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Abstract

Phase transitions occur in many relevant processes in physics, natural sciences and engineering: almost

every industrial product involves solidification at some stage. Examples include metal casting, steel

annealing, crystal growth, thermal welding, freezing of soil, freezing and melting of the earth surface

water, food conservation, and others. All of these processes are characterized by two basic phenomena:

heat-diffusion and exchange of latent heat of phase transition.

In this thesis, which consists of four distinct parts, we deal with phase transitions from different points

of view.

The first part, titled Control and controllability of PDEs with hysteresis with an application

in phase transition modeling, is a bridge between the master thesis work (about controllability

of PDEs with hysteresis) and phase transitions. Indeed, thanks to the special link between hysteresis

operators and phase transitions, the controllability results that we prove can be applied to the so-

called relaxed Stefan problem. This is an example of a basic model of phase transition, since it simply

accounts for heat-diffusion and exchange of latent heat. More complicated models, which take into

account also the mechanical aspects of the process, are considered in Parts II and III.

More precisely, in the second part, titled A viscoelastoplastic porous medium problem with

phase transition, we derive and investigate a model for filtration in porous media which takes into

account the effects of freezing and melting of water in the pores. The third part, whose title is Fatigue

and phase transition in an oscillating elastoplastic beam, is devoted to the derivation and the

study of a model describing fatigue accumulation in an oscillating beam under the hypothesis that

the material can partially recover by the effect of melting.

Finally, in the fourth part, titled Regularity for double-phase variational problems, we address

the problem of the higher differentiability of solutions to the obstacle problem. In particular we deal

with the case of nonstandard growth conditions, which includes the so-called double-phase functionals.

Such functionals describe the behavior of strongly anisotropic materials whose hardening properties

drastically change with the point, hence they exhibit the most dramatic phase transition. The tech-

niques here employed are different from those used in the rest of the thesis, since they rely on the

direct methods pertaining to the regularity theory in the field of Calculus of Variations.
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Introduction

In this first part we focus on the problem of controllability of the equation

ut(x, t)−∆u(x, t) + F [u](x, t) = v(x, t), x ∈ Ω ⊂ RN , t ∈ (0, T ) (I.1)

with a hysteresis operator F (see Section B in the Appendix for more details on hysteresis operators),

a right-hand side v called the control, and given initial and boundary conditions. The controllability

problem for equation (I.1) consists in proving that, for an arbitrary initial condition, an arbitrary

final time T and an arbitrary admissible final state ū(x), it is possible to choose the control v in a

given class of functions of x and t in such a way that the solution satisfies u(x, T ) = ū(x) a. e. in Ω.

The controllability problem for various kinds of linear and semilinear parabolic equations has been

intensively studied in the recent decades, and a quite complete survey can be found in V. Barbu’s

monograph [9]. However, the main building blocks of the theory have been established earlier, prob-

ably by O. Yu. Emanuilov (Imanuvilov) and his collaborators, see, e. g., [57, 68].

First results about the null-controllability (that is, controllability for ū(x) ≡ 0) of equation (I.1)

with hysteresis were obtained by F. Bagagiolo in [7]: following the techniques presented in [9] for

the null-controllability of linear and semilinear parabolic equations, he proves the result performing

a linearization followed by a fixed-point procedure. In my master thesis [70], carried out under F.

Bagagiolo’s supervision at the University of Trento, following his already mentioned paper [7] we

studied the null-controllability of equation (I.1) for linearizable hysteresis operators, where the values

of F [u](x, t) are dominated in an appropriate pointwise sense by u(x, t). On the one hand, this method

allows for applying the Carleman estimates to treat the case in which the control is active only on

a part of the domain. On the other hand, typical hysteresis operators arising in applications are

not linearizable, and a new approach motivated by M. Brokate’s previous works [21, 22] on optimal

control of ODEs with hysteresis needs to be developed and adapted for the PDE case.

Thus, inspired by M. Brokate’s work, the project continued in cooperation with P. Krejč́ı from the

Czech Academy of Sciences and the Czech Technical University. In our first work presented at

the MURPHYS-HSFS 2018 conference (see [74]), we discussed the null-controllability problem for

equations of the form (I.1) for two classes of operators F : either a linearizable operator F as in [7], or

the case that F is the stop operator (which we recall in detail in Section B.2). The two situations are
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Introduction

indeed disjoint: the values of the stop are not dominated by the instantaneous input value in any sense

and depend on the whole history of the process. In our second work [75] we considered substantially

more general hysteresis operators which include for example operators with complex memory like,

e.g., the Preisach operator (which we recall in Section B.3).

Note that Carleman estimates are based on weighted L2-norms (see [9]), so that they are not com-

patible with arguments using extensively the L1-technique, as for problems with hysteresis. Thus

the price we pay is that only distributed controls are allowed if we want to deal with more general

hysteresis operators. Indeed, in this case, the existence alone of the control can be deduced from the

abstract topological Kakutani fixed point principle as in [9]. The main result of our contribution is,

instead, to establish in Theorem 1.4 below a link between controllability of PDEs with hysteresis and

an optimal control problem for a penalty approximation depending on two singular parameters.

The result has important applications in phase transition problems, as it can be used to prove the

controllability of the so-called relaxed Stefan problem in weak form, according to the notation and the

terminology used by A. Visintin in [131, 132]. Taking advantage of the special link between relaxed

phase transitions and hysteresis operators of stop type, it is possible to show that the Stefan problem

can be reformulated in the form (I.1).

This first part of the thesis presents the results contained in [75], and its structure is as follows.

Main results about the approximation of the controllability problem by constrained and penalized

minimization problems are stated in Chapter 1. Chapter 2 is devoted to the individual steps of the

argument (penalization, constrained minimization, estimates independent of the singular parameters,

passage to the limit). In Chapter 3 we explain the relation between our system and a simple model

for phase transition in a two-phase system.
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CHAPTER 1

Statement of the problem

We consider a bounded connected Lipschitzian domain Ω ⊂ RN , N ∈ N, and fix an arbitrary final

time T > 0. In the sequel, we denote Q = Ω × (0, T ), Γ = ∂Ω × (0, T ) and n is the unit outward

normal vector to ∂Ω. We deal with the system

ut −∆u+ F [u] = v in Q,

u(·,0) = u0(·) in Ω,

n · ∇u = 0 on Γ,

(1.1)

where F is a hysteresis operator of the form

F [u](x, t) =

∫ ∞
0

f(x, r, u(x, t), sr(x, t)) dµ(r) (1.2)

with a given function f : Ω× (0,∞)× R× R→ R and with a Borel measure µ on (0,∞). The term

sr corresponds to the stop operator introduced in (B.10) (we refer in particular to the extension to

space-dependent inputs). The function f in (1.2) is assumed to satisfy the following hypothesis.

Hypothesis 1.1. The function f : Ω × (0,∞) × R × R → R and the measure µ in (1.2) have the

following properties:

(i) µ ≥ 0,
∫∞

0 (1 + r) dµ(r) <∞;

(ii) f(·, r, u, σ) : Ω→ R is measurable for all (r, u, σ) in the whole domain of definition;

(iii) f(x, r, u, σ) is continuous in r and continuously differentiable in u and in σ for a. e. x ∈ Ω;

(iv) there exists a constant C > 0 such that it holds |fu(x, r, u, σ)| + |fσ(x, r, u, σ)| ≤ C for a. e.

x ∈ Ω and all (r, u, σ) in the whole domain of definition;

(v) there exists a constant C > 0 such that it holds |f(x, r, u, σ)−ufu(x, r, u, σ)−σfσ(x, r, u, σ)| ≤ C

for a. e. x ∈ Ω and all (r, u, σ) in the whole domain of definition.
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1 – Statement of the problem

Note that formula (1.2) includes the Preisach hysteresis operator (B.23) for the choice f(x, r, u, σ) =

f̂(r, u−σ), f̂(r, v) =
∫ v

0 ω(r, v′) dv′, as well as the nonlinear stop (B.10) if µ is the Dirac measure and

fu = 0 (this simpler case was considered in [74]).

The data of the problem are assumed to satisfy the following hypothesis.

Hypothesis 1.2. The initial condition u0 belongs to W 1,2(Ω) ∩ L∞(Ω) and sr,0 ∈ L∞(Ω) are given

such that |sr,0(x)| ≤ r a. e. for all r > 0, the mapping r → sr,0(x) is Lipschitz continuous for a. e.

x ∈ Ω, | ∂∂rs
r,0(x)| ≤ 1 for a. e. x ∈ Ω and a. e. r > 0.

We interpret the PDE in (1.1) in variational form and state the problem (1.1)–(1.2) coupled with

(B.10) as follows

∫
Ω

(
ut ζ +∇u · ∇ζ +

(∫ ∞
0

f(x, r, u, sr) dµ(r)

)
ζ
)

dx =

∫
Ω
v ζ dx in (0, T ),

srt + ∂I
(

1
rs
r
)
3 ut in Q,

sr(·,0) = sr,0(·) in Ω,

u(·,0) = u0(·) in Ω

(1.3)

for every test function ζ ∈W 1,2(Ω), where I is the indicator function of the interval [−r, r] defined in

(B.11).

1.1 Penalty approximation

Following [21, 22], we approximate the indicator function I in (B.11) by a suitable C2-function Ψ

divided by a small penalty parameter γ > 0, and replace the differential inclusion (B.10) with an

ODE. More specifically, we set

Ψ(s) = φ((|s| − 1)+) =


φ(s− 1) for s > 1,

0 for s ∈ [−1,1],

φ(−s− 1) for s < −1,

(1.4)

with a convex C2-function φ : [0,∞)→ [0,∞) with quadratic growth, for example

φ(z) =


1
6z

3 for z ∈ [0,1],

1
2z

2 − 1
2z + 1

6 for z > 1.
(1.5)

Then we choose a small parameter γ > 0 and replace (1.3) with a system of one PDE and a continuum

of ODEs for unknown functions (uγ , srγ)
∫

Ω

(
uγt ζ +∇uγ · ∇ζ +

(∫ ∞
0

f(x, r, uγ , srγ) dµ(r)

)
ζ
)

dx =

∫
Ω
v ζ dx in (0, T ),

srγt +
1

γ
Ψ′
(

1

r
srγ
)

= uγt in Q

(1.6)

6



1.2 – Constrained minimization problem

−1 1 x

I[−1,1](x)

Figure 1.1. Indicator function I[−1,1].

−1 1 x

Ψ(x)

Figure 1.2. The function Ψ.

−1 1 x

∂I[−1,1](x)

Figure 1.3. Subdifferential of the indicator
function I[−1,1].

−1 1 x

Ψ′(x)

Figure 1.4. Smooth approximating function Ψ′.

for all ζ ∈W 1,2(Ω), with initial conditions
srγ(·,0) = sr,0(·) in Ω,

uγ(·,0) = u0(·) in Ω.

(1.7)

By [89, Theorem 1.12], the penalty approximation srγt + 1
γΨ′

(
1
rs
rγ
)

= uγt of the stop operator has the

same Lipschitz continuity property as the stop itself, namely the statement of Proposition B.5 holds

for solutions srγ1 , s
rγ
2 corresponding to two inputs uγ1 , u

γ
2 , that is,

|srγ1 (t)− srγ2 (t)| ≤ |sr,01 − s
r,0
2 |+ 2 max

τ∈[0,t]
|uγ1(τ)− uγ2(τ)| (1.8)

for all uγ1 , u
γ
2 ∈W 1,1(0, T ) and sr,01 , sr,02 ∈ [−r, r].

1.2 Constrained minimization problem

We choose another small parameter ε > 0 independent of γ and define the cost functional

Jγε (uγ , sγ , v) =
1

2

∫∫
Q
v2(x, t) dx dt+

1

2ε

∫
Ω

(uγ)2(x, T ) dx, (1.9)

7



1 – Statement of the problem

where the two summands represent the cost to implement the control and to reach the desired final

state. We interpret here sγ as a function of three variables r, x, t according to the formula

sγ(r, x, t) := srγ(x, t) for each r > 0, t ∈ (0, T ) and a. e. x ∈ Ω.

For each γ > 0 we solve the following optimal control problem:

minimize Jγε (uγ , sγ , v) subject to (1.6) and (1.7). (1.10)

We first prove that for each ε > 0 and γ > 0 the minimization problem (1.10) has a solution (uγε , s
γ
ε , v

γ
ε ).

Proposition 1.3. Let ε > 0 and γ > 0 be given and let Hypotheses 1.1 and 1.2 hold. Then there

exists v = vγε ∈ L2(Q) such that the corresponding solution (uγ , sγ) = (uγε , s
γ
ε ) to (1.6)–(1.7) with the

regularity uγ ∈W 1,2(0, T ;L2(Ω)) ∩L∞(0, T ;W 1,2(Ω)), sγ ∈W 1,2(0, T ;L2(Ω)) minimizes the value of

Jγε (uγ , sγ , v) in (1.9).

Proof. The proof will be divided in two steps.

I Step 1: Existence of the solution

For each fixed γ > 0, we construct the solution (uγ , sγ) to (1.6)–(1.7) by Galerkin approximations.

We choose E = {ek : k = 0,1,2, ...} in L2(Ω) to be the complete orthonormal system of eigenfunctions

defined by

−∆ek = λkek in Ω, ∇ek · n
∣∣
∂Ω

= 0,

with λ0 = 0, λk > 0 for all k ≥ 1. Then for n ∈ N we set

u(n)
γ (x, t) =

n∑
k=0

uγk(t) ek(x)

with coefficients uγk : [0, T ]→ R. Then uγk , s
(n)
rγ will be determined as the solution to the ODE system

u̇γk + λku
γ
k +

∫
Ω

(∫ ∞
0

f(x, r, u(n)
γ , s(n)

rγ ) dµ(r)

)
ek dx =

∫
Ω
v ek dx in (0, T ),

(s(n)
rγ )t +

1

γ
Ψ′
(

1

r
s(n)
rγ

)
= (u(n)

γ )t in Q,

(1.11)

with the initial conditions 
s

(n)
rγ (x,0) = sr,0(x) in Ω,

uγk(0) =
∫

Ω u
0(x) ek(x) dx.

(1.12)

The existence of a unique solution to (1.11)–(1.12) for each v ∈ L2(Q) is a consequence of the Lipschitz

continuity (see Hypothesis 1.1 (iv) and (1.8)). Let us now prove that such a solution converges to a

solution to (1.6)–(1.7). This will be done by deriving suitable estimates and then passing to the limit.

8



1.2 – Constrained minimization problem

We start by testing the first equation in (1.11) by u̇γk and summing up over k = 0,1,2, ..., which gives∫
Ω

(
|(u(n)

γ )t|2 +
1

2

d

dt
|∇u(n)

γ |2 +

(∫ ∞
0

f(x, r, u(n)
γ , s(n)

rγ ) dµ(r)

)
(u(n)
γ )t

)
dx =

∫
Ω
v (u(n)

γ )t dx.

It follows from Hypothesis 1.1 (iv)–(v) that f(x, r, u
(n)
γ , s

(n)
rγ ) ≤ C(1+ |u(n)

γ |+ |s(n)
rγ |) for a. e. (x, t) ∈ Q.

Integrating
∫ τ

0 dt for an arbitrary τ ∈ (0, T ) and employing also Hypothesis 1.1 (i) we obtain∫ τ

0

∫
Ω
|(u(n)

γ )t|2(x, t) dx dt+

∫
Ω
|∇u(n)

γ |2(x, τ) dx−
∫

Ω
|∇u0|2(x) dx

≤ C
(∫ τ

0

∫
Ω
|(u(n)

γ )t|dx dt+

∫ τ

0

∫
Ω
|u(n)
γ ||(u(n)

γ )t| dx dt+

∫ τ

0

∫
Ω

(∫ ∞
0
|s(n)
rγ | dµ(r)

)
|(u(n)

γ )t|dx dt

)
+

∫ τ

0

∫
Ω
v (u(n)

γ )t dx dt.

We now apply Young’s inequality on the right-hand side. We recall that we are assuming v ∈ L2(Q),

whereas the initial condition is bounded thanks to Hypothesis 1.2. Hence we obtain∫ τ

0

∫
Ω
|(u(n)

γ )t|2(x, t) dx dt+

∫
Ω
|∇u(n)

γ |2(x, τ) dx

≤ C
(

1 +

∫ τ

0

∫
Ω
|u(n)
γ |2(x, t) dx dt+

∫ τ

0

∫
Ω

(∫ ∞
0
|s(n)
rγ |2(x, t) dµ(r)

)
dx dt

)
.

(1.13)

Now, testing the second equation of (1.6) by s
(n)
rγ we get

1

2

d

dt

∫
Ω
|s(n)
rγ |2 dx+

1

γ

∫
Ω

Ψ′
(

1

r
s(n)
rγ

)
s(n)
rγ dx =

∫
Ω

(u(n)
γ )t s

(n)
rγ dx

for µ-a. e. r > 0. Since the term Ψ′
(

1
rs

(n)
rγ

)
s

(n)
rγ is always nonnegative (see Figure 1.4), by Young’s

inequality it holds

d

dt

∫
Ω
|s(n)
rγ |2 dx ≤ 2

∫
Ω

(u(n)
γ )ts

(n)
rγ dx ≤

∫
Ω
|s(n)
rγ |2 dx+

∫
Ω
|(u(n)

γ )t|2 dx.

Applying Grönwall’s lemma A.1 we get∫
Ω
|s(n)
rγ |2(x, τ) dx ≤ C

(∫
Ω
|sr,0|2(x) dx+

∫ τ

0

∫
Ω
|(u(n)

γ )t|2(x, t) dx dt

)

for a. e. τ ∈ (0, T ) and for µ-a. e. r > 0, and inserting (1.13) in the right-hand side we further obtain∫
Ω
|s(n)
rγ |2(x, τ) dx ≤ C

(
1 +

∫ τ

0

∫
Ω
|u(n)
γ |2(x, t) dx dt+

∫ τ

0

∫
Ω

(∫ ∞
0
|s(n)
rγ |2(x, t) dµ(r)

)
dx dt

)
.

This gives, thanks to Hypothesis 1.1 (i),

sup
µ−a. e. r>0

∫
Ω
|s(n)
rγ |2(x, τ) dx ≤ C

(
1+

∫ τ

0

∫
Ω
|u(n)
γ |2(x, t) dx dt+

∫ τ

0
sup

µ−a. e. r>0

(∫
Ω
|s(n)
rγ |2(x, t) dx

)
dt

)

for a. e. τ ∈ (0, T ). Applying Grönwall’s lemma A.2 and coming back to (1.13) we obtain∫ τ

0

∫
Ω
|(u(n)

γ )t|2(x, t) dx dt+

∫
Ω
|∇u(n)

γ |2(x, τ) dx ≤ C
(

1 +

∫ τ

0

∫
Ω
|u(n)
γ |2(x, t) dx dt

)
. (1.14)

9



1 – Statement of the problem

Notice that it holds also

d

dt

∫
Ω
|u(n)
γ |2 dx = 2

∫
Ω
u(n)
γ (u(n)

γ )t dx ≤
∫

Ω
|u(n)
γ |2 dx+

∫
Ω
|(u(n)

γ )t|2 dx,

hence integrating in time
∫ τ

0 dt, inserting (1.14) in the right-hand side and using Grönwall’s lemma

A.2 we get

sup ess
τ∈(0,T )

∫
Ω
|u(n)
γ |2(x, τ) dx ≤ C, (1.15)

with a constant C independent of n. Then (1.14) yields∫∫
Q
|(u(n)

γ )t|2(x, t) dx dt+ sup ess
τ∈(0,T )

∫
Ω
|∇u(n)

γ |2(x, τ) dx ≤ C (1.16)

with a constant C independent of n. We now choose a subsequence (still indexed by n for simplicity)

such that

(u(n)
γ )t → uγt weakly in L2(Q). (1.17)

By estimates (1.15), (1.16) we infer that the sequence u
(n)
γ is uniformly bounded (independently of n)

in W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)), hence by Lemma A.5 we conclude that

u(n)
γ → uγ strongly in L2(Ω;C[0, T ]), (1.18)

and by Proposition B.5 also that

s(n)
rγ → srγ strongly in L2(Ω;C[0, T ]). (1.19)

Note that we need the convergence of the sequences u
(n)
γ , s

(n)
rγ to be strong in order to pass to the limit

in the nonlinearity f .

Testing the second equation of (1.6) by (s
(n)
rγ )t we obtain∫

Ω

(
|(s(n)

rγ )t|2 +
1

γ
Ψ′
(

1

r
s(n)
rγ

)
(s(n)
rγ )t

)
dx =

∫
Ω

(u(n)
γ )t(s

(n)
rγ )t dx.

Since Ψ′
(

1
rs

(n)
rγ

)
(s

(n)
rγ )t = r d

dtΨ
(

1
rs

(n)
rγ

)
, integrating

∫ τ
0 dt for an arbitrary τ ∈ (0, T ) we get

∫ τ

0

∫
Ω
|(s(n)

rγ )t|2(x, t) dx dt+
r

γ

∫
Ω

Ψ

(
1

r
s(n)
rγ

)
(x, τ) dx− r

γ

∫
Ω

Ψ

(
1

r
sr,0
)

(x) dx

=

∫ τ

0

∫
Ω

(u(n)
γ )t(s

(n)
rγ )t dx dt.

Now, since sr,0 ∈ [−r, r], it follows that 1
rs
r,0 ∈ [−1,1]. Thus the definition of Ψ in (1.4) yields

Ψ
(

1
rs
r,0
)

= 0. Applying Young’s inequality on the right-hand side and using (1.16) we finally have∫∫
Q
|(s(n)

rγ )t|2(x, t) dx dt+ sup ess
τ∈(0,T )

r

γ

∫
Ω

Ψ

(
1

r
s(n)
rγ

)
(x, τ) dx ≤ C

10



1.2 – Constrained minimization problem

with a constant C independent of n. Hence we see that, up to a subsequence,

(s(n)
rγ )t → srγt weakly in L2(Q). (1.20)

Since the convergences (1.17)–(1.20) take place, we may pass to the limit in (1.11) and conclude that

(uγ , sγ) is the solution to (1.6)–(1.7) with the desired regularity.

I Step 2: The solution minimizes the functional

We are now going to show that there exists v = vγε ∈ L2(Q) such that the solution (uγ , sγ) = (uγε , s
γ
ε )

to (1.6)–(1.7) minimizes the value of Jγε (uγ , sγ , v). Note that the functional Jγε is bounded from below

by 0, and we can denote by J∗ its infimum. There exists a minimizing sequence {vj}j∈N, that is,

limj→∞ J
γ
ε (uγj , s

γ
j , vj) = J∗, where (uγj , s

γ
j ) are the solutions to (1.6)–(1.7) associated with the right-

hand side vj . We may assume that Jγε (uγj , s
γ
j , vj) ≤ J∗ + 1 for all j ∈ N, so that the L2(Q)-norms of

the vj ’s are bounded above by
√

2(J∗ + 1). Thus, arguing as in the previous step, we end up with

the inequalities

sup ess
τ∈(0,T )

∫
Ω
|uγj |

2(x, τ) dx ≤ C,∫∫
Q
|(uγj )t|2(x, t) dx dt+ sup ess

τ∈(0,T )

∫
Ω
|∇uγj |

2(x, τ) dx ≤ C,∫∫
Q
|(srγj )t|2(x, t) dx dt+ sup ess

τ∈(0,T )

r

γ

∫
Ω

Ψ

(
1

r
srγj

)
(x, τ) dx ≤ C,

with constants C independent of j. Hence it is possible to choose subsequences (still indexed by j for

simplicity) such that

vj → v, (uγj )t → uγt , (srγj )t → srγt weakly in L2(Q),

uγj → uγ , srγj → srγ strongly in L2(Ω;C[0, T ]).

