasing (decreasing) the output. The absolute value of the Clean

Total FCSI quantifies the magnitude of the effect; one may then rank the input factors

according to their influence on the change in the objective function: Input αj has higher

rank than αk if and only if |∆T
j f | > |∆T

k f |. We denote the rank of parameter αj as Rj .

The rank vector is R = (R1, R2, . . . , Rp).
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5 Decision effects

Consider the vector of input factors α = (x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yn−1) ∈ R2n−1

where xt denotes a rate of return and yt denotes a cash flow. For a given initial outflow

y0 < 0 (investor’s initial contribution) and a given vector of benchmark returns i∗, the

asset allocation-and-selection policy followed by the manager in the various periods has

the effect of shifting the rates from x0 = i∗ to x1 = i and the client’s decisions about

contributions and distributions shift the cash flows from y0 = 0 to y1 = F . As already

seen, the change from

α0 = (i∗, 0) = (i∗1, i
∗
2, . . . , i

∗
n, 0, 0, . . . , 0)

to

α1 = (i, F ) = (i1, i2, . . . , in, F1, F2, . . . , Fn−1)

expresses the change from a passive investment policy to an active investment policy,

which makes the value added change from f(α0) = f(i∗, 0) to f(α1) = f(i, F ) (see Table

2). The output change is

f(α1)− f(α0) = f(i, F )− f(i∗, 0)

which is (9). Therefore, one may apply the Clean FCSI technique illustrated in Section 4

for decomposing VA in terms of period return rates and interim cash flows.

Table 2: Passive vs. active investment: Inputs, terminal value and value added

Inputs Passive Active

α = (x, y) α0 α1

α1 = x1 i∗1 i1
α2 = x2 i∗2 i2
α3 = x3 i∗3 i3
...

...
...

αn−1 = xn−1 i∗n−1 in−1

αn = xn i∗n in
αn+1 = y1 0 F1

αn+2 = y2 0 F2

αn+3 = y3 0 F3
...

...
...

α2n−1 = yn−1 0 Fn−1

Terminal value and value added

En(α) = En(x, y) −
∏n

l=1(1 + i∗l ) · F0 −
∑n−1

t=0

∏n
l=t+1(1 + il) · Ft

f(α) = f(x, y) f(α0) f(α1)

It is then possible to identify the investment choices made by the manager and the

contributions/distributions decisions made by the client which have most affected the
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overall investment’s performance. In particular, the value added may be considered as

the sum of all the effects of the active selection and allocation choices made in the various

periods and the contribution-and-distribution decisions, as opposed to the passive strategy

consisting in investing in the benchmark portfolio with no contributions nor distributions.

The Clean Total FCSI, ∆T
j f , provides the amount of value added that is determined

by the decision made in a period by the manager or the client. We call ∆T
j f the decision

effect of parameter αj . It is worth noting that the piece of information provided by ∆T
j f is

not whether and how much the investment outperforms or underperforms the benchmark

in a given period, but whether the decisions made by the manager or the client in a given

period have contributed, overall, to outperform or underperform the passive benchmark

investment in the time interval [0, n] and how much of the value added is attributable

to them. This piece of information necessarily takes account of the interactions with the

decisions made in the other periods. Indeed, the manager’s investment decisions made

in period t determine it, which measures the relative period growth in the investment’s

value and, therefore, affect the magnitude of the value added (not only in period t, but

also) in the following periods t + 1, t + 2, . . ., n. Analogously, the client’s choices about

contributions and distributions made by the client in period t determine Ft, which affects

the beginning-of-period capital Bt, and, therefore, the magnitude of the value added in

period t + 1, and also in the following periods t + 2, t + 3, . . ., n. Overall, there are

p = 2n−1 decision effects attributable to the decisions of manager and client: The first n

effects are attributable to the manager’s decisions and are called manager decision effects.

The remaining n−1 effects are attributable to the investor’s decisions and are called client

decision effects. Finally, we define the joint decision effect as the sum of the manager

decision effect and the client decision effect related to the decisions made in the same

period:

joint decision effect in period j = ∆T
j f + ∆T

n+jf, for j = 1, . . . , n (21)

with ∆T
2nf = 0. The value added is equal to the sum of all the joint decision effects:

VA =

n∑
j=1

(∆T
j f + ∆T

n+jf) for j = 1, . . . , n. (22)

For summarizing the role of the two decision makers on value creation, we define

the manager effect as the sum of the n manager decision effects,
∑n

j=1 ∆T
j f (and, in

normalized version,
∑n

j=1 ΦT
j f) and the client effect as the sum of the n−1 client decision

effects,
∑2n−1

j=n+1 ∆T
j f (and, in normalized version,

∑2n−1
j=n+1 ΦT

j f), such that the value added

is equal to the addition of manager effect and client effect:

VA =

manager effect︷ ︸︸ ︷
n∑
j=1

∆T
j f +

client effect︷ ︸︸ ︷
2n−1∑
j=n+1

∆T
j f . (23)
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6 Period effects

As seen, the Clean Total FCSI ∆T
j f represents the decision effect and measures the global

effect of a given decision onto VA. In this section, we want to capture the period effect,

that is, the global effect of a given period onto VA. In order to do so, we use what we call

a truncation approach: We assume that the investment is fully liquidated at the date m

such that 0 ≤ m ≤ n. This implies that the cash-flow stream of the investment truncated

at time m is F (m) = (F0, F1, . . . , Fm−1, Em, 0, 0, . . . , 0) where

Em = Em(x, y) = −
m−1∑
t=0

(1 + xt+1)(1 + xt+2) . . . (1 + xm) · yt. (24)

From (5), the NPV of such a truncated project, denoted as NPV(m), is

NPV(m) =
m−1∑
t=0

Ft
(1 + i∗1)(1 + i∗2) . . . (1 + i∗t )

+
Em

(1 + i∗1)(1 + i∗2) . . . (1 + i∗m)

for m = 1, 2, . . . , n. We denote as f (m) the value added (at time t = n) by the project

truncated at time t = m. Using (6),

f (m) = NPV(m) · (1 + i∗1)(1 + i∗2) . . . (1 + i∗n)

=
m−1∑
t=0

Ft · (1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n) + Em · (1 + i∗m+1)(1 + i∗m+2) . . . (1 + i∗n)

(25)

with f (0) = 0. Consider now two consecutive truncated projects: The difference f (m) −
f (m−1) represents that part of the investment’s VA generated in period m (i.e., the interval

[m−1,m]). We denote it as ∆T fm and call it period effect :

∆T fm = f (m) − f (m−1); (26)

its normalized version is denoted as ΦT fm = ∆T fm
VA .

The period effect is the effect on the value created in period m by the decisions made

by the manager and the investor in the various periods .3 It is easy to check that the sum

of the period effects is exactly equal to VA:

n∑
m=1

∆T fm =

n∑
m=1

(f (m) − f (m−1))

= (f (1) − f (0)) + (f (2) − f (1)) + . . . (f (n−1) − f (n−2)) + (f (n) − f (n−1))

= f (n) = f(i, F ) = VA.

We have then generated two attribution groups: The group of the manager and client

decision effects (the clean FCSIs) and the group of the period effects (the change in value

3Notably, only the decisions made up to time m (may) have a nonzero impact on the VA generated in period
m and following periods, whereas any decision made after time m has no effect whatsoever on period m and
previous periods (see Remark 2).
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added of the truncated projects), which perfectly decompose the investment’s VA:

p∑
j=1

∆T
j f = VA =

n∑
t=1

∆T ft. (27)

In other words, we have two dimensions of analysis and two vectors, (∆T
1 f,∆

T
2 f, . . . ,∆

T
p f) ∈

Rp and (∆T f1,∆
T f2, . . . ,∆

T fn) ∈ Rn, both accomplishing a perfect breakdown of the VA.

(In the next section, we combine the decision effects and the period effects and flesh out

the contribution to VA of a given parameter αj in a given period t.)

Table 3: Period effect and residual income

Time F (m−1) F (m) ∆F (m)

0 F0 F0 0
1 F1 F1 0
2 F2 F2 0
...

...
...

...
m−2 Fm−2 Fm−2 0
m−1 Em−1 Fm−1 −Bm−1

m 0 Em Em
m+1 0 0 0
m+2 0 0 0
...

...
...

...
n 0 0 0

Remark 1. It is worth noting that the information supplied by the period effect is

logically equivalent to the information provided by the well-known notion of residual

income (Lundholm and O’Keefe 2001; Magni 2009). The latter expresses the value created

by an investment in a given period [m−1,m]. It is defined as Bm−1(im− i∗m) and, as such,

it measures the return over and above the normal return that would be generated by

investing the same beginning-of-period capital Bm−1 in the passive benchmark portfolio.

Using (25) and (26), one gets

∆T fm =
(

(1 + i∗m+1) . . . (1 + i∗n)
)
·
(
Em − (Em−1 − Fm−1)(1 + i∗m)

)
=
(

(1 + i∗m+1) . . . (1 + i∗n)
)
·
(
Bm−1(1 + im)−Bm−1(1 + i∗m)

)
=
(

(1 + i∗m+1) . . . (1 + i∗n)
)
·Bm−1(im − i∗m)

or, equivalently,

Bm−1(im − i∗m) =
∆T fm

(1 + i∗m+1) · · · (1 + i∗n)
.

Therefore, the period-m effect, ∆T fm, is the value, at time n, of the residual income
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of period m or, equivalently, the residual income of period m, Bm−1(im − i∗m), is the

value of the period-m effect discounted to time m. Conceptually, the equivalence may

be best understood by considering two consecutive truncated projects. Continuing the

investment from m− 1 to m, and considering that Em−1 − Fm−1 = Bm−1, the incremental

cash-flow stream is ∆F (m) = F (m)−F (m−1) = (0, 0, . . . ,−Bm−1, Em, 0, 0, . . . , 0) (see Table

3). This incremental cash-flow stream tells us that, by continuing the investment from

m−1 to m the investor gives up Bm−1 at time m−1 but receives an additional Em at time

m. Whether the continuing value is greater or smaller of the truncation value depends on

whether the manager’s investment decisions are value-creating or not. Specifically, if Bm−1

were invested in the benchmark, the end-of-period market value would be Bm−1(1 + i∗m).

The difference Em − Bm−1(1 + i∗m) is then the incremental value generated in period m;

owing to (2), it may be reframed as the residual income of period m: Em−Bm−1(1+i∗m) =

Bm−1(im−i∗m). The value of this residual income at time n is precisely the m-period effect,

∆T fm.

Remark 2. Inspecting (24) and (25), it should be clear that the return rates xt of periods

t > m and the cash flows yt of periods t ≥ m do not affect Em(x, y) and f (m)(x, y), because

these decisions only intervene after the liquidation date m. Therefore,

∆T
j f

(m) = 0 for the inputs αj = xt with t > m or αj = yt with t ≥ m. (28)

This implies that the effect of αj is null on the periods preceding period t, that is,

∆T
j fm = 0 for the inputs αj = xt with t > m or αj = yt with t ≥ m. (29)

7 Worked example

In this section, we consider an investment management agreement whereby an investor

endows a fund manager the capital amount B0 = −F0 = 100 (in thousands). The in-

vestment lasts n = 8 periods. The input data are described in Table 4: The first column

describes the 15(= 2 · 8− 1) variables of the model, distinguishing the rates (xt) from the

cash flows (yt) (and, therefore, the manager’s decisions from the investor’s decisions). The

second column expresses the benchmark (i.e., base) case and the third column describes

the realized case.

Table 5 describes the beginning-of-period and end-of-period values of both passive

investment and active investment, as well as the returns and the cash flows. From (8), the

value added of the passive investment is 0 (as expected), and, from (7), the value added

of the active investment is f(i, F ) = 2.466 (see last row of the table).

Therefore, from (9), the increase in value added from the passive (value-neutral) in-

vestment policy to the active investment policy is VA = f(i, F ) − f(i∗, 0) = 2.466 − 0 =

2.466 > 0, meaning that the active investment creates value.

Using Clean FCSIs, we now decompose the value added in terms of the influences

of active investment choices and contribution/distribution decisions made in the various

periods, by evaluating the effect on f(α) when the input vector is changed from the
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Table 4: Worked example: Inputs

α α0 = (i∗, 0) α1 = (i, F )

α1 = x1 i∗1 = 3% i1 = 4%
α2 = x2 i∗2 = 4% i2 = 5%
α3 = x3 i∗3 = 3% i3 = 2%
α4 = x4 i∗4 = 6% i4 = 4%
α5 = x5 i∗5 = 1% i5 = 3%
α6 = x6 i∗6 = 2% i6 = 3%
α7 = x7 i∗7 = 2% i7 = 5%
α8 = x8 i∗8 = 5% i8 = 4%
α9 = y1 0.00 30.00
α10 = y2 0.00 −20.00
α11 = y3 0.00 40.00
α12 = y4 0.00 10.00
α13 = y5 0.00 −30.00
α14 = y6 0.00 60.00
α15 = y7 0.00 20.00

Table 5: Passive vs. active investment: Cash flows, market values, and value added

Passive Investment (i∗, 0) Active Investment (i, F )

t
Beginning

value (t−1)
Rate of
return

Ending
value (t)

Cash
flow

Beginning
value (t)

Beginning
value (t−1)

Rate of
return

Ending
value (t)

Cash
flow

Beginning
value (t) t

0 −100.00 100.00 −100.00 100.00 0
1 100.00 3.00% 103.00 0.00 103.00 100.00 4.00% 104.00 30.00 74.00 1
2 103.00 4.00% 107.12 0.00 107.12 74.00 5.00% 77.70 −20.00 97.70 2
3 107.12 3.00% 110.33 0.00 110.33 97.70 2.00% 99.65 40.00 59.65 3
4 110.33 6.00% 116.95 0.00 116.95 59.65 4.00% 62.04 10.00 52.04 4
5 116.95 1.00% 118.12 0.00 118.12 52.04 3.00% 53.60 −30.00 83.60 5
6 118.12 2.00% 120.49 0.00 120.49 83.60 3.00% 86.11 60.00 26.11 6
7 120.49 2.00% 122.90 0.00 122.90 26.11 5.00% 27.41 20.00 7.41 7
8 122.90 5.00% 129.04 129.04 7.41 4.00% 7.71 7.71 8

f(x, y) 0.000 2.466 f(x, y)
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benchmark vector α0 = (i∗, 0) to the active-investment vector α1 = (i, F ).

Table 6: Decomposition of the value added: Decision effects (∆T
j f)

α = (x, y) ∆1
jf ∆I

jf ∆T
j f ΦT

j f Rj

Manager decision effects
α1 = x1 1.253 0.019 1.272 51.57% 4
α2 = x2 1.241 −0.167 1.074 43.56% 7
α3 = x3 −1.253 0.038 −1.215 −49.26% 5
α4 = x4 −2.435 0.529 −1.905 −77.27% 2
α5 = x5 2.555 −0.696 1.859 75.39% 3
α6 = x6 1.265 −0.177 1.088 44.12% 6
α7 = x7 3.795 −1.499 2.296 93.13% 1
α8 = x8 −1.229 0.581 −0.648 −26.29% 9

Client decision effects
α9 = y1 0.000 −0.567 −0.567 −22.99% 11
α10 = y2 0.000 0.244 0.244 9.91% 14
α11 = y3 0.000 −0.710 −0.710 −28.79% 8
α12 = y4 0.000 −0.277 −0.277 −11.25% 13
α13 = y5 0.000 0.488 0.488 19.79% 12
α14 = y6 0.000 −0.634 −0.634 −25.70% 10
α15 = y7 0.000 0.101 0.101 4.08% 15

Total 5.193 −2.727 2.466 100%

Table 6 collects the results of the sensitivity analysis: Column 1 presents the input

parameters, column 2 supplies the individual contributions of αj , calculated as in (13);

column 3 reports the Clean Interaction FCSI, which is computed as in (18); column 4 (in

gray) shows the Clean Total Order FCSI as defined in (19). They represent the manager

decision effects (the first eight effects, whose sum is the manager effect) and the client

decision effects (the following seven effects, whose sum is the client effect). As expected,

they exactly decompose the value added, with
∑15

j=1 ∆T
j f = f(i, F ) − f(i∗, 0) = 2.466 =

VA.4 Column 5 reports the normalized decision effects ΦT
j f and, finally, column 6 shows

their ranking (see also the bar chart in Figure 1).

The most influential parameter on VA is the return rate in period t = 7, α7 =x7, with

∆T
7 f = 2.296, signifying that the investment decisions made by the manager in period 7,

realizing the return rate i7 = 5% (greater than the benchmark index of the same period

i∗7 = 2%), have overall contributed positively to the active-investment performance and

have had the greatest impact on VA.

For the sake of interpretability, it is worth noting that the individual contribution of

α7 = x7 to the value added is obtained with the following argument: Suppose the client

invests passively in the benchmark index from time t = 0 to time t = 6, then switches

4It can be shown that the standard Total FCSIs (Borgonovo 2010a, 2010b) do not accomplish a perfect
decomposition. Specifically,

15∑
j=1

∆Tj f = −0.230 6= 2.466 = VA.
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Figure 1: Attribution chart: Decomposition of value added into manager decision effects (first
eight bars) and client decision effects (remaining seven bars).

Table 7: Individual contribution of the decisions
made by the manager in period 7

α = (x, y) (α0) (α0
7, α

0
(−7))

α1 = x1 i∗1 = 3% i∗1 = 3%
α2 = x2 i∗2 = 4% i∗2 = 4%
α3 = x3 i∗3 = 3% i∗3 = 3%
α4 = x4 i∗4 = 6% i∗4 = 6%
α5 = x5 i∗5 = 1% i∗5 = 1%
α6 = x6 i∗6 = 2% i∗6 = 2%
α7 = x7 i∗7 = 2% i7 = 5%
α8 = x8 i∗8 = 5% i∗8 = 5%
α9 = y1 0 0
α10 = y2 0 0
α11 = y3 0 0
α12 = y4 0 0
α13 = y5 0 0
α14 = y6 0 0
α15 = y7 0 0
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to the fund manager’s active investment at time t = 6 and then switches back to the

benchmark index at time t = 7, without intermediate contributions and distributions.

This means that α shifts from α0 to (α1
7, α

0
(−7)) (i.e., all parameters are unvaried at their

base value while α7 = x7 is changed from α0
7 = x0

7 = 2% to α1
7 = x1

7 = 5%. From (11),

and considering that yt = 0 for t = 1, 2, . . . , 7, the switching strategy leads to

f(α1
7, α

0
(−7)) = f(0.03, 0.04, 0.03, 0.06, 0.01, 0.02,0.05, 0.05, 0, 0, 0, 0, 0, 0, 0)

= −100
(

(1.03)(1.04)(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)+

− (1.03)(1.04)(1.03)(1.06)(1.01)(1.02)(1.05)(1.05)
)

= 3.795

and the no-switching strategy is the passive investment which, owing to (8), leads to

f(α0) = f(0.03, 0.04, 0.03, 0.06, 0.01, 0.02,0.02, 0.05, 0, 0, 0, 0, 0, 0, 0) =

= −100
(

(1.03)(1.04)(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)+

− (1.03)(1.04)(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)
)

= 0.

The difference

∆1
7f = f(α1

7, α
0
(−7))− f(α0) = 3.795− 0 = 3.795

represents the individual contribution of α7 = x7, calculated as in (13), that is the impact

of the investment decisions made by the manager in period t = 7 on the value added,

taken in isolation from the other inputs. The interaction effect is calculated as in eq. (18):

∆I
7f = −1.499. That is, the interaction shows a partial compensating effect. Overall, the

manager contribution (i.e., the contribution to VA of the investment policy made by the

manager) in period 7 is ∆T
7 f = 3.795− 1.499 = 2.296.

In terms of weight, the manager’s contribution in period 7 explains VA almost entirely

(ΦT
7 f = 93.13%). However, this does not mean that the impact of the individual decisions

made in the other periods is small, because some of the parameters have had a strong

positive impact and some other parameters have had a strong negative impact. For

example, α4 = x4 is the second most influential input and it contributes negatively (i4 =

4% is lower than the passive index i∗4 = 6%) with ∆T
4 f = −1.905, corresponding to

ΦT
4 f = −77.27%, which means that the manager has destroyed much value in that period.

However, in the following period, the manager’s decisions have created value (i5 = 3% >

1% = i∗5): The total contribution of α5 = x5 is ∆T
5 f = 1.859 which corresponds to

ΦT
5 f = 75.39% of VA, implying that this is the third most influential parameter and that

it has almost entirely offset the poor performance of period 4.

At the opposite side of the parameters’ ranking, the least influential input in the

whole set is the client contribution in period 7, y7 = α15. This means that the client’s

decision of withdrawing 20 from the investment at t = 7 is the lowest-impact decision.

The contribution of y7 is ∆T
15f = 0.101, corresponding to a 4.08% of the value added.

The penultimate rank and the third-last rank are also determined by client’s decisions,

namely, y2 = α10 and y4 = α12, with ∆T
10f = 0.244 and ∆T

12f = −0.277.

As anticipated, for any fixed period t, a joint decision effect is obtained as the sum of
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Figure 2: Attribution chart: Decomposition of value added into manager effect and client effect
(see eq. (23))

the manager decision effect and the client decision effect of period t. Table 8 reports the

joint decision effects as defined in eq. (21). The highest positive effect is in period t = 7,

equal to 2.397, meaning that the decisions made in period 7 by manager and client jointly

generate 2.397; the highest negative effect is in period t = 4 and amounts to −2.182.

Table 8: Decision effects as the sum of manager decision effects and client decision effects

Effect t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 Sum

Manager decision effect 1.272 1.074 −1.215 −1.905 1.859 1.088 2.296 −0.648 3.821
Client decision effect −0.567 0.244 −0.710 −0.277 0.488 −0.634 0.101 0 −1.355

Joint decision effect 0.705 1.318 −1.925 −2.182 2.347 0.454 2.397 −0.648 2.466

The manager effect, determined by the group of parameters x = {x1, x2, . . . , x8}
and computed as

∑8
j=1 ∆T

j f = 3.821, is considerably more impactful than the client

effect, determined by the group of parameters y = {y1, y2, . . . , y7} and calculated as∑15
j=9 ∆T

j f = −1.355. Moreover, the former is positive while the latter is negative. There-

fore, the manager has, overall, performed positively and created value, thereby offsetting

the value destruction caused by the investor’s decisions regarding interim contributions

and distributions (see also the bar chart in Figure 2).

Remark 3. The decisions of contributions and distributions of the investor, taken in

isolation, have no effect on the value added: ∆1
jf = 0 for all j = 9, 10, . . . , 15 (see column

2 of Table 6). Indeed, if in a given period the investor funds are invested at a rate of return

equal to the benchmark return, the amount of money which is deposited or withdrawn

at the beginning of that period will neither increase the value added nor descrease it (the

decisions will be neutral). The effects of deposits and withdrawals are indirect, mediated

by the manager’s performance. In other words, it is the interaction between rates (affected

by manager’s decisions) and cash flows (determined by the investor) that activates a

nonzero effect of the cash flows on the investment’s performance (see columns 3 and 4 of

the table). Specifically, if the investor deposits (withdraws) money at the beginning of

a value-creating period (i.e., it > i∗t ), then the investor’s decision will amplify (reduce)

the good manager’s performance; if, instead, the investor deposits (withdraws) money at
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Table 9: Decomposition of the value added: Period effects (∆Tfm)

Truncation dates (m)
Cash-flow dates (t) F (1) F (2) F (3) F (4) F (5) F (6) F (7) F (8)

t = 0 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00
t = 1 104.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
t = 2 0.00 77.70 − 20.00 − 20.00 − 20.00 − 20.00 − 20.00 − 20.00
t = 3 0.00 0.00 99.65 40.00 40.00 40.00 40.00 40.00
t = 4 0.00 0.00 0.00 62.04 10.00 10.00 10.00 10.00
t = 5 0.00 0.00 0.00 0.00 53.60 − 30.00 − 30.00 − 30.00
t = 6 0.00 0.00 0.00 0.00 0.00 86.11 60.00 60.00
t = 7 0.00 0.00 0.00 0.00 0.00 0.00 27.41 20.00
t = 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.71

VA and period effect m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

f (m)(i, F ) 1.253 2.144 1.002 −0.315 0.822 1.718 2.540 2.466
∆Tfm(i, F ) 1.253 0.891 −1.143 −1.316 1.137 0.895 0.822 −0.074

(a) The element (t,m) of this matrix represents the cash flow at time t of the investment truncated at time m.

Figure 3: Attribution chart: Decomposition of value added into period effects

the beginning of a value-destroying period (i.e., it < i∗t ), then the investor’s decisions will

amplify (reduce) the bad manager’s performance.5

Table 9 reports the truncated investments at time m, with 1 ≤ m ≤ 8 and the resultant

period effects, which are more clearly highlighted in Figure 3 with a column chart. The

upper side of the table collects the cash flows

F (m) = (F0, F1, . . . , Fm−1, Em, 0, . . . , 0),

whereas the lower part shows the value added f (m)(i, F ) and the period effects ∆T fm(i, F )

(numbers are rounded).

In the next section, we refine the analysis by further decomposing the period effects

using the clean FCSIs on the truncated investments. This will give rise to p ·n attribution

values, collected in the Attribution Matrix.

5This is because a higher (smaller) scale of the investment amplify (reduce) the (good or bad) performance.
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8 The Attribution Matrix

Let ∆T
j f

(m) denote the total effect of αj on f (m) (i.e., the total clean FCSI of f (m)); it

measures the global impact of parameter αj on the value added in the interval [0,m].

Likewise, ∆T
j f

(m−1) measures the global impact of parameter αj on the value added in the

interval [0,m−1]. Therefore, the difference

∆T
j fm = ∆T

j f
(m) −∆T

j f
(m−1) (30)

measures that part of VA which is generated in period m, that is in the interval [m−1,m],

by parameter αj , j = 1, 2, . . . , p. We call ∆T
j fm the attribution value of αj in period m;

it is the effect of αj on the economic value generated in period m (i.e., between m−1 and

m), with 1 ≤ m ≤ n.

For any given decision made by the manager, represented by αj , j = 1, 2, . . . , n,

the sum of the attribution values amounts to the manager decision effect of αj on VA;

analogously, for any given decision made by the client, represented by αj , j = n+ 1, n+

2, . . . , 2n− 1, the sum of the attribution values amounts to the client decision effect of αj

on VA; formally,

∆T
j f =

n∑
m=1

∆T
j fm. (31)

For proving it, it is sufficient to note that ∆T
j f

(0) = 0 and ∆T
j f

(n) = ∆T
j f ; therefore,

∆T
j f = ∆T

j f
(n) −∆T

j f
(0)

= ∆T
j f

(1) −∆T
j f

(0)

+ ∆T
j f

(2) −∆T
j f

(1)

+ ∆T
j f

(3) −∆T
j f

(2)

...

+ ∆T
j f

(n−1) −∆T
j f

(n−2)

+ ∆T
j f

(n) −∆T
j f

(n−1)

= [by (30)]

= ∆T
j f1 + ∆T

j f2 + . . .+ ∆T
j fn

=
n∑

m=1

∆T
j fm.

(32)

Symmetrically, for any given period t, the sum of the attribution values is the period

effect, that is, the contribution of period t to VA:

p∑
j=1

∆T
j ft = ∆T ft. (33)

To prove it, we just remind that, for every project truncated at t, the sum of its clean total

FCSIs (∆T
j f

(t)) amounts to the value added of the truncated project, f (t) (see eq. (20)).
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Hence,

∆T ft = f (t) − f (t−1)

= (∆T
1 f

(t) + ∆T
2 f

(t) + . . .+ ∆T
p f

(t))− (∆T
1 f

(t−1) + ∆T
2 f

(t−1) + . . .+ ∆T
p f

(t−1))

= (∆T
1 f

(t) −∆T
1 f

(t−1)) + (∆T
2 f

(t) −∆T
2 f

(t−1)) + . . .+ (∆T
p f

(t) −∆T
p f

(t−1))

=

p∑
j=1

(∆T
j f

(t) −∆T
j f

(t−1))

=

p∑
j=1

∆T
j ft.

Owing to (27), the sum of the period effects coincides with the sum of the decision

effects, therefore offering a twofold decomposition of the economic created value. To

better appreciate it, we gather the attribution values in a p× n Attribution Matrix (AM)

such the element (j, t) reports the attribution value ∆T
j ft, which expresses the value added

by parameter αj in period t, with j = 1, 2, . . . p and t = 1, 2, . . . , n. Table 10 reports the

AM, which is ideally partitioned into two submatrices, one regarding the manager effects

(rows 1, 2, . . . , n), the other one regarding the client effects (rows n+ 1, n+ 2, . . . , 2n− 1).

For instance, referring to our example in Section 7 where p = 15 and n = 8, ∆T
3 f7

represents the value added in period 7 by the investment decisions made by the manager

in period 3 (α3 = x3). Likewise, the attribution value ∆T
12f4 represents the value added

in period 4 by the contribution or distribution decision made by the investor in period 4

(α12 = y4).

For a given column t, summing by row one gets the contribution of all the decisions

made by the manager and the investor in the assessment interval [0, n] to the value created

in period t (i.e., in the interval [t − 1, t]) (period effect). For a given row j = 1, 2, . . . , n,

summing by column one gets the contribution to VA generated by the decisions made

in period j by the manager (manager decision effect); likewise, for a given row n + j,

summing by column one gets the contribution to VA generated by the decisions made at

time j by the investor (client decision effect) (see Figure 4).
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Figure 4: Attribution Matrix: Summary of decision effects, period effects, manager effect, and client effect.
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Table 10: The Attribution Matrix

α ∆T
j f1 ∆T

j f2 . . . ∆T
j fn ∆T

j f

α1 ∆T
1 f1 ∆T

1 f2 . . . ∆T
1 fn ∆T

1 f
...

...
...

...
...

...
αj ∆T

j f1 ∆T
j f2 . . . ∆T

j fn ∆T
j f

...
...

...
...

...
...

αn ∆T
nf1 ∆T

nf2 . . . ∆T
nfn ∆T

nf

αn+1 ∆T
n+1f1 ∆T

n+1f2 . . . ∆T
n+1fn ∆T

n+1f
...

...
...

...
...

...
αn+j ∆T

n+jf1 ∆T
n+jf2 . . . ∆T

n+jfn ∆T
n+jf

...
...

...
...

...
...

αp ∆T
p f1 ∆T

p f2 . . . ∆T
p fn ∆T

p f

∆Tft ∆Tf1 ∆Tf2 . . . ∆Tfp ∆f

Summing by rows and by columns, one gets the VA:

(1 1 . . . 1) ·



∆T
1 f1 ∆T

1 f2 . . . ∆T
1 fn

∆T
2 f1 ∆T

2 f2 . . . ∆T
j fn

...
...

...
...

...
...

...
...

∆T
p f1 ∆T

p f2 . . . ∆T
p fn


·


1

1
...

1

 = VA (34)

or, equivalently,
∑p

j=1

∑n
t=1 ∆T

j ft = VA. In words, the sum of all elements of the AM

amounts to the investment’s value added (see bottom-right corner of Figure 4).

We can also define the normalized attribution values, ΦT
j ft, as

ΦT
j ft =

∆T
j ft

VA
. (35)

We gather the normalized attribution values in a normalized AM in Table 11, where

the sum
∑n

t=1 ΦT
j ft = ΦT

j f is the normalized decision effect and, analogously, the sum∑p
j=1 ΦT

j ft = ΦT ft is the normalized period effect.

It is trivial to derive the perfect decomposition of the value added in normalized terms:

p∑
j=1

ΦT
j f = 100% =

n∑
t=1

ΦT ft

and
p∑
j=1

n∑
t=1

ΦT
j ft = 100%.

Remark 4. It is worth noting that, for any k ∈ {1, 2, . . . , n}, if ik = i∗k, then both row k

and column k of the AM are zero vectors. Formally,

- row k: ∆T
k f1 = ∆T

k f2 = . . . = ∆T
k fn = 0 (αk has no impact on any period)
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Table 11: The normalized Attribution Matrix

α ΦT
j f1 ΦT

j f2 . . . ΦT
j fn ΦT

j f

α1 ΦT
1 f1 ΦT

1 f2 . . . ΦT
1 fn ΦT

1 f
...

...
...

...
...

...
αj ΦT

j f1 ΦT
j f2 . . . ΦT

j fn ΦT
j f

...
...

...
...

...
...

αn ΦT
nf1 ΦT

nf2 . . . ΦT
nfn ΦT

nf

αn+1 ΦT
n+1f1 ΦT

n+1f2 . . . ΦT
n+1fn ΦT

n+1f
...

...
...

...
...

...
αn+j ΦT

n+jf1 ΦT
n+jf2 . . . ΦT

n+jfn ΦT
n+jf

...
...

...
...

...
...

αp ΦT
p f1 ΦT

p f2 . . . ΦT
p fn ΦT

p f

ΦTft ΦTf1 ΦTf2 . . . ΦTfn 100.00%

- column k: ∆T
1 fk = ∆T

2 fk = . . . = ∆T
p fk = 0 (no decision has any impact on period

k).

(see proof in the Appendix).

Remark 5. An interesting feature of the normalized AM is that it is invariant under

changes in the evaluation date. Specifically, if the NPV is selected as the model output,

then the AM associated with NPV is equal to the AM associated with VA, premultiplied

by the discounting factor
∏n
t=1(1 + i∗t )

−1. The normalized AM found by such a matrix is

equal to the normalized AM associated with VA described in Table 11. In other words,

whether one refers value creation at time t = 0 (NPV) or at time t = n (VA) or at any

other date t, 0 < t < n, the normalized attribution values do not change.

Finally, we summarize the contribution of the two decision makers on the value created

in a period by defining the manager period effect and the client period effect : For any fixed

period m, the manager period effect is the sum of the n attribution values attributable to

the manager,
∑n

j=1 ∆T
j fm (and, in normalized version,

∑n
j=1 ΦT

j fm); likewise, for any fixed

period m, the client period effect is the sum of the n−1 attribution values attributable to

the client,
∑2n−1

j=n+1 ∆T
j fm (and, in normalized version,

∑2n−1
j=n+1 ΦT

j fm). The period effect

is equal to the sum of the manager period effect and the client period effect:

∆T fm =

manager period effect︷ ︸︸ ︷
n∑
j=1

∆T
j fm +

client period effect︷ ︸︸ ︷
2n−1∑
j=n+1

∆T
j fm. (36)

9 Worked example (continued)

In this section we build the AM for the investment presented in Section 7.

Table 12 reports the AM. Inspecting the AM, it is clear that a decision made in a

given period has no effect on previous periods, so the resulting attribution value is zero.
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For example, ∆T
5 f2 = 0 means that the decisions made by the manager in period 5 has no

effect on the value added in period 2. Also, focusing on the manager’s attribution value,

∆T
j ft with 1 ≤ j ≤ 8, it is worth noting that ∆T

j fj is

− positive if the manager’s decisions in period j are such that fund’s holding period

rate ij exceeds the benchmark return i∗j

− negative if the manager’s decisions in period j are such that fund’s holding period

rate ij falls short the benchmark return i∗j .

For example, in period 6, the manager’s decisions give rise to a positive performance (since

i6 > i∗6) and the impact of the manager’s decisions is ∆T
6 f6 = 1.078.

