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K :=
m∑
i=1

∂xixi +
m∑
i=1

xi∂yi − ∂t.

Our results are established near the non-characteristic part of the boundary of 
certain local LipK -domains, where the latter is a class of local Lipschitz type 
domains adapted to the geometry of K. Generalizations to more general operators 
of Kolmogorov–Fokker–Planck type are also discussed.
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r é s u m é

On démontre plusieurs nouveaux résultats sur le comportement au bord des 
solutions non négatives de l’équation Ku = 0, où

K :=
m∑
i=1

∂xixi +
m∑
i=1

xi∂yi − ∂t.

Les résultats sont établis dans un voisinage de la partie non-caractéristique du bord 
de certains domaines locaux LipK , qui sont des domains localement lipschitziens 
adaptés à la géométrie de K. On discute aussi des généralisations à d’autres 
opérateurs plus généraux de type Kolmogorov–Fokker–Planck.
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1. Introduction

Let N = 2m, where m ≥ 1 is an integer, and let Ω ⊂ R
N+1 be a bounded domain, i.e., a bounded, 

open and connected set. In this paper we establish a number of results concerning the boundary behavior 
of non-negative solutions to the equation Ku = 0 in Ω, where

K :=
m∑
i=1

∂xixi
+

m∑
i=1

xi∂yi
− ∂t, (x, y, t) ∈ R

m × R
m × R. (1.1)

The operator K, referred to as the Kolmogorov or Kolmogorov–Fokker–Planck operator, was introduced and 
studied by Kolmogorov in 1934, see [19], as an example of a degenerate parabolic operator having strong 
regularity properties. Kolmogorov proved that K has a fundamental solution Γ = Γ(x, y, t, ̃x, ỹ, ̃t) which is 
smooth in the set 

{
(x, y, t) �= (x̃, ỹ, ̃t)

}
. As a consequence,

Ku := f ∈ C∞(Ω) ⇒ u ∈ C∞(Ω), (1.2)

for every distributional solution of Ku = f . Property (1.2) can also be stated as

K is hypoelliptic, (1.3)

see (1.13) below.
The operator K appears naturally in the context of stochastic processes and in several applications. 

The fundamental solution Γ(·, ·, ·, ̃x, ỹ, ̃t) is the density of the stochastic process (Xt, Yt), which solves the 
Langevin equation

{
dXt =

√
2dWt, Xt̃ = x̃,

dYt = Xtdt, Yt̃ = ỹ,
(1.4)

where Wt is a m-dimensional Wiener process. The system in (1.4) describes the density of a system with 
2m degrees of freedom. Given z = (x, y) ∈ R

2m, x = (x1, . . . , xm) and y = (y1, . . . , ym) are, respectively, 
the velocity and the position of the system. (1.4) and (1.1) are of fundamental importance in kinetic theory, 
they form the basis for Langevin type models for particle dispersion and appear in applications in many 
different areas including finance [2,23], and vision [10,11].

In [7], [8] and [9], we developed a number of important preliminary estimates concerning the bound-
ary behavior of non-negative solutions to equations of Kolmogorov–Fokker–Planck type in Lipschitz type 
domains. These papers were the results of our ambition to understand to the extent, and in what sense, 
scale and translation invariant boundary comparison principles, boundary Harnack inequalities and dou-
bling properties of associated parabolic measures, previously established for uniformly parabolic equations 
with bounded measurable coefficients in Lipschitz type domains, see [13,14,26,12,22,25], can be established 
for non-negative solutions to the equation Ku = 0 and for more general equations of Kolmogorov–Fokker–
Planck type. In this paper we take this program a large step forward by establishing Theorems 1.1, 1.2 and 
1.3 stated below. These results are completely new and represent the starting point for far reaching devel-
opments concerning operators of Kolmogorov type. Already in the case of uniformly elliptic and parabolic 
operators this kind of scale and translation invariant estimates are important in the analysis of free bound-
ary problems, see [5], [6] and [1] for instance, and in the harmonic analysis approach to partial differential 
equations in Lipschitz type domains, see [18,16].
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1.1. Scalings and translations

The prototype for uniformly parabolic operators in Rm+1 is the heat operator

H :=
m∑
i=1

∂xixi
− ∂t. (1.5)

Considering non-smooth domains, here roughly defined as Lipschitz type domains, the ambition to develop 
estimates for solutions to Hu = 0 which respect the standard parabolic scalings, and the standard group of 
translations on Rm+1, naturally leads one to develop estimates for solutions to Hu = 0 in the time-dependent 
setting of Lip(1, 1/2)-domains. A notion of (local) Lip(1, 1/2)-domains with constants M and r0 is formulated 
in the natural way using appropriate local coordinate systems and assuming that in each local chart of size 
r0, the boundary can be represented by a Lip(1, 1/2)-function f with Lip(1, 1/2)-constant M , see [22] for 
example. Recall that a function f : Rm−1 × R → R is called Lip(1, 1/2) with constant M if

|f(x′, t) − f(x̃′, t̃)| ≤ M
(
|x′ − x̃′| + |t− t̃|1/2

)
(1.6)

whenever (x′, t), (x̃′, ̃t′) ∈ R
m−1 × R.

Compared to the heat operator, the scalings underlying the operator K is different, and the change of 
variables preserving the equation is more involved. As a consequence the appropriate geometric setting for 
the equation Ku = 0 becomes more of an issue. In the case of K, the natural family of dilations (δr)r>0 on 
R

2m+1 is defined by

δr(x, y, t) = (rx, r3y, r2t), (1.7)

for every (x, y, t) ∈ R
2m+1 and every positive r. Due to the presence of non-constant coefficients in the drift 

term of K, the usual Euclidean change of variable does not preserve the Kolmogorov equation. Nevertheless, 
a Galilean change of variable does. Consider a smooth function u : Ω → R, choose any point (x̃, ỹ, ̃t) ∈ R

2m+1

and set w(x, y, t) = u(x̃ + x, ỹ + y − tx̃, t + t̃). Then

Ku(x, y, t) = f(x, y, t) ⇐⇒ Kw(x, y, t) = f(x̃ + x, ỹ + y − tx̃, t + t̃),

for every (x, y, t) ∈ Ω.
The change of variables used above defines a Lie group in RN+1 with group law

(z̃, t̃) ◦ (z, t) = (x̃, ỹ, t̃) ◦ (x, y, t) = (x̃ + x, ỹ + y − tx̃, t̃ + t), (1.8)

(z, t), (z̃, ̃t) ∈ R
N+1. Note that

(z, t)−1 = (x, y, t)−1 = (−x,−y − tx,−t), (1.9)

and hence

(z̃, t̃)−1 ◦ (z, t) = (x̃, ỹ, t̃)−1 ◦ (x, y, t) = (x− x̃, y − ỹ + (t− t̃)x̃, t− t̃), (1.10)

when (z, t), (z̃, ̃t) ∈ R
N+1. Using this notation the operator K is δr-homogeneous of degree two, i.e., 

K ◦ δr = r2(δr ◦ K), for all r > 0. The operator K can be expressed as

K =
m∑

X2
i + Y,
i=1
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where

Xi = ∂xi
, i = 1, . . . ,m, Y =

m∑
i=1

xi∂yi
− ∂t, (1.11)

and the vector fields X1, . . . , Xm and Y are left-invariant with respect to the group law (1.8) in the sense 
that

Xi

(
u((z̃, t̃) ◦ · )

)
= (Xiu) ((z̃, t̃) ◦ · ), i = 1, . . . ,m,

Y
(
u((z̃, t̃) ◦ · )

)
= (Y u) ((z̃, t̃) ◦ · ), (1.12)

for every (z̃, ̃t) ∈ R
N+1. Consequently, K

(
u((z̃, t̃) ◦ · )

)
= (Ku) ((z̃, ̃t) ◦ · ). Taking commutators we see that 

[Xi, Y ] = ∂yi
and that the vector fields {X1, . . . , Xm, Y } generate the Lie algebra associated to the Lie 

group (◦, RN+1). In particular, (1.3) is equivalent to the Hörmander condition,

rank Lie (X1, . . . , Xm, Y ) (x, y, t) = N + 1, ∀ (x, y, t) ∈ R
N+1, (1.13)

see [17]. Furthermore, while Xi represents a differential operator of order one, ∂yi
acts as a third order 

operator. This fact is also reflected in the dilations group (δr)r>0 defined above.
Based on the scalings and group of translations discussed above, writing (x, y, t) = (x1, x′, y1, y′, t),

(x̃, ỹ, ̃t) = (x̃1, ̃x′, ỹ1, ỹ′, ̃t) ∈ R ×R
m−1 ×R ×R

m−1 ×R, and assuming that x1 is the dependent variable, it 
is natural to formulate geometry by using local coordinate charts and expressing the first coordinate x1 as 
a function f : Rm−1 × R

m × R → R satisfying

|f(x′, y1, y
′, t) − f(x̃′, ỹ1, ỹ

′, t̃)|
≤ M‖(0, x′ − x̃′, y1 − ỹ1 + (t− t̃)x̃1, y − ỹ′ + (t− t̃)x̃′, t− t̃)‖K , (1.14)

for some M , where x̃1 = f(x̃′, ỹ1, ỹ′, ̃t). Here

‖(x, y, t)‖K = |(x, y)|K + |t| 12 , |(x, y)|K =
∣∣x∣∣+ ∣∣y∣∣1/3 (1.15)

whenever (x, y, t) ∈ R
m×R

m×R = R
N+1, see [8,9]. Note that ‖δr(x, y, t)‖K = r‖(x, y, t)‖K for every r > 0

and (x, y, t) ∈ R
N+1. Furthermore, as long as f is allowed to depend on the variable y1, and x1 is assumed to 

be the dependent variable, then the term y1− ỹ1 +(t − t̃)x̃1 has to appear on the right hand side in (1.14) to 
achieve translation invariance. In line with [8,9], we call a function f satisfying (1.14) a LipK-function, with 
LipK-constant M . From the perspective of scalings and group of translations, LipK-functions, and associated 
(local) domains, are the natural replacement in the context of the operator K of the Lip(1, 1/2)-functions 
and Lip(1, 1/2)-domains considered in the context of H.

1.2. Geometric aspects: Harnack chains

While the outline above gives at hand that LipK-functions, and associated local LipK-domains, may 
serve as good candidates for geometries in which one may attempt to establish more refined boundary 
comparison principles for solutions to Ku = 0, further considerations are needed. In the corresponding 
theory for uniformly parabolic operators, the Harnack inequality and a method to connect points and to 
compare values for non-negative solutions, through Harnack chains in the geometry introduced, are usually 
very important tools needed to make progress. In this context the progress often builds on the validity 
of the strong maximum principle, the fact that the spatial variables (z1, . . . , zN ) are decoupled from the 
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time variable t, something which naturally also is reflected in the underlying group of translations, and a 
flexibility in the very formulation of the Harnack inequality. In contrast, this is where things starts to get 
complicated for the operator K.

The tool used to build Harnack chains is that of K-admissible paths. A path γ : [0, T ] → R
N+1 is called 

K-admissible if it is absolutely continuous and satisfies

d

dτ
γ(τ) =

m∑
j=1

ωj(τ)Xj(γ(τ)) + λ(τ)Y (γ(τ)), for a.e. τ ∈ [0, T ], (1.16)

where ωj ∈ L2([0, T ]), for j = 1, . . . , m, and λ are non-negative measurable functions. We say that γ
connects (z, t) = (x, y, t) ∈ R

N+1 to (z̃, ̃t) = (x̃, ỹ, ̃t) ∈ R
N+1, t̃ < t, if γ(0) = (z, t) and γ(T ) = (z̃, ̃t). When 

considering Kolmogorov operators in the domain RN × (T0, T1), it is well known that (1.13) implies the 
existence of a K-admissible path γ for any points (z, t), (z̃, ̃t) ∈ R

N+1 with T0 < t̃ < t < T1.
Given a domain Ω ⊂ R

N+1, and a point (z, t) ∈ Ω, we let A(z,t) = A(z,t)(Ω) denote the set{
(z̃, t̃) ∈ Ω | ∃ a K-admissible γ : [0, T ] → Ω connecting (z, t) to (z̃, t̃)

}
,

and we define A(z,t) = A(z,t)(Ω) = A(z,t)(Ω). Here and in the sequel, A(z,t)(Ω) is referred to as the prop-
agation set of the point (z, t) with respect to Ω. The presence of the drift term in K considerably changes 
the geometric structure of A(z,t)(Ω) and A(z,t)(Ω) compared to the case of uniformly parabolic equations. 
Indeed, simply consider (z, t) = (x, y, t) ∈ R

3 in which case

Ku = X2u + Y u = 0, X = ∂x, and Y = x∂y − ∂t. (1.17)

Consider the domain

Ω = (−R,R) × (−1, 1) × (−1, 1], (1.18)

where R is a given positive constant. In this case

A(0,0,0)(Ω) =
{
(x, y, t) ∈ Ω : |y| ≤ −tR)

}
, (1.19)

and one can prove, see [7], that there exists a non-negative solution u to Ku = 0 in Ω such that u ≡ 0 in 
A(0,0,0)(Ω) and such that u > 0 in Ω \ A(0,0,0)(Ω). In particular, it is impossible to find a positive constant 
c such that u(x, y, t) ≤ cu(0, 0, 0) whenever (x, y, t) ∈ Ω \ A(0,0,0)(Ω). Hence, in this sense the Harnack 
inequality cannot hold in a set greater than A(0,0,0)(Ω) and as a consequence the Harnack inequality we 
have at our disposal, see Theorem 2.1 stated in the bulk of the paper, is less flexible compared to the 
corresponding one for uniformly parabolic operators. Naturally this is also related to the Bony maximum 
principle, see [3].

In this context it is fair to mention that the first proof of the scale invariant Harnack inequality which 
constitutes one of the building blocks of our paper, can be found in [15]. Furthermore, the introduction of 
that paper, see p. 776–777 in [15], also contains a discussion of an example showing why a uniform Harnack 
inequality cannot be expected to hold outside of the propagation set A(z,t). In [15] the Harnack inequality 
is expressed in terms of level sets of the fundamental solution, hence depending implicitly on the underlying 
Lie group structure. This fact was used in [20], where the group law (1.8) was used explicitly and the 
Harnack inequality, in the form we use it, was proved for the first time.

In general, using (1.16) we see that if we want to construct a K-admissible path connecting (z, t), (z̃, ̃t) ∈
R

N+1, then we have flexibility to define and control the path in the x and t variables by choosing ωj for 
j = 1, . . . , m, and λ. However, by choosing {ωj} and λ, the path in the y variables becomes determined 
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by these choices. In this sense, any such construction renders a certain lack of control of the path in the y
variables and it becomes a difficult task (impossible in some cases) to connect arbitrary points (z, t) = (x, y, t)
and (z̃, ̃t) = (x̃, ỹ, ̃t), in a controlled manner, by K-admissible paths and Harnack chains while taking 
geometric restrictions into account.

An important contribution of this paper is that we are able to overcome this concrete difficulty by impos-
ing one additional restriction on our LipK-domains: we consider local LipK-domains defined by functions 
f as in (1.14) with the assumption that f does not depend on the variable y1. This formulation of the 
geometry induces an additional degree of freedom which we are able to explore to make progress.

1.3. Admissible local LipK-domains

Given (x, y) ∈ R
N , we write

(x, y) = (x1, x
′, y1, y

′) where x′ = (x2, . . . , xm), y′ = (y2, . . . , ym), (1.20)

and we let, with a slight abuse of notation,

‖(x′, y′, t)‖K = ‖((0, x′), (0, y′), t)‖K =
∣∣x′∣∣+ ∣∣y′∣∣1/3 + |t| 12 , (1.21)

in Rn−1 × R
n−1 × R. Given positive numbers r1, r2, we introduce the open cube

�r1,r2 = {(x′, y′, t) ∈ R
N−2 × R | |xi| < r1, |yi| < r3

1, |t| < r2
2}, (1.22)

where i ∈ {2, . . . , m}. Given any open set �r1,r2 ⊂ R
N−1 × R, we say that a function f , f : �r1,r2 → R, 

is a LipK-function, with respect to e1 = (1, 0, . . . , 0), independent of y1 and with constant M ≥ 0, if 
x1 = f(x′, y′, t) and∣∣f(x′, y′, t) − f(x̃′, ỹ′, t̃)

∣∣ ≤ M
∥∥(x′ − x̃′, y′ − ỹ′ + (t− t̃)x̃′, t− t̃)

∥∥
K
, (1.23)

whenever (x′, y′, t), (x̃′, ỹ′, ̃t) ∈ �r1,r2 . In addition, given positive numbers r1, r2, r3, we let

Qr1,r2,r3 = {(x1, x
′, y′, t) ∈ R

N | (x′, y′, t) ∈ �r1,r2 , |x1| < r3}. (1.24)

For positive M and r, we let QM,r = Qr,
√

2r,4Mr . Finally, given f as above with f(0, 0, 0) = 0 and M, r > 0, 
we define

Ωf,r = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,r, x1 > f(x′, y′, t), |y1| < r3},

Δf,r = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,r, x1 = f(x′, y′, t), |y1| < r3}.

Definition 1. Let f be a LipK-function, with respect to e1 = (1, 0, . . . , 0), independent of y1 and with 
constant M ≥ 0. Let Ωf,r and Δf,r be defined as above. Given M , r0, we say that Ωf,2r0 is an admissible
local LipK -domain, with LipK-constants M , r0. Similar we refer to Δf,2r0 as an admissible local LipK -surface 
with LipK-constants M , r0.

Remark 1.1. Our results, see Theorems 1.1, 1.2 and 1.3 below, are established near an admissible local 
LipK-surface Δf,2r0 . The surface Δf,2r0 is contained in the non-characteristic part of the boundary of 
Ωf,2r0 . Recall that a vector ν ∈ R

N+1 is an outer normal to Ωf,2r0 at (z0, t0) ∈ Δf,2r0 if there exists a 
positive r such that B((z0, t0) +rν, r) ∩Ωf,2r0 = ∅. Here B((z0, t0) +rν, r) denotes the (standard) Euclidean 
ball in RN+1 with center at (z0, t0) + rν and radius r. Now 〈Xj(z0, t0), ν〉 �= 0, for some j = 1, . . . , m, 
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whenever (z0, t0) ∈ Δf,2r0 . Hence, by definition all points (z0, t0) ∈ Δf,2r0 are non-characteristic points 
for the operator K. For a more thorough discussion of this, regular points for the Dirichlet problem, and 
Fichera’s classification, we refer to subsection 2.4, see (2.15) in particular.

