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Abstract

In the context of deep learning, the computational more expensive phase is
the full training of the learning algorithm. Indeed the design of a new learning
algorithm requires an extensive numerical investigation with the execution
of a significant number of experimental trials. A fundamental aspect in de-
signing a suitable learning algorithm is the selection of the hyperparameters
(parameters that are not trained during the learning process), in a static or
adaptive way. The aim of this thesis is to investigate the hyperparameters
selection strategies on which standard machine learning algorithms are de-
signed. In particular, we are interested in the different techniques to select
the parameters related to the stochastic gradient methods used for training
the machine learning methodologies. The main purposes that motivate this
study are the improvement of the accuracy (or other metrics suitable for
evaluating the inspected methodology) and the acceleration of the conver-
gence rate of the iterative optimisation schemes. To achieve these purposes,
the analysis has mainly focused on the choice of the fundamental hyperpa-
rameters in the stochastic gradient methods: the steplength, the mini-batch
size and the potential adoption of variance reduction techniques. In a first
approach we considered separately the choice of steplength and mini-batch
size; then, we presented a technique that combines the two choices. About
the steplength selection, we propose to tailor for the stochastic gradient it-
eration the steplength selection adopted in the full-gradient method known
as Limited Memory Steepest Descent method. This strategy, based on the
Ritz-like values of a suitable matrix, enables to give a local estimate of the
inverse of the local Lipschitz parameter. Regarding the mini-batch size the
idea is to increasing dynamically, in an adaptive manner (based on suitable
validation tests), this size. The experiments show that this training strategy
is more efficient (in terms of time and costs) compared with the approaches
available in literature. We combine the two parameter choices (steplength
and mini-batch size) in an adaptive scheme without introducing line search
techniques, while the possible increase of the size of the sub-sample used to
compute the stochastic gradient enables to control the variance of this direc-
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8 Introduction

tion. In the second part of the thesis, we introduce an Automatic Machine
Learning (AutoML) technique to set these hyperparameters. In particular,
we propose a low-cost strategy to predict the accuracy of the learning al-
gorithm, based only on its initial behavior. The initial and final accuracies
observed during this beforehand process are stored in a database and used
as train set of a Support Vector Machines learning algorithm. The aim is
to predict the accuracy of a learning methodology, given its accuracy on
the initial iterations of its learning process. In other word, by a probabilis-
tic exploration of the hyperparameter space, we are able to find the setting
providing optimal accuracies at a quite low cost. An extensive numerical
experimentation was carried out involving convex and non-convex functions
(in particular Convolutional Neural Networks). For the numerical experi-
ments several datasets well known in literature have been used, for different
problems such as: classification, segmentation, regression. Finally, a com-
putational study is carried out to extend the proposed approaches to other
methods, such as: Momentum, AdaM, SVRG. In conclusion, the contribu-
tion of the thesis consists in providing useful ideas about an effective and
inexpensive selection of the hyperparameters in the class of the stochastic
gradient methods.



Chapter 1

Introduction

Machine Learning (ML) and Deep Neural Networks (DNN) are pervasive in
the domain of surveillance, health-care, autonomous machinery, and vehicles.
Examples can be found in EU-founded H2020 projects on automotive and
smart-cities, such as CLASS (https://class-project.eu/partners) and PRYS-
TINE (https://www.ecsel.eu/projects/prystine), which are relying on ML
and DNN technologies for solving several tasks, such as object-detection for
obstacle avoidance and emergency-braking, vehicle-to-vehicle tracking, mon-
itoring and data-fusion. However, the process of designing an efficient and
accurate ML methodology for a specific task is power and time-consuming
and traditionally requiring direct human intervention. Moreover, the same
ML methodology may lead to substantially different accuracies, latencies,
and energy efficiencies depending on the hardware target used for the de-
ployment [1], or just changing the data-types used.
In view of these preliminary considerations, this thesis aims to analyse the
most expensive phase in terms of power and time of the above cited method-
ologies: the training phase. Whether you are in a convex (ML) or non-convex
(DNN) context, it is certainly crucial to set the hyperparameters connected
to the optimiser correctly. We define hyperparameters of a learning method
as those parameters that are not trained during the learning process but they
are set a-priori as input data. In this work, whenever we talk about hyperpa-
rameters connected to the optimiser we refer to: mini-batch size, steplength
and type of optimiser.
In the initial part of this work the problem is formalised and the state of
the art of stochastic methods is briefly recalled. We report also convergence
results in the case of convex and non-convex functions, for fixed and diminish-
ing steplength. This is followed by a description of some DNN methodologies
and related challenges, in particular that of the automatic setting of hyper-
parameters.
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10 CHAPTER 1. INTRODUCTION

Starting with the simplest network element, the perceptron, the concept of
a multi-layer network is formalised and the most common layers in imaging
are presented: convolutional layer and pooling layer. Particular attention is
given to backpropagation, being the operation where the main tool used is
stochastic optimisation.
In the literature there are different philosophies to approach the problem of
setting hyperparameters. There are static rules, i.e. rules that do not de-
pend on the training phase, and dynamic rules, which only operate under
certain conditions connected to the course of the training phase. Another
approach to tackle this problem, is focus on automated machine learning
(AutoML) and Neural Architecture Search (NAS). AutoML and NAS try
to tune, exploiting machine-learning techniques, the ANN topologies itself
mainly focusing on accuracy improvement.
This thesis focuses on the choice of hyperparameters connected to the stochas-
tic optimiser used: steplength, mini-batch size and optimiser type (with or
without variance reduction). First of all, the mini-batch size is taken into
account independently of the other hyperparameters. Assuming that one is
often forced with very large and redundant datasets, the idea is to dynami-
cally increase the size of the considered sample. Like the ANN themselves,
the inspiration here is biological: curiosity to improve the accuracy. In this
case, the test to decide whether to increase the sample size is a dynamic one
and is used also as stopping rule.
Furthermore, a crucial remark is that the selection of a suitable steplength
can be strictly related to the mini-batch size. Starting from an idea used in
the deterministic field to set steplength [20], this is tailored for the stochas-
tic model. In addition to an adaptive rule to set the steplength, the basic
iteration provides a test that determines whether the sample size has to be
increased.
Finally, all three hyperparameters mentioned are taken into account. In this
case, the philosophy is that of AutoML. In particular, we will use a classical
ML methodology to set the hyperparameters of a Deep Learning methodol-
ogy. The numerical experimentation shows promising results, which will be
the subject of future investigation.
This thesis, in conjunction with the introduction and conclusions, is essen-
tially structured in four sections. In the first section we present a survey
on the state of the art. In the second section we describe a technique for
dynamic adjustment of the mini-batch size, using the validation set. In the
third section, we propose a technique of steplength selection, combined with
the adaptive increase of sample size. In the fourth section, we detail the
idea of using the Support Vector Regression for the search of optimal hy-
perparameters of a learning method. All the sections are equipped, besides
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the explanation of the algorithms, with an exhaustive number of numerical
experiments, aimed to evaluate the effectiveness of the proposed approaches.
At the end, in the final section, in addition to the conclusions, the current
directions of research that we are pursuing in order to expand and complete
the work carried out, are illustrated.
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Chapter 2

State of the art

2.1 Statement of the problem
Let consider an unconstrained problem with the following form:

(2.1) min
x∈Rd

F (x) ≡ E[f(x, ξ)],

where ξ is a random vector, f : Rd × ξ → R and the expectation E is re-
spect to ξ in the probability space (Ξ,F ,P). It is assumed the function f is
either known analytically or it is assigned by a black box oracle with a pre-
determined accuracy. The problem (2.1) includes the cases, often arising in
engineering applications, where F (x) has an integral representation with re-
spect to a function of ξ (see [56]); furthermore, machine learning applications
lead to optimisation problems of the form (2.1), where F is the expected
risk of misclassification over all the possible input-output pairs. In this case
ξ = (u, v) is the set of all input-output pairs, the probability distribution P
is the true relationship between inputs and outputs and f = f(`(x, u), v) is
a cost function measuring the distance between a prediction function `(x, u)
for the u input and the true output v.
In practice, since the probability distribution of ξ is unknown, having avail-
able only a sample of data (maybe also a large sample of data) but not their
distribution, the solution of a problem involving an estimate of the target
function F (x) is searched for. The approximation of this quantity that is
most commonly used is Sample Average Approximation, defined as

(2.2) min
x∈Rd

Fn(x) ≡ Fn(x, ξ(n)),

where the objective function is the Empirical Risk

(2.3) Fn(x, ξ(n)) =
1

n

n∑
i=1

f(x, ξ
(n)
i ) =

1

n

n∑
i=1

fi(x),

13



14 CHAPTER 2. STATE OF THE ART

based on a random sample ξ(n) = {ξ(n)
1 , ..., ξ

(n)
n } of size n of the variable

ξ. In the machine learning context, each fi(x) ≡ f(x, ξ
(n)
i ) denotes the loss

function related to the instance ξ(n)
i = (u

(n)
i , v

(n)
i ) of the training set. In the

big data framework, since n can be a very large number, it is prohibitively
expensive to compute all the terms of the objective function Fn(x, ξ(n)), its
gradient or its Hessian matrix. On the other hand, often the whole dataset
may be too large to be completely stored in memory; in other cases it may
not be convenient, compared to the computation time, to use all the available
sample, also in view of the redundancy of data.
Finally, in online learning contexts, where the dataset is not available from
the beginning in its completeness but is acquired during the learning process,
it is impossible to work with Fn(x, ξ(n)). In all these cases, the minimization
problem is faced by exploiting stochastic approximations of the gradient that
lead to the use of Stochastic Gradient (SG) methods.
Another motivation in support of SG methods could be found in a simple
example from [6], where the objective function is the sum of some convex
univariate quadratic functions fi with minima distributed in [−1, 1], so that
the minimisation of Fn is x∗n = 0.
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When x(0) � 1, SG will, with certainty, move to the left.
Even if a subsequent iterate lies slightly to the left of the minimum of the
rightmost quadratic, it is likely (but not certain) that SG will continue mov-
ing to the left. However, as iterates approach x∗n, the algorithm enters a
region of confusion. The progress will slow significantly.
Starting from the assumption that the function to be minimised is presented
as the sum of elements, which are independent of each other, a well known
idea in literature is to consider only some of the elements of the dataset at
each iteration of an optimisation method. In the following, without claim-
ing to be exhaustive, we recall the most significant methods for solving the
problem (2.2)-(2.3).
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2.2 Stochastic gradient methods
A known strategy to address the problem (2.1) or its approximation (2.2)-
(2.3) is the Stochastic Gradient (SG) method and its variants, which only
require the gradient of one or a few terms of Fn(x) per iteration. In this way
the computational cost of the single iterate is low compared to the version
in which the whole dataset is managed at each iteration.
As can be seen in Algorithm 1, the basic iteration of the SG method can be

Algorithm 1 Stochastic Gradient (SG) Method

Choose an initial iterate x(0).
for k = 1, 2, . . . do

Generate a realisation of the random variable ξk.
Compute a stochastic vector g(x(k), ξ(nk)).
Choose a learning rate αk > 0.
Set the new iterate as x(k+1) ← x(k) − αkg(x(k), ξ(nk)).

end for

written as

(2.4) x(k+1) = x(k) − αkg(x(k), ξ(nk)),

where ξ(nk) denotes a set of nk realisations of the random variable ξ, randomly
chosen from the sample data ξ(n), g(x(k), ξ(nk)) is the stochastic gradient
vector at the current iterate x(k) and αk is a positive steplength, known also
as learning rate. The main strategies for the choices of ξ(nk) give rise to the
standard SG method, when nk = 1 for all k, and its mini-batch version,
for nk > 1. In particular, given a randomly chosen subset Sk ⊂ {1, ..., n}
of |Sk| = nk indices, nk ≥ 1, and a sub-sample of the training set ξ(nk) =

{ξ(nk)
i }i∈Sk

, the stochastic gradient is defined as

(2.5) g
(nk)
k ≡ g(x(k), ξ(nk)) =

1

nk

∑
i∈Sk

∇fi(x(k)).

2.2.1 Convergence results

For the sake of completeness and to justify some of the strategies under-
taken, we report the main results of the convergence of SG (for details, see
the survey [9]. In a first part we report assumptions and some fundamental
lemmas, then we recall the convergence theorems and the related proofs. We
observe that the convergence results hold both for function F (x) and its ap-
proximation Fn(x). The only difference is that in the first case the sample
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is selected in according to a probability distribution, in the second case it is
selected uniformly from a discrete training set.

The convergence theorems are basically four: for strongly convex func-
tions with constant stelength, for strongly convex functions with decreas-
ing stelength, for non-convex functions with constant stelength and for non-
convex functions with decreasing stelength.
Assumption 1 (Lipschitz-continuous gradient of the pbjective function).
The objective function F : Rd → R, is continuously differentiable and the
gradient function of F , namely ∇F : Rd → Rd, is Lipschitz continuous with
Lipschitz constant L > 0, i.e.:

‖ ∇F (x)−∇F (x̄ ‖2≤ L ‖ x− x̄ ‖2 for all x, x̄ ∈ Rd.

From the assumption we can obtain the first lemma.
Lemma 1. Under Assumption 1, the iterates of SG satisfy the following
inequality for all k ∈ N:

(2.6) E[F (x(k+1))]− F (x(k))
≤ −αk∇F (x(k))TE[g(x(k), ξ(k))] + 1

2
α2
kLE[‖ g(x(k), ξ(k)) ‖2

2].

Proof. By Assumption 1, the iterates generated by SG satisfy

F (x(k+1))− F (x(k)) ≤ ∇F (x(k))T (x(k+1) − x(k)) +
1

2
L ‖ x(k+1) − x(k) ‖2

2

= −αk∇F (x(k))Tg(x(k), ξ(k)) +
1

2
α2
kL ‖ g(x(k), ξ(k)) ‖2

2 .

Taking expectations in these inequalities with respect to the distribution of
ξ(k), and noting that x(k+1) but not x(k) depends on ξ(k), we obtain the desired
bound.

Therefore we introduce some assumptions on the first and second mo-
ments of the stochastic process.
Assumption 2 (Bounds for the first and second moments). The objective
function and SG method satisfy the following conditions.

1. The sequence of iterates {x(k)} is contained in an open set over which
F is bounded below by a scalar Finf .

2. There exist scalars µG ≥ µ > 0 such that, for all k ∈ N,

(2.7) ∇F (x(k))TE[g(x(k), ξ(k))] ≥ µ ‖ ∇F (x(k)) ‖2
2 and

(2.8) ‖ Eξ(k) [g(x(k), ξ(k))] ‖2≤ µG ‖ ∇F (x(k)) ‖2 .
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3. There exist scalars M ≥ 0 and MV ≥ 0 such that, for all k ∈ N,

(2.9) V[g(x(k), ξ(k))] ≤M +MV ‖ ∇F (x(k)) ‖2
2 .

Consequently, Assumption 2, combined with the variance definition, re-
quires that the second moment of g(x(k), ξ(k)) satisfies

(2.10) E[‖ g(x(k), ξ(k)) ‖2
2] ≤M +MG ‖ ∇F (x(k)) ‖2

2

with MG := MV + µ2
G ≥ µ2 > 0.

We are now ready to state the following lemma.
Lemma 2. Under Assumptions 1 and 2, the iterates of SG satisfy the fol-
lowing inequalities for all k ∈ N:

E[F (x(k+1))]− F (x(k))(2.11)

≤ −µαk ‖ ∇F (x(k+1)) ‖2
2 +

1

2
α2
kLE[‖ g(x(k), ξ(k)) ‖2

2](2.12)

≤ −(µ− 1

2
αkLMG)αk ‖ ∇F (x(k)) ‖2

2 +
1

2
α2
kLM.(2.13)

Proof. By Lemma 1 and (2.7), it follows that

E[F (x(k+1))]− F (x(k))

≤ −αk∇F (x(k))TE[g(x(k), ξ(k))] +
1

2
α2
kLE[‖ g(x(k), ξ(k)) ‖2

2]

≤ −µαk ‖ ∇F (x(k)) ‖2
2 +

1

2
α2
kLE[‖ g(x(k), ξ(k)) ‖2

2]

which is the first part.
By (2.10) it follows that:

E[F (x(k+1))]− F (x(k))

≤ −µαk ‖ ∇F (x(k)) ‖2
2 +

1

2
α2
kL(M +MG ‖ ∇F (x(k)) ‖2

2)

=‖ ∇F (x(k)) ‖2
2 αk(−µ+

1

2
αkLMG) +

1

2
α2
kLM

which is the second part.

Another assumption on F could be the strong convexity:
Assumption 3 (Strong convexity). The objective function F : Rd → R is
strongly convex, i. e., there exists a constant c > 0 such that, for all x̄, x ∈ Rd

(2.14) F (x̄) ≥ F (x) +∇F (x)T (x̄− x) +
1

2
c ‖ x̄− x ‖2

2 .

Under this assumption,F has a unique minimum, denoted as x∗ ∈ Rd with
F∗ := F (x∗) = Finf .
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A useful result is that, under Assumption 3, one can bound the optimality
gap at a given point in terms of the squared l2-norm of the gradient of the
objective at this point:

(2.15) 2c(F (x)− F∗) ≤‖ ∇F (x) ‖2
2 for all x ∈ Rd.

Hence, we can state the first convergence theorem, for strongly convex ob-
jective function with fixed steplength.

Theorem 3 (Strongly Convex Objective, Fixed Steplength). Under Assump-
tions 1, 2, and 3, suppose that SG method is run with a fixed steplength
αk = ᾱ for all k ∈ N, satisfying

(2.16) 0 < ᾱ ≤ µ

LMG

.

Then, the expected optimality gap satisfies the following inequality for all
k ∈ N :

(2.17)
E[F (x(k))− F∗] ≤
ᾱLM
2cµ

+ (1− ᾱcµ)k−1
(
F (x(1))− F∗ − ᾱLM

2cµ

)
k→∞−−−→ ᾱLM

2cµ
.

Proof. Using Lemma 2 with αk = ᾱ,(2.15) and (2.16), we have for all k ∈ N
that

E[F (x(k+1))]− F (x(k)) ≤ −(µ− 1

2
ᾱLMG)ᾱ ‖ ∇F (x(k)) ‖2

2 +
1

2
ᾱ2LM

≤ −1

2
ᾱµ ‖ ∇F (x(k)) ‖2

2 +
1

2
ᾱ2LM

≤ −ᾱcµ(F (x(k))− F∗) +
1

2
ᾱ2LM.