Thus we may pass to the limit and conclude that (uγ , sγ) is the solution to (1.6)–(1.7) corresponding

to the right-hand side v.

By the weak lower semicontinuity of the norm we further have∫∫
Q
v2 dx dt ≤ lim inf

j→∞

∫∫
Q
v2
j dx dt,∫

Ω
(uγ)2(x, T ) dx = lim

j→∞

∫
Ω

(uγj )2(x, T ) dx.

Hence v is the desired minimizer. This concludes the proof of Proposition 1.3.

The main result for system (1.1) is the following.

Theorem 1.4. Let Hypotheses 1.1 and 1.2 be satisfied. Then there exists v ∈ L2(Q) such that the

corresponding solution (u, s) to Problem (1.3), s(r, x, t) := sr(x, t) for r > 0, u ∈W 1,2(0, T ;L2(Ω)) ∩

11



1 – Statement of the problem

L∞(0, T ;W 1,2(Ω)) and sr ∈ W 1,2(0, T ;L2(Ω)), satisfies u(x, T ) = 0 for a. e. x ∈ Ω. Moreover, there

exists a constant C > 0 depending only on the data of the problem and sequences γn → 0, εn → 0 as

n→∞, n ∈ N, such that the system of minimizers (un, sn, vn) := (uγnεn , s
γn
εn , v

γn
εn ) from Proposition 1.3

approximates the controllability problem in the following sense:

(i)

∫∫
Q
|(un)t|2(x, t) dx dt+ sup ess

t∈(0,T )

∫
Ω
|∇un|2(x, t) dx ≤ C;

(ii) lim
n→∞

∫
Ω

max
t∈[0,T ]

|u(x, t)− un(x, t)|2 dx = 0;

(iii)

∫
Ω
|un(x, T )|2 dx ≤ Cεn;

(iv) max
t∈[0,T ]

∫
Ω
|sr(x, t)− srn(x, t)|2 dx ≤ C

((
1 + r2/3

)
γ1/3
n + 1/n2

)
.

The null-controllability condition in Theorem 1.4 can be easily extended to the general case in the

following form.

Corollary 1.5. Let the hypotheses of Theorem 1.4 hold and let ū ∈ W 2,2(Ω) ∩ L∞(Ω) be given

such that n · ∇ū = 0 on Γ. Then there exists v ∈ L2(Q) such that the corresponding solution

u ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)) to Problem (1.3) satisfies u(x, T ) = ū(x) for a. e. x ∈ Ω.

Indeed, it suffices to introduce a new unknown function ũ(x, t) = u(x, t) − ū(x), replace v with

ṽ = v+ ∆ū, u0 with ũ0 = u0− ū, and f(x, r, u, sr) with f̃(x, r, ũ, sr) = f(x, r, ũ+ ū, sr). The solution

ũ to the null-controllability problem stated in Theorem 1.4 then yields the solution to the general

case.

Remark 1.6. As mentioned in the Introduction, the existence of a control for system (1.1) is a

consequence of the Kakutani fixed point principle. We are going to give a short proof of this fact.

Let us define for simplicity X := W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)), and consider the convex set

K :=
{
z ∈ X : ‖z‖X ≤ C̃

}
endowed with the topology of L2(Ω;C[0, T ]), which makes it compact by

Lemma A.5. Then we consider the multivalued map

Φ : K → 2X

z → u

which to any z ∈ K associates the set of all possible u constructed by solving the controllability

problem 
ut −∆u = −F [z] + v in Q,

u(·,0) = u0(·) in Ω,

n · ∇u = 0 on Γ,

12



1.2 – Constrained minimization problem

with F as in (1.2), and taking all the possible solutions (u, v). In particular v = F [z] +w, where w is

the control that drives the system obeying to the linear equation ut −∆u = w from the initial state

to the target in the time interval [0, T ] (the existence of such a w follows by a standard argument,

see e. g. [9]). Moreover w is such that ‖w‖L2(Q) ≤ C‖u0‖L2(Ω). Hence, by the standard theory of

parabolic equations, we see that, if C̃ is sufficiently large, then Φ maps K into itself. Moreover, for

each z ∈ K, the set Φ(z) is nonempty (since the linear heat equation is controllable) and convex. In

order to apply the Kakutani fixed point principle, it remains to prove that Φ has closed graph, that

is, if {zn}n∈N ⊂ K is such that zn → z in L2(Ω;C[0, T ]) and un ∈ Φ(zn) is such that un → u in

L2(Ω;C[0, T ]), then u ∈ Φ(z). But un ∈ Φ(zn) means that
(un)t −∆un = −F [zn] + vn in Q,

un(·,0) = u0(·) in Ω,

n · ∇un = 0 on Γ.

(1.21)

If zn → z in L2(Ω;C[0, T ]), then (at least along a subsequence) zn → z uniformly in [0, T ] for a. e.

x ∈ Ω. Hence by Hypothesis 1.1 and Proposition B.5 also F [zn] → F [z] uniformly in [0, T ] for a. e.

x ∈ Ω. Note that by Hypothesis 1.1 and since zn ∈ K∫∫
Q
|F [zn]|2 dx dt ≤ C

∫∫
Q

∣∣∣∣∫ ∞
0

(1 + |zn|+ |sr|) dµ(r)

∣∣∣∣2 dx dt

≤ C

(∫∫
Q

∣∣∣∣∫ ∞
0

(1 + r) dµ(r)

∣∣∣∣2 dx dt+

∫∫
Q
|zn|2 dx dt

∫ ∞
0

dµ(r)

)
≤ C,

that is, F [zn] is bounded in L2(Q) independently of n. Then (at least along a subsequence) F [zn]→

F [z] weakly in L2(Q), and the control vn = F [zn]+wn is such that ‖vn‖L2(Q) ≤ C
(
1 + ‖u0‖L2(Ω)

)
with

C independent of n. Selecting a subsequence we obtain vn → v weakly in L2(Q). Then we can pass

to the limit in (1.21), and conclude that u ∈ Φ(z). An infinite dimensional version of the Kakutani

theorem gives the existence of a fixed point for Φ, which exactly corresponds to our controllability

claim.

It is now clear that we are not interested simply in the existence of the control. Our aim is to construct

a control algorithm based on passing to the limit in (1.10) as ε→ 0 and γ → 0.
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CHAPTER 2

Construction of the solution to the

controllability problem

2.1 Necessary optimality conditions

We first derive necessary optimality conditions for problem (1.10). The classical Lagrange method

consists in finding critical points of the Lagrange functional

L(uγ , sγ , v) = Jγε (uγ , sγ , v) + 〈〈p,G1(uγ , sγ , v)〉〉+

∫ ∞
0
〈qr, Gr2(uγ , sγ , v)〉 dµ(r),

where p, qr are the Lagrange multipliers, the double brackets denote the duality pairing between

L2(0, T ;W 1,2(Ω)) and L2(0, T ;W−1,2(Ω)), the single brackets denote the canonical scalar product in

L2(Q), and the constraints are

G1(uγ , sγ , v) = uγt −∆uγ +

∫ ∞
0

f(x, r, uγ , srγ) dµ(r)− v,

Gr2(uγ , sγ , v) = srγt +
1

γ
Ψ′
(

1

r
srγ
)
− uγt .

To explain the argument, let us first assume that the multipliers p, qr possess the regularity p ∈

W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)), qr ∈ W 1,2(0, T ;L2(Ω)). This assumption will be justified at

the end of this section.

At a critical point, the directional derivative of L vanishes in every regular direction (û, ŝ, v̂) such that

û(x,0) = ŝ(x,0) = 0 in Ω, n · ∇û = 0 on Γ. In other words, p and qr have to be chosen in such a way

that

lim
τ→0

1

τ

(
L(uγ + τ û, sγ + τ ŝ, v + τ v̂)− L(uγ , sγ , v)

)
= 0,
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2 – Construction of the solution to the controllability problem

that is,

lim
τ→0

1

τ

(
1

2

∫∫
Q

(v + τ v̂)2 dx dt− 1

2

∫∫
Q
v2 dx dt+

1

2ε

∫
Ω

(uγ + τ û)2 (x, T ) dx− 1

2ε

∫
Ω

(uγ)2(x, T ) dx

+

∫∫
Q
p
(
(uγ + τ û)t +

∫ ∞
0
f(x, r, uγ + τ û, srγ + τ ŝr) dµ(r)− v − τ v̂

)
dx dt

+

∫∫
Q
∇p · ∇(uγ + τ û) dx dt

−
∫∫

Q
p
(
uγt +

∫ ∞
0
f(x, r, uγ , srγ) dµ(r)− v

)
dx dt−

∫∫
Q
∇p · ∇uγ dx dt

+

∫ ∞
0

∫∫
Q
qr
(
(srγ + τ ŝr)t +

1

γ
Ψ′
(

1

r
(srγ + τ ŝr)

)
− (uγ + τ û)t

)
dx dt dµ(r)

−
∫ ∞

0

∫∫
Q
qr
(
srγt +

1

γ
Ψ′
(

1

r
srγ
)
− uγt

)
dx dt dµ(r)

)
= 0.

This implies

0 =

∫∫
Q
vv̂ dx dt+

1

ε

∫
Ω
uγ(x, T )û(x, T ) dx

+

∫∫
Q
p

(
ût +

∫ ∞
0

(fuγ (x, r, uγ , srγ)û+ fsrγ (x, r, uγ , srγ)ŝr) dµ(r)− v̂
)

dx dt

+

∫∫
Q
∇p · ∇ûdx dt+

∫∫
Q

∫ ∞
0

qr
(
ŝrt +

1

rγ
Ψ′′
(

1

r
srγ
)
ŝr − ût

)
dµ(r) dx dt,

where fsrγ (x, r, uγ , srγ) is to be interpreted here and in the sequel as fσ(x, r, uγ , σ)|σ=srγ and, similarly,

fuγ (x, r, uγ , srγ) := fu(x, r, u, srγ)|u=uγ .

Integrating the above identity by parts in time we get

0 =

∫∫
Q
vv̂ dx dt+

1

ε

∫
Ω
uγ(x, T )û(x, T ) dx+

∫
Ω
p(x, T )û(x, T ) dx−

∫
Ω
p(x,0)û(x,0) dx

−
∫∫

Q
ptûdx dt+

∫∫
Q
p

(∫ ∞
0

(fuγ (x, r, uγ , srγ)û+ fsrγ (x, r, uγ , srγ)ŝr) dµ(r)− v̂
)

dx dt

+

∫∫
Q
∇p · ∇û dx dt+

∫
Ω

∫ ∞
0

qr(x, T )ŝr(x, T ) dµ(r) dx dt−
∫

Ω

∫ ∞
0

qr(x,0)ŝr(x,0) dµ(r) dx dt

−
∫∫

Q

∫ ∞
0

q̂rt s
r dµ(r) dx dt+

∫∫
Q

∫ ∞
0

1

rγ
Ψ′′
(

1

r
srγ
)
qrŝr dµ(r) dx dt

−
∫

Ω

∫ ∞
0

qr(x, T )û(x, T ) dµ(r) dx+

∫
Ω

∫ ∞
0

qr(x,0)û(x,0) dµ(r) dx+

∫∫
Q

∫ ∞
0

qrt ûdµ(r) dx dt,

that is, rearranging the terms and exploiting the null initial conditions for the regular directions û

and ŝ,

0 =

∫
Ω
û

(
p−

∫ ∞
0

qr dµ(r) +
1

ε
uγ
)

(x, T ) dx+

∫
Ω

∫ ∞
0

ŝr(x, T )qr(x, T ) dµ(r) dx

+

∫∫
Q
∇p · ∇û dx dt−

∫∫
Q
û

(
pt −

∫ ∞
0

(qrt + fuγ (x, r, uγ , srγ)p) dµ(r)

)
dx dt

−
∫∫

Q

∫ ∞
0

ŝr
(
qrt −

1

rγ
Ψ′′
(

1

r
srγ
)
qr − fsrγ (x, r, uγ , srγ)p

)
dµ(r) dx dt+

∫∫
Q
v̂(v − p) dx dt
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2.2 – Derivation of estimates

for all admissible directions (û, ŝ, v̂). We thus necessarily have

v = p a. e. in Q, (2.1)

and p, qr are the solutions to the backward dual problem

∫
Ω

(
pt η −∇p · ∇η −

(∫∞
0 (qrt + fuγ (x, r, uγ , srγ) p) dµ(r)

)
η
)

dx = 0 in (0, T ),

qrt − 1
rγΨ′′

(
1
rs
rγ
)
qr − fsrγ (x, r, uγ , srγ) p = 0 in Q,

p(·, T ) = −1
εu

γ(·, T ) in Ω,

qr(·, T ) = 0 in Ω

(2.2)

for every test function η ∈ W 1,2(Ω), where the second and the fourth equations have to be fulfilled

for µ-a. e. r > 0. This is a standard linear backward parabolic equation coupled with a linear

ODE, hence it admits for every γ > 0 and every ε > 0 a unique solution with the regularity p ∈

W 1,2(0, T ;L2(Ω))∩L∞(0, T ;W 1,2(Ω)), qr ∈W 1,2(0, T ;L2(Ω)). This can be proved arguing as we did

to prove Proposition 1.3. Actually here the situation is even simpler, since the system is linear.

This justifies the above formal computations.

2.2 Derivation of estimates

In order to pass to the limits ε → 0, γ → 0, we first derive a series of estimates for (uγ , sγ , v, p, q)

= (uγε , s
γ
ε , v

γ
ε , p

γ
ε , q

γ
ε ) satisfying (1.6), (2.1), and (2.2). In what follows, we denote by C any positive

constant independent of γ and ε.

We first multiply the second equation of (2.2) by −sign(qr) to get

0 = −qrt sign(qr) +
1

rγ
Ψ′′
(

1

r
srγ
)
qrsign(qr) + fsrγ (x, r, uγ , srγ)p sign(qr)

= − d

dt
|qr|+ 1

rγ
Ψ′′
(

1

r
srγ
)
|qr|+ fsrγ (x, r, uγ , srγ)p sign(qr).

Integrating from an arbitrary t ∈ [0, T ) to T we obtain

−|qr(x, T )|+ |qr(x, t)|+
∫ T

t

1

rγ
Ψ′′
(

1

r
srγ(x, τ)

)
|qr(x, τ)| dτ ≤

∫ T

t
|fsrγ (x, r, uγ , srγ)||p(x, τ)|dτ.

But then, using the final condition for qr in (2.2) and Hypothesis 1.1 (iv), we get that

|qr(x, t)|+
∫ T

t

1

rγ
Ψ′′
(

1

r
srγ(x, τ)

)
|qr(x, τ)|dτ ≤ C

∫ T

t
|p(x, τ)|dτ. (2.3)

In the next step, we combine the first and the second equation of (2.2) to get∫
Ω

(ptη −∇p · ∇η) dx

=

∫
Ω

∫ ∞
0

(
1

rγ
Ψ′′
(

1

r
srγ
)
qr + fsrγ (x, r, uγ , srγ)p+ fuγ (x, r, uγ , srγ)p

)
dµ(r)η dx,
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2 – Construction of the solution to the controllability problem

and test the resulting equation by a Lipschitz continuous approximation η = Sn(p) of −sign(p), say,

Sn(p) = −sign(p) for |p| ≥ 1/n, Sn(p) = −np for |p| < 1/n.

− 1
n

1
n x

Sn(x)

Figure 2.1. Lipschitz continuous approximation of −sign(x).

We get ∫
Ω

(ptSn(p)−∇p · ∇Sn(p)) dx

=

∫
Ω

∫ ∞
0

(
1

rγ
Ψ′′
(

1

r
srγ
)
qr + fsrγ (x, r, uγ , srγ)p+ fuγ (x, r, uγ , srγ)p

)
dµ(r)Sn(p) dx.

The term −∇p · ∇Sn(p) = −|∇p|2S′n(p) is nonnegative for every n, hence letting n tend to infinity

and using Hypothesis 1.1 (iv) we obtain for a. e. t ∈ (0, T ) that

− d

dt

∫
Ω
|p(x, t)|dx ≤ C

∫
Ω
|p(x, t)|dx+

∫
Ω

∫ ∞
0

1

rγ
Ψ′′
(

1

r
srγ(x, t)

)
|qr(x, t)| dµ(r) dx. (2.4)

Integrating (2.4)
∫ τ

0 dt yields

−
∫

Ω
|p(x, τ)| dx+

∫
Ω
|p(x,0)|dx

≤ C
∫∫

Q
|p(x, t)|dx dt+

∫∫
Q

∫ ∞
0

1

rγ
Ψ′′
(

1

r
srγ(x, t)

)
|qr(x, t)|dµ(r) dx dt.

We integrate again
∫ T

0 dτ and switch the order of integration, thus getting

−
∫

Ω
|p(x, τ)| dx+

∫
Ω
|p(x,0)|dx

≤ C
∫∫

Q
|p(x, t)|dx dt+

∫
Ω

∫ ∞
0

∫ T

0

1

rγ
Ψ′′
(

1

r
srγ(x, t)

)
|qr(x, t)|dtdµ(r) dx.

Using the estimate (2.3), we get a bound for p(x,0) and qr(x,0), namely∫
Ω

(
|p(x,0)|+ sup

µ−a. e. r>0
|qr(x,0)|

)
dx ≤ C

∫∫
Q
|p(x, t)| dx dt. (2.5)

Finally, we test
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2.2 – Derivation of estimates

- the first equation in (1.6) by p,

- the second equation in (1.6) by qr,

- the first equation in (2.2) by uγ ,

- the second equation in (2.2) by srγ ,

sum up the resulting equations to get∫
Ω

(
uγt p+∇uγ · ∇p+

(∫ ∞
0

f(x, r, uγ , srγ) dµ(r)

)
p

)
dx

+

∫
Ω

∫ ∞
0

(
srγt +

1

γ
Ψ′
(

1

r
srγ
))

qr dµ(r) dx

+

∫
Ω

(
ptu

γ −∇p · ∇uγ −
(∫ ∞

0
(qrt + fuγ (x, r, uγ , srγ)p) dµ(r)

)
uγ
)

dx

+

∫
Ω

∫ ∞
0

(
qrt −

1

rγ
Ψ′′
(

1

r
srγ
)
qr − fsrγ (x, r, uγ , srγ)p

)
srγ dµ(r) dx

=

∫
Ω
vpdx+

∫
Ω

∫ ∞
0

uγt q
r dµ(r) dx.

This entails, together with (2.1),∫
Ω

(
uγp+

∫ ∞
0

(srγqr−uγqr) dµ(r)
)
t
dx+

∫
Ω

(∫ ∞
0

(f−uγfuγ−srγfsrγ )(x, r, uγ , srγ) dµ(r)

)
p dx

+
1

γ

∫
Ω

∫ ∞
0

qr
(

Ψ′
(

1

r
srγ
)
− 1

r
srγΨ′′

(
1

r
srγ
))

dµ(r) dx =

∫
Ω
p2 dx.

Integrating the above equation in time and using the initial conditions for (1.6)–(1.7) and the final

conditions for (2.2) we obtain∫∫
Q
p2 dx dt+

1

ε

∫
Ω

(uγ)2(x, T ) dx =

∫
Ω

∫ ∞
0

(u0(x)− sr,0(x))qr(x,0) dµ(r) dx

−
∫

Ω
u0(x)p(x,0) dx+

1

γ

∫∫
Q

∫ ∞
0

qr
(

Ψ′
(

1

r
srγ
)
− 1

r
srγΨ′′

(
1

r
srγ
))

dµ(r) dx dt

+

∫∫
Q
p

(∫ ∞
0

(f − uγfuγ − srγfsrγ )(x, r, uγ , srγ) dµ(r)

)
dx dt.

(2.6)

We have by Hypothesis 1.1 (v) that |(f − uγfuγ − srγfsrγ )(x, r, uγ , srγ)| ≤ C for a. e. (x, t) ∈ Q.

Moreover, the choice of Ψ guarantees that

|Ψ′(s)− sΨ′′(s)| ≤ 3

2
Ψ′′(s).

Indeed

� if s < −2 then Ψ′(s) = (−s− 1)(−1) + 1
2 = s+ 3

2 and Ψ′′(s) ≡ 1, thus

|Ψ′(s)− sΨ′′(s)| =
∣∣∣∣s+

3

2
− s
∣∣∣∣ =

3

2
=

3

2
Ψ′′(s);

� if −2 < s < −1 then Ψ′(s) = 1
2(−s− 1)2(−1) = −1

2s
2 − s− 1

2 and Ψ′′(s) = −s− 1, thus

|Ψ′(s)− sΨ′′(s)| =
∣∣∣∣− 1

2
s2 − s− 1

2
− s(−s− 1)

∣∣∣∣ =

∣∣∣∣12s2 − 1

2

∣∣∣∣ =
1

2
(s2 − 1)

=
1

2
(s− 1)(s+ 1) ≤ 1

2
(−3)(s+ 1) =

3

2
Ψ′′(s);
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2 – Construction of the solution to the controllability problem

� if s ∈ [−1,1] then Ψ′(s) = Ψ′′(s) ≡ 0;

� if 1 < s < 2 then Ψ′(s) = 1
2(s− 1)2 = 1

2s
2 − s+ 1

2 and Ψ′′(s) = s− 1, thus

|Ψ′(s)− sΨ′′(s)| =
∣∣∣∣12s2 − s+

1

2
− s(s− 1)

∣∣∣∣ =

∣∣∣∣12 − 1

2
s2

∣∣∣∣ =
1

2
(s2 − 1)

=
1

2
(s− 1)(s+ 1) ≤ 1

2
(s− 1) 3 =

3

2
Ψ′′(s);

� if s > 2 then Ψ′(s) = (s− 1)− 1
2 = s− 3

2 and Ψ′′(s) ≡ 1, thus

|Ψ′(s)− sΨ′′(s)| =
∣∣∣∣s− 3

2
− s
∣∣∣∣ =

3

2
=

3

2
Ψ′′(s).

Hence from (2.6) and Hypothesis 1.1 (v) we infer∫∫
Q
p2 dx dt+

1

ε

∫
Ω

(uγ)2(x, T ) dx

≤
∫

Ω
sup

µ−a. e. r>0
|qr(x,0)|

∫ ∞
0
|u0(x)− sr,0(x)| dµ(r) dx−

∫
Ω
|u0(x)||p(x,0)| dx

+
1

γ

∫∫
Q

∫ ∞
0
|qr| 3

2
Ψ′′
(

1

r
srγ
)

dµ(r) dx dt+

∫∫
Q
|p|
(∫ ∞

0
C dµ(r)

)
dx dt.