Table 12: Attribution matrix for the 8-period investment

α = (x, y) ∆T
j f1 ∆T

j f2 ∆T
j f3 ∆T

j f4 ∆T
j f5 ∆T

j f6 ∆T
j f7 ∆T

j f8 ∆T
j f

α1 = x1 1.253 0.006 −0.006 −0.012 0.012 0.006 0.019 −0.006 1.272
α2 = x2 0 1.066 −0.006 −0.006 0.003 0.007 0.015 −0.005 1.074
α3 = x3 0 0 −1.197 0.010 −0.009 −0.006 −0.018 0.006 −1.215
α4 = x4 0 0 0 −1.878 0.003 −0.014 −0.026 0.010 −1.905
α5 = x5 0 0 0 0 1.829 0.015 0.025 −0.010 1.859
α6 = x6 0 0 0 0 0 1.078 0.015 −0.006 1.088
α7 = x7 0 0 0 0 0 0 2.310 −0.014 2.296
α8 = x8 0 0 0 0 0 0 0 −0.648 −0.648

α9 = y1 0 −0.181 0.184 0.353 −0.364 −0.186 −0.556 0.182 −0.567
α10 = y2 0 0 −0.118 −0.223 0.228 0.120 0.354 −0.116 0.244
α11 = y3 0 0 0 0.439 −0.453 −0.232 −0.692 0.227 −0.710
α12 = y4 0 0 0 0 −0.112 −0.054 −0.165 0.054 −0.277
α13 = y5 0 0 0 0 0 0.162 0.484 −0.159 0.488
α14 = y6 0 0 0 0 0 0 −0.944 0.311 −0.634
α15 = y7 0 0 0 0 0 0 0 0.101 0.101

∆Tft 1.253 0.891 −1.143 −1.316 1.137 0.895 0.822 −0.074 2.466

Table 13: Normalized attribution matrix for the 8-period investment

α = (x, y) ΦT
j f1 ΦT

j f2 ΦT
j f3 ΦT

j f4 ΦT
j f5 ΦT

j f6 ΦT
j f7 ΦT

j f8 ΦT
j f

α1 = x1 50.81% 0.24% −0.25% −0.48% 0.49% 0.25% 0.75% −0.25% 51.57%
α2 = x2 0.00% 43.23% −0.23% −0.25% 0.14% 0.27% 0.62% −0.22% 43.56%
α3 = x3 0.00% 0.00% −48.56% 0.41% −0.38% −0.26% −0.71% 0.24% −49.26%
α4 = x4 0.00% 0.00% 0.00% −76.16% 0.11% −0.55% −1.07% 0.41% −77.27%
α5 = x5 0.00% 0.00% 0.00% 0.00% 74.17% 0.60% 1.03% −0.41% 75.39%
α6 = x6 0.00% 0.00% 0.00% 0.00% 0.00% 43.72% 0.62% −0.22% 44.12%
α7 = x7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 93.68% −0.55% 93.13%
α8 = x8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% −26.29% −26.29%

α9 = y1 0.00% −7.33% 7.47% 14.31% −14.75% −7.56% −22.53% 7.39% −22.99%
α10 = y2 0.00% 0.00% −4.78% −9.03% 9.23% 4.86% 14.36% −4.72% 9.91%
α11 = y3 0.00% 0.00% 0.00% 17.82% −18.36% −9.40% −28.05% 9.20% −28.79%
α12 = y4 0.00% 0.00% 0.00% 0.00% −4.54% −2.21% −6.69% 2.18% −11.25%
α13 = y5 0.00% 0.00% 0.00% 0.00% 0.00% 6.59% 19.64% −6.45% 19.79%
α14 = y6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% −38.29% 12.60% −25.70%
α15 = y7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.08% 4.08%

ΦTft 50.81% 36.15% −46.34% −53.38% 46.11% 36.31% 33.35% −3.01% 100.00%

As for the investor’s attribution values, ∆T
j ft, with 1 ≤ t ≤ 8 and 9 ≤ j < t + 8, the

attribution values ∆T
j ft are
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− positive if

(i) the fund’s holding period rate it exceeds the benchmark return i∗t and the in-

vestor contributes cash to the fund at time j − 8

(ii) the fund’s holding period rate it falls short of the benchmark return i∗t and the

investor withdraws cash from the fund at time j − 8

− negative if

(i) the fund’s holding period rate it falls short of the benchmark return i∗t and the

investor contributes cash to the fund at time j − 8

(ii) the fund’s holding period rate it exceeds the benchmark return i∗t and the in-

vestor withdraws cash from the fund at time j − 8

(if j ≥ t + 8, then ∆T
j ft = 0). This means that the effect of the client’s decisions on a

given period depends on whether the client contributes (withdraws) cash into the fund at

the beginning of a value-creating period, so determining a positive (negative) effect, or the

client contributes (withdraws) cash into the fund at the beginning of a value-destroying

period, so determining a negative (positive) effect (see also Remark 3). For example,

∆T
9 f2 = −0.181 < 0 because, at time t = 1 (i.e. 9 − 8), the investor withdraws 30 from

the investment and period t = 2 is a value-creating period (5% = i2 > i∗2 = 4%); therefore,

reducing the investment scale has a negative impact. However, the same decision has a

positive effect in period t = 3 (∆T
9 f3 = 0.184 > 0), because period 3 is a value-destroying

one (2% = i3 < i∗3 = 3%); in other words, the reduction of the investment scale at the

end of period 1 partially offsets the negative performance of period 3. And so on for the

following periods. Overall, in the assessment interval [0, 8], the drawdown decision made

by the investor at time t = 1 has a net negative effect, equal to ∆T
9 f = −0.567. Consider

now the investor’s decision of contributing 20 at time t = 2. The impact of such a decision

in period 3 is negative (∆T
10f3 = −0.118 < 0) because that period is a value-destroying

period (2% = i3 < i∗3 = 3%); therefore, augmenting the investment scale is not a good

decision. A negative impact of that decision on the following period t = 4 occurs as well

(∆T
10f4 = −0.223 < 0) for the same reason. However, in period t = 5, that contribution

has a positive effect (∆T
10f5 = 0.228 > 0), so the decision of increasing the scale at the

end of period 2 has a positive effect after three periods. Overall, the net effect of the

investor’s decision made at time t = 2 is positive: ∆T
10f = 0.224 > 0.

Given a row, summing by columns, one gets the overall effect of a decision made by

the manager or the client (decision effect); given a column, summing by rows one gets

the overall effect onto a single period of the decisions made by the manager and the

investor in all periods (period effect). For example, the overall effect of the decisions

made by the manager in period t = 4 is ∆T
4 f = −1.905 and the overall effect of all the

decisions made by manager and investors in the various periods onto period t = 7 is

∆T f7 = 0.822. Table 13 reports the normalized AM, obtained by dividing each cell of

the AM by the investment value added VA = 2.466. As previously noted, the highest

normalized decision effect is ΦT
7 f = 93.13%. Accordingly, the managerial decision in

period 7 is the most relevant one for the overall investment performance. Inspecting

the normalized AM, we understand that most of that value is generated in period 7
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(ΦT
7 f7 = 93.68%), whereas the effect of the same decision on period 8 is negligible. The

period which is most impacted by all the decisions is period 4, responsible for a normalized

value destruction equal to ΦT f4 = −53.38%. Period 3, 4, and 8 are value-destroying

periods, whereas the other periods are value-creating. The normalized AM also shows

that the impact of the manager’s decisions is mostly concentrated on the same period

where the decisions are made; conversely, the impact of the investor’s decision in one

period may have a greater impact in some later period. This depends on the magnitude

of the excess return it− i∗t which depends on the manager’s decisions.6 Finally, we remind

that the normalized AM is the same if one disaggregates the NPV instead of the VA.

Finally, we compute the manager period effects and client period effects and report

their absolute and normalized values in a concise AM (see Tables 14 and 15. See also

the corresponding column chart in Figure 5). The manager period effect is higher (in

absolute terms) than the client period effect for every t = 1, 2, . . . , 8, suggesting that

the manager’s decisions are considerably more impactful than the client’s decisions. The

highest impacts are in period t = 7, where the (positive) manager effect is
∑n

j=1 ∆T
j f7 =

2.340 (corresponding to about 95% of the overall value added) and the (negative) client

effect is
∑2n−1

j=n+1 ∆T
j f7 = −1.518 (corresponding to about 62% of the overall value added,

with opposite sign). Table 16 summarizes the two-dimensional decomposition (decision

vs. period) of manager effect and client effect.

Table 14: Concise Attribution Matrix

Effect ∆T
j f1 ∆T

j f2 ∆T
j f3 ∆T

j f4 ∆T
j f5 ∆T

j f6 ∆T
j f7 ∆T

j f8 ∆T
j f

Manager period effect 1.253 1.072 −1.209 −1.886 1.838 1.086 2.340 −0.673 3.821
Client period effect 0 −0.181 0.066 0.570 −0.701 −0.190 −1.518 0.599 −1.355

∆Tft 1.253 0.891 −1.143 −1.316 1.137 0.895 0.822 −0.074 2.466

Figure 5: Attribution chart: Decomposition of value added into manager period effects and
client period effects. The sum of the manager period effects is the manager effect (3.821) and
the sum of the client period effects is the client effect (−1.355).

6We remind that the investor’s effects depend on the manager’s decisions; the individual contribution of an
injection/withdrawal onto VA is zero.
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Table 15: Normalized concise Attribution Matrix

Effect ΦT
j f1 ΦT

j f2 ΦT
j f3 ΦT

j f4 ΦT
j f5 ΦT

j f6 ΦT
j f7 ΦT

j f8 ΦT
j f

Manager period effect 50.81% 43.48% −49.03% −76.48% 74.53% 44.03% 94.91% −27.29% 154.95%
Client period effect 0% −7.33% 2.69% 23.10% −28.42% −7.72% −61.56% 24.29% −54.95%

ΦTft 50.81% 36.15% −46.34% −53.38% 46.11% 36.31% 33.35% −3.01% 100.00%

Table 16: Twofold decomposition of manager effect and client effect

Effect t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 Manager effect

Manager period effect 1.253 1.072 −1.209 −1.886 1.838 1.086 2.340 −0.673 3.821
Manager decision effect 1.272 1.074 −1.215 −1.905 1.859 1.088 2.296 −0.648 3.821

Client effect
Client period effect 0 −0.181 0.066 0.570 −0.701 −0.190 −1.518 0.599 −1.355
Client decision effect −0.567 0.244 −0.710 −0.277 0.488 −0.634 0.101 0 −1.355

10 Concluding remarks

Performance of an investment in a given span of time depends on the decisions made in

each period by two decision makers, the manager and the investor/client. We employ a

recent technique of sensitivity analysis, the Finite Change Sensitivity Index (Borgonovo

2010a, 2010b, Magni et al. 2020) for finding the (manager and client) decision effects,

that is, the contributions to the overall investment’s performance of the decision made

by manager or investor in a period. Summing the manager decision effects one gets the

manager effect and summing the client decision effects one gets the client effect. Then,

we employ a truncation approach to investment for finding the contribution to the period

investment’s performance of all the decisions made by either decision maker over the

investment lifespan (period effects). Such a contribution is equal to the (capitalized)

residual income of the investment. Each period effect is broken down into manager period

effect and client period effect. Finally, we combine the two perspectives and builds an

Attribution Matrix (AM) which contains the attribution values. Each attribution value

provides the contribution of a decision made by either decision maker in any period onto

the investment’s performance in any (same or other) period. In generating the AM we

have taken into account the interactions between the manager’s decisions, which affects

the investment holding period rates, and the client’s decisions, which determine the cash

injected into or withdrawn from the investment, for each and every period. Figure 6

summarizes the steps for building the AM and Table 17 summarizes all the effects we

have introduced (and quantified). Future researches may be addressed to generalize the

approach and make the attribution analysis in terms of asset classes. This entails splitting

up the manager decision effects considering the holdings in the various asset classes.
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Investment description: 

Cash Flows (determined by Client): 𝐹0, 𝐹, with 𝐹 = (𝐹1, 𝐹2, … 𝐹𝑛−1) 

Rates of return (determined by Manager): Benchmark: 𝑖∗ = (𝑖1
∗, 𝑖2

∗, … 𝑖𝑛
∗ ), 

Realized 𝑖 = (𝑖1, 𝑖2, … 𝑖𝑛) 

Function Parameters: benchmark values: 𝛼0 = (𝛼1
0, 𝛼2

0, … 𝛼𝑝
0) = (𝑖1

∗, 𝑖2
∗, … 𝑖𝑛

∗ , 0,0, … 0) 

realized values: 𝛼1 = (𝛼1
1, 𝛼2

1, … 𝛼𝑝
1) = (𝑖1, 𝑖2, … 𝑖𝑛, 𝐹1, 𝐹2, … 𝐹𝑛−1) 

Terminal value 𝑬𝒏 of the investment: 

 𝐸𝑛 = − ∑ (1 + 𝑖𝑡+1)(1 + 𝑖𝑡+2) … (1 + 𝑖𝑛) ∙ 𝐹𝑡
𝑛−1
𝑡=0  (4) 

(see Section 2 for details) 
 

 

Value Added VA of the investment: 

 VA = 𝑓(𝑖, 𝐹) = ∑ ((1 + 𝑖𝑡+1
∗ )(1 + 𝑖𝑡+2

∗ ) … (1 + 𝑖𝑛
∗ ) − (1 + 𝑖𝑡+1)(1 + 𝑖𝑡+2) … (1 + 𝑖𝑛)) ∙ 𝐹𝑡

𝑛−1
𝑡=0  (7) 

(see Section 3 for details) 
 

 

STEP 1 – Split the Value Added into 𝒑 Decision Effects with the clean FCSI, ∆𝒋
𝑻𝒇, 𝟏 ≤ 𝒋 ≤ 𝒑: 

 ∆𝑗
𝑇𝑓 = ∆𝑗

1𝑓 + ∆𝑗
𝐼𝑓 (19) 

where: 

 ∆𝑗
1𝑓 = 𝑓(𝛼𝑗

1, 𝛼(−𝑗)
0 ) − 𝑓(𝛼0),   ∀𝑗 = 1,2, … , 𝑝 (13) 

(𝛼𝑗
1, 𝛼(−𝑗)

0 ): parameters set at benchmark values 𝛼0 = (𝑖1
∗, 𝑖2

∗, … 𝑖𝑛
∗ , 0,0, … 0), except 𝛼𝑗 = 𝛼𝑗

1 (realized 

value) 

 ∆𝑗
𝐼𝑓 =

∆𝑗
𝜏𝑓−∆𝑗

1𝑓

∑ (∆𝑙
𝜏𝑓−∆𝑙

1𝑓)
𝑝
𝑙=1

∙ (∆𝑓 − ∑ ∆𝑙
1𝑓

𝑝
𝑙=1 ),    ∀𝑗 = 1,2, … , 𝑝 (18) 

 ∆𝑗
𝜏𝑓 =  𝑓(𝛼1) − 𝑓(𝛼𝑗

0, 𝛼(−𝑗)
1 ),    ∀𝑗 = 1,2, … , 𝑝 (16) 

(𝛼𝑗
0, 𝛼(−𝑗)

1 ): parameters set at realized values 𝛼1 = (𝑖1, 𝑖2, … 𝑖𝑛, 𝐹1, 𝐹2, … 𝐹𝑛−1), except 𝛼𝑗 = 𝛼𝑗
0 

(benchmark value) 
 

𝒋  Decision 
Decision Effect 

∆𝒋
𝑻𝒇 

  

1  𝜶𝟏 = 𝒊𝟏 ∆1
𝑇𝑓  

Manager Effect = 

∑ ∆𝒋
𝑻𝒇

𝒏

𝒋=𝟏

 

2  𝜶𝟐 = 𝒊𝟐 ∆2
𝑇𝑓  

⋮  ⋮ ⋮  

𝑛  𝜶𝒏 = 𝒊𝒏 ∆𝑛
𝑇𝑓  

𝑛+1  𝜶𝒏+𝟏 = 𝑭𝟏 ∆𝑛+1
𝑇 𝑓  

Client Effect = 

∑ ∆𝒋
𝑻𝒇

𝒑

𝒋=𝒏+𝟏

 

𝑛+2  𝜶𝒏+𝟐 = 𝑭𝟐 ∆𝑛+2
𝑇 𝑓  

⋮  ⋮ ⋮  

𝑝  𝜶𝒑 = 𝑭𝒏−𝟏 ∆𝑝
𝑇𝑓  

  Total  ∑ ∆𝒋
𝑻𝒇

𝒑
𝒋=𝟏 = 𝑽𝑨    

 

Joint Decision Effect in period 𝑗 = ∆𝑗
𝑇𝑓 + ∆𝑗+𝑛

𝑇 𝑓, for 𝑗 = 1,2, … 𝑛 (21) 

(see Sections 4 and 5 for details, Section 7 for an example) 
 
 

 

STEP 2 – Split the Value Added into 𝒏 Period Effects ∆𝑻𝒇𝒕 , 𝟏 ≤ 𝒕 ≤ 𝒏: 

 ∆𝑇𝑓𝑚 = 𝑓
(𝑚) − 𝑓(𝑚−1) (26) 

where: 

 𝑓(𝑚) = ∑ 𝐹𝑡 ∙ (1 + 𝑖𝑡+1
∗ )(1 + 𝑖𝑡+2

∗ )… (1 + 𝑖𝑛
∗ ) + 𝐸𝑚 ∙ (1 + 𝑖𝑚+1

∗ )(1 + 𝑖𝑚+2
∗ )… (1 + 𝑖𝑛

∗ )𝑚−1
𝑡=0  (25) 

 

Period 1 2 ⋯ n Total 

Period Effect 

∆𝑻𝒇𝒕 
∆𝑇𝑓1 ∆𝑇𝑓2 ⋯ ∆𝑇𝑓𝑛 ∑∆𝑻𝒇𝒕

𝒏

𝐭=𝟏

= 𝐕𝐀 

 

(see Section 6 for details, Section 7 for an example) 

 

STEP 3 – Build the Attribution Matrix: 

Sub-step 3.1 - Split the Value Added in 𝒑 × 𝒏 Attribution Values with the clean FCSI, ∆𝒋
𝑻𝒇𝒎: 

 ∆𝑗
𝑇𝑓𝑚 = ∆𝑗

𝑇𝑓(𝑚) − ∆𝑗
𝑇𝑓(𝑚−1) (30) 

where ∆𝑗
𝑇𝑓(𝑚) can be calculated using the formulas (13), (16), (18) and (19) in the previous step 1) 

applied to 𝑓(𝑚). 
 

Period 

Decision 
1 2 ⋯ 𝒏 Decision Effect ∆𝒋

𝑻𝒇 

𝜶𝟏 = 𝒊𝟏 ∆1
𝑇𝑓1 ∆1

𝑇𝑓2 ⋯ ∆1
𝑇𝑓𝑛 ∆𝟏

𝑻𝒇 = ∑ ∆1
𝑇𝑓𝑡

𝑛
𝑡=1   

𝜶𝟐 = 𝒊𝟐 ∆2
𝑇𝑓1 ∆2

𝑇𝑓2 ⋯ ∆2
𝑇𝑓𝑛 ∆𝟐

𝑻𝒇 = ∑ ∆2
𝑇𝑓𝑡

𝑛
𝑡=1   

⋮ ⋮ ⋮  ⋮ ⋮ 

𝜶𝒏 = 𝒊𝒏 ∆𝑛
𝑇𝑓1 ∆𝑛

𝑇𝑓2 ⋯ ∆𝑛
𝑇𝑓𝑛 ∆𝒏

𝑻𝒇 = ∑ ∆𝑛
𝑇𝑓𝑡

𝑛
𝑡=1   

𝜶𝒏+𝟏 = 𝑭𝟏 ∆𝑛+1
𝑇 𝑓1 ∆𝑛+1

𝑇 𝑓2 ⋯ ∆𝑛+1
𝑇 𝑓𝑛 ∆𝒏+𝟏

𝑻 𝒇 = ∑ ∆𝑛+1
𝑇 𝑓𝑡

𝑛
𝑡=1   

𝜶𝒏+𝟐 = 𝑭𝟐 ∆𝑛+2
𝑇 𝑓1 ∆𝑛+2

𝑇 𝑓2 ⋯ ∆𝑛+2
𝑇 𝑓𝑛 ∆𝒏+𝟐

𝑻 𝒇 = ∑ ∆𝑛+2
𝑇 𝑓𝑡

𝑛
𝑡=1   

⋮ ⋮ ⋮  ⋮ ⋮ 

𝜶𝒑 = 𝑭𝒏−𝟏 ∆𝑝
𝑇𝑓1 ∆𝑝

𝑇𝑓2 ⋯ ∆𝑝
𝑇𝑓𝑛 ∆𝒑

𝑻𝒇 = ∑ ∆𝑝
𝑇𝑓𝑡

𝑛
𝑡=1   

Period Effect 

∆𝑻𝒇𝒕 

∆𝑇𝑓1 =
∑ ∆𝑗

𝑇𝑓1
𝑝
𝑗=1   

∆𝑇𝑓2 =
∑ ∆𝑗

𝑇𝑓2
𝑝
𝑗=1   

⋯ 
∆𝑇𝑓𝑛 =
∑ ∆𝑗

𝑇𝑓𝑛
𝑝
𝑗=1   

Total: 

∑ ∆𝒋
𝑻𝒇

𝒑
𝒋=𝟏 =  

∑ ∆𝑻𝒇𝒕
𝒏
𝐭=𝟏 =  

𝐕𝐀  

Sub-step 3.2 - Split the periods effects ∆𝑻𝒇𝒎 in manager period effects and client period effects: 

Manager period effect = ∑ ∆𝑗
𝑇𝑓𝑚

𝑛
𝑗=1  

Client period effect = ∑ ∆𝑗
𝑇𝑓𝑚

2𝑛−1
𝑗=𝑛+1  

such that 

 ∆𝑇𝑓𝑚
⏞  

period effect 

= ∑ ∆𝑗
𝑇𝑓𝑚

𝑛
𝑗=1
⏞      

manager period effect

+ ∑ ∆𝑗
𝑇𝑓𝑚

2𝑛−1
𝑗=𝑛+1
⏞        

client period effect

 (36) 

where ∆𝑗
𝑇𝑓𝑚 can be calculated using formula (30). 

(see Section 8 for details, Section 9 for an example) 
 

Figure 6: Attribution Matrix in a nutshell
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Appendix: Proof of Remark 4

Part I. We show that, if ik = i∗k, then ∆T
k f1 = ∆T

k f2 = . . . = ∆T
k fn = 0.

Since ik = i∗k, the following equalities hold:

α1
k = α0

k, (α1
k, α

0
(−k)) = α0, (α0

k, α
1
(−k)) = α1.

Therefore, from (13), the individual effect of αk = ik on the value added of the truncated

investment at each time t is null: ∆1
kf

(t) = 0 for every t ∈ {1, 2, . . . , n} and, from (16),

also the total effect of αk = ik on each truncated investment is zero as well: ∆Tk f
(t) = 0

for every t. Since ∆Ikf
(t) = ∆Tk f

(t)−∆1
kf

(t), then the interaction effect of αk = ik is null,

i.e. ∆Ikf
(t) = 0 for all t. Consequently, remembering (17), even the Clean Interaction

effect ∆I
kf

(t) is zero for each truncation date t. Hence, from (19), the Clean total effect

of αk = ik, is ∆T
k f

(t) = 0,∀t. Finally, by (30), the attribution value of parameter αk in

each period t is null: ∆T
k ft = 0 for every t ∈ {1, 2, . . . , n}. (QED)

Part II: We show that, if ik = i∗k, then ∆T
1 fk = ∆T

2 fk = . . . = ∆T
p fk = 0.

Since ik = i∗k and owing to (25), the values added of the truncated investments at

t = k − 1 and t = k are equal:

f (k)(α) = f (k−1)(α) (37)

for every input vector α such that ik = i∗k.

From (12) and (37), the change in value added from the passive investment α0 to the

active investment α1 is the same in case of truncation at t = k − 1 or at t = k, that is,

∆f (k) = f (k)(α1)− f (k)(α0) = f (k−1)(α1)− f (k−1)(α0) = ∆f (k−1).

Furthermore, via (13) and (37), the individual effect of each factor αj is equal on

f (k)(α) and on f (k−1)(α), that is,

∆1
jf

(k) = f (k)(α1
j , α

0
(−j))−f

(k)(α0) = f (k−1)(α1
j , α

0
(−j))−f

(k−1)(α0) = ∆1
jf

(k−1) ∀j ∈ {1, 2, . . . , p}.

Analogously, each interaction among s-tuples (with s ≥ 2) is the same from the trun-

cated investments at k or k − 1, that is, ∆j1,j2,...,jsf
(k) = ∆j1,j2,...,jsf

(k−1) and, conse-

quently, the interaction effect of each parameter is equal for the two functions, that is,

∆Ij f
(k) = ∆Ij f

(k−1) for every j = 1, 2, . . . , p. Hence, via (17), the Clean interaction effects

coincide: ∆I
jf

(k) = ∆I
jf

(k−1) for every j. Applying (19), the values added of the truncated

investments at t = k−1 and t = k share the same Clean Total FCSIs: ∆T
j f

(k) = ∆T
j f

(k−1)

for every j = 1, 2, . . . , p. Therefore, from (30), the attribution value of each parameter αj

in period k is zero: ∆T
j fk = ∆T

j f
(k) −∆T

j f
(k−1) = 0 ∀j ∈ {1, 2, . . . , p}. (QED)
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Symbols and abbreviations

Symbol Description

Section 2
NPV Net Present Value
n Liquidation time
VA Value Added of the financial investment
Ft Cash flows into and out of the fund
Et End-of-period portfolio value at time t
Bt Beginning-of-period portfolio value at time t
it Rate of return of period t, i.e. the interval [t−1, t]
F = (F1, F2, . . . , Fn−1) Vector collecting the intermediate cash flows
i = (i1, i2, . . . , in) Vector of the fund’s holding period rates
i∗ = (i∗1, i

∗
2, . . . , i

∗
n) Vector of benchmark’s holding period rates

Section 3
x = (x1, x2, . . . , xn) Vector of single-period rates
y = (y1, y2, . . . , yn−1) Vector of interim contributions and distributions
(x0, y0) (i∗, 0)
(x1, y1) (i, F )
f(x, y) Value added of a generic investment
f(i, F ) Value added of the active investment
f(i∗, 0) Value added of the passive (benchmark) investment

Section 4
FCSI Finite Change Sensitivity Index
p Number of inputs (for an investment, p = 2n− 1)
α = (α1, α2, . . . , αp) Vector of inputs
α0 = (α0

1, α
0
2, . . . , α

0
p) Base value of inputs

α1 = (α1
1, α

1
2, . . . , α

1
p) Realized value of inputs

f(α1)− f(α0) Output change when inputs change from α0 to α1

(α1
j , α

0
(−j)) Input vector with all the inputs set at their base value α0, except

αj which is given the realized value α1
j

(α0
j , α

1
(−j)) Input vector with all the inputs set at their realized value α1, except

αj which is given the realized value α0
j

(α1
j , α

1
k, α

0
(−j,k)) Input vector where αj and αk are set to the realized values, while

the remaining p− 2 parameters are set at their base value
∆1

jf First order FCSI of parameter αj

Φ1
jf Normalized First order FCSI of parameter αj

∆j,kf Interaction between αj and αk

(α1
j , α

1
k, α

1
h, α

0
(−j,k,h)) Input vector with αj , αk and αh are set to the realized values, while

the remaining p− 3 parameters are set at their base value
∆j,k,hf Interaction between αj , αk and αh

∆Tj f (Borgonovo’s) total order FCSI of parameter αj

∆Ij f (Borgonovo’s) interaction effect of parameter αj

ΦTj f (Borgonovo’s) normalized total order FCSI of parameter αj

∆T
j f Clean total order FCSI of parameter αj

∆I
jf Clean interaction effect of parameter αj

ΦT
j f Normalized Clean total order FCSI of parameter αj

Continued on next page
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Continued from previous page

Section 5
α = (x, y)

= (x1, x2, . . . , xn, y1, y2, . . . , yn−1) Vector of inputs
α0 = (i∗, 0)

= (i∗1, i
∗
2, . . . , i

∗
n, 0, 0, . . . , 0) Passive investment policy in the benchmark with zero

interim cash flows
α1 = (i, F )

= (i1, i2, . . . , in, F1, F2, . . . , Fn−1) Active investment policy in the fund with nonzero in-
terim cash flows

∆T
j f Decision effect (i.e. contribution of paramater αj to VA)

ΦT
j f = ∆T

j f/VA Normalized decision effect

Section 6
F (m) = (F0, F1, F2, . . . , Fm−1, Em, 0, 0, . . . , 0) Cash-flow stream of the investment truncated at time

m
∆F (m) = F (m) − F (m−1) Incremental cash-flow stream if investment is continued

from m−1 to m

NPV(m) NPV of the truncated project at time m
f (m) Value added (at time t = n) of the project truncated at

time m
∆T fm = f (m) − f (m−1) Period effect (i.e. contribution of period t to VA)
ΦT fm = ∆T fm/VA Normalized period effect

Section 8
AM Attribution Matrix
∆T

j f
(m) Total effect of αj on f (m) (clean FCSI of f (m))

∆T
j fm = ∆T

j f
(m) −∆T

j f
(m−1) Attribution value: Part of VA which is generated in

period m, i.e. in the interval [m − 1,m], by parameter
αj

ΦT
j fm = ∆T

j fm/VA Normalized attribution value

142



Table 17: Summary of effects

Effect Meaning Computation

Manager decision effect Effect of the manager deci-
sions made in period j on VA

Clean FCSI of αj on VA,
with j = 1, . . . , n

Client decision effect Effect of the client decisions
made at time j on VA

Clean FCSI of αj on VA,
with j = n+ 1, . . . , 2n− 1

Joint decision effect Joint effect of the (manager
and client) decisions made in
period j on VA

Sum of manager decision ef-
fect and client decision effect

Manager effect Effect of all the manager de-
cisions made in the interval
[0, n] on VA

Sum of all the manager deci-
sion effects

Client effect Effect of all the client de-
cisions made in the interval
[0, n] on VA

Sum of all the client decision
effects

Manager period effect Effect of all the manager de-
cisions made in the interval
[0, n] on the value created in
period t

Sum of all the attribution
values attributable to the
manager in period t

Client period effect Effect of all the client de-
cisions made in the interval
[0, n] on the value created in
period t

Sum of all the attribution
values attributable to the
client in period t

Period effect Effect of all the (manager
and client) decisions made
in the interval [0, n] on the
value created in period t

Sum of manager period ef-
fect and client period effect
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Impact of financing and payout policy on the economic
profitability of solar photovoltaic plants

Carlo Alberto Magni ∗ Davide Baschieri † Andrea Marchioni ‡

Abstract

This paper presents a comprehensive evaluation model for appraising an investment in
a solar photovoltaic plant which encompasses both operational and financial manage-
ment. We illustrate the intricate network of logical relations among technical (estimated)
variables and financial (decision) variables and show that establishing transparent links
between the former and the latter enhances the accuracy and soundness of the model.
The results indicate that understanding the conceptual and formal relations of operating
variables and financial decisions is necessary for correctly measuring shareholder value cre-
ation and making rational decisions, even for those projects (such as solar energy projects)
where the operating, technical component is of paramount importance. We show that a
firm’s decision of replacing conventional energy with solar energy may be affected by
managerial decisions regarding the firm’s payout/retention policy and its financing policy
to support the project. The model discloses insights on how to fine-tune the financing
and distribution decisions in order to maximize the value creation for shareholders. We
apply the model to a real-life case and quantify the effect of financial decisions on the
project’s net present value, showing that the financing and distribution policies may am-
plify or shrink the impact of changes in other inputs and may even revert an otherwise
unprofitable project into a value-creating one.
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value, distribution policy, financing decision.
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1 Introduction
Sustainabile operations are becoming a major trend in the manufacturing system and the
fourth industrial revolution offers innovations which potentially could accelerate a green
economic development, also because of the technological advancement in the fields of de-
centralised energy production and storage of electrical energy (Bai and Sarkis 2017, Bai et
al 2020, Wichmann, Johannes, and Spengler 2019). Photovoltaic (PV) technologies have
been playing a central role in the development of a worldwide sustainable energy system,
with their recent remarkable performance enhancement and cost reduction, transforming
solar energy in electrical energy and combatting climate change and environmental pollu-
tion (Lupangu and Bansal 2017, Sinke 2019, Lei et al. 2019, Ezbakhe and Pérez-Foguet
2021, Kang et al. 2020), also supporting electrification opportunities in less developed
and developing countries, isolated communities, and rural areas (Yu 2017, Ferrer-Mart́ı
et al. 2013, Henao et al. 2012). In spite of its environmental benefits, the adoption of
solar energy by the industrial, commercial, and residential sectors is strongly affected by
economic considerations (e.g., Dong et al. 2017, Cucchiella et al. 2018, Pham et al 2019).
The mapping which links the key performance drivers and the investment’s economic
profitability requires a deep understanding of the intricate network of relations among
technical aspects, accounting magnitudes, forecasting of financial data, and assumptions
on financial decisions, which makes the project’s evaluation particularly complex. It is
then important to provide decision-aiding tools capable of measuring the project’s eco-
nomic profitability, taking into account uncertainty and providing insights on possible
managerial actions that may affect the decision to adopt solar energy.

Several studies in the photovoltaic discipline have recently investigated technical, eco-
nomical, and institutional challenges to turn potential into reality (Welling 2016, Lupangu
and Bansal 2017, Lei et al. 2019, Gorjian et al. 2019). From a managerial perspective,
Bhattacharya et al. (2020) propose a risk management tool for solar energy producers,
investigating both natural hedges embedded in cash flows and cross hedging strategies
with temperature-based weather derivatives; Ferrer-Mart́ı et al. (2013) and Billionnet
et al. (2016) study the optimal design of a hybrid wind–photovoltaic system made of
photovoltaic panels, wind turbines and battery elements for serving a given demand and
minimizing the cost, and, analogously, Li et al. (2017) optimize the sizing of solar and wind
generating units of hybrid systems aiming to minimize the levelized energy cost. Jufri et al.
(2019) recently introduced a detection system for monitoring the abnormal conditions in
the photovoltaic plants and maintaining their productivity; Mauritzen (2020) study qual-
ity differences in terms of production degradation over time between photovoltaic panels
produced by different manufacturers, supported by the theory of asymmetric information;
Moret et al. (2020) provide a robust optimization framework for decision support under
uncertainty in energy models including photovotaic systems. From a financial perspective,
Abdallah et al. (2013) present an economic model for evaluating the option of installing
small-scale photovoltaic plants on facility rooftops, and Büyüközkan and Güleryüz (2016)
introduce a multi-criteria decision making tool for selecting the most appropriate renew-
able energy resources (including the solar one), from an investor-focused point of view,
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by considering evaluation criteria in the technical, economic, political, social, and envi-
ronmental areas.

Despite the substantial amount of contributions studying the economic consequences
of technical features of solar PV plants, somewhat neglected in the literature is the role of
the firm’s financial decisions in increasing or decreasing the firm’s value and, possibly, in
turning a favorable situation to an unfavorable one or vice versa. Building upon Magni
(2020), we propose a framework for modeling investment decisions in solar PV systems
and capturing the effect of the financial variables on the project’s economic profitability,
explaining why, for a given set of technical inputs, the decision on how to raise funds
for covering the financial needs and the decision on the amount of cash distributed to
shareholders as opposed to cash retained in the firm may affect the decision to switch to
solar energy. The model acknowledges the distinction between estimation variables and
decision variables on one hand and between operating variables and financial variables
on the other hand. The estimation variables necessitate some estimation process to be
determined (e.g., operating and maintenance costs, disposal costs, interest rate on debt
financing) while the decision variables are under the managers’ control (e.g., timing and
size of distributions to shareholders, recourse to debt borrowing or to cash withdrawals
for covering the financial needs). The operating variables express the factors which have
a direct impact on the firm’s costs and revenues as a result of the adoption of solar energy
(e.g., solar panel efficiency, avoided electric bill, energy prices, amount of self-consumption,
credit terms for energy sales to the grid). The financial variables regard the factors which
affect the mix of financing sources, the cash flow raised from the capital providers, and the
cash flow distributed to debtholders and shareholders as opposed to the cash flow retained
in the firm (e.g., interest rate on debt, interest rate on liquid assets, risk-adjusted cost
of capital, payout ratio, retention ratio). This paper precisely shows that, for a given
selected set of assumptions on the operating variables, the firm’s decisions on the payout
policy (i.e., the cash distributed to the firm’s shareholders) and the financing mix may
have a significant role in adding or subtracting value and even in turning an otherwise
unprofitable project into a value-creating one (or vice versa) and that the impact of such
decisions may be larger or smaller depending on the value of the other input factors.

These results suggest that some time and effort should be devoted by the firm’s man-
agement to model the distribution policy and the borrowing policy explicitly and mea-
sure its effects on the project’s value. In such a way, the firm may calibrate a suitable
financing-and-distribution policy which maximizes shareholder value creation. Since the
accounting-and-finance structure of a solar PV plant is equivalent to any other engineer-
ing project, the results obtained clarify that the role of the financial decisions embedded
in any capital asset project deserves more attention than it usually arouses in traditional
financial modelling (see Tham and Vélez-Pareja 2004 for an exception).

The remainder of the paper is structured as follows: In Section 2 we present the
model setting, breaking down the input factors into estimation variables and decision
variables, and introduce the notions of operating income, operating cash flow, and free
cash flow to equity (FCFE). In Section 3 we show the link between the FCFE and the
associated financing and distribution decisions made by the firm. Section 4 illustrates
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how to carve out the project’s cash flow from the estimation variables and how each
year’s decisions affects the accounting and financial magnitudes of the next year. In
Section 5 we operationalize the logical structure illustrated in the previous sections by
showing, for a solar PV plant, how to pass from inputs to cash flows. Section 6 makes
use of the estimated cash flows and the net-present-value (NPV) approach to estimate the
shareholder value created by the project and to make an economically rational decision. In
Section 7 we apply the model and the evaluation methodology to a ground-mounted stand-
alone solar PV plant. Section 8 carries out a scenario analysis for computing the project’s
economic profitability resulting from different financing and distribution decisions. Section
9 uses sensitivity analysis to quantify the individual impacts and the interaction effect of
financing policy and distribution policy on shareholder value creation. Some remarks
conclude the paper.

2 Operating Cash Flow and Free Cash Flow to
Equity
The accounting-and-finance model we propose is based on a comprehensive economic
evaluation of the option of switching to solar energy for a firm currently importing energy
from electric grid. The framework is based on a twofold classification of the variables
affecting benefits and costs. On one hand, we distinguish estimation inputs and decision
inputs; on the other hand, we differentiate the operating inputs from the financial inputs:

• estimation inputs are stochastic variables whose representative values (e.g., mean
values, most probable values) require an estimation process involving expert knowl-
edge

• decision inputs deal with decisions which must be made explicitly in order to build
the financial model of the project

• operating inputs have to do with the firm’s operating activities and the related
change in accounting and financial magnitudes under the assumption of project
undertaking

• financial inputs have to do with fund raising and distribution of cash to capital
providers, with the interest rates (on debt and on reinvestment of cash), and with
the minimum attractive rate of return required by the investors for undertaking the
project.

Owing to this taxonomy, the estimation variables may be operating (e.g., useful life of
plants, solar degradation panel rate, operating and maintenance costs, annual energy
consumption, energy prices, etc.) or financial (e.g., interest rate on debt, interest rate on
retained cash, required return on operating assets, etc.). Likewise, decision variables may
be operating or financial. The operating decisions have to do with technical aspects of
the project (e.g., decisions on the amount of operating and maintenance costs) or with
economic aspects such as the management of the net operating working capital and the
operating cycle; the financial decisions deal with
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− the financing policies, which are decisions on the financing mix to cover the finan-
cial deficits. The latter may be covered with debt capital, equity capital or internal
financing, defined as the recourse to existing liquid assets such as cash or cash equiv-
alents (e.g., cash withdrawals from bank accounts or sales of marketable securities)

− the distribution (or payout) policies, that are decisions on the amount of distribution
to shareholders of cash generated by the project and decisions on the amount of cash
retained in the firm and reinvested in the liquid assets.