Remark 1.2. We emphasize that an admissible local LipK-surface Δf,2r0 is defined through a function f
which is independent of the y1 variable. This formulation of the geometry induces an additional degree 
of freedom which we are able to explore to make progress. In particular, as discussed, due to the lack of 
flexibility when constructing K-admissible paths and Harnack chains, it is difficult to connect arbitrary 
points (z, t) = (x, y, t) and (z̃, ̃t) = (x̃, ỹ, ̃t), in a controlled manner, while taking geometric restrictions into 
account. However, using that Δf,2r0 is independent y1, and as our equation is invariant under translations 
in the y1 variable, we are able to explore this independence in the proof of our main results in a manner 
similar to how t independence is explored in [12]. We refer to subsection 1.5 below for a more thorough 
discussion, see also Remark 1.5 below.

1.4. Statement of the main results

Let Ωf,2r0 be an admissible local LipK-domain in the sense of Definition 1, with LipK-constants M , r0. 
The topological boundary is denoted by ∂Ωf,2r0 . As discussed in the bulk of the paper, all points on Δf,2r0
are regular for the Dirichlet problem for the operator K in Ωf,2r0 . For every (z, t) ∈ Ωf,2r0 , there exists a 
unique probability measure ωK(z, t, ·) on ∂Ωf,2r0 such that the Perron–Wiener–Brelot solution to Ku = 0
in Ωf,2r0 , with boundary data ϕ on ∂Ωf,2r0 , equals

u(z, t) =
∫

∂Ωf,2r0

ϕ(z̃, t̃)dωK(z, t, z̃, t̃). (1.25)

We refer to ωK(z, t, ·) as the Kolmogorov measure relative to (z, t) and Ωf,2r0 . To formulate our results we 
also have to introduce certain reference points.

Definition 2. Given 
 > 0 and Λ > 0 we let

A+
�,Λ =

(
Λ
, 0,−2

3Λ
3, 0, 
2) ∈ R× R
m−1 × R× R

m−1 × R,

A�,Λ = (Λ
, 0, 0, 0, 0) ∈ R× R
m−1 × R× R

m−1 × R,

A−
�,Λ =

(
Λ
, 0, 2

3Λ
3, 0,−
2) ∈ R× R
m−1 × R× R

m−1 × R. (1.26)

Furthermore, given (z0, t0) ∈ R
N+1 and 
 > 0, we let QM,�(z0, t0) = (z0, t0) ◦ QM,� and A�,Λ(z0, t0) =

(z0, t0) ◦A�,Λ. In Theorem 1.2 below we use the notation

dK((z, t), (z̃, t̃)) := ‖(z̃, t̃)−1 ◦ (z, t)‖K .

Theorem 1.1. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M), 1 ≤ Λ < ∞, and c0 = c0(N, M), 1 ≤ c0 < ∞, such that the following is true. Assume that u
is a non-negative solution to Ku = 0 in Ωf,2r0 and that u vanishes continuously on Δf,2r0 . Let 
0 = r0/c0, 
introduce

m+ = u(A+
�0,Λ), m− = u(A−

�0,Λ), (1.27)

and assume that m− > 0. Then there exist constants c1 = c1(N, M), 1 ≤ c1 < ∞, c2 = c2(N, M, m+/m−), 
1 ≤ c2 < ∞, such that if we let 
1 = 
0/c1, then



162 K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202
u(z, t) ≤ c2u(A�,Λ(z0, t0)),

whenever (z, t) ∈ Ωf,2r0 ∩QM,�/c1(z0, t0), for some 0 < 
 < 
1 and (z0, t0) ∈ Δf,�1 .

Theorem 1.2. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M), 1 ≤ Λ < ∞, and c0 = c0(N, M), 1 ≤ c0 < ∞, such that the following is true. Assume that u
and v are non-negative solutions to Ku = 0 in Ωf,2r0 and that v and u vanish continuously on Δf,2r0 . Let 

0 = r0/c0, introduce

m+
1 = v(A+

�0,Λ), m−
1 = v(A−

�0,Λ),

m+
2 = u(A+

�0,Λ), m−
2 = u(A−

�0,Λ), (1.28)

and assume that m−
1 > 0, m−

2 > 0. Then there exist constants c1 = c1(N, M), c2 = c2(N, M, m+
1 /m

−
1 ,

m+
2 /m

−
2 ), σ = σ(N, M, m+

1 /m
−
1 , m

+
2 /m

−
2 ), 1 ≤ c1, c2 < ∞, σ ∈ (0, 1), such that if we let 
1 = 
0/c1, then∣∣∣∣ v(z, t)u(z, t) − v(z̃, t̃)

u(z̃, t̃)

∣∣∣∣ ≤ c2

(
dK((z, t), (z̃, t̃))




)σ
v(A�,Λ(z0, t0))
u(A�,Λ(z0, t0))

,

whenever (z, t), (z̃, ̃t) ∈ Ωf,2r0 ∩QM,�/c1(z0, t0), for some 0 < 
 < 
1 and (z0, t0) ∈ Δf,�1 .

Theorem 1.3. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M), 1 ≤ Λ < ∞, c1 = c1(N, M), 1 ≤ c1 < ∞, such that the following is true. Let 
1 = r0/c1, and 
consider 
, 0 < 
 < 
1. Let (z0, t0) ∈ Δf,�1 and let ωK(A+

�,Λ(z0, t0), ·) be the Kolmogorov measure relative 
to A+

�,Λ(z0, t0) and Ωf,2r0 . Then there exist c2 = c2(N, M), 1 ≤ c2 < ∞, and c3 = c3(N, M), 1 ≤ c3 < ∞, 
such that

ωK(A+
�,Λ(z0, t0),Δf,2r0 ∩QM,2�̃(z̄0, t̄0)) ≤ c2ωK(A+

�,Λ(z0, t0),Δf,2r0 ∩QM,�̃(z̄0, t̄0)),

whenever (z̄0, ̄t0) ∈ Δf,2r0 and QM,�̃(z̄0, ̄t0) ⊂ QM,�/c3(z0, t0).

Remark 1.3. Theorem 1.1 and Theorem 1.2 give scale and translation invariant quantitative estimates 
concerning the behavior, at the boundary, for non-negative solutions vanishing on Δf,2r0 . The constants in 
the estimates depend only on N, M and certain reference quotients for (of) the solution(s) at well-defined 
interior points of reference. Theorem 1.3 gives a scale and translation invariant doubling property of the 
Kolmogorov measure.

Remark 1.4. Theorems 1.1, 1.2 and 1.3 are completely new and we believe that these theorems represent the 
starting point for far reaching developments concerning operators of Kolmogorov type. Using this notion of 
local LipK-domains we in [8,9], in greater generality, developed a number of important preliminary results 
concerning the boundary behavior of non-negative solutions like, for example, the Carleson estimate. This 
paper can be seen as a rather far reaching continuation of these papers.

Remark 1.5. In Theorem 1.1, Theorem 1.2 and Theorem 1.3, as well as in the generalizations stated in 
Theorem 7.1 and Theorem 7.2 below, the underlying function f defining the local domain is assumed to be 
independent of a set of properly chosen variables. It is fair to pose the question if this is really necessary 
for the validity of this type of results. Though our argument relies heavily on independence, we believe that 
the answer to this question likely is no. We believe that the results established in this paper can serve as 
a starting point for the development of the corresponding results under weaker assumptions. We here leave 
this problem for future research.
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1.5. Brief discussion of the proof and organization of the paper

Section 2 is of preliminary nature and we here state facts about the fundamental solution associated 
to K, we state the Harnack inequality, we discuss the Dirichlet problem and we introduce the Kolmogorov 
measure and the Green function. In Section 3 we elaborate on the Harnack inequality, K-admissible paths 
and Harnack chains under geometric restrictions. Some of the material in this section builds on results 
established in [8,9]. In Section 4 we establish an important relation between the Kolmogorov measure and 
the Green function. In Section 5 we first prove Lemma 5.1 which gives a weak comparison principle at the 
boundary. Using Lemma 5.1 we in Section 5 then prove an important lemma: Lemma 5.3. In fact, it is 
Lemma 5.3 which enables us to, in the end, complete the proofs of Theorems 1.1, 1.2 and 1.3. In the context 
of admissible local LipK -domains, Lemma 5.3 states that there exist constants ci = ci(N, M), 1 ≤ ci < ∞, 
i ∈ {0, 1, 2, 3}, such that if u is a non-negative solution to Ku = 0 in Ωf,2r0 , vanishing continuously on 
Δf,2r0 , 
0 = r0/c0, 
1 = 
0/c1, then

c−1
2

u(A+
�0,Λ)

u(A−
�0,Λ)

≤ u(x1, x
′, 0, y′, t)

u(x1, x′, y1, y′, t)
≤ c2

u(A+
�0,Λ)

u(A−
�0,Λ)

, (1.29)

whenever (x1, x′, y1, y′, t) ∈ Ωf,�1/c3 . I.e., for (x1, x′, y′, t) fixed and up to the boundary, all values of the 
function

y1 �→ u(x1, x
′, y1, y

′, t)

are comparable to u(x1, x′, 0, y′, t), uniformly in (x1, x′, y′, t), but with constants depending on the (accept-
able) quotient u(A+

�0,Λ)/u(A−
�0,Λ). Using this result we have a crucial additional degree of freedom at our 

disposal when building Harnack chains to connect points: we can freely connect points in the x1 variable, 
taking geometric restriction into account, accepting that the path in the y1 variable will most probably 
not end up in ‘the right spot’. In the proof of Lemma 5.3 we use the fact that by the very definition of an 
admissible local LipK-domain, the surface Δf,2r0 is independent of y1, hence we are able to translate with 
respect to this variable. Section 6 is devoted to the proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3. 
Section 7 is devoted to a discussion of to what extent Theorems 1.1, 1.2 and 1.3 can be extended to more 
general operators of Kolmogorov type.

2. Preliminaries

In general we will establish our estimates in an admissible local LipK -domain Ωf,2r0 ⊂ R
N+1, with 

LipK-constants M , r0. Therefore, throughout the paper c will in general denote a positive constant c ≥ 1, 
not necessarily the same at each occurrence, depending at most on N and M . Naturally c = c(a1, . . . , al)
denotes a positive constant c ≥ 1 which may depend only on a1, . . . , al and which is not necessarily the 
same at each occurrence. Two quantities A and B are said to be comparable, or A ≈ B, if c−1 ≤ A/B ≤ c

for some c = c(N, M), c ≥ 1.

2.1. Notation

Recall the definition of |(x, y)|K , (x, y) ∈ R
N , in (1.15) and that ‖δr(x, y, t)‖K = r‖(x, y, t)‖K for every 

r > 0 and (x, y, t) ∈ R
N+1. We recall the following pseudo-triangular inequality: there exists a positive 

constant c such that

‖(x, y, t)−1‖K ≤ c‖(x, y, t)‖K ,

‖(x, y, t) ◦ (x̃, ỹ, t̃)‖K ≤ c(‖(x, y, t)‖K + ‖(x̃, ỹ, t̃)‖K), (2.1)
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whenever (x, y, t), (x̃, ỹ, ̃t) ∈ R
N+1. We define the quasi-distance dK by setting

dK((z, t), (z̃, t̃)) := ‖(z̃, t̃)−1 ◦ (z, t)‖K , (2.2)

and we introduce the ball

BK((x, y, t), r) := {(x̃, ỹ, t̃) ∈ R
N+1 | dK((x̃, ỹ, t̃), (x, y, t)) < r}. (2.3)

Note that from (2.1) it follows directly that

dK((x, y, t), (x̃, ỹ, t̃)) ≤ c(dK((x, y, t), (x̂, ŷ, t̂)) + dK((x̂, ŷ, t̂), (x̃, ỹ, t̃))), (2.4)

whenever (x, y, t), (x̂, ŷ, ̂t), (x̃, ỹ, ̃t) ∈ R
N+1. For any (x, y, t) ∈ R

N+1 and H ⊂ R
N+1, we define

dK((x, y, t), H) := inf{dK((x, y, t), (x̃, ỹ, t̃)) | (x̃, ỹ, t̃) ∈ H}. (2.5)

Using this notation we say that a function f : O → R is Hölder continuous of order α ∈ (0, 1], in short 
f ∈ C0,α

K (O), if there exists a positive constant c such that

|f(x, y, t) − f(x̃, ỹ, t̃)| ≤ c dK((x, y, t), (x̃, ỹ, t̃))α, (2.6)

for every (x, y, t), (x̃, ỹ, ̃t) ∈ O. We let

‖u‖C0,α
K (O) = sup

O
|u| + sup

(x,y,t),(x̃,ỹ,t̃)∈O
(x,y,t) �=(x̃,ỹ,t̃)

|u(x, y, t) − u(x̃, ỹ, t̃)|
‖(x̃, ỹ, t̃)−1 ◦ (x, y, t)‖αK

. (2.7)

Note that, if O is any bounded subset of RN+1, then every u ∈ C0,α
K (O) is Hölder continuous in the usual 

sense as

‖(x̃, ỹ, t̃)−1 ◦ (x, y, t)‖K ≤ cO|(x, y, t) − (x̃, ỹ, t̃)| 13 .

2.2. Fundamental solution

Following [19] and [20] it is well known that an explicit fundamental solution, Γ, associated to K can be 
written down. Let

B :=
(

0 Im
0 0

)
, E(s) = exp(−sB∗),

for s ∈ R, where Im, 0, represent the identity matrix and the zero matrix in Rm, respectively. ∗ denotes the 
transpose. Furthermore, let

C(t) :=
t∫

0

E(s)
(
Im 0
0 0

)
E∗(s)ds =

(
tIm − t2

2 Im
− t2

2 Im
t3

3 Im

)
,

whenever t ∈ R. Note that det C(t) = t4m/12 and that

(C(t))−1 = 12
(

t−1

3 Im
t−2

2 Im
t−2

I t−3I

)
.

2 m m
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Using this notation we have that

Γ(z, t, z̃, t̃) = Γ(z −E(t− t̃)z̃, t− t̃, 0, 0), (2.8)

where Γ(z, t, 0, 0) = 0 if t ≤ 0, z �= 0, and

Γ(z, t, 0, 0) = (4π)−N/2√
det C(t)

exp
(
−1

4 〈C(t)−1z, z〉
)

if t > 0. (2.9)

Here 〈·, ·〉 denotes the standard inner product on RN . We also note that

Γ(z, t, z̃, t̃) ≤ c

‖(z̃, t̃)−1 ◦ (z, t)‖qK
for all (z, t), (z̃, t̃) ∈ R

N × (0, T ), t > t̃, (2.10)

where q = 4m and c = c(N). Often q+2 is referred to as the homogeneous dimension of RN+1 with respect 
to the dilations group (δr)r>0.

2.3. The Harnack inequality

To formulate the Harnack inequality we first need to introduce some additional notation. We let, for 
r > 0 and (z0, t0) ∈ R

N+1,

Q− =
(
B(1

2e1, 1) ∩B(−1
2e1, 1)

)
× [−1, 0],

Q−
r (z0, t0) = (z0, t0) ◦ δr

(
Q−) , (2.11)

where e1 is the unit vector pointing in the direction of x1 and B(1
2e1, 1) and B(−1

2e1, 1) are standard 
Euclidean balls of radius 1, centered at 1

2e1 and −1
2e1, respectively. Similarly, we let

Q =
(
B(1

2e1, 1) ∩B(−1
2e1, 1)

)
× [−1, 1],

Qr(z0, t0) = (z0, t0) ◦ δr (Q) . (2.12)

Given α, β, γ, θ ∈ R such that 0 < α < β < γ < θ2, we set

Q̃+
r (z0, t0) =

{
(x, t) ∈ Q−

θr(z0, t0) | t0 − αr2 ≤ t ≤ t0
}
,

Q̃−
r (z0, t0) =

{
(x, t) ∈ Q−

θr(z0, t0) | t0 − γr2 ≤ t ≤ t0 − βr2}.
In the following we formulate two versions of the Harnack inequality. Recall, given a domain Ω ⊂ R

N+1 and 
a point (z, t) ∈ Ω, the sets A(z,t)(Ω) and A(z,t)(Ω) = A(z,t)(Ω) defined in the introduction.

Theorem 2.1. There exist constants c > 1 and α, β, γ, θ ∈ (0, 1), with 0 < α < β < γ < θ2, such that 
the following is true. Assume u is a non-negative solution to Ku = 0 in Q−

r (z0, t0) for some r > 0, 
(z0, t0) ∈ R

N+1. Then,

sup
Q̃−

r (z0,t0)
u ≤ c inf

Q̃+
r (z0,t0)

u.
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Theorem 2.2. Let Ω ⊂ R
N+1 be domain and let (z0, t0) ∈ Ω. Let K be a compact set contained in the interior 

of A(z0,t0)(Ω). Then there exists a positive constant cK, depending only on Ω and K, such that

sup
K

u ≤ cK u(z0, t0),

for every non-negative solution u of Ku = 0 in Ω.

Remark 2.1. We emphasize, and this is different compared to the case of uniform parabolic equations, that 
the constants α, β, γ, θ in Theorem 2.1 cannot be arbitrarily chosen. In particular, according to Theorem 2.2, 
the cylinder Q̃−

r (z0, t0) has to be contained in the interior of the propagation set A(z0,t0)(Q−
r (z0, t0)).

2.4. The Dirichlet problem

Let Ω ⊂ R
N+1 be a bounded domain with topological boundary ∂Ω. Given ϕ ∈ C(∂Ω) we consider here 

the well posedness of the boundary value problem{
Ku = 0 in Ω,

u = ϕ on ∂Ω.
(2.13)

The existence of a solution to this problem can be established by using the Perron–Wiener–Brelot method 
and, in the sequel, uϕ will denote this solution to (2.13). In the following we first introduce what we refer 
to as the Kolmogorov boundary of Ω, denoted ∂KΩ. The notion of the Kolmogorov boundary replaces the 
notion of the parabolic boundary used in the context of uniformly parabolic equations.

Definition 3. The Kolmogorov boundary of Ω, denoted ∂KΩ, is defined as

∂KΩ =
⋃

(z,t)∈Ω

(A(z,t)(Ω) ∩ ∂Ω).

By Definition 3, ∂KΩ ⊂ ∂Ω is the set of all points on the topological boundary of Ω which is contained 
in the closure of the propagation of at least one interior point in Ω. The importance of the Kolmogorov 
boundary of Ω is highlighted by the following lemma.

Lemma 2.1. Consider the Dirichlet problem in (2.13) with boundary data ϕ ∈ C(∂Ω) and let u = uϕ be the 
corresponding Perron–Wiener–Brelot solution. Then

sup
Ω

|u| ≤ sup
∂KΩ

|ϕ|.

In particular, if ϕ ≡ 0 on ∂KΩ, then u ≡ 0 in Ω.

