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Abstract In this paper, the authors discuss about the future challenges of
condition monitoring in an industrial context. One of the authors is Line
Manager at Data Processing & Analytics for Equipment, Industry 4.0 & MES
Products division of Tetra Pak Packaging Solutions S.p.A., a multinational
company that approached condition monitoring and diagnostics fifteen years
ago. So far, they have gained experience and have a clear idea of what the
Industrial field expects in the coming years. In this paper, the analysis of a
specific case study is an opportunity to suggest more general research themes
on condition monitoring.
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1 Introduction

Industry 4.0 is a true Industrial Revolution, which, like the previous ones,
takes several years to mature fully and complete. This is and will include
successes and failures, risks, uncertainties and changes of direction, but which
ultimately fulfils its design. Companies that take this path must necessarily
have a long-term vision. It is not enough to have an adequate infrastructure
in terms of IIoT (Industrial Internet of Things) complete with cloud, edge and
data collection on the machine. Above all, it is necessary to have an effective
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analytics for diagnosis and prognosis, which cannot be separated from a fruitful
and continuous collaboration with the academy, and, when possible, from the
involvement of the designers of the automatic machine, in order to understand
which points of interest to prioritize and identify the indicators to monitor and
how to do it. This can be done starting from the available scientific literature
[1,2], and from the simplest solutions. Artificial Intelligence, for example, is
certainly a powerful and new opportunity [3,4], but on its own it does not
solve the problem of analytics: it must instead be integrated with Domain
Knowledge (i.e. the knowledge of the physical processes behind it) to be guided
in the right direction in what is sometimes called a Hybrid Approach [5].
This approach, as we can see, requires a long-term breath, and a significant
investment, which cannot have a short-term return on investment. If you want
to fully ride the Fourth Industrial Revolution, it is a price to pay, in order to
offer a reliable service and improve the management of the machines in the
medium-long term.

2 Predictive maintenance: a case study

One of the opportunities, in terms of industrial business application in the
field of Industry 4.0, is Predictive Maintenance service for automatic ma-
chines. In its industrial sense, Predictive Maintenance refers to maintenance
operations previously carried out periodically (Preventive Maintenance) on
the automatic machine, actively identifying an incipient component or func-
tional failure, through the use of data collected by the machine, aggregated
and processed through appropriate algorithms [6]. In the following, a recent
mechatronic solution called the Independent Cart Systems (ICS) is taken as
an example. It consists in modular linear motors, which have linear or curved
shapes and can be connected to each other to get a closed-loop path. Several
carts are placed on the motors by means of rolling bearings. The drive and
electric parts, i.e. the coils that move the carts by a controlled magnetic field,
are placed in the fixed part of the ICS (the frame) also called the rail. The
carts contain permanent magnets and an antenna or other magnetic means
the drive uses to check their position on the rail. Each cart is direct driven
independently from the others and can have high dynamic performances (e.g.
they can reach a speed of 4 m/s or even above), which surpass those given by
common rotary servomotors in several applications.

From an industrial point of view, new technology like ICS is an opportu-
nity and a challenge. It allows new design of drive-lines and kinematic chains,
assuring more flexibility than rotary servomotors used so far, reducing the
mechanical complexity of the machine. On the other side, the economic sus-
tainability of new technology is provided only if the reliability of the system
is always granted. Possible faults of ICS could be divided into electrical and
mechanical faults. In this paper the focus is on the mechanical side only. De-
spite the tough design of both rails and carts, the bottle neck is the presence
of rolling bearings between the cart and the rail. The number of bearings for
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each cart depends on the specific cart used and can include bearings with dif-
ferent sizes [7]. In the next section, critical issues about condition monitoring
are detailed.

3 Critical issues and future prospects

There are several aspects to consider and to solve when preparing and main-
taining such a solution. The first difficulties are in terms of knowing what to
monitor, how to do it (for example with digital tags or added sensors when the
quantity to sample is not observable in the standard machine configuration),
and which analytics to apply. This includes the sampling policy, sampling
frequency, where and how to position a possible sensor, all of which is indus-
trially sustainable, primarily in terms of costs and then also in terms of life
and reliability.