We assume that the decision on the operating variables are given and focus on the financial
decisions regarding the coverage of financial deficits and distribution of available cash to
the firm’s equityholders, which we call the embedded decisions, since the accounting-and-
finance model describing the project cannot be completed without their determination.
In order to understand the role of the embedded decisions on the output, we illustrate the
model and then, in Section 6, clarify how to evaluate the project and make an accept-reject
decision. Following, we describe the setting of the decision process and some fundamental
accounting and financial magnitudes alongside the logical connections between the op-
erating variables and financial variables on one hand, and the estimation variables and
decision variables on the other hand.

The model starts from the input variables, which are used to build three pro forma
statements for each one of the n+1 dates (0 to n): Statement of capitals (or balance
sheet), statement of incomes, statement of cash flows. The first one collects the capital
invested and raised by the firm for undertaking the project, the second one reports the
incomes, and the third one reports the cash flows generated by the project. Letting n be
the duration of the solar PV plant, a total of 3(n+ 1) statements must be built.

To draw up the statements, the analyst should first focus on the operating components.
Let Revt be the incremental revenues derived from the sale of excess energy, and OpCt be
the incremental operational costs (O&M, insurance costs, opportunity costs such as lost
rents, etc.) brought about by the plant. Let Dept be the depreciation charge of the solar
PV plant. The pre-tax operating income, also called earning before interest and taxes
(EBIT), is determined as

EBITt = Revt −OpCt −Dept. (1)

Subtracting the income taxes, Tt, one finds the after-tax operating income:

Io
t = EBITt − Tt t = 0, 1, . . . , n (2)

where T is obtained as the product of the marginal corporate tax, τ , on the earnings
before taxes (EBT):

Tt = τ

EBT︷ ︸︸ ︷
(Revt −OpCt −Dept + I l

t − Id
t ) (3)

with I l
t and Id

t denoting, respectively, the interest income on liquid assets (cash and cash
equivalents, marketable securities, other financial assets) and the interest expense on debt,
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obtained as

I l
t = il · C l

t−1 (4)

Id
t = id · Cd

t−1 (5)

where
il = interest rate of liquid asset
id = interest rate of debt
C l

t−1 = balance of liquid assets at time t−1
Cd

t−1 = debt outstanding at time t−1.

Once estimated the after-tax operating income,1 the analyst must estimate the oper-
ating cash flow, that is, the cash flow generated (or absorbed, if negative) by the project’s
operations. To this end, it suffices to subtract the change in the operating capital in-
vested in the project from the after-tax operating income. For doing so, the analyst has
to add the depreciation charges (Dept) which are the opposite of fixed assets’ variation,
and subtract the change in net operating working capital (NOWC).2 Letting Co

t denote
the capital invested in the operations at the beginning of period [t, t + 1], the operating
cash flow is

OCFt = Io
t −∆Co

t (7)

= Io
t + Dept −∆NOWCt (8)

where ∆ denotes variation, so that ∆Co
t = Co

t − Co
t−1 (with Co

−1 = 0).
The OCF represents cash available for distribution to the capital providers (sharehold-

ers and debtholders). Part of it is used to service the debt and the residual amount is the
so-called Free Cash Flow to Equity (FCFE). Mathematically,

FCFEt = OCFt − CFDt. (9)

When FCFE is positive, it indicates the maximum amount of cash that can be distributed
to shareholders without making recourse to additional debt or to cash withdrawals from
the firm’s existing liquid assets; when it is negative, it indicates that the OCF provided by
the operations is not sufficient to service the debt and represents the maximum amount
that can be contributed by the shareholders to cover the financial shortage. In other
words, FCFE is a financial surplus potentially distributable to shareholders if it is positive,
whereas it expresses a financial deficit potentially contributable by shareholders if it is

1If one subtracts income taxes from EBT one gets the after-tax earnings, also known as net income, which
is the profit accrued to equityholders:

Ie
t = EBTt − Tt. (6)

2In a solar PV plant, NOWC is represented by the accounts receivable generated by the sale of excess energy
and the accounts payable generated by the purchase of energy from the grid whenever the plant does not meet
the firm’s electricity needs. Usually, the firm has no degree of freedom on the working capital because, in
general, the payment conditions to the service operator are established by the operator. Also, the firm has
little bargaining power regarding the credit terms relative to the sale of excess energy. (For the role of working
capital in selecting an appropriate measure of value creation, see Magni and Marchioni 2020.)
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negative.

3 FCFE and the embedded decisions
The FCFE is the hub of the matter. It is the financial variable which triggers the financing
and distribution decisions embedded in the model. Specifically, the firm’s analysts must
determine, for each period, how a financial deficit (FCFE < 0) will be covered (financing
policy) and how a financial surplus (FCFE > 0) should be employed (payout/retention
policy). Modeling such decisions for every year explicitly is important because, as we
now see, a decision made in one year affects next year’s after-tax cash flows and, hence,
determines the project’s economic profitability.3 Furthermore, the explicit account of
the embedded decisions enables the firm’s analysts to study the interrelations of payout
policy and financing policy and their impact on value creation, which helps find an optimal
financial policy which maximizes shareholder wealth.

In general, once the OCF is estimated and the cash flow to debt is subtracted, two
situations may occur for each date:

• FCFEt > 0: a financial surplus occurs (cash may be distributed); a decision on distri-
bution of cash flow to equityholders is required which also determines automatically
the amount of internal reinvestment (retained cash)

• FCFEt < 0: a financial deficit occurs (cash must be contributed); a decision on
contribution of cash flow from equityholders is required which also determines auto-
matically the amount of internal financing (cash withdrawal).4

Let CFEt denote the cash flow actually distributed to equityholders when FCFEt > 0
or the cash flow actually contributed by shareholders when FCFEt < 0; a positive CFE
indicates that cash is distributed to equityholders and a negative CFE signals that cash
is contributed by equityholders.

As noted above, a decision on the CFE is also a decision on the amount of cash
withdrawn from the firm’s liquid assets to cover the financial deficit (whenever FCFEt <

0) or the amount of cash retained in the firm and invested in liquid assets (whenever
FCFEt > 0). The decisions on distribution/retention and on equity/debt financing must
be explicitly modeled for every year, in order to get the estimation of the next year’s
incomes and cash flows. Indeed, next year’s operating income and cash flow depend on
the amount of next year’s taxes paid and the latter is affected by the next year’s interest
income, which in turn depends on this year’s balance of liquid assets. For example, if

3Traditional modeling often neglects internal financing and usually assumes (implicitly or explicitly) that
100% of a financial surplus is distributed to shareholders and 100% of a financial deficit is covered by equity
or debt. In practice, firms often use cash withdrawals from existing liquid assets (internal financing) to finance
the installation of solar PV projects and do not distribute all the cash available for distribution but reinvest
it, wholly or partially, into liquid assets. To abide by realistic assumptions is important to avoid over- or
under-estimation of the project’s economic profitability.

4Since the FCFE may well be positive or negative, the FCFE is a Free Cash Flow to Equity in the former
case and a Free Cash Flow from Equity in the latter case. In other words, the firm might be said to be
free to distribute FCFE to shareholders in the former case and to be free to ask for equity contribution from
shareholders in the latter case.
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OCFt = 100 and CFDt = 40, the cash available for distribution is FCFEt = 60. Suppose
the firm decides to distribute to shareholders 70% of FCFE and suppose the beginning-of-
period balance of liquid assets is C l

t−1 = 500 and the interest rate on liquid assets is ilt = 1%.
Then, the cash flow distributed to the firm’s shareholders is CFEt = 70% · 60 = 42, which
means that the retained cash is 60 − 42 = 18. Only now it is possible to determine the
time-t balance of liquid assets by summing the interest income and the retained cash:
C l

t = 500 + 1% · 500 + 18 = 523, which determines the time-t+1 interest income and,
therefore, the income taxes and, hence, the time t+1 operating income and cash flow.
Viceversa, if OCFt = 100 and CFDt = 120, then FCFEt = −20, which represents a
financial deficit. Suppose the firm decides to cover 70% of this financial shortage with
equity. The cash flow contributed by the equityholders is CFEt = 70% · (−20) = −14,
which represents an outlay for shareholders. The residual amount, 20−14 = 6 is financed
internally, via cash withdrawal from liquid assets. Hence, the time-t balance of liquid
assets is C l

t = 500 + 1% · 500− 6 = 499, which in turn impacts the operating income and
cash flow in time t+ 1.

In general, depending on the situation, the balance of liquid asset is set, respectively,
as

• C l
t = C l

t−1 + I l
t+ retained cash (internal reinvestment) if FCFEt > 0

• C l
t = C l

t−1 + I l
t− cash withdrawal (internal financing) if FCFEt < 0

The two above equations may be compressed into a single recursive equation:

C l
t = C l

t−1 + I l
t −NOCFt t = 0, 1, . . . , n, C l

−1 = 0 (10)

where the NOCF denotes a non-operating cash flow indicating a cash withdrawal if
NOCFt > 0 and cash retained if NOCFt < 0 As noted, the NOCF is automatically
determined by the decisions on equity contribution or distribution:

NOCFt = CFEt − FCFEt (11)

so that the balance of liquid assets is essentially affected by CFE and FCFE as follows:

C l
t = C l

t−1 + I l
t = C l

t−1 + (FCFEt − CFEt).

4 The logical loop
The firm’s analysts evaluating an investment opportunity should build a model which
computes the streams of OCF, NOCF, and CFD. These cash-flow streams will be used
for the calculation of the economic value created, as will be shown in section 6.

The project’s cash-flows are dynamically interconnected via a logical loop such that
the OCF of the current year, OCFt, affects the cash available for distribution, FCFE,
which affects the non-operating cash flow, NOCFt, which in turn affects the balance of
liquid assets, C l

t, which affects the next year’s interest income, I l
t+1 and, in turn, the

amount of taxes, Tt+1 and, hence, the operating income, Io
t+1 = EBITt+1 − Tt+1, which
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in turn affects next year’s operating cash flow OCFt+1. The logical loop that needs to be
accounted for in the model is then as follows:

OCFt =⇒ FCFEt

=⇒
decision︷ ︸︸ ︷
CFEt

=⇒ NOCFt

=⇒ C l
t

=⇒ I l
t+1

=⇒ Tt+1

=⇒ Io
t+1 =⇒ OCFt+1

(12)

for t = 0, 1, 2, . . . , n− 1. Analytically, using (2)-(8), the loop linking OCFt and OCFt+1,
mediated by the embedded decision about CFEt, may be expressed as follows:

OCFt+1 = Io
t+1 −∆Co

t+1

= EBITt+1 − Tt+1 −∆Co
t+1

= EBITt+1 − τ(EBITt+1 + I l
t+1 − Id

t+1)−∆Co
t+1

= EBITt+1(1− τ) + τId
t+1 − τI l

t+1 −∆Co
t+1

= EBITt+1(1− τ) + τId
t+1 − τilt+1C

l
t −∆Co

t+1

= EBITt+1(1− τ) + τId
t+1 − τilt+1

(
C l

t−1(1 + ilt)−NOCFt
)
−∆Co

t+1

= EBITt+1(1− τ) + τId
t+1 − τilt+1

(
C l

t−1(1 + ilt) + FCFEt −
embedded decision︷ ︸︸ ︷

CFEt
)
−∆Co

t+1

= EBITt+1(1− τ) + τId
t+1 − τilt+1

(
C l

t−1(1 + ilt) + OCFt − CFDt − CFEt
)
−∆Co

t+1
(13)

for t = 0, 1, . . . , n− 1.
At time n (terminal date), the project is over and the entire available cash is distributed

to equityholders, which is equal to the sum of the last FCFE and the terminal balance of
liquid assets (i.e., net balance derived from the cash previously retained and withdrawn,
with accumulated interest incomes):

CFEn =

terminal balance of
liquid assets︷ ︸︸ ︷
C l

n−1 + I l
n +

OCFn−CFDn︷ ︸︸ ︷
FCFEn . (14)

It is worth noting that the CFE at time n is the result of decisions made at every date
t = 0, 1, , . . . , n − 1. These decisions affect the balance of liquid assets at every date, as
well as the magnitude of the equity book value at every date. The final liquidation CFE is
nothing but the total amount of cash available to the firm, which derives from the liquid
assets and from the operations of the last period, net of the debt service of the last period.

The firm’s analysts should calculate the balances of all the capitals involved (operating
assets, liquid assets, debt, and equity), all the incomes (operating income, interest on
liquid assets and on debt, net income), all the cash flows (OCF, NOCF, CFD, and CFE).
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Hence, they should collect them in three pro forma statements for each time t: The
statement of capitals (or balance sheet), the statement of incomes and the statement of
cash flows. The internal consistency of the model must be certified by the following three
balancing equations:

Statement of capitals

Capital invested
in the project︷ ︸︸ ︷
Co

t + C l
t =

Capital raised
from capital providers︷ ︸︸ ︷

Cd
t + Ce

t (15)

Statement of incomes

Income generated
by the project︷ ︸︸ ︷

Io
t + I l

t =

Income accrued
to capital providers︷ ︸︸ ︷

Id
t + Ie

t (16)

Statement of cash flows

Cash flow contributed
by the project︷ ︸︸ ︷

OCFt + NOCFt =

Cash flow distributed
to capital providers︷ ︸︸ ︷

CFDt + CFEt (17)

(see also Magni 2020, Ch. 2).
The logical steps required to determine all the project’s cash flows and build the pro

forma statements may be summarized as follows:

1. Use the operating inputs to estimate the EBIT (see (1))

2. Subtract the income taxes via (3) to get the after-tax operating income via (2)

3. Add depreciation charges and subtract the change in NOWC to get the OCF (see
(7)-(8))

4. Subtract the CFD to get the FCFE (see (9))

5. If the FCFE is positive, make a decision on how to split the available cash between
distribution to shareholders and cash retention in the firm. If the FCFE is negative,
make a decision on how to split the financial deficit between equity contribution and
internal financing. This decision determines the CFE

6. Calculate the NOCF via (11) and determine the balance of liquid assets via (10)

7. Determine the next year’s interest income via (4) and the interest on debt via (5)

8. Repeat the steps above for t = 0, 1, 2, . . . , n − 1. (For t = n, step 5 is replaced by
the calculation of CFEn via (14).)

Figure 1 provides a graphical representation of the logical loop, from start of the system
(t = 0) to the end of the system (t = n).
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END 

 
 
 
 

STEPS 𝒕 =  −𝟏 𝒕 =  𝟎 𝒕 =  𝟏 𝒕 =  𝟐 ... 𝒕 =  𝒏 

1. Use the operating inputs to 
estimate EBIT (see (1)) 

  EBIT0 = Rev0 −OpC0 −Dep0 (1)  EBIT1 = Rev1 − OpC1 − Dep1 (1)  EBIT2 = Rev2 −OpC2 −Dep2 (1) ...  EBIT𝑛 = Rev𝑛 −OpC𝑛 −Dep𝑛 (1) 

2. Subtract the income taxes via (3) 
to get the after-tax operating 
income via (2) 

 

 T0 = 𝜏 ∙ EBT0⏟
(Rev0−OpC0−Dep0+0−0)

(3) 

 𝐼0
𝑜 = EBIT0 − T0 (2) 

 T1 = 𝜏 ∙ EBT1⏟
(Rev1−OpC1−Dep1+𝐼1

𝑙−𝐼1
𝑑)

 (3) 

 𝐼1
𝑜 = EBIT1 − T1 (2) 

 T2 = 𝜏 ∙ EBT2⏟
(Rev2−OpC2−Dep2+𝐼2

𝑙−𝐼2
𝑑)

 (3) 

 𝐼2
𝑜 = EBIT2 − T2 (2) 

... 

 T𝑛 = 𝜏 ∙ EBT𝑛⏟  
(Rev𝑛−OpC𝑛−Dep𝑛+𝐼𝑛

𝑙 −𝐼𝑛
𝑑)

(3) 

 𝐼𝑛
𝑜 = EBIT𝑛 − T𝑛 (2) 

3. Add depreciation charges and 
subtract the change in NOWC to 
get the OCF (see (7)-(8)) 

𝐶−1
𝑜 = 0 

 OCF0 = 𝐼0
𝑜 − ∆𝐶0

𝑜 (7) 

 = 𝐼0
𝑜 + Dep0 − ∆NOWC0 (8) 

 OCF1 = 𝐼1
𝑜 − ∆𝐶1

𝑜 (7) 

 = 𝐼1
𝑜 + Dep1 − ∆NOWC1 (8) 

 OCF2 = 𝐼2
𝑜 − ∆𝐶2

𝑜 (7) 

 = 𝐼2
𝑜 + Dep2 − ∆NOWC2 (8) 

... 
 OCF𝑛 = 𝐼𝑛

𝑜 − ∆𝐶𝑛
𝑜 (7) 

 = 𝐼𝑛
𝑜 + Dep𝑛 − ∆NOWC𝑛 (8) 

4. Subtract the CFD to get the 
FCFE (see (9)) 

  FCFE0 = OCF0 − CFD0 (9)  FCFE1 = OCF1 − CFD1 (9)  FCFE2 = OCF2 − CFD2 (9) ...  FCFE𝑛 = OCF𝑛 − CFD𝑛 (9) 

5. If the FCFE is positive, make a 
decision on how to split the 
available cash between distribution 
to shareholders and cash retention 
in the firm. If the FCFE is negative, 
make a decision on how to split the 
financial deficit between equity 
contribution and internal financing. 
This decision determines the CFE  

 
 ⇒ CFE0⏞

decision

   ⇒ CFE1⏞
decision

   ⇒ CFE2⏞
decision

  
...  CFE𝑛 = 𝐶𝑛−1

𝑙 + 𝐼𝑛
𝑙 + FCFE𝑛 (12) 

6. Calculate the NOCF via (11) and 
determine the balance of liquid 
assets via (10) 

𝐶−1
𝑙 = 0 

 NOCF0 = CFE0 − FCFE0 (11) 

 𝐶0
𝑙 = 0 + 0 − NOCF0 (10) 

 NOCF1 = CFE1 − FCFE1 (11) 

 𝐶1
𝑙 = 𝐶0

𝑙 + 𝐼1
𝑙 −NOCF1 (10) 

 NOCF2 = CFE2 − FCFE2 (11) 

 𝐶2
𝑙 = 𝐶1

𝑙 + 𝐼2
𝑙 − NOCF2 (10) 

... 

 NOCF𝑛 = CFE𝑛 − FCFE𝑛 (11) 

 𝐶𝑛
𝑙 = 𝐶𝑛−1

𝑙 + 𝐼𝑛
𝑙 − NOCF𝑛 = 0 (10) 

7. Determine the next year’s 
interest income via (4) and the 
interest on debt via (5) 

 𝑰𝟎
𝒍 = 𝑖𝑙 ⋅ 𝐶−1

𝑙 = 0 (4) 

 𝑰𝟎
𝒅 = 𝑖𝑑 ⋅ 𝐶−1

𝑑 = 0 (5) 

 𝑰𝟏
𝒍 = 𝑖𝑙 ⋅ 𝐶0

𝑙 (4) 

 𝑰𝟏
𝒅 = 𝑖𝑑 ∙ 𝐶0

𝑑 (5) 

 𝑰𝟐
𝒍 = 𝑖𝑙 ⋅ 𝐶1

𝑙 (4) 

 𝑰𝟐
𝒅 = 𝑖𝑑 ⋅ 𝐶1

𝑑 (5) 

 𝑰𝟑
𝒍 = 𝑖𝑙 ⋅ 𝐶2

𝑙 (4) 

 𝑰𝟑
𝒅 = 𝑖𝑑 ⋅ 𝐶2

𝑑 (5) 

...  

8. Repeat the steps above for 
𝑡  =  0, 1, 2, . . . , 𝑛 − 1. 

      
 

START 

Figure 1: The logical loop for calculating the project’s cash flows
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5 Feeding the model: from inputs to cash flows
In this section, we show how to plug the input factors in the financial model described
above, making some assumptions on (the estimation variables and) the embedded deci-
sions.

Consider a firm currently importing energy from electric grid, which is offered the
opportunity of switching to solar energy. The solar PV plant will be installed on a land
property owned by the company and currently rented. With retail energy, the firm peri-
odically pays a utility bill and receives a rental income from the rent of the land. If the
solar PV plant is installed, the firm will stipulate a leasing contract whereby lease pay-
ments will be made periodically.5 The plant will also require operating and maintenance
costs (O&M) as well as insurance costs. After several years, at the expiration date, the
lessee will pay a lump sum to acquire the plant, which may be financed with debt, equity,
or internal financing (i.e., cash withdrawal from the firm’s existing liquid assets). Once
acquired the property of the plant, the solar PV system will continue to generate electric
power for some years. At the end of its useful life, the plant will be removed, and the firm
will incur disposal costs.

In terms of benefits and costs, if the retail system is replaced by the PV plant, the cash
flows will increase as a result of the cost savings (avoided utility bill), but they will also
decrease as a result of the operating and maintenance costs and the lost rental income
(the solar panels will be ground-mounted). The two conflicting effects will determine a
(positive or negative) change in the firm’s EBIT and, hence, in the project’s operating
cash flow. At the expiration date, the firm will sustain a further expenditure for acquiring
the property of the plant, which will bring about further benefits consisting of the ceased
lease payments.

In Table 1, the input variables are reported (accompanied by their symbols and units
of measure) with the specification of their nature (estimation, decision, operational, fi-
nancial) and, in addition, with the managerial area with which they are associated.

The quantity of energy consumed for the firm’s operations is estimated to be constant
through time and equal to q; the current purchase price of energy is pp, growing at a
constant rate gp per year. The utility bill is paid to the Energy Service Provider in the
same year in which energy is consumed. The firm stipulates a lease contract with the
following economic conditions: The lease payment, equal to P , is made periodically until
the expiration date m; at time m, the firm acquires the property of the plant by paying
a lump sum equal to CapEx (capital expenditure), and the solar PV system will keep on
producing electric power for some years, until time n. From an accounting perspective,
CapEx is a fixed asset, which is assumed to be depreciated evenly from t = m + 1 until
t = n, so that the depreciation charge is Dep = CapEx/(n−m). We assume that the PV
plant is installed at t = 0 in a field owned by the firm, which is currently rented at a rent
equal to R growing at the constant annual rate gc. The latter represents an opportunity
cost for the firm (a foregone income).

5A lease contract is an operating variable if lease payments are treated as operating expenses and the asset
is not reported in the balance sheet during the lease term; it is a financial variable if it is treated like a loan, in
which case accounting effects are shown on the balance sheets.

157



Table 1: Inputs for a solar PV plant

Input Symbol Unit of
measure

Type Nature Managerial
area

Useful life of PV plant n years Estimation Operating Project
Annual unit production (first year) Qmax kWh/kWp/year Estimation Operating Project
Solar panel degradation rate gQ % Estimation Operating Project
Disposal costs H € Estimation Operating Project
Opportunity costs (e.g., foregone rents) R €/year Estimation Operating Project
Growth rate for costs gc % Estimation Operating Project
Productivity loss in case of O&M = 0% ProdLoss % Estimation Operating Project
Technical suggested O&M and insurance (% of plant’s total cost) SuggO&M % Estimation Operating Project
Lease expiration date m years Estimation Operating Project
Lease payment P €/year Estimation Operating Project
Purchase price of plant (at the expiration date) CapEx € Estimation Operating Project
Annual energy consumption q kWh/year Estimation Operating Company
Tax rate τ % Estimation Operating Company
Energy purchase price pp €/kWh Estimation Operating Energy Market
Energy selling price ps €/kWh Estimation Operating Energy Market
Growth rate of energy price gp % Estimation Operating Energy Market
Required return on operating assets ro % Estimation Financial Capital market
Required return on liquid assets rl % Estimation Financial Capital market
Required return on debt rd % Estimation Financial Capital market
Interest rate on liquid assets il % Estimation Financial Distribution
Interest rate on debt id % Estimation Financial Financing
Loan tenure Dm years Estimation Financial Financing

O&M and insurance (% of plant’s total cost) O&M % Decision Operating Project
First of year of CFE distribution dm years Decision Financial Distribution
Payout Ratio α % Decision Financial Distribution
Equity financing E % Decision Financial Financing
Internal financing (cash withdrawal) L % Decision Financial Financing
Debt financing D % Decision Financial Financing
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Starting from the first period, the PV plant requires operating, maintenance and
insurance costs, expressed as a percentage of the total cost of the plant, which is the
product between its nameplate capacity (in kWp) and its unit cost (per kWp). Technical
experts determine a suggested level of these (percentage) costs for the first year in order
to maximize the energy production, which we denote as SuggO&M. We denote as O&M
the actual percentage) expenses established by the management, which may be equal to
or smaller than the suggested ones (i.e., O&M ≤ SuggO&M); both are assumed to grow
at the constant annual rate gc.

The solar panel degradation rate is gQ. If O&M = SuggO&M, the PV system will
produce Qmax units of energy in the first year, which decrease every year at the rate gQ; if
O&M = 0 (i.e., the company is not willing to spend for operating and maintenance costs),
the energy production suffers from a percentage loss due to lack of maintenance, denoted
as ProdLoss. Furthermore, technical experts expect that the effective energy production
in each period t, denoted as Qt, will be proportional to the established level of O&M costs
as compared to the suggested level. Specifically,

Qt = Qmax(1− gQ)t−1 ·
(
1−max(ProdLoss · SuggO&M−O&M

SuggO&M , 0)
)
.

If the energy produced by the plant, Qt, is higher than the energy consumed by the firm,
the firm sells the differential quantity to the Energy Service Operator at the energy selling
price ps, growing at a constant rate gp per year; the grid operator will pay the firm in the
following year (this gives rise to accounts receivable). We assume that, at time t = n, the
energy sold is paid immediately.

As a result, if the annual produced quantity is lower than the consumed energy in year
t, that is, Qt < q, energy costs savings arise equal to Qt · pp(1 + gp)t−1. If, instead, the
produced quantity is higher than the consumed one, that is, Qt > q, two benefits arise:

• energy costs savings arise equal to q · pp(1 + gp)t−1

• energy sales revenues equal to (Qt−q) ·ps(1+gp)t−1 are generated, which determine
the presence of NOWC (i.e., accounts receivable).

Overall, the effect of the energy sales revenues and energy costs savings on the operating
income can be summarized with the expression min(q,Qt) · pp(1 + gp)t−1 + max(0, Qt −
q) · ps(1 + gp)t−1 and the operating working capital can be represented with the formula
NOWCt = max(0, Qt−q) ·ps(1+gp)t−1 and NOWCn = 0. (See also Magni and Marchioni
2019).

At time n, disposal costs for removing the plant should be supported by the firm,
whose current estimation for t = 1 is equal to H, expected to grow at the annual rate gc

in the time interval from 1 to n. Therefore, the expected disposal costs sustained at time
n are equal to H(1 + gc)n−1.

To sum up, conceptually

• the firm-without-the-project pays the utility bills and receives the rent for the land
(for the whole period);

• the firm-with-the-project sustains the lease payments (until t = m), the operating

159



and maintenance costs (until t = n), the lump sum (in t = m), and the disposal costs
(in t = n), and receives cash payments for the energy sold to the Energy Service
Operator.

The project is, by definition, the difference between the firm-with-the-project and the
firm-without-the project. Therefore, the pre-tax operating income is formally represented
by

EBITt =


Z − P for 1 ≤ t ≤ m

Z −Dep for m+ 1 ≤ t ≤ n− 1

Z −Dep−H(1 + gc)t−1 for t = n.

(18)

where

Z = min(q,Qt)·pp(1+gp)t−1+max(0, Qt−q)·ps(1+gp)t−1−R·(1+gc)t−1−O&M·(1+gc)t−1

The project’s operating assets, Co
t , are represented by net operating working capital,

NOWCt, and, from time m on, by fixed assets, net of depreciation, NFAt:

Co
t =



NOWCt︷ ︸︸ ︷
max(0, Qt − q) · ps(1 + gp)t−1 for 1 ≤ t ≤ m− 1

NOWCt︷ ︸︸ ︷
max(0, Qt − q) · ps(1 + gp)t−1 +

NFAt︷ ︸︸ ︷
CapEx−Dep · (t−m) for m ≤ t ≤ n− 1

0 for t = n.
(19)

Using (2) and (7)-(8), one gets the OCF in each period. The OCF may be positive or
negative (or zero). We assume that, whenever OCF is negative, all the financial needs
will be covered by internal financing (cash withdrawal) except at time m, where CapEx
is financed

• by equity capital with a proportion equal of E ≤ 1

• by cash withdrawals from liquid assets (internal financing) with a proportion of
L ≤ 1

• by a loan contract of tenure Dm = n−m with a proportion of D = 1− (E+L) ≤ 1.

Whenever OCF is positive, FCFE is calculated subtracting the CFD associated to the
loan stipulated at time m (see eq.(9)). If FCFE is negative, the financial needs will be
covered with internal financing. If FCFE is positive a decision on payout/retention is
required, as seen in the previous sections. Let dm be the first date at which some CFE is
distributed; we assume that the firm will distribute a proportion α of the smaller between
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the net income and the FCFE, provided that they are both positive, that is

CFEt =


0 for t = 1, 2, . . . , dm − 1

α ·max[0,min(Ie
t ,FCFEt)] for t = dm, dm + 1, . . . ,m− 1,m+ 1, . . . , n− 1

−E · CapEx for t = m.
(20)

The decision on CFE is also a decision on the amount of cash retained by the firm. The
latter is equal to the FCFE minus the CFE (see eq.(11)) so that

NOCFt =


−FCFEt for t = 1, 2, . . . , dm − 1

α ·max[0,min(Ie
t ,FCFEt)]− FCFEt for t = dm, dm + 1, . . . ,m− 1,m+ 1, . . . , n− 1

−E · CapEx− FCFEt for t = m.
(21)

Finally, the project closes at time t = n and we recall that CFE at t = n is not a decision
variable, since the available cash resulting from the retention decisions of the previous
periods is entirely distributed to shareholders according to (14).

These nontrivial conceptual and formal relationships among estimation and decision
variables and the impact on incomes and cash flows testify to the complexity of the
financial modeling and suggest that the analyst should build a transparent model, where
the embedded decisions are explicitly considered. Failing to do so would invalidate the
determination of the financial magnitudes and even the internal consistency of the model.

Once this accounting-and-finance model of the project is built, all the cash flow streams
associated with the project will be available. Using these cash-flow streams, the project
is evaluated and the decision on whether undertaking the project or not will be made. In
the next section, we illustrate the appraising process.

6 Shareholder value creation
In the previous sections, we have shown the first part of the financial model, consisting in
drawing up three pro forma statements for the capitals, the incomes, and the cash flows.
The second part of the financial modeling has to do with the evaluation of the project on
the basis of those statements, taking the point of view of the firm’s shareholders.

Since the manager’s mandate is to increase the wealth of the firm’s shareholders, once
the three pro forma statements have been built, the analyst must evaluate the shareholder
value created by the project. As known, evaluation depends on the (opportunity) cost of
capital: The economic (or market) value of any cash-flow stream is obtained by discounting
its cash flows at the (assumed constant) expected rate of return on an equivalent-risk asset
traded in the (assumed efficient) capital market: V0 =

∑n
t=1 Ft(1 + r)−t. It represents the

price that the cash-flow stream would have it were traded in the market.
Let ro, rl, rd be, respectively, the required return on OCFs, the required return on

NOCFs, and the required return on CFD, as estimated by the analyst.6 Then, the eco-
6Required returns are usually estimated by summing the risk-free rate to a risk premium compensating for
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nomic values of the OCF stream, NOCFs stream and CFD stream are, respectively,

V o
0 =

n∑
t=1

OCFt

(1 + ro)t

V l
0 =

n∑
t=1

NOCFt

(1 + rl)t

V d
0 =

n∑
t=1

CFDt

(1 + rd)t
.

(22)

Subtracting the respective initial capital, one gets the net present value (NPV) of the
three areas:

NPVo = V o
0 − Co

0 operating NPV

NPVl = V l
0 − C l

0 non-operating NPV

NPVd = V d
0 − Cd

0 debt NPV.

(23)

The first one is the economic value generated by the operations (specifically, the pro-
duction and consumption of energy, the maintenance of the plant, and the sale of excess
energy to the grid operator); the second one is the economic value jointly generated by
the internal financing and the reinvestment in liquid assets of the retained cash. The
sum of NPVo and NPVl is the project’s NPV, that is, the economic value created by the
project as a result of the operations and the management of the non-operating cash flows.
The third one is the part of the project’s NPV which is grasped by debtholders. (All of
these NPVs may be either positive or negative or zero.) The residual amount obtained
by subtracting the debt NPV from the project’s NPV is the equity NPV, that is, the
economic value created by the project and accrued to shareholders, after honoring the
cash flows to debtholders:

NPVe =

project’s NPV︷ ︸︸ ︷
NPVo + NPVl−NPVd (24)

or, which is the same,

NPVe =

market value of equity︷ ︸︸ ︷
(V o

0 + V l
0 − V d

0 ) −

initial equity investment︷ ︸︸ ︷
(Co

0 + C l
0 − Cd

0 ) = V e
0 − Ce

0 . (25)

NPV decision criterion. A project is worth undertaking if and only if it creates value
for its equityholders, that is, NPVe > 0.

Owing to (24), shareholder value may be broken down to three components: The operating
assets, the liquid assets, and the debt. Equity-holders may then benefit not just from a
value-creating operating activity (i.e., NPVo > 0), but also from an efficient management
of liquid assets (i.e., NPVl > 0) and from the ability of borrowing at a rate id which
is lower than the cost of debt, rd, that is, the equilibrium rate prevailing in the capital

risk. This is established by the market, possibly integrating it with subjective consideration (see Damodaran
1999, 2006, Titman and Martin 2016, Berk and DeMarzo 2014, Magni 2020, Sect. 5. See also Boudreaux et al.
2011, Bora and Vanek 2017 for the use of buil-up models).
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markets (i.e., NPVd < 0). At the same time, the equity NPV may be positive even if
the operating NPV is negative, as long as the management of the financial variables is
efficient (resulting in NPVl > 0 and NPVd < 0).
If one assumes id = rd, then the market value of debt coincides with the nominal value of
debt, that is, V d

0 = Cd
0 , which means NPVd = 0. In this case, the equity NPV is the sum

of operating NPV and non-operating NPV:

NPVe = NPVo + NPVl. (26)

If, in addition, il = rl, then V l
0 = C l

0 and NPVl = 0 so that the equity NPV is equal to
the operating NPV:

NPVe = NPVo. (27)

In the next section, we apply the model to a firm facing the opportunity of switching from
retail energy to solar energy.

7 Example
In this section we analyse value creation for a solar PV plant which has been recently
offered to a small-sized firm by a solar PV installer company (in which one of the authors
of this paper works). The specific assumptions about estimation inputs and decision
inputs are reported in Table 2. From the input data, the statements of capitals (balance
sheets), the income statements, and cash flow statements are drawn in the way described
in the previous sections. We report them in Figure 2.7 The three pro forma statements are
logically interconnected in the non-trivial logical loop described in (12) and formalized
in (13), owing to the embedded decisions: The decisions on financing and cash flow
distribution affect the amount of liquid assets; this in turn affects next-period interest
on liquid assets, which in turn affects next-period operating income and, therefore, the
next-period OCF.

As described in the first part of this paper, the model logically chains estimated data
and decisions regarding the proportions of distribution and retention and the proportions
of equity financing and internal financing. For example, to build the balance of liquid
assets at t = 24, C l

24, we consider the balance of liquid assets at time t = 23, which is
C l

23 = 2, 390.66. This amount increases by the interest income I l
24 = il · C l

23 = 0.5% ·
2, 390.66 = 11.95, and by the retained cash (i.e., the amount not distributed to the
equityholders) at time t = 24. The latter is obtained via eq. (11) as

Retained cash = −NOCF24

= FCFE24 − CFE24

= FCFE24 − α ·max[0,min(Ie
24, FCFE24)]

= 3, 279.58− 50% ·max[0,min(869.72, 3, 279.58)]

= 3, 279.58− 50% · 869.72 = 2, 844.72.
7We assume that the debt is reimbursed with level payments and that the plant’s total cost is 96,600 euro,

obtained as the product of the plant’s nameplate capacity (92 kWp) and its unit cost (1,050 euro per kWp).
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Table 2: Assumptions

Input Assumption

ESTIMATED VARIABLES

Useful life of PV plant n = 25 years
Annual unit production (first year) Qmax = 1, 080.00 kWh/kWp/year
Solar panel degradation rate gQ = 0.90%
Disposal costs H =5,000 €
Lost rent from land property R = 3, 000 €/year
Growth rate for costs gc = 1.25%
Productivity loss in case of O&M = 0% ProdLoss= 15%
Technical suggested O&M and insurance SuggO&M= 4%
Lease expiration date m = 20 years
Lease payment P = 6, 268.45 €/year
Purchase price of plant (at the expiration date) CapEx = 25, 000€
Required return on operating assets ro = 6%
Required return on liquid assets rl = 3%
Required return on debt rd = 3%
Annual energy consumption q = 30, 000kWh/year
Tax rate τ = 27.9%
Energy purchase price pp = 0.160€/kWh
Energy selling price ps = 0.130€/kWh
Growth rate of energy price gp = 1.25%
Interest rate on liquid assets il = 0.50%
Interest rate on debt id = 4%
Loan tenure (dependent variable) Dm = n−m = 5 years

DECISION VARIABLES

O&M and insurance O&M =3.50%
First year of CFE distribution dm = 15th year
Payout Ratio α = 50.0%
Equity financing E = 25%
Internal financing (cash withdrawal) L = 25%
Debt financing (loan) D = 1− (E + L) = 50%

As a result, using (10), the balance of liquid assets at time t = 24 as C l
24 = C l

23 + I l
24 −

NOCF24 = 2, 390.66 + 11.95 + 2, 844.72 = 5, 247.33.8 This amount enables calculating the
terminal CFE at time t = 25 via eq. (14) as FCFE25 +C l

24 + I l
25 = 6, 849.34 + 5, 247.33 +

26.24 = 12, 122.91, which entirely liquidates the investment project.9

The pro forma financial statements in Figure 2 represent the changes in the pro forma
financial statements of the firm as a result of switching to solar energy. For example,
the revenues express the increase in the firm’s revenues, the operating costs express the
increase in the firm’s operating costs (note that, from year 21 to year 24, a decrease in
the firm’s operating costs occurs, since the cost savings due to avoided bills outweigh
the plant’s operating and maintenance costs). The last line of the cash-flow statement
highlights the project’s non-operating cash flows. In year 1, a decrease of cash occurs
in order to cover the financial deficit (NOCF1 > 0). From year 2 to year 19 part of
FCFE generated by the project is retained in the firm (NOCFt < 0). In year 20, cash is
withdrawn again from liquid assets (NOCF20 > 0) to partially finance the purchase of the
solar PV plant. From year 21 to year 24, part of the FCFE is retained(NOCFt > 0) and,

8Only after this computation is done, the balance sheet at time t = 24 may be completed by calculating the
equity capital:

Ce
24 = Co

24 + Cl
24 − Cd

24 = 13, 510.01 + 5, 247.33− 2, 699.85 = 16, 057.50.