Proof. The lemma is a consequence of the Bony maximum principle, see [3]. �
∂KΩ is the largest subset of the topological boundary of Ω on which we can attempt to impose boundary 

data if we want to construct non-trivial solutions. Hence, also the notion of regular points for the Dirichlet 
problem only makes sense for points on the Kolmogorov boundary and we let ∂RΩ be the set of all (z0, t0) ∈
∂KΩ such that

lim uϕ(z, t) = ϕ(z0, t0) for any ϕ ∈ C(∂KΩ). (2.14)

(z,t)→(z0,t0)
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We refer to ∂RΩ as the regular boundary of Ω with respect to the operator K. By definition ∂RΩ ⊆ ∂KΩ.
Given a bounded domain Ω ⊂ R

N+1, in [21, Proposition 6.1] Manfredini gives sufficient conditions for 
regularity of boundary points. Recall that a vector ν ∈ R

N+1 is an outer normal to Ω at (z0, t0) ∈ ∂Ω if 
there exists a positive r such that B((z0, t0) + rν, r) ∩Ω = ∅. Here B((z0, t0) + rν, r) denotes the (standard) 
Euclidean ball in RN+1 with center at (z0, t0) + rν and radius r. In consistency with Fichera’s classification, 
sufficient conditions for the regularity can be expressed in geometric terms as follows. If (z0, t0) ∈ ∂Ω and 
ν = (ν1, . . . , νN+1) is an outer normal to Ω at (z0, t0), then the following holds:

(a) if (ν1, . . . , νm) �= 0, then (z0, t0) ∈ ∂RΩ,

(b) if (ν1, . . . , νm) = 0 and 〈Y (z0, t0), ν〉 > 0, then (z0, t0) ∈ ∂RΩ,

(c) if (ν1, . . . , νm) = 0 and 〈Y (z0, t0), ν〉 < 0, then (z0, t0) �∈ ∂RΩ, (2.15)

where Y is the vector field defined in (1.11). Condition (a) can be equivalently expressed in terms of the 
vector fields Xj ’s as follows: 〈Xj(z0, t0), ν〉 �= 0 for some j = 1, . . . , m. If this condition holds, then in the 
literature (z0, t0) is often referred to as a non-characteristic point for the operator K.

A more refined sufficient condition for the regularity of the boundary points of ∂Ω is given in [21, 
Theorem 6.3] in terms of an exterior cone condition.

Lemma 2.2. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then

∂RΩf,2r0 = ∂KΩf,2r0 ,

i.e., all points on the Kolmogorov boundary are regular for the operator K.

Proof. First, using Lemma 3.6 below and the sufficient condition for the regularity of the boundary points 
in terms of the existence of exterior cones referred to above, see [21, Theorem 6.3], we have that

Δf,2r0 ⊂ ∂RΩf,2r0 .

Furthermore, that

∂KΩf,2r0 \ Δf,2r0 ⊂ ∂RΩf,2r0

follows, as discussed above, also by using the results in [21]. �
Remark 2.2. The operator adjoint to K is

K∗ =
m∑
i=1

∂xixi
−

m∑
i=1

xi∂yi
+ ∂t. (2.16)

In the case of the adjoint operator K∗ we denote the associated Kolmogorov boundary of Ωf,2r0 by ∂∗
KΩf,2r0 . 

The above discussion and lemmas then apply to K∗ subject to natural modifications.

Lemma 2.3. Let Ω = Ωf,2r0 . Then there exists, for any ϕ ∈ C(∂KΩ), ϕ∗ ∈ C(∂∗
KΩ), unique solutions 

u = uϕ, u ∈ C∞(Ω), u∗ = uϕ∗ , u∗ ∈ C∞(Ω), to the Dirichlet problem in (2.13) and to the corresponding 
Dirichlet problem for K∗, respectively. Furthermore, u is continuous up to the boundary at all boundary 
points contained in ∂KΩ and u∗ is continuous up to the boundary at all boundary points contained in ∂∗

KΩ. 
Moreover, there exist, for every (z, t) ∈ Ω, unique probability measures ωK(x, t, ·) and ω∗

K(z, t, ·) on ∂KΩ
and ∂∗

KΩ, respectively, such that
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u(z, t) =
∫

∂KΩ

ϕ(z̃, t̃)dωK(z, t, z̃, t̃),

u∗(z, t) =
∫

∂∗
KΩ

ϕ∗(z̃, t̃)dω∗
K(x, t, z̃, t̃). (2.17)

Proof. The lemma is an immediate consequence of Lemma 2.1 and Lemma 2.2. �
Definition 4. Let (z, t) ∈ Ω = Ωf,2r0 . Then ωK(z, t, ·) is referred to as the Kolmogorov measure relative to 
(z, t) and Ω = Ωf,2r0 , and ω∗

K(z, t, ·) is referred to as the adjoint Kolmogorov measure relative to (z, t) and 
Ω = Ωf,2r0 .

We define the Green function for Ωf,2r0 , with pole at (ẑ, ̂t) ∈ Ωf,2r0 , as

G(z, t, ẑ, t̂) = Γ(z, t, ẑ, t̂) −
∫

∂KΩf,2r0

Γ(z̃, t̃, ẑ, t̂)dωK(z, t, z̃, t̃), (2.18)

where Γ is the fundamental solution to the operator K introduced in (2.8). If we instead consider (z, t) ∈
Ωf,2r0 as fixed, then, for (ẑ, ̂t) ∈ Ωf,2r0 ,

G(z, t, ẑ, t̂) = Γ(z, t, ẑ, t̂) −
∫

∂∗
KΩf,2r0

Γ(z, t, z̃, t̃)dω∗
K(ẑ, t̂, z̃, t̃), (2.19)

where now ∂∗
KΩf,2r0 is the Kolmogorov boundary for the equation adjoint to K and ω∗

K(ẑ, ̂t, ·) is the 
associated adjoint Kolmogorov measure relative to (ẑ, ̂t) and Ωf,2r0 . Given θ ∈ C∞

0 (RN+1), we have the 
representation formulas

θ(z, t) =
∫

∂KΩf,2r0

θ(z̃, t̃)dωK(z, t, z̃, t̃) +
∫

G(z, t, ẑ, t̂)Kθ(ẑ, t̂)dẑdt̂,

θ(ẑ, t̂) =
∫

∂∗
KΩf,2r0

θ(z̃, t̃)dω∗
K(ẑ, t̂, z̃, t̃) +

∫
G(z, t, ẑ, t̂)K∗θ(z, t)dzdt, (2.20)

whenever (z, t), (ẑ, ̂t) ∈ Ωf,2r0 . In particular,

∫
G(z, t, ẑ, t̂)Kθ(ẑ, t̂)dẑdt̂ = −

∫
θ(z̃, t̃) dωK(z, t, z̃, t̃),∫

G(z, t, ẑ, t̂)K∗θ(z, t)dzdt = −
∫

θ(z̃, t̃) dω∗
K(x̂, t̂, z̃, t̃) (2.21)

whenever θ ∈ C∞
0 (RN+1 \ {(z, t)}) and θ ∈ C∞

0 (RN+1 \ {(ẑ, ̂t)}), respectively.

3. Harnack chains under geometric restrictions

In this section we discuss the construction of Harnack chains in domains Ω ⊂ R
N+1 and we derive some 

important lemmas. The following lemma gives the general connection between appropriate K-admissible 
paths and the possibility to compare values of non-negative solutions to Ku = 0 in Ω.
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Lemma 3.1. Let Ω ⊂ R
N+1 be domain and let

Ωε := {(z, t) ∈ Ω | dK((z, t), ∂Ω) > ε}, (3.1)

for some ε ∈ (0, 1) small enough to ensure that Ωε �= ∅. Consider (z, t), (z̃, ̃t) ∈ Ωε, t̃ < t. Then the following 
is true for every non-negative solution u of Ku = 0 in Ω. Consider a K-admissible path (γ(τ), T − τ) :
[0, T ] → R

N+1, defined by non-negative measurable functions ωj ∈ L2([0, T ]), for j = 1, . . . , m, and λ. 
Assume that (γ(τ), T − τ) ∈ Ωε for all τ ∈ [0, T ], infτ∈[0,T ] λ(τ) > 0, and that (z, t) = γ(0), (z̃, ̃t) = γ(T ). 
Then there exists a positive constant c, depending only on N , such that if we define c(γ, ε) through

ln(c(γ, ε)) = c

⎛⎝1 + t− t̃

ε2
+

T∫
0

ω2
1(s) + · · · + ω2

m(s)
λ(s) ds

⎞⎠ ,

then

u(z̃, t̃) ≤ c(γ, ε)u(z, t).

Remark 3.1. The problem when attempting to apply Lemma 3.1 is that, in general, we have no method at 
our disposal based on which we, in concrete situations, can construct a K-admissible path (γ(τ), T − τ) :
[0, T ] → R

N+1, connecting (z, t), (z̃, ̃t) ∈ Ωε, while at the same time ensuring that (γ(τ), T − τ) ∈ Ωε for all 
τ ∈ [0, T ].

Definition 5. Let Ω ⊂ R
N+1 be domain. Let (z, t), (z̃, ̃t) ∈ Ω, t̃ < t, be given. Let {rj}kj=1 be a finite sequence 

of real numbers such that 0 < rj ≤ r0, for any j = 1, . . . , k, and let {(zj , tj)}kj=1 be a sequence of points 
such that (z1, t1) = (z, t). Then {{(zj , tj)}kj=1, {rj}kj=1} is said to be a Harnack chain in Ω connecting (z, t)
to (z̃, ̃t) if

(i) Q−
rj (zj , tj) ⊂ Ω, for every j = 1, . . . , k,

(ii) (zj+1, tj+1) ∈ Q̃−
rj (zj , tj), for every j = 1, . . . , k − 1,

(iii) (z̃, t̃) ∈ Q̃−
rk

(zk, tk). (3.2)

Let Ω ⊂ R
N+1 be domain. Let (z, t), (z̃, ̃t) ∈ Ω, t̃ < t, be given. Let u be a non-negative solution to 

Ku = 0 in Ω. Assume that {{(zj , tj)}kj=1, {rj}kj=1} is a Harnack chain in Ω connecting (z̃, ̃t) to (z, t) and let 
c be the constant appearing in Theorem 2.1. Then, using Theorem 2.1, we see that

u(zj+1, tj+1) ≤ cu(zj , tj), for every j = 1, . . . , k − 1, (3.3)

and hence,

u(z̃, t̃) ≤ cu(zk, tk) ≤ cku(z, t). (3.4)

Next we recall the following lemmas, Lemma 3.2 and Lemma 3.3. Lemma 3.2 is Lemma 2.2 in [4].

Lemma 3.2. Let (γ(τ), T − τ) : [0, T ] → R
N+1 be a K-admissible path and let a, b be constants such that 

0 ≤ a < b ≤ T . Then there exist positive constants h and β, depending only on N , such that

b∫
a

|ω(s)|2ds ≤ h ⇒ γ(b) ∈ Q−
r (γ(a), T − a), where r =

√
b− a

β
. (3.5)
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Lemma 3.3. Let Ω ⊂ R
N+1 be domain. Let (z, t), (z̃, ̃t) ∈ Ω, t̃ < t, be given. Consider the path (γ(τ), t − τ) :

[0, t − t̃] → R
N+1 where

γ(τ) = E(−τ)
(
z + C(τ)C−1(t− t̃)(E(t− t̃)z̃ − z)

)
. (3.6)

Then γ(0) = z, γ(t − t̃) = z̃ and (γ(τ), t − τ) is a K-admissible path. Moreover, the path satisfies (1.16)
with

ω(τ) = (ω1(τ), .., ωm(τ)) = E(τ)∗C−1(t− t̃)(E(t− t̃)z̃ − z). (3.7)

Let h and β be as in Lemma 3.2 and define {τj} as follows. Let τ0 = 0, and define τj, for j ≥ 1, recursively 
as follows:

(i) if
t−t̃∫
τj

|ω(τ)|2
h

dτ > 1 then τj+1 = inf
{
σ ∈ (τj , t− t̃] :

σ∫
τj

|ω(τ)|2
h

dτ > 1
}
,

(ii) if
t−t̃∫
τj

|ω(τ)|2
h

dτ ≤ 1 then τj+1 := t− t̃.

Let k be smallest index such that τk+1 = t − t̃. Define, based on {τj}k+1
j=0 ,

rj =
√

τj+1 − τj
β

, j = 1, . . . , k, (3.8)

and let (zj , tj) = (γ(τj), t − τj) for j = 1, . . . , k. Assume that

(γ(τ), t− τ) : [0, t− t̃] → Ω, and Q−
rj (zj , tj) ⊂ Ω, (3.9)

for every j = 1, . . . , k. Then there exists a constant c = c(N), 1 ≤ c < ∞, such that if u is a non-negative 
solution to Ku = 0 in Ω, then

u(z̃, t̃) ≤ c
(
1+ 1

h 〈C−1(t−t̃)(z−E(t−t̃)z̃),z−E(t−t̃)z̃〉
)
u(z, t). (3.10)

Proof. This lemma is essentially proved in [4]. In particular, that (γ(τ), t − τ) : [0, t − t̃] → R
N+1 is a 

K-admissible path, and that (3.7) holds, follow by a direct computation. Similarly,

t−t̃∫
0

|ω(τ)|2dτ = 〈C−1(t− t̃)(z −E(t− t̃)z̃), z −E(t− t̃)z̃〉. (3.11)

We now apply Lemma 3.2 to the path in (3.6). Let {{(zj , tj)}kj=1, {rj}kj=1} be constructed as in the statement 
of Lemma 3.3. Then, using Lemma 3.2, and the assumption in (3.9), it follows that

{{(zj , tj)}kj=1, {rj}kj=1}

is a Harnack chain in RN+1 connecting (z̃, ̃t) to (z, t). Furthermore, the length of the chain, k, can be 
estimated and

k ≤ 1 + 1
h
〈C−1(t− t̃)(z −E(t− t̃)z̃), z − E(t− t̃)z̃〉. (3.12)

This completes the proof of the lemma. �
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Remark 3.2. The crucial assumption to be verified when applying Lemma 3.3 is (3.9), i.e., we have to ensure 
that (γ(τ), t − τ) : [0, t − t̃] → Ω and that Q−

rj (zj , tj) ⊂ Ω, for every j = 1, . . . , k. This condition is trivially 
satisfied when Ω = R

N × (T0, T1) for some T0 < τ − r2 < t < T1. In this case, the path constructed in 
Lemma 3.3 is the solution of an optimal control problem giving the K-admissible path connecting (z, t), 
(z̃, ̃t), t̃ < t, which minimizes the energy

t−t̃∫
0

|ω(τ)|2dτ. (3.13)

This path is constructed without reference to any geometric restrictions and it is not a straight line. Clearly, 
this introduces new difficulties when we impose some geometric restrictions on the domain Ω as it is, in 
Lemma 3.3, the path which imposes restrictions on Ω. In reality we want the opposite: we want to construct 
a path subject to the geometric restrictions imposed by Ω. Finally, following [4] we can also conclude that 
Lemma 3.3 holds for much more general operators of Kolmogorov type.

Remark 3.3. Consider Lemma 3.3 and let δ = t − t̃. Then

γ(τ) = E(−τ)
(
z + C(τ)C−1(δ)(E(δ)z̃ − z)

)
. (3.14)

By a straightforward computation we see that

C(τ)C−1(δ) = 12
(

τIm − τ2

2 Im
− τ2

2 Im
τ3

3 Im

)(
δ−1

3 Im
δ−2

2 Im
δ−2

2 Im δ−3Im

)

= 12
(

(1
3τδ

−1 − 1
4 (τδ−1)2)Im (1

2τδ
−2 − 1

2 (τ2δ−3))Im
(−1

6τ
2δ−1 + 1

6 (τ3δ−2))Im (−1
4τ

2δ−2 + 1
3(τδ−1)3)Im

)
=
(

A11(τ/δ)Im δ−1A12(τ/δ)Im
τA21(τ/δ)Im A22(τ/δ)Im

)
, (3.15)

where Aij are bounded functions defined on the interval [0, 1] and Aij(0) = 0. Note also that(
A11(1) A12(1)
A21(1) A22(1)

)
=
(

1 0
0 1

)
. (3.16)

Furthermore, simply using the short notation z = (x, y), z̃ = (x̃, ỹ), Aij = Aij(τ/δ), we get, after some 
computations, that

γ(τ) = E(−τ)
(
z + C(τ)C−1(δ)(E(δ)z̃ − z)

)
=
(

Im 0
τIm Im

)(
x + A11(x̃− x) + δ−1A12(ỹ − y − δx̃)
y + τA21(x̃− x) + A22(ỹ − y − δx̃)

)
=
(
γx(τ)
γy(τ)

)
, (3.17)

where

γx(τ) = x−A12(τ/δ)x̃ + A11(τ/δ)(x̃− x) + δ−1A12(τ/δ)(ỹ − y),

γy(τ) = τ(x + A11(τ/δ)(x̃− x) + A21(τ/δ)(x̃− x))

+ y + Ã12(τ/δ)(ỹ − y − δx̃) + A22(τ/δ)(ỹ − y − δx̃), (3.18)

for some new function Ã12 with the same properties as A12.
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Remark 3.4. Consider Lemma 3.3 and let δ = t − t̃. Consider the path (γ(τ), t −τ) : [0, t − t̃] → R
N+1. Using 

Remark 3.3 we see that

(z, t)−1 ◦ (γ(τ), t− τ) = (−x,−y − tx,−t) ◦ (γ(τ), t− τ)

= (δx(τ), δy(τ),−τ),

(z̃, t̃)−1 ◦ (γ(τ), t− τ) = (−x̃,−ỹ − t̃x̃,−t̃) ◦ (γ(τ), t− τ)

= (δ̃x(τ), δ̃y(τ), δ − τ),

where

δx(τ) = −A12(τ/δ)x̃ + A11(τ/δ)(x̃− x) + δ−1A12(τ/δ)(ỹ − y),

δy(τ) = τ(A11(τ/δ)(x̃− x) + A21(τ/δ)(x̃− x))

+ Ã12(τ/δ)(ỹ − y − δx̃) + A22(τ/δ)(ỹ − y − δx̃), (3.19)

and

δ̃x(τ) = x− x̃−A12(τ/δ)x̃ + A11(τ/δ)(x̃− x) + δ−1A12(τ/δ)(ỹ − y),

δ̃y(τ) = τ(x− x̃ + A11(τ/δ)(x̃− x) + A21(τ/δ)(x̃− x))

+ (y − ỹ) + δx̃ + Ã12(τ/δ)(ỹ − y − δx̃) + A22(τ/δ)(ỹ − y − δx̃). (3.20)

Remark 3.5. Consider Lemma 3.3 and let δ = t − t̃. Then, by similarly considerations as in Remark 3.3 we 
see that

〈C−1(δ)(z −E(δ)z̃), z −E(δ)z̃〉 = 4δ−1|x− x̃|2 + 12δ−3|y − ỹ + δx̃|2

+ 12δ−2〈y − ỹ + δx̃, x− x̃〉
≤ 100(δ−1|x− x̃|2 + δ−3|y − ỹ + δx̃|2). (3.21)

Remark 3.6. Inequality (3.10) in Lemma 3.3 gives the sharp bound for a non-negative solution in RN . 
The exponent appearing in (3.10) is found by solving an optimal control problem as briefly discussed in 
Remark 3.2. However, in the context of the equation Ku = 0 it is also possible to give a more intuitive 
construction of Harnack chains, a construction that gives a non-sharp, but equivalent, exponent. In the 
following we show how to construct such a K-admissible path connecting (x, y, t) ∈ R

N × R
+ to (0, 0, 0). 