Subtracting F∗ from both sides, taking total expectations, this yields

E[F (x(k+1))− F∗] ≤ E[F (x(k))− F∗](−ᾱcµ+ 1) +
1

2
ᾱ2LM

Subtracting ᾱLM
2cµ

from both sides, one obtains

E[F (x(k+1))− F∗]−
ᾱLM

2cµ

≤ (1− ᾱcµ)E[F (x(k))− F∗] +
ᾱ2LM

2
− ᾱLM

2cµ

≤ (1− ᾱcµ)

(
E[F (x(k))− F∗]−

ᾱLM

2cµ

)
.
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Observe that last inequality is a contraction since, by (2.16) and (2.10),

(2.18) 0 < ᾱcµ ≤ cµ2

LMG

≤ cµ2

Lµ2
=
c

L
≤ 1.

The result thus follows by applying the contraction repeatedly through iter-
ation k ∈ N.

We now move towards the convergence of the method with decreasing
steplength, always in the case of a strongly convex function.

Assumption 4. Suppose that SG method is run with a steplength sequence
such that, for all k ∈ N,

(2.19)
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞.

Theorem 4 (Strongly Convex Objective, Diminishing Steplengths). Under
Assumptions 1, 2, and 3, suppose that SG method is run with a steplength
sequence such that, for all k ∈ N,

(2.20) αk =
β

γ + k
for some β >

1

cµ
and γ > 0 such that α1 ≤

µ

LMG

.

Then, for all k ∈ N, the expected optimality gap satisfies

(2.21) E[F (x(k))− F∗] ≤
ν

γ + k
,

where

(2.22) ν := max

{
β2LM

2(βcµ− 1)
, (γ + 1)(F (x(1))− F∗)

}
.

Proof. By (2.20), the inequality αkLMG ≤ α1LMG ≤ µ holds for all k ∈ N.
Hence, along with (2.15), Lemma 2 and (2.15), one has for all k ∈ N that

E[F (x(k+1))]− F (x(k))

≤ −(µ− 1

2
αkLMG)αk ‖ ∇F (x(k)) ‖2

2 +
1

2
α2
kLM

≤ −1

2
αkµ ‖ ∇F (x(k)) ‖2

2 +
1

2
α2
kLM

≤ −αkcµ(F (x(k))− F (x∗)) +
1

2
α2
kLM.



20 CHAPTER 2. STATE OF THE ART

Subtracting F∗ from both sides, taking total expectations, and rearranging,
this yields

(2.23) E[F (x(k+1))− F∗] ≤ (1− αkcµ)E[F (x(k))− F∗] +
1

2
α2
kLM.

We now prove (2.21) by induction.
First, the definition of ν ensures that the inequality (2.21) holds for k = 1.
Then, assuming (2.21) holds for some k ≥ 1, it follows from (2.23) that

E[F (x(k+1))− F∗] ≤
(

1− βcµ

k̂

)
ν

k̂
+
β2LM

2k̂2
( where k̂ := γ + k)

=

(
k̂ − βcµ
k̂2

)
ν +

β2LM

2k̂2

=

(
k̂ − 1

k̂2

)
ν −

(
βcν − 1

k̂2

)
ν +

β2LM

2k̂2
≤ ν

k̂ + 1
,

where the last inequality follows because k̂2 ≥ (k̂+1)(k̂−1) and−
(
βcν−1

k̂2

)
ν+

β2LM

2k̂2
is nonpositive by the definition of ν.

From hereafter we present similar results for non-convex functions.

Theorem 5 (Non convex Objective, Fixed Steplength). Under Assumptions
1 and 2, suppose that SG method is run with a fixed steplength αk = ᾱ for
all k ∈ N, satisfying

(2.24) 0 < ᾱ <
µ

LMG

.

Then, the expected sum-of-squares and average-squared gradients of F corre-
sponding to the SG iterates satisfy the following inequalities for all K ∈ N:

(2.25) E

[
K∑
k=1

‖ ∇F (x(k)) ‖2
2

]
≤ KᾱLM

µ
+

2(F (x(1))− Finf )
µᾱ

(2.26) E

[
1

K

K∑
k=1

‖ ∇F (x(k)) ‖2
2

]
≤ ᾱLM

µ
+

2(F (x(1))− Finf )
Kµᾱ

K→∞−−−→ ᾱLM

µ
.

Proof. Taking the total expectation of (2.11), in view of (2.24), we obtain

E[F (x(k+1))]− E[F (x(k))]

≤ −(µ− 1

2
ᾱLMG)ᾱE[‖ ∇F (x(k)) ‖2

2] +
1

2
ᾱ2LM

≤ −1

2
µᾱE[‖ ∇F (x(k)) ‖2

2] +
1

2
ᾱ2LM.
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Summing both sides of this inequality for k ∈ {1, · · · , K} and recalling As-
sumption 2 gives

Finf − F (x(1)) ≤ E[F (x(K+1))]− F (x(1))

≤ −1

2
µᾱ

K∑
k=1

E[‖ ∇F (x(k)) ‖2
2] +

1

2
Kᾱ2LM.

Rearranging yields (2.25), and dividing further by K yields (2.26).

Again in the non-convex context we now consider the case of decreasing
steplengths.

Theorem 6 (Non convex Objective, Diminishing Steplengths). Under As-
sumptions 1 and 2, suppose that SG method is run with a steplength sequence
satisfying (2.19). Then

(2.27) lim inf
k→∞

E[‖ ∇F (x(k)) ‖2
2] = 0.

The proof of this theorem follows based on the results given in Theorem
(7) below.

Theorem 7 (Non convex Objective, Diminishing Steplengths). Under As-
sumptions 1 and 2, suppose that SG method is run with a steplength sequence
satisfying (2.19). Then, with Ak :=

∑K
k=1 αk,

(2.28) E

[
K∑
k=1

αk ‖ ∇F (x(k)) ‖2
2

]
<∞

(2.29) E

[
1

Ak

K∑
k=1

αk ‖ ∇F (x(k)) ‖2
2

]
K→∞−−−→ 0.

Proof. The second condition in (2.19) ensures that {αk} → 0, meaning that,
without loss of generality, we may assume that αkLMG ≤ µ for all k ∈ N.
Then, taking the total expectation of (2.11),

E[F (x(k+1))]− E[F (x(k))]

≤ −(µ− 1

2
αkLMG)αkE[‖ ∇F (x(k)) ‖2

2] +
1

2
α2
hLM

≤ −1

2
µαkE[‖ ∇F (x(k)) ‖2

2] +
1

2
α2
kLM.
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Summing both sides of this inequality for k ∈ {1, · · · , K} gives

Finf − E[F (x(1))] ≤ E[F (x(K+1))]− E[F (x(1))]

≤ −1

2
µ

K∑
k=1

αkE[‖ ∇F (x(k)) ‖2
2] +

1

2
LM

K∑
k=1

α2
k.

Dividing by µ
2
and rearranging the terms, we obtain

K∑
k=1

αkE[‖ ∇F (x(k)) ‖2
2] ≤ 2(E[F (x(1))]− Finf )

µ
+
LM

µ

K∑
k=1

α2
k.

The second condition in (2.19) implies that the right-hand side of this in-
equality converges to a finite limit when K increases, proving (2.28). Then,
(2.29) follows since the first condition in (2.19) ensures that AK →∞ when
K →∞.

Corollary 8. Suppose the conditions of Theorem 7 hold for any K ∈ N.
Then k(K) ∈ {1, · · · , K} represent a random index chosen with probabilities
proportional to {αk}Kk=1.
Then ‖ ∇F (x(k(K))) ‖2

K→∞−−−→ 0 in probability.

Proof. Using Markov’s inequality:

P(X ≥ a) ≤ E[X]

a
for X random variable and a ≥ 0

and (2.28), for any ε > 0, we can write

P{‖ ∇F (x(k)) ‖2≥ ε} = P{‖ ∇F (x(k)) ‖2
2≥ ε2}

≤ ε−2E[Ek[‖ ∇F (x(k)) ‖2
2]]

K→∞−−−→ 0,

which is the definition of convergence in probability.

Now we have that SG is arguably one of the most popular algorithms in
machine learning. Unfortunately, SG suffers from slow convergence, which is
due to the fact that the variance of the stochastic gradient as an estimator of
the gradient does not naturally diminish. For this reason, SG is typically used
with a decreasing steplength rule, which ensures that the variance converges
to zero. However, this has an adverse effect on the convergence rate. For
instance, SG has a sublinear rate even if the function to be minimised is
strongly convex.
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2.2.2 Variance reduced methods

In literature gradient aggregation methods have a long history. The basic
idea of this class of methods is to achieve a lower variance by reusing and/or
revising previously computed informations. For example, Bertsekas et al. [6]
have proposed incremental gradient methods, that can be view as instance
of a basic SG method. Therefore other methods named Stochastic Variance
Reduced Gradient (SVRG) and SAGA are able to achieve a linear rate of
convergence on strongly convex problems. On the other hand these methods
achieve this rate of convergence with an increase in the computation or in
the storage.
SVRG method operates in cycles. The scheme is described in Algorithm
2; at the beginning of each cycle, the full gradient ∇F n(x(k)) is available;
then, starting from x(k), a set of m inner iterations x̃(j) are performed by a
stochastic gradient, corrected by means of a perceived bias:

g̃j ← ∇fij(x̃(j))− (∇fij(x(k))−∇F n(x(k)))

with ij randomly chosen in {1, ..., n}.
In this scheme g̃j is an unbiased estimator of the gradient but with a reduced
variance. In options (b) and (c) when ρ = 1

1−2αL
( 1
mcα

+ 2Lα) < 1, the rate

Algorithm 2 SVRG Method

1: Select an initial iterate x(1) ∈ Rd, a steplength α > 0 and m ∈ N.
2: for k = 1, 2, · · · do
3: Compute the batch gradient ∇F n(x(k))
4: Initialize x̃(1) = x(k).
5: for j = 1, 2, · · · ,m do
6: Choose ij uniformly from {1, ..., n}
7: Compute g̃j ← ∇fij(x̃(j))− (∇fij(x(k))−∇F n(x(k))).
8: Set x̃(j+1) ← x̃(j) − αg̃j.
9: end for

10: Option (a): Set x(k+1) ← x̃(m+1).
11: Option (b): Set x(k+1) ← 1

m

∑m
j=1 x̃

(j+1).
12: Option (c): Set x(k+1) ← x̃(j+1), where j is chosen uniformly from

{1, ...,m}.
13: end for

of convergence is linear

E[F n(x(k+1) − F n(x∗)] ≤ ρE[F n(x(k) − F n(x∗)]
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The outer iteration of SVRG method is very time consuming; in fact it re-
quires n+2m gradient evaluations. Numerical experiments show that, in the
beginning phase, SG is more efficient than SVRG.
A different approach is used in SAGA method. At the first iteration, the
full gradient is computed, storing any component of the sum; then, at each
iteration, a stochastic gradient is computed as the average of the last gradi-
ent components evaluated at previous iterates; the method will have stored
∇fi(x[i]), i = 1, ..., n, where x[i] is the latest iterate at which ∇fi was evalu-
ated. The basic idea of the method is that E[gk] = ∇F n(x(k)) is an unbiased
estimator of the gradient but with a reduced variance. In order to start the
method, one could perform one epoch of simple SG steps or one can assim-
ilate iterates one by one. Beyond the initial iteration, the computational

Algorithm 3 SAGA Method

1: Select an initial iterate x(1) ∈ Rd, a steplength α > 0.
2: for i = 1, 2, · · · , n do
3: Compute ∇fi(x(1))
4: Store ∇fi(x[i])← ∇fi(x(1))
5: end for
6: for k = 1, 2, · · · do
7: Choose j uniformly in {1, ..., n}
8: Compute ∇fj(x(k)).
9: Set gk ← ∇fj(x(k))−∇fj(x[j]) + 1

n

∑n
i=1∇fi(x[i)]).

10: Store ∇fj(x[x])← ∇f (xk)
j

11: Set x(k+1) ← x(k) − αgk
12: end for

cost is as in SG method. The drawback is that we need to store n gradient
vectors. In addition, the memory traffic can be very expensive.
For special functions (for example logistic and least squares regression) as
fi(x

(k)) = f̂(aTi x
(k)), then ∇fi(x(k)) = f̂ ′(aTi x

(k))ai. Consequently, it is suffi-
cient the additional storing of the scalars f̂ ′(aTi x(k)) since the examples are
already available.
When α = 1

2(cn+L)
, the rate of convergence is linear

E[‖x(k) − x∗‖2] ≤
(

1− c

2(cn+ L)

)k
(‖x(1) − x(∗)‖2 +

nD

cn+ L
)

with D = F n(x(1))−∇F n(x∗)
T (x(1) − x∗)− F n(x∗).

For very large n, gradient aggregation methods are comparable to batch al-
gorithms and therefore cannot beat SG.
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Another way to overcome the variance-reduced problem is to consider a new
class of methods that was developed over the last years; these kinds of meth-
ods include a momentum term [40] or they are bases on adaptive estimates
of lower-order moments [36].
As we can see in Algorithm 4, the vector mk used in the basic iteration takes
into account all the gradients seen in the past, weighted with a term β that
makes them decay exponentially (being β a scalar always smaller than 1)
(see [40]).
Similarly in Algorithm 5, known as AdaM, Adaptive Moment estimation, in
literature [36], in addition to a term related to the first moment of the stochas-
tic process of the gradient evaluation, it is considered a term that takes into
account the average of the component-wise square of the gradients. Also in
this case weighted averages are considered, with exponential decay of the
gradients seen in the past. Recent convergence results on variants of AdaM
are obtained in [15].

Algorithm 4 Momentum

1: Choose α, β ∈ [0, 1), x(0);
2: initialize m0 ← 0, k ← 0
3: for k = 0, 1, · · · do
4: k ← k + 1
5: gk ← ∇fik(x(k−1))
6: mk ← β ·mk−1 + gk
7: x(k) ← x(k−1) − α ·mk

8: end for

Algorithm 5 Adam

1: Choose α, ε̂, β1 and β2 ∈ [0, 1), x(0);
2: initialize m0 ← 0, v0 ← 0, k ← 0
3: for k = 0, 1, · · · do
4: k ← k + 1
5: gk ← ∇fik(x(k−1))
6: mk ← β1 ·mk−1 + (1− β1) · gk
7: vk ← β2 · vk−1 + (1− β2) · g2

k

8: αk = α

√
1−βk

2

(1−βk
1 )

9: x(k) ← x(k−1) − αk ·mk/(
√
vk + ε̂)

10: end for
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2.3 Artificial Neural Networks

In addition to the classic Machine Learning context, stochastic gradient
methods are also used for Artificial Neural Network (ANN) training or, more
generally, in the context of Deep Learning. Deep Learning allows compu-
tational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.
ANNs are biologically inspired algorithms designed to simulate the way in
which the human brain processes information. The networks collect their
knowledge by detecting the patterns and relationships in data, and learn (or
are trained) through experience, not from programming. An ANN is formed
by hundreds of single units, artificial neurons or processing elements (PE),
connected with coefficients (weights), which constitute the neural structure
and are organised in layers. Each PE has weighted inputs, activation func-
tion, and one output. The behaviour of a neural network is determined not
only by the activation functions of its neurons, by the loss function, and by
the architecture itself but also by the number of information that it pro-
cesses simultaneously. The weights are the adjustable parameters and, in
that sense, an ANN is a parameterised system. The weighed sum of the in-
puts constitutes the activation signal of the neuron. The activation signal is
passed through activation function to produce a single output of the neuron.
Activation function introduces non-linearity to the network. During train-
ing, the inter-unit connections (the weights) are optimised until the error in
predictions is minimised; once the network is trained and tested, it can be
given new input information to predict the output.

Examples of ANN and of activation functions

A first example of ANN was the Linear Threshold Unit (LTU) or perceptron.
Assigned an input vector ξ ∈ Rd , indicating with x ∈ Rd the weight vector,
a Linear Threshold Unit (LTU) model is defined as follows:

LTU(ξ) =

{
1, if

∑d
i=1 xiξi ≥ θ

−1, if
∑d

i=1 xiξi < θ

where θ is a threshold that specifies the amount of stress to be accumulated
in the neuron before it fires a positive signal (see Figure 2.1).
Mathematically, a LTU is able to draw an hyperplane in Rd.
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Figure 2.1: Scheme of a formal neuron

Indeed, since y ∈ {−1, 1} is the output of the neuron, we can define:

y(ξ) = g

(
d∑
i=1

xiξi − θ

)
= g(xT ξ − θ)

where g is called activation function and can be defined as the sign function
LTU(ξ). In this case the ANN is an hyperplane of Rd.
In more general cases, different types of activation functions can be intro-
duces. We report some examples.

1 Sigmoid or Logistic Activation Function g(t) = 1
1+e−t ;

• it exists between (0 to 1); therefore, it is especially used for models
where we have to predict the probability as an output;

• it is differentiable;

• it is monotonic but function’s derivative is not.

2 Tanh or hyperbolic tangent Activation Function g(t) = tanh(t) =
et−e−t

et+e−t ;

• the range of the tanh function is from (-1 to 1);

• tanh is also sigmoidal (s-shaped);

• the advantage is that the negative inputs will be mapped strongly
negative and the zero inputs will be mapped near zero in the tanh
graph;

• it is differentiable;
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Figure 2.2: Sigmoid function

Figure 2.3: tanh function
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• it is a monotonic function while its derivative is not monotonic.

3 ReLU (Rectified Linear Unit) Activation Function g(t) = max (0, t);

• range: [ 0 to infinity);

• the function and its derivative both are monotonic;

• a drawback is that all the negative values become zero immedi-
ately; this decreases the ability of the model to fit or train from
the data properly.

Figure 2.4: ReLU vs Logistic

4 Leaky ReLU g(t) =

{
ax, if x < 0

x, if x ≥ 0
;

• the leak helps to increase the range of the ReLU function, usually,
the value of a is 0.01;

• the range of the Leaky ReLU is (−∞,∞);

• when a is different from 0.01, then it is called Randomised ReLU;

• both Leaky and Randomised ReLU functions are monotonic, their
derivatives also are monotonic.

2.3.1 Definition of a general multilayer neural network

It is well known that a classifier based on the formal neuron has limited pos-
sibilities of application; indeed, there are simple classification problems in
which the sample sets are not linearly separable. Some of these limitations
can be overcome, in principle, by introducing a map φ : Rd → Rd, transform-
ing the input data in a subset of a space, known as features space. With a
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Figure 2.5: ReLU vs Leaky ReLU

suitable choice of this features space, the problem is reformulate as to find
linearly separable sets in the transformed space:

y(ξ) = g

(
d∑
i=1

xiφi(ξ)− θ

)
.