Finally by Hypothesis 1.1 (i) and 1.2, (2.3) and (2.5) we get the estimate∫∫
Q
p2(x, t) dx dt+

1

ε

∫
Ω

(uγ)2(x, T ) dx ≤ C
∫∫

Q
|p(x, t)|dx dt

with a constant C depending on the L∞-norm of u0. Applying Hölder’s inequality and using (2.1)

again, we finally get ∫∫
Q

(vγε )2(x, t) dx dt+
1

ε

∫
Ω

(uγε )2(x, T ) dx ≤ C. (2.7)

2.3 Limit as ε→ 0

We first keep γ > 0 fixed. As a consequence of (2.7) and of Hypothesis 1.1 (iv)–(v) which implies

that f(x, r, uγ , srγ) ≤ C(1 + |uγ | + |srγ |) for a. e. (x, t) ∈ Q, arguing as for the proof of Proposition

1.3 we see that the solutions uγε , s
rγ
ε to the approximate system (1.6) are uniformly bounded in the

spaces W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)) and W 1,2(0, T ;L2(Ω)), respectively. The first space is

compactly embedded in the space L2(Ω;C[0, T ]) according to Lemma A.5. For each fixed γ there

exists therefore a sequence {εn(γ)}, n ∈ N, limn→∞ εn(γ) = 0, such that we can conclude, using also

(1.8) and (2.7), that

vγεn(γ) → vγ∗ , (srγεn(γ))t → (srγ∗ )t weakly in L2(Q) as n→∞,

‖uγεn(γ) − u
γ
∗‖2,∞ → 0,

‖uγεn(γ)(x, T )‖2L2(Ω) ≤ Cεn(γ),

‖srγεn(γ) − s
rγ
∗ ‖2,∞ ≤ 2‖uγεn(γ) − u

γ
∗‖2,∞,

(2.8)
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2.4 – Limit as γ → 0

where ‖ · ‖2,∞ denotes the norm of L2(Ω;C([0, T ])) (see (A.4)) and where uγ∗ , s
rγ
∗ are solutions to the

system
∫

Ω

(
(uγ∗)t ζ +∇uγ∗ · ∇ζ + (

∫ ∞
0

f(x, r, uγ∗ , s
rγ
∗ ) dµ(r))ζ

)
dx =

∫
Ω
vγ∗ ζ dx in (0, T ),

(srγ∗ )t +
1

γ
Ψ′
(

1

r
srγ∗

)
= (uγ∗)t in Q

(2.9)

for every ζ ∈ W 1,2(Ω), with initial conditions as in (1.7). Moreover, by (2.8) the null-controllability

condition uγ∗(x, T ) = 0 holds for a. e. x ∈ Ω.

2.4 Limit as γ → 0

The convergence γ → 0 is more delicate. By (2.7) we have uniform bounds for vγ∗ in L2(Q). We

make use again of Hypothesis 1.1 and of the inequality f(x, r, uγ∗ , s
rγ
∗ ) ≤ C(1 + |uγ∗ | + |srγ∗ |) for a. e.

(x, t) ∈ Q, as well as of the fact that arguing as in the proof of Proposition 1.3 we get a bound for uγ∗

in W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)). Hence we find a sequence γn → 0 as n→∞ and elements

v∗ ∈ L2(Q) and u∗ ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,2(Ω)) such that

vγn∗ → v∗, (uγn∗ )t → (u∗)t weakly in L2(Q),

‖uγn∗ − u∗‖2,∞ → 0
(2.10)

as n→∞. Hence, the null-controllability condition u∗(x, T ) = 0 a. e. is preserved in the limit.

It remains to prove the strong convergence to sr[u∗, s
r,0] of the solutions srγn∗ to the equation

(srγn∗ )t +
1

γn
Ψ′
(

1

r
srγn∗

)
= (uγn∗ )t, srγn∗ (x,0) = sr,0(x).

Note that we need the convergence to be strong in order to pass to the limit in the nonlinearity f .

To this end, we denote by yrγn the solution to the ODE

yrγnt +
1

γn
Ψ′
(

1

r
yrγn

)
= (u∗)t, yrγn(x,0) = sr,0(x). (2.11)

By (1.8) we have

‖srγn∗ − yrγn‖2,∞ ≤ 2‖uγn∗ − u∗‖2,∞. (2.12)

By (2.10), the right-hand side of (2.12) converges to 0 as n→∞. Note that we can write

‖srγn∗ − sr[u∗, s
r,0]‖L∞(0,T ;L2(Ω))

≤ ‖srγn∗ − yrγn‖L∞(0,T ;L2(Ω)) + ‖yrγn − sr[u∗, s
r,0]‖L∞(0,T ;L2(Ω)),

where

‖ · ‖L∞(0,T ;L2(Ω)) = max
t∈[0,T ]

(∫
Ω
| · |2(x, t) dx

)1/2

≤
(∫

Ω
max
t∈[0,T ]

| · |2(x, t) dx

)1/2

= ‖ · ‖2,∞.
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2 – Construction of the solution to the controllability problem

Hence, to prove the strong convergence of srγn∗ to sr[u∗, s
r,0] in L∞(0, T ;L2(Ω)) it suffices to prove

that yrγn → sr[u∗, s
r,0] strongly in L∞(0, T ;L2(Ω)) for each r > 0.

First we derive some estimates for the functions yrγn . Testing (2.11) by yrγnt and integrating over

Ω× (0, τ) for some τ ∈ (0, T ) we obtain∫ τ

0

∫
Ω
|yrγnt |2 dx dt+

1

γn

∫ τ

0

∫
Ω

Ψ′
(

1

r
yrγn

)
yrγnt dx dt =

∫ τ

0

∫
Ω

(u∗)ty
rγn
t dx dt,

that is,∫ τ

0

∫
Ω

(u∗)ty
rγn
t dx dt =

∫ τ

0

∫
Ω
|yrγnt |2 dx dt+

1

γn

∫
Ω

∫ τ

0
r

d

dt
Ψ

(
1

r
yrγn

)
dx dt

=

∫ τ

0

∫
Ω
|yrγnt |2 dx dt+

r

γn

∫
Ω

Ψ

(
1

r
yrγn

)
(x, τ) dx− r

γn

∫
Ω

Ψ

(
1

r
yrγn

)
(x,0) dx.

By (2.11) and the definition of the stop operator (B.10), it follows that 1
ry

rγn(x,0) ∈ [−1,1], from

which Ψ
(

1
ry

rγn
)

(x,0) = 0 by (1.4). Hence we get∫ τ

0

∫
Ω
|yrγnt |2 dx dt+

r

γn

∫
Ω

Ψ

(
1

r
yrγn

)
(x, τ) dx =

∫ τ

0

∫
Ω

(u∗)ty
rγn
t dx dt

which entails, using Young’s inequality with exponents 1/2 on the right-hand side and observing that

(u∗)t is bounded in L2(Q) independently of τ and n,∫∫
Q
|yrγnt |2 dx dt+

r

γn
sup

τ∈[0,T ]

∫
Ω

Ψ

(
1

r
yrγn

)
(x, τ) dx ≤ C. (2.13)

Up to a subsequence we thus have

yrγnt → ŷrt , yrγn → ŷr,
1

γn
Ψ′
(

1

r
yrγn

)
→ wr weakly in L2(Q) as n→∞. (2.14)

Note also that by (1.5) we have for all z ≥ 0

z2 ≤ 8φ(z) + 4φ2/3(z). (2.15)

Indeed

� if z ∈ [0,1] then z2 = 62/3φ2/3 ≤ 4φ2/3, which implies (2.15);

� if z > 1 then 1
2z

2 = φ+ 1
2 z −

1
6 , and by Young’s inequality

1

2
z =

1

δ

δ

2
z ≤ 1

2

(
1

δ2
+
δ2

4
z2

)
.

In particular, choosing δ =
√

3 we obtain 1
2z

2 ≤ φ+ 1
6 + 3

8z
2 − 1

6 , which implies (2.15).

Choosing z = 1
r (|yrγn | − r)+ in (2.15) we obtain(

1

r
(|yrγn | − r)+

)2

≤ 8φ

(
1

r
(|yrγn | − r)+

)
+ 4φ2/3

(
1

r
(|yrγn | − r)+

)
.,
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2.4 – Limit as γ → 0

hence from (1.4) we also have

1

r2

(
(|yrγn | − r)+

)2 ≤ 8Ψ

(
1

r
yrγn

)
+ 4Ψ2/3

(
1

r
yrγn

)
.

Integrating over Ω and using (2.13) we get for all τ ∈ (0, T )

1

r2

∫
Ω

(
(|yrγn | − r)+

)2
(x, τ) dx ≤ 8

∫
Ω

Ψ

(
1

r
yrγn

)
(x, τ) dx+ 4

∫
Ω

Ψ2/3

(
1

r
yrγn

)
(x, τ) dx

≤ 8
Cγn
r

+ 4
Cγ

2/3
n

r2/3
,

from which we infer for γn < 1 that∫
Ω

(
(|yrγn | − r)+

)2
(x, τ) dx ≤ C

(
1 + r4/3

)
γn

2/3 (2.16)

with a constant C independent of τ , r and n.

We now prove that ŷr = sr[u∗, s
r,0]. To this end, note that ŷr and wr satisfy the equation

ŷrt + wr = (u∗)t, ŷr(x,0) = sr,0(x). (2.17)

Hence the third condition of (B.14) is verified by ŷr. Furthermore, for every function b ∈ L∞(Q) we

have ∫∫
Q
yrγnbdx dt ≤

∫∫
Q
|yrγn | |b|dx dt ≤

∫∫
Q

(|yrγn | − r)+ |b| dx dt+ r

∫∫
Q
|b| dx dt,

hence, by (2.14) and (2.16), we have
∫∫
Q ŷ

rbdx dt ≤ r for each function b ∈ L∞(Q) such that∫∫
Q |b| dx dt ≤ 1, which in turn implies that |ŷr(x, t)| ≤ r a. e. Indeed, if there exists a set A of

positive measure and some δ > 0 such that y(x, t) ≥ r + δ or y(x, t) ≤ −r − δ for (x, t) ∈ A, by

choosing b(x, t) = ± 1
|A|χA(x, t) (where by |A| and χA we denote respectively the Lebesgue measure

and the characteristic function of the set A) we obtain a contradiction. Hence |ŷr(x, t)| ≤ r a. e., and

the first condition in the definition of the stop (B.14) is satisfied by ŷr.

In order to verify that also the second condition holds true, we multiply (2.11) by yrγn and (2.17) by

ŷr and integrate over Q. We get, exploiting the initial conditions in (2.11) and (2.17),
1

2

∫
Ω

(yrγn)2(x, T ) dx− 1

2

∫
Ω

(sr,0)2(x) dx = − 1

γn

∫∫
Q

Ψ′
(

1

r
yrγn

)
yrγn dx dt+

∫∫
Q

(u∗)t y
rγn dx dt,

1

2

∫
Ω

(ŷr)2(x, T ) dx− 1

2

∫
Ω

(sr,0)2(x) dx = −
∫∫

Q
wrŷr dx dt+

∫∫
Q

(u∗)t ŷ
r dx dt.

Hence for all γn > 0 we have the equality

1

2

∫
Ω

(yrγn)2(x, T ) dx+
1

γn

∫∫
Q

Ψ′
(

1

r
yrγn

)
yrγn dx dt−

∫∫
Q

(u∗)t y
rγn dx dt

=
1

2

∫
Ω

(ŷr)2(x, T ) dx+

∫∫
Q
wrŷr dx dt−

∫∫
Q

(u∗)t ŷ
r dx dt.
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2 – Construction of the solution to the controllability problem

Passing to the lim infγn→0 we obtain

1

2
lim inf
γn→0

∫
Ω

(yrγn)2(x, T ) dx+ lim inf
γn→0

1

γn

∫∫
Q

Ψ′
(

1

r
yrγn

)
yrγn dx dt

=
1

2

∫
Ω

(ŷr)2(x, T ) dx+

∫∫
Q
wrŷr dx dt.

(2.18)

Now, since the norm is weakly lower semicontinuous, by the weak convergence (2.14) we have∫
Ω(ŷr)2(x, T ) dx ≤ lim infγn→0

∫
Ω(yrγn)2(x, T ) dx. Hence for equality (2.18) to hold we necessarily

have

lim inf
γn→0

1

γn

∫∫
Q

Ψ′
(

1

r
yrγn

)
yrγn dx dt ≤

∫∫
Q
wrŷr dx dt. (2.19)

Note that since Ψ′ is monotone and vanishes in [−1,1], it holds∫∫
Q

Ψ′
(

1

r
yrγn

)
(yrγn − ρ) dx dt ≥ 0 (2.20)

for every measurable function ρ such that |ρ(x, t)| ≤ r a. e. Thus, putting together (2.19) and (2.20),

for every such ρ we have

0 ≤
∫∫

Q
wr(ŷr − ρ) dx dt =

∫∫
Q

((u∗)t − ŷrt )(ŷr − ρ) dx dt, (2.21)

where in the equality we used (2.17). Hence ŷr verifies also the second condition of (B.14), and this

proves that ŷr = sr[u∗, s
r,0].

It remains to prove that the convergence yrγn → ŷr in (2.14) is strong in the space L∞(0, T ;L2(Ω)).

Indeed, by choosing in (2.21) a test function

ρ̃(x, t) =

 ŷr(x, t) for t ≥ τ,

ρ(x, t) for t ≤ τ

with an arbitrary τ ∈ (0, T ), we obtain from (2.21) that the inequality∫ τ

0

∫
Ω

((u∗)t − ŷrt )(ŷr − ρ) dx dt ≥ 0 (2.22)

holds for all τ . On the other hand, (2.11) and inequality (2.20) imply that we have∫ τ

0

∫
Ω

((u∗)t − yrγnt )(yrγn − ρ) dx dt ≥ 0 (2.23)

for all n ∈ N and all test functions ρ such that |ρ(x, t)| ≤ r a. e. We now set ρ = ŷr in (2.23) and

ρ = Pr(y
rγn) in (2.22), where Pr : R→ [−r, r] is the projection onto the interval [−r, r], that is,

Pr(z) = max{−r,min{x, r}}.

Summing up (2.22) and (2.23) yields

0 ≤
∫ τ

0

∫
Ω

((u∗)t − ŷrt )(ŷr − Pr(yrγn)) dx dt+

∫ τ

0

∫
Ω

((u∗)t − yrγnt )(yrγn − ŷr) dx dt,
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that is

0 ≤
∫ τ

0

∫
Ω

(u∗)t(ŷ
r − Pr(yrγn) + yrγn − ŷr) dx dt+

∫ τ

0

∫
Ω
ŷr(−ŷrt + yrγnt ) dx dt

+

∫ τ

0

∫
Ω

(ŷrtPr(y
rγn)− yrγnt yrγn ± ŷrt yrγn) dx dt

=

∫ τ

0

∫
Ω

(u∗)t(y
rγn − Pr(yrγn)) dx dt+

∫ τ

0

∫
Ω

(yrγnt − ŷrt )ŷr dx dt

−
∫ τ

0

∫
Ω
ŷrt (y

rγn − Pr(yrγn)) dx dt−
∫ τ

0

∫
Ω

(yrγnt − ŷrt )yrγn dx dt.

This can be rewritten as∫ τ

0

∫
Ω

(yrγnt − ŷrt )(yrγn − ŷr) dx dt ≤
∫ τ

0

∫
Ω
|(u∗)t − ŷrt ||yrγn − Pr(yrγn)|dx dt. (2.24)

Notice that we have

|yrγn − Pr(yrγn)| = (|yrγn | − r)+.

Thus (2.24) is equivalent to

1

2

∫ τ

0

∫
Ω

d

dt
(yrγn − ŷr)2 dx dt ≤

∫ τ

0

∫
Ω
|(u∗)t − ŷrt |(|yrγn | − r)+ dx dt,

that is, using the fact that yrγn(x,0) = ŷr(x,0) = sr,0(x) on the left-hand side and Hölder’s inequality

on the right-hand side,

1

2

∫
Ω
|yrγn − ŷr|2(x, τ) dx ≤ C

(∫∫
Q

(
(|yrγn | − r)+

)2
dx dt

)1/2

.

Hence from (2.16) it follows for every τ ∈ (0, T ) that∫
Ω
|yrγn − ŷr|2(x, τ) dx ≤ C

(
1 + r2/3

)
γn

1/3 (2.25)

with a constant C independent of n, r and τ . This finally implies that yrγn → sr[u∗, s
r,0] strongly in

L∞(0, T ;L2(Ω)) for each r > 0, which is what was left to prove in order to pass to the limit in the

system (2.9).

To conclude the proof of Theorem 1.4, it suffices to pass to a subsequence if necessary and choose γn

in (2.10) in such a way that

‖uγn∗ − u∗‖2,∞ <
1

n
, (2.26)

εn := εn(γn) in (2.8) such that εn → 0 as n→∞ and

‖uγnεn − u
γn
∗ ‖2,∞ <

1

n
(2.27)

for each n ∈ N. The four assertions of Theorem 1.4 now easily follows:

(i) In Proposition 1.3 we proved that uγε ∈W 1,2(0, T ;L2(Ω))∩L∞(0, T ;W 1,2(Ω)) for every ε, γ > 0,

from which the inequality immediately follows.
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2 – Construction of the solution to the controllability problem

(ii) We have that

‖un − u∗‖2,∞ = ‖uγnεn − u∗‖2,∞ ≤ ‖u
γn
εn − u

γn
∗ ‖2,∞ + ‖uγn∗ − u∗‖2,∞ → 0

by (2.8) and (2.10).

(iii) This inequality was obtained in (2.8).

(iv) We have that, according to the notation introduced above,

max
t∈[0,T ]

∫
Ω
|srn(x, t)− ŷr(x, t)|2 dx = max

t∈[0,T ]

∫
Ω
|srγnεn (x, t)− ŷr(x, t)|2 dx

≤ max
t∈[0,T ]

∫
Ω
|srγnεn (x, t)− srγn∗ (x, t)|2 dx+ max

t∈[0,T ]

∫
Ω
|srγn∗ (x, t)− yrγn(x, t)|2 dx

+ max
t∈[0,T ]

∫
Ω
|yrγn(x, t)− ŷr(x, t)|2 dx

≤ ‖srγnεn − s
rγn
∗ ‖22,∞ + ‖srγn∗ − yrγn‖22,∞ + max

t∈[0,T ]

∫
Ω
|yrγn(x, t)− ŷr(x, t)|2 dx

≤ 2‖uγnεn − u
γn
∗ ‖22,∞ + 2‖uγn∗ − u∗‖22,∞ + max

t∈[0,T ]

∫
Ω
|yrγn(x, t)− ŷr(x, t)|2 dx

≤ 2

n2
+

2

n2
+ C

(
1 + r2/3

)
γ1/3
n

by (2.8), (2.12) and (2.25)–(2.27). Since we showed that the limit ŷr corresponds to the stop

operator, the inequality is proved.
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CHAPTER 3

Controllability and phase transitions

In this chapter we are going to show how our controllability result can be applied to a simple two-

phase system, namely, the relaxed Stephan problem. This is an example of a basic model of solid-liquid

phase transition, since it simply accounts for heat-diffusion and exchange of latent heat in terms of

partial differential equations.

It is natural to recognize this phenomenon as an example of free boundary problem, since the evolution

of the domains occupied by the phases is not known a priori. Many mathematicians addressed (and

still address) the Stefan problem from this point of view.

However, phase transitions may also be regarded from a different perspective. Heat diffusion and

exchange of latent heat may also be formulated in weak form, since they are accounted for by the

energy balance equation. This leads to the formulation of an initial- and boundary-value problem in

a fixed space–time domain for a nonlinear parabolic equation. This nonlinearity is expressed via a

maximal monotone graph, and the problem may thus be reduced to a variational inequality.

The two approaches above are known as the classical and the weak formulation of the Stefan problem.

However, rather than being two formulations of the same problem, these represent two alternative

models of phase transitions, that turn out to be equivalent only in special cases. The classical model is

a genuine free boundary problem, since it is based on the assumption that the phases are separated by

an (unknown) smooth interface that also evolves smoothly. On the other hand, the weak formulation

makes no direct reference to any phase interface: this may or may not exist, anyway it does not

explicitly occur in the statement of the model. Solid and liquid phases may actually be separated

by a set having nonempty interior, a so-called mushy region. In this respect, the weak formulation is

more general than the classical one.

Here we follow this second approach, and consider the Stefan problem in weak form. We shall

represent the phase transition in an especially simplified way, focusing upon the thermal aspects, that

is, heat-diffusion and exchange of latent heat, neglecting stress and deformation in the solid. More
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3 – Controllability and phase transitions

complicated models of phase transition, which take into account also the mechanical aspects of the

process, will be considered in Parts II and III of this thesis.

We will also assume that a form of relaxation occurs during the process. This assumption will be

crucial in order to reformulate the problem as a semilinear PDE containing a hysteresis operator

(more precisely, the stop operator from Section B.2), which will allow us to apply the controllability

result from the previous chapters.

The link between differential inclusions describing (relaxed) phase transitions and the stop operator

(B.10) will be of fundamental importance also in Parts II and III. The regularity and continuity results

contained in Section B.2 will be frequently used when dealing with the phase parameter.

Let us now derive the equations of the relaxed Stephan problem in weak form. Assume that a domain

Ω ⊂ RN (in practice, we choose N = 3) is filled with a material substance in which two phases may

coexist: solid and liquid. The state variables are the following functions of the space variable x ∈ Ω

and time t ∈ [0, T ]:

s(x, t) ∈ [−1,1] phase fraction: s = −1 solid, s = 1 liquid, s ∈ (−1,1) mixture;

θ(x, t) > 0 absolute temperature.

The process of transition between the two phases is governed by the first and the second principle of

thermodynamics:

1. First Principle: There exists a state function U called internal energy which is conserved in

the sense that its increase rate equals the sum of the power supplied to the system and the heat

flux through the boundary;

2. Second Principle: There exists a state function S called the entropy which is nondecreasing

in the sense that its increase rate is greater than or equal to the sum of the external entropy

source and the entropy flux through the boundary.

In other words, U = U(θ, s) and S = S(θ, s) have to satisfy the energy balance equation

Ut + divq = h (3.1)

and the Clausius-Duhem inequality

St + div
(q
θ

)
≥ h

θ
(3.2)

for all processes. Here we denote by q the heat flux vector and by h the heat source density. We

further introduce the free energy F = F (θ, s) by the formula

F (θ, s) = U(θ, s)− θS(θ, s), (3.3)

so that in terms of F the second principle (3.2) can be equivalently stated as

Ft + θtS +
1

θ
〈q,∇θ〉 ≤ 0. (3.4)
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3 – Controllability and phase transitions

The above inequality must hold for every thermodynamic process, including slow nonhomogeneous

processes (where the time derivatives are negligible compared to the gradient of the temperature ∇θ),

as well as fast homogeneous processes (where ∇θ is negligible compared to the time derivatives). In

other words, the time and space derivatives appear at different size scales. Therefore, the inequality

(3.4) implies that both 〈q,∇θ〉 and Ft + θtS must be nonpositive for all processes. Assuming for the

heat flux the Fourier law

q = −κ∇θ (3.5)

with a constant heat conductivity κ > 0, the nonpositivity of 〈q,∇θ〉 is obvious. We now compare

the remaining inequality Ft + θtS ≤ 0 for all processes with the chain rule identity Ft = Fθθt + Fsst

and obtain another formally (in the sense that we need to give a meaning to the partial derivatives)

equivalent reformulation of the second principle, namely

S = −Fθ , (3.6)

Fsst ≤ 0 . (3.7)

From (3.3) and (3.6) we deduce the following differential equation for F

F − θFθ = U, (3.8)

which can be solved if we know the internal energy U . For simplicity, we assume the internal energy

in the form

U = c θ + L(s), (3.9)

where c > 0 is the specific heat capacity which we assume constant, and L is an increasing C1-function

representing the latent heat. Solutions to (3.8)–(3.9) can be explicitly found and they all differ only

by an additive “integration” constant which may depend on s. A “minimal” choice in the sense that

no unphysical constants are involved and all values of the phase fraction s outside the admissible

interval [−1,1] are excluded is given by the formula

F (θ, s) = −c θ log

(
θ

θc

)
+ L(s)

(
1− θ

θc

)
+ I(s),

where I(s) is the indicator function of the interval [−1,1], and θc > 0 is a fixed reference temperature

(the melting temperature). Thus we can compute

Fs(θ, s) = ∂F (θ, s) = ∂I(s) + L′(s)

(
1− θ

θc

)
+ ∂I(s),

where the derivative of F with respect to the variable s contains components that are not Fréchet

differentiable but are convex, so that it can be interpreted as the subdifferential. Therefore, by (B.16),

condition (3.7) reads for s ∈ (−1,1) (note that L is an increasing function)

L′(s)

θc
(θ − θc) st ≥ 0 ,
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3 – Controllability and phase transitions

which has a clear meaning: the substance has the tendency to melt for low temperatures, and the

tendency to solidify for high temperatures. A natural choice for the phase dynamics equation is then

(see also Remark B.2)

ρst ∈ −∂F (θ, s) = −∂I(s) +
L′(s)

θc
(θ − θc) (3.10)

with phase relaxation time ρ > 0. It means that the system tends to move towards local minima of

the free energy with speed proportional to 1/ρ, hence the smaller ρ is, the faster the phase transition

takes place. When ρ → 0 the phase transition becomes instantaneous, which corresponds to the

classical Stefan problem. The above differential inclusion and the energy balance equation

(cθ + L(s))t − κ∆θ = h (3.11)

resulting from (3.1), (3.5), and (3.9) give rise to the full system describing the relaxed Stefan problem,

see [131].

