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Abstract. Artificial Neural Networks, as the name itself suggests, are
biologically inspired algorithms designed to simulate the way in which
the human brain processes information. Like neurons, which consist of
a cell nucleus that receives input from other neurons through a web
of input terminals, an Artificial Neural Network includes hundreds of
single units, artificial neurons or processing elements, connected with
coefficients (weights), and are organized in layers. The power of neural
computations comes from connecting neurons in a network: in fact, in
an Artificial Neural Network it is possible to manage a different number
of information at the same time. What is not fully understood is which
is the most efficient way to train an Artificial Neural Network, and in
particular what is the best mini-batch size for maximize accuracy while
minimizing training time. The idea that will be developed in this study
has its roots in the biological world, that inspired the creation of Artifi-
cial Neural Network in the first place.
Humans have altered the face of the world through extraordinary adap-
tive and technological advances: those changes were made possible by
our cognitive structure, particularly the ability to reasoning and build
causal models of external events. This dynamism is made possible by a
high degree of curiosity. In the biological world, and especially in human
beings, curiosity arises from the constant search of knowledge and infor-
mation: behaviours that support the information sampling mechanism
range from the very small (initial mini-batch size) to the very elaborate
sustained (increasing mini-batch size).
The goal of this project is to train an Artificial Neural Network by in-
creasing dynamically, in an adaptive manner (with validation set), the
mini-batch size; our hypothesis is that this training method will be more
efficient (in terms of time and costs) compared to the ones implemented
so far.

Keywords: artificial neural network, stochastic gradient, mini-batch
size increasing

1 Introduction

Artificial Neural Networks (ANNs) are biologically inspired algorithms designed
to simulate the way in which the human brain processes information. ANNs
collect their knowledge by detecting the patterns and relationships in data, and
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learn (or are trained) through experience, not from programming. An ANN is
formed by hundreds of single units, artificial neurons or processing elements
(PE), connected with coefficients (weights), which constitute the neural struc-
ture and are organised in layers. The power of neural computations comes from
connecting neurons in a network. Each PE has weighted inputs, activation func-
tion, and one output like in Figure 1. The behaviour of a neural network is

Fig. 1: Neuron and mathematical model

determined not only by the activation functions of its neurons, by the loss func-
tion, and by the architecture itself but also by the number of information that
it processes simultaneously. The weights are the adjustable parameters and, in
that sense, a neural network is a parametrized system. The weighed sum of the
inputs constitutes the activation of the neuron. The activation signal is passed
through activation function to produce a single output of the neuron. Activation
function introduces non-linearity to the network. During training, the inter-unit
connections are optimized until the error in predictions is minimized. Once the
network is trained and tested, it can be given new input information to predict
the output. The various applications of ANNs can be summarised into classifi-
cation or pattern recognition, prediction, and in modelling.

1.1 ANN history and biologically inspiration

The first abstract model of Artificial Neural Networks (ANN) was proposed by
McCulloch and Pitts in 1943. They considered the neuron as a binary device,
which can be assimilated to a logic unit which compute a logical function of its
inputs. The neuron of McCulloch and Pitts may thus be found in only one of
two possible states {0, 1}. It may receive inputs from exciting synapses which
all have the same value. If the sum of the inputs exceeds a certain threshold,
the neuron is activated, otherwise it is not. McCulloch and Pitts succeeded in
demonstrating that a network of neurons of this type could compute any finite
logical expression. This result had a profound influence, in what for the field it
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showed for the first time that a network of extremely simple elements possessed
an enormous computing power, a power which derived exactly from the presence
of numerous elements and from their interactions [7]. On the other hand ANNs,
as the name suggests, are biologically inspired, in particular biological neurons
consist of a cell nucleus, which receives input from other neurons through a web
of input terminals, or branches, called dendrites.

2 Machine Learning and large scale optimization
problems

The promise of artificial intelligence has been a topic of both public and private
interest for decades. Advances based on such techniques may be in store in the
future, many researchers have started to doubt these classical machine learning
approaches, choosing instead to focus their efforts on the design of systems based
on statistical techniques, such as in the rapidly evolving and expanding field of
machine learning. Machine learning and the intelligent systems that have been
born out of it have become an indispensable part of modern society. One of the
pillars of machine learning is mathematical optimization, which, in this context,
involves the numerical computation of parameters for a system designed to make
decisions based on yet unseen data. That is, based on currently available data,
these parameters are chosen to be optimal with respect to a given learning
problem (and a given loss or cost function) [1]. A loss function or cost function,
in this context, is a function that maps values of variables onto a real number
representing some "cost" associated with the event.
For example the following optimization problem: which minimizes the sum of
cost functions over samples from a finite training set composed by sample data
ai ∈ Rd and class label bi ∈ {±1} for i ∈ {1 . . . n}, appears frequently in machine
learning:

minF (x) ≡ 1

n

n∑
i=1

fi(x), (1)

where d is the sample size, n is the number of samples, and each fi : Rd → R is
the cost function corresponding to a training set element.
For example in the logistic regression case we have:

fi(x) = log
[
1 + exp(−biaTi x)

]
We are interested in finding x that minimizes (1).
For given x, computing F (x) and ∇F (x) is prohibited, due to the large size of
the training set. When n is large, Stochastic Gradient Descent (SGD) method
and its variants have been chosen as the main approaches for solving (1).