Consider γ : [0, t] → R
N+1 such that

d

dτ
γ(τ) =

m∑
j=1

ωj(τ)Xj + Y (γ(τ))

for some piecewise constant vector ω = (ωi, . . . , ωm) ∈ R
m. Writing γ(τ) = (x(τ), y(τ), t− τ) we have that

d

dτ
x(τ) = ω(τ), d

dτ
y(τ) = x(τ).

We now let, for suitable vectors ω, ̃ω ∈ R
m to be chosen, ω(τ) = ω for τ ∈ [0, t2 ), ω(τ) = ω̃ for τ ∈ [ t2 , 

3
4 t), 

ω(τ) = −ω̃ for τ ∈
[3

4 t, t
]
. Specifically, we choose ω so that x 

(
t
2
)

= 0. A direct computation shows that

x
(
t
)

= x + tω, y
(
t
)

= y + tx + t2ω,
2 2 2 2 8
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and if we choose ω = −2
tx, then x 

(
t
2
)

= 0 and y
(
t
2
)

= y + t
4x. In particular,

x (τ) =
(
t
4 −
∣∣τ − 3

4 t
∣∣) ω̃, y (t) = y + t

4x + t2

16 ω̃,

for τ ∈
[
t
2 , t
]

and (x(t), (y(t)) = (0, 0) if we choose ω̃ = −16
t2

(
y + t

4x
)
. Based on this construction we now 

use Lemma 3.2 to give an estimate for the constant k in (3.4). Indeed, let k0 be the positive integer which 
satisfies

k0h < 2
t |x|

2 = t
2 |ω|

2 =
t/2∫
0

|ω(s)|2ds ≤ (k0 + 1)h.

By Lemma 3.2, the points zj = γ
(

t
2βj

)
, 1 ≤ j ≤ k0, form a Harnack chain of length k0. Analogously, we 

let k1 be the positive integer which satisfies

k1h < 8
t3 |y + t

4x|
2 = t

4 |ω̃|
2 =

3t/4∫
t/2

|ω(s)|2ds ≤ (k1 + 1)h,

and we form a Harnack chain of length k1. The construction made in the interval [ t2 , 
3
4 t) gives a Harnack 

chain also for 
[3
4 t, t
]
. We eventually obtain a Harnack chain of length k = k0 + 2k1 + 3. Put together, the 

above two inequalities imply that u(0, 0, 0) ≤ cku(x, y, t) with k satisfying

k ≤ c

(
|x|2
t

+
|y + t

4x|2
t3

)
, (3.22)

for some positive constant c depending only on N . This argument was introduced in [24].

Lemma 3.4. Let Λ be a positive constant. Define

zΛ =
(
Λ, 0,−2

3Λ, 0
)
∈ R× R

m−1 × R× R
m−1. (3.23)

Then, the path [0, 1] � τ → γ(τ) = δ1−τ (zΛ, 1) is K-admissible.

Proof. Note that by definition

γ(τ) =
(
(1 − τ)Λ, 0,−2

3 (1 − τ)3Λ, 0, (1 − τ)2
)
, τ ∈ [0, 1].

Hence, by a direct computation

d

dτ
γ(τ) = (−Λ, 0, 2(1 − τ)2Λ,−2(1 − τ)), τ ∈ [0, 1].

In particular,

d

dτ
γ(τ) =

m∑
j=1

ωj(τ)Xj(γ(τ)) + λ(τ)Y (γ(τ)), τ ∈ [0, 1], (3.24)

where ω1 = −Λ, ωj ≡ 0 for j ∈ {2, .., m} and λ(τ) = 2(1 − τ). �
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3.1. The Harnack inequality in cones in local LipK-domains

Given (z0, t0) ∈ R
N+1, z̄ ∈ R

N , t̄ ∈ R+, consider an open neighborhood U ⊂ R
N of z̄, and let

Z+
z̄,t̄,U

(z0, t0) =
{
(z0, t0) ◦ δs(x, t̄) | x ∈ U, 0 < s ≤ 1

}
,

Z−
z̄,t̄,U

(z0, t0) =
{
(z0, t0) ◦ δs(x,−t̄) | x ∈ U, 0 < s ≤ 1

}
. (3.25)

Then Z+
z̄,t̄,U

(z0, t0) and Z−
z̄,t̄,U

(z0, t0) are cones with vertex at (z0, t0). Note that this notation was introduced 

in [9]. Given 
 > 0 and Λ > 0, recall the points A+
�,Λ, A�,Λ, A−

�,Λ, introduced in (1.26). In addition we here 
introduce

Ã+
�,Λ = (−Λ
, 0, 2

3Λ
3, 0, 
2),

Ã−
�,Λ = (−Λ
, 0,−2

3Λ
3, 0,−
2). (3.26)

Furthermore, given (z0, t0) ∈ R
N+1 we let A±

�,Λ(z0, t0) = (z0, t0) ◦ A±
�,Λ, A�,Λ(z0, t0) = (z0, t0) ◦ A�,Λ, 

Ã±
�,Λ(z0, t0) = (z0, t0) ◦ Ã±

�,Λ. Consider the cones Z±
·,·,·(z0, t0) defined in (3.25). Given η, 0 < η � 1, Λ, and 

ρ > 0, we let

C+
�,η,Λ(z0, t0) = Z+

A+
�,Λ,BK((z+

�,Λ,0),η�)∩{(z,t)∈RN+1:t=0}(z0, t0),

C−
�,η,Λ(z0, t0) = Z−

A−
�,Λ,BK((z−

�,Λ,0),η�)∩{(z,t)∈RN+1:t=0}(z0, t0),

C̃+
�,η,Λ(z0, t0) = Z+

Ã+
�,Λ,BK((z̃+

�,Λ,0),η�)∩{(z,t)∈RN+1:t=0}(z0, t0),

C̃−
�,η,Λ(z0, t0) = Z−

Ã−
�,Λ,BK((z̃+

�,Λ,0)η�)∩{(z,t)∈RN+1:t=0}(z0, t0), (3.27)

where the points z+
�,Λ, z−�,Λ, z̃+

�,Λ, z̃−�,Λ are defined through the relations A+
�,Λ = (z+

�,Λ, 

2), A−

�,Λ = (z−�,Λ, −
2), 
Ã+

�,Λ = (z̃+
�,Λ, 


2), Ã−
�,Λ = (z̃−�,Λ, −
2). The balls BK((z±�,Λ, 0), η
), BK((z̃±�,Λ, 0), η
), are defined as in (2.3). 

Note that

C±
�,η,Λ(z0, t0), C̃±

�,η,Λ(z0, t0), (3.28)

represent, for η small, cones ‘centered’ around appropriate (K-admissible) paths passing through (z0, t0) as 
well as the reference points A±

�,Λ(z0, t0), Ã±
�,Λ(z0, t0).

Lemma 3.5. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M), 1 ≤ Λ < ∞, and c0 = c0(N, M), 1 ≤ c0 < ∞, such that the following is true. Let 
0 = r0/c0, 
consider (z0, t0) ∈ Δf,�0 , 0 < 
 < 
0, and let A±

�,Λ(z0, t0), Ã±
�,Λ(z0, t0), be defined as above. Then

A±
�,Λ(z0, t0), Ã±

�,Λ(z0, t0) ∈ Ωf,r0 , (3.29)

and there exists a constant c = c(N, M), 1 ≤ c < ∞, such that

(i) c−1
 < dK(P�,Λ(z0, t0), (z0, t0)) < c
,

(ii) c−1
 < dK(P�,Λ(z0, t0),Δf,2r0), (3.30)

whenever P�,Λ(z0, t0) ∈ {A± (z0, t0), Ã± (z0, t0)}. Furthermore, the paths
�,Λ �,Λ



K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202 175
γ+(τ) = A+
(1−τ)�,Λ(z0, t0), γ−(τ) = A−

(1−τ)�,Λ(z0, t0), τ ∈ [0, 1], (3.31)

are K-admissible paths.

Proof. (3.29) and (3.30) are consequences of Lemma 4.4 in [9]. That the paths in (3.31) are K-admissible 
follows from Lemma 3.4. �
Lemma 3.6. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M), 1 ≤ Λ < ∞, and c0 = c0(N, M), 1 ≤ c0 < ∞, such that the following is true. Let 
0 = r0/c0, 
consider (z0, t0) ∈ Δf,�0 and 0 < 
 < 
0. Then there exists η = η(N, M), 0 < η � 1, such that if we 
introduce C±

�,2η,Λ(z0, t0), C̃±
�,2η,Λ(z0, t0), as in (3.27), then

(i) C±
�,2η,Λ(z0, t0) ⊂ Ωf,r0 ,

(ii) C̃±
�,2η,Λ(z0, t0) ⊂ R

N+1 \ Ωf,r0 . (3.32)

Proof. This is a consequence of Lemma 4.4 in [9]. �
Lemma 3.7. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ = Λ(N, M), 
1 ≤ Λ < ∞, be as in Lemma 3.6. Then there exists c0 = c0(N, M), 1 ≤ c0 < ∞, such that the following 
holds. Let 
0 = r0/c0, 
1 = 
0/c0, assume (z, t) ∈ Ωf,�, 0 < 
 < 
1, and let d = dK((z, t), Δf,2r0). Then 
there exist (z±0 , t±0 ) ∈ Δf,c0� and 
± such that

(z, t) = A±
�±,Λ(z±0 , t±0 ) and c−1d ≤ 
± ≤ cd,

for some c = c(N, M), 1 ≤ c < ∞.

Proof. This result is Lemma 4.6 in [9], but we here give a simplified proof. Let in the following c0 be a degree 
of freedom as stated in the lemma, let 
0 = r0/c0, 
1 = 
0/c0, and consider (z, t) = (x1, x′, y1, y′, t) ∈ Ωf,�

for some 0 < 
 < 
1. Let d = dK((z, t), Δf,2r0). In the following we prove that (z, t) = A+
�+,Λ(z+

0 , t+0 ) for 
some (z+

0 , t+0 ), 
+, as stated in the lemma. Consider the path

γ(τ) = (x1, x
′, y1, y

′, t) ◦ δdτ (A+
1,Λ)−1

= (x1, x
′, y1, y

′, t) ◦ δdτ (−Λ, 0,−1
3Λ, 0,−1)

= (x1 − Λdτ, x′, y1 −
1
3Λ(dτ)3 − (dτ)2x1, y

′ − (dτ)2x′, t− (dτ)2) (3.33)

for τ ≥ 0. Then γ(0) = (x1, x′, y1, y′, t). Let τ0 ≥ 0 be the first value of τ for which γ(τ) ∈ Δf,2r0 . 
Now, using that Ωf,2r0 is an admissible local LipK-domain, with LipK-constant M , we first note that 
d ≈ |x1 − f(x′, y′, t)|, with constants of comparison depending only on N and M , and then that there exists 
c = c(N, M), 1 ≤ c < ∞, such that c−1 ≤ τ0 ≤ c. Let (z+

0 , t+0 ) = γ(τ0), then (z, t) = A+
dτ0,Λ(z+

0 , t+0 ) and the 
conclusions of the lemma follows immediately. �
Remark 3.7. Given an admissible local LipK-domain Ωf,2r0 , with LipK-constants M , r0, we let, from now 
on, Λ = Λ(N, M), 1 ≤ Λ < ∞, c0 = c0(N, M), 1 ≤ c0 < ∞, and η = η(N, M), 0 < η � 1, be such that 
Lemma 3.5 and Lemma 3.6 hold whenever (z0, t0) ∈ Δf,�0 and 0 < 
 < 
0, and such that Lemma 3.7 holds 
whenever (z, t) ∈ Ωf,�, 0 < 
 < 
1.
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Lemma 3.8. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 
1, 
be in accordance with Remark 3.7. Let δ, 0 < δ < 1, be a degree of freedom. Then there exists c = c(N, M, δ), 
1 ≤ c < ∞, such that following holds. Assume that u is a non-negative solution to Ku = 0 in Ωf,2�0 , that 
(z0, t0) ∈ Δf,�1 , and consider 
 such that 0 < 
 < 
1. Then

(i) sup
BK(A+

δ�,Λ(z0,t0),�/c)
u ≤ c inf

BK(A+
�,Λ(z0,t0),�/c)

u,

(ii) inf
BK(A−

δ�,Λ(z0,t0),�/c)
u ≥ c−1 sup

BK(A−
�,Λ(z0,t0),�/c)

u, (3.34)

and

(i ′) A+
δ�,Λ(ẑ0, t̂0) ∈ BK(A+

δ�,Λ(z0, t0), 
/c),

(ii ′) A−
δ�,Λ(ẑ0, t̂0) ∈ BK(A−

δ�,Λ(z0, t0), 
/c) (3.35)

whenever (ẑ0, ̂t0) ∈ Δf,�/c(z0, t0).

Proof. We first note that there exists, given δ, 0 < δ < 1, c̄ depending only on N, M and δ, such that

BK(A±
δ�,Λ(z0, t0), 
/c̄) ⊂ C±

�,2η,Λ(z0, t0) ⊂ Ωf,r0 (3.36)

where the second inclusion follows from Lemma 3.6 (i). Furthermore, to prove the lemma we note that we 
can, without loss of generality, assume that 
 = 1 and that (z0, t0) = (0, 0). We then want to prove, given 
δ, 0 < δ < 1, that there exist c1, c2, c3, depending only on N, M and δ, such that

(i) sup
BK(A+

δ,Λ(0,0),1/c1)
u ≤ c2u(A+

1,Λ(0, 0)),

(ii) inf
BK(A−

δ,Λ(0,0),1/c1)
u ≥ c−1

2 u(A−
1,Λ(0, 0)), (3.37)

and

(i ′) A+
δ,Λ(ẑ0, t̂0) ∈ BK(A+

δ,Λ(0, 0), 1/c1),

(ii ′) A−
δ,Λ(ẑ0, t̂0) ∈ BK(A−

δ,Λ(0, 0), 1/c1) (3.38)

whenever (ẑ0, ̂t0) ∈ Δf,1/c3(0, 0). Note that the statements in (3.37) depend only on the geometry of Ωf,2r0
through Λ. To prove (3.37) we now first note, using (3.36), the construction, Lemma 3.9 and its proof, that

A+
δ,Λ(0, 0) ∈ AA+

1,Λ(0,0)(C
+
2,η,Λ(0, 0)).

In particular, A+
δ,Λ(0, 0) is an interior point of the propagation set of A+

1,Λ(0, 0) in C+
2,η,Λ(0, 0)

(AA+
1,Λ(0,0)(C

+
2,η,Λ(0, 0)). Using this we immediately see that there exists c̃ = c̃(N, M, δ), 1 ≤ c̃ < ∞, 

such that

BK(A+
δ,Λ(0, 0), 1/c̃) ⊂ AA+

1,Λ(0,0)(C
+
2,η,Λ(0, 0)). (3.39)

By essentially the same argument we have that

A− (0, 0) ∈ A(z,t)(C− (0, 0)), (3.40)
1,Λ 2,η,Λ
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whenever (z, t) ∈ BK(A−
δ,Λ(0, 0), 1/c̃). Letting c1 = max{c̄, ̃c} and appealing to Theorem 2.2 we see that 

(3.37) follows. To prove (i′) and (ii ′) we first note that A±
δ,Λ(0, 0) ∈ BK(A±

δ,Λ(0, 0), 1/c1). Hence, the state-
ments in (3.38) simply follow by continuity of the maps

(ẑ0, t̂0) → (ẑ0, t̂0) ◦A±
δ,Λ(0, 0) = A±

δ,Λ(ẑ0, t̂0).