We now show that the energy balance equation (3.11) can be transformed into the form (I.1). Indeed,

we define a new unknown u by the formula

ut =
L′(s)

ρθc
(θ − θc).

Then the phase dynamics equation in (3.10) reads

st + ∂I(s) 3 ut,

which is nothing but the definition of the stop operator with threshold 1

s = s1[u],

see (B.10) in the Appendix. This enables us to rewrite (3.11) in the form

cutt +
1

ρθc
L(s1[u])t − κ∆ut =

1

ρθc
h.

Integrating the above equation in time leads to

cut +
1

ρθc
L(s1[u])− κ∆u = v,

with v containing the time integral of h and additional terms coming from the initial conditions. Up

to the physical constants, this is precisely equation (I.1) with F [u] = L(s1[u]). The homogeneous

Neumann boundary condition for θ (and therefore for u in (1.1)) has the physical meaning of a

thermally insulated body.
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Introduction

In this second part we study a model describing fluid diffusion in an unsaturated deformable porous

medium, assuming that the fluid may undergo phase transition and that two sources of hysteresis are

observed: the solid itself is subject to irreversible plastic deformations, and the fluid flow exhibits

capillary hysteresis, which is often explained by the surface tension on the interfaces between water

and air.

Much attention has been paid to phenomena related to this problem, and understanding the mecha-

nism of the solid-liquid interaction is the goal of many existing models in the engineering literature. In

[14], M. A. Biot proposed to describe an elastic partially saturated porous medium as a continuum in

Lagrangian framework and derived balance equations of conservation of mass and conservation of mo-

mentum which have become a basis for further studies. Let us mention, for example, a mathematical

theory including plasticity developed by R. E. Showalter and U. Stefanelli in [125, 126].

We state the problem in Lagrangian coordinates, too. Studies about the Eulerian fluid flow interacting

with a moving solid exist in the literature, but either the solid is assumed to be rigid such as, e. g.,

in [3], or the fluid domain is two-dimensional and the moving part of the boundary is represented by

a smooth curve described by a hyperviscoelastic constitutive equation ([85]). Eulerian flow in rigid

porous materials has also been studied ([60, 61]). Here, we focus on the description of deformations of

the porous solid produced by the fluid diffusion through the pores, so that the Lagrangian formalism

seems to be a natural choice.

Even within the linear elasticity theory, the interaction between fluid and a porous solid is a nonlinear

phenomenon. The mass conservation principle is expressed by the Darcy’s law which states that the

fluid mass saturation increment in a control volume V is compensated by the mass flux through the

boundary of V , and that the mass flux vector is proportional to the pressure gradient. The pressure-

saturation curve is, however, necessarily bounded, as it ranges between 0 (i. e., empty pores) and 1

(full saturation). Moreover, the wetting and the drying curves are typically not the same, and the

phenomenon is called capillary hysteresis, see [4, 64, 65, 84]. This produces a degeneracy in the mass

balance, as we lose immediate control of the time derivative of the pressure. Methods have been

developed in [5, 40, 94] to prove the solvability of the system. They are all based on a variant of the
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Moser iteration technique which allows one to establish a pointwise upper bound for the pressure, so

that the process stays away from the degeneracy.

The theory is robust in the sense that other physical effects, such as temperature dependence or

solid-liquid phase transitions with volume changes can be taken into account without affecting the

thermodynamic consistency of the model, see [40, 100]. As a drawback, the pressure-volume relation

becomes more complicated and additional nonlinearities occur in the system. The solvability of the

resulting system was established in [100] only under the assumption that inertial effects and shear

stresses are neglected.

Here we still neglect inertia, but our main goal is to propose a method for dealing with shear stresses in

the case of strongly nonlinear pressure-volume interactions including plasticity of the matrix material,

still assuming that phase transition may occur as in [100]. A first step in this direction was made

in the submitted paper [76], where the isothermal case is considered and the effects of temperature

and phase transitions are simulated by including a nonlinearity in the pressure-volume relation. This

makes the construction of a solution much more complicated than in [5], where g is linear. Starting

from these results, here we take a step forward including also the effects of freezing and melting.

This second part of the thesis is then completely original, since the simultaneous occurrence of shear

stresses and phase transition has never been considered in the literature. Here it is assumed that

the pores in the matrix material contain a mixture of H2O and gas, and H2O itself is a mixture of

the liquid (water) and the solid phase (ice). That is, in addition to the other physical quantities like

capillary pressure, displacement and absolute temperature, we need to consider the evolution of a

phase parameter χ representing the relative proportion of water in the H2O part and its influence on

pressure changes due to the different mass densities of water and ice.

Typical examples in which such situations arise are related to groundwater flows and to the freez-

ing–melting cycles of water sucked into the pores of concrete. Note that the latter process forms one

of the main reasons for the degradation of concrete in buildings, bridges, and roads. However, many

of the governing effects in concrete like the multi-component microstructure, the breaking of pores

and chemical reactions are still neglected in our model.

As it will be detailed in Chapter 4, we assume that the deformations are small, so that divu is the

relative local volume change, where u represents the displacement vector. Moreover, we assume that

the volume of the matrix material does not change during the process, and thus the volume and mass

balance equations with Darcy’s law for the water flux lead to a nonlinear degenerate parabolic equation

for the capillary pressure. In the equation of motion, we take into account the pressure components

due to phase transition and temperature changes, and we further simplify the system in order to

make it mathematically tractable by assuming that the process is quasistatic. Finally, we use the

34



balance of internal energy and the entropy inequality to derive the dynamics for absolute temperature

and phases; they turn out to be, respectively, a parabolic equation for the temperature with highly

nonlinear right-hand side (quadratic in the derivatives) and an ordinary differential inclusion for the

phase parameter χ, which represents the relative proportion of water in the H2O part. The freezing

and melting phenomena in the pores is modeled according to [100], which follows the ideas contained

in the earlier publications on freezing and melting in containers filled with water with rigid, elastic,

or elastoplastic boundaries ([92, 96–99]). It was shown there how important it is to account for the

difference in specific volumes of water and of ice. Actually, only few publications take into account

that the mass densities and specific volumes of the phases differ.

The main difficulties related to this problem arise from the low regularity of the temperature field,

mainly due to the presence of high order dissipative terms in the internal energy balance. Since the

test of the internal energy balance by the temperature θ is not allowed, we test by a suitable negative

power of θ and use the growth condition of the heat conductivity κ. Another key point in our proof is

the L∞ estimate we get on the pressure, which entails a bound in a proper negative Sobolev space for

the time derivative of the absolute temperature, which turns out to be another fundamental ingredient

in order to pass to the limit in our approximation scheme.

This part is structured as follows. In Chapter 4 we derive the model in full generality from the basic

principles of continuum thermodynamics. In Chapter 5 we state the mathematical problem, the main

assumptions on the data and the main Theorem 5.3, the proof of which is split into Sections 5.1–5.3.
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CHAPTER 4

A model for unsaturated

porous media flow

4.1 Derivation of the model

Consider a bounded connected domain Ω ⊂ R3 of class C1,1 filled with an elastoplastic solid matrix

material with pores containing a mixture of H2O and gas, where we assume that H2O may appear

in one of the two phases: water or ice. We also assume that the volume of the solid matrix remains

constant during the process. We state the balance laws in referential (Lagrangian) coordinates, assume

the deformations small and denote for x ∈ Ω and time t ∈ [0, T ]

A(x, t) ∈ [0,1] relative amount of air in the total pore volume;

W (x, t) ∈ [0,1] relative amount of H2O in the total pore volume;

χ(x, t) ∈ [0,1] relative amount of water in the H2O part;

ξ(x, t) mass flux vector;

p(x, t) capillary pressure;

u(x, t) displacement vector in the solid;

ε(x, t) linear strain tensor, ε = ∇su := 1
2

(
∇u+ (∇u)T

)
;

σ(x, t) stress tensor;

θ(x, t) absolute temperature.

Then χW represents the relative proportion of water in the total pore volume, and (1−χ)W represents

the relative proportion of ice in the total pore volume.

To explain the meaning of W and A, consider first an arbitrary control volume V0 ⊂ Ω in the reference

state and set

V (t) =
{
y ∈ R3 : y = x+ u(x, t), x ∈ V0

}
.

37
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Then denote by VA(t), VW (t), VS(t) the subdomains of V (t) occupied at time t by air, H2O and solid,

respectively. Then VA(t) ∪ VW (t) ∪ VS(t) = V (t), and denoting by |V | the Lebesgue measure of a set

V we assume that the porosity

π :=
|VA(t) ∪ VW (t)|

|V (t)|
∈ (0,1)

remains constant and independent of the choice of V0 and t. Let J(x, t) be the Jacobian of the

transformation x → x+ u(x, t). Under the small deformation hypothesis, we may consider J(x, t) ≈

1 + divu(x, t); hence divu represents the relative local volume increment. Indeed, we have

|V (t)| =
∫
V (t)

dy =

∫
V0

J(x, t) dx,

so that

lim
|V0|→0, x∈V0

|V (t)|
|V0|

= J(x, t) ≈ 1 + divu(x, t).

By hypothesis, the volume of the matrix material does not change, so

cS :=
|VS(t)|
|V0|

is a constant independent of V0 and t. Setting

W (x, t) := lim
|V0|→0, x∈V0

|VW (t)|
|V0|

, A(x, t) := lim
|V0|→0, x∈V0

|VA(t)|
|V0|

,

we obtain, under the small deformation hypothesis, the volume balance equation in Lagrange coordi-

nates:

W (x, t) +A(x, t) + cS = lim
|V0|→0, x∈V0

|V (t)|
|V0|

≈ 1 + divu(x, t). (4.1)

From the work of D. Flynn [64, 65], between the capillary pressure and the air content there exists a

Preisach-type hysteresis relation

b := 1− cS −A = G[p],

where G is the Preisach hysteresis operator. Indeed, the pressure-saturation wetting and drying curves

are typically not the same (see Figure 4.1), and the phenomenon is called capillary hysteresis. This

hysteretic behavior has been shown experimentally, and can be explained essentially by the surface

tension on the contact between water and air in the pores. We refer to Section B.3 in the Appendix

for more details on this hysteresis operator. Then for A we assume the functional relation

A = 1− cS − G[p]. (4.2)

Combining (4.1) and (4.2) we get that

W = G[p] + divu. (4.3)
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Figure 4.1. Pressure-saturation hysteresis diagram.

4.1.1 Mass balance

Consider an arbitrary control volume V ⊂ Ω. The water content in V is given by
∫
V ρWχW dx, where

ρW is the water mass density, and the ice content is
∫
V ρE(1 − χ)W dx, where ρE is the ice mass

density. The mass conservation principle then reads

d

dt

∫
V
ρWχW dx+

∫
∂V
ξ · n ds(x) = − d

dt

∫
V
ρE(1− χ)W dx,

where n is the unit outward normal vector to ∂V . In differential form we get

ρW (χW )t + divξ = −ρE ((1− χ)W )t . (4.4)

The right-hand side of (4.4) is the positive or negative liquid water source due to the solidification or

melting of the ice. The liquid mass flux vector ξ is assumed to obey Darcy’s law

ξ = −µ(p)∇p, (4.5)

with a proportionality factor µ(p) > 0 (the permeability coefficient). Using (4.3) and (4.5), we rewrite

the mass balance equation (4.4) as

(
(ρWχ+ ρE(1− χ))(G[p] + divu)

)
t
− div(µ(p)∇p) = 0.

Then, setting ρ∗ = ρE/ρW ∈ (0,1), we finally get a partial differential equation with hysteresis of the

form (
(χ+ ρ∗(1− χ))(G[p] + divu)

)
t
− 1

ρW
div(µ(p)∇p) = 0. (4.6)

Note that G[p] ∈ (0 , 1 − cS) for all p, so that the above equation is degenerate in the sense that we

do not control a priori the time derivatives of p.
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4.1.2 Momentum balance

The equation of motion of a deformable body is, in classical continuum mechanics (see [104]),

ρSutt = divσ + g, (4.7)

where ρS is the solid mass density, σ is the stress tensor and g is a volume force acting on the body

(e. g. gravity). For σ we prescribe the constitutive equation

σ = P[ε] + Bεt +
(
(χ+ ρ∗(1− χ))(λdivu− p)− β(θ − θc)

)
δ, (4.8)

where δ is the Kronecker tensor, P is a hysteresis operator describing the elastoplastic response of the

solid (see Section B.1 in the Appendix), B is a symmetric positive definite viscosity tensor, λ > 0 is

the bulk elasticity modulus of water, β ∈ R is the relative solid-liquid thermal expansion coefficient

and θc > 0 is a fixed reference temperature. The term (χ + ρ∗(1 − χ))(λdivu − p) represents the

pressure component due to the phase transition.

4.1.3 Energy balance

We assume that both hysteresis operators G (capillarity) and P (elastoplasticity) admit hysteresis

potentials UG , UP and dissipation operators DG , DP such that the energy identities (B.8) and (B.27)

hold. For more details and the explicit formulas of all these operators see Sections B.1 and B.3 in the

Appendix.

The goal of this subsection is to derive formulas for the densities of internal energy U and entropy S

such that the energy balance equation and the Clausius-Duhem inequality hold for all processes.

Let q be the heat flux vector, and let V ⊂ Ω be again an arbitrary control volume. The total internal

energy in V is
∫
V U dx, and the total mechanical power Q(V ) supplied to V equals

Q(V ) =

∫
V
σ : εt dx−

∫
∂V

1

ρW
p ξ · n ds(x).

Thus, from the first principle of thermodynamics we have that the internal energy U must be conserved

in the following sense:

d

dt

∫
V
U dx+

∫
∂V
q · n ds(x) =

∫
V
σ : εt dx−

∫
∂V

1

ρW
p ξ · n ds(x).

Again, by the Gauss formula and by Darcy’s law (4.5) we get the energy balance equation in differential

form

Ut + divq = σ : εt +
1

ρW
div(pµ(p)∇p). (4.9)

According to the second principle of thermodynamics, the entropy S must be nondecreasing in the

sense of the Clausius-Duhem inequality

St + div
(q
θ

)
≥ 0.
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4.1 – Derivation of the model

Developing the second summand the inequality takes the form

St +
θdivq − q · ∇θ

θ2
≥ 0,

that is, multiplying by θ and isolating divq,

divq ≥ −θSt +
q · ∇θ
θ

.

Thus, taking into account the energy balance (4.9), we get the inequality

Ut − θSt +
q · ∇θ
θ
≤ σ : εt +

1

ρW
div(pµ(p)∇p).

Hence, arguing as in Chapter 3, two inequalities have to hold separately for all processes, namely

q · ∇θ ≤ 0, Ut − θSt ≤ σ : εt +
1

ρW
div(pµ(p)∇p). (4.10)

The first condition is certainly satisfied if we assume Fourier law for the heat flux

q = −κ(θ)∇θ, (4.11)

with the heat conductivity coefficient κ = κ(θ) > 0. We further introduce the free energy F by the

formula F = U − θS so that, in terms of F , the second inequality in (4.10) takes the form

Ft + θtS ≤ σ : εt +
1

ρW
div(pµ(p)∇p). (4.12)

Combining (4.12) with the chain rule for Ft and the mass balance (4.6), one can “formally” prove

that a formula for the internal energy F is obtained by integrating the constitutive relation (4.8).

More precisely, the mechanical part of F is obtained by integration with respect to ε, whereas the

capillarity part is obtained integrating with respect to G[p]. Finally, the caloric part is obtained by

thermodynamics similarly as in Chapter 3. The procedure is formal in the sense that we cannot give a

precise meaning to the integration with respect to G[p], since hysteresis operators are not differentiable

in the usual sense. Hence we are going to follow a different approach. More precisely, we use the

constitutive relation and the energy balance for G to prove that for (4.12) to be satisfied, a “minimal”

choice for F (in the sense that no unphysical constants are involved and all values of the phase fraction

χ outside the admissible interval [0,1] are excluded) is given by, under the assumption of constant

latent heat L,

F = UP [ε] + (χ+ ρ∗(1− χ))

(
UG [p] +

λ

2
(divu)2

)
− β(θ − θc) divu

+ F0(θ) + Lχ

(
1− θ

θc

)
+ I[0,1](χ),

(4.13)
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where I[0,1] is the indicator function of the interval [0,1], provided that the phase dynamics equation

is chosen in the form

γχt + ∂I[0,1](χ) 3 (1− ρ∗)
(
pG[p]− UG [p] + pdivu− λ

2
(divu)2

)
+ L

(
θ

θc
− 1

)
(4.14)

with a relaxation coefficient γ > 0 possibly depending on the state variables divu, θ, χ. The function

F0(θ) appearing in (4.13) is related to the caloric component CV (θ) of the internal energy by the

formula

CV (θ) = F0(θ)− θF ′0(θ). (4.15)

If the specific heat capacity cV is constant, that is, CV (θ) = cV θ, we find the classical formula

F0(θ) = cV θ (1− log (θ/θc)). Note that from (4.13) we obtain also

S = −∂F
∂θ

= βdivu− F ′0(θ) +
L

θc
χ. (4.16)

In order to prove that under these choices (4.12) holds, we are going to develop the three summands

of this inequality.

- By (4.13)

Ft = UP [ε]t + (1− ρ∗)χt
(
UG [p] +

λ

2
(divu)2

)
+ (χ+ ρ∗(1− χ))(UG [p]t + λdivu divut)

− βθt divu− β(θ − θc) divut + F ′0(θ) θt + Lχt

(
1− θ

θc

)
− L

θc
χθt + ∂I[0,1](χ)χt,

where the summand ∂I[0,1](χ)χt vanishes (see Remark B.2). Hence employing (4.16) we obtain

Ft + θtS = UP [ε]t + (1− ρ∗)χt
(
UG [p] +

λ

2
(divu)2

)
+ (χ+ ρ∗(1− χ))(UG [p]t + λdivu divut)− β(θ − θc) divut + Lχt

(
1− θ

θc

)
.

- By (4.8)

σ : εt = P[ε] : εt + Bεt : εt +
(
(χ+ ρ∗(1− χ))(λdivu− p)− β(θ − θc)

)
δ : εt.

Note that

δ : εt = δ : ∇sut = divut.

Hence, using also the energy identity (B.8), we obtain

σ : εt = UP [ε]t + ‖DP [ε]t‖∗ + Bεt : εt + (χ+ ρ∗(1− χ))(λdivu divut − p divut)− β(θ − θc) divut.

- By (4.6)

1

ρW
div(pµ(p)∇p) =

1

ρW
µ(p)|∇p|2 + p(χ+ ρ∗(1− χ))(G[p]t + divut) + p(1− ρ∗)χt(G[p] + divu).
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Hence, coming back to (4.12) and using the energy identity (B.27) we get

Ft + θtS − σ : εt −
1

ρW
div(pµ(p)∇p) = −Bεt : εt − ‖DP [ε]t‖∗ − (χ+ ρ∗(1− χ))|DG [p]t|

− 1

ρW
µ(p)|∇p|2 − χt

(
L

(
θ

θc
− 1

)
+ (1− ρ∗)

(
−UG [p]− λ

2
(divu)2 + pG[p] + p divu

)) (4.17)

from which we deduce, by virtue of (4.14),

Ft + θtS − σ : εt −
1

ρW
div(pµ(p)∇p) = −Bεt : εt − ‖DP [ε]t‖∗ − (χ+ ρ∗(1− χ))|DG [p]t|

− 1

ρW
µ(p)|∇p|2 − γχ2

t ≤ 0

so that (4.12) holds.

Now we are going to obtain the equation for the temperature rewriting (4.9) in a more suitable form.

From (4.11), (4.16) and (4.17) we have

0 = Ut + divq − σ : εt −
1

ρW
div(pµ(p)∇p)

= Ft + θtS + θSt + divq − σ : εt −
1

ρW
div(pµ(p)∇p)

= −Bεt : εt − ‖DP [ε]t‖∗ − (χ+ ρ∗(1− χ))|DG [p]t| −
1

ρW
µ(p)|∇p|2

− γχ2
t + θ

(
βdivut − F ′′0 (θ)θt +

L

θc
χt

)
− div(κ(θ)∇θ),

from which, since (4.15) yields CV (θ)t = −θF ′′0 (θ)θt,

CV (θ)t − div(κ(θ)∇θ) = Bεt : εt +
1

ρW
µ(p)|∇p|2 + ‖DP [ε]t‖∗ + (χ+ ρ∗(1− χ))|DG [p]t|

+ γχ2
t −

L

θc
θχt − βθdivut.

(4.18)

4.2 The mathematical problem

For mathematical reasons that will be clearer later, we assume that the relaxation coefficient γ of the

phase transition explicitly depends on both θ and divu. Gathering together (4.6)–(4.8), (4.14) and

(4.18), we obtain that, in terms of the unknown functions p, u, θ, χ, our model system of equations

has the form (
(χ+ ρ∗(1− χ))(G[p] + divu)

)
t

=
1

ρW
div(µ(p)∇p), (4.19)

ρSutt = divσ + g, (4.20)

σ = P[∇su] + B∇sut +
(
(χ+ ρ∗(1− χ))(λdivu− p)− β(θ − θc)

)
δ, (4.21)

CV (θ)t − div(κ(θ)∇θ) = B∇sut : ∇sut +
1

ρW
µ(p)|∇p|2 + ‖DP [∇su]t‖∗

+ (χ+ ρ∗(1− χ))|DG [p]t|+ γ(θ,divu)χ2
t −

L

θc
θχt − βθdivut,

(4.22)
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4 – A model for unsaturated porous media flow

γ(θ,divu)χt + ∂I[0,1](χ) 3 (1− ρ∗)
(
pG[p]− UG [p] + pdivu− λ

2
(divu)2

)
+ L

(
θ

θc
− 1

)
. (4.23)

On ∂Ω we prescribe boundary conditions

u = 0,
1

ρW
µ(p)∇p · n = α(x)(p∗ − p),

κ(θ)∇θ · n = ω(x)(θ∗ − θ),

 (4.24)

where p∗ is a given outer pressure, θ∗ is a given outer temperature, α(x) ≥ 0 is the permeability of

the boundary and ω(x) ≥ 0 is the heat conductivity of the boundary.

We simplify the problem by assuming that:

1. water is incompressible: this corresponds to the choice λ = 0;

2. inertial effects are negligible. This hypothesis is justified by the expectation that the processes are

slow.