Depending on the specific application, an ICS can include more than one
hundred carts on the same rail. Each cart usually has three or more bearings
to assure stability during the motion. As a consequence, the total number
of bearings monitored can exceed three hundreds units; a huge number com-
pared to the typical number of bearings monitored so far in an Industrial
application (but still a lower number than an equivalent mechanical solution
doing the same function, with the same flexibility and same total capacity).
The diagnostics focus should move from the single machine to the fleets of
components. The extension of the predictive policy to a series of mechani-
cal systems requires a strong statistical-based condition monitoring to ensure
good reliability as a whole. For example, L10-life is used for the bearing life-
time calculation [8] but it computes the reliability for a single bearing. In case
of several bearings in series, the reliability of the whole system is equal to the
product of the reliability of each component, so it is significantly reduced by
the number of bearings available [9]. A condition monitoring system that has
1% of false alarm (over the entire life) on 2 bearings (e.g. electric motor) can
be considered a good result, but if we extend this to fleets of 300+ bearings it
is no longer acceptable. In the last decade, many scientific papers have been
published on the application of complex statistical methods to machine diag-
nostics [10–12]. In particular, they focus on Bayesian inference that updates
the probability of an event (or hypothesis) as more evidence or information
becomes available [13]. These techniques must be extended to increase the ro-
bustness of fault prediction (or the computation of the Remaining Useful Life),
considering the reliability of several bearings in series but also the variability
of the working condition for each of them. Such characteristics can be relevant
for other manufacturing sectors comprising fleets of vehicles, such as AGV
(Automated Guided Vehicle) in automated warehouses or material handling
conveyor systems.

Faults can occur on the rail as well, with different wear processes and ex-
pected vibration signals and highly dependent on the inertial loads of the carts
and the end-effector that can be mounted on top (e.g. for pick-and-place oper-
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ations). Since each cart is moved independently with different motion profile
- providing that carts do not overtake each other - non-stationary and non-
cyclic working conditions must be considered. Currently, condition monitoring
of machines in non-stationary conditions is the most common application field
in journal publications on machine diagnostics (examples in [14–16]). A lot of
techniques have been successfully proposed in the literature [17], and the term
non-stationary can refer to variable speed applications [18] or variable loads
like in mining machines [19]. Indeed, all manufacturing processes that exhibit
variable working conditions can benefit from results in the non-stationary di-
agnostics field.

The sensoring of so many carts and the frame is challenging from several
points of view. Possible choices could be, e.g. to sense the current of the sta-
toric drives, using the available geometric transformation to port it to the cart
reference frame, or add accelerometers directly on-board the cart for a better
measure, but with added problems of energy supply, robustness and cost. In
the medium term future, the issue of how to collect data from a moving object
is being attacked with wireless sensors, that will become cheaper and easier
to install, and possibly automatically finding available spectrum windows on
the premises, i.e. on site. This will probably include also 5G solutions, with
the necessary Data Security and Privacy aspects, maybe using Block Chain
techniques when needed. Hopefully, the diagnostics will be more and more
embedded in newly designed equipment, as said, but also in newly designed
industrial systems, such as is already done in IO-Link digital sensors [20]. As
well, actuators (e.g. servo motors) will include by design MEMS accelerom-
eters, and other sensors, and transfer the digital information seamlessly to
the drive, machine CPU and cloud. These solutions will require also a pro-
cessing step of the data to avoid time and cost consuming data-transfer via
the cloud. As a consequence, we foresee an increasing interest in the field of
condition indicators. Finally, data fusion from different sources can minimize
the use of external sensors. Indeed ICS are direct drive systems, thus the mea-
sured current, velocity, position, position error, and temperature have a lot
of information on the behaviour of the load, including possible incipient wear
or other health indicators. Although vibrations are probably the most used
and informative data, we expect that diagnostics in the medium term future
will result from different types of information. Regarding the available litera-
ture, the Instantaneous Angular Speed (IAS) has proven that it is possible to
diagnose bearings failures by recording the speed of motor shaft at high fre-
quency [21,22]. The challenge will be to extend the IAS paradigm to the data
available from embedded encoders, that are always present on servomotors to
control the motion profile. According to the Scopus database, the number of
papers on multi-sensor data fusion techniques have tripled in 2020 and some
of them focus on bearing diagnostics [23–25]. With reference to the condition
indicators, recent publications not only present new parameters but also the
computational steps to determine the optimal threshold based on statistical
inference [26–28]. Possible results can be relevant for the manufacturing fields
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characterized by high value components with redundant sensors and/or in a
hostile environment (e.g. off-shore wind farms).