This completes the proof of the lemma. �
Lemma 3.9. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Then there exist c = c(N, M), 1 ≤ c < ∞, and γ = γ(N, M), 
0 < γ < ∞, such that following holds. Assume that u is a non-negative solution to Ku = 0 in Ωf,2�0 , that 
(z0, t0) ∈ Δf,�1 , and consider 
, 
̃, 0 < 
̃ ≤ 
 < 
1. Then

u(A+
�̃,Λ(z0, t0)) ≤ c(
/
̃)γu(A+

�,Λ(z0, t0)),

u(A−
�̃,Λ(z0, t0)) ≥ c−1(
̃/
)γu(A−

�,Λ(z0, t0)). (3.41)

Proof. The lemma follows from the construction of Harnack chain along the paths in (3.31) and Lemma 3.8. 
For the details we refer to Lemma 4.3 in [9]. �
3.2. Additional estimates based on the Harnack inequality

Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Recall that given f with 
f(0, 0, 0) = 0 and M, r > 0, we defined

Ωf,r = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,r, x1 > f(x′, y′, t), |y1| < r3},

Δf,r = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,r, x1 = f(x′, y′, t), |y1| < r3},

where QM,r = Qr,
√

2r,4Mr was introduced below (1.24). Let Λ, c0, η, 
0, 
1, be in accordance with Remark 3.7
and consider (z0, t0) ∈ Δf,�1 , 0 < 
 < 
1. Let QM,r(z0, t0) = (z0, t0) ◦QM,r and consider the sets Ωf,2r0 ∩
QM,r0/2(z0, t0) and Ωf,2r0 ∩QM,�(z0, t0). Then, by a change of variables,

Ωf,2r0 ∩QM,r0/2(z0, t0) = Ωf̃ ,r0/4, Ωf,2r0 ∩QM,�(z0, t0) = Ωf̃ ,�,

Δf,2r0 ∩QM,r0/2(z0, t0) = Δf̃ ,r0/4, Δf,2r0 ∩QM,�(z0, t0) = Δf̃ ,�, (3.42)

for a new function f̃ , f̃(0, 0, 0) = 0, having the same properties as f . Keeping this in mind we will in the 
following, with a slight abuse of notation, simply use the following notation:

Ωf,2r0(z0, t0) := Ωf,2r0 ∩QM,�(z0, t0),

Δf,2r0(z0, t0) := Δf,2r0 ∩QM,�(z0, t0). (3.43)

Lemma 3.10. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Then there exist c = c(N, M), 1 ≤ c < ∞, and γ = γ(N, M), 
0 < γ < ∞, such that the following holds. Assume that u is a non-negative solution to Ku = 0 in Ωf,2�0

and that (z0, t0) ∈ Δf,�1 . Then

u(z, t) ≤ c(
/d)γu(A+
�,Λ(z0, t0)),

u(z, t) ≥ c−1(d/
)γu(A−
�,Λ(z0, t0)), (3.44)

whenever (z, t) ∈ Ωf,2�/c(z0, t0), 0 < 
 < 
1, and where d = dK((z, t), Δf,2r0).
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Proof. We just give the proof in case (z0, t0) = (0, 0) as our estimates will only depend on N and the 
LipK-constant of f , and as we may, by construction and as by discussed above, after a redefinition f → f̃ , 
also reduce the general case (z0, t0) ∈ Δf,�1 to this situation (z0, t0) = (0, 0). By Lemma 3.7 we see that 
there exist, given (z, t) ∈ Ωf,� and 0 < 
 < 
1, points (z±0 , t±0 ) ∈ Δf,c0� and 
± such that

(z, t) = A±
�±,Λ(z±0 , t±0 ) and c−1d ≤ 
± ≤ cd,

for some c = c(N, M), 1 ≤ c < ∞. Hence, it suffices to prove the lemma with (z, t) replaced with 
A±

�±,Λ(z±0 , t±0 ) as above. In the following we let δ, 0 < δ � 1, δ̃, 0 < δ̃ � 1, δ̃ ≤ δ, be fixed degrees 
of freedom to be chosen. Based on δ, δ̃ we impose the restriction that (z, t) ∈ Ωf,δ̃� and we let 
̄ = δ
. Then, 
using Lemma 3.9 we see that

u(z, t) = u(A+
�+,Λ(z+

0 , t+0 )) ≤ c(
̄/
+)γu(A+
�̄,Λ(z+

0 , t+0 )),

u(z, t) = u(A−
�−,Λ(z−0 , t−0 )) ≥ c−1(
−/
̄)γu(A−

�̄,Λ(z−0 , t−0 )). (3.45)

Keeping δ fixed we choose δ̃ = δ̃(N, M, δ) such that, in the above construction, we have

(z±0 , t±0 ) ∈ Δf,�/c(0, 0) (3.46)

where c is the constant appearing in Lemma 3.8. Then, using Lemma 3.8 we can conclude that

u(A+
�̄,Λ(z+

0 , t+0 )) ≤ cu(A+
�,Λ(0, 0)),

u(A−
�̄,Λ(z−0 , t−0 )) ≥ c−1u(A−

�,Λ(0, 0)), (3.47)

for some constant c = c(N, M, δ), 1 ≤ c < ∞. Combining (3.45), (3.47), and the above, the lemma fol-
lows. �
Lemma 3.11. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Let ε ∈ (0, 1) be given. Then there exists c = c(N, M, ε), 1 < c < ∞, 
such that following holds. Assume (z0, t0) ∈ Δf,�1 , 0 < 
 < 
1, and that u is a non-negative solution to 
Ku = 0 in Ωf,2�(z0, t0), vanishing continuously on Δf,2�(z0, t0). Then

sup
Ωf,�/c(z0,t0)

u ≤ ε sup
Ωf,�(z0,t0)

u. (3.48)

Proof. This lemma can be proved by a straightforward barrier argument. We refer to Lemma 3.1 in [8] and 
Lemma 4.5 in [9] for the details. �
Lemma 3.12. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Then there exists c = c(N, M), 1 ≤ c < ∞, such that following holds. 
Assume that u is a non-negative solution to Ku = 0 in Ωf,2�0 , vanishing continuously in Δf,r0 , and that 
(z0, t0) ∈ Δf,�1 . Then

u(z, t) ≤ cu(A+
�,Λ(z0, t0))

whenever (z, t) ∈ Ωf,�/c(z0, t0), 0 < 
 < 
1.

Proof. This is essentially Theorem 1.1 in [9]. �
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Remark 3.8. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Based on the 
above lemmas, from now on we will let Λ, c0, η, 
0, 
1, be in accordance with Remark 3.7 and we recall 
that 
1 � 
0. In this work we then prove estimates related to a scale 
 satisfying 0 < 
 < 
1.

4. Kolmogorov measure and the Green function: relations

Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let (z, t) ∈ Ωf,2r0 and recall 
the notion of the Kolmogorov measure relative to (z, t) and Ωf,2r0 , ωK(z, t, ·), introduced in Definition 4
and Lemma 2.3. The purpose of this section is to prove the following lemma.

Lemma 4.1. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Let ωK(z, t, ·) be the Kolmogorov measure relative to (z, t) ∈ Ωf,2r0
and Ωf,2r0 and let G(z, t, ·) be the adjoint Green function for Ωf,2r0 with pole at (z, t). Then there exists 
c = c(N, M), 1 ≤ c < ∞, such that

(i) c−1
qG(z, t, A+
�,Λ) ≤ ωK(z, t,Δf,�),

(ii) ωK(z, t,Δf,�/c) ≤ c
qG(z, t, A−
�,Λ),

whenever (z, t) ∈ Ωf,2�0 , t ≥ 8
2, 0 < 
 < 
1.

Proof. Let in the following (z, t) ∈ Ωf,2�0 . We first prove statement (i). By definition 2.18 we have

G(z, t, A+
�,Λ) = Γ(z, t, A+

�,Λ) −
∫

∂KΩf,2r0

Γ(z̃, t̃, A+
�,Λ)dωK(z, t, z̃, t̃). (4.1)

Obviously, we have that

G(z, t, A+
�,Λ) ≤ Γ(z, t, A+

�,Λ), (4.2)

whenever (z, t) ∈ Ωf,2r0 . Let δ, 0 < δ � 1, be a degree of freedom such that Qδ�(A+
�,Λ) ⊂ Ωf,2r0 , where 

Qδ�(A+
�,Λ) is defined in (2.12). Recalling that the t-coordinate of the point A+

�,Λ is ρ2 we introduce the sets

S1 = {(z, t) ∈ Ωf,2r0 : t = 
2} \Qδ�/2(A+
�,Λ),

S2 = {(z, t) ∈ Ωf,2r0 : t > 
2} ∩ ∂(Qδ�/2(A+
�,Λ)). (4.3)

Using (2.10) and (4.2) we see that

G(z, t, A+
�,Λ) ≤ c(N, δ)
−q whenever (z, t) ∈ S2. (4.4)

Next, using a simple argument based on Lemma 3.11 we see that there exists c = c(N, M), 1 ≤ c < ∞, such 
that

ωK(A+
�/c,Λ,Δf,�) ≥ c−1. (4.5)

Indeed, let v(z, t) = ωK(z, t, Δf,�) for (z, t) ∈ Ωf,2r0 . Then Kv = 0 in Ωf,2r0 , 0 ≤ v(z, t) ≤ 1 in Ωf,2r0
and v(z, t) = 1 in Δf,�. Hence the function u(z, t) = 1 − v(z, t) satisfies the assumptions of Lemma 3.11
and (4.5) follows. Next, we note that if we choose δ sufficiently small, then S2 ⊂ BK(A+

�,Λ, 
/c), where the 
constant c is the one appearing in (3.34) of Lemma 3.8. In particular, we can conclude that we can choose 
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δ = δ(N, M), 0 < δ � 1, use (4.5) and apply inequality (i) of (3.34) to the function v(z, t) = ωK(z, t, Δf,�), 
to conclude that

ωK(z, t,Δf,�) ≥ c̃−1 whenever (z, t) ∈ S2, (4.6)

for some c̃ = c̃(N, M), 1 ≤ c̃ < ∞. Note that G(z, t, A+
�,Λ) = 0 if (z, t) ∈ S1. Hence, from (4.4), (4.6), and 

from the maximum principle, it follows that

rqG(z, t, A+
�,Λ) ≤ cωK(z, t,Δf,�), (4.7)

whenever (z, t) ∈ Ωf,2�0 ∩ {(z, t) : t ≥ 8
2}. This completes the proof of (i).
We next prove statement (ii). Let (z, t) ∈ Ωf,2r0 ∩ {(z, t) : t ≥ 8
2} and let δ, 0 < δ � 1, be a degree of 

freedom to be chosen. Recall that

Ωf,� = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,�, x1 > f(x′, y′, t), |y1| < 
3},

Δf,� = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,�, x1 = f(x′, y′, t), |y1| < 
3}.

Based on this we in the following let

Q̃� = {(x1, x
′, y1, y

′, t) | (x1, x
′, y′, t) ∈ QM,�, |y1| < 
3}. (4.8)

Using this notation, and given δ, we let θ ∈ C∞(RN+1) be such that θ ≡ 1 on the set Q̃δ�/2 and θ ≡ 0
on the complement of Q̃3δ�/4. Such a function θ can be constructed so that |Kθ(z, t)| ≤ c(δ
)−2, whenever 
(z, t) ∈ R

N+1. Using θ we immediately see that

ωK(z, t,Δf,δ�/2) ≤
∫

∂KΩf,2r0

θ(z̃, t̃)dωK(z, t, z̃, t̃). (4.9)

By the representation formula in (2.20) we have that

θ(z, t) =
∫

∂KΩf,2r0

θ(z̃, t̃)dωK(z, t, z̃, t̃) +
∫

Ωf,2r0

G(z, t, ẑ, t̂)Kθ(ẑ, t̂)dẑdt̂. (4.10)

By construction θ(z, t) = 0 whenever (z, t) ∈ Ωf,2r0 ∩ {(z, t) : t ≥ 8
2} and hence we deduce that

ωK(z, t,Δf,δ�/2) ≤ c (δ
)−2
∫

Q̃δ�

G(z, t, z̃, t̃)dz̃dt̃. (4.11)

Next, using the adjoint version of Lemma 3.12 and (4.11) we see that we can choose δ = δ(N, M), 0 < δ � 1, 
so that

ωK(z, t,Δf,δ�/2) ≤ c
qG(z, t, A−
�,Λ), (4.12)

for some constant c = c(N, M), 1 ≤ c < ∞. This completes the proof of (ii). �
Lemma 4.2. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 
1, 
be in accordance with Remark 3.7. Let ωK(A+ , ·) be the Kolmogorov measure relative to A+ ∈ Ωf,2r0
�0,Λ �0,Λ



K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202 181
and Ωf,2r0 and let G(A+
�0,Λ, ·) be the adjoint Green function for Ωf,2r0 with pole at A+

�0,Λ. Then there exists 
c = c(N, M), 1 ≤ c < ∞, such that

(i) c−1
qG(A+
�0,Λ, A

+
�,Λ) ≤ ωK(A+

�0,Λ,Δf,�),

(ii) ωK(A+
�0,Λ,Δf,�/c) ≤ c
qG(A+

�0,Λ, A
−
�,Λ),

whenever 0 < 
 < 
1.

Proof. The lemma is an immediate consequence of Lemma 4.1. �
Remark 4.1. Following the arguments used in the proof of Lemma 4.1 we can prove the

ωK(A+
�,Λ,Δf,2r0 ∩QM,2�̃(z̄0, t̄0)) ≤ c
̃qG(A+

�,Λ, A
−
2c�̃,Λ(z̄0, t̄0)) (4.13)

provided (z̄0, ̄t0) ∈ Δf,2r0 and QM,�̃(z̄0, ̄t0) ⊂ QM,�/c3 . This inequality will be useful in the sequel.

Remark 4.2. Adjoint versions of Lemma 4.1 and Lemma 4.2 also hold. Indeed, an adjoint version of 
Lemma 4.2 can be stated as follows. Let Ωf,2r0 be an admissible local LipK-domain, with LipK -constants 
M , r0. Let Λ, c0, η, 
0, 
1, be in accordance with Remark 3.7. Let ω∗

K(A−
�0,Λ, ·) be the adjoint Kolmogorov 

measure relative to A−
�0,Λ ∈ Ωf,2r0 and Ωf,2r0 and let G(·, A−

�0,Λ) be the Green function for Ωf,2r0 with pole 
at A−

�0,Λ. Then there exists c = c(N, M), 1 ≤ c < ∞, such that

(i) c−1
qG(A−
�,Λ, A

−
�0,Λ) ≤ ω∗

K(A−
�0,Λ,Δf,�),

(ii) ω∗
K(A−

�0,Λ,Δf,�/c) ≤ c
qG(A+
�,Λ, A

−
�0,Λ),

whenever 0 < 
 < 
1.

5. A weak comparison principle and its consequences

The main purpose of this section is to prove Lemma 5.1 and Lemma 5.3 stated below.

Lemma 5.1. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Then there exists c = c(N, M), 1 ≤ c < ∞, such that the following is 
true. Assume that u, v, are non-negative solutions to Ku = 0 in Ωf,2r0 and that u and v vanish continuously 
on Δf,2r0 . Then

c−1 v(A
−
�,Λ)

u(A+
�,Λ)

≤ v(z, t)
u(z, t) ≤ c

v(A+
�,Λ)

u(A−
�,Λ)

(5.1)

whenever (z, t) ∈ Ωf,�/c and 0 < 
 ≤ 
1.

Proof. Let in the following ε = ε(N, M), 0 < ε � 1, be a degree of freedom to be chosen. Consider the set 
Δf,6ε� \ Δf,4ε�. We claim that there exist δ = δ(N, M), 0 < δ � 1, and a set of points {(zi, ti)}Li=1 such 
that (zi, ti) ∈ Δf,6ε� \ Δf,4ε�,

{Δf,δε�(zi, ti)}Li=1 is a covering of Δf,6ε� \ Δf,4ε�, (5.2)

and such that



182 K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202
Δf,δε�/k(zi, ti) ∩ Δf,δε�/k(zj , tj) = ∅ whenever i �= j (5.3)

for some k only depending on the diameter of the cylinder QM,1 and on the constant c appearing in the 
triangular inequality (2.4). Furthermore, the construction can be made so that

L∑
i=1

ωK

(
z, t,Δf,δε�(zi, ti)

)
≥ c−1 (5.4)

for some c = c(N, M, δ(N, M)) = c(N, M), 1 ≤ c < ∞, whenever

(z, t) ∈ ∂KΩf,5ε� ∩ {(z, t) ∈ Ωf,2r0 | dK(z, t,Δf,2r0) ≤ δ2ε
}. (5.5)

The claim is a direct consequence of a Vitali covering argument and the method used in the proof of (4.5). 
Using the claim we introduce the auxiliary function

Ψ(z, t) =
L∑

i=1
ωK

(
z, t,Δf,δε�(zi, ti)

)
+ (ε
)qG

(
z, t, A−

kε�

)
, (5.6)

where k � 1 is a large degree of freedom to be chosen below, and we let

Γ1 := ∂KΩf,5ε� ∩ {(z, t) ∈ Ωf,2r0 | dK(z, t,Δf,2r0) ≤ δ2ε
},
Γ2 := ∂KΩf,5ε� ∩ {(z, t) ∈ Ωf,2r0 | dK(z, t,Δf,2r0) > δ2ε
}. (5.7)

Using Lemma 3.12 we see that there exist k = k(N, M) and c = c(N, M), 1 ≤ c < ∞, such that

v(z, t) ≤ cv(A+
kε�,Λ), (5.8)

whenever (z, t) ∈ Ωf,6ε�. By construction, see (5.4),

Ψ(z, t) ≥ c−1 whenever (z, t) ∈ Γ1, (5.9)

and for some c = c(N, M), 1 ≤ c < ∞. Considering (z, t) ∈ Γ2 we see, using Lemma 3.10, that there exist 
k = k(N, M) and c = c(N, M), 1 ≤ c < ∞, such that

(ε
)qG
(
z, t, A−

kε�,Λ
)
≥ c−1(ε
)qG

(
A−

kε�/k,Λ, A
−
kε�,Λ

)
, (5.10)

whenever (z, t) ∈ Γ2. Furthermore, we claim that, if k is big enough, then

(ε
)qG
(
A−

kε�/k,Λ, A
−
kε�,Λ

)
≥ c−1, (5.11)

by elementary estimates and the Harnack inequality. To give a more detailed proof of this claim, recall the 
notation introduced in (3.27) and (4.8). Let Ω̃ = A−

kε�,Λ ◦ Q̃4ε� and let G̃ denote the Green function for the 

set Ω̃. Using the dilation invariance of the fundamental solution Γ, and of the cone C−
ρ,η,Λ(0, 0), we see that 

we can use (2.18) to prove that

(ε
)qG̃
(
A−

(k−η)ε�,Λ, A
−
kε�,Λ

)
≥ c−1, (5.12)

for some η = η(N, M), 0 < η � 1. Using this, we see that

(ε
)qG
(
A− , A− )

≥ c−1, (5.13)
(k−η)ε�,Λ kε�,Λ
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by the comparison principle. (5.11) now follows from (5.13) and as, by the Harnack inequality,

G
(
A−

kε�/k,Λ, A
−
kε�,Λ

)
≥ c−1G

(
A−

(k−η)ε�,Λ, A
−
kε�,Λ

)
≥ c−1. (5.14)

To proceed with the proof of Lemma 5.1 we next note, combining (5.8)–(5.11), and using the maximum 
principle, we can conclude that there exist k = k(N, M) and c = c(N, M), 1 ≤ c < ∞, such that

v(z, t) ≤ cv(A+
kε�,Λ)Ψ(z, t), (5.15)

whenever (z, t) ∈ Ωf,5ε�. To continue, having estimated v from above we next want to estimate u from 
below. To start the estimate we introduce the sets

S̃1 = {(z, t) ∈ Ωf,2r0 : t = −(kε
)2} \Qδ�/2(A−
kε�,Λ),

S̃2 = {(z, t) ∈ Ωf,2r0 : t > −(kε
)2} ∩ ∂(Qδ�/2(A−
kε�,Λ)). (5.16)

and, by arguing as in Lemma 4.1, we see that

(ε
)qG
(
z, t, A−

kε�,Λ
)
≤ c, (5.17)

holds whenever (z, t) ∈ Ωf,5ε�. Then, by using the continuity of u, choosing δ sufficiently small and also 
using the maximum principle, we find that there exist k = k(N, M) and c = c(N, M), 1 ≤ c < ∞, such that

u(z, t) ≥ c−1(ε
)qG
(
z, t, A−

kε�,Λ
)
u(A−

kε�,Λ), (5.18)

whenever (z, t) ∈ Ωf,5ε�. We now claim that there exists c = c(N, M), 1 ≤ c < ∞ such that

c(ε
)qG
(
z, t, A−

kε�,Λ
)
≥ Ψ(z, t), (5.19)

whenever (z, t) ∈ ∂KΩf,ε�. Assuming (5.19) it follows from (5.18), (5.19), and the maximum principle, that 
exist k = k(N, M) and c = c(N, M), 1 ≤ c < ∞, such that

u(z, t) ≥ c−1u(A−
kε�,Λ)Ψ(z, t), (5.20)

whenever (z, t) ∈ Ωf,ε� and hence the proof of the lemma is complete once we define ε through the relation 
kε = 1. Finally, to prove (5.19) it follows, by construction, that we only have to prove that

ωK

(
z, t,Δf,δε�(zi, ti)

)
≤ (ε
)qG

(
z, t, A−

Kε�,Λ
)
, (5.21)

whenever (z, t) ∈ ∂KΩf,ε� and i = 1, . . . , L. However, arguing as in the proof of statement (ii) in Lemma 4.1
we see that (5.21) holds. This completes the proof of Lemma 5.1. �
Lemma 5.2. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 
1, 
be in accordance with Remark 3.7. Then there exists c = c(N, M), 1 ≤ c < ∞, such that following holds. Let 
(z0, t0) ∈ Δf,�1 , consider 0 < 
 ≤ 
1, assume that u, v are non-negative solutions to Ku = 0 in Ωf,2�(z0, t0)
and that u and v vanish continuously on Δf,2�(z0, t0). Then

c−1 v(A
−
�,Λ)

u(A+
�,Λ)

≤ v(z, t)
u(z, t) ≤ c

v(A+
�,Λ)

u(A−
�,Λ)

, (5.22)

whenever (z, t) ∈ Ωf,�/c(z0, t0).
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Proof. Note that Lemma 5.2 is a localized version of Lemma 5.1. In fact, analyzing the proof of Lemma 5.1, 
using appropriate localized versions of Lemma 3.8, Lemma 3.9, Lemma 3.10 and Lemma 3.12, localized in 
the sense that u does not have to be a solution in all of Ωf,2r0 or Ωf,2�0 , we see that the conclusion of 
Lemma 5.2 is true. We omit further details. �
5.1. Implications of the weak comparison principle

Lemma 5.3. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Then there exists c = c(N, M), 1 ≤ c < ∞, such that the following 
is true. Assume that u is a non-negative solution to Ku = 0 in Ωf,2r0 and that u vanishes continuously on 
Δf,2r0 . Then

c−1 u(A−
�0,Λ)

u(A+
�0,Λ)

≤ u(x1, x
′, 0, y′, t)

u(x1, x′, y1, y′, t)
≤ c

u(A+
�0,Λ)

u(A−
�0,Λ)

, (5.23)

whenever (x1, x′, y1, y′, t) ∈ Ωf,�1/c.