Whence system (4.19)–(4.23) becomes

(
(χ+ ρ∗(1− χ))(G[p] + divu)

)
t

=
1

ρW
div(µ(p)∇p), (4.25)

−div (B∇sut + P[∇su]) +∇
(
p(χ+ ρ∗(1− χ)) + β(θ − θc)

)
= g, (4.26)

CV (θ)t − div(κ(θ)∇θ) = B∇sut : ∇sut +
1

ρW
µ(p)|∇p|2 + ‖DP [∇su]t‖∗

+ (χ+ ρ∗(1− χ))|DG [p]t|+ γ(θ,divu)χ2
t −

L

θc
θχt − βθdivut,

(4.27)

γ(θ,divu)χt + ∂I[0,1](χ) 3 (1− ρ∗) (pG[p]− UG [p] + p divu) + L

(
θ

θc
− 1

)
, (4.28)

with initial conditions

p(x,0) = p0(x),

u(x,0) = u0(x),

θ(x,0) = θ0(x),

χ(x,0) = χ0(x),


(4.29)

and boundary conditions (4.24).

Remark 4.1. As we have already seen in Chapter 3, there is a strict link between evolutions of

“phase-relaxation” type and the hysteresis operator of stop type. Observing the inclusion (B.10)

defining the stop operator, we can interpret (4.28) in an equivalent way in the form

χ(x, t) = s[0,1][F (x, ·), χ0(x)](t), (4.30)

where

F (x, t) :=

∫ t

0

(1− ρ∗) (pG[p]− UG [p] + p divu) + L (θ/θc − 1)

γ(θ,divu)
(x, τ) dτ (4.31)
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4.2 – The mathematical problem

and where s[0,1] is the (shifted) stop operator with thresholds 0 and 1. The advantage of this repre-

sentation is that now χ is defined by a formula involving, by virtue of Proposition B.5, an operator

with good Lipschitz continuity properties.
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CHAPTER 5

Solvability of the problem

We introduce the spaces

X = W 1,2(Ω), X0 = {ψ ∈W 1,2(Ω;R3) : ψ
∣∣
∂Ω

= 0}, Xq∗ = W 1,q∗(Ω)

for some q∗ > 2 that will be specified below in Theorem 5.3. Taking into account the boundary

conditions (4.24), we consider (4.25)–(4.28) in variational form∫
Ω

(
(χ+ ρ∗(1− χ))(f(p) + G0[p] + divu)

)
t
φ dx+

∫
Ω

1

ρW
µ(p)∇p · ∇φ dx

=

∫
∂Ω
α(x)(p∗ − p)φ ds(x),

(5.1)

∫
Ω

(P[∇su] + B∇sut) : ∇sψ dx−
∫

Ω

(
p(χ+ ρ∗(1− χ)) + β(θ − θc)

)
divψ dx =

∫
Ω
g · ψ dx, (5.2)

∫
Ω

(
CV (θ)t −B∇sut : ∇sut − ‖DP [∇su]t‖∗ −

1

ρW
µ(p)|∇p|2 − (χ+ ρ∗(1− χ))|D0[p]t|

−γ(θ,divu)χ2
t +

(
L

θc
χt + βdivut

)
θ

)
ζ dx+

∫
Ω
κ(θ)∇θ · ∇ζ dx =

∫
∂Ω
ω(x)(θ∗ − θ) ζ dx,

(5.3)

γ(θ,divu)χt + ∂I[0,1](χ) 3 (1− ρ∗) (Φ(p) + pG0[p]− U0[p] + pdivu) + L

(
θ

θc
− 1

)
a. e. (5.4)

for a. e. t ∈ (0, T ) and all test functions φ ∈ X, ψ ∈ X0 and ζ ∈ Xq∗ . Note that we split the capillary

hysteresis terms in hysteretic and nonhysteretic part according to (B.23), (B.28) and (B.29) in view

of the regularization performed in Section 5.1. Indeed, only the nonhysteretic part will be affected by

the cut-off.

We assume the following hypothesis holds.

Hypothesis 5.1. There exist constants A[ > 0, B[ > 0, P ] > 0, θ̄ > 0 such that

(i) Ae, Ah, B are constant symmetric positive definite fourth order tensors such that Ae ξ : ξ ≥

A[|ξ|2, Ah ξ : ξ ≥ A[|ξ|2, B ξ : ξ ≥ B[|ξ|2 for all ξ ∈ R3×3;
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(ii) g ∈ L∞(0, T ;L2(Ω;R3)) ∩W 1,2(0, T ;L2(Ω;R3)) is a given function and there exists a function

G ∈ L4(Ω× (0, T )) such that g = −∇G;

(iii) α ∈ W 1,∞(∂Ω), α(x) ≥ 0 a. e. and
∫
∂Ω α(x) ds(x) > 0; ω ∈ L∞(∂Ω), ω(x) ≥ 0 a. e. and∫

∂Ω ω(x) ds(x) > 0;

(iv) p∗ ∈ L∞((0, T ) × ∂Ω) and p∗t ∈ L2(∂Ω × (0, T )), |p∗(x, t)| ≤ P ] a. e.; θ∗ ∈ L∞(∂Ω × (0, T )),

θ∗t ∈ L2(∂Ω× (0, T )), θ∗(x, t) ≥ θ̄ a. e.;

(v) p0 ∈ L∞(Ω) ∩ W 2,2(Ω), |p0(x)| ≤ P ] a. e., u0 ∈ X0 ∩ W 1,4(Ω;R3), θ0 ∈ L∞(Ω) ∩ W 1,2(Ω),

θ0(x) ≥ θ̄ a. e., χ0 ∈ L∞(Ω), χ0(x) ∈ [0,1] a. e..

We also assume that there exist constants f ] > f [ > 0, ν ∈ (0, 1/2], µ[ > 0, c] > c[ > 0, 1/2 ≤ b <

b̂ < 1, κ] > κ[ > 0, 0 < a < 1 − b, a < â < (8+3a+2b)(1+b)
7−2b , γ] > γ[ > 0 such that the nonlinearities

satisfy the following conditions:

(vi) f : R→ (0,1) is a continuously differentiable function, f [(1+ |p|)−1−ν ≤ f ′(p) ≤ f ] for all p ∈ R;

(vii) µ : R→ R is a continuous function, µ(p) ≥ µ[ for all p ∈ R;

(viii) CV : [0,∞) → [0,∞) is a continuously differentiable function, C′V (θ) =: cV (θ) is such that

c[(1 + θb) ≤ cV (θ) ≤ c](1 + θb̂) for all θ ≥ 0;

(ix) κ : [0,∞)→ [0,∞) is a continuous function, κ[(1 + θ1+a) ≤ κ(θ) ≤ κ](1 + θ1+â) for all θ ≥ 0;

(x) γ : [0,∞) × [0,∞) → [0,∞) is a continuous function, γ[(1 + θ + |divu|2) ≤ γ(θ,divu) ≤

γ](1 + θ + |divu|2) for all θ ≥ 0, u ∈ R3;

(xi) G0 is the Preisach operator from Section B.3 in the Appendix with an initial memory state

λ−1 ∈ ΛK for some K ≥ P ], with density function satisfying Hypothesis B.10 and with potential

U0 and dissipation operator D0 defined in (B.26);

(xii) P : C([0, T ];R3×3
sym)→ C([0, T ];R3×3

sym) is the constitutive operator of elastoplasticity from Section

B.1 in the Appendix, with dissipation operator DP defined in (B.7). Here and in the sequel

R3×3
sym denotes the space of symmetric 3× 3 tensors.

Remark 5.2. In this remark we comment on some of the above hypotheses.

(ii) It is not restrictive to assume that there exists G such that g = −∇G, since in our case the

volume force g represents gravity, and thus it certainly admits a potential G.

(iii) The hypothesis α ∈W 1,∞(∂Ω) is requested in order to apply the result from [95, Theorem 4.1]

about the spatial W 2,2-regularity for parabolic equations with nonlinear boundary conditions

on C1,1 domains.
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(vi) The growth condition for f is purely technical and plays a substantial role in the Moser iteration

argument in Subsection 5.2.7.

(viii) The growth condition for cV will be of fundamental importance in Subsection 5.2.6 where, in

order to estimate divut in Lq(0, T ;L2(Ω)) with an exponent q > 4, we need a higher integrability

(in space) for the temperature than simply L∞(0, T ;L1(Ω)).

(ix) The tangled bound

â <
(8 + 3a+ 2b)(1 + b)

7− 2b

for the growth exponent of the function κ comes from Subsection 5.2.10, where we apply an

iterative method in order to derive higher order estimates for the temperature.

The main result is the following existence theorem.

Theorem 5.3. Let Hypothesis 5.1 hold. Then there exists a solution (p, u, θ, χ) to the system (5.1)–

(5.4) with initial conditions (4.29) with the regularity

� p ∈ L∞(Ω× (0, T )), pt ∈ L2(Ω× (0, T )), M(p) ∈ L2(0, T ;W 2,2(Ω)) with M(p) given by (5.119);

� ut ∈ Lq(0, T ;X0 ∩W 1,q(Ω;R3)) for all q < (8+3a+2b)(4+b)
7−2b , ∇su ∈ L2(Ω;C([0, T ];R3×3

sym));

� θ ∈ Lq(Ω× (0, T )) for all q < (8+3a+2b)(4+b)
7−2b , ∇θ ∈ L2(Ω× (0, T );R3), θt ∈ L2(0, T ;W−1,q∗(Ω))

with q∗ > 2 given by (5.142);

� χ ∈ Lq(Ω;C[0, T ]), χt ∈ Lq(Ω× (0, T )) for all q ∈ [1,∞).

The proof of Theorem 5.3 will be divided into several steps. In order to eliminate possible degeneracy

of the functions f and µ, we start by regularizing the problem by means of a large parameter R. Then

we prove that this regularized problem admits a solution by the standard Faedo-Galerkin method:

here the parameter R will be of fundamental importance in order to gain some regularity. Once we

have derived suitable estimates, we pass to the limit in the Faedo-Galerkin scheme. The second part

of the proof will consist in the derivation of a priori estimates independent of R, which will allow us

to pass to the limit in the regularized system and infer the existence of a solution with the desired

regularity.

In what follows, we denote by C any positive constant depending only on the data and by CR

any constant depending on the data and on R, all independent of the dimension n of the Galerkin

approximation.

Moreover, we will systematically use the pointwise inequality

|divu|2(x, t) ≤ 3 |∇su|2(x, t) for all (x, t) ∈ Ω× (0, T ). (5.5)
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5.1 Cut-off system

We choose a regularizing parameter R > 1, and first solve a cut-off system with the intention to let

R→∞.

For z ∈ R we denote by

QR(z) = max{−R,min{z,R}} (5.6)

the projection onto [−R,R]. Then we cut-off some nonlinearities by setting

fR(p) =


f(p) for |p| ≤ R

f(R) + f ′(R)(p−R) for p > R

f(−R) + f ′(−R)(p+R) for p < −R

, (5.7)

ΦR(p) =

∫ p

0
fR(z) dz, VR(p) = pfR(p)− ΦR(p) =

∫ p

0
f ′R(z)z dz, (5.8)

µR(p) =


µ(p) for |p| ≤ R

µ(R) for p > R

µ(−R) for p < −R

, (5.9)

γR(p, θ, divu) = γ(QR(θ+) + (p2 −R2)+, divu) (5.10)

for p, θ,divu ∈ R. Note that by Hypothesis 5.1 (vi) we deduce that |fR(p)| ≤ |f(0)|+f ]|p|, from which

|fR(p)| ≤ C (1 + |p|) , |ΦR(p)| ≤ C
(
1 + p2

)
, C

(
|p|1−ν − 1

)
≤ VR(p) ≤ C p2, (5.11)

and also, from Hypothesis 5.1 (x),

γ[
(
1 +QR(θ+) + (p2 −R2)+ + |divu|2

)
≤ γR(p, θ,divu) ≤ γ]

(
1 +QR(θ+) + (p2 −R2)+ + |divu|2

)
.

(5.12)
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We replace (5.1)–(5.4) by the cut-off system∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
φ dx+

∫
Ω

1

ρW
µR(p)∇p · ∇φ dx

=

∫
∂Ω
α(x)(p∗ − p)φ ds(x),

(5.13)

∫
Ω

(
(P[∇su] + B∇sut) : ∇sψ

)
dx

−
∫

Ω

(
p(χ+ ρ∗(1− χ)) + β(QR(θ+)− θc)

)
divψ dx =

∫
Ω
g · ψ dx,

(5.14)

∫
Ω

(
CV (θ)t −B∇sut : ∇sut − ‖DP [∇su]t‖∗ −

1

ρW
µR(p)QR(|∇p|2)− (χ+ ρ∗(1− χ))|D0[p]t|

− γR(p, θ, divu)χ2
t +

(
L

θc
χt + βdivut

)
QR(θ+)

)
ζ dx+

∫
Ω
κ(QR(θ+))∇θ · ∇ζ dx

=

∫
∂Ω
ω(x)(θ∗ − θ) ζ ds(x),

(5.15)

γR(p, θ, divu)χt + ∂I[0,1](χ)

3 (1− ρ∗) (ΦR(p) + pG0[p]− U0[p] + p divu) + L

(
QR(θ+)

θc
− 1

)
a. e.

(5.16)

for all test functions φ, ζ ∈ X and ψ ∈ X0. For the system (5.13)–(5.16) the following result holds

true.

Proposition 5.4. Let Hypothesis 5.1 hold and let R > 1 be given. Then there exists a solution

(p, u, θ, χ) to (5.13)–(5.16), (4.29) with the regularity

� p ∈ Lq(Ω;C[0, T ]) for all q ∈ [1.6), ∇p ∈ L2(Ω× (0, T );R3), pt ∈ L2(Ω× (0, T ));

� ut ∈ L2(0, T ;X0), ∇sut ∈ L4(Ω× (0, T );R3×3
sym);

� θ ∈ L2(Ω× (0, T )), ∇θ ∈ L∞(0, T ;L2(Ω;R3)), θt ∈ L2(Ω× (0, T ));

� χ ∈ Lq(Ω;C[0, T ]), χt ∈ Lq(Ω× (0, T )) for all q ∈ [1,∞).

We split the proof of Proposition 5.4 in two steps. First, in Subsection 5.1.1, we further regularize

the system by means of a small parameter η > 0 in order to obtain some extra-regularity for the

gradient of the capillary pressure. Then, in Subsection 5.1.2, we solve this new problem by Galerkin

approximations. Here the extra-regularization will be of fundamental importance in order to pass to

the limit in the nonlinearity QR(|∇p(n)|2), where n is the dimension of the Galerkin scheme. As a

last step, we let η → 0.

5.1.1 W 2,2-regularization of the capillary pressure

We define the functions

MR(p) :=

∫ p

0
µR(z) dz, KR(θ) :=

∫ θ

0
κ(QR(z+)) dz (5.17)
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5 – Solvability of the problem

for p, θ ∈ R, and introduce the new variables v = MR(p), z = KR(θ). We then choose another

regularizing parameter η ∈ (0,1) and consider the following system in the unknowns v, u, z, χ:∫
Ω

(
(χ+ ρ∗(1− χ))(fR(M−1

R (v)) + G0[M−1
R (v)] + divu)

)
t
φ dx

+

∫
Ω

1

ρW
(∇v · ∇φ+ η∆v∆φ) dx =

∫
∂Ω
α(x)(p∗ −M−1

R (v))φ ds(x),

(5.18)

∫
Ω

(
(P[∇su] + B∇sut) : ∇sψ

)
dx

−
∫

Ω

(
M−1
R (v)(χ+ ρ∗(1− χ)) + β(QR((K−1

R (z))+)− θc)
)

divψ dx =

∫
Ω
g · ψ dx,

(5.19)

∫
Ω

(
CV (K−1

R (z))t −B∇sut : ∇sut − ‖DP [∇su]t‖∗ −
1

ρW
µR(M−1

R (v))QR(|∇(M−1
R (v))|2)

− (χ+ ρ∗(1− χ))|D0[M−1
R (v)]t| − γR(M−1

R (v),K−1
R (z),divu)χ2

t

+

(
L

θc
χt + βdivut

)
QR((K−1

R (z))+)

)
ζ dx+

∫
Ω
∇z · ∇ζ dx

=

∫
∂Ω
ω(x)(θ∗ −K−1

R (z)) ζ ds(x),

(5.20)

γR(M−1
R (v),K−1

R (z), divu)χt + ∂I[0,1](χ)

3 (1− ρ∗)
(
ΦR(M−1

R (v)) +M−1
R (v)G0[M−1

R (v)]− U0[M−1
R (v)] +M−1

R (v) divu
)

+ L

(
QR((K−1

R (z))+)

θc
− 1

)
a. e.

(5.21)

with test functions φ ∈ W 2,2(Ω), ζ ∈ X and ψ ∈ X0. Here we imposed the additional boundary

condition

∇(∆v) · n = 0 on ∂Ω. (5.22)

5.1.2 Galerkin approximations

For each fixed R > 1, system (5.18)–(5.21) will be solved by Faedo-Galerkin approximations. To this

end, let W = {φi : i = 0,1,2, . . . } ⊂ L2(Ω) and Z = {ζk : k = 0,1,2, . . . } ⊂ L2(Ω) be the complete

orthonormal systems of eigenfunctions defined by

−∆φi = λiφi in Ω, ∇φi · n
∣∣
∂Ω

= 0,

−∆ζk = νkζk in Ω, ∇ζk · n
∣∣
∂Ω

= 0,

with λ0 = ν0 = 0, λi, νk > 0 for i, k ≥ 1. Given n ∈ N, we approximate v and z by the finite sums

v(n)(x, t) =
n∑
i=0

vi(t)φi(x), z(n)(x, t) =
n∑
k=0

zk(t)ζk(x)
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5.1 – Cut-off system

where the coefficients vi, zk : [0, T ]→ R and u(n), χ(n) will be determined as the solution of the system∫
Ω

(
(χ(n) + ρ∗(1− χ(n)))(fR(p(n)) + G0[p(n)] + divu(n))

)
t
φi dx+

1

ρW

(
λi + ηλ2

i

)
vi

=

∫
∂Ω
α(x)(p∗ − p(n))φi ds(x),

(5.23)

∫
Ω

(
(P[∇su(n)] + B∇su(n)

t ) : ∇sψ dx

−
∫

Ω

(
p(n)(χ(n) + ρ∗(1− χ(n))) + β(QR((θ(n))+)− θc)

)
divψ dx =

∫
Ω
g · ψ dx,

(5.24)

∫
Ω

(
CV (θ(n))t −B∇su(n)

t : ∇su(n)
t − ‖DP [∇su(n)]t‖∗ −

1

ρW
µR(p(n))QR(|∇p(n)|2)

− (χ(n) + ρ∗(1− χ(n)))|D0[p(n)]t| − γR(p(n), θ(n),divu(n))|χ(n)
t |2

+

(
L

θc
χ

(n)
t + βdivu

(n)
t

)
QR((θ(n))+)

)
ζk dx+ νkzk =

∫
∂Ω
ω(x)(θ∗ − θ(n)) ζk ds(x),

(5.25)

γR(p(n), θ(n), divu(n))χ
(n)
t + ∂I[0,1](χ

(n))

3 (1− ρ∗)
(

ΦR(p(n)) + p(n)G0[p(n)]− U0[p(n)] + p(n) divu(n)
)

+ L

(
QR((θ(n))+)

θc
− 1

)
a. e.

(5.26)

for i, k = 0,1, . . . , n and for all ψ ∈ X0, and with p(n) := M−1
R (v(n)), θ(n) := K−1

R (z(n)). We prescribe

the initial conditions

vi(0) =
∫

ΩMR(p0(x))φi(x) dx,

u(n)(x,0) = u0(x),

zk(0) =
∫

ΩKR(θ0(x)) ζk(x) dx,

χ(n)(x,0) = χ0(x).


(5.27)

This is an ODE system coupled with a nonlinear PDE (5.24). It is nontrivial to prove that such a

system admits a unique strong solution. We proceed as follows. For a given function w ∈ Lp(Ω×(0, T ))

consider the equation∫
Ω

B∇sut(x, t) : ∇sψ(x) dx+

∫
Ω
P[∇su](x, t) : ∇sψ(x) dx =

∫
Ω
w(x, t) divψ(x) dx, (5.28)

which is to be satisfied for every ψ ∈ X0 a. e. in (0, T ) together with an initial condition u(x,0) = u0(x),

u0 ∈ X0 ∩W 1,p(Ω;Rn) and boundary condition u = 0 on ∂Ω.

Step 1. By the Lp-regularity for elliptic systems in divergence form (see e. g. [6, Theorem 15.12]),

for every w ∈ Lp(Ω× (0, T )) with some p ∈ [2,∞) the problem∫
Ω

B∇sut(x, t) : ∇sψ(x) dx =

∫
Ω
w(x, t) divψ(x) dx

has a unique solution such that ∇sut ∈ Lp(Ω× (0, T );R3×3
sym), and it holds∫

Ω
|∇sut|p(x, t) dx ≤ C

∫
Ω
|w|p(x, t) dx a. e.
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5 – Solvability of the problem

Step 2. Let û ∈ Lp(0, T ;X0) be such that ∇sût ∈ Lp(Ω× (0, T );R3×3
sym), û(x,0) = u0(x) a. e., and let

u be the solution of the equation∫
Ω
P[∇sû](x, t) : ∇sψ(x) dx+

∫
Ω

B∇sut(x, t) : ∇sψ(x) dx =

∫
Ω
w(x, t) divψ(x) dx,

the existence of which follows from Step 1. We prove that the mapping ût → ut is a contraction with

respect to a suitable norm.

Indeed, let û1, û2 be given, and let u1, u2 be the corresponding solutions. The difference ū = u1 − u2

is the solution of the equation∫
Ω

B∇sūt(x, t) : ∇sψ(x) dx = −
∫

Ω
(P[∇sû1]− P[∇sû2])(x, t) : ∇sψ(x) dx.

According to Step 1, we have∫
Ω
|∇sūt|p(x, t) dx ≤ C

∫
Ω
|P[∇sû1]− P[∇sû2]|p(x, t) dx a. e. (5.29)

By inequality (B.4) in the Appendix we have for a. e. (x, t)

|P[∇sû1]− P[∇sû2]|(x, t) ≤ C
∫ t

0
|∇s(û1 − û2)t|(x, τ) dτ

with a constant C > 0. Hence, by Hölder’s inequality,∫
Ω
|P[∇sû1]− P[∇sû2]|p(x, t) dx ≤ C

∫
Ω

(∫ t

0
|∇s(û1 − û2)t|(x, τ) dτ

)p
dx

≤ Ctp−1

∫ t

0

∫
Ω
|∇s(û1 − û2)t|p(x, τ) dx dτ. (5.30)

Now, set

W (t) =

∫
Ω
|∇s(u1 − u2)t|p(x, τ) dx, Ŵ (t) =

∫
Ω
|∇s(û1 − û2)t|p(x, τ) dx.

It follows from (5.29) and (5.30) that

W (t) ≤ Ctp−1

∫ t

0
Ŵ (τ) dτ.

We now multiply both sides of the above inequality by e−Ct
p
, and after an integration over t ∈ [0, T ]

we obtain from the Fubini Theorem∫ T

0
e−Ct

p
W (t) dt ≤

∫ T

0

(
−1

p

d

dt
e−Ct

p

∫ t

0
Ŵ (τ) dτ

)
dt

= −1

p

∫ T

0

(∫ T

τ

d

dt
e−Ct

p
dt

)
Ŵ (τ) dτ

=
1

p

∫ T

0

(
e−Cτ

p − e−CT
p)
Ŵ (τ) dτ ≤ 1

p

∫ T

0
e−Ct

p
Ŵ (t) dt.
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5.1 – Cut-off system

This means that the mapping ût → ut is a contraction in Lp(0, T ;X0 ∩W 1,p(Ω;R3)) with respect to

the weighted norm

|||ut||| =
(∫ T

0
e−Ct

p

∫
Ω
|∇sut|p(x, t) dx dt

)1/p

,

hence it has a unique fixed point which is a solution of (5.28).