9The terminal CFE may equivalently be obtained as Ce
24+Ie

25 = 16, 057.50−3, 934.59 = 12, 122.91, confirming
the logical consistency of (this part of) the model.
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in year 25, cash is distributed to capital providers (NOCF25 > 0).

The expected (equity) NPV is the model output. With the assumptions made, it is
slightly positive: NPVe = 32.84 > 0. A better understanding of this result is presented
in the following table, obtained from (24):

Equity NPV decomposition

+ NPV of operating assets +NPVo = −1, 188.91
+ NPV of liquid assets +NPVl = 1, 420.57
− NPV of debt −NPVd = −198.81

= NPV of equity = NPVe = 32.84

The NPV of the OCFs is negative and tends to destroy value. However, it would be
unwise to recommend rejection on the basis of this operating NPV alone. The NPV of
the NOCFs (i.e., the cash withdrawals and the reinvestment in financial assets) creates
more value than the operating assets destroy: The way the firm will manage the financial
policy is able to compensate and turn an otherwise unprofitable project into a profitable
one. The NPV of the project is then NPVo + NPVl = −1, 188.91 + 1, 420.57 = 231.66.
Part of the project’s value created is captured by debtholders; specifically, equityholders
lose this part of the value created at the expense of the debtholders, but this loss is tiny,
due to the limited scale of the debt. As a result, the assumptions made are such that
the financial decisions more than compensate, albeit slighlty, the negative performance
of the operations. This case testifies to the importance of the financial variables and, in
particular, of the embedded decisions, in creating value.

The next section shows that the value created by this project may be changed (in-
creased or decreased) by changing choices of financing and distribution.
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BALANCE SHEET 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BS INVESTMENTS
Operating Assets - 8,775 8,769 8,763 8,756 8,749 8,741 8,733 8,724 8,715 8,705 8,695 8,684 8,673 8,661 8,648 8,635 8,622 8,608 8,593 33,578 28,562 23,545 18,528 13,510 - 

Accounts receivable from grid 

operator
- 8,775 8,769 8,763 8,756 8,749 8,741 8,733 8,724 8,715 8,705 8,695 8,684 8,673 8,661 8,648 8,635 8,622 8,608 8,593 8,578 8,562 8,545 8,528 8,510 - 

Net fixed assets - - - - - - - - - - - - - - - - - - - - 25,000 20,000 15,000 10,000 5,000 - 

Liquid assets - -8,108 -7,482 -6,873 -6,281 -5,707 -5,150 -4,612 -4,093 -3,593 -3,115 -2,657 -2,221 -1,807 -1,417 -1,227 -1,050 -885 -733 -595 -6,610 -3,541 -540 2,391 5,247 - 

INVESTMENTS - 667 1,286 1,889 2,474 3,042 3,591 4,121 4,631 5,121 5,590 6,038 6,463 6,865 7,244 7,421 7,585 7,737 7,874 7,998 26,967 25,021 23,005 20,918 18,757 - 

BS FINANCINGS
Debt - - - - - - - - - - - - - - - - - - - - 12.500 10.192 7.792 5.296 2.700 - 

Equity - 667 1,286 1,889 2,474 3,042 3,591 4,121 4,631 5,121 5,590 6,038 6,463 6,865 7,244 7,421 7,585 7,737 7,874 7,998 14,467 14,828 15,213 15,623 16,057 - 

FNIANCINGS - 667 1,286 1,889 2,474 3,042 3,591 4,121 4,631 5,121 5,590 6,038 6,463 6,865 7,244 7,421 7,585 7,737 7,874 7,998 26,967 25,021 23,005 20,918 18,757 - 

INCOME STATEMENT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Revenues - 5,775 5,731 5,687 5,642 5,596 5,549 5,500 5,451 5,401 5,350 5,298 5,245 5,190 5,135 5,078 5,021 4,962 4,902 4,841 4,779 4,715 4,651 4,585 4,518 4,449

New revenue: sale of energy - 8,775 8,769 8,763 8,756 8,749 8,741 8,733 8,724 8,715 8,705 8,695 8,684 8,673 8,661 8,648 8,635 8,622 8,608 8,593 8,578 8,562 8,545 8,528 8,510 8,492

Lost rent from land property - -3,000 -3,038 -3,075 -3,114 -3,153 -3,192 -3,232 -3,273 -3,313 -3,355 -3,397 -3,439 -3,482 -3,526 -3,570 -3,614 -3,660 -3,705 -3,752 -3,799 -3,846 -3,894 -3,943 -3,992 -4,042

(-) Operating costs - -4,849 -4,832 -4,814 -4,796 -4,777 -4,759 -4,740 -4,721 -4,701 -4,682 -4,662 -4,642 -4,621 -4,601 -4,580 -4,559 -4,537 -4,516 -4,494 -4,472 1,819 1,842 1,865 1,888 -4,825

(-) Lease annual payment - -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 -6,268 - - - - - 

(-) O&M cost - -3,381 -3,423 -3,466 -3,509 -3,553 -3,598 -3,643 -3,688 -3,734 -3,781 -3,828 -3,876 -3,925 -3,974 -4,023 -4,074 -4,124 -4,176 -4,228 -4,281 -4,335 -4,389 -4,444 -4,499 -4,555

(-) Disposal costs - - - - - - - - - - - - - - - - - - - - - - - - - -6,737

(-) Cost saving: self consumption of 

energy
- 4,800 4,860 4,921 4,982 5,045 5,108 5,171 5,236 5,302 5,368 5,435 5,503 5,572 5,641 5,712 5,783 5,855 5,929 6,003 6,078 6,154 6,231 6,309 6,387 6,467

EBITDA - 925 900 873 846 819 790 761 731 700 668 636 603 569 534 499 462 425 386 347 307 6,535 6,493 6,450 6,406 -375

(-) Depreciation - - - - - - - - - - - - - - - - - - - - - -5,000 -5,000 -5,000 -5,000 -5,000

EBIT - 925 900 873 846 819 790 761 731 700 668 636 603 569 534 499 462 425 386 347 307 1,535 1,493 1,450 1,406 -5,375

Interest income - - -41 -37 -34 -31 -29 -26 -23 -20 -18 -16 -13 -11 -9 -7 -6 -5 -4 -4 -3 -33 -18 -3 12 26

(-) interest expenses - - - - - - - - - - - - - - - - - - - - - -500 -408 -312 -212 -108

EBT - 925 859 836 812 787 762 735 708 680 651 621 590 558 525 491 456 419 382 344 304 1,002 1,067 1,136 1,206 -5,457

(-) Taxes - -258 -240 -233 -227 -220 -212 -205 -197 -190 -181 -173 -165 -156 -147 -137 -127 -117 -107 -96 -85 -279 -298 -317 -337 1,523

NET INCOME - 667.0 619.4 602.7 585.4 567.5 549.1 530.0 510.3 490.0 469.0 447.4 425.2 402.2 378.6 354.3 328.7 302.4 275.4 247.7 219.3 722.2 769.6 818.7 869.7 -3,934.6

EBIT - 925 900 873 846 819 790 761 731 700 668 636 603 569 534 499 462 425 386 347 307 1,535 1,493 1,450 1,406 -5,375

(-) Taxes - -258 -240 -233 -227 -220 -212 -205 -197 -190 -181 -173 -165 -156 -147 -137 -127 -117 -107 -96 -85 -279 -298 -317 -337 1,523

OPERATING INCOME - 667 660 640 620 599 578 556 533 510 487 463 438 413 388 361 335 308 280 251 222 1,255 1,195 1,133 1,070 -3,853

CASH FLOW 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

( + ) OCF - -8,108 666 646 627 606 585 564 542 520 497 473 449 425 400 374 348 321 294 266 -24,762 6,271 6,212 6,150 6,087 9,657

( - ) CFD - - - - - - - - - - - - - - - - - - - - 12,500 -2,808 -2,808 -2,808 -2,808 -2,808

FCFE

(Free Cash Flow for Equity)
- -8,108 666 646 627 606 585 564 542 520 497 473 449 425 400 374 348 321 294 266 -12,262 3,463 3,404 3,342 3,280 6,849

( - ) CFE - - - - - - - - - - - - - - - -177 -164 -151 -138 -124 6,250 -361 -385 -409 -435 -12,123

( - ) NOCF - -8,108 666 646 627 606 585 564 542 520 497 473 449 425 400 197 183 170 156 142 -6,012 3,102 3,019 2,933 2,845 -5,274

NOCF 8,108 -666 -646 -627 -606 -585 -564 -542 -520 -497 -473 -449 -425 -400 -197 -183 -170 -156 -142 6,012 -3,102 -3,019 -2,933 -2,845 5,274
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Figure 2: Balance Sheets, Income Statements, Cash-flow Statements of the solar PV project.
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8 Scenario analysis
The impact of the financing-and-distribution decisions on the value of a solar PV project
may be best appreciated by considering the project presented in Section 7 and showing
the effect of changes in the assumptions on the equity NPV. Table 3 and Figures 3-4
present 8 scenarios with different assumptions on how financial deficits are covered and
how financial surplus are employed. In particular, we have considered different proportions
of financing sources for the purchase of the solar PV plant, different payout ratios and
different years as first year of cash distribution. Scenario 4 is the base scenario described
in Section 7. In this scenario, the financial policy offsets the negative performance of the
operations. In scenario 1 to 3, where equity financing for the purchase of the PV plant is
predominant, the payout ratio is low, and the firm distributes the available cash late, the
financial decisions do not compensate the bad performance of the operations. However,
by (i) increasing the payout ratio, (ii) anticipating the cash distributions, (iii) reducing
the equity financing, and (iv) increasing the internal financing, the equity NPV is greatly
increased. The variance between scenario 1 and scenario 8 is significant, as illustrated
in Figure 4: The equity NPV turns from a negative −772.69€ (scenario 1) to a positive
3, 041.44€ (scenario 8) representing an increase of 3, 814.13€.

Table 3: Scenario analysis for the decision inputs

SCENARIO
1st year of CFE

distribution
Payout
Ratio

Equity
financing

Internal
financing

Debt
financing

Equity
NPV

(dm) (α) (E) (L) (D) (NPVe)
1 25 0% 100% 0% 0% −772.69
2 25 0% 75% 0% 25% −642.60
3 20 25% 50% 25% 25% −202.75
4 15 50% 25% 25% 50% 32.84
5 10 50% 0% 50% 50% 651.21
6 5 50% 0% 75% 25% 1,331.60
7 1 75% 0% 75% 25% 2,215.90
8 1 100% 0% 100% 0% 3,041.44
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Figure 3: Scenario analysis: Financing and distribution policies (base scenario = 4)
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It is easy to see that the choice of internal financing for purchasing the solar PV plant
at time m (expiration date of the lease contract) contributes positively to create value.
To see it, consider scenario 8, where 100% internal financing is assumed and the resulting
equity NPV is 3,041.44. With distribution policy unvaried (i.e., dm = 1 and α = 100%) if
one assumes 100% equity financing or 100% debt financing or a mix of equity and debt,
then the equity NPV will be much smaller than 3,041.44. Following are some results for
different mixes of financing sources in scenario 8:

100% internal financing (scenario 8) NPVe = 3,041.44

100% equity, 0% debt NPVe = 1,410.84
80% equity, 20% debt NPVe = 1,499.57
60% equity, 40% debt NPVe = 1,588.29
50% equity, 50% debt NPVe = 1,632.65
40% equity, 60% debt NPVe = 1,677.02
20% equity, 80% debt NPVe = 1,765.74
0% equity, 100% debt NPVe = 1,865.36

We mention that the equity NPV increases as the equity financing decreases and debt
financing increases until rlower maximum value of 1, 865.36 is achived with 100% debt,
which is still much lower than the equity NPV esulting in the original scenario 8 with
100% of internal financing.

It is worth noting that the impact of the financing-and-distribution decisions on share-
holder value creation is sensitive to other input factors, which may amplify or shrink their
effect. Next, we analyze a change in the interest rate on liquid asset (shrinking effect)
and a change in the annual energy consumption (magnifying effect).

Table 4 shows that by increasing il, other things unvaried, the effect of financial de-
cisions on equity NPV is diminished, as testified by the max-min deviation (last line).
Note that, given a scenario, the higher the interest rate, the lower the equity NPV. This
is because, in most periods, the balance of liquid assets is negative (indicating that the
project entails a reduction in the firm’s liquid assets), so il represents a foregone rate of
return on those liquid assets.

Table 4: NPV deviations under different assumptions of interest rate on liquid assets

Interest rate (il) 0.5% 1.5% 2% 2.5% 3% 3.5%
SCENARIO 1 −772.69 −815.11 −867.17 −942.69 −1,044.07 −1,173.90
SCENARIO 2 −642.60 −741.43 −821.99 −926.22 −1,056.50 −1,215.46
SCENARIO 3 −202.75 −444.29 −597.63 −775.54 −980.38 −1,214.72
SCENARIO 4 32.84 −301.90 −501.94 −726.19 −976.64 −1,255.42
SCENARIO 5 651.21 109.55 −193.55 −520.05 −871.47 −1,249.41
SCENARIO 6 1,331.60 572.24 163.38 −266.20 −717.48 −1,191.51
SCENARIO 7 2,215.90 1,131.89 575.30 8.72 −568.05 −1,155.23
SCENARIO 8 3,041.44 1,664.88 975.66 285.83 −404.62 −1,095.70
Max-Min deviation 3,814.13 2,479.99 1,842.84 1,228.52 651.88 159.72
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Consider now a change in the annual energy consumption. Table 5 shows that, by in-
creasing the annual energy consumption (q), other things unvaried, the effect of financial
decisions on NPV is augmented, as measured via the max-min deviation. Note that, for
any given scenario, a higher energy consumption generates a higher NPV. The reason is
that higher q implies higher cost savings, higher net incomes and, therefore, higher CFE,
which results in higher NPVs. This effect is amplified by the financing and distribution
decisions.

Table 5: NPV deviations under different assumptions of annual energy consumption

Energy
consumption (q) 20,000 25,000 30,000 40,000 50,000 60,000
SCENARIO 1 −3,110.53 −1,941.61 −772.69 1,565.16 3,903.00 6,240.84
SCENARIO 2 −2,980.45 −1,811.53 −642.60 1,695.24 4,033.08 6,370.93
SCENARIO 3 −2,550.31 −1,376.53 −202.75 2,144.80 4,492.36 6,839.92
SCENARIO 4 −2,400.37 −1,184.89 32.84 2,468.31 4,903.78 7,338.79
SCENARIO 5 −1,909.79 −630.48 651.21 3,214.60 5,777.99 8,341.39
SCENARIO 6 −1,407.68 −39.35 1,331.60 4,073.49 6,815.39 9,557.28
SCENARIO 7 −916.45 647.42 2,215.90 5,352.85 8,489.80 11,626.75
SCENARIO 8 −349.03 1,342.88 3,041.44 6,438.58 9,835.71 13,232.84
Max-Min deviation 2,761.50 3,284.48 3,814.13 4,873.42 5,932.71 6,991.99

As a result, for a given set of estimation variables, different financial decisions lead to
different NPVs and different sets of estimation variables make those decisions more or less
impactful. Figure 5 illustrates the effects of different scenarios and different assumptions
on input values (interest rates in the top charts and energy consumption in the bottom
charts).
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Figure 5: NPV deviations under different assumptions of interest rate on liquid asset and different assumptions of annual energy consumption,
associated with different financing/payout policies (scenarios 1 to 8)
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Furthermore, simultaneous changes in more than one inputs have different effects under
different financial policies. For example, consider the effect of a simultaneous change in
energy consumption q and interest rate il . Tables 6 and 7 describe the effects of different
values of the pair (q, il) on the equity NPV for scenario 1 and scenario 8, other things
unvaried. The effects are different for different scenarios and the effect of the financing
and payout policy changes in the NPV in the two scenarios may be greater or smaller
depending on the value of the pair (q, il). For example, when (q, il) = (20,000, 3.5%)
the effect of the financing/payout policy is minimum and the financing/payout policy in
scenario 1 is only slightly better than scenario 8 (−5, 178.95− (−5, 203.53) = 24.59), with
scenario 8 being incapable of making the project economically profitable. In contrast,
when (q, il) = (60,000, 0.5%) the effect of the financing/payout policy is maximum, with
a sharp increase in value creation changing the financing/payout policy from scenario 1
to scenario 8: 13,232.84−6,240.84 = 9,835.71. In some cases, the financing/payout policy
even reverts the sign of the project’s economic profitability; for example, when (q, il) =
(30,000, 0.5%), by changing the financing/payout policy from scenario 1 to scenario 8, the
financial efficiency turns from negative (NPVe = −772.69) to positive (NPVe = 3, 041.44)
with a sharp increase of 3,814.13 (see Table 8).

Table 6: NPV for different values of q and il - Scenario 1

(q, il) 0.50% 1.50% 2.00% 2.50% 3.00% 3.50%
20,000 −3,110.53 −3,646.82 −3,970.33 −4,335.15 −4,744.91 −5,203.53
25,000 −1,941.61 −2,230.97 −2,418.75 −2,638.92 −2,894.49 −3,188.72
30,000 −772.69 −815.11 −867.17 −942.69 −1,044.07 −1,173.90
40,000 1,565.16 2,016.61 2,235.98 2,449.76 2,656.77 2,855.73
50,000 3,903.00 4,848.32 5,339.14 5,842.22 6,357.61 6,885.36
60,000 6,240.84 7,680.03 8,442.30 9,234.67 10,058.45 10,914.99

Table 7: NPV for different values of q and il - Scenario 8

(q, il) 0.50% 1.50% 2.00% 2.50% 3.00% 3.50%
20,000 −349.03 −1,940.62 −2,738.68 −3,541.94 −4,353.89 −5,178.95
25,000 1,342.88 −148.22 −894.29 −1,640.39 −2,387.85 −3,138.49
30,000 3,041.44 1,664.88 975.66 285.83 −404.62 −1,095.70
40,000 6,438.58 5,291.06 4,716.59 4,141.64 3,566.22 2,990.32
50,000 9,835.71 8,917.24 8,457.52 7,997.45 7,537.06 7,076.34
60,000 13,232.84 12,543.43 12,198.44 11,853.27 11,507.90 11,162.35

9 Contribution of financing and distribution to
value creation
In the light of what we have seen in the previous sections, it should be clear that the
decision variables may play a significant role in increasing or decreasing the attractiveness
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Table 8: NPV deviations for different values of q and il - Scenario 1 vs Scenario 8

(q, il) 0.50% 1.50% 2.00% 2.50% 3.00% 3.50%
20,000 2,761.50 1,706.20 1,231.65 793.21 391.01 24.59
25,000 3,284.48 2,082.75 1,524.46 998.53 506.64 50.23
30,000 3,814.13 2,479.99 1,842.84 1,228.52 639.44 78.21
40,000 4,873.42 3,274.46 2,480.60 1,691.88 909.45 134.59
50,000 5,932.71 4,068.93 3,118.37 2,155.24 1,179.45 190.98
60,000 6,991.99 4,863.40 3,756.14 2,618.59 1,449.45 247.37

of the solar PV project. One may wonder whether the contribution to value creation of the
financing policy is smaller or greater than the contribution of the payout policy. Given the
complexity of the relations between the estimation variables and the decision variables,
and even among variables within the same group, there is no general answer. However,
for each situation, one can find the contribution to the change in the equity NPV of the
distribution policy as opposed to the financing policy with the following simple technique.
Let f be the group of financing variables (equity, liquid assets, debt) and d be the group
of distribution variables (payout ratio, first year of distribution):

f = (E,L,D), d = (dm, α).

We focus on the two extreme scenarios presented in Table 3: Scenario 1 is the worst
case with value destruction equal to −772.69 euro and scenario 8 is the best one with
value creation equal to 3, 041.44 euro. The pair (f, d) represents a pair of macro-inputs:
the vector (f1, d1) = (100%, 0%, 0%, 25, 0%) describes the assumptions in scenario 1 and
(f8, d8) = (0%, 100%, 0%, 1, 100%) describes the assumptions in scenario 8. We denote as
h(f, d) the equity NPV computed by setting the financing and payout macro-inputs as
(f, d). The increase in NPV from the worst case (scenario 1) to the best case (scenario 8)
is

∆NPVe = NPVe,8 −NPVe,1 = h(f8, d8)− h(f1, d1). (28)

The individual contribution of the financing variables, denoted as ∆NPVe
f , may be ob-

tained by calculating the change that the NPV would have if f changed from f1 to f8

while leaving the values of the distribution group unvaried at the worst case d1:

∆NPVe
f = h(f8, d1)− h(f1, d1). (29)

Analogously, the individual contribution of the distribution variables, denoted as ∆NPVe
d,

may be obtained by calculating the change that the NPV would have if d changed from
d1 to d8 while leaving the values of the financing group unvaried at the worst case f1:

∆NPVe
d = h(f1, d8)− h(f1, d1). (30)

The difference between the overall equity-NPV increase, ∆NPVe, and the individual con-
tributions of the two groups represents the interaction effect between financing and payout
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policy:
∆NPVe

f,d = ∆NPVe − (∆NPVe
f + ∆NPVe

d) (31)

(see Saltelli et al. 2004, Borgonovo 2010, 2017 and Borgonovo, Gatti, and Peccati 2010
on measures of individual contributions and interaction effects).

In such a way, the change in the equity NPV from the worst scenario to the best
scenario may be apportioned to the financing variables, to the distribution variables, and
to a possible interaction effect between the two groups. Figure 6 depicts the results for
the project at hand. As can be gleaned from inspection of the figure, the effect of the
financing group from eq. (29) amounts to NPVe

f = 869.36 − (−772.69) = 1, 642.04€,
which represents the 43.1% of the NPV increase; the effect of the distribution group from
eq. (30) amounts to NPVe

d = 1, 410.84− (−772.69) = 2, 183.53€, meaning that the 57.2%
of the NPV increase from the worst to the best scenario is explained by the payout policy.
The interaction effect from eq. (31) is negligible since NPVe

f,d = 3, 814.13 − (1, 642.04 +
2, 183.53) = −11.44€.
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Figure 6: Contribution of payout policy and financing policy to value creation

10 Concluding remarks
Since solar energy undeniably contributes to a sustainable economy, the decision of adopt-
ing a solar energy system by firms is important to achieve a substantial cumulative effect
in the environment. However, firms’ decisions are mostly motivated by the economic prof-
itability of a project and by the value created for the firm’s shareholders. Building upon
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Magni (2020), we present an analytical tool increasing the analysts’ and managers’ aware-
ness of the importance of modeling the financial variables associated with an industrial
project.

We show that, while operating variables (energy prices, O&M costs, solar panel degra-
dation rate, etc.) are important, financial variables may have a substantial impact on the
value created as well. In particular, the embedded decisions are of special importance:
They deal with the amount of cash distribution to shareholders, the retained cash, the
proportion of equity financing and debt financing as opposed to cash withdrawals from
liquid assets. Our model takes these variables into explicit consideration and measures
their impact on the firm’s pro forma financial statements and, hence, on the shareholder
value created. The model may be helpful in real-life applications, especially considering
that, in practice, a substantial amount of solar PV plants is financed by firms with internal
financing, with no recourse to equity issuance (and sometimes not even to debt financing).

We apportion the overall value created according to the various sources of value,
namely, the operating activities (operating NPV), the liquid assets (non-operating NPV),
and the debt borrowing (debt NPV). We show that the non-operating NPV may play
a role in creating value, and may even turns an otherwise unprofitable project into a
profitable one.

As a result, this paper’s findings suggest that, while the technical inputs describing
the functioning of the plant, the cost savings, and the sales revenues from excess energy
are of paramount importance, the financial variables and the embedded decisions should
not be nonetheless neglected, for their impact on the project’s attractiveness may be non-
negligible. Armed with an appropriate model including both estimation variables and
decision variables, the firm’s analysts may fine-tune the financial decisions for a given set
of expected value of estimated inputs and optimize the NPV for the firm’s shareholders.
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Ferrer-Mart́ı L, Domenech B, Garćıa-Villoria A, Pastor R 2013. A MILP model to design
hybrid wind–photovoltaic isolated rural electrification projects in developing countries.
European Journal of Operational Research, 226(2), 293-300.

Gorjian S, Zadeh BN, Eltrop L, Shamshiri RR, Amanlou Y 2019. Solar photovoltaic
power generation in Iran: development, policies, and barriers. Renewable and Sustainable
Energy Reviews, 106, 110-123.

Graham, JR, Harvey CR 2001. The theory and practice of corporate finance: Evidence
from the field. Journal of Financial Economics, 60, 187–243.

Henao F, Cherni JA, Jaramillo P, Dyner I 2012. A multicriteria approach to sustainable
energy supply for the rural poor. European Journal of Operational Research, 218(3),
801-809.

Jufri FH, Oh S, Jung J 2019. Development of Photovoltaic abnormal condition detection
system using combined regression and Support Vector Machine. Energy, 176, 457-467.

Kang J, Ng TS, Su B 2020. Optimizing electricity mix for CO2 emissions reduction: A ro-
bust input-output linear programming model. European Journal of Operational Research,
287(1), 280-292.

Lei Y, Lu X, Shi M, Wang L, Lv H, Chen S, Hu C, Yu Q, da Silveira SDH 2019. SWOT
analysis for the development of photovoltaic solar power in Africa in comparison with
China. Environmental Impact Assessment Review, 77, 122-127.

Li B, Tian Y, Chen F, Jin T 2017. Toward net-zero carbon manufacturing operations: an
onsite renewables solution. Journal of the Operational Research Society, 68(3), 308-321.

Lupangu C, Bansal RC 2017. A review of technical issues on the development of solar
photovoltaic systems. Renewable and Sustainable Energy Reviews, 73, 950-965.

Magni CA 2020. Investment Decisions and the Logic of Valuation. Linking Finance,
Accounting, and Engineering. Springer Nature, Switzerland AG.

Magni CA, Marchioni A 2019. The accounting-and-finance of a solar photovoltaic plant:
Economic efficiency of a replacement project. 4th International Conference on Energy
and Environment, ICEE, Guimaraes, Portugal, May 16-17.

Magni CA, Marchioni A 2020. Average rates of return, working capital, and NPV-
consistency in project appraisal: A sensitivity analysis approach. International Journal
of Production Economics, 229, 107769.

Mangiante MJ, Whung PY, Zhou L, Porter R, Cepada A, Campirano E, Licon D, Lawrence
R, Torres M 2020. Economic and technical assessment of rooftop solar photovoltaic po-

177



tential in Brownsville, Texas, USA. Computers, Environment and Urban Systems, 80,
101450.

Mauritzen J 2020. Are solar panels commodities? A Bayesian hierarchical approach to de-
tecting quality differences and asymmetric information. European Journal of Operational
Research, 280(1), 365-382.
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ABSTRACT 

Building upon Magni (2011)’s approach, we propose a 

new rate of return measuring a project’s economic 

profitability. It is called the intrinsic rate of return 

(IROR). It is defined as the ratio of project return to 

project’s intrinsic value. The IROR approach 

decomposes the NPV into project scale and economic 

efficiency. In particular, NPV is found as the product of 

the project’s total invested capital and the  excess rate of 

return, obtained as the difference between the IROR and 

the minimum attractive rate of return (MARR). This 

approach provides correct project ranking and is capable 

of managing time-varying costs of capital. In case of 

levered projects, shareholder value creation is captured 

by the equity IROR, which we call Intrinsic Return On 

Equity (IROE)  (net income divided by total equity 

capital invested). If the project is unlevered, the IROE 

and the IROR lead to the same decision; if the project is 

levered, and the nominal value of debt is not equal to 

the market value of debt, the IROE should be preferred 

to project IROR. 

 

 

INTRODUCTION 

As often reported in empirical studies, practitioners are 

interested in assessing economic profitability with a 

relative measure of worth no less than with an absolute 

measure of worth such as the Net Present Value (NPV). 

The use of a rate of return in place of or in conjunction 

with NPV is rather common (Remer and Nieto 1995a,b, 

Graham and Harvey 2001, Sandahl and Sjögren 2003). 

Furthermore, recent findings in the literature have 

revived the debate on relative measures of worth and 

their relations with NPV (Hazen 2003, Hartman and 

Schafrick 2004, Magni 2010, 2011, 2013, 2016, Lima e 

Silva et al. 2017, Ben-Horin and Kroll 2017). In 

particular, the ability of Chisini means of making sense 

of seemingly disparate measures of worth have been 

demonstrated (Magni et al. 2018) and a stronger 

definition of NPV-consistency has been recently 

advanced (Marchioni and Magni 2018). We present a 

new relative measure of worth for project evaluation, 

called the Intrinsic Rate of Return (IROR). Contrary to 

IRR, it does not require solving equations, it exists and 

is unique and is, literally, a return on investment, 

namely, the total profit generated by the project divided 

by the total invested capital, where the capital is 

expressed in terms of intrinsic or economic values. The 

IROR is a rational measure of worth, simple to use and 

intuitive, which may be used for project ranking as well 

as accept-reject decisions, for both levered and 

unlevered projects. It improves on the traditional NPV 

analysis for it decomposes NPV into two value drivers: 

The project’s scale (total capital invested) and the 

project’s economic efficiency (excess rate of return). A 

companion of IROR is the Intrinsic Return On Equity 

(IROE), which measures the equity rate of return. IROE 

is NPV-consistent as well, and it is preferable to IROR 

whenever the nominal value of debt differs from the 

market value of debt. Both IROR and IROE easily cope 

with time-varying costs of capital. 

 

1. NPV and intrinsic value 

Consider an 𝑛-period project and let Rev𝑡 and  OpC𝑡  be 

the estimated incremental revenues and incremental 

operational costs associated with the project, 

respectively. The project’s after-tax operating profit is 

𝑃𝑡 = (Rev𝑡 − OpC𝑡 − Dep𝑡)(1 − 𝜏) 

where Dep𝑡 is the capital’s depreciation charge and 𝜏 is 

the marginal corporate tax rate. The estimated free cash 
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flow (FCF) stream is 𝐹 = (𝐹0, 𝐹1, … , 𝐹𝑛) and 𝐶0 = −𝐹0 

is the project cost, such that 

 
𝐹𝑡 = 𝑃𝑡 + Dep𝑡  (1) 

 

for 𝑡 > 0, assuming that working capital is equal to 0. 

Let 𝑟 be the cost of capital, that is, the interest rate at 

which funds may be invested or borrowed in a normal, 

competitive financial market. If the project is levered, 

the cost of capital is often called weighted average cost 

of capital (WACC). The cost of capital expresses the 

minimum attractive rate of return (MARR). We assume, 

for the time being, that it is constant. The project’s net 

present value is defined as 

NPV =
𝐹1
1 + 𝑟

+ ⋯+
𝐹𝑛

(1 + 𝑟)𝑛
− 𝐶0. 

It measures the economic value created, that is, the 

investors’ wealth increase. The project is worth 

undertaking if and only if NPV > 0.  Consider now the 

following definition of IROR. 

 

Definition (Intrinsic Rate of Return) The IROR is equal 

to the ratio of total profit to total capital invested: 

 

𝑖 =
TP

TC
=
∑ 𝑃𝑡
𝑛
𝑡=0

∑ 𝑉𝑡
𝑛
𝑡=0  

 (2) 

where 𝑉𝑡 = ∑ 𝐹𝑘(1 + 𝑟)
𝑡−𝑘𝑛

𝑘=𝑡+1  is the discounted sum 

of the prospective FCFs (with 𝑃0 = 𝑉𝑛 = 0). 𝑉𝑡 

expresses the intrinsic value of the project, that is, the 

value at which an equal-risk asset is traded in the market 

(or, equivalently, it is the price that the project would 

have if it were traded in the market). It is then an 

economic measure of the capital invested in the project 

at time 𝑡. Note that, recursively, 

𝑉𝑡 = 𝑉𝑡−1(1 + 𝑟) − 𝐹𝑡 

or, proceeding backward, 

𝑉𝑡 =
𝑉𝑡+1 + 𝐹𝑡+1
1 + 𝑟

. 

Once profits are estimated, FCFs are derived from (1). 

Then, the intrinsic value is obtained from FCFs 

recursively as described above. In other words, 𝑉𝑡 is the 

capital intrinsically invested at the beginning of period 

[𝑡, 𝑡 + 1], 𝑡 = 0,1, … , 𝑛 − 1. Summing the invested 

amounts, one gets the total capital, TC, invested in the 

span of 𝑛 years.  

The IROR in (2) is economically significant for it 

fulfills the literal definition of a rate of return: An 

amount of return per unit of invested capital.  

The IROR may also be framed in a different-but-

equivalent way, using cash flows instead of profits. 

Specifically, we first prove that the total profit coincides 

with the project’s net cash flow: 

∑𝑃𝑡

𝑛

𝑡=1

=∑𝐹𝑡

𝑛

𝑡=0

. 

 

(3) 

To this end, consider that, owing to (1), 

𝐹0 +∑𝐹𝑡

𝑛

𝑡=1

= −𝐶0 +∑(𝑃𝑡

𝑛

𝑡=1

+ Dep𝑡). 

As 𝐶0 = ∑ Dep𝑡
𝑛
𝑡=1 , then  (3) is straightforward. As a 

result, the IROR may be alternatively viewed as a profit 

measure or as a cash-flow measure: 

 

𝑃1 + 𝑃2 +⋯+ 𝑃𝑛
𝑉0 + 𝑉1 +⋯+ 𝑉𝑛−1

⏞            
profit to capital

= IROR =
𝐹0 + 𝐹1 +⋯+ 𝐹𝑛
𝑉0 + 𝑉1 +⋯+ 𝑉𝑛−1

⏞            
cash flow to capital

. 

 

It is a ratio of total profit to invested capital or a ratio of 

net cash flow to invested capital. 

 

The following decision criterion is naturally derived 

from the IROR. 

 

IROR decision criterion. An investment project is 

worth undertaking (i.e., it creates value) if and only if 

𝑖 > 𝑟. A financing project is worth undertaking (i.e., it 

creates value) if and only if 𝑖 < 𝑟. 

 

Whether the IROR criterion is economically rational or 

not depends on whether it is consistent with the NPV 

criterion. The NPV criterion recommends acceptance if 

and only if NPV > 0. We now show that such a 

consistency indeed holds. 

 

2. NPV-consistency of IROR 

Consider the following definition. 

 

Investment project and financing project. If TC > 0, 

the project is an investment project and 𝑖 is an 

investment rate; if TC < 0, the project is a financing (or 

borrowing) project and 𝑖 is a financing rate. 

 

(See also Magni 2010, 2013, 2016 on the difference 

between investment and financing). From section 1, we 

know that 𝑉𝑡 = 𝑉𝑡−1(1 + 𝑟) − 𝐹𝑡, whence  

𝑟 =
𝑉𝑡 + 𝐹𝑡 − 𝑉𝑡−1

𝑉𝑡−1
 

for every 𝑡 ≥ 1.  The WACC, 𝑟, is the market return 

that would be earned by investors if they invested 𝑉𝑡−1 
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in the market instead of investing it in the project. More 

precisely, the project’s cash-flow stream is 

(−𝐶0, 𝐹1, 𝐹2, … , 𝐹𝑛) while the cash-flow stream of a 

portfolio replicating the project’s prospective FCFs is 

(−𝑉0, 𝐹1, 𝐹2, … , 𝐹𝑛). The return stream of the project is 

(𝑃1, 𝑃2, … , 𝑃𝑛) while the return stream of the replicating 

portfolio is (𝑟𝑉0, 𝑟𝑉1, … , 𝑟𝑉𝑛−1). Using (3), the 

difference between the total project return and the total 

market return is 

∑𝑃𝑡

𝑛

𝑡=1

−∑𝑟𝑉𝑡−1

𝑛

𝑡=1

=∑𝐹𝑡

𝑛

𝑡=0

−∑(𝐹𝑡 + 𝑉𝑡 − 𝑉𝑡−1)

𝑛

𝑡=1

. 

 

As 𝑉𝑛 = 0, this means 

∑𝑃𝑡

𝑛

𝑡=1

−∑𝑟𝑉𝑡−1

𝑛

𝑡=1

= 𝑉0 − 𝐶0. 

However, 𝑉0 = ∑ 𝐹𝑡(1 + 𝑟)
−𝑡𝑛

𝑡=1  and 

𝑉0 − 𝐶0 =∑𝐹𝑡(1 + 𝑟)
−𝑡

𝑛

𝑡=0

= NPV. 

Therefore, 

NPV =∑𝑃𝑡

𝑛

𝑡=1

−∑𝑟𝑉𝑡−1

𝑛

𝑡=1

. 

Dividing by TC = ∑ 𝑉𝑡
𝑛
𝑡=0 , 

 

 
NPV = TC⏞

Project Scale

⋅ (𝑖 − 𝑟)⏞    
Economic Efficiency

 
(4) 

Equation (4) represents an economically significant 

decomposition of NPV. It says that the economic value 

created by the project is the result of two effects: The 

amount of capital that will be invested in the project 

(project scale) and the extent by which the project rate 

of return will exceed the MARR (economic efficiency). 