This possibility is still subject to considerable limitations, at least as long
as there are limits on the number or complexity of the component φi of the
functions φ and the only parameters that can be determined with adaptive
criteria are the weights xi. To overcome the limitations of the perceptron,
it is necessary to use more complex structures, making the structure of the
functions φi dependent on the training process. Networks of this type allow,
in principle, under appropriate hypotheses on the activation functions of
neurons, to approximate within a prefixed accuracy any continuous function
on a compact set and, therefore, to solve problems of classification of sets
which are not linearly separable. In this regard, there are several results in
the literature. In particular, the Universal Approximation Theorem is often
referred to. This theorem is presented in [41] in a version with assigned
depth. In this work the authors show a universal approximation theorem
for width-bounded ReLU networks: width-(n + 4) ReLU networks, where n
is the input dimension, are universal approximators. Moreover, except for
a measure zero set, all functions cannot be approximated by width-n ReLU
networks, which exhibits a phase transition.
The architecture of a multilayer neural network can be described by defining:

• a set of d input nodes associated to the d inputs of the network;

• a set of neurons organised in L ≥ 2 different layers divided in L−1 hid-
den layers, each consisting of neurons whose outputs contribute to the
neuronal inputs of the next layer, and an output layer, constituted from
K ≥ 1 neurons whose outputs constitute the outputs of the network;
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• a set of oriented and weighted arcs representing the internal connections
between the neurons and the connections with the input nodes; it is
assumed that there are no connections between the neurons of the same
layer, nor connections in feedback between the outputs of the neurons
of a layer and the inputs of the neurons of the previous layers.

The following notation is used:

• l = 1, . . . , L are the indices associated with the different layers;

• each oriented arc entering the neuron j of the layer l and leaving the
neuron i of the layer l− 1 has a weight consisting of a real number x(l)

ji

which represents the entity of the synaptic connection;

• each formal neuron is supposed to be characterised by an activation
function glj : R → R which operates on a weighted combination of the
inputs and a threshold value x(l)

j0 .

Indicating with a
(l)
j the weighted sum of the inputs and the threshold and

with z(l)
j the output of the neuron, for the neuron j of layer 1 we can write:

a
(1)
j =

d∑
i=1

x
(1)
ji ξi − w

(1)
j0 , z

(1)
j = g

(1)
j (a

(1)
j )

and, for neuron j of layer l > 1,

a
(l)
j =

N(l−1)∑
i=1

x
(l)
ji z

(l−1)
i − x(l)

j0 , z
(l)
j = g

(l)
j (a

(l)
j )

being N (l) the number of neurons of layer l. Deep learning discovers intri-
cate structure in large data sets by using the backpropagation algorithm to
indicate how a machine should change its internal parameters that are used
to compute the representation in each layer from the representation in the
previous layer (see Figure 2.7). For performing backpropagation, stochastic
gradient methods are used. Indeed backpropagation is the technique to com-
pute the gradient of one component of the objective function (2.3).
The following is a minimal example of a gradient calculation for a fully con-
nected network.
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Figure 2.6: Scheme of multilayer ANN

Figure 2.7: Backpropagation scheme
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For any sample ξ = (a, b), we assume that h(a;x) is a prediction function
of the neural network about the example a with given parameters x and
`(h(a;x), b) is the loss function, measuring the distance between the com-
puted prediction h(a;x = (w, v, u)) and the true value b; then the expression
of `(h(a;x = (w, v, u)), b) can be written as

h(a;x = (w, v, u)) = u11σ2(z1) + u12σ2(z2) =

= u11σ2(v11σ1(t1) + v12σ1(t2)) + u12σ2(v21σ1(t1) + v22σ1(t2)) =

= u11σ2(v11σ1(w11a1 + w12a2 + w13a3) + v12σ1(w21a1 + w22a2 + w23a3)) +

+u12σ2(v21σ1(w11a1 + w12a2 + w13a3) + v22σ1(w21a1 + w22a2 + w23a3))

We compute the gradient:

∇(w v u)`(h(a;x = (w, v, u)), b) = `′(h(a;x = (w, v, u)), b)∇(w v u)h(a;x = (w, v, u))

∇uh(a;x = (w, v, u)) =
(
σ2(z1) σ2(z2)T

)
row v(1,:) ∇v1,:h(a;x = (w, v, u)) = u11σ

′
2(z1)

(
σ1(t1) σ1(t2)

)T
row v(2,:) ∇v2,:h(a;x = (w, v, u)) = u12σ

′
2(z2)

(
σ1(t1) σ1(t2)

)T
row w(1,:) ∇w1,:h(a;x = (w, v, u)) = (u11σ

′
2(z1)v11 + u12σ

′
2(z2)v21)σ′1(t1)

(
a1 a2 a3

)T
row w(2,:) ∇w2,:h(a;x = (w, v, u)) = (u11σ

′
2(z1)v12 + u12σ

′
2(z2)v22)σ′1(t2)

(
a1 a2 a3

)T

Deep Learning and Convolutional Neural Networks (CNN)

Deep Learning and Convolutional Neural Networks have dramatically im-
proved the state-of-the-art in speech recognition, visual object recognition,
object detection and many other domains such as drug discovery and ge-
nomics.
Deep convolutional nets have brought about breakthroughs in processing
images, video, speech and audio, whereas recurrent nets have shone light on
sequential data such as text and speech [37].
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A CNN is able to successfully capture the Spatial and Temporal dependen-
cies in an image through the application of relevant filters. The architecture
performs a better fitting to the image dataset due to the reduction in the
number of parameters involved and reusability of weights. In other words,
the network can be trained to understand the sophistication of the image
better.
The objective of the Convolution Operation is to extract the high-level fea-
tures such as edges, from the input image. CNN need not be limited to only
one Convolutional Layer; the first ConvLayer is responsible for capturing the
Low-Level features such as edges, color, gradient orientation, etc; with added
layers, the architecture adapts to the High-Level features as well, giving us
a network which has the wholesome understanding of images in the dataset,
similar to how we would. There are two types of results to the operation:
one in which the convolved feature is reduced in dimensionality as compared
to the input, and the other in which the dimensionality is either increased
or remains the same. This is done by applying Valid Padding in case of the
former, or Same Padding in the case of the latter.
Similar to the Convolutional Layer, the Pooling layer is responsible for re-
ducing the spatial size of the Convolved Feature; this is to decrease the
computational power required to process the data through dimensionality
reduction; furthermore, it is useful for extracting dominant features which
are rotational and positional invariant, thus maintaining the process of effec-
tively training of the model. There are two types of Pooling: Max Pooling
and Average Pooling. In both cases we consider as input (kernel) a rectangu-
lar region and as output a single value. Max Pooling returns the maximum
value from the portion of the image covered by the kernel. On the other
hand, Average Pooling returns the average of all the values from the portion
of the image covered by the kernel.
Max Pooling also performs as a Noise Suppressant. It discards the noisy
activations altogether and also performs denoising along with dimensionality
reduction. On the other hand, Average Pooling simply performs dimension-
ality reduction as a noise suppressing mechanism. Hence, we can say that
Max Pooling performs a lot better than Average Pooling. Adding a Fully-
Connected layer is a (usually) cheap way of learning non-linear combinations
of the high-level features as represented by the output of the convolutional
layer. The Fully-Connected layer is learning a possibly non-linear function
in that space. Now that we have converted the input image into a suitable
form by the Multi-Level Perceptron, we shall flatten the image into a col-
umn vector. The flattened output is fed to a feed-forward neural network
and backpropagation applied to every iteration of training. Over a series of
epochs, the model is able to distinguish between dominating and certain low-
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Figure 2.8: Different pooling kinds

Figure 2.9: Fully connected layer

level features in images and classify them using the Softmax Classification
technique. The softmax function, also known as softargmax or normalised
exponential function is a function that:

• takes as input a vector of K real numbers, and normalises it into a
probability distribution consisting of K probabilities;

• prior to applying softmax, some vector components could be negative,
or greater than one; and might not sum to 1;

• after applying softmax, each component will be in the interval (0, 1)
and the components will add up to 1;

• they can be interpreted as probabilities;
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• the larger input components will correspond to larger probabilities;

• softmax is often used in neural networks, to map the non-normalised
output of a network to a probability distribution over predicted output
classes.

The standard (unit) softmax function σ : Rk → Rk is defined by the formula

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK

In particular: we apply the standard exponential function to each element
zi of the input vector z and normalise these values by dividing by the sum
of all these exponentials; this normalisation ensures that the sum of the
components of the output vector σ(z) is 1.

2.4 Mini-batch size

Masters and Luschi in [42] say that modern Deep Neural Network (DNN)
training is typically based on mini-batch stochastic gradient optimisation.
While the use of large mini-batches increases the available computational
parallelism, small batch training has been shown to provide improved gen-
eralisation performance and allows a significantly smaller memory footprint,
which might also be exploited to improve machine throughput. In this way
the authors stress how important it is in the learning process to set up a good
mini-batch size that allows the method to achieve high accuracy while reduc-
ing the time spent on the learning phase as much as possible. In the context
of classic Machine Learning several authors suggest a constant and linear
growth of the mini-batch to allow the process to reach the entire dataset.
Some authors, for example Schmidt in [26], suggest a hybrid approach to the
problem. The hybrid approach consists in using some initial iterates with
a stochastic gradient method, to exploit the initial fast decreasing ability of
these methods, and then move to deterministic iterates to exploit the stability
of the method and the ability to go further down to the identified minimum.
Obviously, these techniques cannot be applied to every context, but only to
off-line learning contexts and with datasets of limited size. In the field of
Deep Learning it is often suggested the use of a mini-batch size in powers
of 2 such as 32, 64, 128 to facilitate the use of internal memories of accelera-
tors such as Graphics Processing Unit (GPU) and Field Programmable Gate
Array (FPGA). The sample size selection strategies are in some cases not
adaptive but simply guided by heuristics or hardware constraints, while in
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other adaptive contexts they are guided by the learning process itself [45].
As in any learning methodology from examples also in Machine Learning in
general, and Deep Learning in particular, it is important to adopt techniques
to avoid overfitting. This can be obtained by adding to the error function a
Tikhonov–like penalty term with the effect of restricting the set within which
the parameters are chosen:

(2.30) min
x∈Rd

n∑
i=1

fi(x) + λ ‖ x ‖2 λ > 0.

The “optimal” value of λ can be determined using a cross–validation tech-
nique. In particular, for different values of λ, various networks are trained
solving(2.30), and the parameter λ is chosen as the one which minimises the
error on a validation set.
Starting from these considerations in this thesis we will present an idea of
dynamic increase of the sample size of adaptive type. As in all methodologies
involving learning from examples, also in Deep Learning, it is fundamental
to keep under control the phenomenon of overfitting, i.e. the excessive ad-
herence to data with consequent loss of the ability to generalise. An effective
method to avoid overfitting is the Early Stopping approach, which interrupts
the learning process, as the name suggests. The proposed methodology starts
from the intuition of the Early stopping [47] technique and takes advantage
of the validation set. As an alternative to the regularisation technique, a
heuristic strategy sometimes used is to prematurely stop the minimisation
(early stopping) of the error function. In particular, the early stopping tech-
nique is based on the idea to periodically evaluate, during the minimisation
process, the error that the network commits on an auxiliary validation set.
In general, in the first iterations the error on the validation set decreases with
the objective function, while it can increase if the error occurs on the train-
ing set it becomes “sufficiently small”. The training process ends when the
error on the validation set starts to increase, because this might correspond
to the point in which the network begins to overfit the training set to the
detriment of generalisation capacity. Several numerical examples have been
made to validate the effectiveness of this new idea to increase the accuracy
of the method without increasing the computational time.
Turning now to consider the steplength we can find different approaches in lit-
erature. In many versions of the stochastic gradient method the steplength
is usually left fixed during the learning process; in AdaM [36] instead we
have an initial decreasing and then it asymptotically tends (with exponential
speed) to a constant value. Considering the convergence results that come
from the theory [9], the steplength should be chosen as a value of a dimin-
ishing sequence, i.e., αk = O( 1

k
), but in practice this choice would lead to
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a too quick reduction. The decreasing of the steplength would cause an in-
terruption of the learning process, going to have this value close to machine
precision in a few iterates. For this reason in practice we can find a similar
idea, but with a much slower speed called learning rate annealing. Several
works in literature show how from a theoretical point of view, both in Deep
Learning contexts and with convex functions, modifying steplengths during
the learning process can bring benefits. For example in [39] the authors claim
that SG with a large initial learning rate is widely used for training modern
neural net architectures. Although a small initial learning rate allows for
faster training and better test performance initially, the large learning rate
achieves better generalisation soon after the learning rate is annealed. Other
authors claim, however, that these benefits can also be achieved in a convex
context, bringing effective numerical examples [46]. The basic idea of learnig
rate annealing is to decrease the steplength after some time from the begin-
ning of the learning process, in an automatic and non-adaptive way. This
technique is widely used in the most recent ANN for segmentation and other
tasks [7]. In contrast to these methods, in the recent panorama of research,
techniques have been introduced in which the variation of the steplength is
adaptive. From the convergence analysis, it is clear that it is essential to cor-
rectly estimate the Lipschitz constant involved in the choice of steplength.
Regarding the convergence results of the standard SG method (2.4) and its
variant with fixed size sub-sample nk, in [9] a very thorough analysis is pro-
vided. The results provided in [9] are valid in the case of the solution of both
problems (2.1) and (2.2). Under the fundamental assumption that the gradi-
ent of the objective function is L-Lipschitz continuous and some additional
conditions on the first and second moment of the stochastic gradient, when
positive steplength αk is limited from above by a constant αmax, the expected
optimality gap for strongly convex objective functions, or the expected sum
of gradients for non-convex objective functions, converge asymptotically to
values proportional to αmax. In practice, if the steplength is small enough
and k →∞, the method generates iterations near the optimal or stationary
value.
Everything said is valid from a theoretical point of view. In practice the
Lipschitz constant and the quantities that limit the first and second moment
of the stochastic process are generally unknown. In addition to not being
known, there are no documented techniques in the literature to approximate
them effectively and inexpensively. For these reasons there are no recom-
mended choices for the steplength depending on the single problem we are
facing. By choosing an inappropriate steplength we may be faced with two
different scenarios. A choice of too small value can lead to a very slow learn-
ing process, while a choice of too high value can cause the method to diverge.



2.4. MINI-BATCH SIZE 39

At this point the idea is to be able to incorporate second order information
without the computational cost of a real Hessian calculation. There are many
different proposals in the literature to overcome this problem without using
second-order methods or introducing line search techniques.
In particular, we refer to [51, 57], where the updating rule of the steplength is
borrowed from the Barzilai’s rules, well known in the deterministic context.
In case of strongly convex objective functions, in order to obtain a linear con-
vergence in expectation to zero for the optimality gap [57] or to a solution for
the sequence of the iterates [51], the updating rules are inserted in variance
reducing schemes as SVRG [34] or SAGA [17]. These methods require to
periodically compute the full gradient or to store the last computed term of
each gradient in the sum (2.3). As mentioned before, these techniques can-
not always be used. They are suitable only if we are in an off-line learning
context and with a dataset small enough to be managed entirely.
Another way to obtain the linear convergence for strongly convex objective
functions consists in increasing nk at a geometric rate [11] (see also [25]).
Despite this very strong condition, from the practical point of view, a proce-
dure based on the so-called norm test, enables to control the sample size nk
so that

E[‖g(nk)
k −∇F (x(k))‖2] ≤ ζ‖∇F (x(k))‖2

for some ζ > 0 [28]. In the practical implementation, the left side of the last
inequality can be approximated with the sample variance and the gradient
∇F (x(k)) on the right side with a sample gradient [11, 9]. Similar techniques
are developed in [13], relaxing the norm test by the use of a line search tech-
nique based on the true value of the objective function.
In several works it has been shown how steplength and mini-batch size are
strongly correlated [55]. For this reason it makes sense to consider together
the steplength and the mini-batch size in a mutually dependent way. Re-
cently, Bollagragrada et al. suggest in [8] to increase the mini-batch size on
the basis of an internal product test, combined with an orthogonality test.
These conditions ensure that the negatives of stochastic gradients based on
-samples of adequate size are descent directions for the method. From the
numerical experiments we can see that the mechanism which increases the
sample size nk with these two tests is slower than the norm test induced.
On the other hand, the linear speed of convergence is maintained for ob-
jective functions that fulfill the Polyak-Lojasiewicz (P-L) condition. These
results strongly depend on the knowledge of the Lipschitz L parameter or its
appropriate (local) estimation. Consequently, motivated by the numerical
experiences and theoretical results shown in [21], in this thesis we propose to
adapt the selection rule for the steplength adopted in the Limited Memory



40 CHAPTER 2. STATE OF THE ART

Steepest Descent (LMSD) method [20] to give a local estimate of the inverse
L in the SG framework, combining this strategy with the technique to in-
crease the size of the detailed sub-sample in [8] to control in an adaptive way
the variance of stochastic directions.
Notwithstanding the success of Machine Learning, algorithms of this type
can still be difficult to design effectively and their performance usually de-
pends very much on the choice of several criteria (mini-batch size, steplength,
optimiser, ANN layer structure, etc.), called hyperparameters. Hyperparam-
eters are considered all those parameters of the method, numerical or non-
numerical, which are not trained by the method itself, but which are decided
at the beginning and can be modified in an adaptive way. In practice, find-
ing a set of optimal parameters can make a significant difference. A good
combination of these hyperparameters can lead to performance comparable
to the state of the art, while a poorly studied and hasty setting can lead to
bad results. When we perform the search for these excellent hyperparameters
we must have a measure to evaluate the performance of the algorithm. In
general this evaluation can be done in two ways: considering the accuracy
of the method (in the case of classification) or considering the loss function
decrease. Although in theory this process is a simple maximisation, in prac-
tice it is very difficult due to the considerable time taken to make each test
converge, so it is very expensive from a computational point of view. Cur-
rently employed architectures in the case of ANN or ML methods more in
general have mostly been developed manually by human experts, which is a
time-consuming and error-prone process. Because of this, there is growing
interest in automated Neural Architecture Search methods (NAS) or Auto-
mated Machine Learning (AutoML). It immediately became obvious that the
methods of automatic setting of hyperparameters are particularly promising,
in fact in recent years there have been many academic publications in this
field [18]. The more generic AutoML [19] gives way to NAS when we talk
specifically about ANN architecture. In literature this can often be found as
optimisation of hyperparameters or meta-learning [29]. The applications are,
of course, many: from images classification [59] to the semantic segmentation
[32].
On the basis of the observations just made in this thesis, a technique with a
double efficacy will be presented. The method presented can predict, at low
cost, the accuracy of a method when its hyperparameters vary. This pre-
diction can then be included in a methodology for the research of excellent
parameters with Reinforcement Learning (RL) techniques [52]. The idea is
to use a Support Vector Machine for Regression (SVR), trained to predict
the accuracy of an ANN given its hyperparameters and performance in early
epochs. The algorithm we propose may be of particular interest for a fairly



2.4. MINI-BATCH SIZE 41

rapid quality assessment of a new learning algorithm. In particular, it may
facilitate the optimisation of hyperparameters in an interesting way.
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Chapter 3

Dynamic Mini-batch size

The fundamental idea behind Artificial Neural Networks (ANNs) is to learn
through experience, by replacing classical programming techniques. This is
because in the beginning the inspiration was biological and therefore they
were born to emulate the behaviour of the brain. Therefore the aim of an
ANN is to acquire knowledge through experience or, more properly, training.