Step 3. The mapping which with a right-hand side w ∈ Lp(Ω × (0, T )) associates the solution

ut ∈ Lp(0, T ;X0 ∩W 1,p(Ω;R3)) of (5.28) is Lipschitz continuous. Indeed, consider w1, w2 and the

corresponding solutions u1, u2, and set as before w̄ = w1−w2, ū = u1−u2. As a counterpart of (5.29)

we get ∫
Ω
|∇sūt|p(x, t) dx ≤ C

∫
Ω

(|P[∇su1]− P[∇su2]|p + |w̄|p) (x, t) dx a. e.,

and the computations as in (5.30) yield∫
Ω
|∇sūt|p(x, t) dx ≤ Ctp−1

∫ t

0

∫
Ω
|∇sūt|p(x, τ) dx dτ + C

∫
Ω
|w̄|p(x, t) dx a. e.

We obtain the Lipschitz continuity result when we test by e
−C
p
tp

and integrate over t ∈ [0, T ], similarly

as in Step 2.

Now, coming back to our equation (5.24), we see that it is of the form (5.28) with w(x, t) = w(n)(x, t) :=

p(n)(χ(n)+ρ∗(1−χ(n)))+β(QR((θ(n))+)−θc)(x, t)+G(x, t). Therefore, denoting by S : w(n) → u
(n)
t its

associated solution operator, we conclude that (5.23), (5.25) and (5.26) give rise to a system of ODEs

with a locally Lipschitz continuous right-hand side containing the operator S. Here the inclusion

(5.26) can be interpreted as in Remark 4.1 and handled with Proposition B.5.

Thus system (5.23)–(5.26) has a unique strong solution in a maximal interval of existence [0, Tn] ⊂

[0, T ]. This interval coincides with the whole [0, T ], provided we prove that the solution remains

bounded in [0, Tn).

We now derive a series of estimates. Note that we decompose the auxiliary variables v and z instead

of p and θ into a Fourier series with respect to the basis W and Z because we are going to test

equations (5.23), (5.25) by nonlinear expressions of p and θ, namely, by their Kirchhoff transforms

(5.17). Indeed, the Galerkin method allows one to test only by linear functions and their derivatives.

Moreover, we do not discretize the momentum equation because considering the full PDE is the only

way to deduce compactness of the sequence {∇su(n)
t }, which is needed in order to pass to the limit

in some nonlinear terms. Indeed, we will not be able to control the second derivatives, and this will

prevent us from applying the usual embedding theorems.

Estimates independent of n

I Estimate 1
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5 – Solvability of the problem

We test (5.23) by vi and sum up over i = 0,1, . . . , n, and (5.24) by ψ = u
(n)
t . Then we sum up the

two equations to obtain∫
Ω

(
(χ(n) + ρ∗(1− χ(n)))(fR(p(n)) + G0[p(n)] + divu(n))

)
t
MR(p(n)) dx

+

∫
Ω

1

ρW

(
|∇v(n)|2 + η |∆v(n)|2

)
dx+

∫
Ω

(B∇su(n)
t + P[∇su(n)]) : ∇su(n)

t dx

−
∫

Ω

(
p(n)(χ(n) + ρ∗(1− χ(n))) + β(QR((θ(n))+)− θc)

)
divu

(n)
t dx

=

∫
∂Ω
α(x)(p∗ − p(n))MR(p(n)) ds(x) +

∫
Ω
g · u(n)

t dx,

that is, computing the time derivative in the first summand and exploiting the energy identity (B.8),∫
Ω

(χ(n) + ρ∗(1− χ(n)))fR(p(n))tMR(p(n)) dx+

∫
Ω

(χ(n) + ρ∗(1− χ(n)))G0[p(n)]tMR(p(n)) dx

+

∫
Ω

(
B∇su(n)

t : ∇su(n)
t + UP [∇su(n)]t + ‖DP [∇su(n)]t‖∗

)
dx

+

∫
Ω

1

ρW

(
|∇v(n)|2 + η |∆v(n)|2

)
dx+

∫
∂Ω
α(x)(p(n) − p∗)MR(p(n)) ds(x)

= −
∫

Ω
(1− ρ∗)χ(n)

t

(
fR(p(n)) + G0[p(n)]

)
MR(p(n)) dx−

∫
Ω

(1− ρ∗)χ(n)
t divu(n)MR(p(n)) dx

−
∫

Ω
(χ(n) + ρ∗(1− χ(n))) divu

(n)
t MR(p(n)) dx+

∫
Ω
p(n)(χ(n) + ρ∗(1− χ(n))) divu

(n)
t dx

+

∫
Ω
β(QR((θ(n))+)− θc) divu

(n)
t dx+

∫
Ω
g · u(n)

t dx.

(5.31)

We now define

VM,R(p) :=

∫ p

0
f ′R(z)MR(z) dz

so that ∫
Ω

(χ(n) + ρ∗(1− χ(n)))fR(p(n))tMR(p(n)) dx

=
d

dt

∫
Ω

(χ(n) + ρ∗(1− χ(n)))VM,R(p(n)) dx−
∫

Ω
(1− ρ∗)χ(n)

t VM,R(p(n)) dx,

and introduce the modified Preisach potential

UM,R[p] :=

∫ ∞
0

∫ pr[p]

0
MR(v)ψ(r, v) dv dr > 0

which satisfies

G0[p]tMR(p)− UM,R[p]t ≥ 0 a. e.

according to (B.32) and (B.33). Note that (5.7) and (5.9) together with Hypothesis 5.1 (vi) and (vii)

yield

cR p
2 ≤ VM,R(p) ≤ CR p2 (5.32)
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5.1 – Cut-off system

for all p ∈ R, with some positive constants cR, CR depending only on R. Moreover, the estimates

UM,R[p] ≤ CR (1 + |p|) , (5.33)

UM,R[p](x,0) =

∫ ∞
0

∫ pr[p0](x)

0
MR(v)ψ(r, v) dv dr ≤ CR max{|p0(x)|,K} (5.34)

hold as a counterpart of (B.30) and (B.31). We rewrite (5.31) as

d

dt

∫
Ω

(
(χ(n) + ρ∗(1− χ(n)))(VM,R(p(n)) + UM,R[p(n)]) + UP [∇su(n)]

)
dx

+

∫
Ω

(
1

ρW

(
|∇v(n)|2 + η |∆v(n)|2

)
+ B∇su(n)

t : ∇su(n)
t + ‖DP [∇su(n)]t‖∗

)
dx

+

∫
∂Ω
α(x)(p(n) − p∗)MR(p(n)) ds(x)

≤
∫

Ω
(1− ρ∗)χ(n)

t

(
VM,R(p(n)) + UM,R[p(n)]

)
dx−

∫
Ω

(1− ρ∗)χ(n)
t

(
fR(p(n)) + G0[p(n)]

)
MR(p(n)) dx

−
∫

Ω
(1− ρ∗)χ(n)

t divu(n)MR(p(n)) dx+

∫
Ω

(χ(n) + ρ∗(1− χ(n))) divu
(n)
t

(
p(n) −MR(p(n))

)
dx

+

∫
Ω
β(QR((θ(n))+)− θc) divu

(n)
t dx+

∫
Ω
g · u(n)

t dx.

(5.35)

By the definition of v(n) and Hypothesis 5.1 (vii) we deduce∫
Ω

1

ρW
|∇v(n)|2 dx =

∫
Ω

1

ρW
|µR(p)|2|∇p(n)|2 dx ≥ (µ[)2

ρW

∫
Ω
|∇p(n)|2 dx. (5.36)

Moreover, thanks again to Hypothesis 5.1 (vii), the boundary term is such that∫
∂Ω
α(x)(p(n) − p∗)MR(p(n)) ds(x)

=

∫
∂Ω
α(x)|p(n)|2M∗R(p(n)) ds(x)−

∫
∂Ω
α(x)p∗p(n)M∗R(p(n)) ds(x)

≥ µ[
∫
∂Ω
α(x)|p(n)|2 ds(x)− CR

∫
∂Ω
α(x)|p∗p(n)|ds(x),

where for p ∈ R we set

M∗R(p) :=


MR(p)/p for p /= 0,

M ′R(0) for p = 0.

Young’s inequality and Hypothesis 5.1 (iii), (iv) give∫
∂Ω
α(x)(p(n) − p∗)MR(p(n)) ds(x) ≥ µ[

2

∫
∂Ω
α(x)|p(n)|2 ds(x)− CR. (5.37)

Moreover, by Hölder’s inequality and Hypothesis 5.1 (ii),∫
Ω

(g · u(n)
t )(x, t) dx ≤ C

(∫
Ω
|u(n)
t |2(x, t) dx

)1/2

≤ 2C√
cB[

√
B[

2

(∫
Ω
|∇su(n)

t |2 dx

)1/2

≤ C +
B[

8

∫
Ω
|∇su(n)

t |2 dx (5.38)
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5 – Solvability of the problem

where in the last line we used first Korn’s inequality (A.11) and then Young’s inequality. Neglecting

some lower order positive terms on the left-hand side, exploiting estimates (5.11), (5.32) and (5.33) and

the fact that ρ∗ ≤ (χ+ ρ∗(1− χ)) ≤ 1 for all χ ∈ [0,1], from (5.35) and the subsequent computations

we obtain

d

dt

∫
Ω

(
(χ(n) + ρ∗(1− χ(n)))(VM,R(p(n)) + UM,R[p(n)]) + UP [∇su(n)]

)
dx

+

∫
Ω

(
|∇p(n)|2 + η |∆v(n)|2 +

B[

2
|∇su(n)

t |2
)

dx+

∫
∂Ω
α(x)|p(n)|2 ds(x)

≤ CR
(

1 +

∫
Ω

(
|χ(n)
t ||p(n)|2 + |χ(n)

t ||divu(n)||p(n)|+ |p(n)|2
)

dx

)
,

(5.39)

where we used also Young’s inequality and the pointwise inequality (5.5) to absorb |divu
(n)
t | on the

left-hand side together with the term coming from (5.38).

We need to control |χ(n)
t |. To this aim we consider the phase dynamics in the formulation (4.30)–(4.31),

and employ the identity (B.21) for the stop (see also Remark B.2) to deduce that |χ(n)
t | ≤ |F

(n)
t |. This

yields, thanks to (5.11), (5.12) and (B.30),

|χ(n)
t (x, t)| ≤

C (1 + |p(n)|2) + |divu(n)|2/2 + L
∣∣QR((θ(n))+)/θc − 1

∣∣
γ[
(
1 + (QR((θ(n))+) + (|p(n)|2 −R2)+ + |divu(n)|2

) ≤ CR (5.40)

for a. e. (x, t) ∈ Ω × (0, Tn). We now come back to (5.39) and integrate in time
∫ τ

0 dt for some

τ ∈ [0, Tn]. The initial conditions are kept under control thanks to (5.32), (5.34), (B.2) and (B.7) and

Hypothesis 5.1 (v). Hence Young’s inequality yields∫
Ω

(
|p(n)|2 + |∇su(n)|2

)
(x, t) dx+

∫ τ

0

∫
Ω

(
|∇p(n)|2 + η |∆v(n)|2 + |∇su(n)

t |2
)

(x, t) dx dt

+

∫ τ

0

∫
∂Ω
α(x)|p(n)|2(x, t) ds(x) dt ≤ CR

(
1 +

∫ τ

0

∫
Ω

(
|p(n)|2 + |divu(n)|2

)
(x, t) dx dt

)
.

Using (5.5) and Grönwall’s lemma A.2, we see that the approximate solution remains bounded in the

maximal interval of existence [0, Tn]. Hence the solution exists globally, and for every n ∈ N we have

Tn = T . We thus have obtained

sup ess
τ∈[0,T ]

∫
Ω

(
|p(n)|2 + |∇su(n)|2

)
(x, τ) dx ≤ CR, (5.41)∫ T

0

(∫
Ω

(
|∇p(n)|2 + |∇su(n)

t |2
)

(x, t) dx+

∫
∂Ω
α(x)|p(n)|2(x, t) ds(x)

)
dt ≤ CR, (5.42)

and also ∫ T

0

∫
Ω
|∆v(n)|2(x, t) dx dt ≤ CR

η
. (5.43)

Now, in terms of the variable v(n) = MR(p(n)), the boundary condition is nonlinear. By the spatial

W 2,2-regularity result for parabolic equations with nonlinear boundary conditions on C1,1 domains

stated and proved in [95, Theorem 4.1], we finally see that

‖MR(p(n))‖2L2(0,T ;W 2,2(Ω)) ≤
CR
η
. (5.44)
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5.1 – Cut-off system

I Estimate 2

We test (5.23) by v̇i and sum up over i = 0,1, . . . , n. We get∫
Ω

(
(χ(n) + ρ∗(1− χ(n)))(fR(p(n)) + G0[p(n)] + divu(n))

)
t
MR(p(n))t dx

+

∫
Ω

1

ρW

(
∇v(n) · ∇v(n)

t + η∆v(n)∆v
(n)
t

)
dx =

∫
∂Ω
α(x)(p∗ − p(n))MR(p(n))t ds(x).

(5.45)

Defining

µ̂R(p) :=

∫ p

0
M ′R(z)z dz =

∫ p

0
µR(z)z dz

for p ∈ R, we can rewrite∫
∂Ω
α(x)(p(n) − p∗)MR(p(n))t ds(x) =

∫
∂Ω
α(x)

(
p(n)MR(p(n))t − p∗MR(p(n))t

)
ds(x)

=

∫
∂Ω
α(x)

(
µ̂R(p(n))t − (p∗MR(p(n)))t + p∗tMR(p(n))

)
ds(x)

=

∫
∂Ω
α(x)

(
µ̂R(p(n))− p∗MR(p(n))

)
t
ds(x) +

∫
∂Ω
α(x)p∗tMR(p(n)) ds(x).

Hence, computing the time derivative in the first summand and rearranging the terms, we can rewrite

(5.45) as

d

dt

(∫
Ω

1

2ρW

(
|∇v(n)|2 + η |∆v(n)|2

)
dx+

∫
∂Ω
α(x)(µ̂R(p(n))− p∗MR(p(n))) ds(x)

)
+

∫
Ω

(χ(n) + ρ∗(1− χ(n)))
(
fR(p(n))t + G0[p(n)]t

)
MR(p(n))t dx

= −
∫

Ω
(1− ρ∗)χ(n)

t divu(n)MR(p(n))t dx−
∫

Ω
(1− ρ∗)χ(n)

t

(
fR(p(n)) + G0[p(n)]

)
MR(p(n))t dx

−
∫

Ω
(χ(n) + ρ∗(1− χ(n))) divu

(n)
t MR(p(n))t dx−

∫
∂Ω
α(x)p∗tMR(p(n)) ds(x).

(5.46)

Combining (B.24) with the identity (B.21) for the play, we see that it holds

G0[p(n)]tMR(p(n))t = G0[p(n)]t p
(n)
t µR(p(n)) ≥ 0.

Hence by (5.7), (5.9) and Hypothesis 5.1 (vi), (vii) we obtain the pointwise lower bound

(χ(n) + ρ∗(1− χ(n)))
(
fR(p(n))t + G0[p(n)]t

)
MR(p(n))t ≥ ρ∗f ′R(p(n))µR(p(n)) |p(n)

t |2 ≥ CR |p
(n)
t |2.

We now integrate (5.46) in time
∫ τ

0 dt for some τ ∈ [0, T ]. Note that µ̂R(p) ≥ µ[ p2/2 for all p ∈ R.

Hence, arguing as for estimate (5.37) with p(n)MR(p(n)) replaced by µ̂R(p(n)), we obtain that the

boundary term on the left-hand side is such that∫
∂Ω
α(x)(µ̂R(p(n))− p∗MR(p(n)))(x, τ) ds(x) ≥ µ[

4

∫
∂Ω
α(x)|p(n)|2(x, τ) ds(x)− CR. (5.47)
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5 – Solvability of the problem

Concerning the initial conditions, we employ Hypothesis 5.1 (iv) and (v) together with the following

computations∫
∂Ω
α(x)µ̂R(p(n))(x,0) ds(x) =

∫
∂Ω
α(x)µ̂R(M−1

R (v(n)))(x,0) ds(x)

≤ CR
(µ[)2

∫
∂Ω
α(x)|v(n)|2(x,0) ds(x),∫

∂Ω
α(x)|p∗|2(x,0) ds(x) =

∫
∂Ω
α(x)|p∗|2(x, τ) ds(x)− 2

∫ τ

0

∫
∂Ω
α(x)(p∗p∗t )(x, t) ds(x) dτ,∫

∂Ω
α(x)|MR(p(n))|2(x,0) ds(x) =

∫
∂Ω
α(x)|v(n)|2(x,0) ds(x).

Hence, exploiting also (5.36) and (5.40), we get∫
Ω

(
|∇p(n)|2 + η |∆v(n)|2

)
(x, τ) dx+

∫
∂Ω
α(x)|p(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|p(n)
t |2(x, t) dx dt

≤ CR
(

1 +

∫ τ

0

∫
Ω

(
|divu(n)||p(n)

t |+ |p(n)||p(n)
t |+ |divu

(n)
t ||p

(n)
t |
)

dx dt

+

∫ τ

0

∫
∂Ω
α(x)|p∗t ||p(n)|ds(x) dt

)
.

Young’s inequality and Hypothesis 5.1 (iii) and (iv) give∫
Ω

(
|∇p(n)|2 + η |∆v(n)|2

)
(x, τ) dx+

∫
∂Ω
α(x)|p(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|p(n)
t |2(x, t) dx dt

≤ CR
(

1 +

∫ τ

0

∫
Ω

(
|divu(n)|2 + |p(n)|2 + |divu

(n)
t |2

)
(x, t) dx dt+

∫ τ

0

∫
∂Ω
α(x)|p(n)|2(x, t) ds(x) dt

)
.

Using estimates (5.5), (5.41) and (5.42) we deduce

sup ess
τ∈[0,T ]

(∫
Ω
|∇p(n)|2(x, τ) dx+

∫
∂Ω
α(x)|p(n)|2(x, τ) ds(x)

)
≤ CR, (5.48)

sup ess
τ∈[0,T ]

∫
Ω
|∆v(n)|2(x, τ) dx ≤ CR

η
, (5.49)∫ T

0

∫
Ω
|p(n)
t |2(x, t) dx dt ≤ CR. (5.50)

I Estimate 3

We test (5.25) by żk and sum over k = 0,1, . . . , n. We obtain∫
Ω

(
CV (θ(n))t −B∇su(n)

t : ∇su(n)
t − ‖DP [∇su(n)]t‖∗ −

1

ρW
µR(p(n))QR(|∇p(n)|2)

− (χ(n) + ρ∗(1− χ(n)))|D0[p(n)]t| − γR(p(n), θ(n),divu(n))|χ(n)
t |2

+

(
L

θc
χ

(n)
t + βdivu

(n)
t

)
QR((θ(n))+)

)
KR(θ(n))t dx+

∫
Ω
∇z(n) · ∇z(n)

t dx

=

∫
∂Ω
ω(x)(θ∗ − θ(n))KR(θ(n))t ds(x).

(5.51)

Defining

κ̂R(θ) :=

∫ θ

0
K ′R(z)z dz =

∫ θ

0
κ(QR(z+))z dz
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5.1 – Cut-off system

for θ ∈ R, we can rewrite∫
∂Ω
ω(x)(θ(n) − θ∗)KR(θ(n))t ds(x) =

∫
∂Ω
ω(x)

(
θ(n)KR(θ(n))t − θ∗KR(θ(n))t

)
ds(x)

=

∫
∂Ω
ω(x)

(
κ̂R(θ(n))t − (θ∗KR(θ(n)))t + θ∗tKR(θ(n))

)
ds(x)

=

∫
∂Ω
ω(x)

(
κ̂R(θ(n))− θ∗KR(θ(n))

)
t
ds(x) +

∫
∂Ω
ω(x)θ∗tKR(θ(n)) ds(x).

Hence, rearranging the terms in (5.51), we obtain

d

dt

(∫
Ω
|∇z(n)|2 dx+

∫
∂Ω
ω(x)

(
κ̂R(θ(n))− θ∗KR(θ(n))

)
ds(x)

)
+

∫
Ω
C′V (θ(n))κ(QR((θ(n))+)) |θ(n)

t |2 dx

=

∫
Ω

(
B∇su(n)

t : ∇su(n)
t + ‖DP [∇su(n)]t‖∗ +

1

ρW
µR(p(n))QR(|∇p(n)|2)

+ (χ(n) + ρ∗(1− χ(n)))|D0[p(n)]t|+ γR(p(n), θ(n), divu(n))|χ(n)
t |2

−
(
L

θc
χ

(n)
t + βdivu

(n)
t

)
QR((θ(n))+)

)
κ(QR((θ(n))+))θ

(n)
t dx−

∫
∂Ω
ω(x)θ∗tKR(θ(n)) ds(x).

Note that Hypothesis 5.1 (ix) yields

κ[ ≤ κ[
(

1 + (QR((θ(n))+))a
)
≤ κ(QR((θ(n))+)) ≤ κ]

(
1 + (QR((θ(n))+))a

)
≤ CR. (5.52)

We now integrate (5.51) in time
∫ τ

0 dt for some τ ∈ [0, T ]. By (5.52) and Hypothesis 5.1 (viii) it holds∫
Ω
|∇z(n)|2 dx =

∫
Ω
|κ(QR((θ(n))+))|2|∇θ(n)|2 dx ≥ (κ[)2

∫
Ω
|∇θ(n)|2 dx,∫ τ

0

∫
Ω
C′V (θ(n))κ(QR((θ(n))+)) |θ(n)

t |2 dx dt =

∫ τ

0

∫
Ω
cV (θ(n))κ(QR((θ(n))+)) |θ(n)

t |2 dx dt

≥ c[κ[
∫ τ

0

∫
Ω
|θ(n)
t |2 dx dt.

Note also that κ̂R(θ) ≥ κ[ θ2/2 for all θ ∈ R. Hence, using Young’s inequality as in (5.37) we obtain∫
∂Ω
ω(x)

(
κ̂R(θ(n))− θ∗KR(θ(n))

)
ds(x) ≥ κ[

2

∫
∂Ω
ω(x)|θ(n)|2 ds(x)− CR

∫
∂Ω
ω(x)|θ∗θ(n)|2 ds(x)

≥ κ[

4

∫
∂Ω
ω(x)|θ(n)|2 ds(x)− CR.

Concerning the initial conditions, we employ Hypothesis 5.1 (iv) and (v) together with the following

computations∫
∂Ω
ω(x)κ̂R(θ(n))(x,0) ds(x) =

∫
∂Ω
ω(x)κ̂R(K−1

R (z(n)))(x,0) ds(x)

≤ CR
∫
∂Ω
ω(x)|z(n)|2(x,0) ds(x),∫

∂Ω
ω(x)|θ∗|2(x,0) ds(x) =

∫
∂Ω
ω(x)|θ∗|2(x, τ) ds(x)− 2

∫ τ

0

∫
∂Ω
ω(x)(θ∗θ∗t )(x, t) ds(x) dτ,∫

∂Ω
ω(x)|KR(θ(n))|2(x,0) ds(x) =

∫
∂Ω
ω(x)|z(n)|2(x,0) ds(x).
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5 – Solvability of the problem

Thus, exploiting also (5.12), (5.40), (5.52), (B.9) and (B.30), we get∫
Ω
|∇θ(n)|2(x, τ) dx+

∫
∂Ω
ω(x)|θ(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|θ(n)
t |2(x, t) dt

≤ CR
(

1 +

∫ τ

0

∫
Ω

(
|∇su(n)

t |2 + |p(n)
t |+ |p(n)|2 + |divu(n)|2

)
|θ(n)
t |dx dt

+

∫ τ

0

∫
∂Ω
ω(x)|θ∗t ||θ(n)| ds(x) dt

)
.