Note that this kind of information cannot be derived 

from a traditional NPV analysis. Equation (4) proves 

that the IROR is NPV-consistent. 

 

Proposition 1. (NPV-consistency of IROR) In an 

investment project, NPV > 0 if and only if 𝑖 > 𝑟. In a 

borrowing project, NPV > 0 if and only if  𝑖 < 𝑟. 

 

Note that, if the project is a financing project, then the 

IROR represents a financing rate, as well as 𝑟. 

Therefore, the project is worth undertaking if its 

financing cost is smaller than the borrowing cost 

prevailing in the market. (Financing projects may occur 

only if total assets are negative, which may occur 

whenever fixed assets are sufficiently small and the net 

working capital is negative and sufficiently high in 

absolute value. In these situations, cash is received from 

customers earlier than cash is paid out to suppliers.) 

3. Time-varying WACCs 

We now show how the MARR should be computed if 

the WACC is time-varying. Let 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛) be the 

stream of WACCs holding in the various years, such 

that 𝑟𝑡 = (𝑉𝑡 + 𝐹𝑡 − 𝑉𝑡−1)/𝑉𝑡−1.  

In this case, the equality NPV = ∑ 𝑃𝑡
𝑛
𝑡=1 −∑ 𝑟𝑉𝑡−1

𝑛
𝑡=1  

shown in the previous section generalizes to  

NPV =∑𝑃𝑡

𝑛

𝑡=1

−∑𝑟𝑡𝑉𝑡−1

𝑛

𝑡=1

. 

Equation (4) still holds, with the understanding that 𝑟 is 

redefined as a weighted mean of the WACCs: 

 𝑟 =
∑ 𝑟𝑡𝑉𝑡−1
𝑛
𝑡=1

∑ 𝑉𝑡−1
𝑛
𝑡=1  

. (5) 

In other words, the MARR is the weighted average of 

the time-varying WACCs. An investment project is 

worth undertaking if and only if the IROR is greater 

than this MARR. 

4. Equity perspective 

Suppose that the project is levered and let Int𝑡  be the 

interest expense associated with the debt. Let 𝑟𝑡
𝑒  be the 

required return to equity (equity cost of capital) in 

period 𝑡 and let 𝑉𝑡
𝑒  be the intrinsic equity value: 

𝑉𝑡
𝑒 = ∑

𝐹𝑘
𝑒

(1 + 𝑟𝑡+1) ⋅ (1 + 𝑟𝑡+2) ⋅ … ⋅ (1 + 𝑟𝑘)
 

𝑛

𝑘=𝑡+1

 

where 𝐹𝑘
𝑒 expresses the cash flow to equity (CFE) at 

time 𝑘. The latter is in turn obtained from the net 

income as follows. The net income is  

NI𝑘 = (Rev𝑘 − OpC𝑘 − Dep𝑘   − Int𝑘)(1 − 𝜏) 

or, equivalently, NI𝑘 = 𝑃𝑡 − Int𝑘 ⋅ (1 − 𝜏), and the CFE 

is 𝐹𝑘
𝑒 = NI𝑘  + Dep𝑘 + (𝐷𝑘 − 𝐷𝑘−1), where 𝐷𝑘 − 𝐷𝑘−1 

is the change in the outstanding debt. We define the 

equity IROR (𝑖𝑒) as the ratio of the project’s overall net 

income to total equity (intrinsic) value: 

𝑖𝑒 =
TNI

TCe
 

(6) 

 =
∑ (Rev𝑡 − OpC𝑡 − Dep𝑡 − Int𝑡)(1 − 𝜏)
𝑛
𝑡=1

∑ 𝑉𝑡
𝑒𝑛

𝑡=0

 

with 𝑉𝑛
𝑒 = 0. We will also call this ratio Intrinsic Return 

On Equity (IROE). The equity NPV is NPVe = 𝑉0
𝑒 + 𝐹0

𝑒 

or, equivalently 
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NPVe = 𝐹0
𝑒 +∑

𝐹𝑘
𝑒

(1 + 𝑟1
𝑒) ⋅ (1 + 𝑟2

𝑒) ⋅ … ⋅ (1 + 𝑟𝑘
𝑒)
 

𝑛

𝑘=1

. 

Applying (4) to the equity capitals and the net incomes, 

one may write 

 NPVe = TCe ⋅ (𝑖𝑒 − 𝑟𝑒) (7) 

where TC𝑒 expresses the value of the equity invested in 

the project and 

𝑟𝑒 = 
∑ 𝑟𝑡

𝑒𝑉𝑡−1
𝑒𝑛

𝑡=1

∑ 𝑉𝑡−1
𝑒𝑛

𝑡=1  
 

is the weighted average of the costs of equity. This is 

the equity MARR. 

Assuming the interest rate on debt is equal to the 

required return to debt (debt’s cost of capital),1 then the 

market value of debt coincides with the book value of 

debt, which implies that the equity NPV is equal to the 

project NPV. From (4) and (7),  

TC(𝑖 − 𝑟) = TCe(𝑖𝑒 − 𝑟𝑒) 

This implies 𝑖𝑒 > 𝑟𝑒  if and only if 𝑖 > 𝑟 (assuming, as 

usual, that TC and TC𝑒 have the same sign). The IROR 

and the IROE are reciprocally consistent. 

If, instead, the interest rate on debt differs from the 

required rate of return to debt, then NPV ≠ NPVe. In 

this case, part of the value created by the project is 

captured (if NPV > NPV𝑒) or given up (NPV < NPV𝑒) 

by the debtholders and the project IROR will not be 

reliable as a measure of shareholder value creation any 

more; as shareholders’ value creation is the goal of the 

firm, the IROE will be an appropriate intrinsic rate of 

return. 

 

5. Project ranking  

Choice between mutually exclusive projects and ranking 

of 𝑚 > 2 projects may be accomplished by incremental 

analysis: If the incremental IROR of A−B is greater 

than the  incremental MARR, then A is preferable to B. 

Specifically, let 𝑖𝐴 and 𝑖𝐵 the IRORs of project A and B 

and let 𝑟𝐴 and 𝑟𝐵 be the respective MARRs. Let also 

TC𝐴 be the total intrinsic value of A and TC𝐵 the total 

intrinsic value of B. Assuming, with no loss of 

 
1 The required return on debt is the interest rate required by 

the investors of a competitive, normal market who receive the 

same prospective cash flows as the debtholders. The interest 

rate on debt is the contractual rate at which the debt is actually 

granted by the debtholders. While the two rates are often 

assumed to be equal, there may be cases where they are not. 

generality, that TC𝐴 > TC𝐵, then NPV𝐴 > NPV𝐵  if and 

only if  

TC𝐴(𝑖𝐴 − 𝑟𝐴) > TC𝐵(𝑖𝐵 − 𝑟𝐵) 

which in turn holds if and only if  𝑖𝐴−𝐵 > 𝑟𝐴−𝐵 where 

𝑖𝐴−𝐵 =
∑ (𝑃𝑡

𝐴 − 𝑃𝑡
𝐵)𝑛

𝑡=1

∑ (𝑉𝑡
𝐴 − 𝑉𝑡

𝐵)𝑛
𝑡=0

=
∑ (𝐹𝑡

𝐴 − 𝐹𝑡
𝐵)𝑛

𝑡=0

∑ (𝑉𝑡
𝐴 − 𝑉𝑡

𝐵)𝑛
𝑡=0

 

is the incremental IROR and  

 𝑟𝐴−𝐵 =
∑ (𝑟𝑡

𝐴𝑉𝑡−1
𝐴 − 𝑟𝑡

𝐵𝑉𝑡−1
𝐵 )𝑛

𝑡=1

∑ (𝑉𝑡
𝐴 − 𝑉𝑡

𝐵)𝑛
𝑡=0

 

is the incremental MARR. In other words, if investors 

undertake A instead of B, they earn money at an 

incremental rate of return equal to the incremental 

IROR, 𝑖𝐴−𝐵, but, at the same time, they incur an 

incremental opportunity cost which is equal to the 

incremental MARR, 𝑟𝐴−𝐵. If the incremental IROR 

exceeds the incremental MARR, then project A is 

preferable to project B. 

 

6. Numerical example 

Consider a 5-year project with input data as follows: 

- Incremental revenues in first year: $350 

- Growth rate for revenues: 6% annual 

- Incremental operating costs: 30% of revenues 

- Cost of the project: $800 

- Dept: $160 (constant) 

- Amount of debt: $300 

- Type of debt: Bullet bond (4 years) 

- Debt rate: 3% 

- Required return to debt: 3% 

- Required return to equity: 10% (constant) 

- Tax rate: 30% 

We use these data to compute the after-tax operating 

profit and the net income, as well as the equity capital 

invested, the outstanding debt, the CFE and the cash 

flow to debt (CFD) (see Table 1). Note that the relation 

among CFE, CFD and FCF is as follows: 𝐹𝑡 = 𝐹𝑡
𝑒 +

𝐹𝑡
𝑑 − 𝜏 ⋅ Int𝑡, where 𝐹𝑡

𝑑 denotes the CFD (see any 

corporate finance textbook for details) which shows the 

relation between tax shield and FCF. 

The IROE is 19.1% and is greater than the equity 

MARR by 19.1% − 10% = 9.1%. The latter figure 

expresses the economic efficiency of the equity 

investment. Applied to a total equity value of $1,996, 

the equity NPV is found to be NPVe =182. As we 

assume that interest rate on debt and cost of debt are 

equal, the nominal value of debt equates the intrinsic 

value of debt and the project NPV equates the equity 
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NPV, that is, NPVe = NPV = 182. However, in the 

project perspective, a total $3,196 is invested, obtained 

as 

3,196 = 982 + 837 + 667.2 + 469.5 + 240.5 

or, equivalently, as the sum of total equity value, 

$1,996, and total debt value, $1,200 (= $300 ⋅ 4). As 

the total afer-tax operating profit  is $406.8= 59.5 +

69.8 + 80.7 + 92.3 + 104.5, dividing the latter by 

$3,196 one gets the project IROR, which is equal to 

12.73%. The WACC is computed as a weighted average 

of the cost of equity and the (after-tax) cost of debt, 

where the weights are the intrinsic value of equity and 

debt: 

𝑟𝑡 =
0.1 ⋅ 𝑉𝑡−1

𝑒 + 0.03 ⋅ 𝑉𝑡−1
𝑑 (1 − 0.3)

𝑉𝑡−1
 

with 𝑉𝑡−1 = 𝑉𝑡−1
𝑒 + 𝑉𝑡−1

𝑑 . It is time-varying because, 

while cost of equity and cost of debt are time-invariant, 

the intrinsic value of equity and debt changes over time. 

In turn, the mean of the 𝑟𝑡’s, weighted by the respective 

intrinsic values 𝑉𝑡−1 (see eq. (5)) is equal to the project 

MARR, which is equal to 𝑟 = 7.03%, smaller than the 

IROR by 5.7%. This is the economic efficiency of the 

project. Applying this figure to the total intrinsic value, 

the NPV is found back. 

 

7. CONCLUSIONS 

The intrinsic rate of return (IROR) is a simple metric, 

since it is a mere ratio of total profit to total invested 

capital or, equivalently, the ratio of net cash flow to 

total invested capital. Therefore, it is, at the same time, 

an income-based as well as a cash-flow-based measure. 

It is ready-to-use and understandable by any 

practitioner. It may be applied to any engineering 

project as well as a financial investment, for both ex 

ante decision-making and ex post performance 

measurement. Multiplied by the total capital invested, it 

provides the shareholders’ wealth increase. Contrary to 

IRR, it exists, is unique, no equation is required, and it 

is based on the economically meaningful measure of 

profit and intrinsic value. It is capable of coping with 

time-varying WACCs and of correctly ranking 

competing projects via incremental analysis. 
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Table 1 

Year   0 1 2 3 4 5 

Revenues  Rev𝑡 350.0 371.0 393.3 416.9 441.9 

Operating Costs  OpC𝑡 105.0 111.3 118.0 125.1 132.6 

Depreciation Dep𝑡 160.0 160.0 160.0 160.0 160.0 

Pre-tax operating profit  Rev𝑡 − OpC𝑡 − Dep𝑡 85.0 99.7 115.3 131.8 149.3 

Taxes on operating 
profit 

𝜏 ⋅ (Rev𝑡 − OpC𝑡 − Dep𝑡) 25.5 29.9 34.6 39.5 44.8 

After-tax operating 
profit  

 𝑃𝑡 59.5 69.8 80.7 92.3 104.5 

       
Pre-tax operating profit  Rev𝑡 − OpC𝑡 − Dep𝑡 85.0 99.7 115.3 131.8 149.3 

Interest  Int𝑡  9.0 9.0 9.0 9.0 0.0 

Earnings before taxes 
(EBT) 

Rev𝑡 − OpC𝑡 − Dep𝑡 − Int𝑡  76.0 90.7 106.3 122.8 149.3 

Taxes on EBT 
 𝜏 ⋅ (Rev𝑡 −OpC𝑡 − Dep𝑡 −
Int𝑡) 

22.8 27.2 31.9 36.8 44.8 

Net income NI𝑡 53.2 63.5 74.4 86.0 104.5 

       
Equity capital 500 340 180 20 160 0 

Debt capital 300 300 300 300 0 0 
 

FCF  𝐹𝑡 −800 219.5 229.8 240.7 252.3 264.5 

CFE  𝐹𝑡
𝑒 −500 213.2 223.5 234.4 −54.0 264.5 

CFD 𝐹𝑡
𝑑 −300 9.0 9.0 9.0 309.0 0.0 

 

EQUITY perspective        

             

Intrinsic value 𝑉𝑡
𝑒 682.0 537.0 367.2 169.5 240.5 0.0 

Total intrinsic value TC𝑒 1,996.0       

Total net income TNI 381.6      

IROE 𝑖𝑒 19.1%           

MARR 𝑟𝑒 10.0%      
equity NPV NPVe 182.0      

 

PROJECT perspective        

        

Intrinsic value 𝑉𝑡 982.0 837.0 667.2 469.5 240.5 0.0 

Total intrinsic value  TC 3,196.0       

Total operating profit TP 406.8      

WACC 𝑟𝑡  7.6% 7.2% 6.4% 5.0% 10.0% 

IROR 𝑖 12.73%       

MARR 𝑟 7.03%       

Project NPV NPV 182.0           
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ABSTRACT 

In this work we illustrate a simple logical framework serving the purpose of assessing the economic profitability and 

measuring value creation in a solar photovoltaic (PhV) project and, in general, in a replacement project where the cash-

flow stream is nonnegative, with some strictly positive cash flows. We use the projected accounting data to compute the 

average ROI, building upon Magni (2011, 2019) (see also Magni and Marchioni 2018), which enables retrieving 

information on the role of the project’s economic efficiency and the role of the project scale on increasing shareholders’ 

wealth. The average ROI is a genuinely internal measure and does not suffer from the pitfalls of the internal rate of 

return (IRR), which may be particularly critical in replacement projects such as the purchase of a PhV plant aimed at 

replacing conventional retail supplies of electricity. 

 

INTRODUCTION 

Investment decisions may be evaluated adopting absolute measures of worth such as net present value (NPV), residual 

income, value added, or relative measures of worth, such as rates of return or benefit-cost indices. The NPV is regarded 

as a rational measure of value creation, since it correctly quantifies the net effect of the project on shareholders’ current 

wealth (Brealey, Myers and Allen 2011). However, rates of return are more intuitive. For instance, to say “the project 

has generated a 10% return, better than 8% market return” is more intuitive than saying “at a discount rate of 8%, the 

project NPV is $150” (Remer, Stokdyk and VanDriel 1993, Remer and Nieto 1995a,b, Graham and Harvey 2001, Ryan 

and Ryan 2002, Ross, Westerfield and Jordan 2011). Also, a rate of return informs about economic efficiency, that is, 

how good or bad money is invested, whereas NPV blends economic efficiency and project scale into a unique number. 

Among the various rates of return, the internal rate of return (IRR) is a common metric. Unfortunately, it may not 

exist (or be multiple), especially in replacement projects, where the cash-flow stream is often nonconventional (i.e., 

cash-flow stream changes sign more than once or never changes sign). We build upon Magni (2011, 2019) and the 

internal-average-rate-of-return (IARR) approach with pro forma accounting profits and book values to accomplish a 

comprehensive analysis of a PhV project whose cash-flow stream results in a nonconventional cash-flow stream with no 

IRR. 

 This paper aims at introducing theoretical and applicative tools for the analysis, in a firm perspective, of a 

replacement project in the field of renewable energy, considering the case where conventional retail electricity system 

(based on supplies from utility) may be replaced by a standalone solar PhV system purchased from a producer, installed 

on a land property owned by the firm. We describe the project as an incremental economic system, that is, as a 

deviation of the firm-with-the project from the firm-without-the-project (status quo) in terms of accounting magnitudes. 

We assume that, in the status quo, a utility bill is paid periodically and a rent from the land is received. The solar PhV 

plant implies a leasing contract whereby lease payments and operating and maintenance costs are made periodically. 

After several years, at the expiration date, the lessee may pay a lump sum to acquire the plant, and the system will 

continue to generate electric power for some years. At the end of its useful life, the plant is removed and the firm incurs 

disposal costs. If the retail system is replaced by the PhV plant, the incomes, book values and resultant cash flows 

increase as a result of the lease payment and the terminal outlay for acquiring the plant but decrease by effect of the cost 

savings (the utility bill). This paper uses the accounting estimations and a benchmark portfolio to assess the PhV’s 
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economic profitability via the internal-average-rate-of-return (IARR) approach, and, in particular, the average ROI. This 

latter exists and is unique and enables understanding how much of the value created is due to the economic efficiency of 

the project and how much of it is due to the scale of the project. 

 

1. INVESTMENT AND FINANCING SIDE OF A PROJECT 

Let 𝑃 be a 𝑛-period investment project. Economically, a project consists of two sides: The investment side and the 

financing side. The invested side refers to the  invested capital, which is divided into two main classes: 

• Operating capital, 𝐶𝑡
𝑜, consisting of  of net fixed assets and net operating working capital: 𝐶𝑡

𝑜 = NFA𝑡
𝑜+WC𝑡

𝑜 

• Non-operating or liquid assets, 𝐶𝑡
𝑙 (excess cash, marketable securities, and other financial activities). 

The financing side of the project refers to the financing raised by the firm for undertaking the project. It can be 

conveniently divided into two components: 

• Debt capital, 𝐶𝑡
𝑑 (loans, bonds, notes payable, etc.)  

• Equity capital, 𝐶𝑡
𝑒 (capital raised by the firm from the firm’s owners). 

Investment side and financing side balance out, that is, 

NFA𝑡
𝑜 +WC𝑡

𝑜⏞        

𝐶𝑡
𝑜

+ 𝐶𝑡
𝑙 = 𝐶𝑡 = 𝐶𝑡

𝑑 + 𝐶𝑡
𝑒 

The project’s income 𝐼𝑡 and the project’s cash flow 𝐹𝑡 are the source of variation of the capital. Both can be split up into 

operating components and non-operating component (asset side) and into equity component and debt component 

(financing side). The project’s income is the sum of the operating income and the interest income and, at the same time 

is equal to the sum of the net income and the interest expenses:  

𝐼𝑡
𝑜 + 𝐼𝑡

𝑙 = 𝐼𝑡 = 𝐼𝑡
𝑑 + 𝐼𝑡

𝑒 . 

Likewise, the project’s cash flow is equal to the sum of the operating cash flow and the non-operating (i.e., liquid) cash 

flow and, at the same time, equal to to the sum of the cash flow to debt and cash flow to equity: 

𝐹𝑡
𝑜 + 𝐹𝑡

𝑙 = 𝐹𝑡 = 𝐹𝑡
𝑑 + 𝐹𝑡

𝑒 . 

The evolution of capital through time is described by a dynamical equation according to which capital increases with 

the income produced and decreases with the cash flow extracted from the economic system,  

𝐶𝑡 = 𝐶𝑡−1 + 𝐼𝑡 − 𝐹𝑡 

and 𝐶𝑡
𝑗
= 𝐶𝑡−1

𝑗
+ 𝐼𝑡

𝑗
− 𝐹𝑡

𝑗
, with 𝑗 = 𝑜, 𝑙, 𝑒, 𝑑. At the end of the project, 𝐶𝑛 = 0 since the transactions are over. 

 Let Rev𝑡 be the incremental revenues, OpC
𝑡
 the incremental operational costs, Dep𝑡 the depreciation charge of fixed 

assets, and 𝜏 the corporate tax rate. The after-tax project income is  

 
𝐼𝑡 = (Rev𝑡 − OpC𝑡 − Dep𝑡 + 𝐼𝑡

𝑙)(1 − 𝜏) + 𝜏𝐼𝑡
𝑑 . (1) 

 

The project’s cash flows, 𝐹𝑡, is the difference between the operating income and the change in operating capital, such 

that 

 
𝐹𝑡 = 𝐼𝑡 − Δ𝐶𝑡 = 𝐼𝑡 + Dep𝑡 − ΔWC𝑡 − Δ𝐶𝑡

𝑙 . (2) 
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2. NPV AND RELATIVE PERFORMANCE METRICS 

Let 𝑟𝑡 be the project’s cost of  capital (required rate of return), that is, the interest rate at which funds may be invested or 

borrowed in a normal, competitive financial market, often called weighted average cost of capital (WACC). The 

economic (or intrinsic) value of the project at time t, 𝑉𝑡, is the value that the project would have if it were traded in the 

market and is equal to the discounted sum of future cash flows: 

V𝑡 =
𝐹𝑡+1

(1 + 𝑟𝑡+1)
+

𝐹𝑡+2
(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+2)

+ ⋯+
𝐹𝑛

(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+2)… (1 + 𝑟𝑛)
. 

 

The value created by a project is measured via its net present value (NPV), which is the difference between the initial 

economic value, 𝑉0, and the initial cost, −𝐹0. Therefore,  

NPV = 𝑉0 − (−𝐹0) = 𝐹0 +
𝐹1

1 + 𝑟1
+

𝐹2
(1 + 𝑟1)(1 + 𝑟2)

+ ⋯+
𝐹𝑛

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑛)
. 

Let 𝑟𝑡
𝑗
, 𝑗 = 𝑜, 𝑙, 𝑑, 𝑒 be the cost of capital for operating assets, non-operating assets, debt, and equity, respectively. The 

economic value of each constituent class in t, 𝑉𝑡
𝑗
, is 

V𝑡
j
=

𝐹𝑡+1
𝑗

(1 + 𝑟𝑡+1
𝑗
)
+

𝐹𝑡+2
𝑗

(1 + 𝑟𝑡+1
𝑗
)(1 + 𝑟𝑡+2

𝑗
)
+ ⋯+

𝐹𝑛
𝑗

(1 + 𝑟𝑡+1
𝑗
)(1 + 𝑟𝑡+2

𝑗
)… (1 + 𝑟𝑛

𝑗
)
 

and its NPV is 

NPV𝑗 = 𝐹0
𝑗
+

𝐹1
𝑗

1 + 𝑟1
𝑗
+

𝐹2
𝑗

(1 + 𝑟1
𝑗
)(1 + 𝑟2

𝑗
)
+ ⋯+

𝐹𝑛
𝑗

(1 + 𝑟 1
𝑗
)(1 + 𝑟2

𝑗
)… (1 + 𝑟𝑛

𝑗
)
. 

The NPV of the project equals the sum of the NPVs of the financings: 

NPV = NPVe + NPVd. 

Furthermore, it is worth noting that the project’s cost of capital, 𝑟𝑡 , is equal to the weigthed average of the cost of equity 

𝑟𝑡
𝑒  and the cost of debt 𝑟𝑡

𝑑, with weights represented by the market values:  

𝑟𝑡 =
𝑟𝑡
𝑒𝑉𝑡−1

𝑒 + 𝑟𝑡
𝑑𝑉𝑡−1

𝑑

𝑉𝑡−1
𝑒 + 𝑉𝑡−1

𝑑 . 

If the cost of capital is constant through time, 𝑟𝑡 = 𝑟, the project’s NPV results 

NPV = 𝐹0 +
𝐹1

1 + 𝑟𝑗
+

𝐹2
(1 + 𝑟𝑗)2

+⋯+
𝐹𝑛

(1 + 𝑟𝑗)𝑛
. 

A project is worth undertaking if and only if it creates value for its equityholders, that is NPV > 0. 

  

 Among the various relative performance metrics, the internal rate of return (IRR) of the project is defined as the 

discount rate 𝑥 which solves the equation NPV=0: 

NPV(𝑥) =
𝐹1
1 + 𝑥

+ ⋯+
𝐹𝑛

(1 + 𝑥)𝑛
− 𝐶0 = 0. 

Although the IRR is commonly adopted by practioners, its pitfalls are significant, including multiplicity, non-existence, 

and ambiguous financial nature when the project is not a conventional project. 

 Consider now the following definition of the Internal Average Rate of Return (IARR). 

 

Definition (Internal Average Rate of Return) The IARR is equal to the ratio of total profit to total capital invested: 

𝑖 =
𝐼

𝐶
=
∑ 𝐼𝑡
𝑛
𝑡=0

∑ 𝐶𝑡
𝑛
𝑡=0  

. (3) 

The IARR in (3) is economically significant for it fulfills the literal definition of a rate of return: An amount of return 

per unit of invested capital. Since profits and capitals are pro forma accounting values, this rate is an average accounting 

rate of return. More precisely, it is an average Return On Investment (ROI).  

 The average ROI exists and is unique, so it may be used in place of IRR by those practioners who are willing to 

calculate a reliable, internal relative measure of worth without incurring the difficulties of IRR.  

 

Since ∑ 𝐼𝑡
𝑛
𝑡=0 = ∑ 𝐹𝑡

𝑛
𝑡=0 , the average ROI may be alternatively viewed as a cash-flow measure: 
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𝐼0 + 𝐼1 +⋯+ 𝐼𝑛
𝐶0 + 𝐶1 +⋯+ 𝐶𝑛

⏞          
profit to capital

= 𝑖 =
𝐹0 + 𝐹1+. . . +𝐹𝑛
𝐶0 + 𝐶1+. . . +𝐶𝑛

⏞          
cash flow to capital

. 

 

It is a ratio of total profit to invested capital or a ratio of net cash flow to invested capital.  

 For decision-making purposes, the average ROI should be compared to a suitable minimum attractive rate of return 

(MARR), which is the rate of return that investors would earn if they invested the same amount of the project in a 

market (value-neutral) portfolio replicating the project’s cash flows (from time 1 to time n). The replicating portfolio’s 

return is 𝑟𝑡𝑉𝑡−1. In total, the firm would earn a total income 𝐼𝑉 = ∑ 𝑟𝑡𝑉𝑡−1
𝑛
𝑡=1 . This means that the firm invests 𝐶 =

∑ 𝐶𝑡
𝑛
𝑡=0  at the average ROI, 𝑖, while foregoing the opportunity of investing the same total amount at the rate 𝜌 such that  

𝜌 =
𝐼𝑉

𝐶
. 

Such a foregone rate is the MARR. It is easy to verify that 𝐼 − 𝐼𝑉 = NPV; therefore,  

 
NPV =    𝐶   ⏞

Project Scale

⋅ (𝑖 − 𝜌)⏞    
Economic Efficiency

 
(4) 

(see Magni 2019), which represents an economically significant decomposition of NPV: The economic value created 

depends on the product between the amount of invested capital (project scale) and the extent by which the project rate 

of return will exceed the MARR (economic efficiency). The following decision criterion is naturally derived. 

 

Decision criterion. A project is worth undertaking if and only if the average ROI is greater than the  MARR, 𝑖 > 𝜌. 

 

3. SOLAR PhV PLANT 

In this section, we describe the economic system of a replacement project whereby the conventional retail energy 

supply is replaced with a renewable energy plant. In particular, we consider the case of a firm currently purchasing 

electric power from a utility. It faces the opportunity of entering into an m-year leasing contract for operating a 

standalone solar photovoltaic (PhV) system. 

 Suppose the quantity of energy consumed for the firm’s operations is constant through time and equal to q; the 

current purchase price of energy is 𝑝1, growing at a constant rate 𝑔𝑝1  per year. The utility bill is payed periodically, in 

the same year in which energy is consumed. 

 The leasing contract contains the following economic conditions: The lease payment, equal to 𝐿, is made 

periodically; at time m (expiration date) the firm may acquire the plant paying a lump sum equal to CapEx, and the 

system will keep producing electric power for some years, until time 𝑛. CapEx represents a capital expenditure, with an 

assumed straight-line depreciation from 𝑡 = 𝑚 + 1 until 𝑡 = 𝑛 equal to Dep = CapEx/(𝑛 − 𝑚). 

 The PhV plant is installed at 𝑡 = 0 in a field owned by the firm, which could otherwise be rented on the property 

market at a costant rent equal to 𝑅 per year. The latter represents an opportunity cost for the firm (a foregone income). 

 The PhV system produces 𝑄 units of energy in the first year, which decreases every year at the rate 𝑔𝑄. If the energy 

produced by the plant is higher than the energy consumed by the firm, the firm sells the differential quantity to the 

Energy Service Operator at the energy selling price 𝑝2, growing at a constant rate 𝑔𝑝2  per year, with payment in the 

following year. We assume that, at time  𝑡 = 𝑛, the energy sold is paid immediately. Therefore, if the produced quantity 

is lower than the consumed energy in year 𝑡, that is, 𝑄(1 − 𝑔𝑄)
𝑡−1

< 𝑞, energy costs savings arise equal to 𝑄(1 −

 𝑔𝑄)
𝑡−1

⋅ 𝑝1(1 + 𝑔𝑝1)
𝑡
; if the produced quantity is higher than the consumed one, that is, 𝑄(1 − 𝑔𝑄)

𝑡−1
> 𝑞, energy 

costs savings arise equal to 𝑞 ⋅ 𝑝1(1 + 𝑔𝑝1)
𝑡
 as well as energy sales revenues equal to (𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅

𝑝2(1 + 𝑔𝑝2)
𝑡
, determining the presence of operating working capital. Hence, the income effect of the energy sales 

revenues and costs savings in the two different scenarios can be summarized with the expression 

min (𝑞 , 𝑄(1 − 𝑔𝑄)
𝑡−1
) ⋅ 𝑝1(1 + 𝑔𝑝1)

𝑡
+max (0 , 𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)

𝑡
 

and the operating working capital can be represented with the formula WC𝑡 = max (0, 𝑄(1 − 𝑔𝑄)
𝑡−1

− 𝑞) ⋅

𝑝2(1 + 𝑔𝑝2)
𝑡
 and 𝑊𝐶𝑛 = 0. 
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 Starting from year 𝑀 < 𝑚, the PhV plant requires operating and maintenance costs which are expected to be 

constant and equal to O&M. At time 𝑛, the plant is removed with disposal costs equal to 𝐻 and salvage value equal to 

zero. 

  

 In summary, the firm-without-the-project pays the utility bills and receives the rent for the land (for the whole 

period); in contrast, the firm-with-the-project sustains the lease payments (until 𝑡 = 𝑚), the operating and maintenance 

costs (from 𝑡 = 𝑀 to 𝑡 = 𝑛), the lump sum (in 𝑡 = 𝑚), and the disposal costs (in 𝑡 = 𝑛), and receives payments for the 

energy sold to the Energy Service Operator. Considering that a project represents, by definition, the difference between 

the firm-with-the-project and the firm-without-the-project, the project’s incomes may be calculated as in (1):  

• 𝐼𝑡 = (min (𝑞 , 𝑄(1 − 𝑔𝑄)
𝑡−1
) ⋅ 𝑝1(1 + 𝑔𝑝1)

𝑡
+max (0 , 𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)

𝑡
− 𝐿 − 𝑅 +

𝐼𝑡
𝑙) (1 − 𝜏) + 𝜏𝐼𝑡

𝑑 

for 1 ≤ 𝑡 ≤ 𝑀 − 1 

• 𝐼𝑡 = ( min (𝑞 , 𝑄(1 − 𝑔𝑄)
𝑡−1
) ⋅ 𝑝1(1 + 𝑔𝑝1)

𝑡
+max (0 , 𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)

𝑡
− 𝐿 − 𝑅 −

 O&M + 𝐼𝑡
𝑙) (1 − 𝜏) + 𝜏𝐼𝑡

𝑑  

for  𝑀 ≤ 𝑡 ≤ 𝑚 

• 𝐼𝑡 = (min (𝑞 , 𝑄(1 − 𝑔𝑄)
𝑡−1
) ⋅ 𝑝1(1 + 𝑔𝑝1)

𝑡
+max (0 , 𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)

𝑡
−  𝑅 −  Dep +

𝐼𝑡
𝑙) (1 − 𝜏) + 𝜏𝐼𝑡

𝑑 

for 𝑚 + 1 ≤ 𝑡 ≤ 𝑛 − 1 

• 𝐼𝑡 = (min (𝑞 , 𝑄(1 − 𝑔𝑄)
𝑡−1
) ⋅ 𝑝1(1 + 𝑔𝑝1)

𝑡
+max (0 , 𝑄(1 − 𝑔𝑄)

𝑡−1
− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)

𝑡
−  𝑅 –  Dep −

 𝐻 + 𝐼𝑡
𝑙) (1 − 𝜏) + 𝜏𝐼𝑡

𝑑 

for  𝑡 = 𝑛. 

 

The project’s assets are represented by working capital, liquid assets and, from time 𝑚, fixed assets: 

• 𝐶𝑡 = max (0, 𝑄(1 − 𝑔𝑄)
𝑡−1

− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)
𝑡
+ 𝐶𝑡

𝑙 

for  1 ≤ 𝑡 ≤ 𝑚 − 1 

• 𝐶𝑡 =  max (0, 𝑄(1 − 𝑔𝑄)
𝑡−1

− 𝑞) ⋅ 𝑝2(1 + 𝑔𝑝2)
𝑡
+ CapEx –  Dep ⋅ (𝑡 −  𝑚) + 𝐶𝑡

𝑙 

for  𝑚 ≤ 𝑡 ≤ 𝑛 − 1 

• 𝐶𝑡 = 0 

for 𝑡 = 𝑛. 

Finally, the cash flows are obtained as 𝐹𝑡 = 𝐼𝑡 − Δ𝐶𝑡 , ∀𝑡 = 0,1, … , 𝑛.  

 We assume that the project is financed with internal financing, that is, with retained cash. This implies, 𝐶𝑡
𝑑 = 𝐼𝑡

𝑑 =

𝐹𝑡
𝑑 = 0  ∀ 𝑡 = 0,1, … , 𝑛 and 𝐶𝑡 = 𝐶𝑡

𝑒, 𝐼𝑡 = 𝐼𝑡
𝑒 , 𝐹𝑡 = 𝐹𝑡

𝑒  for all 𝑡. The rate of return on liquid assets is constant and 

equal to 𝑖𝑙, hence 𝐼𝑡
𝑙 = 𝑖𝑙 ⋅ 𝐶𝑡−1

𝑙 . The assumption of zero debt means that, whenever the operating cash flows is negative,  

𝐹𝑡
𝑜 < 0, the operating disbursement is covered by absorbing resources from the liquid assets, that is, 𝐹𝑡

𝑙 = −𝐹𝑡
𝑜 > 0, 

therefore, implying that the project’s cash flow is zero, 𝐹𝑡 = 0. In contrast, when the operating cash flow is positive, 

𝐹𝑡
𝑜 > 0,  the distribution policy is the following: 

• Until 𝑡 = 𝑚, cash is retained and invested in liquid assets 

• From 𝑡 = 𝑚 + 1, the positive operating cash flow is fully distributed to equityholders within the period, 𝐹𝑡
𝑒 =

𝐹𝑡
𝑜 = 𝐹𝑡 > 0.  

A time 𝑛, the project is terminated, such that every asset and liabity goes back to zero. 

 We assess the economic profitability and value creation of the replacement project via the average ROI and the 

NPV, and show that the IRR notion fatally collapses under the assumption of internal financing. We assume that the 

costs of capital of operating assets and liquid assets are constant through time, equal to 𝑟𝑜 and 𝑟𝑙  respectively. 

 Assuming that the project’s terminal cash flow is nonnegative, 𝐹𝑛 ≥ 0, it is easy to see that the assumption of 

internal financing implies that the project’s cash-flow stream is nonnegative, that is, 𝐹𝑡 ≥ 0 for all 𝑡. Therefore, NPV ≥

0, which implies that the analyzed replacement project is worth undertaking. However,  the equation NPV = 0 has no 
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solution and the IRR does not exist. In contrast, the average ROI exists and is unique, with unambiguous financial 

nature determined by the sign of the total capital. The NPV may be decomposed into project scale (i.e., total capital), 

and economic efficiency (difference between average ROI and MARR).  

 

4. NUMERICAL EXAMPLE 

Consider a replacement project with the following input data: 

- Energy purchase price = Energy selling price: 𝑝1 = 𝑝2 = 0.1  (€/kWh) 

- Growth rate of energy-purchase-price = Growth rate of energy-selling-price: 𝑔𝑝1 = 𝑔𝑝2 = 1.5% 

- Yearly consumed energy: 𝑞 = 800,000 kWh 

- Rent of the land property: 𝑅 =  €10,000 

- Length of the leasing contract: 𝑚 = 20 years 

- Lease payment: 𝐿 = €40,000  

- Capital expenditure CapEx = €150,000  

- Energy produced by PhV plant in the first year: 𝑄 = 1,000,000 kWh 

- Efficiency loss per year: 𝑔𝑄 = 3% 

- Useful life of PhV plant: 𝑛 =30 years 

- Maintenance costs: O&M = €1,000  

- Starting of O&M operations: 𝑀 =11-th year 

- Disposal costs: 𝐻 = €30,000  

- Tax rate: 𝜏 = 25% 

- Interest rate on liquid assets = Cost of capital for liquid assets: 𝑖𝑙 = 𝑟𝑙 = 4% 

- Cost of capital for operating assets: 𝑟𝑜 = 12% 

We use these data to determine the income statements, balance sheets, and financial prospects of the project through 

time (see Table 1, 2, and 3 respectively).  