There are several types of ANNs, but we can identify a basic structure for
all of them. Artificial neurons or Processing Elements (PE) are organised in
layers and form the basic unit of the network; they are usually present in large
quantities, from a few hundred to several thousand. The PEs are connected
to each other by coefficients (weights). As we can see in Figure 3.1 the
parallelism with the biological setting is evident: different information, with
their weights, enter the body cell, then they are processed with the addition
of a bias. At this point an activation function is applied and the output is
created in this way. This process is the modelling of the behaviour of the
axon, suitably simplified. The dendrids enter in the axon, are joined and
processed to give rise to the output information of the axon itself. Before an

Figure 3.1: Neuron and mathematical model

43
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ANN can be used effectively, several hyperparameters must be defined. Some
of them are quite intuitive: number and type of layers, activation functions,
loss function, but the number of information processed simultaneously is
also very important. The neural network is a parameterised system where,
the weights, mentioned before, are the parameters. The weighted sum of
the inputs constitutes the activation of the neuron. The activation signal
is passed through the activation function to produce a single output of the
neuron. The activation function introduces non-linearity into the network.
We can represent the merging of all basic operations as a non-linear and,
in general, non-convex function, depending on a set of variables, that is the
weights of the ANN. At this point the optimisation occurs. What we want
to achieve is a minimisation of errors in predictions, and this is reached
by modifying the connections between the basic units; this is done through
backpropagation or gradient backpropagation. This process is repeated over
and over again giving rise to the training of the ANN itself. Once trained, the
network is able, given a specific input, to predict the output. The applications
of ANNs are innumerable, we can summarise them in model classification or
recognition, prediction or modelling.

3.1 ANN history and biological inspiration

The first theory of the neural network model dates back several decades ago;
in particular McCulloch and Pitts proposed a first model in 1943. The first
proposal was to consider the neuron as a binary device, i.e., simply a logical
unit that, given a series of inputs, calculates a logical function. McCulloch
and Pitts’ neuron can therefore only be found in one of two possible states
{0, 1}. Therefore the inputs that enter the neuron all have the same value.
Inside the neuron a threshold operation takes place: if the input impulses
exceed a certain threshold the neuron is activated. McCulloch and Pitts were
able to demonstrate that a network of neurons of this type could calculate
any finite logical expression. This result, in its simplicity, is very strong. For
the first time it has been shown that a large number of very simple elements
can perform even complex tasks [50]. In this last statement lies the reasons
why the ANNs did not develop immediately. There are two main reasons
that caused the development of neural networks to stall in the 1940s, the
same reasons that have made them progress considerably in recent decades.
In the past there were no large amounts of data and powerful hardware to
perform large amounts of particularly simple calculations. Recently, however,
the collection of data from various types of devices (mobile phones, cameras
installed in homes and cities, home automation) has significantly increased
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the amount of information available. On the other hand, the use of parallel
architectures and of inexpensive GPU units for the execution of particu-
larly simple calculations (typically sums and products) has made available
an enormous amount of computing power compared to that of individual
CPUs. However, the problem of building an intelligent "neural machine"
is still a long way from being solved: in order to make an ANN capable of
complex tasks, it is necessary to find a self-organisation mechanism which
allows the network to build itself in relation to the task to be executed. An
hypothesis proposed by Donald Hebb (1949) is particularly elegant. It has
had a great influence on the development of neural network models and has
been confirmed, at least partially, by neuro-physiological research. The idea
is simple and elegant: synapses do not all have the same intensity, but mod-
ify themselves in order to favour the repetition of firing patterns which have
more frequently occurred in the past.

3.2 Machine Learning and large scale problems

The promise of Artificial Intelligence (AI) has been a topic of both public
and private interest for decades. As mentioned earlier, although the theo-
retical foundations of AI have developed a long time ago, from a practical
point of view only in the last period there have been improvements. Along-
side AI, many other methodologies on a statistical basis have developed as
in the rapidly evolving and expanding field of Machine Learning (ML). ML
in intelligent systems has become an indispensable part of modern society.
One of the pillars of machine learning is mathematical optimisation. The
aim of such optimisation is to find the best parameters for a system designed
to make decisions on never-before-seen data. That is, based on currently
available data, these parameters are chosen to be optimal for a given learn-
ing problem (and a given loss or cost function) [9]. A loss function or cost
function, in this context, is a function that maps the values of variables to a
real number that represents a "cost" associated with the event.

Returning to the problem to minimise the objective function, tackling it
with the stochastic gradient method corresponding to Algorithm 1 combined
with the mini-batch estimate of the gradient (2.5), the main target is to
increase accuracy. To increase the accuracy, therefore the effectiveness, of
the method, many techniques have been proposed in the literature: we limit
ourselves to those involving the mini-batch size. What is proposed is to
decrease the steplength or increase the size of the mini-batch. As pointed
out by the authors in [55], decreasing the steplength or increasing the size
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of the mini-batch has leads to the same learning curves, i.e. the learning
rate is comparable. However, what is difficult to find in the literature is
an adaptive adjustment using the validation set. In particular, as already
pointed out, when we face a problem with any ML technique, we do not
know exactly the law of probability that governs the data but, as the only
means to guide learning, we have the Data Set. The Data Set is sometimes
divided into Training and Validation sets. The Validation set, usually much
less numerous than the Training set, contains a set of data that are not used
to optimise the parameters, but rather to better set the hyperparameters.
In this case the hyperparameter we take into consideration is the size of the
mininatch.

3.3 The idea: curiosity to improve accuracy
Consider the iteration

(3.1) xk+1 ← xk − ᾱg(xk, ξk)

where the stochastic directions are computed for some τ > 1 as

(3.2) g(xk, ξk) :=
1

nk

∑
i∈Sk

∇fi(xk; ξk,i) with nk := |Sk| = dτ k−1e.

What we are considering is therefore a Stochastic Gradient method in which
the steplength is considered constant while the sample size increases [22].
This dimension can increase with a geometric law or in another way that
depends on k. As mentioned above, the intuition behind neural networks is
biological. For this reason, the proposed new approach can also be justified in
a similar context. The analogy in this case is between the number of informa-
tion managed by animals, or humans, to learn and the size of the mini-batch.
Although it is only a few years that man inhabits the earth, it has radically
changed its appearance. This extraordinary progress has been made possible
by our cognitive structure, particularly by our ability to construct models of
external events linked by cause and effect. This characteristic is mainly made
possible by our high degree of curiosity. If we analyse the way we understand
the world of living beings, animals and especially man, we realise that the
cognitive process is always the same. We tend to move from an initial set
that contains little information to a higher degree of knowledge, which al-
lows us to process much more information simultaneously. Moving towards
a more specific field of Neuroscience, what we observe is that in cognitive
processes the most common strategy is to select random actions or to have
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bias that lead us to select a behaviour because it is recurrent. Sometimes this
behaviour can lead to novelty and uncertainty: and it is here that the human
being can acquire new knowledge. Actions guided by randomness lead the
subject who performs them to interface with new scenarios and therefore lead
to the possibility of learning new things. But, these new actions also have a
limitation: they do not guarantee that the subject will learn new concepts.
The mere fact that one is approaching a new scenario does not guarantee
that it will contain useful information to generalise new knowledge, which
can then be spent in other areas. For this reason heuristics based on nov-
elty (in our case a large initial sample) can guide efficient learning in small
and limited spaces but in large Data Sets, where the information processed
simultaneously is much less than the overall information, this strategy may
be ineffective. The same can be said in an on-line learning context, where
information is acquired during the learning process. This motivates the in-
troduction of additional strategies, aimed at incremental learning which in
our case is the dynamic increase of the sample [27]. In the same way, we find
the concept of novelty search and its application in the Evolutionary neural
network to create complex and growing structures interesting [38].

3.4 Numerical experiment
The database MNIST (Modified National Institute of Standards and Tech-
nology database) is a collection of handwritten figures commonly used to
test various classification methodologies on images. The database is already

Figure 3.2: MNIST dataset.

provided divided into 60, 000 images representing the training set and 10, 000
images representing the testing set. Images representing the testing set, even
if labelled, should not be used at any stage of training, not even to set the
hyperparameters. They must be considered unknown examples, useful only
to verify the effectiveness of the method. The images of the training set are
further divided, to create the validation set, which contains 5, 000 images.
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Figure 3.3: CNN with 10 outputs

This will be used to set the stop policy and dynamically increase the size of
the mini-batch. So for the actual training will remain 55, 000 images. The
images are grayscale (0-255), will then be normalised and moved into the
range (0-1) and centered in a 28× 28 pixel box.

3.4.1 The problem

The basic idea is to build, through a Convolutional Neural Network (CNN),
a multiple classifier and a binary classifier. The multiple classifier will dis-
criminate between the ten digits present in the MNIST database, while the
binary classifier will distinguish the figure eight from all the others. In this
way we will have to deal with a balanced dataset (in the case of the multi-
ple classification), but also an unbalanced dataset in the case of the binary
classification, a task notoriously more difficult in literature.

3.4.2 Convolutional Neural Network

Starting from Figure 3.3 we can briefly describe the structure of the network.
The network has an input layer of 784 pixels, that is the linearisation of a
28 × 28 image of the MNIST dataset. This image is processed through 5
hidden layers, up to the output layer which can be composed of two neurons,
in the case of binary classification, or ten neurons, in the case of multiple
classification. Obviously, by modifying the size of the input and/or output
layer, the network can be adapted to process any other dataset. In the first
convolutive+max-pool layer of the network, the image passes through 16 or
32 filters each with a size of 5× 5, so we have an output tensor with a size of
16×28×28 or 32×28×28. At this point a max-pool operation is applied to
this tensor to reduce the image size. We use the Rectified Linear Unit (ReLU)
as activation function. At this point we have other convolution and max-pool
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layers similar to the previous ones but dimensionally different. In this case
the filters applied are 64 always of the size 5× 5 and the max-pool applied is
the same. We therefore have a resulting tensor of the size 64× 7× 7 which is
linearised and connected to one layer of 1024 or 2048 neurons through a fully
connected one. To reduce the overfitting phenomenon we apply a dropout,
i.e. with a given probability we eliminate one or more network connections,
and use different probabilities. At this point we connect to the last layer,
i.e. the output layer through the Softmax regression function or multinomial
logistic regression, which leads us to identify the label among one of the ten
possible ones, identifying which of them is assigned the maximum probabil-
ity.
For the training phase, therefore to adjust the weights with gradient back-
propagation, we used the AdaM optimiser. We use this optimiser with the
default parameters in Tensorflow.

Listing 3.1: Default parameters
1 t f . ke ras . op t im i z e r s .SGD(

l earn ing_rate =0.01 , momentum=0.0 , ne s t e rov=False ,
3 name=’SGD’ , ∗∗kwargs

)
5 t f . ke ras . op t im i z e r s .Adam(

l earn ing_rate =0.001 , beta_1=0.9 , beta_2=0.999 , e p s i l o n=1e−07,
7 amsgrad=False ,

name=’Adam ’ , ∗∗kwargs
9 )

We propose a new technique, based on an adaptive increase of the mini-
bach size, as explained in the new section and we evaluate this approach on
different network architectures; in particular we will have networks with a
different number of parameters; indeed this number can be modified by the
choice of the layer size itself, but also by the dropout coefficient. In addition
to the fact that there are two versions of the problem, in multiple and binary
classification.
The maximum number of iterates of a network is prefixed equal to 20000.
Within the method, however, a stop criterion called "early stopping" is in-
cluded, which takes into account the actual improvements that the network
is making [37]. These improvements are measured, on the validation set, i.e.,
the set of examples that the network considers only at this stage to evaluate
the results. These checks are performed every 100 iterations and, if we don’t
have any improvements for 15 subsequent times, the training phase stops,
even if the maximum number of iterations has not been reached. At this
point, the method considers the best obtained network, based on the check
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made on the validation set and verifies its accuracy on the testing set to get
the final result. In addition to accuracy, the number of errors made and the
iterations to compute the best network is also stored.

3.4.3 The new idea in practice

The basic idea that is developed is to increase the size of the mini-batch.
Normally, "early stopping" works by evaluating the performance every 100
iterations and checking if the accuracy has improved. At this point, if the
accuracy is not improved, a counter is increased; if the accuracy is not in-
creased for 15 subsequent times, then the output from the cycle is forced.
The new idea is not to wait for 15 subsequent iterations, but to operate after
10 non-improvement checks. Specifically, after these 10 unsuccessful checks
the size of the mini-batch is increased according to the law nk ≡ 2nk. At
this point the training phase is resumed with the increased mini-batch and,
if the method reaches 15 consecutive checks without improvement, the exit
from the training phase is forced. As usual, the best result obtained on the
validation set is verified on the testing set.

3.4.4 Results

Since the preliminary experiments, on 1.6 GHz Intel Core i5 processor,
we noticed the effectiveness of the new idea; in particular, errors dropped
on average by 30%, but this effectiveness is associated with a doubling of
the computational time. The assessment that can be made is that in many
applications, however, the important thing is the inference time, not so much
the training time, and this is not changed in any way. From a theoretical
point of view, the sample can increase until it reaches the whole dataset, but
observing the examples in practice this never happens, nor do we approach a
dimension of the mini-batch close to the whole space of the examples. What
we observe in practice is that the maximum size reached by the mini-batch is
400/800 images in the case of multiple classification and 200/400 in the case
of binary classification. Table 3.1 shows the results of a CNN with the same
setting of the parameters both in the STATIC case and in the DYNAMIC
case; we are in the 32×64×1024×10 case with dropout equal to 0.5; all the
accuracy results have been calculated with respect to the testing set. The
only difference between the two simulations is the output criterion explained
in detail above. So the STATIC version starts with an initial sample of
50, which it maintains throughout the learning process and the classic "early
stopping" is applied with patience equal to 15 (expect 15 controls where there
is no improvement before forcing the exit from the learning cycle). While in
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the DYNAMIC version the initial sample is always 50, but after 10 controls
without an improvement, it is doubled; also in this case after 15 controls
without improvement the exit from the cycle is forced.

DYNAMIC STATIC
99.27 99.34
99.24 99.27
99.35 99.01
99.4 99.12
99.42 99.1

DYNAMIC STATIC
73 76
66 73
65 99
60 88
58 90

Table 3.1: Experiment 1: accuracy and number of errors

In view of the stochasticity of the model, sample on which the ANN will
be trained is randomly chosen and it can be different at any iteration. For
this reason 5 simulations have been repeated for each model with exactly
the same hyperparameters. At this point, having different results, it makes
sense to consider the average and the resulting variance in order to analyse
the results more clearly. For the STATIC version, the average accuracy is
99.15 while the average number of errors is 85. In the DYNAMIC case, the
average accuracy is 99.36 while the average number of errors is 64, with a
decrease greater than 20 units. To understand also how robust the results
are beyond the average, one must consider the variance of the method. In
the STATIC case, the standard deviation of the method accuracy is 0.1341
while in the DYNAMIC case it is 0.0789. Therefore, in addition to having
better results, the new method is also more robust, demonstrating greater
stability. Even if we consider the number of errors of the two approaches, we
can make similar evaluations; indeed, in the DYNAMIC case the standard
deviation is 5.8566 while in the STATIC case it is 10.6630. Nevertheless, we
point out that the execution time of the DYNAMIC version is doubled with
respect to the STATIC case.
In view of these considerations, it could be assumed that, with more time
available to increase the accuracy of the method, it is sufficient to increase
the size of the initial sample. But by simply doing this initial increase we
do not obtain a higher accuracy of the method. In fact, from an experiment
conducted by setting the size of the mini-batch equal to 400 from the begin-
ning, we notice that the times are much higher than the DYNAMIC version,
but the accuracy is not so good; in fact the average accuracy stops at 99.2
and the number of errors is 80. These results are slightly better than the
STATIC version but not comparable to those obtained with the DYNAMIC
version.
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DYNAMIC STATIC-50 STATIC-400
99.88 99.71 99.72
99.77 99.55 99.75
99.81 99.77 99.8
99.87 99.69 99.82
99.81 99.79 99.77

Table 3.2: Accuracy

DYNAMIC STATIC-50 STATIC-400
12 29 28
23 45 25
9 23 20
13 31 18
19 21 23

Table 3.3: Number of errors

For completeness, in an additional experiment, a comparison between two
static versions with different sample sizes and the dynamic version is carried
out. The network architecture in this case is 32 × 64 × 1024 × 2, so we are
in the binary case, with a dropout of 0.5. Therefore Tables 3.2 and 3.3 show
the results of the cases STATIC-50 (static version with 50 mini-batch size),
STATIC-400 (static version with 400 mini-batch size) and DYNAMIC. As in
the previous experiment, to appreciate the improvement, we consider the av-
erage values of both accuracy and number of errors. In the STATIC-50 case,
the average accuracy is 99.7, the average number of errors 30 and the average
execution time 96 seconds. In the STATIC-400 case, the average accuracy is
99.77, the average number of errors 23 and the average run time 185 seconds.
In the DYNAMIC case, the average accuracy is 99.81, the average number of
errors 17 and the average execution time 106 seconds. So, in the DYNAMIC
version the time is slightly higher than in the STATIC-50 version but with
an average error improvement of more than 30%. In conclusion the average
improvement on the number of errors is about equal to 30%.