2.1 Stochastic Gradient Methods and mini-batch

We define generalized SGD method as Algorithm 1. The algorithm merely pre-
sumes that three computational tools exist: (i) a mechanism for generating a
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realization of a random variable ξk; (ii) given an iterate xk ∈ Rd and the re-
alization of ξk, a mechanism for computing a stochastic vector g(xk, ξk) ∈ Rd;
and (iii) given an iteration number k ∈ N, a mechanism for computing a scalar
learning rate ηk > 0.

Algorithm 1 Stochastic Gradient Descent (SGD) Method
1: Choose an initial iterate x1.
2: for k = 1, 2, . . . do
3: Generate a realization of the random variable ξk.
4: Compute a stochastic vector g(xk, ξk).
5: Choose a learning rate ηk > 0.
6: Set the new iterate as xk+1 ← xk − ηkg(xk, ξk).
7: end for

The generality of Algorithm 1 can be seen in various ways. First, the value of
the random variable ξk needs only be viewed as a seed for generating a stochastic
direction; as such, a realization of it may represent the choice of a single training
sample as in the simple SGD method, in particular: in the k − th iteration of
SGD, a random index of a training sample ik is chosen from {1, 2, . . . , n} and
the iterate xk is updated by

xk+1 = xk − ηk∇fik(xk)

where ∇fik(xk) denotes the gradient of the ik − th component function at xk,
therefore in this case g(xk, ξk) = ∇fik(xk).
In another case, the value of the random variable ξk may represent a set of sam-
ples as in the mini-batch SGD method: one can employ a mini-batch approach
in which a small subset of samples, call it Sk ∈ {1, ..., n}, is chosen randomly at
each iteration, leading to

xk+1 ← xk −
ηk
|Sk|

∑
i∈Sk

∇fi(xk). (2)

This is the case in our approach, where g(xk, ξk) = 1
|Sk|

∑
i∈Sk
∇fi(xk).

In literature we can find several papers in which two techniques are used to
increase accuracy: decaying the learning rate and increasing the batch size. In
general, it is common practice to decay the learning rate. But with an increasing
batch size, we can usually obtain the same learning curve on both training and
test sets by increasing the batch size during training instead. In the state of the
art, we can find different works that use this technique but with random criteria
and without the use of the validation set [6].
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3 The idea: curiosity to improve accuracy

Consider the iteration
xk+1 ← xk − η̄g(xk, ξk) (3)

where the stochastic directions are computed for some τ > 1 as

g(xk, ξk) :=
1

nk

∑
i∈Sk

∇fi(xk; ξk,i) with nk := |Sk| = dτk−1e. (4)

That is, consider a mini-batch SGD iteration with a fixed learning rate in which
the mini-batch size used to compute unbiased stochastic gradient estimates in-
creases geometrically, or in an other manner, as a function of the iteration counter
k.
Returning to the concept of biological inspiration that justifies the idea of ANNs,
the new approach suggested here can be inserted in this context, considering the
information sampling mechanism used by the animals in general, and humans in
particular. During our limited existence, humans have alterated the face of the
world; these extraordinary advances are made possible by our cognitive struc-
ture, particularly the ability to reason and build causal models of external events.
This dynamism is made possible by our high degree of curiosity. Many animals,
and especially humans, seem constantly to seek knowledge and information in
behaviours ranging from the very small (initial mini-batch size) to the very elab-
orate sustained (increasing mini-batch size). In neuroscience research, the most
commonly considered exploration strategies are based on random action selec-
tion or automatic biases toward novel, surprising or uncertain events. Actions
extremely driven by randomness, novelty, uncertainty or surprise are valuable for
allowing agents to discover new tasks. However, these actions have an important
limitation: they do not guarantee that an agent will learn. The mere fact that an
event is novel or surprising does not guarantee that it contains regularities that
are detectable, generalizable or useful. Therefore, heuristics based on novelty (in
our case a big mini-batch size from the beginning) can guide efficient learning
in small and closed spaces, where the number of tasks is small, but are very
inefficient in large open ended spaces, where they only allow the agent to collect
very sparse data and risk trapping him in unlearnable tasks. This motivates the
search for additional solutions that use more targeted mechanisms designed to
maximize learning per se (in our case a dynamic change of the mini-batch size)
[3]. Similarly, we find interesting the concept of novelty search and its application
in Evolutionary Neural Network to create increasing complex structures [5].