 The substitution of the retail energy system with the PhV plant creates value for equityholders, since NPV =

215,027.22 > 0. It is worth noting that the cash-flow stream of the project and equity coincides and is non-negative, 

with some positive cash flows. In particular, the project’s cash flow is zero in the first 20 years, then it is positive up to 

(and including) the last year (see Table 3). As anticipated, this implies that the project IRR does not exist. The use of the 

average ROI overcomes the problem of non-existence of IRR. The total capital invested in the project is 𝐶 = 𝐶𝑒 =

15,132,751.7 > 0, and, therefore, the project is an investment, and the average ROI (equal to the average ROE) is 𝑖 =

𝑖𝑒 = 8.35%, and the MARR is 𝜌 = 𝜌𝑒 = 6.93%. The economic efficiency is 8.35% − 6.93% = 1.42%, which, 

multiplied by the total capital 𝐶 = 15,132,751.7, gives back the NPV= 215,027.22. The investors invest an overall 

capital of  €15,132,751.70 at a 8.35% rate of return, which is higher than the MARR by 1.42 percentage points. 

It is worth noting that it is not even possible to calculate the IRR of the operating cash-flow stream, notwithstanding the 

fact that it does change sign. The reason is that it changes sign twice, from positive to negative and then positive again 

(see Table 3), and the magnitudes of the changes are such that no real-valued IRR exists. In contrast, the IARR 

approach enables computing the operating average ROI ratio by dividing the net operating cash flow (i.e., the algebraic 

sum of the operating cash flows), ∑ 𝐹𝑡
𝑜30

𝑡=0 = 694,377.03, by the total operating assets, 𝐶𝑜 = 908,424.11. The result is 

𝑖𝑜 =
694,377.03

908,424.11
= 76.44%. The project’s average ROI is the weighted mean of the operating average ROI and the 

interest rate on liquid assets, where the weights are the total operating assets and the total liquid assets: 

𝑖 =
76.44% ⋅⏞      

𝑖𝑜

908,424.11⏞      
𝐶𝑜

+ 4%⏞
𝑖𝑙

⋅ 14,224,327.59⏞        
𝐶𝑙

908,424.11 + 14,224,327.59
= 8.35%. 

5. CONCLUSIONS 

We have provided an accounting-and-finance model capable of correctly describing the economic transactions 

underlying the replacement project and we have offered a logically-consistent system for supporting the investment 
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appraisal and the decision-making process. Specifically, we have shown that the Internal Rate of Return (IRR) is not 

reliable, in general, since the lease+purchase of the PhV may generate nonconventional patterns of cash-flow streams 

such that no change in sign occurs, which implies that the IRR does not exist. We have shown that the IARR approach 

and, in particular, the average ROI, provides a simple rate of return, naturally linked with NPV. The NPV is broken 

down into project scale (overall capital invested) and economic efficiency (difference between average ROI and 

MARR). 
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Table 1: Income statements 
 

 

 

t 

+ Energy 

sales 

revenues 

+ Energy 

cost savings 

(avoided 

bills) 

− Lease 

payments 

− Lost 

rental 

income 

− O&M  − Disposal 

costs 

= EBITDA − Depreciation = EBIT + Interest 

income 

= EBT − Taxes = Net 

Income 

0              

1     20,000.00        80,000.00    − 40,000.00    − 10,000.00          50,000.00         50,000.00                                 50,000.00        12,500.00        37,500.00    

2     17,255.00        81,200.00    − 40,000.00    − 10,000.00          48,455.00         48,455.00              700.00        49,155.00        12,288.75        36,866.25    

3     14,515.87        82,418.00    − 40,000.00    − 10,000.00          46,933.87         46,933.87          2,284.45        49,218.32        12,304.58        36,913.74    

4     11,781.97        83,654.27    − 40,000.00    − 10,000.00          45,436.24         45,436.24          3,870.56        49,306.81        12,326.70        36,980.11    

5       9,052.67        84,909.08    − 40,000.00    − 10,000.00          43,961.75         43,961.75          5,459.12        49,420.88        12,355.22        37,065.66    

6       6,327.32        86,182.72    − 40,000.00    − 10,000.00          42,510.04         42,510.04          7,050.92        49,560.97        12,390.24        37,170.72    

7       3,605.30        87,475.46    − 40,000.00    − 10,000.00          41,080.76         41,080.76          8,646.77        49,727.53        12,431.88        37,295.65    

8          885.97        88,787.59    − 40,000.00    − 10,000.00          39,673.56         39,673.56        10,247.47        49,921.04        12,480.26        37,440.78    

9      88,288.11    − 40,000.00    − 10,000.00          38,288.11         38,288.11        11,853.88        50,141.99        12,535.50        37,606.49    

10      86,924.06    − 40,000.00    − 10,000.00          36,924.06         36,924.06        13,393.58        50,317.63        12,579.41        37,738.22    

11      85,581.08    − 40,000.00    − 10,000.00    − 1,000.00         34,581.08         34,581.08        14,903.10        49,484.19        12,371.05        37,113.14    

12      84,258.85    − 40,000.00    − 10,000.00    − 1,000.00        33,258.85         33,258.85        16,387.63        49,646.48        12,411.62        37,234.86    

13      82,957.05    − 40,000.00    − 10,000.00    − 1,000.00        31,957.05         31,957.05        17,877.02        49,834.08        12,458.52        37,375.56    

14      81,675.37    − 40,000.00    − 10,000.00    − 1,000.00        30,675.37         30,675.37        19,372.05        50,047.41        12,511.85        37,535.56    

15      80,413.48    − 40,000.00    − 10,000.00    − 1,000.00        29,413.48         29,413.48        20,873.47        50,286.95        12,571.74        37,715.21    

16      79,171.09    − 40,000.00    − 10,000.00    − 1,000.00        28,171.09         28,171.09        22,382.08        50,553.17        12,638.29        37,914.88    

17      77,947.90    − 40,000.00    − 10,000.00    − 1,000.00        26,947.90         26,947.90        23,898.67        50,846.57        12,711.64        38,134.93    

18      76,743.61    − 40,000.00    − 10,000.00    − 1,000.00        25,743.61         25,743.61        25,424.07        51,167.68        12,791.92        38,375.76    

19      75,557.92    − 40,000.00    − 10,000.00    − 1,000.00        24,557.92         24,557.92        26,959.10        51,517.02        12,879.25        38,637.76    

20      74,390.55    − 40,000.00    − 10,000.00    − 1,000.00        23,390.55         23,390.55        28,504.61        51,895.16        12,973.79        38,921.37    

21      73,241.21     − 10,000.00    − 1,000.00        62,241.21    −  15,000.00        47,241.21        24,061.47        71,302.68        17,825.67        53,477.01    

22      72,109.64     − 10,000.00    − 1,000.00        61,109.64    −  15,000.00        46,109.64        25,023.92        71,133.56        17,783.39        53,350.17    

23      70,995.54     − 10,000.00    − 1,000.00        59,995.54    −  15,000.00        44,995.54        26,024.88        71,020.42        17,755.11        53,265.32    

24      69,898.66     − 10,000.00    − 1,000.00        58,898.66    −  15,000.00        43,898.66        27,065.88        70,964.54        17,741.13        53,223.40    

25      68,818.73     − 10,000.00    − 1,000.00        57,818.73    −  15,000.00        42,818.73        28,148.51        70,967.24        17,741.81        53,225.43    

26      67,755.48     − 10,000.00    − 1,000.00        56,755.48    −  15,000.00        41,755.48        29,274.45        71,029.93        17,757.48        53,272.45    

27      66,708.66     − 10,000.00    − 1,000.00        55,708.66    −  15,000.00        40,708.66        30,445.43        71,154.09        17,788.52        53,365.56    

28      65,678.01     − 10,000.00    − 1,000.00        54,678.01    −  15,000.00        39,678.01        31,663.25        71,341.25        17,835.31        53,505.94    

29      64,663.28     − 10,000.00    − 1,000.00        53,663.28    −  15,000.00        38,663.28        32,929.78        71,593.06        17,898.26        53,694.79    

30      63,664.23     − 10,000.00    − 1,000.00   − 30,000.00        22,664.23    −  15,000.00          7,664.23        34,246.97        41,911.20        10,477.80        31,433.40    

197



 

 

 

Table 2: Balance Sheets 
 

t Operating 

assets 

Net fixed assets Working 

capital 

Liquid assets Total assets  Equity 

0       

1       20,000.00         20,000.00          17,500.00          37,500.00          37,500.00    

2       17,255.00         17,255.00          57,111.25          74,366.25          74,366.25    

3       14,515.87         14,515.87          96,764.12        111,279.99        111,279.99    

4       11,781.97         11,781.97        136,478.12        148,260.10        148,260.10    

5         9,052.67           9,052.67        176,273.08        185,325.75        185,325.75    

6         6,327.32           6,327.32        216,169.16        222,496.48        222,496.48    

7         3,605.30           3,605.30        256,186.82        259,792.12        259,792.12    

8            885.97              885.97        296,346.93        297,232.90        297,232.90    

9        334,839.39        334,839.39        334,839.39    

10        372,577.62        372,577.62        372,577.62    

11        409,690.76        409,690.76        409,690.76    

12        446,925.62        446,925.62        446,925.62    

13        484,301.18        484,301.18        484,301.18    

14        521,836.74        521,836.74        521,836.74    

15        559,551.95        559,551.95        559,551.95    

16        597,466.83        597,466.83        597,466.83    

17        635,601.76        635,601.76        635,601.76    

18        673,977.52        673,977.52        673,977.52    

19        712,615.28        712,615.28        712,615.28    

20     150,000.00        150,000.00         601,536.65        751,536.65        751,536.65    

21     135,000.00        135,000.00         625,598.12        760,598.12        760,598.12    

22     120,000.00        120,000.00         650,622.04        770,622.04        770,622.04    

23     105,000.00        105,000.00         676,646.92        781,646.92        781,646.92    

24       90,000.00          90,000.00         703,712.80        793,712.80        793,712.80    

25       75,000.00          75,000.00         731,861.31        806,861.31        806,861.31    

26       60,000.00          60,000.00         761,135.76        821,135.76        821,135.76    

27       45,000.00          45,000.00         791,581.19        836,581.19        836,581.19    

28       30,000.00          30,000.00         823,244.44        853,244.44        853,244.44    

29       15,000.00           15,000.00         856,174.22        871,174.22        871,174.22    

30       
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Table 3: Financial prospects 
 

t Operating  

cash flow 

Non operating  

cash flow 

Project’s cash 

flow  

Cash flow to 

capital 

providers 

Cash flow to 

equityholders 

0      

1 17,500.00    −17,500.00       

2 38,911.25    −38,911.25       

3 37,368.42    − 37,368.42       

4 35,843.44    − 35,843.44       

5 34,335.84    − 34,335.84       

6 32,845.15    − 32,845.15       

7 31,370.90    − 31,370.90       

8 29,912.64    −29,912.64       

9 26,638.58    −26,638.58       

10 24,344.65    −24,344.65       

11 22,210.03    −22,210.03       

12 20,847.23    −20,847.23       

13 19,498.53    − 19,498.53       

14 18,163.51    −18,163.51       

15 16,841.74    −16,841.74       

16 15,532.80    −15,532.80       

17 14,236.26    −14,236.26       

18 12,951.69    −12,951.69       

19 11,678.66    −11,678.66       

20 − 139,583.24    139,583.24       

21 44,415.54     44,415.54    44,415.54    44,415.54    

22 43,326.25     43,326.25    43,326.25    43,326.25    

23 42,240.44     42,240.44    42,240.44    42,240.44    

24 41,157.53     41,157.53    41,157.53    41,157.53    

25 40,076.92     40,076.92    40,076.92    40,076.92    

26 38,998.00     38,998.00    38,998.00    38,998.00    

27 37,920.13     37,920.13    37,920.13    37,920.13    

28 36,842.69     36,842.69    36,842.69    36,842.69    

29 35,765.02     35,765.02    35,765.02    35,765.02    

30 12,186.43    890,421.19    902,607.62    902,607.62    902,607.62    

 

Table 4: Valuation metrics 
 
 

Valuation metric Project 

NPV 215,027.22 

Average ROI 8.35% 

MARR 6.93% 

Economic efficiency 1.42% 

Total capital 15,132,751.70 

IRR Does not exist 
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Abstract

In this paper, we benchmark an investment actively managed (e.g., fund, portfolio) against

a reference portfolio passively managed replicating the investment’s cash flows in order

to measure the value added by the active investment and decompose it according to

the influence of the investment choices (i.e., selection and allocation of assets) made in

the various periods. The active investment choices are reflected in the investment’s re-

turns as opposed to the benchmark returns earned by the passive strategy. We precisely

quantify the impact of the holding period rates on the value added and rank them ac-

cordingly, in order to identify the most (and the least) influential ones. The analysis is

performed by applying the Finite Change Sensitivity Index (FCSI) method (Borgonovo

2010a, 2010b), a recently-conceived technique of sensitivity analysis, which we refine by

means of a duplication-clearing procedure which allows a perfect (i.e., with no residue)

decomposition of the value added.

We conduct the analysis for a given contribution-and-distribution policy, characterized

by a fixed sequence of deposits and withdrawals. We show that, if the contribution-and-

distribution policy changes, the effect of the investment choices made in the various periods

on the value added changes as well.

Keywords. Value added, performance measurement, investment policy, sensitivity analysis.
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1 Introduction

A number of metrics are used in practice for measuring the performance of an investment

(portfolio of assets, fund, etc.) and a substantial amount of contributions have recently

dealt with pros and cons of various metrics from several points of view, all of which taking

into account the role of a benchmark return in assessing the investment’s value added (see

Long and Nickels 1996, Gredil et al 2014, Magni 2014, Altshuler and Magni 2015, Jiang

2017, Cuthbert and Magni 2018). However, despite the considerable attention drawn

on the appropriateness of a performance criterion, the problem of measuring the impact

of the investment choices (i.e., selection and allocation of assets) made in a period on

the investment’s value added have been neglected. Since decisions about selection and

allocation of assets in a given period generate a well-determined holding period rate, this

problem boils down to measuring the effect of each investment’s holding period rate on

the investment’s value added.

This paper is a first attempt to fill the need of measuring the impact of the investment

policy on the value added. As anticipated, we use the effect of a holding period rate on the

value added to measure the effect of the decisions made in that period on the overall invest-

ment’s value added. We measure the impact of each rate and rank the rates according to

their impact on value added, thereby identifying the ones that have been most influential.

In this way, the analysis enables measuring the effect of the investment decisions made

in every period on the investment’s performance and understand in which periods the

most important (and less important) decisions have been made. To accomplish this ob-

jective, we assume that the contribution-and-distribution policy is given (i.e., we assume

the sequence of deposits and withdrawals is given) and describe an investment’s value

added as the change in the capital terminal value obtained by switching from a passive

investment in a benchmark portfolio to an active investment generating returns which

are different from the benchmark returns. Then, we make use of a recently-conceived

technique of sensitivity analysis, which apportions a discrete change in a model output to

the discrete changes in the model inputs: The so-called Finite Change Sensitivity Index

(FCSI), introduced in Borgonovo (2010a, 2010b). We suitably supplement this technique

with a fine-tuning of the FCSI procedure which enables achieving a perfect (i.e., with no

residue) decomposition of the investment’s value added.

The remainder of the paper is structured as follows. Section 2 introduces the setting

and, in particular, presents the benchmark portfolio and its role in the definition of an

investment’s value added. Section 3 introduces the Finite Change Sensitivity Index and

the way it triggers a decomposition of the finite change of an objective function. Since

the FCSI duplicates the interaction effects, we fine-tune it with a simple duplication-

clearing procedure and provide the Clean FCSI. Section 4 uses the Clean FCSI technique

for apportioning the effect of the investment decisions made in the various periods to the

investment’s value added. Section 5 illustrates the procedure with a numerical example.

Some remarks conclude the paper.
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2 Benchmark portfolio and value added

Following is a simple description of a model for the (discrete) evaluation of the investment,

consisting of a portfolio of assets. An investor invests a capital B0 at time t = 0. By

selecting the assets and allocating them in every period, the portfolio’s value is increased

or decreased. Furthermore, the investor makes decisions about capital contributions or

distributions in the various periods, which increase or decrease the amount of capital

invested in the portfolio.

We assume that the investment starts at time t = 0 and analyze its performance in

the time interval [0, n] where, for convenience, we assume that n is the current date.

Let Et be the end-of-period portfolios’s value and Bt its beginning-of-period value.

Let Ft be the investor’s contribution/distribution into/from the portfolio at time t =

0, 1, . . . , n − 1. From the point of view of the investor, a contribution is an outflow

(Ft < 0), a distribution is an inflow (Ft > 0). In particular, at time 0, the contributed

amount is an outflow, so F0 = −B0 < 0. Then, the following relations hold:

Bt = Et − Ft

it =
Et −Bt−1

Bt−1

Et = Bt−1 · (1 + it)

(1)

where it denotes the rate of return in the period. The first equation says that the

beginning-of-period value is obtained by deducting the capital call or adding the con-

tribution made by the investor; the second relation says that the investment’s holding

period rate expresses the relative increase in the capital value; the third relation says that

the ending value is obtained from the beginning value by marking it up by the return

rate it. The selection and allocation policy affects it, which in turn affects Et and, hence,

Bt. The investor’s choices about withdrawals and deposits affects Bt and, hence, Et.

Therefore, both types of policies affect the capital values, but only the investment policy

affects it. The latter is then an appropriate measure of the effect on the value added of

the investment policy in a given period.

Let us focus on the terminal date, t = n, and on its closing value, En = Bn−1(1 + in).1

Using (1) and solving for t = n, one can express En as a function of the return rates and

the cash flows prior to n:

En = −
n−1∑
t=0

Ft(1 + it+1)(1 + it+2) . . . (1 + in). (2)

The above relation tells us that the terminal investment’s value is the compounded amount

of the contributions (net of distributions) made by the investor.

Consider now a benchmark index whose holding period rate is denoted as i∗t , and

a reference (benchmark) portfolio which acts as the opportunity cost of capital for the

investment. More precisely, let us consider what would have occurred if the investor

had made the same contributions/distributions in the benchmark portfolio. Under this

1If the investment is liquidated at time n, then En = Fn.
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assumption, the investor follows a passive strategy and replicates the investment’s cash

flows: Every contribution to the investment is matched by an equal contribution in the

benchmark portfolio and every distribution from the investment is matched by an equal

distribution from the benchmark. In general, the benchmark portfolio’s value is different

from the investment’s value at every date t, which means that the holding period rates it

and i∗t are different. The difference between the two returns is determined by the active

choices of asset selection and stock allocation in period t. In such a way, the benchmark

portfolio is a replica of the investment’s cash flows up to (and including) time n− 1. At

time n, the investment’s residual value will differ from the benchmark’s residual value.

Formally, let F ∗t = Ft be the cash flows in the reference portfolio, t = 0, . . . , n − 1.

We denote as B∗t and E∗t the beginning-of-period and end-of-period market value of this

benchmark portfolio. Then, the following relations mimic the ones presented in (1):

B∗t = E∗t − F ∗t

i∗t =
E∗t −B∗t−1

B∗t−1

E∗t = B∗t−1 · (1 + i∗t ).

(3)

In t = n, the net value of the benchmark portfolio is E∗n = B∗n−1(1 + i∗n). Analogously to

eq. (2), the benchmark terminal net asset value E∗n depends on the previous cash flows

and the benchmark index return rates:

E∗t = −
n−1∑
t=0

Ft(1 + i∗t+1)(1 + i∗t+2) . . . (1 + i∗n). (4)

As the investment and the benchmark portfolio release the same sequence of inflows and

outflows up to time n − 1, the investment outperforms the benchmark if and only if the

terminal value of the fund is greater than the terminal value of the replicating portfolio:

En > E∗n. The difference En − E∗n is the value added, denoted as VA:

VA = En−E∗n =
n−1∑
t=0

Ft·
(

(1+i∗t+1)(1+i∗t+2) . . . (1+i∗n)−(1+it+1)(1+it+2) . . . (1+in)
)
. (5)

Therefore, the investment outperforms the benchmark if and only if the value added is

positive, VA > 0.

For a given sequence of injections and withdrawals (F0, F1, . . . , Fn−1) and a given

sequence of benchmark returns (i∗1, i
∗
2, . . . , i

∗
n), the value added by such an investment de-

pends on the active investment decisions, which is reflected in the return vector (i1, i2, . . . , in).

3 Finite Change Sensitivity Indices

Sensitivity analysis (SA) is the study of how the variance of the output of a model (nu-

merical or otherwise) can be apportioned to different input key parameters (Saltelli et al.

2004). As such, it aims at quantifying how much of an output change is attributed to

a given parameter or a set of parameters. It is widely employed in finance and manage-
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ment (Huefner 1972), for instance in analysing the value creation of industrial projects

(Borgonovo and Peccati 2004, 2006; Borgonovo, Gatti, and Peccati 2010; Percoco and

Borgonovo 2012; Marchioni and Magni 2018), the composition of optimal financial port-

folios (Luo, Seco and Wu 2015), and the effects of corporate debt (Donders, Jara and

Wagner 2018; Délèze and Korkeamäki 2018).

There exist several SA techniques defined in the literature (see Borgonovo and Plischke

2016, Pianosi et al. 2016, Saltelli et al. 2008, 2004 for reviews of SA methods). Among

others, the Finite Change Sensitivity Indices (FCFIs) have been recently conceived for

analyzing the effect of the finite changes in the model inputs onto the finite changes of a

model output. Formally, let f be the objective function, which maps the vector of inputs

(parameters, key drivers) x = (x1, x2, . . . , xn) ∈ Rn onto the model output y(x):

f : Rn → R, y = f(x), x = (x1, x2, . . . , xn) . (6)

Let the inputs vary from x0 = (x0
1, . . . , x

0
n), the so-called base value, to x1 =

(
x1

1, x
1
2, . . . , x

1
n

)
,

the realized value. The corresponding model outputs are f(x0) and f(x1), so that the out-

put variation is ∆f = f(x1)− f(x0). Let (x1
j , x

0
(−j)) = (x0

1, x
0
2, . . . , x

0
j−1, x

1
j , x

0
j+1, . . . , x

0
n)

be the vector consisting of all the inputs set at their base value x0, except parameter xj

which is given the realized value x1
j . Analogously, let

(x1
j , x

1
k, x

0
(−j,k)) = (x0

1, x
0
2, . . . , x

0
j−1, x

1
j , x

0
j+1, . . . , x

0
k−1, x

1
k, x

0
k+1, . . . , x

0
n)

be the input vector where xj and xk are set to the realized values, while the remaining

n− 2 are set at their base value, and so forth for all s-tuples of inputs, s = 1, 2, . . . , n.

Borgonovo (2010a, 2010b) defines two versions of FCSIs: First Order FCSI and Total

Order FCSI. The First Order FCSI of parameter xj measures the individual effect of xj

(Borgonovo 2010a), ∆1
jf = f(x1

j , x
0
(−j))− f(x0), and, in normalized version, Φ1,f

j =
∆jf
∆f .

On the other side, the Total Order FCSI quantifies the total effect of the parameter,

including both its individual contribution and its interactions with other parameters. Let

∆j,kf be the interaction between xj and xk, that is the portion of f(x1
j , x

1
k, x

0
(−j,−k))−f(x0)

not explained by the individual effects ∆1
jf and ∆1

kf : ∆j,kf = f(x1
j , x

1
k, x

0
(−j,−k))−f(x0)−

∆1
jf−∆1

kf . Similarly, let ∆j,k,hf be the interaction among the inputs xj , xk and xh, which

is the portion of f(x1
j , x

1
k, x

1
h, x

0
(−j,−k,−h)) − f(x0) not explained by the individual effects

and by the interactions between any pair: ∆j,k,hf = f(x1
j , x

1
k, x

1
h, x

0
(−j,−k,−h)) − f(x0) −

∆1
jf −∆1

kf −∆1
hf −∆j,kf −∆j,hf −∆k,hf (analogously for a s-tuple, with s > 3). The

variation of f from x0 to x1 is equal to the sum of individual effects and interactions,
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counted only once, between parameters and groups of parameters:

∆f =

individual effects︷ ︸︸ ︷
n∑

i=j

∆1
jf +

pairs︷ ︸︸ ︷∑
j1<j2

∆j1,j2f +

triplets︷ ︸︸ ︷∑
j1<j2<j3

∆j1,j2,j3f + · · ·+

s-tuples︷ ︸︸ ︷∑
j1<j2···<js

∆j1,j2,...,jsf + . . . +

n-tuple︷ ︸︸ ︷
∆j1,j2,...,jnf︸ ︷︷ ︸

overall interaction effects

,

where
∑

j1<j2···<js
∆j1,j2,...,jsf is the sum of the interactions between s-tuples.

Borgonovo (2010a) defines the Total Order FCSI of xj , ∆Tj f , as the sum of First Order

FCSI of xj , ∆1
jf , and the interaction effect of xj , identified as ∆Ij f and called Interaction

FCSI. The latter is the sum of every interaction involving xj :

∆Ij f =
∑
j1<j2

j∈{j1,j2}

∆j1,j2f + . . . +
∑

j1<j2...<js
j∈{j1,j2,...,js}

∆j1,j2,...,jsf + . . . + ∆j1,j2,...,jnf.

Therefore,

∆Tj f = ∆1
jf+∆Ij f = ∆1

jf+
∑
j1<j2

j∈{j1,j2}

∆j1,j2f+. . .+
∑

j1<j2···<js
j∈{j1,j2,...,js}

∆j1,j2,...,jsf+. . .+∆j1,j2,...,jnf

(7)

and, in normalized version, ΦTj =
∆T

j f

∆f .

Computationally, the calculation of the Interaction FCSIs may be extremely burden-

some if the model does not contain a very small number of inputs.2 Borgonovo (2010a,

Proposition 1) shows that the following result holds:

∆Tj f = f(x1)− f(x0
j , x

1
(−j)), ∀j = 1, 2, . . . , n, (8)

where (x0
j , x

1
(−j)) denotes the vector with each input equal to the realized value x1, except

for xj which is set equal to x0
j . This enables computing the total FCSI of xj with no need

of summing the First Order FCSI of xj and the Interaction FCSI of xj .

Unfortunately, the Total Order FCSI does not provide a complete decomposition of

the output change:

n∑
l=1

∆Tl f 6= ∆f = f(x1)− f(x0) or, equivalently,
n∑

l=1

ΦTl 6= 1.

In other words, the sum of Total FCSIs explains less (or more) than 100% of the output

change. To understand why, consider that, in the sum of the Interaction FCSIs,
∑n

l=1 ∆Il f ,

the pairwise interactions of xj and xk appear twice (in ∆Tj f and in ∆Tk f); the three-wise

interactions of xj , xk, and xh appear three times (in ∆Tj f , in ∆Tk f , and in ∆Th f); and so

on for all the s-wise interactions, s = 2, 3, . . . , n. This implies that the sum of Interaction

2The number of interactions between parameters and groups of parameters is equal to 2n − n.
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FCSIs does not equate the overall interaction effects:

n∑
l=1

∆Il f 6=

pairs︷ ︸︸ ︷∑
j1<j2

∆j1,j2f +

triplets︷ ︸︸ ︷∑
j1<j2<j3

∆j1,j2,j3f + · · ·+

s-tuples︷ ︸︸ ︷∑
j1<j2···<js

∆j1,j2,...,jsf + . . . +

n-tuple︷ ︸︸ ︷
∆j1,j2,...,jnf︸ ︷︷ ︸

overall interaction effects

and, therefore,
∑n

l=1 ∆Tl f 6= ∆f .

However, it is possible to introduce a duplication-clearing factor which eliminates the

redundant, multiple interactions and allows a complete and exact decomposition of the

output change. We define the Clean Interaction FCSI of xj , ∆I
jf , as the product of the

Interaction FCSI ∆Ij f and a suitable corrective factor:

∆I
jf = ∆Ij f ·

∑
j1<j2

∆j1,j2f + · · ·+
∑

j1<j2···<js
∆j1,j2,...,jsf + · · ·+ ∆j1,j2,...,jnf∑n

j=1 ∆Ij f
. (9)

Considering that ∆Ij f = ∆Tj f −∆1
jf and

∑
j1<j2

∆j1,j2f + · · ·+
∑

j1<j2···<js

∆j1,j2,...,jsf + · · ·+ ∆j1,j2,...,jnf = ∆f −
n∑

j=1

∆1
jf,

one may reframe (9) as

∆I
jf =

∆Tj f −∆1
jf∑n

l=1(∆Tl f −∆1
l f)
·
(
∆f −

n∑
l=1

∆1
l f
)
. (10)

In other words, the Clean Interaction FCSI is computed by imputing a share of the overall

true interaction effect (∆f −
∑n

l=1 ∆1
l f) to parameter xj . This share is obtained as the

ratio of the Interaction FCSI of xj and the sum of all Interaction FCSIs.

We define the Clean Total Order FCSI of parameter xj , ∆T
j f , as the sum of individual

contribution and Clean Interaction FCSI of xj :

∆T
j f = ∆1

jf + ∆I
jf (11)

and, in normalized version, ΦT
j =

∆T
j f

∆f . It is easy to see that the Clean Total FCSIs

completely explain the output variation:

n∑
l=1

∆T
l f = ∆f,

and, in normalized version,
∑n

l=1 ΦT
l = 1.

The sign of a Clean Total FCSI, ∆T
j f , signals the directional effect of an input change

onto the output change: A positive (negative) index signals that the change in the input

has the effect of increasing (decreasing) the output. The absolute value of the Clean

Total FCSI quantifies the magnitude of the effect; one may then rank the input factors

according to their influence on the change in the objective function: Input xj has higher

rank than xj if and only if |∆T
j f | > |∆T

j f |. We denote the rank of parameter xj as Rj .
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The rank vector is R = (R1, R2, . . . , Rn).

4 Attribution of value added

Let x = (x1, x2, . . . , xn) be the vector of time-varying return rates of an investment with

cash flows Ft from t = 0 to n − 1. Generalizing equations (2) and (4), the terminal net

asset value implied by the return rates vector x, denoted as f(x), is, for a given sequence

of cash flows (F0, F1, . . . , Fn−1), equal to

f(x) = −
n−1∑
t=0

Ft(1 + xt+1)(1 + xt+2) . . . (1 + xn). (12)

Let x0 = i∗ be the stream of benchmark returns (base value). The active investment

policy followed in the various periods has the effect of moving the rates from x0 = i∗ to

x1 = i (realized case). This in turn has the effect of changing the terminal value from

f(x0) = f(i∗) to f(x1) = f(i). However,

f(i∗) = E∗n (13)

f(i) = En. (14)

Therefore, the value added by the investment may be written as

VA = En − E∗n = f(i)− f(i∗). (15)

As a result, the value added is equal to a finite change of f . Therefore, one may apply the

FCSI technique integrated by the duplication-clearing procedure for decomposing VA in

terms of period rates. It is then possible to identify the periods whose investment choices

have most affected the investment’s performance. In particular, for any given sequence

of contributions and distributions, the value added may be considered as the sum of all

the effects of the active selection and allocation choices made in the various periods, as

opposed to a passive strategy consisting in investing in a benchmark portfolio.

For accomplishing a complete, exact decomposition of the value added, we use the

Clean FCSIs. Note that the piece of information provided by ΦT
j is not whether and

how much the investment outperforms or underperforms the benchmark in period t, but

whether the investment decisions made in period t have contributed, overall, to outperform

or underperform the benchmark in the time interval [0, n] and how much of the value

added is attributable to them. This piece of information necessarily takes account of the

interactions with the decisions made in the other periods. The decisions made in period t

determine it, which measures the relative growth in the investment’s value at time t and,

therefore, affect (along with the other rates) the magnitude of the value added not only

in period t, but also in the following periods t + 1, t + 2, . . ., n. The Clean Total FCSI,

∆T
j f , precisely provides the amount of value added that is determined by the investment

policy in period t.

The analysis above assumes that the policy of contributions and distributions is fixed
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and equal to (F0, F1, . . . , Fn−1). Consider now a different sequence of contributions and

distributions:

(G0, G1, . . . , Gn−1) 6= (F0, F1, . . . , Fn−1)

and let

g(x) = −
n−1∑
t=0

Gt(1 + xt+1)(1 + xt+2) . . . (1 + xn) (16)

be the investment’s terminal value. In general, the functions f(x) and g(x) are different,

which implies that the value added will be different as well: f(i)− f(i∗) 6= g(i)− g(i∗). In

addition, the Clean Total FCSIs of the parameters under f and g will generally be different,

implying that the same choices about investments in a given period have a different

impact on the value added depending on the choices about injections/withdrawals made

by the investor. Therefore, it may occur the case where a given parameter xj triggered

by a given investment policy in period j has a substantial impact on value added for a

contribution-and-distribution policy and a negligible impact on value added for a different

contribution-and-distribution policy.

In the following section we present a worked example where we measure the impact of

the period investment decisions under two different assumptions about contributions and

distributions.

5 Worked example

We consider an investment management agreement whereby an investor endows a fund

manager the capital amount B0 = −F0 = 100. The investment lasts n = 8 periods and is

described in Table 1. The contribution and distribution policy is under full control of the

investor, who determines the timing and amount of withdrawals and deposits from t = 1

to t = 7. The investment policy of the fund manager in period t brings about a return

rate equal to it in period t, t = 1, 2, . . . , 8. In the same period, the benchmark index’s

return is i∗t . From (2) and (4), the terminal values of the fund and of the replicating

portfolio are E8 = 7.71 and E∗8 = 5.25, respectively, implying that, given the sequence of

contributions and distributions, the value added is VA = 2.47 = 7.71− 5.25 > 0.

Table 1: Input data

Time
Fund’s

cash flows
Fund’s

returns
Benchmark’s

returns
t Ft it i∗t

0 −100
1 30 4% 3%
2 −20 5% 4%
3 40 2% 3%
4 10 4% 6%
5 −30 3% 1%
6 60 3% 2%
7 20 5% 2%
8 4% 5%

We now decompose the value added in terms of the influences of the active investment
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choices made in the various periods with respect to a passive investment earning the

benchmark return with the same array of contributions and distributions. This is done

by evaluating the effect of the change of the terminal value when the return vector is

changed from the benchmark return vector, i∗, to the fund’s return vector, i. To this end,

we consider the objective function

f(x) = −
7∑

t=0

Ft(1 + xt+1) . . . (1 + x8)

with

x0 = i∗ = (3%, 4%, 3%, 6%, 1%, 2%, 2%, 5%)

and

x1 = i = (4%, 5%, 2%, 4%, 3%, 3%, 5%, 4%).

Table 2 collects the results of the analysis. The first column collects the vector of input

parameters, (x1, x2, . . . , x8), which are determined by the investment choices made in the

various periods. The second column describes the First Order FCSIs, the third column

is the Total Order FCSI determined via eq. (8), the fourth one collects the Interaction

FCSIs calculated as difference between third column and fourth column; the fifth column

clears the duplications and supplies the Clean Interaction FCSI, which is computed as

in (10); the sixth column represents the Clean Total Order FCSI as defined in (11); the

seventh column reports the normalized Clean Total Order FCSI, and, finally the eight

column shows the inputs’ ranking.

Table 2: Decomposition of the value added
and inputs’ ranking

xj ∆1
jf ∆T

j f ∆I
j f ∆I

jf ∆T
j f ΦT

j Rj

x1 1.25 1.29 0.04 −0.02 1.23 49.96% 2
x2 0.88 0.91 0.03 −0.02 0.86 34.98% 6
x3 −1.12 −1.18 −0.06 0.03 −1.09 −44.24% 4
x4 −1.30 −1.38 −0.08 0.05 −1.25 −50.70% 1
x5 1.14 1.17 0.03 −0.02 1.13 45.74% 3
x6 0.89 0.91 0.03 −0.01 0.87 35.40% 5
x7 0.77 0.81 0.04 −0.02 0.75 30.34% 7
x8 −0.05 −0.07 −0.02 0.01 −0.04 −1.48% 8

The most influential input on the value added is the return rate in period 4, x4, with

∆T
4 f = −1.25 and ΦT

4 = −50.70%, implying that it has had a negative effect on the VA

and that its magnitude is about half of the value added. In other words, the investment

decisions made in the fourth period have overall contributed negatively to the fund’s

performance and have had the greatest impact on the value added.

It is worth noting that the individual contribution of x4 to the value added is obtained

with the following argument: Suppose the investor invests passively in the benchmark

index from time t = 0 to time t = 3, then switches to the fund manager’s active investment

at time t = 3 and then switches back to the benchmark index at time t = 4. This strategy
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results in the following terminal value:

E8 = f(0.03, 0.04, 0.03,0.04, 0.01, 0.02, 0.02, 0.05)

= 100(1.03)(1.04)(1.03)(1.04)(1.01)(1.02)(1.02)(1.05)

− 30(1.04)(1.03)(1.04)(1.01)(1.02)(1.02)(1.05)

+ 20(1.03)(1.04)(1.01)(1.02)(1.02)(1.05)

− 40(1.04)(1.01)(1.02)(1.02)(1.05)

− 10(1.01)(1.02)(1.02)(1.05)

+ 30(1.02)(1.02)(1.05)

− 60(1.02)(1.05)

− 20(1.05) = 3.95.

If no switching occurs, the terminal capital value is

E∗8 = f(0.03, 0.04, 0.03,0.06, 0.01, 0.02, 0.02, 0.05)

= 100(1.03)(1.04)(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)

− 30(1.04)(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)

+ 20(1.03)(1.06)(1.01)(1.02)(1.02)(1.05)

− 40(1.06)(1.01)(1.02)(1.02)(1.05)

− 10(1.01)(1.02)(1.02)(1.05)

+ 30(1.02)(1.02)(1.05)

− 60(1.02)(1.05)

− 20(1.05) = 5.25.