To evaluate the robustness of the different methods we also consider the
standard deviation. In particular, the standard deviation of accuracy in
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DYNAMIC STATIC-50 STATIC-400
140 113 149
80 60 236
86 106 159
145 72 170
77 127 213

Table 3.4: Time in seconds

the DYNAMIC case is 0.046, in the STATIC-50 case is 0.0944 and in the
STATIC-400 case 0.0396. These numerical results enables to suppose that
the new method is more robust than the STATIC-50 case but less robust
than the STATIC-400 case. This is reasonable because with an increase in
the size of the mini-batch the stochastic process is more stable. We have
the same result for error numbers: in fact the standard deviation for the
DYNAMIC case is 4.6043, 9.4446 for the STATIC-50 case and 3.9623 for the
STATIC-400 case.
To underline that the key tool of the accuracy improvement is precisely the
dynamic increase in the size of the mini-batch, we consider this measure-
ment after each increase of the sample size. In the DYNAMIC case, the final
precision is 99.88 and it develops in the following way: accuracy of 99.68
with a mini-batch size of 50, accuracy of 99.82 with a mini-batch size of 100,
accuracy of 99.88 with a mini-batch size of 200.
Consider a further experiment where the architecture of the ANN is modified.
We are again in the case of a CNN for binary classification, the structure of
the network is 16×64×2048×2, with dropout equal to 0.1. As previously, we
compare the values obtained for STATIC-50, STATIC-400 and DYNAMIC.
We observe that the obtained results are similar to the previous ones: in
the STATIC-50 case the average accuracy is 99.62 for an average number of
errors of 38 and an average time of 158. In the STATIC-400 case the average
accuracy is 99.72 for an average error number of 28 and an average time of
174. In the DYNAMIC case the average accuracy is 99.75 for an average
number of errors of 20 and an average time of 199. The average improve-
ments is about equal to 30% for DYNAMIC case. In the STATIC-400 case
the improvement does not justify the increased time for the training phase,
so in this case the DYNAMIC network is preferred to this one.
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DYNAMIC STATIC-50 STATIC-400
99.78 99.75 99.81
99.72 99.64 99.79
99.78 99.62 99.8
99.76 99.46 99.68
99.7 99.62 99.54

Table 3.5: Accuracy

DYNAMIC STATIC-50 STATIC-400
22 25 19
28 36 21
22 38 20
24 54 32
30 38 46

Table 3.6: Number of errors

DYNAMIC STATIC-50 STATIC-400
222 163 170
157 137 188
236 181 218
174 130 154
208 180 140

Table 3.7: Time
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Chapter 4

Steplength selection

Let us now consider a strategy for the steplength selection in the stochastic
gradient methods. We consider the basic SG iteration:

(4.1) x(k+1) = x(k) − αkg(x(k), ξ(nk))

As mentioned at the Section 2.2.1, we require that the stochastic gradient is
a descent direction sufficiently often.

4.1 Theoretical results on SG method equipped
with inner product and orthogonality tests

Assuming that Sk is pick at random from {1, ..., n} with |Sk| = nk and
g

(nk)
k ≡ g(x(k), ξ(nk)) is an unbiased estimate of ∇F (x(k)), i.e., E[g

(nk)
k ] =

∇F (x(k)),

(4.2) E[g
(nk)
k

T
∇F (x(k))] = ‖∇F (x(k))‖2,

for all k ≥ 0.
In order for the stochastic gradient to be an appropriate estimation of the
full gradient, the idea proposed in [8] is to control the variance of the term
on the left of (4.2). In particular, the following condition can be imposed on
the sample size nk of ξ(nk):

(4.3) E[(g
(nk)
k

T
∇F (x(k))− ‖∇F (x(k))‖2)2] ≤ θ2‖∇F (x(k))‖4,

for some θ > 0. In addition, this internal product test can be combined
with the following orthogonality test, ensuring that the component of g(nk)

k

57
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orthogonal to ∇F (x(k)) is bounded, i.e.,

(4.4) E[‖g(nk)
k − g

(nk)
k

T
∇F (x(k))

‖∇F (x(k))‖2
∇F (x(k))‖2] ≤ ν2‖∇F (x(k))‖2,

for some ν > 0. The combination of the two tests (4.3) and (4.4) is also
known as augmented inner product test.
Starting from the results in [8], the following assumptions are considered.

A. ∇F is L-Lipschitz continuous;

B. the Polyak-Lojasiewicz (P-L) condition holds

(4.5) ‖∇F (x)‖2 ≥ 2c(F (x)− F∗), ∀x ∈ Rd,

where c is a positive constant and F∗ = infx∈Rd F (x);

C. αk ∈ (αmin, αmax], and αmax ≤ 1
(1+θ2+ν2)L

, for given positive constants
θ, ν in (4.3) and (4.4).

We remind that the P-L condition holds when F is c-strongly convex, but
not only in this case; indeed it can be satisfied for functions that are not
convex (see [35]).
We also note that assumptions A and B do not guarantee the existence of a
stationary point for F ; however, under the two assumptions, any stationary
point for F is a global minimum.
In addition, in view of the recruitment C, the iteration (2.4) can be equipped
with a variable steplength, as long as it belongs to the (αmin, αmax] interval,
where αmax is proportional to the inverse of L.
Following the arguments of [8], the following theorems can be stated.

Theorem 9. Suppose the assumptions A and B hold. Let {x(k)} be the se-
quence generated by (2.4), where the size nk of any sub-sample is chosen so
that the conditions (4.3) and (4.4) are satisfied and αk satisfies the assump-
tion C. Then, we have that

(4.6) E[F (x(k))− F∗] ≤ ρk(F (x(0))− F∗),

where ρ = 1− c αmin. In particular, for a constant steplength αk ≡ αmax =
1

(1+θ2+ν2)L
, for all k ≥ 0, we have ρ = 1− c

(1+θ2+ν2)L
.
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Proof. From (4.4) we have

E[‖g(nk)
k − g

(nk)
k

T
∇F (x(k))

‖∇F (x(k))‖2
∇F (x(k))‖2] =

= E[‖g(nk)
k ‖2]− E[(g

(nk)
k

T
∇F (x(k)))2]

‖F (x(k))‖2

≤ ν2‖∇F (x(k))‖2

Therefore we obtain the following inequality:

(4.7) E[‖g(nk)
k ‖2 ≤ ν2‖∇F (x(k))‖2 +

E[g
(nk)
k

T
∇F (x(k))2]

‖∇F (x(k))‖2
.

From (4.3) we have

E[(g
(nk)
k

T
∇F (x(k)))2] ≤ ‖∇F (x(k))‖4 + θ2‖∇F (x(k))‖4 = (1 + θ2)‖∇F (x(k))‖4

Substituting this last inequality in (4.7), we obtain

(4.8) E[‖g(nk)
k ‖2] ≤ (1 + θ2 + ν2)‖∇F (x(k))‖2.

Using the assumption A and E[(g
(nk)
k

T
∇F (x(k)))] = ‖∇F (x(k))‖2 we have

E[F (x(k+1))] ≤ E[F (x(k))]− E[αkg
(nk)T
k ∇F (x(k))] + E[

Lα2
k

2
‖g(nk)

k ‖2]

= E[F (x(k))]− αk‖∇F (x(k))‖2 +
Lα2

k

2
E‖g(nk)

k ‖2

≤ E[F (x(k))]− αk‖∇F (x(k))‖2 +
α2
kL

2
(1 + θ2 + ν2)‖∇F (x(k))‖2

= E[F (x(k))]− αk(1−
αkL

2
(1 + θ2 + ν2))‖∇F (x(k))‖2,

where for αk ≤ αmax ≤ 1
L(1+θ2+ν2)

we obtain

(4.9) E[F (x(k+1))] ≤ E[F (x(k))]− αk
2
‖∇F (x(k))‖2.

From the assumption B and subtracting F (x∗) from both sides, we obtain

E[F (x(k+1))− F (x∗)] ≤ E[F (x(k))− F (x∗)]− αk
2

2cE[F (x(k))− F (x∗)]

= (1− αkc)E[F (x(k))− F (x∗)]

≤ (1− αminc)E[F (x(k))− F (x∗)] = ρE[F (x(k))− F (x∗)].

If αk = αmax = 1
L(1+θ2+ν2)

, ρ = 1− c
L(1+θ2+ν2)

.
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Using inequality αk ≤ αmax ≤ 1
(1+θ2+ν2)L

and the condition (P-L) instead
of the strong convexity, we get a proof as from Theorem 3.2 of [8].
There is also a version of the same theorem in which the F function is convex
but does not meet the condition (P-L). Here we have to take into account
αk ≤ αmax and the additional close limit on αmax and at this point the proof
derived from Theorem 3.3 of [8].

Theorem 10. Suppose the assumption A holds. Let {x(k)} be the sequence
generated by (2.4), where the size nk of any sub-sample is chosen so that the
conditions (4.3) and (4.4) are satisfied and αk satisfies the assumption C,
with αmax <

1
(1+θ2+ν2)L

. Assume that X∗ = argminxF (x) 6= ∅. Then, we
have that

(4.10) min
0≤k≤K

E[F (x(k))− F∗] ≤
1

2αminγK
‖x(0) − x∗‖2,

where x∗ ∈ X∗ and γ = 1− αmaxL(1 + θ2 + ν2).

Proof. We consider

E[‖x(k+1) − x∗‖2] =

E[‖x(k+1) − x(k)‖2] + ‖x(k) − x∗‖2 + 2E[(x(k+1) − x(k))T (x(k) − x(∗))]

= α2
kE[‖g(nk)

k ‖2] + ‖x(k) − x(∗)‖2 − 2αkE[g
(nk)T
k (x(k) − x∗)].

Using (4.8) and the convexity of F , we obtain

E[‖x(k+1) − x∗‖2] ≤ α2
k(1− θ2 + ν2)‖∇F (x(k))‖2 + ‖x(k) − x(∗)‖2 − 2αk(F (x(k))− F (x∗)).

Since for any function with Lipschitz continuous gradient we have

‖∇F (x)‖2 ≤ 2L(F (x)− F ∗),

we can obtain

E[‖x(k+1) − x∗‖2] ≤ ‖x(k) − x∗‖2 − 2αk(1− αk(1 + θ2 + ν2)L)(F (x(k))− F (x∗))

≤ ‖x(k) − x∗‖2 − 2αk(1− αmax(1 + θ2 + ν2)L)(F (x(k))− F (x∗))

= ‖x(k) − x∗‖2 − 2αkγ(F (x(k))− F (x∗)),

where γ = 1− αmax(1 + θ2 + ν2).
Now, we can write the inequality:

E[F (x(k))]− F (x∗) ≤ 1

2αkγ
(E[‖x(k+1) − x∗‖2]− E[‖x(k) − x∗‖2])

≤ 1

2αminγ
(E[‖x(k+1) − x∗‖2]− E[‖x(k) − x∗‖2])
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and summing both sides of this inequality from k = 0, ..., K, we obtain:

∑
0≤k≤K

E[F (x(k))]− F (x∗) ≤ 1

K

K−1∑
k=0

(E[F (x(k))]− F (x∗))

≤ 1

2αminγK
(E[‖x(0) − x∗‖2]− E[‖x(k) − x∗‖2])

≤ 1

2αminγK
E[‖x(0) − x∗‖2]

In case the F is not convex we have a last theorem about convergence.
Taking into account that αk > αmin and following Theorem 3.4 in [8] we
can say that ∇F (x(k)) converges to zero in expectation, with a sub-linear
convergence rate.

Theorem 11. Suppose the assumption A holds and F is bounded below from
F∗. Let {x(k)} be the sequence generated by (2.4), where the size nk of any
sub-sample is chosen so that the conditions (4.3) and (4.4) are satisfied and
αk satisfies the assumption C. Assume that X∗ = argminxF (x) 6= ∅. Then,
we have that

(4.11) lim
k→∞

E[‖∇F (x(k))‖2] = 0.

Furthermore, for any K > 0, we have

(4.12) min
0≤k≤K−1

E[‖∇F (x(k))‖2] ≤ 1

2αminK
(F (x(0))− F∗).

Proof. From the inequality (4.9) we have:

E[‖∇F (x(k))‖2] ≤ 2

αk
E[F (x(k) − F (x(k+1))]

≤ 2

αmin
E[F (x(k) − F (x(k+1))].

Summing both sides of this inequality from k = 0 . . . k−1 since F is bounded
below by F∗, we get

k−1∑
i=0

E[‖∇F (x(k))‖2] ≤ 2

αmin
E[F (x(0) − F (x(k))] ≤ 2

αmin
E[F (x(0) − F∗].
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Taking limits, we obtain

lim
K→∞

K−1∑
i=0

E[‖∇F (x(K))‖2] ≤ ∞

which implies (4.11). We can also conclude that

min
0≤k≤K−1

E[‖∇F (x(k))‖2] ≤ 1

K

k−1∑
i=0

E[‖∇F (x(k))‖2] ≤ 2

αminK
[F (x(0))− F∗].

The basic idea from which we start is that an estimate, even a local
estimate, of the Lipschitz parameter can be useful to evaluate the best
steplength. Bollapragada et al. proposes to do this through a backtracking
line search procedure.
Our proposal, instead, is to estimate the steplength using the stochastic
version of the LMSD calculation of Ritz-like values, taking advantage of the
hypothesis that αk belongs to an appropriate limited range.

4.2 Steplength selection via Ritz and harmonic
Ritz values

In the state of the art there are several methods that, through the use of
gradients computed at the previous steps, try to obtain second order in-
formation, without the computational heaviness that would result from the
calculation of the Hessian matrix. In particular, a very effective method is
the one proposed in [20]. The idea is to start from this method, which is
very effective in the deterministic field, and adapt it appropriately to the
stochastic context.

4.2.1 The deterministic framework

Let us first focus on the case of a convex quadratic programming problem.
Given a very small m integer, generally no bigger than 7, the idea of [20]
is to generate the next m steplengths using the m gradients computed at
the last iterations. After a group of m iterations, called sweep, a symmet-
rical tridiagonal matrix is calculated using the past gradients collected in-
side the sweep. The eigenvalues of this matrix are approximations of the
eigenvalues of the Hessian matrix, so the reciprocals of these eigenvalues are
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used as steplengths to perform the next m steps. Obviously, a crucial point
is to build the tridiagonal matrix in an economic way. In [20] the follow-
ing strategy is proposed: suppose that the iterate x(j) and m steplengths
αj+k, k = 0, . . . ,m − 1, are available for performing a new sweep and store
the gradients and the steplengths used within the sweep in the following way:

Gj = [gj, gj+1, . . . , gj+m−1],(4.13)

Jj =


1
αj

− 1
αj

. . .

. . . 1
αj+m−1

− 1
αj+m−1

.(4.14)

From the d × m matrix Gj, an upper triangular m × m matrix Rj such
that GT

j Gj = RT
j Rj can be obtained, for example by means of the Cholesky

factorisation of GT
j Gj; assuming that Gj is a full-column rank matrix, the

matrix Rj is non-singular if Gj is full rank. By using Gj, Jj and Rj define
the matrix

(4.15) Tj = R−Tj GT
j [Gj gj+m]JjR

−1
j = [Rj rj]JjR

−1
j

where rj is the solution of the linear system RT
j rj = GT

j gj+m. Tj is the sym-
metrical tridiagonal matrix of the Lanczos process applied to the Hessian
matrix of the objective function, whose initial vector is gj/‖gj‖. Its eigen-
values are called Ritz values and they approximate the eigenvalues of the
Hessian matrix.
In a general non-quadratic case, Tj is upper Hessenberg and a tridiagonal
symmetric matrix T j can be obtained as:

(4.16) T j = tril(Tj) + tril(Tj,−1)′,

where we use the Matlab notation. The limited memory steplength rule
consists in using the reciprocals of the eigenvalues λi, i = 1, . . . ,m of T̄j as
steplengths for the next m steps:

(4.17) αj+m−1+i =
1

λi
, i = 1, . . . ,m.

Following the terminology used in the quadratic case, we call Ritz-like values
the eigenvalues of T j.
In [20] another similar strategy is proposed for the calculation of steplengths
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for the next steps. In the strictly convex quadratic case, this idea consists in
obtaining the steplengths as eigenvalues of the matrix P−1

J Tj, where

(4.18)
Pj = R−Tj JTj

(
Rj rj
0 ρj

)T (
Rj rj
0 ρj

)
JjR

−1
j =

=
(
T Tj tj

)(Tj
tTj

)
,

ρj =
√
gTj+mgj+m − rTj rj and tj is the solution of the linear system RT

j tj =

JTj

(
0
ρj

)
. The reciprocals of the eigenvalues of P−1

J Tj are called harmonic

Ritz. Replacing Tj in (4.18) by the non-singular tridiagonal matrix T j, a pen-
tadiagonal matrix P j is obtained. For a non-strictly convex or non-quadratic
objective function, the matrices T j and T

−1
P j can have non-positive eigen-

values. This arises when at the current iterate the curvature is negative.
There are several works in the literature that take these occurrences into
account and propose strategies to obtain a good approximation of Hessian
eigenvalues. For example, in [20, 49] the authors suggest, simply, to discard
negative values. If too many values are discarded in this way, any provisional
values can be adopted for the next steplength. Another strategy, aimed at
managing non-positive curvature, is to adopt a local cubic model, which is
reduced to a standard quadratic model when only positive eigenvalues are
computed [14].

4.2.2 Stochastic framework

As in the deterministic context, also in the stochastic one the computation
of the Hessian matrix is very expensive so it makes sense to adopt Lim-
ited Memory Steepest Descent (LMSD) type strategies to calculate the best
steplengths, also taking into account second order information. The main
difference with respect to the deterministic case, lies in the construction of
the Gj matrix, where we must replace the full gradients computed at the
most recent m iterations (m ≥ 1) with the stochastic gradients related to the
iterate x(j+i), obtained using different data samples {ξ(nj+i)}, i = 0, ..,m− 1:

(4.19) Gj = [g
(nj)
j , g

(nj+1)
j+1 , ..., g

(nj+m−1)
j+m−1 ].

Following the procedure developed in the deterministic case combined with
the approximation (4.16), the matrices T j and P j can be computed, by re-
placing Gj in (4.15) with Gj.
When the collected stochastic gradients are suitable approximations of the
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full gradients, i.e., they are in expectation suitable descent directions at the
current iterate with a reduced variance, it is quite likely that from the recip-
rocals of the eigenvalues of the matrices T j and T

−1

j P j, that are the Ritz-like
and harmonic Ritz-like values, useful approximations of the inverse of the
local Lipschitz constant of ∇F can be obtained for the new sweep of itera-
tions. For simplicity, we refer in the following to the Ritz-like values, but,
similarly, the same considerations hold for harmonic Ritz-like values. Even in
the stochastic case we have problems similar to those highlighted in the de-
terministic case. In particular we may have negative eigenvalues. Also in this
case the strategy is to discard them, discarding also the gradients used for
their calculation. Consequently, less than m values λi, i = 1, . . . , mR ≤ m
may be available. Furthermore, in order to avoid line search techniques, it
is convenient to consider only the values λi belonging to a prefixed range
[ 1
αmax

, 1
αmin

), where αmax > αmin > 0. In particular, we redefine

(4.20) λi ← max

(
1

αmax
,min

(
λi,

1

αmin

))
, i = 1, ...,mR,

and we eliminate the values λi = 1/αmin, reducing again mR and discarding
all the stochastic gradients giving rise to these values. The same procedure
applies to the harmonic Ritz-like values.
If mR = 0, a tentative steplength α ∈ (αmin, αmax] can be adopted for a
sweep of length 1. This reference value is also used at the first iterate. If
mR > 0, the steplengths in the next sweep are defined as

(4.21) αj+m+i =
1

λi
, i = 1, ...,mR.