Young’s inequality, Hypothesis 5.1 (iii), (iv) and estimate (5.50) give∫
Ω
|∇θ(n)|2(x, τ) dx+

∫
∂Ω
ω(x)|θ(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|θ(n)
t |2(x, t) dt

≤ CR
(

1 +

∫ τ

0

∫
Ω

(
|∇su(n)

t |4 + |p(n)|4 + |divu(n)|4
)

dx dt+

∫ τ

0

∫
∂Ω
ω(x)|θ(n)|2 ds(x) dt

)
.

(5.53)

We now need to estimate the terms ∇su(n)
t , p(n), divu(n) in the norm of L4(Ω × (0, T )). Note that

(5.48) and (5.50) entail ∇p(n) ∈ L∞(0, T ;L2(Ω;R3)), p
(n)
t ∈ L2(Ω× (0, T )) independently of n. Thus,

applying Lemma A.3 with p0 = q0 = q1 = 2, p1 =∞, p2 = q2 = 4 we see that∫ T

0

∫
Ω
|p(n)|4(x, t) dx dt ≤ CR. (5.54)

Now, let us consider (5.24) rewritten in the form∫
Ω
P[∇su(n)](x, t) : ∇sψ(x) dx+

∫
Ω

B∇su(n)
t (x, t) : ∇sψ(x) dx =

∫
Ω
w(n)(x, t) divψ(x) dx,

where

w(n)(x, t) := p(n)(χ(n) + ρ∗(1− χ(n))) + β(QR((θ(n))+)− θc)(x, t) +G(x, t)

according to Hypothesis 5.1 (ii). By the already mentioned Lp-regularity (with some p ∈ [2,∞)) for

elliptic systems in divergence form and by (B.6) we deduce, arguing as for (5.30),∫
Ω
|∇su(n)

t |p(x, t) dx ≤ C
∫

Ω
|∇su(n)|p(x,0) dx+ Ctp−1

∫ t

0

∫
Ω
|∇su(n)

t |p(x, τ) dx dτ

+ C

∫
Ω
|w(n)|p(x, t) dx a. e.

(5.55)

By (5.54) and Hypothesis 5.1 (ii) we see that∫ τ

0

∫
Ω
|w(n)|4(x, t) dx dt ≤ CR

(∫ τ

0

∫
Ω
|p(n)|4(x, t) dx dt+ 1

)
≤ CR.

Therefore, choosing p = 4 in (5.55) and using also Hypothesis 5.1 (v), by Grönwall’s lemma A.2 we

obtain ∫ τ

0

∫
Ω
|∇su(n)

t |4(x, t) dx dt ≤ CR,
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5.1 – Cut-off system

from which we deduce a bound also for the term divu(n) since ∇su(n)
t is dominant. Thus, coming back

to (5.53), we finally obtain∫
Ω
|∇θ(n)|2(x, τ) dx+

∫
∂Ω
ω(x)|θ(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|θ(n)
t |2(x, t) dx dt

≤ CR

(
1 +

∫ τ

0

∫
∂Ω
ω(x)|θ(n)|2(x, t) ds(x) dt

)

from which, by Poincaré’s inequality (A.10),∫
Ω

(
|θ(n)|2 + |∇θ(n)|2

)
(x, τ) dx+

∫
∂Ω
ω(x)|θ(n)|2(x, τ) ds(x) +

∫ τ

0

∫
Ω
|θ(n)
t |2(x, t) dx dt

≤ CR

(
1 +

∫ τ

0

∫
∂Ω
ω(x)|θ(n)|2(x, t) ds(x) dt

)
.

Applying Grönwall’s lemma A.2 we finally obtain for all t ∈ (0, T ) the estimates

sup ess
τ∈[0,T ]

(∫
Ω

(
|θ(n)|2 + |∇θ(n)|2

)
(x, τ) dx+

∫
∂Ω
ω(x)|θ(n)|2(x, τ) ds(x)

)
≤ CR, (5.56)∫ T

0

∫
Ω
|θ(n)
t |2(x, t) dx dt ≤ CR. (5.57)

Limit as n→∞

For the moment we keep the regularization parameters η and R fixed, and let n → ∞ in (5.23)–

(5.26). From estimates (5.41), (5.42), (5.44), (5.48), (5.50), (5.56) and (5.57) we see that there exists

a subsequence of {(p(n), θ(n)) : n ∈ N}, which is again indexed by n, and functions p, θ such that

p
(n)
t → pt, θ

(n)
t → θt weakly in L2(Ω× (0, T )),

∇θ(n) → ∇θ weakly-star in L∞(0, T ;L2(Ω;R3)).

By the compact embeddings established in Theorem A.3, Theorem A.4 and Corollary A.9 we also

have

p(n) → p strongly in Lq(Ω;C[0, T ]) for q ∈ [1,6) and in L2(∂Ω× (0, T )),

∇p(n) → ∇p strongly in L2(Ω× (0, T );R3),

θ(n) → θ strongly in L2(Ω× (0, T )) and in L2(∂Ω× (0, T )).

We also need strong convergence of the sequences {∇su(n)} and {∇su(n)
t } in order to pass to the limit

in some nonlinear terms. Note that, arguing as for (5.55), we obtain for p = 2∫ T

0

∫
Ω
|∇su(n)

t −∇su
(m)
t |2(x, τ) dx dτ ≤ C

∫ T

0

∫
Ω
|w(n) − w(m)|2(x, τ) dx dτ

≤ CR
(

1 +

∫ T

0

∫
Ω

(
|p(n) − p(m)|2 + |χ(n) − χ(m)|2

)
(x, τ) dx dτ

)
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5 – Solvability of the problem

a. e. in (0, T ). Remark 4.1 and Proposition B.5 yield

|χ(n) − χ(m)|(x, τ) ≤
∫ τ

0
|χ(n)
t − χ

(m)
t |(x, t) dt ≤ 2

∫ τ

0
|F (n)
t − F (m)

t |(x, t) dt, (5.58)

from which, by Proposition B.12, Remark B.13 and the pointwise inequality (5.5),∫ T

0

∫
Ω
|∇su(n)

t −∇su
(m)
t |2(x, τ) dx dτ

≤ CR

(
1 +

∫ T

0

∫
Ω

(
|p(n) − p(m)|2(x, τ)

+

∫ τ

0

(
sup ess
t∈[0,τ ]

|p(n) − p(m)|2(x, t) + |divu(n) − divu(m)|2(x, t)
)

dt

)
dx dτ

)

≤ CR

(
1 +

∫ T

0

∫
Ω

(
sup ess
t∈[0,τ ]

|p(n) − p(m)|2(x, t) +

∫ τ

0

∫ t

0
|∇su(n)

t −∇su
(m)
t |2(x, s) ds dt

)
dx dτ

)
.

Using Fubini Theorem1 and Grönwall’s lemma A.2 we obtain∫
Ω

sup ess
τ∈[0,T ]

|∇su(n) −∇su(m)|2(x, τ) dx ≤
∫ T

0

∫
Ω
|∇su(n)

t −∇su
(m)
t |2(x, τ) dx dτ

≤ CR

(
1 +

∫
Ω

sup ess
τ∈[0,T ]

|p(n) − p(m)|2(x, τ) dx

)
.

The sequence {p(n)} is Cauchy in L2(Ω;C[0, T ]), hence {∇su(n)} and {∇su(n)
t } are also Cauchy se-

quences in L2(Ω;C([0, T ];R3×3
sym)) and in L2(Ω× (0, T );R3×3

sym), respectively. Thus we conclude

∇su(n) → ∇su strongly in L2(Ω;C([0, T ];R3×3
sym)),

∇su(n)
t → ∇sut strongly in L2(Ω× (0, T );R3×3

sym).

We are now ready to pass to the limit in the nonlinearities. By Theorem A.7, Hypothesis 5.1 (viii)

and estimates (5.11), (5.12) we obtain

fR(p(n))→ fR(p), ΦR(p(n))→ ΦR(p) strongly in L2(Ω× (0, T )),

CV (θ(n)) → CV (θ) strongly in Lq(Ω× (0, T )) for all q ∈
[
1, 2

1+b̂

]
,

B∇su(n)
t : ∇su(n)

t → B∇sut : ∇sut strongly in L1(Ω× (0, T )),

QR(|∇p(n)|2) → QR(|∇p|2)

µR(p(n)) → µR(p)

QR((θ(n))+) → QR(θ+)
1

γR(p(n), θ(n),divu(n))
→ 1

γR(p, θ, divu)


strongly in Lq(Ω× (0, T )) for all q ∈ [1,∞),

1We use Fubini Theorem as follows∫ τ

0

(∫ t

0

f(s) ds

)
ds =

∫ τ

0

(∫ τ

s

dt

)
f(s) ds =

∫ τ

0

(τ − s)f(s) ds.

The above is also called Cauchy formula for repeated integrals. It will be frequently used in the whole thesis.
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5.1 – Cut-off system

from which

fR(p(n))t → fR(p)t, CV (θ(n))t → CV (θ)t weakly in L2(Ω× (0, T )),

γR(p(n), θ(n),divu(n)) → γR(p, θ, divu) strongly in Lq(Ω× (0, T )) for all q ∈ [1,∞).

Concerning the hysteresis terms, from Proposition B.1 (i) and Proposition B.12 we deduce

P[∇su(n)] → P[∇su] strongly in L2(Ω;C([0, T ];R3×3
sym)),

G0[p(n)] → G0[p] strongly in L2(Ω;C[0, T ]),

G0[p(n)]t → G0[p]t weakly in L2(Ω× (0, T )).

Looking at the definition of UP in (B.7) and at Remark B.13 for U0, we see that

UP [∇su(n)]→ UP [∇su], U0[p(n)]→ U0[p] strongly in L1(Ω;C[0, T ]).

These imply

UP [∇su(n)]t → UP [∇su]t, U0[p(n)]t → U0[p]t weakly in L2(Ω× (0, T )),

which together with the energy identities (B.8), (B.25) gives

‖DP [∇su(n)]t‖∗ → ‖DP [∇su]t‖∗ , |D0[p(n)]t| → |D0[p]t| weakly in L2(Ω× (0, T )).

We now prove that the sequences {χ(n)}, {χ(n)
t } converge strongly in appropriate function spaces.

Inequality (5.58) yields∫
Ω

sup
τ∈[0,t]

|χ(n) − χ(m)|(x, τ) dx ≤
∫ τ

0

∫
Ω
|χ(n)
t − χ

(m)
t |(x, t) dx dt ≤ 2

∫ τ

0

∫
Ω
|F (n)
t − F (m)

t |(x, t) dx dt

where, due to the above convergences, F
(n)
t → Ft strongly in L1(Ω× (0, T )). Hence we conclude that

{χ(n)(x, t)} and {χ(n)
t (x, t)} are Cauchy sequences in L1(Ω;C[0, T ]) and in L1(Ω×(0, T )), respectively.

Moreover, since both |χ(n)| and |χ(n)
t | admit a uniform pointwise upper bound (see (5.40)), we can

use the Lebesgue dominated convergence theorem to conclude that

χ(n) → χ strongly in Lq(Ω;C[0, T ]) for all q ∈ [1,∞),

χ
(n)
t → χt strongly in Lq(Ω× (0, T )) for all q ∈ [1,∞).

Passing to the limit as n → ∞ in (5.23)–(5.27) we see that (p, u, θ, χ) is a solution to (5.18)–(5.21),

(4.29) with the regularity stated in Proposition 5.4.

Limit as η → 0

Let us denote by (v(η), u(η), z(η), χ(η)) the solution to (5.18)–(5.21). Note that estimate (5.49) is

preserved in the limit as n→∞, hence the limit function v(η) satisfies the inequality

sup ess
τ∈[0,T ]

∫
Ω
|∆v(η)|2(x, t) dx ≤ CR

η
. (5.59)
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5 – Solvability of the problem

This allows us to integrate by parts in equation (5.18) taking into account the boundary condition

(5.22), obtaining∫
Ω

(
(χ(η) + ρ∗(1− χ(η)))(fR(M−1

R (v(η))) + G0[M−1
R (v(η))] + divu(η))

)
t
φ dx

+

∫
Ω

1

ρW

(
−∆v(η) φ+ η∆v(η)∆φ

)
dx =

∫
∂Ω
α(x)(p∗ −M−1

R (v(η)))φ ds(x).

(5.60)

Choosing φ ∈ W 2,2(Ω) ∩ X0 and introducing the new variable v̂(η) = 1
ρW

∆v(η), we rewrite (5.60) in

the form ∫
Ω
v̂(η) (φ− η∆φ) dx =

∫
Ω
h(η)φ dx (5.61)

where

h(η) =
(
(χ(η) + ρ∗(1− χ(η)))(fR(M−1

R (v(η))) + G0[M−1
R (v(η))] + divu(η))

)
t
.

Note that the term G0[p(η)]t is of order p
(η)
t by (B.21) and (B.24). Hence by estimates (5.40)–(5.42)

and (5.50) we see that h(η) ∈ L2(Ω× (0, T )), and its L2-norm is bounded independently of η.

Consider now the system {ek : k ∈ N} of eigenfunctions of the negative Laplace operator with zero

Dirichlet boundary conditions

−∆ek = λkek , ek
∣∣
∂Ω

= 0 ,

∫
Ω
|ek(x)|2 dx = 1.

They form a complete orthonormal system in L2(Ω) with 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . . The functions

h(η), v̂(η) admit the expansions

h(η)(x, t) =

∞∑
k=1

h
(η)
k (t) ek(x) , v̂(η)(x, t) =

∞∑
k=1

v̂
(η)
k (t) ek(x) ,

with coefficients h
(η)
k : [0, T ]→ R, v̂

(η)
k : [0, T ]→ R. Choosing φ = ek in (5.61) we obtain

v̂
(η)
k (t) =

h
(η)
k (t)

1 + ηλk
,

hence ∫ T

0

∫
Ω
|v̂(η)(x, t)|2 dx dt =

∫ T

0

∞∑
k=1

|v̂(η)
k (t)|2 dt

≤
∫ T

0

∞∑
k=1

|h(η)
k (t)|2 dt =

∫ T

0

∫
Ω
|h(η)(x, t)|2 dx dt ≤ CR (5.62)

for some positive constant CR independent of η. Thus we get, as η → 0,

∇v(η) → ∇v strongly in L2(Ω× (0, T );R3),

η∆v(η) → 0 strongly in L2(Ω× (0, T )),

from which, by definition of MR in (5.17) and Hypothesis 5.1 (vii),

∇M−1
R (v(η)) → ∇M−1

R (v) strongly in L2(Ω× (0, T );R3),

QR(|∇M−1
R (v(η))|2) → QR(|∇M−1

R (v)|2) strongly in Lq(Ω× (0, T )) for all q ∈ [1,∞).
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5.2 – Estimates independent of the cut-off parameter

Estimates (5.41), (5.42), (5.48), (5.50), (5.56) and (5.57) are preserved when n→∞. Since they are

independent of η, by letting η → 0 we obtain the same convergences as before. This completes the

proof of Proposition 5.4.

As a side product, from (5.62) we get that the estimate

∫ T

0

∫
Ω
|∆MR(p)|2(x, t) dx dt ≤ CR

holds also in the limit as η → 0. Hence, arguing as for (5.44) we get

‖MR(p)‖2L2(0,T ;W 2,2(Ω)) ≤ CR.

This, together with the Sobolev embedding W 1,2(Ω) ↪→ L6(Ω), yields

∫ T

0

(∫
Ω
|∇p|6(x, t) dx

)1/3

dt ≤ CR. (5.63)

5.2 Estimates independent of the cut-off parameter

We now come back to our cut-off system (5.13)–(5.16). We are going to derive a series of estimates

independent of R. More precisely, after proving that the temperature stays away from zero, we

will perform the energy estimate and the Dafermos estimate in order to gain some regularity for

the temperature. Subsequently, a key-step will be the derivation of a bound for p in an anisotropic

Lebesgue space. Then an analogous estimate based on the particular structure of equation (5.14) is

obtained for ∇sut. We finally show that this is sufficient for starting the Moser iteration and obtain

an L∞ bound for p. After deriving some higher order estimates for the capillary pressure and for the

temperature, we will be ready to let R tend to ∞ in (5.13)–(5.16).

5.2.1 Positivity of the temperature

For every nonnegative test function ζ ∈ X we have, by virtue of (5.15),

∫
Ω

(
CV (θ)tζ + κ(QR(θ+))∇θ · ∇ζ

)
dx+

∫
∂Ω
ω(x)(θ − θ∗)ζ ds(x)

=

∫
Ω

(
B∇sut : ∇sut + ‖DP [∇su]t‖∗ +

1

ρW
µR(p)QR(|∇p|2)

+ (χ+ ρ∗(1− χ))|D0[p]t|+ γR(p, θ,divu)χ2
t −

(
L

θc
χt + βdivut

)
QR(θ+)

)
ζ dx

≥
∫

Ω

(
B[

3
|divut|2 + γ[χ2

t −
(
L

θc
χt + βdivut

)
QR(θ+)

)
ζ dx,
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5 – Solvability of the problem

where in the last line we used Hypothesis 5.1 (i) together with inequality (5.5), and also estimate

(5.12). Note that, by Young’s inequality,

B[

3
|divut|2 − βdivutQR(θ+) =

B[

3
|divut|2 −

√
B[

2
divut

√
2β√
B[
QR(θ+) ≥ B[

12
|divut|2 − C(QR(θ+))2,

γ[χ2
t −

L

θc
χtQR(θ+) = γ[χ2

t −
√
γ[χt

L

θc
√
γ[
QR(θ+) ≥ 1

2
γ[χ2

t − C(QR(θ+))2.

Hence we get∫
Ω

(
CV (θ)tζ + κ(QR(θ+))∇θ · ∇ζ

)
dx+

∫
∂Ω
ω(x)(θ − θ∗)ζ ds(x) ≥ −C

∫
Ω

(QR(θ+))2ζ dx

with a constant C depending on L, θc, β, B, γ[. Let now ϕ(t) be the solution of the ODE

d

dt
CV (ϕ(t)) + Cϕ2(t) = 0, ϕ(0) = θ̄

with θ̄ from Hypothesis 5.1. Then ϕ is

� nonincreasing: this immediately follows from the fact that d
dtCV (ϕ(t)) ≤ 0 for all t ≥ 0;

� positive: since ϕ(0) > 0 and ϕ is decreasing, we need to prove that there is no t > 0 such that

ϕ(t) = 0. Let us assume by contradiction that at a certain time t∗ > 0 it happens that ϕ(t∗) = 0.

Now, defining y := CV (ϕ), we have that y is a solution to the following Cauchy problem

ẏ(t) + C
(
(CV )−1(y(t))

)2
= 0, y(0) = CV (θ̄).

For equations of this form, it is possible to deduce a formula for computing the vanishing time

t∗. Let us consider t ∈ [0, t∗), so that (CV )−1(y(t)) > 0. Rewriting

ẏ(t)

C ((CV )−1(y(t)))2 = −1,

integrating
∫ t∗

0 dt and operating the change of variable y = y(t) we obtain∫ y∗

y0

1

C ((CV )−1(y))2 dy = t∗,

where y0 = y(0) and y∗ = y(t∗). Coming back to the original variable ϕ = (CV )−1(y), the above

integral can be rewritten as

t∗ =

∫ θ̄

0

C′V (ϕ)

Cϕ2
dϕ =

∫ θ̄

0

cV (ϕ)

Cϕ2
dw ≥ c[

C

∫ θ̄

0

1

ϕ3/2
dϕ =∞,

where we used Hypothesis 5.1 (viii). Thus we have proved that such a time t∗ does not exist.

Taking into account the fact that CV (ϕ)t = −Cϕ2 and ∇ϕ = 0, for every nonnegative test function

ζ ∈ X we have in particular∫
Ω

((
CV (ϕ)− CV (θ)

)
t
ζ + κ(QR(θ+))∇(ϕ− θ) · ∇ζ

)
dx+

∫
∂Ω
ω(x)(θ − θ∗)ζ ds(x)

≤ C
∫

Ω

(
(QR(θ+))2 − ϕ2

)
ζ dx.
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5.2 – Estimates independent of the cut-off parameter

Consider now the following regularization of the Heaviside function

Hλ(z) =


0 for z ≤ 0,

z

λ
for 0 < z ≤ λ,

1 for z > λ,

and set ζ(x, t) = ϕ(t)−Hλ(θ(x, t)), which is an admissible test function. For all values of x and t it

holds that

� 0 ≤ ∇(ϕ− θ) · ∇Hλ(ϕ− θ) =


0 for z < 0 and for z > λ,

|∇(ϕ− θ)|2

λ
for 0 < z < λ;

� (θ∗ − θ)Hλ(ϕ− θ) ≥ 0 since

- if θ ≤ θ∗ then it is trivial,

- if θ > θ∗ then by Hypothesis 5.1 (iv) θ > θ̄, and from the monotonicity of ϕ we get θ > ϕ,

which implies Hλ(ϕ− θ) = 0;

�
(
(QR(θ+))2 − ϕ2

)
Hλ(ϕ− θ) = (QR(θ+)− ϕ)(QR(θ+) + ϕ)Hλ(ϕ− θ) ≤ 0 since

- if (QR(θ+)− ϕ)(QR(θ+) + ϕ) ≤ 0 then it is trivial,

- if (QR(θ+) − ϕ)(QR(θ+) + ϕ) > 0, that is, 0 < ϕ < QR(θ+), then ϕ < θ which implies

Hλ(ϕ− θ) = 0.

This yields ∫
Ω

(
CV (ϕ)− CV (θ)

)
t
Hλ(ϕ− θ) dx ≤ 0.

By the Lebesgue Dominated Convergence Theorem we can pass to the limit in the above inequality

for λ→ 0, getting ∫
Ω

(
CV (ϕ)− CV (θ)

)
t
H(ϕ− θ) dx ≤ 0,

that is, by the monotonicity of CV ,

d

dt

∫
Ω

(CV (ϕ)− CV (θ))+ dx ≤ 0, (CV (ϕ)− CV (θ))+(x,0) = 0

which implies (CV (ϕ) − CV (θ))+ ≡ 0. Owing again to the monotonicity of CV and ϕ, we conclude

that, independently of R,

θ(x, t) ≥ ϕ(t) ≥ ϕ(T ) =: θT > 0 for all x and t. (5.64)

We now pass to a series of estimates independent of R.
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5 – Solvability of the problem

5.2.2 Energy estimate

Since we proved that the temperature stays positive, from now on we will write QR(θ+) = QR(θ).

We test (5.13) by φ = p, (5.14) by ψ = ut and (5.15) by ζ = 1. Summing up the three resulting

equations we obtain∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pdx+

∫
Ω

1

ρW
µR(p)|∇p|2 dx

+

∫
Ω

(P[∇su] + B∇sut) : ∇sut dx−
∫

Ω

(
p (χ+ ρ∗(1− χ)) + β(QR(θ)− θc)

)
divut dx

+

∫
Ω

(
CV (θ)t −B∇sut : ∇sut − ‖DP [∇su]t‖∗ −

1

ρW
µR(p)QR(|∇p|2)

− (χ+ ρ∗(1− χ))|D0[p]t| − γR(p, θ, divu)χ2
t

)
dx+

∫
Ω

(
L

θc
χt + βdivut

)
QR(θ) dx

=

∫
∂Ω
α(x)(p∗ − p)p ds(x) +

∫
Ω
g · ut dx+

∫
∂Ω
ω(x)(θ∗ − θ) ds(x).