Regarding signal processing, it is worth mentioning three key points. De-
spite the number of carts the frame is the same, i.e. it receives from, and
transmits vibrations to, each cart, not only as a result of the dynamics of
system but also as a consequence of the working processes (e.g. clutching of
mechanical parts, cutting of packaging material, etc). Too many sources of
”noise” can mask the occurrence of a fault in the early stage, new techniques
of source separation will be needed, maybe focusing on instantaneous transfer
path analysis (TPA) between a cart and the rail or maximizing the likelihood
between the measured TPA and the computed one. Blind source separation
techniques [29–31] aim to identify and isolate the contribution of specific com-
ponents (e.g. gears or bearings) based on expected characteristics of their vi-
bration data. TPA techniques [32,33] take into account the distance between
the source and the measuring point, and the degradation of the signal along
this path. Possible results will be relevant for all manufacturing industries with
a cyclic and continuous productivity: these processes have a strong periodicity
due to the hourly capacity of the machine, including colored mechanical noise
(e.g. impacts due to cutting tools) and characteristic fault frequencies of the
components.

Another key point is the intrinsic complexity of what is being monitored. It
is not possible to be able to predict all the faults, related to all fault modes, of
the component or function under observation. There are aspects of the system
that are undetectable (unobservable in the Kalman canonical decomposition),
from an identification point of view in terms of Control Theory. Other as-
pects of the system are uncertain, i.e. a proper measurement of them is not
guaranteed, e.g. the contact forces between the rail and the bearings in oppo-
site configuration due to the local effects of the magnetization field between
carts and rail. As a consequence, the introduction of an uncertainty analysis in
new condition monitoring algorithms should be encouraged. A research field
that seems promising to mitigate uncertainties is Transfer Learning [34]. It is
emerging as a technique to improve the performance of artificial intelligence
models when the distribution of the data used to train the model is different
from the distribution of the new data to which the models are applied. Al-
though it was initially developed in Computer Science, it has been applied to
the diagnosis of machines in recent publications [35–37].

The last key point is the issue of Artificial Intelligence (AI) as an enabler
of condition monitoring if properly guided by a deep engineering and opera-
tional knowledge of the machines. The use of this technology is still in constant
evolution and brings with it various challenges, for example in terms of de-
ployment on the cloud rather than on-edge. A necessary consequence is also
the way of updating the on-edge algorithms in effective terms, possibly closing
the loop through federated learning techniques, which allow a lean deploy-
ment of AI solutions, which continuously learn and improve, without weighing
down the system. An opportunity for algorithm deployment is also represented
by dockers containers, which allow a more agile and dynamic management of
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Table 1 Main critical issues for ICS systems and future research perspective

Critical issue Main Drawback Research perspective

High number of carts High number of compo-
nents under test

Switch from single compo-
nent diagnostics to compo-
nent fleet diagnostics

Carts driven independently Non-cyclic and non-
stationary working condi-
tions

Diagnostics in highly
non-stationary conditions
(loads and speed)

High number of sensors
High data transfer Developing of new and reli-

able condition indicators
High costs of the sensors Diagnostics by data fusion

Cabling of the sensors Several sensor on moving
parts

Developing of wireless sen-
sors (including embedded
post processing)

Synchronous events Low Signal-to-Noise ratio
or masking events

Developing of source sepa-
ration techniques

Uncertainties Unreliable condition moni-
toring system

Developing of uncertainty
analysis in condition mon-
itoring

Fleet of machines and grow-
ing amount of data

Not taking advantage of
having a large fleet of past
cases and data

Use of AI for condition
monitoring

the on-premises solution (i.e. on site), without sacrificing robustness. Table 1
summarizes the main critical issues of ICS and future research perspectives.
Possible solutions developed for the condition monitoring of ICS, can also be
applied in other fields of application, namely any servo-driven (rotary or lin-
ear) set of loads, that are similar or identical, but driven independently (e.g.
with slightly different profiles, of with different phase). The servo-driven sets of
load, in order to have a convenient approach and economy of scale, should be
with high numbers of modules, each with rolling elements in the mechatronic
solution (in the load itself, or in the servo motor that drives the load).

4 Conclusion

A maxim attributed to Niels Bohr is: ”Making predictions is always difficult,
especially regarding the future”. Predictive Maintenance is no exception: ma-
chines are complex systems that require years of maturation of the analytics
with large amounts of data available. In a longer term vision it’s possible to
foresee Prescriptive Maintenance solutions, where the production operation is
automatically, or semi-automatically driven by Condition Monitoring analyt-
ics results. This system must also be capable of Cognitive Decision Making
through the ability to query through all data sources, seamlessly. This is the
vision of what the manufacturing industry expects from research in the field
of machine diagnostics for the future.
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