Proof. Consider u = u(x, y, t) = u(x1, x′, y1, y′, t) as in the statement of the lemma and let v = v(x, y, t) =
v(x1, x′, y1, y′, t) = u(x1, x′, y1±δ, y′, t) for some δ > 0 small. Let r̃0 = (r0−δ)/4. Then Kv = 0 in Ωf,2r̃0 and 
v vanishes continuously on Δf,2r̃0 since we are assuming that the function defining Δf,2r0 is independent 
of the y1-coordinate. We can now apply Lemma 5.1 to the functions v and u, with r0, 
0, 
1 replaced by 
r̃0, 
̃0, 
̃1, and conclude that

c−1
v(A−

�̃0,Λ)
u(A+

�̃0,Λ)
≤ v(x, y, t)

u(x, y, t) ≤ c
v(A+

�̃0,Λ)
u(A−

�̃0,Λ)
, (5.24)

whenever (x, y, t) ∈ Ωf,�/c and 0 < 
̃0 ≤ 
̃1. We now fix 
̃0, 
̃1 as above, and we claim that there exists 
c = c(N, M), 1 ≤ c < ∞, such that

u(A+
�̃1,Λ) ≤ cu(A+

�̃0,Λ), u(A−
�̃1,Λ) ≥ c−1u(A−

�̃0,Λ). (5.25)

and

v(A+
�̃1,Λ) ≤ c̄u(A+

�̃0,Λ), v(A−
�̃1,Λ) ≥ c̄−1u(A−

�̃0,Λ), (5.26)

whenever (x1, x′, y1, y′, t) ∈ Ωf,�̃1/c̄. To prove this we first make the trivial observations that, for any degree 
of freedom ε = ε(N, M), 0 < ε � 1,

A+
�̃1,Λ + (0, 0, 0,±δ, 0) ∈ BK(A+

�̃1,Λ, ε
̃1),

A−
�̃1,Λ + (0, 0, 0,±δ, 0) ∈ BK(A−

�̃1,Λ, ε
̃1), (5.27)

provided δ ≤ (ε
̃1)3. Hence,

v(A+
�̃1,Λ) ≤ sup

BK(A+
�̃1,Λ,ε�̃1)

u, v(A−
�̃1,Λ) ≥ inf

BK(A+
�̃1,Λ,ε�̃1)

u. (5.28)

Next, based on the quotient 
̃1/
̃0 = 1/c0 we choose ε = ε(1/c0, N, M) so that we can apply Lemma 3.8. In 
particular, based on (5.28) the inequalities in (5.25) and (5.26) now follow from Lemma 3.8. This completes 
the proof of the lemma. �
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Lemma 5.4. Let Ωf,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Let Λ, c0, η, 
0, 

1, be in accordance with Remark 3.7. Assume that u is a non-negative solution to Ku = 0 in Ωf,2r0 and 
that u vanishes continuously on Δf,2r0 . Let

m+ = u(A+
�0,Λ), m− = u(A−

�0,Λ),

and assume that m− > 0. Then there exist constants c1 = c1(N, M), 1 ≤ c1 < ∞, c2 = c2(N, M, m+/m−), 
1 ≤ c2 < ∞, such that

u(A−
�,Λ(z0, t0)) ≤ c2u(A�,Λ(z0, t0)) ≤ c22u(A+

�,Λ(z0, t0)),

whenever 0 < 
 < 
1/c1 and (z0, t0) ∈ Δf,�1 .

Proof. Assuming that m− > 0 we see that Lemma 3.10 implies that m+ > 0. By Lemma 5.3 we have

c−1m
−

m+ ≤ u(x1, x
′, 0, y′, t)

u(x1, x′, y1, y′, t)
≤ c

m+

m− , (5.29)

whenever (x1, x′, y1, y′, t) ∈ Ωf,�1/c. Let (z0, t0) ∈ Δf,�1 , and recall that

A�,Λ(z0, t0) = (z0, t0) ◦ (Λ
, 0, 0, 0, 0),

A−
�,Λ(z0, t0) = (z0, t0) ◦ (Λ
, 0, 2

3Λ
3, 0,−
2).

We now consider the path

γ(τ) = (z0, t0) ◦ (Λ
, 0, τΛ
, 0,−τ), τ ∈ [0, 
2],

which is a K-admissible such that

γ(0) = A�,Λ(z0, t0), γ(
2) = (z0, t0) ◦ (Λ
, 0,Λ
3, 0,−
2).

By construction, the definition of the points A−
�,Λ(z0, t0), A�,Λ(z0, t0), and the fact that the function defining 

Δf,2r0 is independent of the y1-coordinate, the path γ is contained in Ωf,2r0 . Thus we can construct a Harnack 
chain connecting A�,Λ(z0, t0) and γ(
2), based on which we can conclude that

u(γ(
2)) ≤ cu(A�,Λ(z0, t0)), (5.30)

for some c = c(N, M), 1 ≤ c < ∞. Note that the coordinates A−
�,Λ(z0, t0) and γ(
2) only differ in the 

y1-coordinate. In particular, using (5.29) we have

c−2
(
m−

m+

)
≤ u(γ(
2))

u(A−
�,Λ(z0, t0))

≤ c2
(
m+

m−

)
, (5.31)

whenever 0 < 
 < 
1/c. Combining (5.30) and (5.31) we see that

u(A−
�,Λ) ≤ c2

(
m+

m−

)
u(γ(
2)) ≤ c3

(
m+

m−

)
u(A�,Λ),

whenever 0 < 
 < 
1/c. The other inequality is proved analogously. �
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6. Proof of the main results

In this section we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3. The proofs rely heavily on 
Lemma 5.3. We prove the theorems based on the set up concluded in Remark 3.8. Using a by now familiar 
argument it suffices to prove Theorem 1.1, Theorem 1.2 and Theorem 1.3 in the case (z0, t0) = (0, 0) only. 
Thus, throughout this section we will assume (z0, t0) = (0, 0). Furthermore, we again note that Lemma 3.10
implies, assuming m− > 0 in Theorem 1.1 and m−

1 > 0, m−
2 > 0 in Theorem 1.2, that m+ > 0 and m+

1 > 0, 
m+

2 > 0.

6.1. Proof of Theorem 1.1

Assume that u is a non-negative solution to Ku = 0 in Ωf,2r0 and that u vanishes continuously on Δf,2r0 . 
In the sequel, the constants Λ, c0, η, 
0, 
1 will be chosen in accordance with Remark 3.8. Hence, to prove 
Theorem 1.1 we have to show that there exist constants c1 = c1(N, M), 1 ≤ c1 < ∞, c2 = c2(N, M, m+/m−), 
1 ≤ c2 < ∞, such that

u(z, t) ≤ c2u(A�,Λ),

whenever (z, t) ∈ Ωf,�/c1 and 0 < 
 < 
1. Based on this we from now on consider 
0 and 
, 0 < 
 < 
1, as 
fixed. To start the proof we introduce

h(
̂) = 
̂−γu(A+
�̂,Λ), 0 < 
̂ ≤ 
0, (6.1)

where γ is the constant appearing in Lemma 3.9. Furthermore, we let


̃ = max{
̂ : 
 ≤ 
̂ ≤ 
0, h(
̂) ≥ h(
)}. (6.2)

By the definition of 
̃ in (6.2) we see that

u(A+
�,Λ) ≤ (
/
̃)γu(A+

�̃,Λ). (6.3)

Furthermore, using Lemma 3.9 we see that

u(A−
�̃,Λ) ≤ c(
̃/
)γu(A−

�,Λ). (6.4)

In the following we prove that there exists a constant c̄ = c̄(N, M, m+/m−), 1 ≤ c̄ < ∞, such that

u(A+
�̃,Λ) ≤ c̄ u(A−

�̃,Λ), (6.5)

for this particular choice of 
̃. In fact, assuming (6.5) we first see, combining Lemma 3.12, (6.3), (6.4) and 
(6.5), that

sup
Ωf,�/c

u(x, t) ≤ cu(A+
�,Λ) ≤ c(
/
̃)γu(A+

�̃,Λ)

≤ cc̄(
/
̃)γu(A−
�̃,Λ) ≤ c2c̄u(A−

�,Λ), (6.6)

where c, 1 ≤ c < ∞, depends only on N, M . An application of Lemma 5.4 then completes the proof of 
Theorem 1.1.
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To prove (6.5) we let K � 1 be an other degree of freedom based on which we divide the proof into two 
cases.

The case 
0/(8K) < 
̃. In this case we immediately obtain from Lemma 3.9 that

u(A+
�̃,Λ)

u(A−
�̃,Λ)

≤ c2(
0/
̃)2γ
u(A+

�0,Λ)
u(A−

�0,Λ)
= c2(
0/
̃)2γ

m+

m− ,

and the conclusion follows immediately.

The case 
̃ ≤ 
0/(8K). In this case we first note, by the definition of 
̃, that 
 < 
̃ < 
0 and that 
h(2K
̃) < h(
̃), i.e.,

u(A+
�̃,Λ) > (2K)−γu(A+

2K�̃,Λ).

Using Lemma 3.12 we see that the above inequality implies that

u(A+
�̃,Λ) ≥ c−1(2K)−γ sup

Ωf,2K�̃/c

u, (6.7)

for some c = c(N, M), 1 ≤ c < ∞. In the following we can, without loss of generality, assume that 
̃ = 1. 
Based on this we let K̃ = K/c and we introduce

TC f,2K̃ := Ωf,2K̃ ∩ {(z, t) ∈ R
N+1 : −4 < t < 1}, (6.8)

where TC stands for Thin Cylinder. Using this notation, (6.7) implies that

u(A+
1,Λ) ≥ c̃−1(2K̃)−γ sup

TCf,2K̃

u, (6.9)

again for some c̃ = c̃(N, M), 1 ≤ c̃ < ∞. We emphasize that K̃ is a degree of freedom which remains to be 
chosen. Furthermore, we can, by a redefinition of u, and without loss of generality, assume that

sup
TCf,2K̃

u = 1. (6.10)

Hence (6.9) becomes

u(A+
1,Λ) ≥ c̃−1(2K̃)−γ . (6.11)

We now let

ΓK̃,B := ∂K(TC f,2K̃) ∩ {(z, t) ∈ R
N+1 : t = −4},

ΓK̃,IL := (∂K(TC f,2K̃) \ ΓK̃,B) \ Δf,2K̃ . (6.12)

Then ΓK̃,B represents the Bottom (in time) of the domain TC f,2K̃ and ΓK̃,IL is the lateral part of 
∂K(TC f,2K̃) which is contained in Ωf,2r0 : the Interior Lateral part of the boundary of TC f,2K̃ . Since 
u = 0 on Δf,2K̃ we note that u(A+

1,Λ) is determined by the values of u on ΓK̃,B and ΓK̃,IL. Specifically, if 
we let ωK(A+ , ·) be the Kolmogorov measure relative to A+ and TC f,2K̃ , then
1,Λ 1,Λ
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u(A+
1,Λ) =

∫
ΓK̃,B

u(z, t)dωK(A+
1,Λ, z, t) +

∫
ΓK̃,IL

u(z, t)dωK(A+
1,Λ, z, t)

=: I1 + I2. (6.13)

We now use the following lemma, the proof of which we postpone to the next subsection.

Lemma 6.1. Let c̃ and γ be as in (6.11). Then there exists K̃ = K̃(N, M), K̃ � 1, such that

I2 ≤ 1
2 c̃

−1(2K̃)−γ .

Using Lemma 6.1 and (6.11) we see that

u(A+
1,Λ) ≤ I1 + 1

2 c̃
−1(2K̃)−γ ≤ I1 + 1

2u(A+
1,Λ). (6.14)

We can therefore conclude that

u(A+
1,Λ) ≤ 2 sup

(z,t)∈ΓK̃,B

u(z, t). (6.15)

In particular, using Lemma 3.12 we see that there exists ε, 0 < ε � 1, depending on N and M , such that

sup
(z,t)∈ΓK̃,B∩Ωf,ε(z1,t1)

u(z, t) ≤ cu(A+
cε,Λ(z1, t1))

for every (z1, t1) ∈ ΓK̃,B ∩Δf,2r0 . In the above inequality c is the constant appearing in Lemma 3.12. Then, 
using also Lemma 3.5, we can conclude that

u(A+
1,Λ) ≤ 2c u(z̃, t̃), (6.16)

for some (z̃, ̃t) ∈ Γ̃ε
K̃,B

, where

Γ̃ε
K̃,B

= TC f,2K̃ ∩
{
(z, t) ∈ R

N+1 : −4 ≤ t ≤ −4 + (cε)2
}

∩
{
(z, t) ∈ R

N+1 : dK((z, t),Δf,2r0) ≥ ε/c
}
. (6.17)

To complete the proof we now use the following lemma, the proof of which we also postpone to the next 
subsection.

Lemma 6.2. Let (z̃, ̃t) be any point of Γ̃ε
K̃,B

. Then there exists a constant c̄, depending at most on N , M , ε, 
and m+/m−, such that

u(z̃, t̃) ≤ c̄u(A−
1,Λ).

Using Lemma 6.2 and (6.16) we can conclude that (6.5) also holds in this case. This completes the proof 
of Theorem 1.1 modulo the proofs of Lemma 6.1 and Lemma 6.2 given below. �
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6.2. Proof of Lemma 6.1 and Lemma 6.2

We here prove Lemma 6.1 and Lemma 6.2. We note that Lemma 6.2, together with Lemma 5.3, represent 
the main (novel) technical components of the paper.

Proof of Lemma 6.1. Using the normalization in (6.10) we see that

I2 ≤ ωK(A+
1,Λ,ΓK̃,IL). (6.18)

Recall the sets Q̃· introduced in (4.8), and let λ, 1 ≤ λ � K̃, be an additional degree of freedom. Let θ be 
a smooth function defined on {(z, t) ∈ R

N+1 | t = −4}, satisfying 0 ≤ θ(z, t) ≤ 1, and

θ(z, t) = 1 on (Q̃K̃+λ \ Q̃K̃−λ) ∩ {(z, t) ∈ R
N+1 | t = −4},

θ(z, t) = 0 on Q̃K̃−λ−1 ∩ {(z, t) ∈ R
N+1 | t = −4},

θ(z, t) = 0 on (RN+1 \ Q̃K̃+λ+1) ∩ {(z, t) ∈ R
N+1 | t = −4}. (6.19)

Then θ is a (smooth) approximation of the characteristic function for the set (Q̃K̃+λ \ Q̃K̃−λ) ∩ {(z, t) ∈
R

N+1 | t = −4}. Given θ we let w satisfy Kw = 0 in {(z, t) ∈ R
N+1 | t > −4} with Cauchy data on 

{(z, t) ∈ R
N+1 | t = −4} defined by the function θ. Given K̃ � 1 we claim that there exist λ ≥ 1 and a 

constant c, both just depending on N , and hence independent of K̃, such that

w(z, t) ≥ c−1 whenever (z, t) ∈ ΓK̃,IL. (6.20)

Indeed,

w(z, t) =
∫
RN

Γ(z, t, z̃,−4)θ(z̃)dz̃, (6.21)

where the fundamental solution associated to K, Γ, is defined in (2.8). Using (6.21) we see that the bound 
from below in (6.20) follows from elementary estimates. Next, using (6.18), (6.20), and the maximum 
principle, we see that

I2 ≤ cw(A+
1,Λ). (6.22)

Note that

w(A+
1,Λ) =

∫
RN

Γ(A+
1,Λ, z̃,−4)θ(z̃)dz̃, (6.23)

and that, by (2.8) and (2.9), we have

Γ(A+
1,Λ, z̃,−4) = Γ(A+

1,Λ, x̃, ỹ,−4)

≤ c exp(−(|x̃|2 + |ỹ|2)) ≤ c2 exp(−cK̃2), (6.24)

whenever θ(z̃) �= 0 and for some harmless constant c, 1 ≤ c < ∞. In particular, combining the above we see 
that

I2 ≤ c exp(−cK̃2)K̃q+2 (6.25)

and hence Lemma 6.1 follows for K̃ large enough. �
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Proof of Lemma 6.2. Consider an arbitrary point (z̃, ̃t) ∈ Γ̃ε
K̃,B

where Γ̃ε
K̃,B

is the set defined in (6.17). We 
want to prove that there exists a constant c̃, depending at most on N , M , and ε, such that

u(z̃, t̃) ≤ c̃u(A−
1,Λ). (6.26)

To do this we will construct a K-admissible path (γ(τ), −1 − τ) : [0, −1 − t̃] → R
N+1,