A similar procedure involving the harmonic Ritz-like values enables us to
define alternatively the steplengths in the next sweep as

(4.22) αj+m+i =
1

λi
, i = 1, ...,mH .

We remark that, in view of Theorem 3.3 in [14], the positive harmonic Ritz-
like values are greater or equal than the corresponding Ritz-like values; as
a consequence, the rule (4.22) generates shorter steplengths with respect to
the ones defined by (4.21). The alternate use of different rules to generate
long and short steplengths in the full gradient methods has been deeply
investigated (see, for example, [16, 58, 24]), showing a large increase in their
practical performance. Also in the stochastic framework, we can explore an
alternate use of the Ritz-like and harmonic Ritz-like values. We will propose
two different approaches. In a first case the proposal is to alternate the
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Ritz-like values to the Ritz-like harmonic values at each sweep (alternative
Ritz-like version or A-R version).
The second variant is more complex because it introduces the possibility of
modifying the mini-batch size, and linking the choice of one or the other
type to this possible increase. The crucial point is to understand when the
gradients we are using to calculate the eigenvalues are reliable or not. We
will follow the idea proposed in [8] which suggests to increase the size of
the sub-sample nk in case a certain condition is not verified. More precisely,
the internal test condition (4.3) can be set to the sample size nk. Since the
term on the left of (4.3) is delimited from above by the true variance of the
individual gradient, the (4.3) condition is valid when the following test of the
internal product of the exact variance is satisfied:

E[(∇fi(x(k))T∇F (x(k))− ‖∇F (x(k))‖2)2]

nk
≤ θ2‖∇F (x(k))‖4.(4.23)

In order to implement condition (4.23), the variance can be approximate with
the sample variance

Vari∈Sk
(∇fi(x(k))T∇F (x(k)))

and the gradient ∇F (x(k)) on the right side with a sample gradient, so that
the approximate inner product test can be written as follows:

(
∑

i∈Sk
(∇fi(x(k))Tg

(nk)
k − ‖g(nk)

k ‖2)2

nk(nk − 1)
≤ θ2‖g(nk)

k ‖4.

(4.24)

When this condition is not satisfied by the current sample size, the sample size
is increased so that (4.24) is satisfied. With regard to the orthogonality test,
a sufficient condition for (4.4) is the following exact variance orthogonality
test :

E[‖∇fi(x(k))− ∇fi(x
(k))T∇F (x(k))

‖∇F (x(k))‖2 ∇F (x(k))‖2]

nk
≤ ν2‖∇F (x(k))‖2.(4.25)

As for the previous test (4.23), a practical variant, named approximate vari-
ance orthogonality test, based on the sample approximation can be formulated
as follows:∑

i∈Sk
‖∇fi(x(k))− ∇fi(x

(k))T g
(nk)

k

‖g(nk)

k ‖2
g

(nk)
k ‖2

nk(nk − 1)
≤ ν2‖g(nk)

k ‖2.

(4.26)
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In order to choose a new sample size nk when the conditions (4.24) and (4.26)
are not satisfied, we can compute

Z1 =
Vari∈Sk

(∇fi(x(k))Tg
(nk)
k

θ2‖g(nk)
k ‖4

,

Z2 =
Vari∈Sk

(∇fi(x(k))− ∇fi(x
(k))T g

(nk)

k

‖g(nk
k )‖2

g
(nk)
k )

ν2‖g(nk)
k ‖2

(4.27)

and we set nk = min(dmax(Z1, Z2)e, n).
Furthermore, when an increase of the sample size occurs, since the previ-
ously stored gradients are relative to sub-samples of lower size, they will
be discarded. This strategy, called Adaptive Alternation of Ritz-like values
(AA-R), leads to shorter steplengths in this transition phase.
Summarising, with the purpose of checking the goodness of the g(nk)

k esti-
mate of the gradient ∇F (x(k)), the approximate version (4.24) - (4.26) of the
internal test is adopted to increase the size of the sub-sample at the current
iteration. We have followed this strategy because numerical experience has
shown that the growth of the sample size is generally not too fast. This
makes it suitable for use in practice. Other approaches can also be found in
the literature, as for example the norm test in [11, 13, 28], or the rule based
on the matrix Bernstein inequality [53, Theorem. 6.1.1, Corollary 6.2.1]. (see
[13, 4]).

4.3 Numerical experiments
In order to evaluate the effectiveness of the proposed steplength rule for SG
methods, we consider the optimisation problems arising in training binary
and multi-labels classifiers for the following well known datasets:

• the MNIST dataset of handwritten digits, categorised in 10 classes
(downloadable from http://
yann.lecun.com/exdb mnist);

• the web dataset w8a downloadable from https://
www.csie.ntu.edu.tw/ ~cjlin/libsvmtools/
datasets/binary.html, containing 49749 examples, partitioned in 44774
samples for training and 4975 for testing; each example is described by
300 binary features.

In order to carry out the experiments we faced two categories of functions:
convex functions and non-convex functions. In the case of convex problems,
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we realised a binary classifier able to distinguish between even and odd digits
with the dataset MNIST and able to distinguish between the two classes
already present in the dataset w8a. In the non-convex case, the function to
optimise is the one derived from a Convolutional Neural Network of multiple
classification, trained on the dataset MNIST. We have added a regularisation
term for both cases to avoid overfitting.

4.3.1 Convex problems

We built linear classifiers corresponding to three different convex loss func-
tions. Thus the minimisation problem has the form

(4.28) min
x∈Rd

Fn(x) +
δ

2
‖x‖2

2,

where δ > 0 is the regularisation parameter. By denoting as ai ∈ Rd and bi ∈
{1,−1} the feature vector and the class label of the i-th sample, respectively,
the loss function Fn(x) assumes one of the following form:

• logistic regression (LR) loss:

Fn(x) =
1

n

n∑
i=1

log
[
1 + e−bia

T
i x
]

;

• square loss (SL):

Fn(x) =
1

n

n∑
i=1

(1− biaTi x)2;

• smooth hinge loss (SH):

Fn(x) =
1

n

n∑
i=1


1
2
− biaTi x, if biaTi x ≤ 0

1
2
(1− biaTi x)2, if 0 < bia

T
i x < 1

0, if biaTi x ≥ 1.

We compare the effectiveness of the following schemes:

• SG with a fixed mini-batch size in the version with fixed steplength,
denoted by SG mini;

• methods using Ritz-like values to adaptively select a suitable steplength;
in particular, we consider:
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– Alternate Ritz-like values in the scheme denoted by A-R, which
toggles the use of the Ritz-like values to the one of the harmonic
Ritz-like values at each sweep;

– Adaptive Alternation of Ritz-like values in the scheme denoted by
AA-R; in this method, when at the iteration k the size of the
sample increases, we discard the available Ritz-like values and we
exploit the current stored stochastic gradients to determine a set
of harmonic Ritz-like values.

For both methods, an adaptive strategy is used for increasing the mini-
batch size, as detailed in Section 4.2.2. In all the numerical simulations,
we set θ = 0.7 in (4.24) and ν = 7 in (4.26).

Numerical Results

In all the numerical experiments, carried out in Matlabr on 1.6 GHz Intel
Core i5 processor, we use the following setting:

• the regularisation parameter δ is equal to 10−8;

• in SG mini the size of the mini-batch is set as |Sk| = |S| = 50 for all
k ≥ 0;

• inA-R andAA-Rmethods, the size of the initial mini-batch is n0 = 3;
furthermore the maximum length of the sweep is set as m = 3;

• each method is stopped after 10 epochs, i.e., after a time interval equiv-
alent to 10 evaluations of a full gradient of Fn or 10 visits of the whole
dataset; in this way we compare the behaviour of the methods in a time
equivalent to 10 iterations of a full gradient method applied to Fn(x).

In the following tables and figures, we report the results obtained by
the considered methods using the three loss functions (logistic regression,
square and smooth hinge loss functions) on MNIST and w8a. Because of the
stochasticity of the methods considered, for each experiment we perform 10
simulations, leaving the pseudo-random number generator free. In this way,
considering the averages of the results, we will have more reliable values.
In particular, for any numerical test, we report the following results:

• the average value of the optimality gap Fn(x) − F∗, where x is the
iterate obtained at the end of the 10 epochs and F∗ is an estimate of
the optimal objective value; this value is obtained by a full gradient
method with a huge number of iterations;
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Table 4.1: Values of the best-tuned steplength αOPT in 20 epochs for the
standard SG method in the case of the two datasets and the three loss func-
tions.

MNIST w8a
Fn(x) LR SL SH LR SL SH
αOPT 10−3 10−4 10−3 10−1 10−3 5 10−2

Figure 4.1: Behaviour of standard SG in 20 epochs on the MNIST dataset,
with logistic regression (on the left panel) and square loss (in the right panel).
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• the related average accuracy A(x) at the end of the 10 epochs with
respect to the testing set, i.e., the percentage of well-classified examples.

First of all, we determine by a trial procedure the best steplength αOPT
for the standard SG method, i.e., the steplength corresponding to the best
obtained results. Indeed, following [9], a suitable steplength for SG mini
is αSG mini = |S|αOPT , where αOPT is a fixed steplength for the standard
SG method. We have tried five different steplengths for each combination of
standard SG and dataset. In Table 4.1, we report the value of the steplength
αOPT corresponding to the best performance of standard SG in 20 epochs.
Furthermore, in order to highlight the difficulties to define a suitable learning
rate, in Figure 4.1 we show the trend of the optimality gap for five values
of the steplengths in the case of MNIST dataset with logic regression and
square loss functions. The instability of the standard SG method behavior
with respect to the selection of the steplength motivates the expensive trial
process that produces Table 4.1.
In the following, we report the numerical results of the comparison between
SG mini and A-R and AA-R methods. In particular, in A-R and AA-R
methods, different settings of the bounds αmax and αmin are used:
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Table 4.2: Values of the setting providing the best results for A-R method.

MNIST w8a
Fn(x) LR SL SH LR SL SH
α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−7 10−6 10−3 10−6 5 10−4

αmax 1 5 10−2 5 10−1 100 1 25

Table 4.3: Values of the setting providing the best results for AA-R method.

MNIST w8a
Fn(x) LR SL SH LR SL SH
α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−6 10−5 10−3 10−6 5 10−4

αmax 1 10−1 1 100 5 10−1 50

1. αmin = αOPT 10−2, αmax = αOPT 500;

2. αmin = αOPT 10−3 and αmax = αOPT 500;

3. αmin = αOPT 10−2 and αmax = αOPT 1000;

4. αmin = αOPT 10−3 and αmax = αOPT 1000.

The tentative value of the steplength α is set as 10αOPT .
Figures 4.2 and 4.3 show the behaviour of the optimality gap with respect
to the first 10 epochs for MNIST and w8a, respectively, in the case of the
three loss functions. In particular the dashed black line refers to SG mini
whereas the red and the blues lines are related to A-R and AA-R methods
respectively in the above specified four settings. We observe that the results
obtained with the A-R and AA-R methods are comparable with the ones
obtained with the SG mini equipped with the best tuned steplength. Indeed,
the adaptive steplength rules inA-R andAA-R methods seem to be slightly
dependent on the values of αmax and αmin, making the choice of a suitable
learning rate a less difficult task with respect to the selection of a good
constant value in standard SG and SG mini methods.

Figures 4.2 and 4.3 show the behaviour of the optimality gap for SG
mini (dashed black line), A-R (red lines) and AA-R (blue lines) methods.
In the A-R and AA-R cases we plot the results obtained with four different
settings:
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Figure 4.2: Behaviour of the opti-
mality gap in 10 epochs for SGmini,
A-R andAA-R methods in the case
of the MNIST dataset.
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Figure 4.3: Behaviour of the opti-
mality gap in 10 epochs for SGmini,
A-R andAA-R methods in the case
of the w8a dataset.
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Table 4.4: Numerical results of the considered methods with Fn(x) given by
the logistic regression after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0145 0.890 0.0062 0.901
A-R 0.0263 0.890 0.0165 0.903
AA-R 0.0222 0.893 0.0168 0.903

Table 4.5: Numerical results of the considered methods with Fn(x) given by
the square loss after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0078 0.892 0.0041 0.890
A-R 0.0163 0.888 0.0109 0.888
AA-R 0.0144 0.890 0.0094 0.888

Table 4.6: Numerical results of the considered methods with Fn(x) given by
the smooth hinge loss after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0079 0.897 0.0024 0.907
A-R 0.013 0.896 0.0067 0.904
AA-R 0.0149 0.896 0.0067 0.904
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1. αmin = αOPT 1e− 3 and αmax = αOPT 5;

2. αmin = αOPT 1e− 4 and αmax = αOPT 5;

3. αmin = αOPT 1e− 3 and αmax = αOPT 10;

4. αmin = αOPT 1e− 5 and αmax = αOPT 50.

In Tables 4.2 and 4.3, we summarise the setting that provides the best
results for A-R and AA-R methods. In Tables 4.4, 4.5 and 4.6, we show the
final optimality gap (with respect to the train set) and accuracy (with respect
to the test set) obtained at the end of 10 epochs for the logistic regression,
square and smooth hinge loss functions, respectively, for the best setting.
The final accuracy of the three methods differs at most to the third decimal
digit. This observation can also be extended to the simulations obtained for
A-R and AA-R methods with the other settings. In Figures 4.4 and 4.5 we
show the increase of the sub-sample size in A-R and AA-R methods in the
case of all the convex loss functions.
Starting with n0 = 3, the size of current sub-sample is at least 120 in the
case of MNIST dataset and 900 in the case of w8a dataset at the end of the
10 epochs, much smaller than the number of sample n of the train set.
Finally, in Figures 4.6 and 4.7, we compare the behaviour of SG mini and
A-R and AA-R methods when the parameter αSGmini is not the best-tuned
value, as in the previous experiments.
In particular, SG mini method in Figure 4.6 is carried out with αOPT re-
placed by α = 10−5 for logistic regression function and α = 10−5 for smooth
hinge loss function, that is αSGmini = α|S|. In Figure 4.7, SG mini is
equipped with α = 1 for logistic regression function and α = 10−5 for square
loss function. A-R and AA-R methods are executed using the four previ-
ously specified settings, with αOPT set as above.

Figures 4.6 and 4.7 highligth that a too small fixed steplength in SG mini
produces a slow descent of the optimality gap; on the other hand, a steplength
value larger than the best-tuned one can cause oscillating behavior of the op-
timality gap and, sometimes, it does not guarantee the convergence of SG
mini method. As regard A-R and AA-R methods, these approaches ap-
pear less dependent on an optimal setting of the parameters and they enable
us to obtain smaller optimality gap values after the same number of epochs
exploited by SG mini.
Furthermore, we observe that in A-R method, the behaviour of the optimal-
ity gap is more stable than in AA-R method. Nevertheless, AA-R method
can produce a smaller optimality gap at the end of 10 epochs. In conclusion,
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Figure 4.4: Mini-batch size in A-R
and AA-R methods on the MNIST
dataset with respect to the iterations.
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Figure 4.5: Mini-batch size in A-
R and AA-R methods on the w8a
dataset with respect to the iterations.
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Figure 4.6: Comparison between SG mini with respect to A-R and AA-R
in 10 epochs on the MNIST dataset.
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Figure 4.7: Comparison between SG mini with respect to A-R and AA-R
in 10 epochs on the w8a dataset.
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the optimal steplength search process for the SG method is often computa-
tionally long and expensive, since it requires a trial-and-error approach. On
the other hand, the methods equipped with the Ritz-like values and an adap-
tive rule appear to be weakly affected by the definition of its working interval.

4.3.2 Some further experiments and remarks on convex
problems

In the previous experiments, A-R andAA-Rmethods are equipped with the
approximated version of the augmented inner test, based on sample statistics.
For small samples, the conditions (4.24)-(4.26) may not be reliable enough in
providing a sample size able to control the errors in the gradient estimates;
indeed, in presence of noise, the norm of the current stochastic gradient
g

(nk)
k can be greater than ‖∇F (x(k)‖, so that the conditions (4.24)-(4.26) are
verified for many iterations before producing an increase in the sample size.
To prevent this drawback, in [8], when the sample size does not change for at
least r consecutive iterations, an average vector of the last r sample gradients
is computed:

(4.29) gavg =
1

r

k∑
j=k−r+1

g
(nj)
j .

When ‖gavg‖ < γ‖g(nk)
k ‖, for a prefixed γ ∈ (0, 1), the augmented inner

product test is performed by replacing the current stochastic vector with the
average vector gavg; the possible consequence is an increase of the sample size.
Typical values for r and γ are 10 and 0.38 respectively. For more details,
also on this special setting, see [8]; here, this practical procedure is viewed as
a recovery strategy to improve the stability of SG method equipped with a
line search rule for providing a suitable steplength. On the other hand, after
some epochs, the effectiveness of the method can degrade for faster increase
of the sequence {nk}, although the adoption of the recovery procedure makes
smaller the total number of backtracking steps [54].

In order to highlight this remark, in Figure 4.8 we shows the results ob-
tained for MNIST when the problem (4.28) with logistic regression function
is addressed by SG method equipped with a simple line search. In particular,
we report the optimality gap with respect to 10 epochs when the augmented
inner product test is coupled with the recovery procedure (magenta line) and
without this recovery procedure (green line). In the latter case, the final sam-
ple size is 48 with a large number of backtracking steps (2700), while in the
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Figure 4.8: Behaviour of the optimality gap in 10 epochs for SG method
equipped with a line search rule; magenta line is related to the version of the
method combined with the recovery procedure while the green line is used
for the version without this procedure. The parameters are chosen as in [8].
In the experiment, logistic regression is the loss function and MNIST is the
dataset.
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former one the sample size increases until 3300 with very few backtracking
steps (110). As a consequence, the recovery procedure appears crucial for
the control of the effectiveness of the line search and the sequence {nk}.
The numerical results of the previous section show that A-R and AA-R
methods are less dependent on the lack of reliability of the augmented in-
ner product test for small values of nk. Nevertheless, we can introduce the
recovery procedure when the computation of Ritz-like values gives rise to
mR = 0 and the steplength at the next iteration is set to a tentative value
α. More precisely, when this situation occurs, if the sample size has not
changed in the last r iterations, the novel sample size is determined by using
the approximated augmented inner product test with g

(nk)
k replaced by the

average vector (4.29). In Figures 4.9 and 4.10, we show the behaviour of the
optimality gap obtained by using the modified versions of A-R and AA-R
methods and SG method equipped with the line search rule for MNIST and
w8a, respectively, in the case of the three loss functions in the objective.
The comparison with Figures 4.2 and 4.3 allows to observe that the recovery
procedure improves the stability of A-R and AA-R methods with respect
to the setting of αmin and αmax, preserving the effectiveness of the approach.
Indeed the accuracy of the two versions at the end of 10 epochs differs at
most to the third decimal digit. The final value of the sample size is at most
10 times the one obtained without the use of the recovery procedure. As
already observed in the previous section, AA-R method allows to obtain
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Figure 4.9: Behaviour of the optimal-
ity gap in 10 epochs for the versions
of A-R and AA-R methods using
with the recovery procedure and SG
equipped with a line search rule in the
case of the MNIST dataset.
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Figure 4.10: Behaviour of the opti-
mality gap in 10 epochs for the ver-
sions of A-R and AA-R methods us-
ing with the recovery procedure and
SG equipped with a line search rule
in the case of the w8a dataset.
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better results with respect to A-R in most experiments.
Furthermore, we observe that the performance of our approach appears gen-
erally better with respect to SG with a line search procedure. The com-
parison is carried out by considering only the number of scalar products
performed in all methods, that is n scalar products for each epoch. Indeed,
for the considered loss functions, the computational cost of the evaluation
of the stochastic gradient g(nk)

k is essentially given by the nk scalar products
aTi x

(k), i ∈ Sk.
As regard SG method with a line search rule, we observe that, although the
evaluation of an estimate of the objective function 1

nk

∑
i∈Sk

fi(x
(k)) at x(k)

does not require additional scalar products and it is negligible, the computa-
tion of the same estimate at x(k)−αg(nk)

k requires at least additional nk scalar
products. Thus, each iteration of SG with line search has a computational
cost at least equal to two evaluations of the stochastic gradient on the same
sample. Any backtracking step increases the count of total scalar products.
This preliminary analysis appears to favor schemes that avoid a line search
rule for the determination of the steplength, also in the case of a few epochs
when the sample size remains low. This topic may be the subject of future
investigations.