The difference, ∆1
4f = 3.95 − 5.25 = −1.3, represents the individual contribution of x4,

that is, the impact of the decisions made in period 4 on the value added, taken in isolation

from the other inputs. The clean interaction effect is calculated as in eq. (10) and supplies

a partial compensating effect, ∆I
4f = 0.05. Overall, the contribution to value of the active

investment policy of the fourth period on the investment’s value added is ∆T
4 = −1.25. In

relative terms, x4’s weight is ΦT
4 = −50.7%.

The second and third most influential inputs are the return rates in periods 1 and

5, x1 and x5, which have had a positive effect on value added. In particular, their total

contributions are, respectively, ∆T
1 = 1.23 and ∆T

5 = 1.13. In relative terms, their weights

are ΦT
1 = 49.96% and ΦT

5 = 45.74%. Next come x3 (negative impact), x6, x2, x7 (positive

impact) and x8 (negative effect). The latter explains just −1.48% of VA. The Clean Total

Order FCSIs exactly decompose the value added:

sum of Clean Total FCSIs︷ ︸︸ ︷
1.23 + 0.86− 1.09− 1.25 + 1.13 + 0.87 + 0.75− 0.04 = 2.47

sum of normalized Clean Total FCSI (percentage)︷ ︸︸ ︷
49.96% + 34.98%− 44.24%− 50.70% + 45.74% + 35.40% + 30.34%− 1.48% = 100%.

212



Consider now a different contribution and distribution policy, determined by the sequence

(G0, G1, . . . , Gn−1) such that G0 = F0 = −100 and Gt = 0 for t = 1, 2, . . . 7, and assume

that the selection and allocation choices do not vary. The investment’s value added varies;

in particular, using (16), the fund’s and the benchmark portfolio’s values at time 8 are,

respectively,

E8 = g(i) = 100(1.04)3(1.05)2(1.02)(1.03)2 = 134.20

and

E∗8 = g(i∗) = 100(1.03)2(1.04)(1.06)(1.01)(1.02)2(1.05) = 129.04,

implying that the value added is

VA = g(i)− g(i∗) = 134.2− 129.04 = 5.16.

The value added has increased with respect to the previous case. The FCSI analysis with

duplication-clearing procedure is reported in Table 3, showing that, in the case of no

interim contributions and distributions, the same investment choices have a very different

impact on the value added. The most influential return rate is x7 (R7 = 1), which has

a positive effect on VA. As previously seen, its rank in the case where (F0, F1, . . . , Fn−1)

represented the choices about deposits and withdrawals was only R7 = 7. This means

that investment decisions made by the manager in period 7 have the greatest impact

if the investor does not make any interim contribution/distribution, whereas they have

negligible effect in case of the timing and amounts of cash flows are (F0, F1, . . . , Fn−1).

Conversely, the first-period rate, x1, which reflects the investment decisions made in period

1, has rank 6 (R1 = 6), whereas it represented the second most influential parameter in

the previous case.

Table 3: Decomposition of the value added
and inputs’ ranking (no interim cash flows)

xj ∆1
jf ∆T

j f ∆I
j f ∆I

jf ∆T
j f ΦT

j Rj

x1 1.25 1.29 0.04 0.02 1.27 24.63% 6
x2 1.24 1.28 0.04 0.02 1.26 24.39% 7
x3 −1.25 −1.32 −0.06 −0.03 −1.28 −24.86% 5
x4 −2.43 −2.58 −0.15 −0.07 −2.50 −48.54% 3
x5 2.56 2.61 0.05 0.02 2.58 49.99% 2
x6 1.27 1.30 0.04 0.02 1.28 24.87% 4
x7 3.80 3.83 0.04 0.02 3.81 73.91% 1
x8 −1.23 −1.29 −0.06 −0.03 −1.26 −24.39% 8

6 Concluding remarks

This paper proposes a method for evaluating the effect of the investment policy on an

investment’s performance, as measured by the value added. Specifically, we show how

to quantify the part of the value added generated by the investment decisions made in

the various periods, given a fixed sequence of cash flows (contributions and distribu-

tions). We compare an active investment strategy with a passive investment strategy
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in a benchmark portfolio and formalize it in terms of difference between terminal values

in case of active investment and passive investment, respectively. This difference, which

equals the investment’s value added, depends on the relations between the sequence of

benchmark returns and the sequence of investment’s returns. To accomplish the task,

we make use of the Finite Change Sensitivity Index (FCSI) technique (Borgonovo 2010a,

2010b) suitably fine-tuned for clearing the double-counting of the interaction effects im-

plied therein. This brings about the Clean Total FCSI which quantifies and ranks the

efficacy of the investment policy via the ranking of the effect of the investment returns on

the investment’s value added. We also find that, for a given investment policy, not only

different contribution-and-distribution policies give rise to different performances but also

the effect of the investment decisions have a different impact on the value added. This

means that decisions about contributions and distributions and decisions about selection

and allocation of assets are strictly intertwined. Further researches may be conducted

to assess the degree and the direction of the interaction between investment policy and

contribution/distrribution policy.
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Abstract 

A portfolio’s Sortino ratio is strongly affected by the risk-free vs. risky assets mix, except for the case 

where the threshold, T is equal to the risk-free rate. Therefore, if T differs from the risk-free rate, the 

portfolio’s Sortino ratio could potentially be increased by merely changing the mix of the risk-free 

and the risky components. The widely used Sharpe ratio, on the other hand, does not share this caveat.  

We introduce a modified Sortino ratio, Sortino(γ), which is invariant with respect to the portfolio’s 

risk-free vs. risky assets mix, and hence eliminates the above deficiency. The selected threshold T(γ), 

mimics the portfolio composition in the sense that it equals to the risk-free rate plus γ times the 

portfolio’s equity risk premium. Higher selected γ reflects higher risk/loss aversion. We propose a 

procedure for optimizing the composition of the risky portion of the portfolio to maximize the 

Sortino(γ) ratio. In addition, we show that Sortino(γ) is consistent with first and second order 

stochastic dominance with riskless asset rules.  

HIGHLIGHTS 

• We introduce a modified Sortino ratio, Sortino(γ), whose threshold T(γ) is tied to the portfolio 

mix of risk-free vs. risky assets. 
• Sortino(γ) is invariant with respect to the portfolio’s of risk-free vs. risky assets mix. Therefore 

it can be maximized only by improving the composition of the portfolio’s risky component, and 

a maximization process is presented. 
• Sortino(γ) is consistent with first and second stochastic dominance with riskless asset rules. 

Keywords: Performance ratios, Sortino ratio, Risk aversion, Loss aversion, FSDR rule, SSDR rule. 

JEL CLASSIFICATION: G11, D81 
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I. Introduction 

The standard deviation (StDev) of returns is a proper measure of risk only in the limited case of 

normal return distributions. For all other distributions, preference by the mean variance criterion 

(MVC) that uses the StDev as its risk measure, is neither necessary nor sufficient condition for 

preference by all expected utility investors1. Indeed, the StDev as a measure of risk has been heavily 

criticized by many, including Markowitz (1959, pp. 286-288), the originator of the application of the 

MVC to portfolio optimization. Thus, many researchers suggested the replacement of the StDev with 

downside risk measures2. However, despite its deficiencies and the heavy criticism, the StDev is the 

risk measure employed by the Sharpe ratio which is probably the most popular performance ratio, 

and it is also the risk factor in the well-known Capital Asset Pricing Model (CAPM)3. Its popularity 

is probably due, at least in part, to the simple mathematical algorithm needed to construct the optimal 

portfolios that minimize StDev for any given vector of expected returns given the variance covariance 

matrix, as well as due to the resulting independence between of the portfolio’s optimal risky assets 

composition and the degree to which the portfolio uses the riskless asset for lending and/or borrowing 

(i.e., the monetary Separation property). 

One of the commonly used downside performance ratios, is the Sortino ratio. The numerator of the 

Sortino ratio is the expected return of the risky portfolio minus a defined threshold, T, and the 

denominator is the root of the expected squared return deviations below T 4. Unfortunately, where T 

differs from the risk-free rate, the Sortino ratio of a portfolio is affected by the risk-free vs. risky 

assets mix and this effect increases with the deviation of T from the riskless rate5. Thus, in the case 

where T differs from the risk-free rate, a portfolio’s Sortino ratio is sensitive to its equity level and 

the optimal composition of the equity components of the portfolio cannot be separated from its 

optimal mix between the risky and the risk-free component. Our paper presents a modified Sortino 

ratio, Sortino(γ), which is invariant to the portfolio’s equity level, for all relevant threshold values. 

Our modification is based on replacing the constant T threshold, which is not responsive to the 

portfolio’s equity level, with T(γ) which equals the weighted average of the portfolio’s expected rate 

of return and the risk-free rate, using weights of γ and (1-γ), respectively. Under the trivial assumption 

that the portfolio’s expected rate of return exceeds the risk-free rate, the higher the γ the higher is 

T(γ).  

The paper is organized as follows. In Section 2 we show that if the conventional threshold T is below 

the portfolio’s expected return but differs from the risk-free rate, the Sortino ratio increases or 

 

1 The stochastic dominance rules for all rational investors (First degree Stochastic Dominance rule - 

FSD) and for all rational risk averse investors (Second degree Stochastic Dominance rule - SSD) 

provide necessary and sufficient (optimal) efficiency rules for preference. However, the practical 

application of these rules for constructing optimal portfolios and obtaining market equilibrium 

conditions is quite limited. 
2 For a review of many downside risk measures, see Sortino and Price 1994, Sortino and Forsey 1996, 

Nawrocki 1999, Pedersen and Satchell 2002, Pedersen and Rudholm-Alfvin 2003, Sortino 2009.  
3 The basic CAPM was developed by Treynor 1961, 1965, Sharpe 1964, Lintner 1965, and Mossin 

1966). 
4 The ratio belongs to a wider set of performance ratios, Kappa, that employ the lower partial moment 

as a measure of risk (Kaplan and Knowles 2004). 
5 In what follows, and for the purpose of abbreviation, we often refer to the proportion of the 

portfolio’s risky (equity) component as the “equity level” or the “risk level” of the portfolio. 
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decreases monotonically and respectively with the portfolio’s proportion of the risky vs. the riskless 

component. This undesired feature of a performance measure potentially allows portfolio managers 

to increase the ex-ante ratio by merely changing its equity level, namely, by altering the mix of the 

riskless vs. risky assets rather than by improving the composition of the portfolio’s risky component. 

In Section 3 we present the modified performance measure, Sortino(γ), which employs the threshold 

T(γ). In this section we show that the resulting ratio is invariant with respect to the portfolio’s split 

between the risky and riskless components6. Section 4 presents the procedure for obtaining the 

optimal risky portfolio which maximizes Sortino(γ) for a given γ. Section 5 shows that dominance by 

stochastic dominance with riskless asset rules (FSDR and SSDR) implies dominance by S(γ). 

Dominance by SDR rules compare preferences for all expected utility investors with none-decreasing 

utility (FSDR) and for all investors with none-decreasing utility as well as none-increasing marginal 

utility (SSDR) provided they can borrow and lend against the risky portfolio using the same given 

riskless rate. Section 6 presents a summary and offers some conclusions. 
 

II. Sortino ratio and the level of the equity component 

The ex-ante Sortino ratio of a portfolio with a threshold T is given by7: 
 

(1) 𝑆𝑃(𝑇) =
𝐸(�̃�𝑃)−𝑇

[ 𝐸
�̃�𝑃≤𝑇

(𝑇−�̃�𝑃)
2]

0.5. 

𝑆𝑃(𝑇) is the portfolio’s Sortino ratio, �̃�𝑃 is the (random) rate of return on the portfolio and E is the 

expected value operator. While the riskless rate of return is perhaps the most likely choice for a 

threshold, thresholds which are higher or lower than the riskless rate are used in the literature8. Denote 

the portfolio’s proportion of the risky asset and the proportion of the risk-free asset by α and (1-α), 

respectively, and let �̃�𝑒 and Rf represent the (random) rate of return on the equity component and the 

rate of return on the risk-free asset, respectively. Since �̃�𝑃 = 𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓 we can rewrite Eq. (1) 

as follows: 

(2) 𝑆𝑃(𝑇) =
𝛼𝐸(�̃�𝑒)+(1−𝛼)𝑅𝑓−𝑇

{ 𝐸
𝛼�̃�𝑒+(1−𝛼)𝑅𝑓≤𝑇

[𝑇−(𝛼�̃�𝑒+(1−𝛼)𝑅𝑓)]
2
}

0.5. 

Proposition 1 below, shows that the traditional Sortino ratio is invariant with respect to α when the 

threshold rate is equal to the risk-free rate.  

Proposition 1. If T = Rf , then for all α, 𝑆𝑃(𝑇) = 𝑆𝑒(𝑇) which is the Sortino ratio of the all-equity 

portfolio (i.e, 𝛼 = 1):  

 

6 In our theoretical model we assume that there is a riskless rate and it is the same for borrowing and 

lending and the same for the investment fund and the individual investors. Under these assumptions, 

a reasonable performance measure should not be affected by the selected proportion of the riskless 

asset vs. the risky assets in the portfolio, regardless of whether the choice is made by the fund 

manager or by the ultimate (“individual”) investor.  
7 The presentation below is an ex-ante version while in practice, the ratio is estimated using sample 

observations.  
8 For example: Frugier (2016) and Hu et al. (2015) and others use 0% as a threshold. Booth and 

Broussard (2017) consider thresholds from -0.01 to -0.10, and Perelló (2007) examines thresholds 

from -30% to +30%.  
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(3) 𝑆𝑃(𝑇 = 𝑅𝑓) = 𝑆𝑒(𝑇 = 𝑅𝑓) =
𝐸(�̃�𝑒)−𝑅𝑓

[ 𝐸
�̃�𝑒−𝑅𝑓≤0

(𝑅𝑓−�̃�𝑒)
2]

0.5  

The proof of the proposition is immediate as Eq. (2) is reduced to Eq. (3) when T = Rf. 

However, when 𝑇 ≠ 𝑅𝑓 and also 𝑇 < 𝐸(�̃�𝑃) and α > 0 then, Proposition 2 holds: 

Proposition 2. Given that 𝑇 < 𝐸(�̃�𝑃) and α > 0 then, 𝑆𝑃(𝑇) < 𝑆𝑃(𝑅𝑓) and increases with α, if and only 

if, T >𝑅𝑓. The opposite holds for T< 𝑅𝑓. The proof is presented in an Appendix. 
 

Note that the condition 𝑇 < 𝐸(�̃�𝑃) guarantees a threshold below the expected return of the portfolio 

and the condition α > 0 eliminates an overall short position of the portfolio. These are two very 

reasonable requirements. 

Figure 1 presents estimated Sortino ratios using bootstrapping simulations on the S&P-500 index 

rates as a function of α. The data and simulations details are in the Figure’s caption. 
 

Figure 1 
 Sortino ratio as a function of α with three alternative threshold values 

Based on 2000 random draws from120 monthly returns on the S&P-500 index,  
February 2008 to January 2018.  

 

It is clear from Proposition 2 and Figure 1 that selection of T below (above) the risk-free rate, may 

lead fund managers who seek to increase their fund’s Sortino ratio, to adopt too low (high) equity 

investment strategy. The Sortino ratio is particularly sensitive to changes of α at low α levels.  

In the next section we present our modified Sortino(γ) ratio which employs a threshold T(γ) that 

equals γ times the expected return of the portfolio and (1-γ) times the risk-free rate. It is shown that 

the modified Sortino ratio is invariable with respect to the proportion of risk-free asset in the portfolio. 

The economic logic for choosing T(γ) as a threshold rate, is that the threshold for measuring the 

downside risk of a portfolio should be adjusted to the portfolio’s risk premium. This is because it is 

likely that as the selected overall expected volatility of the portfolio increases, the investor’s 

propensity to absorb losses increases as well. We thus define the threshold rate in terms of the risk-

free rate plus γ times the portfolio’s expected premium above the risk-free rate. If γ = 1, any return 

lower than the expected portfolio return is considered to be in the “loss” region when calculating the 
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downside risk. If, for example, γ = 0.5, the downside risk measure considers all the returns which are 

lower than the risk-free rate plus 50% of the portfolio’s expected risk premium, and when γ = 0, all 

returns below the risk-free rate are regarded as a loss and count as part of the downside risk measure. 

Negative γ values maybe unlikely for rational investors because they place the threshold below the 

riskless rate while the riskless rate is always an open alternative and ignoring the loss between the 

risk-free rate and the threshold even when the latter is greater than 0, may be supported, at most, on 

psychological grounds. However, if a negative γ is selected, such as γ = - 0.2, the downside risk 

measure considers only the returns which are lower than the risk-free rate minus 20% of the 

portfolio’s risk premium. Non-positive thresholds exist for the following γ values: 

(4)   𝛾 ≤ −
𝑅𝑓

𝐸(�̃�𝑃)−𝑅𝑓
     

 

Proposition 3 prove that Sortino(γ) is invariant with respect to α.  
 

Proposition 3. S(γ) ratio is invariant with respect to the portfolio’s equity level, α. 
 

Proof: 
 

(5) 𝑆(𝑇(𝛾)) ≡ 𝑆(𝛾) =
𝐸(�̃�𝑃)−𝑇(𝛾)

{ 𝐸
�̃�𝑃<𝑇(𝛾)

[𝑇(𝛾)−�̃�𝑃]
2}

0.5 

 

Eq. (7) can be specified as: 
 

(6) 𝑆(𝛾) =
𝛼[(𝐸(�̃�𝑒)−𝑅𝑓)−𝛾(𝐸(�̃�𝑒)−𝑅𝑓)]

{ 𝐸
𝛼(�̃�𝑒)+(1−𝛼)𝑅𝑓<𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)+𝑅𝑓

[(𝛾𝛼(𝐸(�̃�𝑒)−𝑅𝑓)+𝑅𝑓)−(𝛼(�̃�𝑒)+(1−𝛼)𝑅𝑓)]
2
}

0.5 

which is the same as: 

(7) 𝑆(𝛾) =
(1−𝛾)[𝐸(�̃�𝑒)−𝑅𝑓]

{ 𝐸
�̃�𝑒−𝑅𝑓<𝛾(𝐸(�̃�𝑒)−𝑅𝑓)

[𝛾(𝐸(�̃�𝑒)−𝑅𝑓)−(�̃�𝑒−𝑅𝑓)]
2
}

0.5 

 

The last formulation of S(γ) is invariant with respect to α as claimed by the proposition.  
If γ is positive (zero) the threshold is set higher than (equal to) the risk-free rate. Negative γ implies 

threshold below the risk-free rate. 
 

IV. The portfolio’s optimal risky component for a given γ  

Since S(γ) is invariant with respect to α, its ex-ante maximization can be attained only by changing 

the composition of the portfolio’s risky component. Define the equity “risk premium ratio” as the 

ratio of the (random) equity component’s risk premium to its expected value, and denote it 𝑟𝑝𝑟�̃�: 

(8)   𝑟𝑝𝑟�̃� =
�̃�𝑒−𝑅𝑓

𝐸(�̃�𝑒)−𝑅𝑓
 

 

Proposition 4. For a given γ the ratio S(γ) is maximized by minimizing the expected downside square 

deviations of the "risk premium ratio" from γ, namely: 
 

(9)   𝑀𝐼𝑁
�̱�

[ 𝐸
�̃�𝑒<𝛾𝐸(�̃�𝑒)+(1−𝛾)𝑅𝑓

(𝑟𝑝𝑟�̃� − 𝛾)2] 
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Where �̱� is the vector of the proportions invested in the individual risky securities.  

The proof is based on Eq. (9) that can be re-written as: 

(10)   𝑆(𝛾) =
1−𝛾

[ 𝐸
�̃�𝑒<𝛾𝐸(�̃�𝑒)+(1−𝛾)𝑅𝑓

(𝛾−𝑟𝑝𝑟�̃�)
2]

0.5 

 

As argued, the conventional Sortino ratio is not invariant with respect to α (except for T = Rf) and 

therefore, its reward vs. downside risk frontier changes with α as well. In contrast, S(γ) is invariant to 

the choice of α and therefore one may apply Eq. (11) subject to any given expected return and obtain 

the minimum downside risk for each expected return, thereby creating the efficient mean-downside 

risky frontier of the risky portion of the portfolio for the chosen γ. Consequently, for any T(γ), one 

can use the minimization process in Eq. (11) to find the optimal composition of the risky component 

of the portfolio. The portfolio’s optimal split between the risk-free asset and the optimal risky 

component is determined subjectively by the investor. Figure 2 depicts the result of this optimization 

process: it represents tradeoffs for a given positive γ. The portfolio’s optimal risky component, 

composed only with the equities, has an expected return of 𝐸(�̃�𝑒
∗). This optimal portfolio is 

determined objectively and is applicable only for investors who select a specific γ. The overall optimal 

subjective combination of the risky assets and the risk-free asset for the investor who selected the 

said γ, has an expected rate of return 𝐸(�̃�𝑃
∗ ). The optimal overall portfolio is found at the tangency 

point between the investor’s relevant indifference curve and the tangent line that run from Rf toward 

(and beyond) the tangency point with the efficient risky frontier at point O. 
 

V. Consistency with stochastic dominance with riskless asset rules (SDR) 

Stochastic dominance (SD) rules provide necessary and sufficient conditions for preference between 

any two-alternative return (or income) distributions, �̃� and�̃�, for a wide range of assumptions 

regarding the investor’s utility function. The First degree Stochastic Dominance (FSD) rule assumes 

only non-decreasing utility function while the Second degree Stochastic Dominance (SSD) rule 

assumes also a non-increasing marginal utility, i.e., risk aversion. The SD rules are partial ordering 

rules since, in general, it is not guaranteed that all investors with the assumed utilities prefer the same 

one alternative over another. 

 
Let the preference of �̃� over �̃� by the conventional Sortino ratio S(T), be denoted as �̃� ≥

𝑆(𝑇)
�̃� and let 

the same preference by S(γ), be denoted �̃� ≥
𝑆(𝛾)

�̃� . These preferences present complete ordering which, 

a-priori, may be inconsistent with SD rules. Namely, in general, Sortino ordering may not be 

sufficient for dominance by SD rules. With respect to S(T), Balder and Schweizer (2017) (BS) showed 

that if �̃� 𝐷
𝑆𝑆𝐷

�̃� and 𝐸(�̃�) ≥ 𝑇 ≥ 𝐸(�̃�) then �̃� ≥
𝑆(𝑇)

�̃�. 

Levy and Kroll (1976) extended the SD rules to portfolios of risky assets that could be diversified 

with the riskless asset and denoted these rules SDR rules (i.e., Stochastic Dominance with Riskless 

asset rules). The First and Second degree SDR rules, are denoted FSDR and SSDR rules, respectively. 

They proved that if there is a combination of a proportion α invested in �̃� and (1-α) invested in the 

riskless asset such that this combination dominates �̃� by FSD or SSD, then for any other combination 

of �̃� with the riskless asset, there is at least one other combination of �̃� with the riskless asset that 

dominates it by FSD or SSD, respectively.  
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Figure 2 
The efficient risky frontier, the optimal expected rate of return of the  

portfolio’s risky component, 𝐸(�̃�𝑒
∗), and the optimal expected  

rate of return of the overall portfolio 𝐸(�̃�𝑝
∗), for a chosen 𝛾  

 

 
It should be noted that the partial ordering by SDR rules is potentially much more effective than the 

SD rules. For example, assume that �̃� and �̃� are uniformly distributed returns: �̃� ∼ 𝑈(0,20) and �̃� ∼
𝑈(5,10). In this example, there is no FSD or SSD dominance relationships between �̃� and �̃�. The 

expected return of �̃� is greater than that of �̃� (10 > 7.5) hence �̃� clearly does not dominate �̃�, but also 

the lowest outcome of �̃� is smaller than that of �̃� (0 < 5) and thus �̃� does not dominate �̃�. However, 

if each of the risky assets could be diversified with a risk-free asset whose return is 7.2%, then, for 

example, a portfolio of 30% �̃� and 70% Rf is also distributed uniformly, �̃�𝛼=30% ∼ 𝑈(5.04,11.04), and 

it dominates �̃� by FSD. Likewise, by SDR rules, for any combination of �̃� and Rf, one can find at least 

one combination of �̃� with Rf that dominates it.  
 

This example shows that considering diversification between risky and risk-free alternatives, a lack 

of dominance by the FSD or SSD rules between two distributions may nevertheless exhibit 

dominance relationship by the FSDR or SSDR rules, respectively. 
 

Proposition 5. If �̃� 𝐷
𝐹𝑆𝐷

�̃� and there are no short sales of either �̃� or �̃�, then �̃� ≥
𝑆(𝑇)

�̃� for every T and by 

�̃� ≥
𝑆(𝛾)

�̃� for every γ.  

 

Proof: The proof is almost immediate. Such dominance implies that for each cumulative distribution 

of order P (0 ≤ 𝑃 ≤ 1) the �̃�(𝑃) ≥ �̃�(𝑃). Thus, for each constant T or T(γ) as calculated by Eq. (4) we 

have 𝑇 − �̃�(𝑝) ≤ 𝑇 − �̃�(𝑝). Denote by 𝑃�̃�(𝑇) and 𝑃�̃�(𝑇)) the P order probabilities that lead to the T 

value of �̃� and �̃�, respectively. Due to the FSD assumption, also 𝑃�̃�(𝑇) ≤ 𝑃�̃�(𝑇) and thus the average 

square deviations between T and �̃�, is also smaller than the respective average square deviations 

between T and �̃�. Namely: 
 

(11) ∫ 𝑝(𝑇 − �̃�(𝑝))
2
𝑑𝑝 ≤

𝑃�̃�(𝑇)

0 ∫ 𝑝(𝑇 − �̃�(𝑝))
2
𝑑𝑝

𝑃�̃�(𝑇)

0
 

 

Proposition 6. �̃� 𝐷
𝐹𝑆𝐷𝑅

�̃� => �̃� ≥
𝑆(𝛾)

�̃� for all γ < 1. 
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Proof. If there is FSDR of �̃� over �̃� then there is a combination of �̃� and the risk-free asset, that 

dominates a given combination of �̃� with the risk-free asset, and thus we are back in a situation which 

is presented in Proposition 5. It is guaranteed that for any other combination of �̃� with the risk-free 

asset there is at least one other combination of �̃� with the risk-free asset that dominates it, and the 

conditions of Proposition 5 hold again.  

Proposition 7.  �̃� 𝐷
𝑆𝑆𝐷𝑅

�̃� => �̃� ≥
𝑆(𝛾)

�̃� for all γ < 1.  

Proof. If there is SSDR of �̃� over �̃� then there is a combination of �̃� and the risk-free asset, that 

dominates a given combination of �̃� with the risk-free asset, and thus we are back in a situation which 

is presented in Proposition 5. It is guaranteed that for any other combination of �̃� with the risk-free 

asset there is at least one other combination of �̃� with the risk-free asset that dominates it, and the 

conditions of Proposition 5 hold again.  
  
VI. Concluding remarks 

Sortino ratio is defined as the excess expected return over a given threshold T divided by the square 

root of the expected squared return deviations below T and it is one of the most popular downside 

performance measures among practitioners. Since investors vary with respect to their attitude toward 

loss, they use different thresholds to define the rate that separates the loss from the reward and indeed 

the Sortino literature allows a wide range of T values. Our paper shows that if T is above (below) the 

riskless rate, the Sortino ratio increases (decreases) with a portfolio’s equity level. This undesirable 

shortcoming allows one to increase the portfolio’s degree of leverage.  
 

Our modified Sortino ratio, uses the target T(γ) which equals γ times the expected return of the 

portfolio plus (1- γ) times the risk-free rate. Since the expected ex-ante return of a risky portfolio is 

higher than the risk-free return, the threshold T(γ) which reflects the investor’s sensitivity to loss, 

increases with γ. In contrast to the conventional Sortino ratio, our modified ratio is invariant with 

respect to the portfolio’s equity level, α, and depends only on the selected "loss benchmark" γ. Hence, 

an ex-ante change of Sortino(γ) ratio, for a given γ, is possible only through better composition of the 

risky portion of the portfolio.  
 

The paper presents a simple criterion for minimizing the downside risk for any chosen expected return 

and γ, allowing the investor to separate the optimal mix of the risky and riskless components of the 

portfolio from the optimal composition of the portfolio’s risky component. 
 

We also show that ranking portfolios’ performance by first and second degree stochastic dominance 

with riskless asset rules (FSDR and SSDR respectively), implies ranking by S(γ). Stochastic 

dominance with riskless asset rules (SDR) examine dominance between risky portfolios where it is 

assumed that each of the distributions being compared, may be diversified with the risk-free asset. 

These SDR rules potentially show dominance where stochastic dominance without riskless asset rules 

signal no dominance. Dominance by SDR rules implies dominance by our S(γ) criterion.  
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Appendix: Proof of Proposition 2 

We begin with the Sortino ratio of a two-asset portfolio consisting of a proportion α invested in a 

risky asset (equity) and a proportion (1-α) invested in a riskless asset: 

𝑆𝑃(𝑇) ≡ 𝑆 =
𝐸(�̃�𝑃) − 𝑇

{ 𝐸
�̃�𝑃≤𝑇

(𝑇 − �̃�𝑃)
2}
0.5 = 

   =
𝐸[𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓] − 𝑇

{ 𝐸
𝛼�̃�𝑒+(1−𝛼)𝑅𝑓≤𝑇

[𝑇 − (𝛼�̃�𝑒 + (1 − 𝛼)𝑅𝑓)]
2
}

0.5 

 

Define  𝑇 ≡ 𝑅𝐹 + 𝛥 and for 𝛼 > 0 we may write: 

𝑆 =
𝐸 (�̃�𝑒 − 𝑅𝑓 −

𝛥
𝛼
)

[ 𝐸
�̃�𝑒−𝑅𝑓−

𝛥
𝛼
≤0

(
𝛥
𝛼
− �̃�𝑒 + 𝑅𝑓)

2

]

0.5 

 

Denoting 𝑢𝛼 = �̃�𝑒 − 𝑅𝑓 −
𝛥

𝛼
 , we rewrite the ratio as:  

𝑆 =
𝐸(�̃�𝛼)

[ 𝐸
�̃�𝛼≤0

(−�̃�𝛼)
2]
0.5 

𝐸(�̃�𝑃) > 𝑇 ⇒ 𝛼𝐸(�̃�𝑒) + (1 − 𝛼)𝑅𝑓 > 𝑅𝑓 + 𝛥 ⇒ 𝛼(𝐸(�̃�𝑒) − 𝑅𝑓) − 𝛥 > 0 

     ⇒ 𝐸(�̃�𝑒) − 𝑅𝑓 −
𝛥

𝛼
> 0 ⇒ 𝐸(�̃�𝛼) > 0 

 

In addition, we note that 
𝜕𝐸(𝑢𝛼)

𝜕𝛼
=

𝜕𝑢𝛼

𝜕𝛼
=

𝛥

𝛼2
.  

For 𝛥 ≠ 0 we obtain:  

𝜕𝑆

𝜕𝛼
=

𝛥
𝛼2

{[ 𝐸
�̃�𝛼≤0

(−�̃�𝛼)
2]
0.5

+ 𝐸(�̃�𝛼) × 0.5 × [ 𝐸
�̃�𝛼≤0

(−�̃�𝛼)
2]
−0.5

× 2 × 𝐸
�̃�𝛼≤0

(−�̃�𝛼)}

𝐸
�̃�𝛼≤0

(−�̃�𝛼)
2

 

The denominator of the derivative is clearly positive. The first term in the numerator’s curly brackets 

is positive as well. The expected value of �̃�𝛼 is likewise positive as noted above. And the last term in 

the numerator of the curly brackets is positive by definition, which ensures that the entire expression 

inside the numerator’s curly brackets is positive. It follows that the sign of the derivative, 
𝜕𝑆

𝜕𝛼
, is 

determined by the sign of 𝛥. Positive 𝛥 indicates a threshold higher than the risk-free rate in which 

case the derivative is positive while negative 𝛥 indicates a threshold lower than the risk-free rate in 

which case the derivative is negative. 
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ABSTRACT. The adoption of a photovoltaic system has positive environmental effects, but the main driver of the 

choice in the industrial and commercial sector is economic profitability. Switching from acquisition of energy to 

production of energy is an investment with costs (e.g. leasing annual payment, O&M costs, capital expenditure) and 

benefits (e.g. savings in the electric bill, sale of the energy exceeding consumptions). In this work, we use an 

accounting-and-finance model to calculate the Equity Net Present Value in different scenarios and a sensitivity-analysis 

method (Finite Change Sensitivity Index) to explain the reasons for differences in results. This technique enables 

identifying the contribution of any input factor in the output value variation. In this way, the investor can draw attention 

on the most significant critical variables in the initial estimations to ensure success in forecasting. 

 

Keywords: photovoltaic, economic analysis, financial modelling, financing, estimation, decision. 

 

 

1 AIM AND APPROACH USED 

 

Solar energy undeniably brings about environmental 

benefits, but the adoption of solar energy by the industrial, 

commercial, and residential sectors is strongly affected by 

economic considerations (e.g., Cucchiella et al 2018 [3], 

Dong et al 2017 [4]). The mapping which links the key 

performance drivers and the investment’s economic 

profitability entails understanding of the intricate network 

of relations among technical aspects, accounting 

magnitudes, forecasting of financial data, and assumptions 

on financing decisions, which makes the determination of 

economic profitability particularly complex. It is then 

important to provide decision-aiding tools capable of 

measuring the investment return, taking into account 

uncertainty and providing insights on possible managerial 

actions that may affect the decision to adopt solar energy. 

Building upon Magni and Marchioni (2019) [8], we 

propose a comprehensive framework for modeling 

investment decisions in solar photovoltaic (PV) systems, 

aimed at helping analysts, advisors, firms’ managers to 

assess the economic impact of solar energy, manage 

uncertainty, distinguish the high-impact drivers from the 

low-impact drivers, calibrate the structure of the model 

(increasing the depth of analysis for those drivers which 

have major effects on the investment financial efficiency), 

and choose various alternative proposals (e.g., alternative 

capturing technologies). 

Specifically, the proposed model makes use of 

Magni’s (2020) [6] accounting-and-finance system to 

engineering economic decisions. It accomplishes a 

detailed analysis of the sources of value creation in both 

absolute and relative terms, always supplying the net 

present value (NPV), the rate of return, and the financial 

efficiency, thereby overcoming the limitations of the 

internal rate of return (IRR), usually recommended in 

benefit-cost analysis (Sartori et al 2014 [10], Mangiante et 

al 2020 [9]), but most likely to be undetermined in this 

kind of projects. 

The model acknowledges the distinction between 

estimation variables and decision variables on one hand 

and between operating variables and financial variables 

on the other hand: The estimation variables necessitate 

some estimation process to be determined (e.g., operating 

and maintenance costs, disposal costs, interest rate on debt 

financing) while the decision variables are under the 

managers’ control (e.g., timing and size of distributions to 

shareholders, recourse to debt borrowing or to cash 

withdrawals for covering the financial needs). The 

operating variables express the factors which have a direct 

impact on the firm’s costs and revenues as a result of the 

adoption of solar energy (e.g., solar panel efficiency, the 

avoided electric bill, energy price, amount of self-

consumption, credit terms for energy sales to the grid). The 

financial variables regard the factors which affect the mix 

of financing sources and the amount of incremental liquid 

assets in the firm’s balance sheets (e.g., interest rate on 

liquid assets, risk-adjusted cost of capital, distribution to 

equityholders). 

We also aim at validating the model by means of 

sensitivity analysis (SA), which confirms that the presence 

or absence of relevant drivers may affect the increase in 

investors’ wealth and may affect the decision. In 

particular, we assess the contribution of financial variables 

and decision variables to the output variability. With the 

aid of the recently developed Clean FCSI (Magni et al 

2020 [7]), based on Borgonovo’s (2010) [2] FCSI, we aim 

to detect the most critical drivers and understand which 

driver is more likely to cause a change in the decision. SA 

will also be of help to analysts for calibrating the model: if 

the contribution to value of some parameters is small, then 

there is no need of modeling those inputs in more detail; 
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in contrast, if some parameters contribute significantly to 

value creation, then the analyst may consider a further 

development of the model for gaining deeper insights. 

Clean FCSI will also be of help to show that interactions 

among all the variables substantially affect the 

investment’s economic profitability. This testifies to the 

importance of modeling the project to take account of all 

relevant value drivers and to make analysts aware of the 

effect of estimation process on the accept/reject decision. 

 

 

2 SCIENTIFIC INNOVATION AND RELEVANCE 

 

This work presents a comprehensive approach to 

financial modeling of investments in solar energy which 

differentiates itself from the traditional financial modeling 

derived from finance. The innovation of the approach may 

be summarized as follows: 

1. as opposed to traditional models, the proposed model 

acknowledges that the investment value (and related 

decision) depends on both operating variables and 

financial variables. Also, it depends on decision 

variables such as the distribution of cash to 

shareholders and the reinvestment of cash, which may 

affect the return on solar investment. The proposed 

model is transparent, for it takes distribution policy in 

explicit consideration as well as borrowing policy, and 

appraises the interaction with the operating variables, 

reflecting their impact on the firm’s pro forma 

financial statements and, hence, on the investment 

value and return 

2. in real life, a substantial amount of solar PV plants is 

financed by firms with internal funds (i.e., cash 

withdrawals from bank accounts) and/or by debt, with 

no recourse to equity issuance. In traditional financial 

modeling, this form of financing is not taken into 

explicit account. The proposed model takes account of 

any mix of financing sources, either internal (cash 

withdrawals) or external (debt and/or equity) 

3. contrary to traditional financial modeling, the 

proposed model apportions the overall investment 

value according to the various sources of value, 

namely, the operating activities, the financial activities 

(reinvestment of excess cash and cash withdrawals), 

and the debt borrowing 

4. in this kind of investments, it is likely that financial 

efficiency may not be determined with traditional tools 

such as the internal rate of return (IRR) (see Magni and 

Marchioni 2019 [8]). Equipped with Magni’s (2010) 

[5] Average Internal Rate of Return, the proposed 

model always provides an appropriate measure of 

financial efficiency, in terms of Return On Investment 

(entity perspective) or Return On Equity (equity 

perspective) 

5. we validate the model with the aid of SA, which also 

supplies helpful information to calibrate the model for 

a more careful treatment of the highest-impact value 

drivers and confirm the relevance of the interaction 

effects and the importance of fine-tuning the 

estimation process. 