γ(τ) = (γ1,x(τ), γ′
x(τ), γ1,y(τ), γ′

y(τ)),

such that (γ(0), −1) = A−
1,Λ = (Λ, 0, 23Λ, 0, −1) = (x1, x′, y1, y′, −1) =: (z, t), and an associated Harnack 

chain, targeting (z̃, ̃t) = (x̃1, ̃x′, ỹ1, ỹ′, ̃t). Note that 3 ≥ −1 − t̃ ≥ 3 − ε and hence (z, t) and (z̃, ̃t) are well 
separated in time. In the following we let δ := −1 − t̃. As the first step in the construction we construct a 
path γ′(τ) := (γ′

x(τ), γ′
y(τ)) in RN−2 connecting z′ := (0, 0) to z̃′ := (x̃′, ỹ′). Indeed we simply let γ′(τ) be 

the path in (3.6), i.e., we consider (γ′(τ), −1 − τ) : [0, δ] → R
N−2, where

γ′(τ) = E(−τ)
(
z′ + C(τ)C−1(δ)(E(δ)z̃′ − z′)

)
. (6.27)

We now first note, using Remark 3.4 and the fact that (z̃, ̃t) ∈ Γ̃ε
K̃,B

, that

d′K((γ′(τ),−1 − τ), (0, 0,−1)) ≤ c(F (τ/δ)K3/2 + τ1/2),

d′K((γ′(τ),−1 − t̃− τ), (x̃′, ỹ′, t̃)) ≤ c(F (τ/δ)K3/2 + τ1/2), (6.28)

whenever τ ∈ [0, δ] and where d′K denotes the natural and corresponding quasi-distance function in RN−2×R. 
Furthermore, F is a non-negative function such that F (0) = 0 and F (τ/δ) ≤ ct/τ for some c = c(N), 
1 < c < ∞. In particular, given 0 < ε′ small we see that we can find δ′ = δ′(N, K, ε′) = δ′(N, M, ε′), such that

d′K((γ′(τ),−1 − τ), (0, 0,−1)) ≤ ε′,

d′K((γ′(τ),−1 − t̃− τ), (x̃′, ỹ′, t̃)) ≤ ε′ (6.29)

whenever τ ∈ [0, δ′]. To proceed, we let

d = Λ − f(0, 0, t) and d̃ = x̃1 − f(x̃′, ỹ′, t̃),

and we note that there exists, by construction of the set Γ̃ε
K̃,B

, c̄ = c̄(N, M), 1 ≤ c̄ < ∞, such that

min{d, d̃} ≥ c̄−1 min{ε, 1/100}. (6.30)

Furthermore, using (6.29), and the LipK -character of f , we can conclude that there exists δ′ = δ′(N, K, ε) =
δ′(N, M, ε), 0 < δ′ � δ, such that

x1 − f(γ′(τ),−1 − τ) ≥ d/2, x̃1 − f(γ′(τ),−1 − t̃− τ) ≥ d̃/2, (6.31)

whenever τ ∈ [0, δ′]. Next, using the analysis in Remark 3.3, see (3.14), and the construction, we also see 
that there exists c = c(N, Λ, K) = c(N, M, K), 1 ≤ c < ∞, such that

‖(γ′(τ),−1 − τ)‖K ≤ c whenever τ ∈ [0, δ]. (6.32)

In particular, using that (0, 0, 0) ∈ Δf,2r0 , (6.32), and the LipK -character of f , we can conclude that there 
exists a constant c̃ = c̃(N, M, K) such that



K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202 191
|f(γ′(τ),−1 − τ)| ≤ c̃ whenever τ ∈ [0, δ]. (6.33)

We will now use (6.31), (6.33), to construct a path γ1,x(τ) connecting x1 to x̃1. Indeed, for δ′, c̃, as above 
we let

(i) γ1,x(0) = x1,

(ii) d

dτ
γ1,x(τ) = 2(4c̃− d)/δ′ for τ ∈ [0, δ′/2],

(iii) d

dτ
γ1,x = 0 for τ ∈ (δ′/2, δ − δ′/2),

(iv) d

dτ
γ1,x(τ) = 2(d̃− 4c̃)/δ′ for τ ∈ [δ − δ′/2, δ]. (6.34)

Note that to construct γ1,x we start at x1 and we then travel very fast into the domain. We then stay in the 
interior for a substantial amount of time before travel back towards the boundary ending up at γ1,x(δ) = x̃1. 
Given the path γ1,x(τ), the path in y1-variable becomes

(i) γ1,y(0) = y1,

(ii) d

dτ
γ1,y(τ) = γ1,x(τ) for τ ∈ [0, δ]. (6.35)

In particular, further control of the path in y1-variable is impossible but we note that

|γ1,y(τ)| ≤ c = c(N,M,K) = c(N,M) whenever τ ∈ [0, δ], (6.36)

and for some (potentially large) constant c. Put together, (6.27), (6.34), and (6.35) complete the construction 
of a K-admissible path

(γ(τ),−1 − τ) = (γ1,x(τ), γ′
x(τ), γ1,y(τ), γ′

y(τ),−1 − τ),

such that (γ(0), −1) = A−
1,Λ = (Λ, 0, 23Λ, 0, −1) = (x1, x′, y1, y′, −1) and such that

(γ1,x(δ), γ′
x(δ), γ′

y(δ),−1 − δ) = (x̃1, x̃
′, ỹ′,−1 − δ).

Note that we cannot ensure that γ1,y(δ) = ỹ1. However, using (6.30), (6.31), (6.33), and the construction in 
(6.34), we can conclude that

dK((γ(τ),−1 − τ),Δf,2r0) ≥ c̄−1 min{ε, 1/100}, (6.37)

whenever τ ∈ [0, δ] and for some c̄ = c̄(N, M), 1 ≤ c̄ < ∞, where we of course also have used that the 
function f defining Δf,2r0 is independent of y1.

Using the K-admissible path (γ(τ), −1 − τ) : [0, T ] → R
N+1, and in particular (6.37), we now build a 

Harnack chain connecting (γ(0), −1) = (z, t) to (γ(δ), −1 − δ) using Lemma 3.5 and Lemma 3.6. Indeed, we 
see that

d

dτ
γ(τ) =

m∑
j=1

ωj(τ)Xj(γ(τ)) + Y (γ(τ)), for τ ∈ [0, δ], (6.38)

where we have explicit expressions for ω = (ω1, ω′) = (ω1, . . . , ωm) through (6.34) (ω1) and Lemma 3.6 (ω′). 
Using Lemma 3.5 we know that
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b∫
a

|ω(τ)|2dτ ≤ h ⇒ γ(b) ∈ Q−
r (γ(a),−1 − a) where r =

√
b− a

β
, (6.39)

whenever 0 ≤ a ≤ b ≤ δ. Using (6.39) we will construct a finite sequence of real numbers {rj}kj=1, and a 
sequence of points {(zj , tj)}kj=1, such that (z1, t1) = (z, t) and such that

(i) Q−
rj (zj , tj) ⊂ Ωf,2r0 , for every j = 1, . . . , k,

(ii) (zj+1, tj+1) ∈ Q̃−
rj (zj , tj), for every j = 1, . . . , k − 1,

(iii) γ(δ) ∈ Q̃−
rk

(zk, tk). (6.40)

To start the construction we note, see (6.37), that we can in the following use that there exists ε̄ = ε̄(N, M, ε), 
0 < ε̄ � 1, such that

Q2ε̄(γ(τ),−1 − τ) ⊂ Ωf,2r0 whenever τ ∈ [0, δ], (6.41)

and we will build a Harnack chain with rj = ε̄ for all j. We construct {(zj , tj)}kj=1 inductively as follows. Let 
(z1, t1) = (z, t) and assume that (zj , tj) = (γ(τj), −1 −τj) has been constructed for some j ≥ 1. If τj = δ, then 
the construction is stopped and we let k = j. If τj < δ then we construct (zj+1, tj+1) = (γ(τj+1), −1 − τj+1)
by arguing as follows. There are two options, either

(i) τj + ε̄2β < δ or (ii) τj + ε̄2β ≥ δ, (6.42)

where β is the constant appearing in Lemma 2.1 and hence in the definition of the sets {Q̃−
rk

(zk, tk)}. We 
consider (i) first and we note that there are now two additional options: either

(i ′)
τj+ε̄2β∫
τj

|ω(τ)|2
h

dτ ≤ 1 or

(ii ′)
τj+ε̄2β∫
τj

|ω(τ)|2
h

dτ > 1. (6.43)

If (i ′) is true, then we set τj+1 = τj + ε̄2β, zj+1 = γ(τj+1). If (ii ′) is true, then we set

τj+1 = sup
{
σ ∈ (τj , τj + ε̄2β) |

σ∫
τj

|ω(τ)|2
h

dτ ≤ 1
}
, (6.44)

zj+1 = γ(τj+1). In either case we can conclude, using (2.1), (6.39), and (6.41), that there exists c = c(N, M), 
1 ≤ c < ∞, such that

u(zj+1, tj+1) = u(γ(τj+1),−1 − τj+1)

≤ cu(γ(τj),−1 − τj) = cu(zj , tj). (6.45)

We next consider (ii). In this case τj ≥ δ − ε̄2β. Assume first that, in addition,
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(i ′)
δ∫

τj

|ω(τ)|2
h

dτ ≤ 1. (6.46)

In this case we set τj+1 = δ, zj+1 = γ(τj+1), and we can again conclude that (6.45) holds. If, on the contrary, 
(6.46) does not hold, then we set

τj+1 = sup
{
σ ∈ (τj , δ) |

σ∫
τj

|ω(τ)|2
h

dτ ≤ 1
}
, (6.47)

zj+1 = γ(τj+1), and we again see that (6.45) holds. We note that by this construction there will be a first j
such that τj = δ and we then set k = j. The next step is to estimate k and we note that 0 < τj+1− τj ≤ ε̄2β

for all j. Let I1 denote the set of all index j for which either (i) + (ii ′) or (ii), and the scenario leading up 
to (6.47), occur. Let I2 denote the set of all index j for which either (i) + (i′) or (ii) + (i′), occur. Note 
the union of the sets I1 and I2 is the set of all indices occurring in the construction. Now, by continuity of 
ω(τ) = (ω1(τ), ω′(τ)) = (ω1(τ), . . . , ωm(τ)) we first see that

τj+1∫
τj

|ω(τ)|2
h

dτ = 1, for all j ∈ I1. (6.48)

In particular,

|I1| ≤
δ∫

0

|ω(τ)|2
h

dτ. (6.49)

Furthermore, we easily see that

|I2| ≤
δ

ε̄2β
. (6.50)

In particular,

k ≤ |I1| + |I2| ≤
δ

ε̄2β
+

δ∫
0

|ω(τ)|2
h

dτ. (6.51)

Hence, using (6.51), Lemma 3.3, Remark 3.5, the fact that 3 ≥ δ ≥ 3 − ε, and the explicit construction in 
(6.34), we can conclude that there exists c = c(N, M), 1 ≤ c < ∞, such that

u(γ(δ),−1 − δ) ≤ cu(A−
1,Λ). (6.52)

By construction (γ(δ), −1 − δ) = (x̃1, ̃x′, γ1,y(δ), ỹ′, ̃t) and (γ(δ), −1 − δ) only differ from (z̃, ̃t) =
(x̃1, ̃x′, ỹ1, ỹ′, ̃t) in the y1-coordinate. However, using (6.36) and Lemma 5.3 we see that there exists 
c = c(N, M, m+/m−), 1 ≤ c < ∞, such that

u(z̃, t̃) ≤ cu(γ(δ),−1 − δ). (6.53)

In particular, combining (6.52) and (6.53) we see that the proof of Lemma 6.2 is complete. �
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6.3. Proof of Theorem 1.2

Assume that u and v are non-negative solutions to Ku = 0 in Ωf,2r0 and that v and u vanish con-
tinuously on Δf,2r0 . Relying on the set up concluded in Remark 3.8 we introduce m±

1 , m±
2 , as in (1.28). 

As previously noted, the assumption min{m−
1 , m

−
2 } > 0 implies min{m+

1 , m
+
2 } > 0. We intend to prove 

that there exist constants c1 = c1(N, M), 1 ≤ c1 < ∞, c2 = c2(N, M, m+
1 /m

−
1 , m

+
2 /m

−
2 ), 1 ≤ c2 < ∞, 

σ = σ(N, M, m+
1 /m

−
1 , m

+
2 /m

−
2 ), σ ∈ (0, 1), such that∣∣∣∣ v(z, t)u(z, t) − v(z̃, t̃)

u(z̃, t̃)

∣∣∣∣ ≤ c2

(
dK((z, t), (z̃, t̃))




)σ
v(A�,Λ)
u(A�,Λ)

whenever (z, t), (z̃, ̃t) ∈ Ωf,�/c1 and 0 < 
 < 
1. The proof is based on interior Hölder continuity estimates, 
Lemma 5.1, Lemma 5.2, Theorem 1.1 and its proof, see (6.5) in particular. To start the proof, let

Ov,u(z, t, 
̃) = sup
Ωf,2r0∩QM,�̃(z,t)

v

u
− inf

Ωf,2r0∩QM,�̃(z,t)

v

u
(6.54)

whenever (z, t) and 
̃ are such that QM,�̃(z, t) is contained in the closure of the set Ωf,�1/(100c1), where c1
are as in the statement of Theorem 1.1. Using Lemma 5.1, and the assumptions on m±

1 , m±
2 , we first see 

that Ov,u(0, 0, 
1/c1) < ∞. Let now 
 be fixed and let 
̄ = δ
 for some degree of freedom δ = δ(N, M), 
0 < δ � 1, to be chosen. Consider 0 < 
̃ ≤ 
̄, pick (z, t) ∈ Ωf,�̄ and let d = dK(z, t, Δf,2r0). Given 
̃, (z, t), 
d, we consider two cases: 
̃ ≤ d (interior case) and 
̃ > d (boundary case).

We first consider the case 
̃ ≤ d. Let

v̂(z̃, t̃) :=
(
Ov,u(z, t, 
̃)

)−1
(
v(z̃, t̃) −

(
inf

Ωf,2r0∩QM,�̃(z,t)
v/u

)
u(z̃, t̃)

)
,

and note that

(i) 0 ≤ v̂(z̃, t̃)
u(z̃, t̃)

≤ 1, whenever (z̃, t̃) ∈ Ωf,2r0 ∩QM,�̃(z, t),

(ii) Ov̂,u(z, t, 
̃) = 1. (6.55)

Let γ, 0 < γ � 1 be a degree of freedom and assume first, in addition, that

v̂((z, t) ◦ (0,−γ
̃2))
u((z, t) ◦ (0,−γ
̃2)) ≥ 1

2 . (6.56)

Note that Kv̂ = 0 in Ωf,2r0 and that v̂ is non-negative in Ωf,2r0 ∩QM,�̃(z, t). Therefore, using the Harnack 
inequality in Theorem 2.1 we see that there exists γ̃ = γ̃(N, γ), 0 < γ̃ � 1, such that

v̂((z, t) ◦ (0,−γ
̃2)) ≤ cv̂(z̃, t̃) whenever (z̃, t̃) ∈ QM,γ̃�̃(z, t), (6.57)

and

u(z̃, t̃) ≤ cu((z, t) ◦ (0, γ
̃2)) whenever (z̃, t̃) ∈ QM,γ̃�̃(z, t). (6.58)

Moreover, using standard arguments based on Theorem 1.1 we see that

u((z, t) ◦ (0, γ
̃2)) ≤ cu((z, t) ◦ (0,−γ
̃2)), (6.59)
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with the admissible dependency on c. Combining (6.55)–(6.59), we deduces that

1
2 ≤ v̂((z, t) ◦ (0,−γ
̃2))

u((z, t) ◦ (0,−γ
̃2)) ≤ c
v̂(z̃, t̃)
u(z̃, t̃)

≤ c, (6.60)

whenever (z̃, ̃t) ∈ QM,γ̃�̃(z, t). Hence

Ov̂,u(z, t, γ̃
̃) ≤ θ, (6.61)

where θ = 1 − 1/(2c) ∈ (0, 1). Recalling the definition of v̂, and rearranging (6.61) we can conclude that

Ov,u(z, t, γ̃
̃) ≤ θOv,u(z, t, 
̃). (6.62)

Assume now, on the contrary, that (6.56) does not hold and that instead

v̂((z, t) ◦ (0,−γ
̃2))
u((z, t) ◦ (0,−γ
̃2)) <

1
2 . (6.63)

In this case let v̄ = u − v̂. Then (6.55) and (6.56) hold with v̂ replaced by v̄. We can then first conclude 
that Ov̄,u(z, t, ̃γ
̃) ≤ θ and subsequently again that (6.62) holds. Next, iterating the estimate in (6.62) we 
deduce that

Ov,u(z, t, 
̃) ≤
(


̃

γ̃d

)σ1

Ov,u(z, t, d), (6.64)

for some σ1 = σ1(θ) = σ1(N, M, m+/m−) ∈ (0, 1).
We next consider the case 
̃ > d. Let (z0, t0) ∈ Δf,2r0 be such that

d = dK((z, t), (z0, t0)).

Then QM,�̃(z, t) ⊂ QM,2c̄�̃(z0, t0) for some c̄ = c̄(N, M), 1 ≤ c̄ < ∞, and hence

Ov,u(z, t, 
̃) ≤ Ov,u(z0, t0, 2c̄
̃).

Let in the following K := c where c is the constant appearing in Lemma 5.2. We first assume that
4Kc̄
̃ < 
/2. Let now v̂ be defined by

v̂(z̃, t̃) =
(
Ov,u(z0, t0, 8Kc̄
̃)

)−1
(
v(z̃, t̃) −

(
inf

Ωf,2r0∩QM,8Kc̄�̃(z0,t0)
v/u

)
u(z̃, t̃)

)
.