Momentum and AdaM

In this section we describe the numerical results obtained by inserting the
proposed steplength selection rules combined with the adaptive increase of
mini-batch size in two stochastic schemes, as Momentum and AdaM. In par-
ticular, referring the same problem of compute a linear classifier for MNIST
dataset using the three convex loss functions LR, SL and SH, we compare
the effectiveness of the following schemes: 1) SG, Momentum and AdaM
[36] with a fixed mini-batch size and a fixed steplength; 2) A-R and AA-R
schemes combined with Momentum or AdaM. These numerical experiments
are carried out in Matlabr on 1.6 GHz Intel Core i5 processor. We decided
to conduct the experiments on a maximum of 10 epochs.

The Figure 4.11 shows the behaviour of the objective function optimal-
ity gap, in the case of LR with AdaM method and SH with Momentum
method. In particular the dashed black line refers to ADAM-mini and
MOMENTUM-mini (with best-tuned steplength), whereas the red and
the blue lines are related to A-R and AA-R versions of the two methods
respectively. These results highlight that the results obtained with the A-R
and AA-R methods are comparable with the ones obtained with the mini-
batch standard versions equipped with the best-tuned steplength. Both A-R
and AA-R methods have been tested on 4 different settings of (αmin, αmax]:
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Figure 4.11: Optimality gap in 10 epochs for A-R and AA-R methods: on
the left panel, comparison with ADAM-mini on the LR loss function and,
on the right panel, comparison with MOMENTUM-mini on the SH loss
function.
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It is important to remark that the adaptive steplength rules in A-R and
AA-R methods seem to be slightly dependent on the values of αmax and
αmin, making the choice of a suitable learning rate a less difficult task with
respect to the selection of a good constant value in standard methods. The
final accuracies obtained by the methods on the testing set differ at most to
the third decimal digit.

4.3.3 A non-convex problem: a Convolutional Neural
Network

In the non-convex case we consider as loss function an Artificial Neural Net-
work. In particular, dealing with image classification, we consider a Convo-
lutional Neural Network (CNN). The network is composed of an input layer,
two sequences of convolutional and max-pooling layers, a fully connected
layer and an output layer. We make use of Rectified Linear Unit (ReLU)
activations combined by a softmax function for the output layer and of a
cross entropy as loss function (see Figure 4.12). We consider the optimisa-
tion problem arising in training a multi-class classifier for the MNIST data
set.
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Figure 4.12: Artificial Neural Network structure
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Figure 4.13: CNN Accuracy in the SG mini case
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We compare the effectiveness of the same methods considered in the previ-
ous section, i.e., SG mini, A-R and AA-R methods. In all the numerical
experiments we use the following setting:

• regularisation parameter δ = 10−4;

• the first convolutional layer is composed by 64 filters, each filter has
5× 5 dimension; after we apply a max-pooling of size 2× 2;

• the second convolutive layer is composed by 32 filters, each filter has
5× 5 dimension; after we apply a max-pooling of size 2× 2;

• in SG mini, the size of the mini-batch, is set as |S| = 50;

• in A-R and AA-R methods, the length of any sweep is at most m = 3;
furthermore, θ = 0.7 in (4.24) and ν = 7 in (4.26) for all the numerical
simulations;

The numerical experiments were carried out in Matlabr on Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz with 8 CPUs.
In the Figure 4.13 we can observe the different accuracies (with respect to

the testing set) provided by the CNN trained with SG mini in 5 epochs; the
fixed steplength is set to values between 0.001 and 0.9. As we can see, the



4.3. NUMERICAL EXPERIMENTS 83

Figure 4.14: Accuracy obtained by training the CNN with A-R and AA-R
methods.
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method provides effective results for α = 0.5; a similar accuracy is obtained
for α = 0.1. In cases with smaller steplengths, the accuracy in 5 epochs is
unsatisfactory, while a higher steplength can lead to the divergence of the
method. Hence, in a more marked way than the convex case, for non-convex
problems, finding an effective steplength requires a very expensive trial pro-
cedure. In Figure 4.14 we report the results obtained by training the CNN
with the A-R and AA-R methods. In particular we show the behaviour of
the accuracy with respect to the testing set in the first 5 epochs with the
following settings:

• for A-R method, αmin = 10−3, αmax = 1, n0 = 10;

• for AA-R method, αmin = 10−2, αmax = 1, n0 = 3.

The parameter α is set as 0.1 in all cases. We observe thatA-R appears more
robust with respect to the amplitude of the interval where αk can belong.
Furthermore, we notice that the sub-sample size increases up to a maximum
of 204 and 182 in A-R and AA-R methods respectively.

Momentum and AdaM

Also for the CNN we perform experiments with Momentum and AdaM op-
timiser.
The setting for Momentum is:

• β = 0.9;

• |S| = 50 sub-sample size.

The setting of A-R and AA-R versions of Momentum is:



84 CHAPTER 4. STEPLENGTH SELECTION

Table 4.7: Numerical results of the considered methods with Momentum
optimiser after 5 epochs.

α MOMENTUM-mini αmax A-R AA-R
0.01 0.8819 0.8 0.8783 0.9182
0.1 0.9573 0.9 0.8675 0.8829
0.5 0.9708 1 0.902 0.9269
0.9 0.0958 1.2 0.8733 0.8644

Table 4.8: Accuracies of the considered methods with AdaM optimiser after
5 epochs.

α ADAM-mini αmax A-R AA-R
0.001 0.9705 0.1 0.8768 0.9061
0.01 0.9492 0.3 0.9557 0.9333
0.1 0.1148 0.5 0.8537 0.8372

• for A-R method, αmin = 10−3, n0 = 10;

• for AA-R method, αmin = 10−3, n0 = 10.

The setting for AdaM is:

• β1 = 0.9 and β2 = 0.999;

• ε = 1e− 8;

• |S| = 50 sub-sample size.

The setting of A-R and AA-R versions of AdaM is:

• for A-R method, αmin = 10−3, n0 = 10;

• for AA-R method, αmin = 10−3, n0 = 10.

The conclusions are similar to the previous cases. As we can see in Table
4.7 if in MOMENTUM-mini the steplength is too big, for example 0.9,
the method diverges. The same remark can be repeated for AdaM; in Table
4.8 we can see a bad accuracy result for α = 0.1.
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Table 4.9: Sub-sample size of the considered methods with Momentum and
AdaM optimiser after 5 epochs.

MOMENTUM-mini ADAM-mini
αmax A-R AA-R αmax A-R AA-R
0.8 327 306 0.1 182 204
0.9 214 294 0.3 263 244
1 204 155 0.5 226 363
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Chapter 5

Meta-learning

The performance of the ANNs and more generally of the machine learn-
ing algorithms have shown great potential, especially in recent years. The
fields in which these technologies are applied are many: from medicine to
autonomous driving, from the study of time series in industrial processes to
climate forecasts of rare events. Despite the vast state of the art on the
subject, designing a new machine learning methodology, especially in Deep
Learning field, remains a very difficult task. Great part of the difficulty lies
in designing the structure of the method by setting hyperparameters such
as: steplength, mini-batch size, type of optimiser, type of layer, number of
neurons per layer, dropout rate. The different combination of these hyper-
parameters can make the difference between a mediocre performance and an
accuracy comparable to the state of the art. The search for the optimal con-
figuration is done by maximising some type of measurement that quantifies
the performance of the network. In the case of classification problems this
measurement can be the accuracy of the method, defined as the percentage
of well classified cases by the methodology with respect to the total cases.
This process of maximisation is made particularly difficult by the fact that,
in general, this phase is particularly expensive from a computational point
of view.
Starting from the observations just made, what we have developed is an off-
line method to predict the accuracy of a new machine learning algorithm.
The proposed method allows to predict the behaviour of an ANN by avoid-
ing excessive costs, since it bases the prediction on the first phase of the
learning process, without having to lead the algorithm to convergence. To
realise this prediction we based ourselves on two methodologies at the same
time: Support Vector Machine for Regression (SVR) and curve fitting. These
methodologies can be particularly useful to predict the performance of an
ANN from the earliest epochs and to look for the configuration of optimal

87
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parameters. The algorithm we propose may be of particular interest for a
fairly fast quality assessment of a new learning algorithm. In particular, it
can facilitate the optimisation of hyperparameters in an interesting way.

5.1 Methodology

The proposed method is particularly complex. Before describing and moti-
vating the method, let’s summarise the steps that form its structure. First
of all we will explain how to create a dataset of examples for our purpose.
In a second phase this dataset will be used to simultaneously train an SVR
and a curve-fitting methodology; their union will be able to predict the final
accuracy of a learning methodology starting from the performance provided
in the early epochs. In the third phase it will be illustrated how this predic-
tive tool will be used to optimise the hyperparameters of a network.
The first step to apply the method is to create a dataset of examples. The
dataset must be as meaningful and complete as possible with respect to the
hyperparameter space we have chosen. Therefore, first of all, we have to fix
some hyperparameters and allow others to vary to define the space of the
possible configurations. At this point, we try to sample the space as exhaus-
tively as possible, creating all the possible configurations of the ANNs (or
other methodology). In the space we choose some configurations; the choice
of the percentage of samples to include in our dataset may be subject to
time or hardware constraints. We take into account that the dataset cre-
ation phase is the most expensive phase of the methods. Once the samples
that will constitute the dataset are chosen, their elements are trained until
numerical convergence, thus collecting all the features that identify the ex-
amples associated with their accuracy. In particular, the accuracy at each
epoch is also collected during the training phase. Training is carried out on
the training set and accuracy is evaluated using the testing set.

5.1.1 Between SVM and curve fitting

Given any iterative Machine Learning methodology, the main aim of the
method is to provide what its behaviour at convergence will be, based only
on the performance relative to the initial training phase. To achieve this
ambitious goal we have combined two methodologies well known in the liter-
ature: Support Vector Machine for Regression (SVR) [10] and curve fitting
[48].Ẇe first present a theoretical background of the mentioned techniques,
and then indicate how we used them.
The SVM methodology can be included in the supervised learning, where
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the data are labelled. In case of binary classification problems, the basic idea
of the methodology is to devise a classifier, named SVM classifier, given by
a separating hyperplane (or separating hypersurface) through the selection
of the most significant examples of the dataset, called support vectors. The
optimal separating hyperplane provided by SVM is then used to classify new
examples. In its simplest formulation, SVM defines a linear classifier but it
can be generalised to obtain non-linear classifiers by exploiting the so-called
kernel trick. By mapping the examples into a suitable high dimensional fea-
ture space and by looking for the SVM linear classifier in that space, the
user defines a non-linear decision function in the original input space. To
work in the new feature space, only the scalar product between examples in
the feature space is necessary and this can be expressed by suitable kernel
functions. Furthermore there is a version called SVM for Regression (SVR)
which, using the similar principles, constitutes a methodology for regression.
One of the most important features of SVM, both in classification and regres-
sion, is that the solution is represented by using only the examples belonging
to a subset of the original training set and this can introduce significant cost
reduction from a computational point of view.

SVM and SVR

We recall in a quick way the concepts related to SVM and SVR. Let’s start
by recalling the SVM linear classifier for binary classification. The decision
function is represented by:

(5.1) f(x) = sign(wTx + b)

and the formulation of the problem is:

min
1

2
‖ w ‖ +C

n∑
i=1

ξi(5.2)

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n(5.3)

ξi ≥ 0, i = 1, . . . , n

where xi are the samples of the dataset and yi the related labels, ξi are the
slack variables and C is a constant that controls the trade-off between the
error, on the training set, and the complexity of the model. Therefore w and
b are learned from the method. The corresponding dual formulation of the



90 CHAPTER 5. META-LEARNING

problem is:

min
α∈Rn

1

2

n∑
i,j=1

αiαjyiyjx
T
i xj−

n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , n

where αi are the dual variables. In this case the binary classifier results:

(5.4) f(x) = sign

(
n∑
i=1

ᾱiyix
T
i x + b̄

)
where ᾱi are the solution of the dual problem and b̄ is obtained from Karush-
Kuhn-Tucker conditions.
In the non-linear case, the dual formulation can be expressed as

min
α∈Rn

1

2

n∑
i,j=1

αiαjyiyjK(xi,xj)−
n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , n

where K(xi,xj) is the kernel function.
In this case, the binary classifier results:

(5.5) f(x) = sign

(
n∑
i=1

ᾱiyiK(xi,x) + b̄

)
where ᾱi are the solution of the dual problem and b̄ is obtained from Karush-
Kuhn-Tucker conditions.
To understand how SVM works, we reformulate the problem (5.2), by intro-
ducing the definition of loss function. The loss function V (y, f(x)) measures
how well f estimates the input x. Thus, we can determine the decision
function by solving

min
f∈H

‖ f ‖2
H +

C

n

n∑
i=1

V (yi, f(xi))

where the regularisation parameter C handles the trade-off between the com-
plexity of the solution and the errors on the training set; H represents the
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Hypothesis space where f must be chosen.
The SVM binary classifier can be obtained by using the soft-margin loss
function, defined as:

V (y, f(x)) = max(0, 1− yf(x)) =

{
0, if yf(x) ≥ 1

1− yf(x), if yf(x) < 1

In case of regression problems, the SVR prediction function is obtained by
exploiting the ε−insensitive loss function, whose formulation is:

Vε(y, f(x)) = |y − f((x))|ε = max(0, |y − f(x)| − ε)

As a consequence, the primal problem can be formulated as follows:

min
1

2
‖ w ‖2 +C

n∑
i=1

Vε(yi,w
Txi + b)

while the dual formulation can be written as

min
α,α∗∈Rn

1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )xTi xj + ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

yi(αi − α∗i )

s.t.
n∑
i=1

(αi − α∗i ) = 0

0 ≤ αi ≤ C, 0 ≤ α∗i ≤ C i = 1, . . . , n

In this case the prediction function is

(5.6) f(x) =
n∑
i=1

(ᾱi − ᾱi∗)xTi x + b̄

where b̄ is obtained from Karush-Kuhn-Tucker conditions.
Both in the optimisation problem and in the prediction function, the vectors
of the training set appear only inside inner products; therefore, the algorithm
can be generalised to Hypothesis spaces of non-linear functions through a
kernel. An example is the polynomial kernel K(x,x′) = (xTx′+ 1)s, where s
is the polynomial degree or the Gaussian kernel K(x,x′) = exp(− ‖ x−x′ ‖2

/(2σ2)), where σ is the variance.
The dual formulation of the non-linear SVR problem has the form:

min
α,α∗∈Rn

1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj) + ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

yi(αi − α∗i )

s.t.
n∑
i=1

(αi − α∗i ) = 0

0 ≤ αi ≤ C, 0 ≤ α∗i ≤ C i = 1, . . . , n
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In this case the prediction function results:

(5.7) f(x) =
n∑
i=1

(ᾱi − ᾱi∗)K(xi,x) + b̄

where b̄ is obtained from Karush-Kuhn-Tucker conditions.
The use of the ε-intensive loss function ensures the existence of a global min-
imum. The ε parameter controls the width of the ε-insensitive zone, used to
fit the training data.

Curve-fitting

A drawback in the use of SVR is that its output values can be outside the
interval [0, 1]. Indeed, the predicted values denote the accuracy of a learning
algorithm and, consequently, the output values of the method must be strictly
positive and less than one. Therefore to better manage the constraints on
the accuracy, we have also introduced the curve-fitting methodology. Curve-
fitting is the process that enables to determine the curve that best fits a
series of data points, satisfying a set of constraints. In this case, given a
family of functions dependent on a set of parameters, the goal is to find the
parameters defining the function that allow you to best describe the data
to be approximated. The values of these parameters are usually calculated
using the method of Least Squares (LS), which minimises the sum of the
square errors between the original data and the model values. Also with this
approach, it is possible to define non-linear prediction function. If the curve
is linear with respect to the parameters, then the problem reduces to solving
a system of linear equations. This is referred to as linear least squares.

In the general formulation of least squares, we have to solve a non-linear
system of equations. Indeed, we have to minimise the sum of the square of
the deviations between the curve-fit and n actual data points (epochi, acci),
i = 1, ..., n:

(5.8) LS =
n∑
i=1

(g(epochi)− acci)2

where g(epochi) is the curve-fit function, which may depend non-linearly on
the parameters (non-linear LS). In our case the data points are represented
to the first epochs epochi and the related accuracies acci. Setting the
gradient of the objective function with respect to the parameters, denoted
by γ1, γ2, . . . , equal to 0, we obtain a non-linear system of equations:

(5.9) ∇LS(γ1, γ2, ...) = 0.
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Non-linear least squares is significantly more difficult to solve than linear least
squares, because of the difficulties associated with solving sets of non-linear
equations.

Regression problems, linear and non-linear, can be single variable or
multi-variable. A difficulty of regression is that the functional relationships
must be specified a priori, and this difficulty may be increased for multi-
variable regression.

In this work, the fitting function g : R→ R, is chosen to have the form:

(5.10) g(epoch) = α epochβ

where α and β are the parameters to be calculated from non-linear LS.
In our case the variable epoch represents the epoch number of interest and
g(epoch) is the related accuracy.