 

 

3 RESULTS  

 

The accounting-and-finance model we propose is able 

to make a thorough evaluation of the various aspects of the 

option of switching to solar energy for an agent (e.g., a 

firm) currently importing energy from electric grid. 

Switching to a solar PV system entails cost savings equal 

to the electric bill and incremental costs due to the 

purchase of the solar PV system. This may be purchased 

with an upfront payment or, as frequently occurs, with 

lease contracts (or power purchase agreements); at the end 

of the contract, the lessee may pay a lump to acquire the 

plant. The lump sum will be financed either with debt, 

equity, or internal financing (withdrawal from liquid 

assets, i.e., cash and cash equivalents). The amount of 

power which will be produced in excess of self-

consumption will be sold to the grid operator, generating 

cash inflows after some period (depending on the credit 

terms); in contrast, if energy consumption is smaller than 

energy production, the firm will buy the residual energy 

from the grid. For example, consider the case of a ground-

mounted solar panel system to be installed in a currently 

rented land, associated with a lease contract and with no 

equity financing. We use data for a solar PV plant 

proposed by GRAF Spa, a solar PV installer company, to 

an Italian firm located in Northern Italy. 

 

Table I: Equity NPV in two different scenarios 

 

Variables Scenario 1 Scenario 2 

Operating variables (estimation)   

Nameplate capacity [kWp] 92 92 

Unit cost [€/kWp] 1,050 1,050 

Useful life of PV plant [years] 22 28 

Annual unit prod. (Y 1) [kWh/kWp/y] 1,000 1,130 

Solar panel degradation rate [%/y] 1.15% 0.65% 

Lease term length [years] 20 20 

Lease interest rate [%] 4% 4% 

Purchase price of plant (year 20) [€] 25,000 25,000 

O&M, insurance, etc. [%] 4.00% 2.75% 

Disposal costs [€] 3,000 2,500 

Lost rent from land property [€/y] 1,500 1,250 

Growth rate for costs [%] 1.50% 0.50% 

Annual energy consumption [kWh/y] 62,500 87,500 

Tax rate [%] 30% 20% 

Energy purchase price [€/kWh] 0.140 0.180 

Energy selling price [€/kWh] 0.105 0.155 

Growth rate of energy price [%] 0.50% 2.00% 

Credit terms for energy purchases [dd] 0 0 

Credit terms for energy sales [dd] 365 365 

Financial variables (estimation)   

Interest rate on liquid assets [%] 4.00% -0.50% 

Interest rate on debt [%] 6.00% 2.00% 

Required return on oper. assets [%] 6.00% 6.00% 

Required return on liquid assets [%] 2.00% 2.00% 

Required return on debt [%] 3.00% 3.00% 

Financial variables (decision)   

Internal financing (cash) [%] 60% 60% 

Debt borrowing [%] 40% 40% 

Equity financing [%] 0% 0% 

First CFE distribution [y] 1 1 

Payout ratio [%] 50% 50% 

Equity NPV [€] −15,494.88 84,570.02 

 

In Table I, column 2 (scenario 1) reports the estimated 

input data, for a given set of financing and distribution 

policy. These input data are used for drawing up three pro 

forma financial statements (balance sheets, income 

statements, cash flow statements) which are logically 

interconnected in a non-trivial way, since decisions on 

financing and cash flow distribution will affect the amount 
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of liquid assets and debt outstanding in the firm. This in 

turn affects next-period interest on debt and on liquid 

assets, which in turn affects next-period income and, 

therefore, the equity. With these data, shareholders’ wealth 

increase, as measured by the shareholder net present value 

(NPV), is negative and equal to −15,494.88, so the project 

is not worth undertaking. (It is worth noting that neither 

the project IRR nor the operating IRR nor the equity IRR 

exist).i  

Consider now a different set of estimated parameters, 

as described in column 3 (scenario 2). Shareholder value 

created increases by almost 100,000 to 84,570, so making 

the project highly profitable. 

Table II breaks down the equity NPV into operating 

NPV (i.e., NPV of the operating assets), non-operating 

NPV (i.e., NPV of the liquid assets), and debt NPV (i.e. 

NPV of the debtholders). 

 

Table II: Equity NPV 

 

 Scenario 1 Scenario 2 

 + Operating NPV −12,110.92 +108,603.47 

 + Non-operating NPV −3,142.14 −24,264.57 

 − Debt NPV −(+241.83) −(−231.12) 

 = Equity NPV  −15,494.88 84,570.02 

 

The FCSI helps explain why this dramatic change 

occurs, providing the change in NPV due to the change in 

estimate of the drivers (columns 2 and 3 in table III. See 

Magni et al 2020 [7] for details on FCSI). It is worth noting 

that the most important driver of change is a financial 

driver, the interest rate on liquid assets (rank 1). This 

means that attention should be drawn on the estimation of 

such a variable and it is worth modeling such an aspect in 

greater detail and/or refining the estimation process. 

Energy prices and O&M (operating drivers) are next in 

importance (ranks 2, 3, and 4). Somewhat unexpected is 

the negligible effect of the efficiency loss (rank 12). 

Disposal costs are also negligible (rank 13). Even the sharp 

deviation of estimate in the interest rate on debt is 

irrelevant (rank 14), suggesting that, in this case, the 

conditions of the loan contract are non-significant. 

Once calibrated the model and obtained a reliable set 

of estimated data, the analyst should fine- tune the 

borrowing policy and the distribution policy in order to 

increase the project’s value and get the best output for the 

investors. Preliminary results show that a change in such 

policies may have a remarkable effect on the output and, 

in some cases, may even cause a change in the decision to 

adopt solar energy (and distribution policy may have an 

even greater effect than borrowing policy). 

 

Table III: Changes in NPV (%) and Rank of input factors 

 

Variable Change in NPV (%) Rank 

Operating variables (estimation)   

Useful life of PV plant −6.09% 9 

Annual unit prod. (Y 1) 7.27% 8 

Solar panel degradation rate 0.70% 12 

O&M, insurance, etc. 13.10% 4 

Disposal costs 0.16% 13 

Lost rent from land property 3.28% 11 

Growth rate for costs 5.61% 10 

Annual energy consumption 10.17% 5 

Tax rate −9.04% 6 

Energy purchase price 19.91% 2 

Energy selling price 14.18% 3 

Growth rate of energy price 8.79% 7 

Financial variables (estimation)   

Interest rate on liquid assets 31.99% 1 

Interest rate on debt −0.03% 14 

 

 

4 CONCLUSIONS 

 

Since solar energy undeniably contributes to a 

sustainable economy, the decision of adopting a solar 

energy system by firms is important to achieve a 

substantial cumulative effect in the environment. 

However, firms’ decisions are mostly motivated by 

financial efficiency and shareholder value creation. We 

present an operational tool increasing analysts’ and 

managers’ awareness on the financial impact of solar 

energy on these economic measures. This model blends 

accounting and finance and takes account of the subtle 

network of relations between operating variables and 

financial variables on one hand, and estimation variables 

Figure I: Changes in NPV (%) 
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and decision variables on the other hand. In particular, it 

explicitly takes account of the impact of internal financing 

as opposed to equity financing as well as of the 

reinvestment of retained cash as opposed to a full payout 

policy. The model is associated with a sensitivity-analysis 

technique which validates the model and provides 

managerial insights on the most critical drivers, which 

helps calibration of the model to the firm’s needs. It also 

helps analysts to fine-tune the firm’s borrowing and 

distribution, for any given set of estimated input data, in 

order to increase the financial benefits of solar energy. 
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Abstract. In this work we illustrate a simple logical framework serving the purpose of measuring value 

creation in a real-life solar photovoltaic project, funded with a lease contract, a loan contract and internal 

financing (i.e., withdrawal from liquid assets). We use the projected accounting data to compute the 

value created. We assess the project from both an investment perspective (operating assets and liquid 

assets) and a financing perspective (debt and equity). Furthermore, focusing on value creation for 

equityholders, we calculate the expected contribution on shareholders’ wealth increase of operating and 

financing activity. In particular, we highlight the role of the distribution policy in financial modeling by 

describing the strict logical connections between estimated data and financial decisions. 

 

Keywords: photovoltaic solar energy, project evaluation, net present value, distribution policy 

 

1 Economic setting 

Switching from traditional energy sources to renewable energy has a beneficial impact in terms of 

ecological sustainability (Ezbakhe and Pérez-Foguet 2021, Kang et al. 2020, Lei et al. 2019, Sinke 2019, 

Lupangu and Bansal 2017). However, firms willing to switch from retail energy to renewable energy 

are also concerned with the impact on economic profitability (Pham et al. 2019, Cucchiella et al. 2018, 

Dong et al. 2017). Therefore, an appropriate financial modeling and profitability metrics are required 

which correctly assess the effect on shareholders’ wealth (Magni and Marchioni 2019, Baschieri, Magni 

and Marchioni 2020). In this study, we consider the appraisal of a solar photovoltaic (PhV) project 

proposed by an Italian installer company to a small firm, located in Northern Italy, which aims to 

switching from retail energy to solar energy and draw up a financial model which connects operating 

variables and financing variables. 

Let 𝑅𝑒𝑣𝑡 be the incremental revenues derived from the sale of excess energy, 𝑂𝑝𝐶𝑡 be the incremental 

operational costs brought about by the plant, 𝐷𝑒𝑝𝑡 be the depreciation charge of the solar PhV plant, 𝐼𝑡
𝑙 

the interest income derived from reinvestment of liquid assets, 𝐼𝑡
𝑑 the interest expenses associated with 

debt, and 𝜏 the corporate tax rate. Formally, the project income is 𝐼𝑡 = (𝑅𝑒𝑣𝑡 − 𝑂𝑝𝐶𝑡 −𝐷𝑒𝑝𝑡 + 𝐼𝑡
𝑙)(1 −

𝜏) + 𝜏𝐼𝑡
𝑑 . As is standard in finance, the project’s cash flows, 𝐹𝑡, can be computed by subtracting the 

change in capital from the income, so that 𝐹𝑡 = 𝐼𝑡 − 𝛥𝐶𝑡. Let 𝑟𝑡 be the project’s cost of capital (minimum 

required rate of return). 
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The net present value (NPV) quantifies the net effect of the project on the investors’ current wealth 

(Brealey, Myers and Allen 2011): 

𝑁𝑃𝑉 = 𝐹0 +
𝐹1

1 + 𝑟1
+

𝐹2
(1 + 𝑟1)(1 + 𝑟2)

+ ⋯+
𝐹𝑛

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑛)
. (1) 

Capital amounts, incomes and cash flows of the project are intertwined in a non-trivial way via the pro 

forma financial statements, namely the balance sheets, the income statements and the cash-flow 

statements. These depend on estimated data regarding the operating activity but also on the firm’s 

financing policy, that is, borrowing policy and distribution policy. Three sources of financing are 

possible: 

• debt financing 

• equity financing 

• internal financing (i.e., withdrawal from liquid assets). 

As for the distribution policy, the operating cash flows generated by the project may well be (wholly or 

partially) retained by the firm. and, if they are invested in financial assets, they produce interest incomes. 

Let 𝑗 = 𝑜, 𝑙, 𝑑, 𝑒 be the operating assets, liquid assets, debt, and equity of the project, respectively. The 

first two components, 𝑜 and 𝑙, represent the investment side of the project whereas the last two 

categories, 𝑑 and 𝑒, describe its financing side. Each area is associated with its own net present value 

(NPV), as represented in Figure 1.  

 

 

Figure 1: NPV of investments and financing sources 

 

The NPV of each asset class 𝑗 can be computed as  

𝑁𝑃𝑉𝑗 = 𝐹0
𝑗
+

𝐹1
𝑗

1 + 𝑟1
𝑗
+

𝐹2
𝑗

(1 + 𝑟1
𝑗
)(1 + 𝑟2

𝑗
)
+ ⋯+

𝐹𝑛
𝑗

(1 + 𝑟1
𝑗
)(1 + 𝑟2

𝑗
)… (1 + 𝑟𝑛

𝑗
)
 

where 𝐹𝑡
𝑗
 and 𝑟𝑡

𝑗
 are the cash flows and costs of capital corresponding to each asset class. As shown in 

Magni (2020), the NPV of the project may be viewed under an investment perspective and a financing 

perspective: 

𝑁𝑃𝑉𝑜 +𝑁𝑃𝑉𝑙⏞        
investment perspective

= 𝑁𝑃𝑉⏞
project NPV

= 𝑁𝑃𝑉𝑒 +𝑁𝑃𝑉𝑑 ,⏞          
financing perspective

 
(2) 

where 

𝑁𝑃𝑉𝑜 = NPV of operating assets 

𝑁𝑃𝑉𝑙 = NPV of liquid assets 

𝑁𝑃𝑉𝑒 = NPV of equityholders 

𝑁𝑃𝑉𝑑 = NPV of debtholders. 
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Since the managers’ primary mandate is wealth increase of equityholders, the measure we focus on is 

the equity NPV, 𝑁𝑃𝑉𝑒. From (2), 

𝑁𝑃𝑉𝑒 = 𝑁𝑃𝑉𝑜 +𝑁𝑃𝑉𝑙 −𝑁𝑃𝑉𝑑 , (3) 

meaning that equityholders may benefit not just from a value-creating operating activity (𝑁𝑃𝑉𝑜 > 0), 

but also from an efficient management of liquid assets such that they are invested at a rate of return 

greater than the cost of capital of liquid assets (𝑁𝑃𝑉𝑙 > 0), and from the ability of borrowing at lower 

rate than the cost of debt, that is, the equilibrium rate prevailing in the capital markets (𝑁𝑃𝑉𝑑 < 0).1 

In this work, we model the technical and financial description of a real-life case of solar PhV system. 

We measure the contribution of operating and financial areas on the overall value creation of the 

investment project and on the wealth increase for equityholders. 

2 Solar PhV plant 

We describe a real-life industrial case where an Italian company located in Northern Italy faces the 

opportunity of replacing a conventional retail electricity system (based on supplies from a grid operator) 

with a standalone solar PhV system purchased from an Italian producer and installer. The plant will be 

installed on a land property owned by the company and currently rented. With retail energy, the firm 

periodically pays a utility bill and receives a rental income from the rent of the land. The solar PhV plant 

implies a leasing contract whereby lease payments and operating and maintenance costs are made 

periodically. After several years, at the expiration date, the lessee will pay a lump sum to acquire the 

plant, and the system will continue to generate electric power for some years. The lump sum is paid 

through the issuance of new debt capital and withdrawal from liquid assets. At the end of its useful life, 

the plant will be removed, and the firm will incur disposal costs. If the retail system is replaced by the 

PhV plant, the incomes and cash flows will increase as a result of the ceased lease payment and the cost 

savings (the utility bill), but will increase as a result of operating and maintenance costs, the terminal 

outlay for acquiring the plant, and the lost rental income. 

 

The model is described as follows: the quantity of energy consumed for the firm’s operations is 

estimated to be constant through time and equal to q; the current purchase price of energy is 𝑝𝑝, growing 

at a constant rate 𝑔𝑝 per year. The utility bill is payed periodically, in the same year in which energy is 

consumed. The leasing contract contains the following economic conditions: the lease payment, equal 

to 𝐿, is made periodically; at time m (expiration date) the firm may acquire the plant paying a lump sum 

equal to 𝐶𝑎𝑝𝐸𝑥, and the system will keep producing electric power for some years, until time 𝑛. 𝐶𝑎𝑝𝐸𝑥 

represents the capital expenditure for buying the plant and is depreciated evenly from 𝑡 = 𝑚 + 1 until 

𝑡 = 𝑛, so that the depreciation charge is 𝐷𝑒𝑝 = 𝐶𝑎𝑝𝐸𝑥/(𝑛 −𝑚). As anticipated, the PhV plant is 

installed at 𝑡 = 0 in a field owned by the firm, which could otherwise be rented on the property market 

at a rent equal to 𝑅 growing at the constant annual rate  𝑔𝑐. The latter represents an opportunity cost for 

the firm (a foregone income). 

 
1 The debt NPV is the part of the value generated by the project captured by debtholders: if it is negative, then 

equityholders grasp that value. Usually, such an NPV is zero or positive, so part of the value generated by the 

project is shared with the debtholders. 
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Starting from the first period, the PhV plant requires operating, maintenance and insurance costs. 

Technical experts determine a suggested level of these costs for the first year in order to maximize the 

energy production, which we denote as 𝑆𝑢𝑔𝑔𝑂&𝑀. We denote as 𝑂&𝑀 the actual expenses, which may 

be equal to or smaller than the suggested ones (i.e., O&M ≤ SuggO&M), both assumed to grow at the 

constant annual rate 𝑔𝑐 

 

If O&M = SuggO&M, the PhV system will produce 𝑄𝑚𝑎𝑥 units of energy in the first year, which 

decrease every year at the rate 𝑔𝑄. In contrast, if O&M = 0 (i.e., the company is not willing to spend for 

operating and maintenance costs), the energy production suffers from a percentage loss due to lack of 

maintenance, denoted as ProdLoss. Furthermore, technical experts expect that the effective energy 

production in each period 𝑡, denoted as 𝑄𝑡, is proportional to the level of actual 𝑂&𝑀 costs as compared 

to the suggested level. Specifically 

𝑄𝑡 = 𝑄𝑚𝑎𝑥(1 − 𝑔𝑄)
𝑡−1

⋅ (1 − max (ProdLoss ⋅
SuggO&M− O&M

SuggO&M
, 0)). 

If the energy produced by the plant, 𝑄𝑡 , is higher than the energy consumed by the firm, the firm sells 

the differential quantity to the Energy Service Operator at the energy selling price 𝑝𝑠, growing at a 

constant rate 𝑔𝑝 per year, with payment in the following year. We assume that, at time  𝑡 = 𝑛, the energy 

sold is paid immediately. Therefore, if the produced quantity is lower than the consumed energy in year 

𝑡, that is, 𝑄𝑡 < 𝑞, energy costs savings arise equal to 𝑄𝑡 ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1
; if the produced quantity is 

higher than the consumed one, that is, 𝑄𝑡 > 𝑞, energy costs savings arise equal to 𝑞 ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1

 as 

well as energy sales revenues equal to (𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

, determining the presence of operating 

working capital. Hence, the income effect of the energy sales revenues and costs savings in the two 

different scenarios can be summarized with the expression 

min(𝑞, 𝑄𝑡) ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1

+max(0,𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

 

and the operating working capital can be represented with the formula 𝑊𝐶𝑡 = 𝑚𝑎𝑥(0,𝑄𝑡 − 𝑞) ⋅

𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

 and 𝑊𝐶𝑛 = 0. At time 𝑛, the plant is removed with disposal costs equal to 𝐻 growing 

at the constant annual rate  𝑔𝑐. 

 

To sum up, the firm-without-the-project pays the utility bills and receives the rent for the land (for the 

whole period); in contrast, the firm-with-the-project sustains the lease payments (until 𝑡 = 𝑚), the 

operating and maintenance costs (until 𝑡 = 𝑛), the lump sum (in 𝑡 = 𝑚), and the disposal costs (in 𝑡 =

𝑛), and receives payments for the energy sold to the Energy Service Operator. Considering that a project 

represents, by definition, the difference between the firm-with-the-project and the firm-without-the-

project, the project’s incomes are:  

 

𝐼𝑡 = [min(𝑞, 𝑄𝑡) ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1

+max(0,𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

− 𝐿 − 𝑅 ⋅ (1 + 𝑔𝑐)
𝑡−1

−𝑂&𝑀 ⋅ (1 + 𝑔𝑐)
𝑡−1 + 𝐼𝑡

𝑙] (1 − 𝜏) + 𝜏𝐼𝑡
𝑑 

for 1 ≤ 𝑡 ≤ 𝑚 
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𝐼𝑡 = [min(𝑞, 𝑄𝑡) ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1

+max(0,𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

− 𝑅 ⋅ (1 + 𝑔𝑐)
𝑡−1 − 𝑂&𝑀

⋅ (1 + 𝑔𝑐)
𝑡−1 − 𝐷𝑒𝑝 + 𝐼𝑡

𝑙] (1 − 𝜏) + 𝜏𝐼𝑡
𝑑 

for 𝑚 + 1 ≤ 𝑡 ≤ 𝑛 − 1 

 

𝐼𝑡 = [min(𝑞, 𝑄𝑡) ⋅ 𝑝𝑝(1 + 𝑔𝑝)
𝑡−1

+max(0,𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1

− 𝑅 ⋅ (1 + 𝑔𝑐)
𝑡−1 − 𝑂&𝑀

⋅ (1 + 𝑔𝑐)
𝑡−1–𝐷𝑒𝑝 − 𝐻 ⋅ (1 + 𝑔𝑐)

𝑡−1 + 𝐼𝑡
𝑙] (1 − 𝜏) + 𝜏𝐼𝑡

𝑑 

for 𝑡 = 𝑛. 

 

The project’s assets are represented by working capital, liquid assets (𝐶𝑡
𝑙) and, from time 𝑚, fixed assets: 

𝐶𝑡 = max(0, 𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1⏞                    

working capital

+ 𝐶𝑡
𝑙⏞

liquid assets

 for 1 ≤ 𝑡 ≤ 𝑚 − 1 

𝐶𝑡 = max(0, 𝑄𝑡 − 𝑞) ⋅ 𝑝𝑠(1 + 𝑔𝑝)
𝑡−1⏞                    

working capital

+ 𝐶𝑎𝑝𝐸𝑥–𝐷𝑒𝑝 ⋅ (𝑡 − 𝑚)⏞              
fixed assets

+    𝐶𝑡
𝑙⏞

liquid assets

 for 𝑚 ≤ 𝑡 ≤ 𝑛-1 

𝐶𝑡 = 0 for 𝑡 = 𝑛 

where the balance of liquid assets at the end of period 𝑡, 𝐶𝑡
𝑙, is obtained from the liquid balance at the 

beginning of period, 𝐶𝑡−1
𝑙 , increased by the interest income 𝐼𝑡

𝑙 and by the cash contribution into the liquid 

assets account at time 𝑡, equal to −𝐹𝑡
𝑙, that is, 𝐶𝑡

𝑙 = 𝐶𝑡−1
𝑙 + 𝐼𝑡

𝑙 − 𝐹𝑡
𝑙 (for the derivation of liquid assets 

see also the numerical application below). Finally, as already mentioned, the forecasted cash flows are 

obtained as 𝐹𝑡 = 𝐼𝑡 − 𝛥𝐶𝑡, ∀𝑡 = 0,1,… , 𝑛. 

 

Considering the financing policy, until the expiration date of the leasing contract𝑚, the project is fully 

financed with internal financing, that is, with retained cash. The rate of return on liquid assets is constant 

and equal to 𝑖𝑙, hence the interest income is 𝐼𝑡
𝑙 = 𝑖𝑙 ⋅ 𝐶𝑡−1

𝑙 . At time 𝑚, the operating disbursement is 

covered by absorbing resources from the liquid assets (internal financing), according to a proportion 𝑊, 

and by a loan contract for the complementary proportion  1 −𝑊. After time 𝑚, further disbursements 

are fully satisfied via internal financing. 

 

The dividend distribution to equityholders, 𝐹𝑡
𝑒, starts at a time 𝑑𝑚, according to the payout ratio 𝛼, to 

be applied to the smallest between the net income and the potential dividend (i.e., the difference between 

the operating cash flow and the cash flow to debt, 𝐹𝑡
𝑜 − 𝐹𝑡

𝑑), provided that they are both positive, that 

is 𝐹𝑡
𝑒 = 𝛼 ⋅ max[0,min(𝐼𝑡

𝑒 , 𝐹𝑡
𝑜 − 𝐹𝑡

𝑑)]. The cash contribution into the liquid assets account at time 𝑡, 

−𝐹𝑡
𝑙, is the retained cash, that is, the amount not distributed to the equityholders, therefore −𝐹𝑡

𝑙 = (𝐹𝑡
𝑜 −

𝐹𝑡
𝑑) − 𝛼 ⋅ max[0,min(𝐼𝑡

𝑒 , 𝐹𝑡
𝑜 − 𝐹𝑡

𝑑)].At time 𝑛, the project is terminated, such that every asset and 

liability go back to zero.  

 

The income statements, balance sheets, and cash-flow statements of the solar PhV plant are derived 

from the technical and financial model described above The overall value creation is calculated via eq. 

(1) by discounting the cash flows 𝐹𝑡 and, analogously, the NPVs of the asset classes 𝑗 = 𝑜, 𝑙, 𝑑, 𝑒  are 

determined by considering the corresponding cash flows 𝐹𝑡
𝑗
. The decomposition of the project NPV and 

the explanation of the equityholders’ value creation are computed via (2) and (3). 
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In the next section, we present the technical and financial data of the photovoltaic project and illustrate 

the practical applications of the financial measures for making a decision. 

3 Value creation and decomposition of the solar PhV plant 

The industrial case of the solar PhV project is described with the following operating and financial input 

data. 

Operating inputs: 

• Useful life of PV plant: 𝑛 =28 years 

• Total cost of the plant = € 96,600.00  

• Annual unit production in the first year at the technically suggested O&M (including insurance 

costs): 𝑄𝑚𝑎𝑥 =103,960 kWh 

• Efficiency loss (per year): 𝑔𝑄 = 0.65% 

• Actual O&M and insurance: 𝑂&𝑀 = 2.75% of total cost of the plant 

• Technically suggested O&M and insurance: SuggO&M = 4% of total cost of the plant 

• Productivity loss due to lack of maintenance (with O&M=0): ProdLoss = 15% 

• Disposal costs: 𝐻 = €2,500.00 

• Lost rent from land property: 𝑅 = €1,250.00 

• Growth rate for costs: 𝑔𝑐 = 0.50% 

• Lease term length: 𝑚 = 20 years 

• Purchase price of PV plant: 𝐶𝑎𝑝𝐸𝑥 = €25,000.00 

• Leasing annual payment: 𝐿 = €6,268.45 

• Annual energy consumption: 𝑞 = 87,500 kWh 

• Tax rate: 𝜏 = 20.00% 

• Energy purchase price: 𝑝𝑝 = 0.180(€/kWh) 

• Energy selling price: 𝑝𝑠 = 0.155 (€/kWh) 

• Growth rate of energy price: 𝑔𝑝 = 2.00% 

Financial inputs: 

• First of year of CFE distribution: 𝑑𝑚 = 1
st year 

• Payout Ratio: 𝛼 = 50.0% of the minimum between the net income and the potential dividends 

• Internal financing: 𝑊 = 60% of the purchase price of PhV plant 

• Debt borrowing: 1 −𝑊 = 40% of the purchase price of PhV plant 

• Interest rate on liquid assets 𝑖𝑙 = 0% 

• Interest rate on debt: 𝑖𝑑 = 2.00% 

• Required return on operating assets (constant): 𝑟𝑜 = 6.00% 

• Required return on liquid assets (constant): 𝑟𝑙 = 2.00% 

• Required return on debt (constant): 𝑟𝑑 = 3.00% 

The corresponding pro forma balance sheets, income statements and cash-flow statements are presented 

in Tables 1-3. Discounting the overall cash flows 𝐹𝑡, it results that the project NPV is 𝑁𝑃𝑉 = 84,338 >

0, signaling that the PhV solar plant creates value. The decomposition of the value created under the 

investing and financing perspectives is described in the table below, via eq. (2). 
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Investment perspective Financing perspective 

𝑁𝑃𝑉𝑜 =  +108,125 𝑁𝑃𝑉𝑒 = +88,635 

𝑁𝑃𝑉𝑙 = − 19,721 𝑁𝑃𝑉𝑑 = −231 

𝑁𝑃𝑉 = 88,404 𝑁𝑃𝑉 = 88,404 

 

According to the investment perspective (left side of the table), the operations create value by 𝑁𝑃𝑉𝑜 =

108,125 > 0, which is partly offset by the significant value destruction due to the liquidity management 

with 𝑁𝑃𝑉𝑙 = −19,721 < 0 (due to an inefficient allocation of capital with 𝑖𝑙 = 0% < 𝑟𝑙 = 2.00%). 

Considering the financing perspective (right side of the table), equityholders increase their wealth by 

𝑁𝑃𝑉𝑒 = 88,635 > 0, higher than the project NPV, 𝑁𝑃𝑉 = 88,404, due to a value-creating borrowing 

policy, such that 𝑁𝑃𝑉𝑑 = −231 < 0 (because the loan interest rate 𝑖𝑑 is lower than the cost of debt 

capital 𝑟𝑑). This means that equityholders gain value at the expense of the debt-holders, but this transfer 

of value is tiny, due to the very small difference between the interest rate on debt (2%) and the maximum 

acceptable financing rate (3%), as well as the limited scale of the debt.  

Finally, we decompose the wealth increase of equityholders into the contributions of operations, 

liquidity and debt, according to (3), obtaining the following partition. 

+ 𝑁𝑃𝑉𝑜 = 108,125 

+ 𝑁𝑃𝑉𝑙  = −19,721 

− 𝑁𝑃𝑉𝑑 = −(−231) 

= 𝑁𝑃𝑉𝑒 = 88,635 

 

The equity NPV is lower than the operating NPV because investments in liquid assets significantly 

destroy value whereas value transfer from debtholders to equityholders is almost irrelevant (as also 

depicted in Figure 2.) 

 

Figure 2: Decomposition of equity NPV 
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4 Financial efficiency of the solar PhV plant 

As opposed to the NPV which does not suffer from any shortcoming, we note that the Internal Rate of 

Return (IRR), which is the most employed relative performance ratio in capital budgeting, does not exist 

for the overall project nor for the equity investment, as a consequence of the non-conventional cash 

flows streams (𝐹0, 𝐹1, … , 𝐹𝑛) and (𝐹0
𝑒 , 𝐹1

𝑒 , … , 𝐹𝑛
𝑒), the first one having more than one change in sign 

and the second one having no change in sign. 

Since the IRR fails, a viable solution for measuring the rate of return (and, therefore, the financial 

efficiency) of the project and of the equity investment is offered by the so-called average internal rate 

of return (AIRR) approach, introduced in Magni (2010, 2013), based on the estimated incomes and 

capital amounts, coherently defined as the ratio of the overall (discounted) income over the overall 

(discounted) capital. The AIRR of the project quantifies the project’s rate of return over the total invested 

capital: 

𝐴𝐼𝑅𝑅 =

∑
𝐼𝑡

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑡)
𝑛
𝑡=1

𝐶0 + ∑
𝐶𝑡

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑡)
𝑛
𝑡=1

=
113,956

589,145
= 19.34% (4) 

and, analogously, the equity AIRR measures the relative performance for equityholders, expressed as 

the ratio of net income to total equity invested: 

𝐴𝐼𝑅𝑅𝑒 =

∑
𝐼𝑡
𝑒

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑡)
𝑛
𝑡=1

𝐶0
𝑒 + ∑

𝐶𝑡
𝑒

(1 + 𝑟1
𝑒)(1 + 𝑟2

𝑒)… (1 + 𝑟𝑡
𝑒)

𝑛
𝑡=1

=
113,717

575,270
= 19.77% (5) 

where 𝑟𝑡 and 𝑟𝑡
𝑒 are explicitly derived from the costs of capital of operating assets, non-operating assets, 

and debt (see Magni 2020, Ch. 8 for details on the calculation of the project costs of capital). 

Furthermore, Magni (2010, 2013) proves that the AIRR approach is NPV-consistent2 and is possible to 

decompose the value creation of the project into a financial efficiency component (defined as the 

difference between the AIRR of the project and the average cost of capital 𝑟) and an investment scale 

component, therefore enriching the informational content of the valuation. More precisely,  

𝑁𝑃𝑉 = (𝐴𝐼𝑅𝑅 − 𝑟)⏞      
financial efficiency

⋅ (𝐶0 +∑
𝐶𝑡

(1 + 𝑟1)(1 + 𝑟2)… (1 + 𝑟𝑡)

𝑛

𝑡=1
)

⏞                          
scale

= (19.34%− 4.34%) ⋅ 589,145 = 15.01% ⋅ 589,145 = € 84,404. 

(6) 

where 𝑟 is the project’s average cost of capital. Symmetrically, the equity NPV is decomposed via the 

AIRR approach as the product of financial efficiency for equityholders and the scale of the equity 

investment: 

 
2See also Marchioni and Magni (2018) for a definition of strong NPV-consistency of rates of return. 
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𝑁𝑃𝑉𝑒 = (𝐴𝐼𝑅𝑅𝑒 − 𝑟𝑒)⏞        

equity

financial efficiency

⋅ (𝐶0
𝑒 +∑

𝐶𝑒𝑡
(1 + 𝑟𝑒1)(1 + 𝑟

𝑒
2)… (1 + 𝑟

𝑒
𝑡)

𝑛

𝑡=1
)

⏞                              

equity 
scale

= (19.77%− 4.66%) ⋅ 575,270 = 15.41% ⋅ 575,270 = € 88,635 

(7) 

where 𝑟𝑒 is the average cost of equity capital. 

 

Considering the equityholders’ perspective, each euro invested in the project produces an equity return 

equal to 19.77%, remarkably higher than the alternative return equal to 4.66% that could be obtained on 

the financial market for investments of comparable risk. The financial efficiency of equity is positive, 

equal to 15.41%, representing the relative advantage for equityholders in investing in the PhV plant 

instead of alternative available investments. Overall, the equityholders invest € 575,270 at an above-

normal return of 15.41%, so realizing a wealth increase equal to €575,270 ⋅ 15.41% = €88,635. 

5 The role of distribution policy 

It is worth noting that, in such a model, the estimated data are logically chained to decisions regarding 

distribution policy and retained cash. For example, to build the balance of liquid assets at the end of 

period 𝑡 = 14, 𝐶14
𝑙 , one needs start from the balance at the beginning of that period, 𝐶13

𝑙 = €45,997. 

Assuming that the cash retained in the firm will not generate any interest income, the balance will 

increase by the retained cash (i.e., the amount not distributed to the equityholders) at time 𝑡 = 14, which 

is equal to  

−𝐹14
𝑙⏞

retained cash

= (𝐹14
𝑜 − 𝐹14

𝑑 )⏞      
potential dividends

− 𝛼 ⋅ max[0,min(𝐼14
𝑒 , 𝐹14

𝑜 − 𝐹14
𝑑 )]⏞                    

cash flow to equity

= €4,362 

Therefore, we obtain the balance of liquid assets at the end of period as 

𝐶14
𝑙 = 𝐶13

𝑙 − 𝐹14
𝑙 = €45,997 + €4,362 = €50,358. 

In this application, the distribution policy remarkably affects the economic results, with 𝑁𝑃𝑉𝑙 =

−19,721, because of high differences between the interest rate on liquid assets and minimum acceptable 

rate of return on liquid assets and high balances of liquid assets in several different periods of the 

investment. Only after computing the balance of liquid assets, the equity book value may be calculated 

as 𝐶14
𝑒 = 𝐶14

𝑜 + 𝐶14
𝑙 − 𝐶14

𝑑 . 

 

Logically, the disregard of the distribution policy would have invalidated the logical consistency of the 

model. It is necessary to first calculate the potential dividends, then subtract the part of it which is not 

distributed and add it to the cash balance, as we have shown above. This brings about a network of 

complex relationships among the accounting magnitudes, which makes it necessary to draw up the cash-

flow statement. The latter enables the analyst to calculate the cash flow associated with the liquid assets, 

𝐹𝑡
𝑙, which depends on the cash flow distributed to equityholders, 𝐹𝑡

𝑒, which in turn depends on the 

operating cash flow. However, the latter can be computed only on the basis of elements of the income 

statement (the operating income) and elements of the balance sheets (operating assets). In turn, the 

balance sheet cannot be completed without the cash-flow statement, because, as we remind, the equity 

capital is equal to 𝐶𝑡
𝑒 = 𝐶𝑡

𝑜 + 𝐶𝑡
𝑙 − 𝐶𝑡

𝑑  and 𝐶𝑙 cannot be computed without computing 𝐹𝑡
𝑙 (i.e., without 

using the cash-flow statement). This nontrivial relationships among these three financial statements also 
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testifies to the connections between estimated data (operating variables) and decision variables 

(distribution policy and reinvestment of retained cash). As a result, pro forma balance sheet and income 

statement are not sufficient; the cash flow statement is required for a sound and logically consistent 

model (and, therefore, a correct valuation of the project).3 

6 Conclusions 

In the current work we have provided a logically consistent model for the investment appraisal of a real-

life photovoltaic energy project. Contrary to traditional modeling, we take account of the subtle relations 

interconnecting operating variables and financing variables, which depend on decisions (borrowing 

decision and distribution policy). We have considered the firm’s decisions on distribution in the cash-

flow statement, which is necessary to draw up the balance sheet (and, therefore, the income statement 

of the next period). We have decomposed the value created under two different perspectives, namely, 

the investment view which considers operating and liquid assets, and the financing view, which analyzes 

the equity and debt components, highlighting that the equity NPV may be significanty different from 

the operating NPV due to the remarkable role of financial decisions about liquid assets and debt. 
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Table 3: Cash flow statements (thousands of Euro) 

 
 

Note: Notwithstanding the existence and uniqueness of 𝑁𝑃𝑉 and 𝑁𝑃𝑉𝑒, neither the IRR of the project cash-flow stream nor the IRR of the equity cash-flow stream exists. 
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