4 Numerical experiment

The database MNIST (Modified National Institute of Standards and Technology
database) is a large collection of handwritten digits, commonly used for testing
different systems that process images. The database MNIST contains 60, 000
images for network training and 10, 000 images used to test the network: the test
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set. The 60, 000 initial images are further subdivided into 55, 000 images that
represents the real training set and 5, 000 images that represents the validation
set, used, in our case, to have a dynamic criterion to evaluate the performance
of the algorithm.
The images are in gray-scale (0-255) centred in a box of 28× 28 pixels.

4.1 The problem

The idea of building a classifier for the database MNIST, is to use a Convolution
Neural Network CNN by creating a multiple classifier for the ten digits and a
binary classifier to distinguish between the eight digit and the others.

4.2 Convolutional Neural Network

Fig. 2: CNN with 10 outputs

As you can see from Figure 2 the network takes as input an image of 28× 28
pixels and processes it through five layers and then reaches an output layer com-
posed of ten or two neurons: the numbers from 0 to 9 in the multiple classifier
case and 8 or not8 in the binary case.
Internal processing takes place through manipulations of the image: the con-
volution will calculate 32 or 16 categories for each patch of 5 × 5, the image
is reduced to a size 14 × 14 pixels and then the ReLU (Rectified Linear Unit)
function is applied for activation. In the next layer there are similar operations
but the image is further reduced to a size of 7 × 7 pixels, in the penultimate
layer we have a level fully connected with 1, 024 or 2, 048 neurons to allow the
processing of the whole image. The images at this point are transformed into
vectors, multiplied by the weight matrix, added to the bias and the ReLU is
applied again. To reduce the phenomenon of overfitting, we apply a dropout,
that is, with a given probability, we eliminate one or more connections of the
network, and we use different probabilities. To reach the final layer of output, we
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apply the Softmax regression function or multinomial logistic regression, which
leads us to identify the label among one of the ten possible.
For the training phase, we use the Adam optimizer (Adaptive Moment estima-
tion), a method for stochastic optimization that requires only first-order infor-
mation, then the gradient, and that uses little memory. The method calculates
adaptive updates of various parameters by estimating the first and second mo-
ments of the gradients [2].
In this way, we test different architectures of the network with the proposed new
technique. In fact, changing the number of neurons in some layers and the prob-
ability with which we make dropout changes the number of parameters on which
we are optimizing. Therefore, using the same database, we create a problem of
multiple classification and a problem of binary classification.
The code contains within it a criterion, based on the verification of accuracy
on the validation set, called "early stopping", to decide whether to block the
process or continue it up to the maximum number of epochs [4]. We set the
maximum number of epochs to 20, 000 and we ask that if the accuracy does
not improve on the validation set for a number of epochs equal to 15 the exit
from the training cycle is forced regardless of the number of epochs passed. At
this point, the algorithm returns the number of epochs, and then compares the
network so far trained (in the best case) with the test set to obtain success rates
and errors committed.

4.3 The new idea in practice

The idea we tested is to progressively increase the size of the mini-batch. Virtu-
ally every 100 epochs (in this paper we consider epoch only the training over one
mini-batch) the neural network is evaluated on the validation set and in case of
15 successive comparisons without improvement the exit from the epoch cycle is
forced. The new idea, on the other hand, is to dynamically increase the sample
size if no improvement is observed after 10 checks; the increase is according to
the law h = h ∗ 2. At this point the algorithm proceeds normally but with an
increased mini-batch and if it reaches 15 total checks without improvements the
exit from the epoch cycle is forced. Finally, the best result obtained from the
network is evaluated on the test set.

4.4 Results

Since the first simulations we have noticed an improvement in performance,
about a third of errors less, but associated with an inevitable increase in time,
about twice. Although theoretically the algorithm can increase sample size indef-
initely, from simulations, it is observed that typically the process stops around
400/800 items per sample (mini-batch size), in the multiple classifier case, and
200/400 items per sample in the binary case by forcing the exit from the loop
without reaching the maximum iterate number. The table 1 report the results
of accuracy and the number of errors for two different CNNs in which all the
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parameters are set in the same way and the results are about the multiple clas-
sifier in the case of a CNN 32× 64× 1, 024× 10 with a 0, 5 dropout probability;
all the results correspond to the results with the test images. The only changes
are related to the size of the sample: in the STATIC case this size is always fixed
at 50 and the exit from the loop is forced after 15 evaluations on the validation
set in which no improvement is observed; in the DYNAMIC version, after 10 no
improvement the sample size is dynamically increased; in this case too, when the
15 valuation is reached without improvement, the exit from the cycle is forced.