As in the interior case,

(i) 0 ≤ v̂(z̃, t̃)
u(z̃, t̃)

≤ 1, whenever (z̃, t̃) ∈ Ωf,2r0 ∩QM,8Kc̄�̃(z0, t0),

(ii) Ov̂,u(z0, t0, 8Kc̄
̃) = 1. (6.65)

Now first assume that

v̂
(
A−

4Kc̄�̃,Λ(z0, t0)
)

u
(
A− (z , t )

) ≥ 1
2 . (6.66)
4Kc̄�̃,Λ 0 0
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As v̂ and u are solutions to Ku = 0 on Ωf,2r0 , non-negative in Ωf,2r0 ∩QM,8Kc̄�̃(z0, t0), and v̂ and u vanish 
continuously on Δf,2r0 , it follows from Lemma 5.2 that

v̂
(
A−

4Kc̄�̃,Λ(z0, t0)
)

u
(
A+

4Kc̄�̃,Λ(z0, t0)
) ≤ K

v̂(z̃, t̃)
u(z̃, t̃)

≤ K, (6.67)

whenever (z̃, ̃t) ∈ Ωf,2r0 ∩QM,2c̄�̃(z0, t0). Again using Theorem 1.1, see (6.5) in particular, it follows that

v̂
(
A−

4Kc̄�̃,Λ(z0, t0)
)

u
(
A−

4Kc̄�̃,Λ(z0, t0)
) ≤ c

v̂
(
A−

4Kc̄�̃,Λ(z0, t0)
)

u
(
A+

4Kc̄�̃,Λ(z0, t0)
) . (6.68)

Hence, using (6.67), (6.68) and (6.66), we see that

1
2 ≤ v̂(z̃, t̃)

u(z̃, t̃)
≤ cK,

whenever (z̃, ̃t) ∈ Ωf,2r0 ∩QM,2c̄�̃(z0, t0). Therefore

Ov̂,u(z0, t0, 2c̄
̃) ≤ θ, (6.69)

where θ = 1 − 1/(2cK) ∈ (0, 1). Rewriting this expression we see that

Ov,u(z, t, 
̃) ≤ Ov,u(z0, t0, 2c̄
̃) ≤ θOv,u(z0, t0, 8Kc̄
̃). (6.70)

Assume now, on the contrary, that (6.66) does not hold and instead that

v̂
(
A−

4Kc̄�̃,Λ(z0, t0)
)

u
(
A−

4Kc̄�̃,Λ(z0, t0)
) <

1
2 . (6.71)

In this case, let v̄ = u − v̂. Then (6.65) and (6.66) hold with v̂ replaced by v̄. One can then first conclude 
that Ov̄,u(z0, t0, 2c̄
̃) ≤ θ and subsequently again that (6.70) holds. Iterating (6.70) we have

Ov,u(z, t, 
̃) ≤ θOv,u(z0, t0, 8Kc̄
̃)

≤
(

8Kc̄
̃




)σ2

Ov,u(z0, t0, 
), (6.72)

for some σ2 = σ2(M, N, m+/m−) ∈ (0, 1). One easily sees that this also holds if 4Kc̄
̃ ≥ 
̄/2.
From (6.64) and (6.72) it follows that if 
̃ ≤ d < 
, then

Ov,u(z, t, 
̃) ≤
(


̃

γd

)σ1

Ov,u(z, t, d)

≤
(


̃

γd

)σ1(8Kc̄d




)σ2

Ov,u(z0, t0, 
). (6.73)

With σ = min{σ1, σ2}, (6.73) implies that

Ov,u(z, t, 
̃) ≤ c

(

̃
)σ

Ov,u(z0, t0, 
), (6.74)
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for all (z, t) ∈ Ωf,�̃, 
̃ ≤ 
̄, 
̄ = δ
. Now, finally, consider (z̃, ̃t) ∈ Ωf,�̃ and let 
̂ = dK((z, t), (z̃, ̃t)). It then 
follows from (6.74) and Lemma 5.1, in conjunction with Theorem 1.1, that if δ = δ(N, M), 0 < δ � 1 is 
chosen small enough, then∣∣∣∣v(x, t)u(z, t) − v(z̃, t̃)

u(z̃, t̃)

∣∣∣∣ ≤ Ov,u(z, t, 
̂)

≤ c

(

̂




)σ

Ov,u(0, 0, 
) ≤ c

(

̂




)α v
(
A�,Λ

)
u
(
A�,Λ

) . (6.75)

This completes the proof of Theorem 1.2. �
6.4. Proof of Theorem 1.3

As emphasized, it suffices to prove Theorem 1.3 in the case (z0, t0) = (0, 0). We let Λ, c0, η, 
0, 
1, be 
as stated in Remark 3.8. Based on this we consider 
, 0 < 
 < 
1, and we need to prove that there exist 
c2 = c2(N, M), 1 ≤ c2 < ∞, and c3 = c3(N, M), 1 ≤ c3 < ∞, such that

ωK(A+
�,Λ,Δf,2r0 ∩QM,2�̃(z̄0, t̄0)) ≤ c2ωK(A+

�,Λ,Δf,2r0 ∩QM,�̃(z̄0, t̄0)), (6.76)

whenever (z̄0, ̄t0) ∈ Δf,2r0 and QM,�̃(z̄0, ̄t0) ⊂ QM,�/c3 . In the following c3 is a degree of freedom to be 
chosen. To start the proof of (6.76), we recall (4.13) in Remark 4.1 which states that

ωK(A+
�,Λ,Δf,2r0 ∩QM,2�̃(z̄0, t̄0)) ≤ c
̃qG(A+

�,Λ, A
−
2c�̃,Λ(z̄0, t̄0)),

provided (z̄0, ̄t0) ∈ Δf,2r0 and QM,�̃(z̄0, ̄t0) ⊂ QM,�/c3 . Let

m+ = G(A+
�,Λ, A

+
�/1000,Λ), m− = G(A+

�,Λ, A
−
�/1000,Λ). (6.77)

Recall that G(A+
�,Λ, ·) is the adjoint Green function for Ωf,2r0 with pole at A+

�,Λ. By elementary estimates 
and the Harnack inequality we see that

c̄−1 ≤ 
qm+ ≤ c̄, 
qm− ≤ c̄, (6.78)

for some c̄ = c̄(N, M), 1 ≤ c̄ < ∞. We need to establish the corresponding lower bound on 
qm−. Using 
the adjoint version of Lemma 3.12 we see that there exists c = c(N, M), 1 ≤ c < ∞, such that

sup
(z,t)∈Ωf,�/c(z0,t0)

G(A+
�,Λ, (z, t)) ≤ cm−. (6.79)

However,

sup
(z,t)∈Ωf,�/c(z0,t0)

G(A+
�,Λ, (z, t)) ≥ c−1m+. (6.80)

In particular, (6.78)–(6.80) imply that c−1 ≤ m+/m− ≤ c, for some c = c(N, M), 1 ≤ c < ∞. Using this, 
the adjoint version of Theorem 1.1, and the scale invariance of Theorem 1.1, we can, using by now familiar 
arguments, conclude that there exist c̃ = c̃(N, M), 1 ≤ c̃ < ∞, and c3 as stated above, such that

G(A+ , A− (z̄0, t̄0)) ≤ c̃G(A+ , A+ (z̄0, t̄0)), (6.81)
�,Λ 2c�̃,Λ �,Λ 2c�̃,Λ



198 K. Nyström, S. Polidoro / J. Math. Pures Appl. 106 (2016) 155–202
provided (z̄0, ̄t0) ∈ Δf,2r0 and QM,�̃(z̄0, ̄t0) ⊂ QM,�/c3 . Finally, using the Harnack inequality and Lemma 4.2
we see that


̃qG(A+
�,Λ, A

+
2c�̃,Λ(z̄0, t̄0)) ≤ c
̃qG(A+

�,Λ, A
+
�̃,Λ(z̄0, t̄0))

≤ c2ωK(A+
�,Λ,Δf,2r0 ∩QM,�̃(z̄0, t̄0)), (6.82)

for some c = c(N, M), 1 ≤ c < ∞. Put together we can conclude the validity of (6.76). This completes the 
proof of Theorem 1.3. �
7. Further results: generalizations and extensions

In this section we briefly discuss, without giving the complete proofs, to the extent one can generalize 
Theorems 1.1, 1.2 and 1.3 to the context of a subset of the more general operators of Kolmogorov type 
considered in [7], [8] and [9]. In [7], [8] and [9] we considered Kolmogorov operators of the form

L =
m∑

i,j=1
ai,j(z, t)∂zizj +

m∑
i=1

ai(z, t)∂zi +
N∑

i,j=1
bi,jzi∂zj − ∂t, (7.1)

where (z, t) ∈ R
N × R, 1 ≤ m ≤ N . The coefficients ai,j and ai are bounded continuous functions and 

B = (bi,j)i,j=1,...,N is a matrix of real constants. Following [7], [8] and [9] we here impose the structural 
assumptions [H.1]–[H.4] stated below.

[H.1] The matrix A0(z, t) = (ai,j(z, t))i,j=1,...,m is symmetric and uniformly positive definite in Rm: there 
exists a positive constant λ such that

λ−1|ξ|2 ≤
m∑

i,j=1
ai,j(z, t)ξiξj ≤ λ|ξ|2, ∀ ξ ∈ R

m, (z, t) ∈ R
N+1.

The matrix B = (bi,j)i,j=1,...,N has real constant entries.

[H.2] For any (z0, t0) ∈ R
N+1 fixed, the constant coefficient operator

K =
m∑

i,j=1
ai,j(z0, t0)∂zizj +

N∑
i,j=1

bi,jzi∂zj − ∂t (7.2)

is hypoelliptic.

[H.3] The coefficients ai,j(z, t) and ai(z, t) are bounded functions belonging to the Hölder space C0,α
K (RN+1), 

α ∈ (0, 1], defined with respect to the appropriate metric associated to L.

Note that by a change of variables we can choose A0 in [H.2] as the m-dimensional identity matrix. We 
also note that the operator K can be written as

K =
m∑
i=1

X2
i + Y,

where
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Xi =
m∑
j=1

āi,j∂zj , i = 1, . . . ,m, Y = 〈z,B∇〉 − ∂t, (7.3)

and where āi,j ’s are the entries of the unique matrix Ā0 such that A0 = Ā2
0. Again the hypothesis [H.2] is 

equivalent to the Hörmander condition

rank Lie (X1, . . . , Xm, Y ) (z, t) = N + 1, ∀ (z, t) ∈ R
N+1. (7.4)

The relevant Lie group related to the operator K in (7.2) is defined using the group law

(z̃, t̃) ◦ (z, t) = (z + exp(−tB∗)z̃, t̃ + t), (z̃, t̃), (z, t) ∈ R
N+1. (7.5)

In particular, the vector fields X1, . . . , Xm and Y are left-invariant, with respect to the group law (7.5). 
Furthermore, see [20], [H.2] is equivalent to the following structural assumption on B: there exists a basis 
for RN+1 such that the matrix B has the form⎛⎜⎜⎜⎜⎝

∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Bκ

∗ ∗ ∗ · · · ∗

⎞⎟⎟⎟⎟⎠ , (7.6)

where Bj is a mj−1 × mj matrix of rank mj for j ∈ {1, . . . , κ}, 1 ≤ mκ ≤ . . . ≤ m1 ≤ m0 = m and 
m + m1 + . . . + mκ = N , while ∗ represents arbitrary matrices with constant entries. Based on (7.6), we 
introduce the family of dilations (δr)r>0 on RN+1 defined by

δr = (Dr, r
2) = diag(rIm, r3Im1 , . . . , r

2κ+1Imκ
, r2), (7.7)

where Ik, k ∈ N, is the k-dimensional unit matrix. In the sequel we will write the dilation (7.7) on the form

δr = diag(rα1 , . . . , rαN , r2), (7.8)

where we set α1 = . . . = αm = 1, and αm+m1+···+mj−1+1 = . . . = αm+m1+···+mj+1 = 2j + 1 for j = 1, . . . , κ. 
According to (7.7), we split the coordinate z ∈ R

N as

z =
(
z(0), z(1), . . . , z(κ)), z(0) ∈ R

m, z(j) ∈ R
mj , j ∈ {1, . . . , κ}, (7.9)

and we define

|z|K =
κ∑

j=0

∣∣z(j)∣∣ 1
2j+1 , ‖(z, t)‖K = |z|K + |t| 12 .

Note that ‖δr(z, t)‖K = r‖(z, t)‖K for every r > 0 and (z, t) ∈ R
N+1. In line with [7], [8] and [9] we also 

assume:

[H.4] The operator K in (7.2) is δr-homogeneous of degree two, i.e.

K ◦ δr = r2(δr ◦ K), ∀ r > 0.

Following [20] we have that [H.4] is satisfied if (and only if) all the blocks denoted by ∗ in (7.6) are null. 
Building on L we next construct a new operator L̄ of Kolmogorov type by adding variables. Let m̄ = κ, 
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where κ ≥ 1 is an integer, and let N̄ = N + m̄ + 1. We now add the variables z̄ = (z̄1, . . . , ̄zm̄+1) and form 
the operator

L̄ = ∂z̄1z̄1 +
m̄∑
i=1

z̄i∂z̄i+1 + L (7.10)

which we consider in Rm̄+1 × R
N × R = R

N̄ × R. We emphasize that the operator L is independent of the 
variables (z̄1, . . . , ̄zm̄+1). Furthermore, both L and L̄ are operators of Kolmogorov type in the sense outlined 
above satisfying the structural assumptions [H.1]–[H.4].

We claim that appropriate versions of Theorems 1.1, 1.2 and 1.3 can be established for non-negative 
solutions to L̄u = 0 in Lipschitz type domains of the form z̄1 > f(z, t), i.e., in Lipschitz type domains 
defined by a function f which is independent of (z̄2, . . . , ̄zm̄+1). To be more precise, let z̄ = (z̄1, ̄z′) :=
(z̄1, ̄z2, . . . , ̄zm̄+1). Given positive numbers r1, r2, we now let

�r1,r2 = {(z, t) ∈ R
N × R | |zi| < rαi

1 for i ∈ {1, . . . , N}, |t| < r2
2}. (7.11)

Given �r1,r2 ⊂ R
N × R, we say that a function f , f : �r1,r2 → R, is a LipK-function, with respect to 

coordinate direction z̄1, independent of z̄′ and with constant M ≥ 0, if z̄1 = f(z, t) and∣∣f(z, t) − f(z̃, t̃)
∣∣ ≤ M

∥∥(z − exp((t̃− t)B∗), t− t̃)
∥∥
K
, (7.12)

whenever (z, t), (z̃, ̃t) ∈ �r1,r2 . In addition, given positive numbers r1, r2, r3, we let

Qr1,r2,r3 = {(z̄1, z, t) ∈ R
N̄+2 | (z, t) ∈ �r1,r2 , |z̄1| < r3},

for i ∈ {2, .., m̄ + 1}. Furthermore, for any positive M and r, and we let QM,r = Qr,
√

2r,4Mr . Finally, given 
f as above, with f(0, 0) = 0 and M, r > 0, we define

Ω̄f,r = {(z̄1, z̄
′, z, t) | (z̄1, z, t) ∈ QM,r, z̄1 > f(z, t), |z̄i| < r2i−1},

Δ̄f,r = {(z̄1, z̄
′, z, t) | (z̄1, z, t) ∈ QM,r, z̄1 = f(z, t), |z̄i| < r2i−1},

where in these definitions i = 2, . . . , m̄ + 1.

Definition 6. Given M , r0, we say that Ω̄f,2r0 is an admissible local LipK-domain, with LipK -constants 
M , r0. Similar we refer to Δ̄f,2r0 as an admissible local LipK-surface with LipK-constants M , r0.

Next, given 
 > 0 and Λ > 0 we define the points z̄Λ,+
� , ̄zΛ,−

� ∈ R
m̄+1 as follows. We let

z̄Λ,+
1,� = 
Λ, z̄Λ,+

i,� = −
2 2
2i + 1 z̄

Λ,+
i−1,�, i = 2, . . . , m̄ + 1,

z̄Λ,−
1,� = 
Λ, z̄Λ,−

i,� = 
2 2
2i + 1 z̄

Λ,−
i−1,�, i = 2, . . . , m̄ + 1. (7.13)

Using this notation we introduce the following reference points.

Definition 7. Given 
 > 0 and Λ > 0 we let

Ā+
�,Λ = (z̄Λ,+

� , 0, 
2) ∈ R
m̄+1 × R

N × R,

Ā�,Λ = (Λ
, 0, 0, 0) ∈ R× R
m̄ × R

N × R,

Ā−
�,Λ = (z̄Λ,−

� , 0,−
2) ∈ R
m̄+1 × R

N × R. (7.14)
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When we in the following state that a constant c depends on L̄, c = c(L̄), then c depends on L̄ through L
and hence c depends on λ, B, and the constants describing the Hölder continuity of the coefficients ai,j and ai. 
We claim that the following theorems are true. Let QM,r(z0, t0) = (z0, t0) ◦QM,r, Ā�,Λ(z0, t0) = (z0, t0) ◦Ā�,Λ. 
In Theorem 7.2, dK is now defined relative the structure of L̄.

Theorem 7.1. Let Ω̄f,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M, L̄), 1 ≤ Λ < ∞, and c0 = c0(N, M, L̄), 1 ≤ c0 < ∞, such that the following is true. 
Assume that u is a non-negative solution to Ku = 0 in Ω̄f,2r0 and that u vanishes continuously on Δ̄f,2r0 . 
Let 
0 = r0/c0, introduce

m+ = u(Ā+
�0,Λ), m− = u(Ā−

�0,Λ), (7.15)

and assume that m− > 0. Then there exist constants c1 = c1(N, M, L̄), 1 ≤ c1 < ∞, c2 =
c2(N, M, L̄, m+/m−), 1 ≤ c2 < ∞, such that if we let 
1 = 
0/c1, then

u(z, t) ≤ c2u(Ā�,Λ(z0, t0)),

whenever (z, t) ∈ Ω̄f,2r0 ∩QM,�/c1(z0, t0), for some 0 < 
 < 
1 and (z0, t0) ∈ Δ̄f,�1 .

Theorem 7.2. Let Ω̄f,2r0 be an admissible local LipK-domain, with LipK-constants M , r0. Then there exist 
Λ = Λ(N, M, L̄), 1 ≤ Λ < ∞, and c0 = c0(N, M, L̄), 1 ≤ c0 < ∞, such that the following is true. Assume 
that u and v are non-negative solutions to Ku = 0 in Ω̄f,2r0 and that v and u vanish continuously on Δ̄f,2r0 . 
Let 
0 = r0/c0, introduce

m+
1 = v(Ā+

�0,Λ), m−
1 = v(Ā−

�0,Λ),

m+
2 = u(Ā+

�0,Λ), m−
2 = u(Ā−

�0,Λ), (7.16)

and assume that m−
1 > 0, m−

2 > 0. Then there exist constants c1 = c1(N, M, L̄), c2 = c2(N, M, L̄, m+
1 /m

−
1 ,

m+
2 /m

−
2 ), σ = σ(N, M, L̄, m+

1 /m
−
1 , m

+
2 /m

−
2 ), 1 ≤ c1, c2 < ∞, σ ∈ (0, 1), such that if we let 
1 = 
0/c1, 

then ∣∣∣∣ v(z, t)u(z, t) − v(z̃, t̃)
u(z̃, t̃)

∣∣∣∣ ≤ c2

(
dK((z, t), (z̃, t̃))




)σ
v(Ā�,Λ(z0, t0))
u(Ā�,Λ(z0, t0))

,

whenever (z, t), (z̃, ̃t) ∈ Ω̄f,2r0 ∩QM,�/c1(z0, t0), for some 0 < 
 < 
1 and (z0, t0) ∈ Δ̄f,�1 .

Remark 7.1. Note that the operator L̄ is an operator in non-divergence form and as the coefficients ai,j
and ai are only assumed to be Hölder continuous, the definition of the Green function may be somewhat 
problematic. Hence the proofs of Theorem 7.1 and Theorem 7.2 should be done without introducing the 
Green function. By the same reasons we here do not formulate a version of Theorem 1.3 for the operator L̄. 
In the end, the proofs of Theorem 7.1 and Theorem 7.2 will appear elsewhere.
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