5.1.2 Role of SVR and curve-fitting in the proposed
methodology

After the first step aimed to generate a suitable database, an SVR is trained
on this database. As input features of the SVR, in addition to the character-
istics of the method, i.e., the hyperparameters, there will also be the accuracy
of the early epochs; the final accuracy represents the label of the example.
At this point, the trained SVR methodology will be able to predict the fi-
nal accuracy of a method given its performance in the initial phase of the
learning process. Therefore, having both the results of SVR and curve-fitting
available, we must have a procedure to choose which one to use. In general,
when the accuracy constraints are respected, SVR prediction is used; if con-
straints are not respected, curve-fitting is used. There are two constraints
to respect. Taking into account that what we are predicting is an accuracy,
this value must always be positive and less than 1. The second constraint
comes from the fact that the final accuracy must always be greater than or
equal to the best accuracy seen in early training epochs. When the SVR
prediction is greater than 1, for the final accuracy prediction we will use the
curve-fitting methodology, using (5.10) as prediction function. In this case,
the parameters α and β are computed and the obtained function g is used to
predict the value of the accuracy at convergence of the methodology under
examination. The parameters of the curve-fitting methodology are subject
to the following constraints:

(5.11)
{ acc_max

fin_epoch ≤ α

0 ≤ β ≤ 1
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where acc_max is the maximum value of the accuracy in the early epochs
and fin_epoch is the maximum number of epochs that can be performed
by the learning algorithm. In particular, the first constraint forces the curve
to reach an accuracy at the final epoch probably higher than that already
observed in the first epochs. With these constraints, the methodology can
be useful to discriminate between promising models and models that already
show poor performance at the early epochs.
The method described above can be particularly convenient from a computa-
tional point of view. This is because at the pure cost of creating the database,
it generates a tool capable of predicting the accuracy of a new methodology
based only on its initial training phase. An advantage of the method is its
great scalability. The dataset that must be created does not depend on the
complexity of the problem nor on the time taken by the single training (which
can often be variable).

5.2 Application: from prediction to hyperpa-
rameter optimisation

Although the method is suitable for any Machine Learning methodology from
now on we will focus on ANNs. In particular we will discuss how to set some
of the hyperparameters of a CNN. So our goal will be to apply the method
in the context of Hyperparameter Optimisation (HO).

5.2.1 Other approaches

In addition to the information provided in Chapter 2, we recall two of the
most common approaches to tackling the HO problem. The most intuitive
approaches are grid search and random search [31]. Both methods require to
drive many ANNs to convergence, making the methods very expensive from
the computational point of view. As a consequence, Sequential Model-Based
Optimisation (SMBO) [30] algorithms have been employed in many settings
when the performance evaluation of a model is expensive. They approximate
the black-box objective function accuracy that has to be maximised by a sur-
rogate function, cheaper to evaluate. At each iteration of the algorithm, the
new point where the surrogate has to be evaluated is chosen by maximising
a chosen criterion. Several SMBO algorithms have been proposed in the lit-
erature, and differ in the criteria by which they optimise the surrogate, and
in the way they model the surrogate given the observation history. Two of
the most famous SMBO approaches are the Bayesian Optimisation approach
[44, 43] and the Tree-structured Parzen Estimator strategy [5].
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More recently, new hyperparameter optimisation methods based on rein-
forcement learning have emerged [2, 3, 33, 12]. The goal for most of them was
to find the ANN or CNN architectures that are likely to yield an optimised
performance. Thus, they were seeking the appropriate architectural hyperpa-
rameters, as the number of layers or the structure of each convolutional layer.
In this analysis many other hyperparameters, such as the learning rate and
regularisation parameters, are manually chosen; therefore these last param-
eters are not the subject of the optimisation that we are describing. In any
case, while all the above-mentioned strategies aim to evaluate the expensive
objective function accuracy (which, in the case of a ANN or CNN is the pre-
diction accuracy) as seldom as possible, very few algorithms offer a method
to reduce the evaluation cost of accuracy. Furthermore the method needs to
bring to convergence only few samples to built the dataset. The proposed
approach therefore aims to combine these two aspects: the prediction of the
final accuracy at low cost, and the automatic setting of hyperparameters.

5.2.2 The method applied to HO

Before proceeding with the proposed method it is necessary to make some
premises. The method, in brief, aims to do meta-learning, i.e., learn by
learn. This means that we want to use one learning technique to model an-
other learning technique. The convenience lies in the fact that the supervisor
of the method is a technique known in the literature and very robust, i.e.,
SVR, while the supervised method is more unstable with respect its hyper-
parameters, studied recently and not very robust, i.e., any ANN. For this
reason, even if we have to take care of the best setting of SVR and curve-
fitting hyperparameters, this task is enormously easier than the same one in
the ANNs. Specifically, in the case of SVRs, particular attention will be paid
to the choice of the kernel to use and the hyperparameters related to the
kernel itself. In the case of curve-fitting we must identify the form of (5.10)
and the hyperparameters related to the chosen function.
From now on we will focus on a CNN for image classification. What we
are looking for is the optimal configuration of some of its hyperparameters.
Obviously, the first step of the algorithm must be the decision of the hyper-
parameters to be analysed and the choice of all the others. We will focus
on the choice of mini-batch size, steplength and optimiser type. The same
method can however be extended to the choice of other hyperparameters such
as number of layers, number of neurons per layer or more generally charac-
teristics related to the ANN architecture.
We start by explaining the procedure in detail; first of all we have to create
the dataset as described before. As can be seen in Algorithm 6, the entire
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Algorithm 6 Hyperparameters space
1: Choose hyperparameters to optimise: (1) learning rate, (2) mini-batch

size and (3) optimiser
2: Choose bounds for the hyperparameters and possible configurations:

• V1 is the set of 16 values logaritmically spaced in [1e− 5, 1e− 2]

• V2 = {2, 4, 8, 16, 32, 64, 128, 256, 512}

• V3 = {SGD,MOMENTUM,AdaM}

dataset is composed of 432 samples. In the proposed case-study, we decided
to sample the space of the hyperparameters estimating 10% of all possible
configurations. These configurations are chosen with uniform distribution in
the hyperparameter space. Next, an SVR is trained on this dataset, using
for any example the final accuracy as label. We use cross validation tech-
niques to set up kernels. Even if it takes time, this preliminary step can lead
to a less expensive hyperparameter optimisation process than those already
known in the literature.

Now, we use the Algoritm 7 [23] to perform the hyperparameters space
exploration to estimate the optimal configuration, using the SVR or curve-
fitting method to predict the final accuracy. In this approach, at the step 1
of Algorithm 7, each hyperparameter to be set is described by the letter i
associated with the vector Vi which contains all possible configurations. Each
element of the Vi vectors is associated with a probability. These probabilities
are initially assigned with uniform distribution and stored in the Pi vectors.
At each step of the exploration algorithm a value is chosen for each hyperpa-
rameter; this choice is made according to the probability distribution. At this
point, the characteristics of the new CNN, which will be trained only in the
very first epochs, have been fixed. Therefore, based on the vector containing
the characteristics that define the CNN and the accuracies in the earliest
epochs, the SVR or curve-fitting methodology predicts the accuracy of the
CNN reached at the end of the learning process. This final accuracy, is con-
sidered as a reward, which we will indicate as r(t). At this point, based on the
last two rewards, the probabilities are updated. In particular, if the reward
r(t) relative to the iteration t is greater than the reward r(t−1) relative to the
previous time, the probability of the values of the hyperparameters selected
at time t is increased penalising the other configurations. On the opposite if
r(t) < r(t−1) we penalise the probabilities relating to the selected values for
the hyperparameters at time t and we increase the others. Obviously, each
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Algorithm 7 The hyperparameter space exploration algorithm
1: For each Vi sets the associated probabilities Pi, with i ∈ {1, . . . , nparam}.
2: Vi = {ai1, . . . , aivi} for each i.
3: Pi = {pi1, . . . , pivi}, with p

i
j = 1

vi
for each i and j.

4: Choose an initial state x(0) = {a1
i0
, . . . , a

nparam

i0
}.

5: Training CNN(x(0)) for some epochs.
6: Use SVR and curve-fitting to predict final accuracy r0.
7: t = 1.
8: while t ≤ maxiter and convergence=false do
9: Generate a realisation of the random state x(t) according with proba-

bilities.
10: Training CNN(x(t)) for some epochs.
11: Use SVR and curve-fitting to predict final accuracy rt.
12: if rt > rt−1 then
13: piit = piit + ε
14: pij = pij − ε

vi−1
, for j ∈ {1, . . . , vi} − {it}

15: else
16: piit = piit − ε
17: pij = pij + ε

vi−1
, for j ∈ {1, . . . , vi} − {it}

18: end if
19: if ∃ ĵ : pi

ĵ
≥ thresholdi ∀ i ∈ {1, . . . , nparam} then

20: convergence = true
21: end if
22: t = t+ 1
23: end while



98 CHAPTER 5. META-LEARNING

update must always keep a probability space in the Pi, i.e. all values must
remain in the [0, 1] range and the probability of each vector must add up to
1. In this way during the hyperparameter space exploration the probability
vectors are dynamically modified, the exploration stops if a value for each
hyperparameter reaches a probability higher than a certain threshold si. At
this point the process stops, because it is believed that the exploration has
reached convergence or a maximum number of iterations is achieved. In the
final step, the 10 best configurations, according to the prediction technique,
are trained to convergence and the hyperparameter configuration that leads
to the highest accuracy is chosen.

5.3 Numerical experiments

Several numerical tests have been performed to validate the proposed method.
The ANN we are considering is a CNN for multiple image classification. As
dataset we have chosen MNIST, which we have already discussed in previ-
ous chapters and CIFAR10 (https://www.cs.toronto.edu/~kriz/cifar.
html). The CIFAR10 dataset consists of 6000032 × 32 colour images in 10
classes, with 6000 images per class. There are 50000 training images and
10000 testing images. The classes of CIFAR10 are: airplane, car, bird, cat,
deer, dog, frog, horse, ship and truck.

5.3.1 CNN architectures

For the MNIST dataset, the CNN has five levels in addition to input and
output. The hidden states of the network are two convolutions, each followed
by a max-pool; a fully-connected state with dropout connected to the output
completes the network. As activation function we use the ReLU for each
layer.
In the case of CIFAR10 the network is more complex, being composed of

twelve hidden layers. In particular, the input is connected to four blocks
composed of a convolution and a max-pool that connect to four final fully-
connected states before exiting with the output state. ReLU has been used
as activation function, in addition to batch normalisation and dropout tech-
niques in the fully-connected layers. To avoid the phenomenon of overfitting,
we have used various techniques. As known in the literature, all Machine
Learning methodologies, if the learning phase is too long, can lead the method
to be too adherent to the data and unable to generalise. For this reason, in
addition to using dropout, as mentioned before, in the learning phase we
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Figure 5.1: Random images from dataset CIFAR10.

Figure 5.2: CNN scheme for MNIST database.
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have used the Early stopping technique, which we have already discussed in
detail in previous chapters.

5.3.2 Results

As explained in the previous sections the first phase of the proposed tech-
nique is to create the dataset on which to train SVM and curve-fitting. Since
this is the most expensive part from a computational point of view, it has
been carried out on CINECA parallel architectures, in particular on Marconi
cluster (https://www.cineca.it/en/content/marconi). Once the various
architectures of the networks that will make up the database have been gen-
erated, they can be trained independently of each other. This high degree
of parallelisation of the method makes it particularly suitable for node in-
frastructures such as CINECA. For both MNIST and CIFAR10 the dataset
consists of a table in which each row corresponds to a complete training of
a network. As hyperparameters in these experiments, steplength, optimiser
type and mini-batch size have been chosen; these too have been stored to-
gether in the table representing the hyperparameters space. In the case of
MNIST database, the number of networks to be trained was rather small:
44 examples, of which 35 were used for SVM training and 9 for the testing
phase. Once the database was established, we tested several kernels for SVM,
in particular: linear, polynomial and Gaussian. We chose Gaussian kernel
because it performed better than the others in terms of error, evaluated with
Mean Squared Error (MSE).

Ground-truth Linear Polynomial Gaussian
0 0.7129 0.816350 0.854324 0.713435
1 0.1871 0.197152 0.207737 0.175775
2 0.1000 0.200523 0.204122 0.200774
3 0.6820 0.704606 0.599408 0.781832
4 0.4340 0.381075 0.301048 0.456969
5 0.6369 0.572801 0.489510 0.638199
6 0.7315 0.747803 0.682245 0.805067
7 0.1000 0.190538 0.203211 0.175411
8 0.4783 0.410684 0.325788 0.491291

MSE 0 0.04136 0.1138 0.0320

Table 5.1: Predictions on random test values of the three different SVM
kernels for MNIST dataset: linear, polynomial and Gaussian.

After acquiring the accuracy in the first three epochs, the method pre-
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Figure 5.3: Prediction of curve-fitting and SVM with three epoches, com-
pared with the real accuracies for MNIST dataset.

dicts what the final accuracy will be. The tests have been carried out with
the most well known kernels: linear, polynomial and Gaussian. In the Table
5.1 we represent all the nine examples showing the predictions of the differ-
ent kernels in the MNIST case. In this case, predictions are made on the
random test values and are based on three epochs, for the MNIST dataset;
we report also the MSE values, in the last row; the obtained results show
that the kernel providing the best predictions is the Gaussian one. The MSE
values are reported in Table 5.1, where is shown that the Gaussian one is
the kernel that dominates the other two. As far as the SVR is concerned,
we have tried different combinations of input parameters. In addition to the
parameters that characterise the network, we have included accuracies after
2/3/4 epochs. We then decided to fix the ideas on the 3 epochs because
it seemed to us a good compromise between training time and SVR perfor-
mance. Same thing can be said for the curve-fitting: different functions were
tested to find the most suitable one. Figure 5.3 shows a graphical example
of the prediction provided by SVM and curve-fitting. In the graph, the full
points represent the real values of accuracy, period by period. The star in the
final epoch is the SVM forecast, while the line is the curve obtained with the
fitting. For both SVM and curve-fitting, only the accuracies acquired during
the first three epochs are used to predict the accuracy in the final epoch
with the MNIST dataset. As explained before, curve fitting is a recovery
procedure, used only when SVR predicts a value greater than one, in all the
experiments we use this recovery procedure only in the 3% of the cases.

Figure 5.4 shows the results of the proposed technique applied to the pre-
diction of the final CNN accuracy for the CIFAR-10 dataset. In this case, we
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Figure 5.4: Comparison. with CIFAR dataset, of the predicted final accuracy
with SVM and curve-fitting and the ground truth, setting the method with
only two training epochs (top panel) and four (bottom panel).
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use only the accuracies of the first two or four training periods to predict the
final one. The orange line represents the prediction made by our method, the
blue line the true accuracy (i.e., the net is fully trained to convergence with
the same hyperparameters). As we can see, the method can effectively pro-
vide a satisfactory prediction of the CNN’s final behaviour after only a few
epochs. At this point we proceed with the last phase, i.e., we use the predic-
tor, just set, to guide us in the hyperparameter space exploration. Since the
results are satisfactory, at this point, we have used the SVR as predictor for
the final accuracy of the ANN. This predictor has been included in a research
method as described above. We performed this additional test using the first
two epochs to predict the final one. After 200 iterations, of the method, we
were able to find the parameters leading to the best final predicted accuracy.
To confirm this result we train until convergence the CNN with the best final
predicted accuracy.
The hyperparameters provided by our method are: the learning rate is
0.0008425, the mini-batch size is 128 and the optimiser chosen is AdaM.
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Conclusions and future works

In this work, several techniques for setting the hyperparameters of a stochas-
tic optimization method for deep learning problems have been analyzed and
discussed in order to make the tuning phase of the method less expensive and
more adaptive/automatic. In particular, in Section 3, we propose a strategy
for a dynamic increase of the size of the mini-batch used to estimate the
stochastic gradient; this technique leads to a considerable improvement in
the accuracy, without increasing the computational cost. Indeed, the test
controlling an increase of the mini-batch size is included in that performed
for Early Stopping, so that the computational costs for each epoch are un-
changed. We observe that a larger starting mini-batch size does not allow
to obtain an improvement in the accuracy as the strategy to set an adaptive
size during the network learning process. For future experiments, the idea is
to apply the same methodology to larger datasets and more complex ANN,
where Early Stopping has already been effectively tested. In such contexts,
the proposed approach could be easily inserted.
In Section 4, we propose to tailor the steplength selection rule based on the
Ritz-like values, used successfully in the deterministic gradient schemes, to
a stochastic scheme, recently suggested by Bollapragada et al. [8]. This SG
method includes an adaptive sub-sampling strategy, aimed to control the vari-
ance of the stochastic directions. We observed that the theoretical properties
of this approach hold under the assumption that the steplength selection rule
obeys to the assumption αk ∈ (αmin, αmax], where αmax is proportional to the
inverse of the Lipschitz parameter of the objective function gradient. Con-
sequently, we reformulate the procedure for obtaining the Ritz-like values in
the stochastic framework, by using the stochastic gradients instead of the
standard gradients. It is required that these stochastic directions, although
based on different sub-samples, satisfy two conditions (the inner product test
and the orthogonality test), ensuring the descent property in expectation.
We propose two different ways to select the current steplength, by simply tog-
gling the Ritz-like values with the harmonic Ritz-like values (A-Rmethod) or
using the harmonic Ritz-like values only when the size of the sub-sample is in-
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creased (AA-R method). The numerical experimentation highlight that the
proposed methods enable to obtain an accuracy similar to the one obtained
with SG mini-batch with fixed best-tuned steplength. Although also in this
case it is necessary to carefully select a thresholding range for the steplengths,
the proposed approach appears sligthly dependent on the bounds imposed
on the steplengths, making the parameters setting less expensive with re-
spect to the SG framework. In conclusion, the proposed technique provides
a guidance on the learning rate selection and it allows to perform similarly to
the SG approach equipped with the best-tuned steplength. For the future,
the idea is to include in our scheme a projection or a proximal step, in order
to manage the presence of constraints or non-smooth term of the objective
function. In the last section, we propose and implement a novel approach
to predict the final behaviour of a learning process. This method exploits
Support Vector Regression (or a recovery curve-fitting procedure to foresee
the resulting accuracy of a time-consuming iterative algorithm, using only
the information on its behaviour acquired after few iterations. We apply this
technique to a CNN, in order to quickly understand if the training of the
network will end up with a satisfactory accuracy. The results show that the
predictions achieved with our technique are quite similar to the ground-truth,
and confirm that this strategy can be of particular interest in the hyperpa-
rameter optimisation domain. Future developments will concern the design
of a procedure for an (almost) automatic tuning of hyperparameters, such
as the number of layers or the activation function of a network, exploiting
our SVR-curve-fitting predictor.
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