DYNAMIC STATIC
99.27 99.34
99.24 99.27
99.35 99.01
99.4 99.12
99.42 99.1

DYNAMIC STATIC
73 76
66 73
65 99
60 88
58 90

Table 1: Experiment 1: Accuracy and error number

Because of the stochastic nature of the method, the results undergo oscil-
lations; so 5 simulations with the same criteria were repeated. In the STATIC
case the average accuracy is 99.15 for an average error number of 85 while in
the DYNAMIC case the average accuracy is 99.36 for an average error number
of 64, thus recording an average improvement of over 20 errors.
For the robustness analysis we consider the standard deviations of the stochastic
processes, in particular the standard deviation of the accuracy in the DYNAMIC
case is 0.0789 and in the STATIC case is 0.1341. For this reason we can con-
sider the new method to be more robust. We have the same result for the error
numbers: in fact the standard deviation for the DYNAMIC case is 5.8566 and
10.6630 for the STATIC case. As already mentioned the times for the DYNAMIC
version are dilated; in particular, the DYNAMIC network requires an average
time doubled compared to the STATIC version, so it is natural to wonder if it is
not enough simply to increase the sample size from the beginning so as to allow
the network more time per period. The answer is no. In fact, from an experiment
with an initial mini-batch of 400 it is observed that the training takes longer than
the DYNAMIC version for an average accuracy of 99.2 and a number of average
errors equal to 80; this data is slightly better than the 50 mini-batch version but
not comparable to the improvements obtained from the dynamic version.

In a second experiment we consider the binary case with the same archi-
tecture of the CNN: 32 × 64 × 1, 024 × 2 with a 0, 5 dropout probability and
we compare the STATIC-50 (static case with a mini-batch size of 50 samples),
the STATIC-400 (static case with a mini-batch size of 400 samples), and the
DYNAMIC case.
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Table 2: Accuracy and error number
DYNAMIC STATIC-50 STATIC-400

99.88 99.71 99.72
99.77 99.55 99.75
99.81 99.77 99.8
99.87 99.69 99.82
99.81 99.79 99.77

DYNAMIC STATIC-50 STATIC-400
12 29 28
23 45 25
19 23 20
13 31 18
19 21 23

Table 3: Time in seconds
DYNAMIC STATIC-50 STATIC-400

140 113 149
80 60 236
86 106 159
145 72 170
77 127 213

In the STATIC-50 case the average accuracy is 99.7 for an average error
number of 30 with an average time of 96, in the STATIC-400 case the average
accuracy is 99.77 for an average error number of 23 with an average time of 185,
while in the DYNAMIC case the average accuracy is 99.81 for an average error
number of 17 with an average time of 106, thus recording an average improve-
ment of over 30% errors.
For the robustness analysis we consider the standard deviations of the stochas-
tic processes. In particular the standard deviation of the accuracy in the DY-
NAMIC case is 0.046, in the STATIC-50 case is 0.0944 and in the STATIC-400
case 0.0396. For this reason we notice that the new method is more robust than
the STATIC-50 case but less robust than the STATIC-400 case. This is reason-
able because with an increase of the mini-batch size the stochastic process is
more stable. We have the same result for the error numbers: in fact the standard
deviation for the DYNAMIC case is 4.6043, 9.4446 for the STATIC-50 case and
3.9623 for the STATIC-400 case.
For completeness we consider also the measure of the accuracy every time the
mini-batch size increases. For example, in the DYNAMIC case with a final ac-
curacy of 99.88, the accuracy with a 50 mini-batch size is 99.68, with a 100
mini-batch size is 99.82 and, finally, with a 200 mini-batch size is 99.88, simi-
larly in the other cases.

In the last experiment we still consider the binary case with another archi-
tecture of the CNN: 16 × 64 × 2, 048 × 2 with a 0, 1 dropout probability and
we compare the STATIC-50 (static case with a mini-batch size of 50 samples),
the STATIC-400 (static case with a mini-batch size of 400 samples), and the
DYNAMIC.

We report only the average results: in the STATIC-50 case the average accu-
racy is 99.62 for an average error number of 38 with an average time of 158, in
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the STATIC-400 case the average accuracy is 99.72 for an average error number
of 28 with an average time of 174, while in the DYNAMIC case the average
accuracy is 99.75 for an average error number of 20 with an average time of 199,
thus recording an average improvement of over 30% errors.

5 Conclusions

In conclusion, this new method, inspired by the cognitive processes of living
beings, leads to a considerable increase in the accuracy, without increasing the
computational cost. The computational costs for each epoch are not increased
because the networks maintain the same characteristics and the test to find out if
it is necessary to increase the size of the mini-batch is done using the test that is
already performed for early stopping. The fact that there is not a similar increase
in the accuracy associated with a larger starting mini-batch size underscores how
effectiveness actually lies in choosing an adaptive dimension during the network
learning process.
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