Note that some of the terms cancel out. Moreover, recalling the notation introduced in (5.8) and the

energy balance (B.25), the identities∫
Ω

(
(χ+ ρ∗(1− χ))fR(p)

)
t
p dx =

d

dt

∫
Ω

(χ+ ρ∗(1− χ))VR(p) dx+

∫
Ω

(1− ρ∗)χtΦR(p) dx, (5.65)∫
Ω

(
(χ+ ρ∗(1− χ))G0[p]

)
t
pdx−

∫
Ω

(χ+ ρ∗(1− χ))|D0[p]t| dx

=
d

dt

∫
Ω

(χ+ ρ∗(1− χ))U0(p) dx+

∫
Ω

(1− ρ∗)χt (pG0[p]− U0[p]) dx

(5.66)

hold true. Hence we obtain, using also (B.8),

d

dt

∫
Ω

(
CV (θ) + βθc divu+ (χ+ ρ∗(1− χ))(VR(p) + U0[p]) + UP [∇su]

)
dx

+

∫
Ω

(
1

ρW
µR(p)

(
|∇p|2 −QR(|∇p|2)

)
+
L

θc
QR(θ)χt

)
dx

−
∫

Ω
χt

(
γR(p, θ, divu)χt − (1− ρ∗)(ΦR(p) + pG0[p]− U0[p] + p divu)

)
dx

=

∫
Ω
g · ut dx+

∫
∂Ω

(
α(x)(p∗ − p)p+ ω(x)(θ∗ − θ)

)
ds(x),

and by (5.16) (see Remark B.2)

d

dt

∫
Ω

(
CV (θ) + Lχ+ βθc divu+ (χ+ ρ∗(1− χ))(VR(p) + U0[p]) + UP [∇su]

)
dx

+
1

ρW

∫
Ω
µR(p)

(
|∇p|2 −QR(|∇p|2)

)
dx+

∫
∂Ω

(
α(x)(p− p∗)p+ ω(x)(θ − θ∗)

)
ds(x)

=
d

dt

∫
Ω
g · udx−

∫
Ω
gt · udx.

(5.67)

We now integrate in time
∫ τ

0 dt. On the left-hand side Young’s inequality, (B.9) and (5.5) entail

UP [∇su] + βθc divu = UP [∇su] +
2βθc√
A[

√
A[

2
divu

≥ A[

2
|∇su|2 −

2β2θ2
c

A[
− A[

8
|divu|2 ≥ A[

8
|∇su|2 − C. (5.68)
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5.2 – Estimates independent of the cut-off parameter

By the definition of QR in (5.6), it holds |∇p|2 ≥ QR(|∇p|2). The boundary term is such that∫ τ

0

∫
∂Ω

(
α(x)(p− p∗)p+ ω(x)(θ − θ∗)

)
ds(x) dt

≥
∫ τ

0

∫
∂Ω

(
α(x)

(
p2 − |p

∗|2

2
− p2

2

)
+ ω(x)(θ − θ∗)

)
ds(x) dt

≥
∫ τ

0

∫
∂Ω

(
α(x)

p2

2
+ ω(x)θ

)
ds(x) dt− C

(5.69)

thanks to Hypothesis 5.1 (iii) and (iv). Concerning the right-hand side of (5.67), the time integration

gives ∫
Ω

(g · u)(x, τ) dx−
∫

Ω
g(x,0) · u0(x) dx−

∫ τ

0

∫
Ω

(gt · u)(x, t) dx dt,

where the term containing the initial conditions is controlled by using Hölder’s inequality and observ-

ing that ∫
Ω
|g|2(x,0) dx =

∫
Ω
|g|2(x, τ) dx− 2

∫ τ

0

∫
Ω

(g · gt)(x, t) dx dt.

Hence by Young’s inequality and Hypothesis 5.1 (ii), (v) we deduce∫
Ω

(g · u)(x, τ) dx−
∫

Ω
g(x,0) · u0(x) dx−

∫ τ

0

∫
Ω

(gt · u)(x, t) dx dt

≤ 2
√

2√
A[c

(∫
Ω
|g|2(x, τ) dx

)1/2
√
A[c

2
√

2

(∫
Ω
|u|2(x, τ) dx

)1/2

+ C

(
1 +

(∫ τ

0

∫
Ω
|u|2(x, t) dx dt

)1/2
)

≤ A[

16

∫
Ω
|∇su|2(x, τ) dx+ C

(
1 +

∫ τ

0

∫
Ω
|∇su|2(x, t) dx dt

)
,

where in the last line we used Korn’s inequality (A.11). The first term in the last line is absorbed

by (5.68). Finally, the initial conditions are kept under control thanks to (5.11), (B.7), (B.31) and

Hypothesis 5.1 (v). Hence what we eventually get is∫
Ω

(
CV (θ) + VR(p) + |∇su|2

)
(x, τ) dx+

∫ τ

0

∫
∂Ω

(
α(x)p2 + ω(x)θ

)
(x, t) ds(x) dt

≤ C
(

1 +

∫ τ

0

∫
Ω
|∇su|2(x, t) dx dt

)
,

and applying Grönwall’s lemma A.2 we finally obtain the estimates

sup ess
τ∈[0,T ]

∫
Ω

(
CV (θ) + VR(p) + |∇su|2

)
(x, τ) dx ≤ C, (5.70)∫ T

0

∫
∂Ω

(
α(x)p2 + ω(x) θ

)
(x, t) ds(x) dt ≤ C. (5.71)

Estimate (5.70) also gives

sup ess
τ∈[0,T ]

∫
Ω
|θ|1+b(x, τ) dx ≤ C, (5.72)

where b is from Hypothesis 5.1 (viii).
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5 – Solvability of the problem

5.2.3 Dafermos estimate

We set θ̂ := QR(θ) and test (5.15) by ζ = −θ̂−a, with a from Hypothesis 5.1. This yields the identity∫
Ω

(
CV (θ)t −B∇sut : ∇sut − ‖DP [∇su]t‖∗ −

1

ρW
µR(p)QR(|∇p|2)− (χ+ ρ∗(1− χ))|D0[p]t|

− γR(p, θ, divu)χ2
t +

(
L

θc
χt + βdivut

)
θ̂

)
(−θ̂−a) dx+

∫
Ω
κ(θ̂)∇θ · ∇(−θ̂−a) dx

=

∫
∂Ω
ω(x)(θ∗ − θ) (−θ̂−a) ds(x).

(5.73)

It holds ∫
Ω
CV (θ)t (−θ̂−a) dx = − d

dt

∫
Ω
Fa(θ) dx

where

Fa(θ) :=

∫ θ

0

cV (s)

(QR(s))a
ds,

and by Hypothesis 5.1 (ix) also∫
Ω
κ(θ̂)∇θ · ∇(−θ̂−a) dx =

∫
Ω
κ(θ̂) a θ̂−a−1∇θ · ∇θ̂ dx ≥ aκ[

∫
Ω
|∇θ̂|2 dx.

Hence from (5.73) we get, using also Hypothesis 5.1 (i) and inequalities (5.5), (5.12),∫
Ω

(
B[

3
|divut|2 + γ[χ2

t

)
θ̂−a dx+ aκ[

∫
Ω
|∇θ̂|2 dx

≤
∫

Ω

(
L

θc
χt + βdivut

)
θ̂1−a dx+

∫
∂Ω
ω(x)(θ − θ∗) θ̂−a ds(x) +

d

dt

∫
Ω
Fa(θ) dx,

(5.74)

where we neglected some positive terms on the left-hand side. Young’s inequality yields(
L

θc
χt + βdivut

)
θ̂1−a =

√
γ[χt θ̂

−a/2 L

θc
√
γ[
θ̂1−a/2 +

√
B[

2
divut θ̂

−a/2
√

2β√
B[
θ̂1−a/2

≤

(
γ[

2
χt|2 +

B[

4
|divut|2

)
θ̂−a + Cθ̂2−a,

with a constant C depending only on L, θc, β, B, γ[, whereas the boundary term is such that∫
∂Ω
ω(x)(θ − θ∗) θ̂−a ds(x) ≤ 1

θaT

(∫
∂Ω
ω(x)θ ds(x) +

∫
∂Ω
ω(x)θ∗ ds(x)

)
≤ C

(
1 +

∫
∂Ω
ω(x)θ ds(x)

)
by (5.64) and Hypothesis 5.1 (iii), (iv). Note also that Fa(θ) ≤ CV (θ) for all θ ≥ 0. Thus integrating

(5.74) in time
∫ τ

0 dt for some τ ∈ [0, T ] and neglecting some other positive terms on the left-hand side

we obtain∫ τ

0

∫
Ω
|∇θ̂|2(x, t) dx dt

≤ C
(

1 +

∫ τ

0

∫
Ω
θ̂2−a(x, t) dx dt+

∫ τ

0

∫
∂Ω
ω(x)θ(x, t) ds(x) dt+

∫
Ω
CV (θ)(x, τ) dx

)
,
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and from estimates (5.70), (5.71)∫ τ

0

∫
Ω
|∇θ̂|2(x, t) dx dt ≤ C

(
1 +

∫ τ

0

∫
Ω
θ̂2−a(x, t) dx dt

)
. (5.75)

Now, owing to estimate (5.72), we can apply the Gagliardo-Nirenberg inequality (A.8) with the choices

s = 1 + b, p = 2 and N = 3 obtaining, for t ∈ (0, T ),

|θ̂(t)|q ≤ C
(
|θ̂(t)|1+b + |θ̂(t)|1−%1+b |∇θ̂(t)|

%
2

)
≤ C

(
1 + |∇θ̂(t)|%2

)
with % = 6(q−1−b)

(5−b)q and for every 1 + b < q < 6. In particular, since % · (5−b)q
3(q−1−b) = 2, this and (5.75)

yield ∫ T

0
|θ̂(t)|(5−b)q/3(q−1−b)

q dt ≤ C
(

1 +

∫ T

0
|∇θ̂(t)|22 dt

)
≤ C

(
1 +

∫ T

0
|θ̂(t)|2−a2−a dt

)
. (5.76)

Let us now choose q = 2− a, which is admissible in the sense that 1 + b < 2− a thanks to Hypothesis

5.1. Since 5−b
3(1−a−b) > 1, we can apply Young’s inequality on the right-hand side getting

∫ T

0

(
|θ̂(t)|2−a2−a

)(5−b)/3(1−a−b)
dt ≤ C

(
1 +

∫ T

0
|θ̂(t)|2−a2−a dt

)
≤ C +

3(1− a− b)
5− b

∫ T

0

(
|θ̂(t)|2−a2−a

)(5−b)/3(1−a−b)
dt,

from which ∫ T

0
|θ̂(t)|2−a2−a dt ≤ C.

Substituting in (5.76) entails ∫ T

0

∫
Ω
|∇θ̂|2(x, t) dx dt ≤ C. (5.77)

Coming back to (5.76) again and choosing q = 8/3 + 2b/3, we also get∫ T

0

∫
Ω
θ̂8/3+2b/3(x, t) dx dt ≤ C. (5.78)

5.2.4 Mechanical energy estimate

In order to estimate the capillary pressure in a suitable anisotropic Lebesgue space, we first need to

find a bound for divut in L2(Ω×(0, T )), independently of R. To this purpose, we test (5.13) by φ = p,

(5.14) by ψ = ut and sum up to obtain, with the notation of the previous subsection,∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
p dx+

∫
Ω

1

ρW
µR(p)|∇p|2 dx

+

∫
Ω

(P[∇su] + B∇sut) : ∇sut dx−
∫

Ω

(
p(χ+ ρ∗(1− χ)) + β(θ̂ − θc)

)
divut dx

=

∫
∂Ω
α(x)(p∗ − p) p ds(x) +

∫
Ω
g · ut dx.
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5 – Solvability of the problem

Note that some terms cancel out. Owing to (5.65) and (5.66) and exploiting also the energy identity

(B.8), what we eventually get is

d

dt

∫
Ω

(
(χ+ ρ∗(1− χ)) (VR(p) + U0[p]) + UP [∇su]

)
dx+

∫
Ω

1

ρW
µR(p)|∇p|2 dx+

∫
Ω

B∇sut : ∇sut dx

+

∫
Ω

(1− ρ∗)χt
(
ΦR(p) + pG0[p] + p divu− U0[p]

)
dx+

∫
∂Ω
α(x)(p− p∗) p ds(x)

≤
∫

Ω
β(θ̂ − θc) divut dx+

∫
Ω
g · ut dx.

Now, (5.16) yields (see Remark B.2)

(1− ρ∗)χt
(
ΦR(p) + pG0[p] + p divu− U0[p]

)
= γR(p, θ, divu)χ2

t − Lχt

(
θ̂

θc
− 1

)

= γR(p, θ,divu)χ2
t −

√
γR(p, θ, divu)χt

L√
γR(p, θ, divu)

(
θ̂

θc
− 1

)
≥ 1

2
γR(p, θ, divu)χ2

t − C(1 + θ̂) (5.79)

where in the last line we used Young’s inequality and (5.12), and where the constant C is independent

of R. Moreover, from the pointwise inequality (5.5) and arguing as for (5.38) we get

∫
Ω
β(θ̂ − θc) divut dx =

∫
Ω

β
√

6√
B[

(θ̂ − θc)
√
B[

6
divut dx ≤ C

(
1 +

∫
Ω
θ̂2 dx

)
+
B[

4

∫
Ω
|∇sut|2 dx,∫

Ω
g · ut dx ≤ C +

B[

4

∫
Ω
|∇sut|2 dx.

Hence we obtain, exploiting also Hypothesis 5.1 (i) to absorb the terms coming from the two estimates

above,

d

dt

∫
Ω

(
(χ+ ρ∗(1− χ)) (VR(p) + U0[p]) + UP [∇su]

)
dx+

µ[

ρW

∫
Ω
|∇p|2 dx+

B[

2

∫
Ω
|∇sut|2 dx

+
1

2

∫
Ω
γR(p, θ, divu)χ2

t dx+
1

2

∫
∂Ω
α(x)p2 ds(x) ≤ C

(
1 +

∫
Ω
θ̂2 dx

)
where the boundary term was handled as in (5.69). We now integrate in time

∫ τ
0 dt for some τ ∈ [0, T ].

The right-hand side is bounded thanks to estimate (5.78), whereas the initial conditions are kept under

control thanks to (5.11), (B.2), (B.7), (B.31) and Hypothesis 5.1 (v). Hence, neglecting some already

estimated positive terms, we finally obtain∫ T

0

∫
Ω

(
|∇p|2 + |∇sut|2

)
(x, t) dx dt ≤ C (5.80)

independently of R. This, together with (5.71) and Poincaré’s inequality (A.10), yields

‖p‖2L2(0,T ;W 1,2(Ω)) dt ≤ C. (5.81)
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5.2 – Estimates independent of the cut-off parameter

5.2.5 Estimate for the capillary pressure

We choose an even function b : R → (0,∞) such that b′(p) ≥ 0 for p > 0 and pb(p) ∈ X. Then we

test (5.13) by φ = pb(p). We obtain∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pb(p) dx+

∫
Ω

1

ρW
µR(p)(b(p) + pb′(p))|∇p|2 dx

=

∫
∂Ω
α(x)(p∗ − p) pb(p) ds(x).

(5.82)

The term under the time derivative has the form∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pb(p) dx

=

∫
Ω

(1− ρ∗)χt (fR(p) + G0[p] + divu) pb(p) dx+

∫
Ω

(χ+ ρ∗(1− χ))f ′R(p)pt pb(p) dx

+

∫
Ω

(χ+ ρ∗(1− χ))G0[p]t pb(p) dx+

∫
Ω

(χ+ ρ∗(1− χ)) divut pb(p) dx.

(5.83)

We now define

Vb,R(p) :=

∫ p

0
f ′R(z)zb(z) dz

so that∫
Ω

(χ+ ρ∗(1− χ))f ′R(p)pt pb(p) dx =
d

dt

∫
Ω

(χ+ ρ∗(1− χ))Vb,R(p) dx−
∫

Ω
(1− ρ∗)χtVb,R(p) dx,

and introduce the modified Preisach potential

Ub[p] :=

∫ ∞
0

∫ pr[p]

0
vb(v)ψ(r, v) dv dr

which satisfies

G0[p]t pb(p)− Ub[p]t ≥ 0 a. e.

according to (B.32) and (B.33). Note that Vb,R(p) > 0 and Ub[p] ≥ 0 for all p /= 0. Then (5.83) can

be rewritten as∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pb(p) dx

≥ d

dt

∫
Ω

(χ+ ρ∗(1− χ)) (Vb,R(p) + Ub[p]) dx+

∫
Ω

(χ+ ρ∗(1− χ)) divut pb(p) dx

+

∫
Ω

(1− ρ∗)χt
(

(pfR(p) + pG0[p] + p divu) b(p)− Vb,R(p)− Ub[p]
)

dx.

(5.84)

Defining

Ψb,R(p) := VR(p)b(p)− Vb,R(p),

we see that from (5.8) and (5.16) it holds

(1− ρ∗)χt
(

(pfR(p) + pG0[p] + p divu) b(p)− Vb,R(p)− Ub[p]
)

= (1− ρ∗)χt
(

(ΦR(p) + pG0[p]− U0[p] + p divu) b(p) + Ψb,R(p) + U0[p]b(p)− Ub[p]
)

=

(
γR(p, θ, divu)χ2

t − Lχt

(
θ̂

θc
− 1

))
b(p) + (1− ρ∗)χt (Ψb,R(p) + U0[p]b(p)− Ub[p]) .
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5 – Solvability of the problem

Now, using Young’s inequality as in (5.79) we obtain(
γR(p, θ, divu)χ2

t − Lχt

(
θ̂

θc
− 1

))
b(p) ≥ 1

2
γR(p, θ, divu)χ2

t b(p)− C(1 + θ̂) b(p),

and similarly ∣∣(1− ρ∗)χt (Ψb,R(p) + U0[p]b(p)− Ub[p])
∣∣

≤ 1

4
γR(p, θ, divu)χ2

t b(p) + C
(Ψb,R(p) + U0[p]b(p)− Ub[p])2

γR(p, θ,divu) b(p)
,

so that (5.84) entails∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pb(p) dx

≥ d

dt

∫
Ω

(χ+ ρ∗(1− χ)) (Vb,R(p) + Ub[p]) dx+

∫
Ω

(χ+ ρ∗(1− χ)) divut pb(p) dx

+
1

4

∫
Ω
γR(p, θ,divu)χ2

t b(p) dx− C
∫

Ω

(
(1 + θ̂) b(p) +

(Ψb,R(p) + U0[p]b(p)− Ub[p])2

γR(p, θ, divu) b(p)

)
dx.

(5.85)

We are going to prove that the quantity

(Ψb,R(p) + U0[p]b(p)− Ub[p])2

γR(p, θ,divu) b(p)

is bounded by (1 + p2)b(p) independently of R. To this aim, let us show that the inequality

VR(p) ≤ V (p) +
f ]

2
(p2 −R2)+ (5.86)

holds for all p ∈ R. Indeed, by the definitions of fR, VR and V in (5.7), (5.8) and (B.28), we can

argue as follows:

� if |p| ≤ R then

VR(p) =

∫ p

0
f ′R(z)z dz =

∫ p

0
f ′(z)z dz = V (p)

and (5.86) immediately follows;

� if p > R then

VR(p) =

∫ R

0
f ′(z)z dz +

∫ p

R
f ′R(z)z dz = V (R) +

1

2
f ′(R)(p2 −R2).

Now,

V (R) +
1

2
f ′(R)(p2 −R2) ≤ V (p) +

f ]

2
(p2 −R2)

if and only if

0 ≤ V (p)− V (R) +
1

2
(f ] − f ′(R))(p2 −R2) =

∫ p

R
f ′(z)z dz +

∫ p

R
(f ] − f ′(R))z dz

=

∫ p

R
(f ′(z) + f ] − f ′(R))z dz,

which is certainly true since f ′(z) ≥ 0 for all z ∈ R and f ] ≥ f ′(R) by Hypothesis 5.1 (vi);
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5.2 – Estimates independent of the cut-off parameter

� if p < −R then we argue as in the previous case.

Hence inequality (5.86), together with estimates (5.12), (B.30), the definition of V (p) in (B.28) and

Hypothesis 5.1 (vi) on f , entails

(Ψb,R(p) + U0[p]b(p)− Ub[p])2

(1 + p2) γR(p, θ,divu) b2(p)
≤ (VR(p) + U0[p])2

(1 + p2) γR(p, θ, divu)
≤

(
V (p) + f]

2 (p2 −R2)+ + U0[p]
)2

(1 + p2) (1 + (p2 −R2)+)

≤

(
1 + p2 + f]

2 (p2 −R2)+
)2

(1 + p2) (1 + (p2 −R2)+)
≤ C

since 1 + p2 + (p2 −R2)+ + p2(p2 −R2)+ ≥ 1 + p2 +
(
(p2 −R2)+

)2
. Thus we have proved that

(Ψb,R(p) + U0[p]b(p)− Ub[p])2

γR(p, θ, divu) b(p)
≤ C(1 + p2)b(p)

independently of R. From (5.85) we conclude∫
Ω

(
(χ+ ρ∗(1− χ))(fR(p) + G0[p] + divu)

)
t
pb(p) dx

≥ d

dt

∫
Ω

(χ+ ρ∗(1− χ)) (Vb,R(p) + Ub[p]) dx+
1

4

∫
Ω
γR(p, θ, divu)χ2

t b(p) dx

− C
∫

Ω

(
1 + |p||divut|+ θ̂ + p2

)
b(p) dx,

so that (5.82) yields

d

dt

∫
Ω

(χ+ ρ∗(1− χ)) (Vb,R(p) + Ub[p]) dx+

∫
Ω

1

ρW
µR(p)(b(p) + pb′(p))|∇p|2 dx

+

∫
∂Ω
α(x)(p− p∗) pb(p) ds(x) ≤ C

∫
Ω

(
1 + |p||divut|+ θ̂ + p2

)
b(p) dx.

We now integrate in time
∫ τ

0 dt for some τ ∈ [0, T ], and obtain∫
Ω

(χ+ ρ∗(1− χ)) (Vb,R(p) + Ub[p])(x, τ) dx+

∫ τ

0

∫
Ω

1

ρW
µR(p)(b(p) + pb′(p))|∇p|2(x, t) dx dt

+

∫ τ

0

∫
∂Ω
α(x)(p− p∗) pb(p)(x, t) ds(x) dt

≤ C
∫ τ

0

∫
Ω

(
1 + |p||divut|+ θ̂ + p2

)
b(p)(x, t) dx dt+

∫
Ω

(Vb,R(p) + Ub[p])(x,0) dx.

(5.87)

Now that we got rid of χt and derived a manageable estimate, we choose b(p) = |p|2k with k ≥ ν/2

which will be specified later. Here ν is as in Hypothesis 5.1. Note that this is an admissible choice,

that is, pb(p) ∈ X. Indeed, by estimates (5.50), (5.63) and Theorem A.3 with p0 = q0 = p1 = 2,

q1 = 6, q2 =∞ we have

p ∈ Lq(0, T ;C(Ω̄)) (5.88)

for any q ∈ [1,4). The bound also depends on R, but for a fixed R and each k > 0 the function

p|p|2k(·, t) belongs to X for a. e. t ∈ (0, T ).
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With this choice (5.87) takes the form∫
Ω

(χ+ ρ∗(1− χ))
(
V k
R(p) + Uk[p]

)
(x, τ) dx+ (1 + 2k)

∫ τ

0

∫
Ω

1

ρW
µR(p)|p|2k|∇p|2(x, t) dx dt

+

∫ τ

0

∫
∂Ω
α(x)(p− p∗) p|p|2k(x, t) ds(x) dt

≤ C
∫ τ

0

∫
Ω

(
|divut||p|1+2k + (1 + θ̂)|p|2k + |p||p|1+2k

)
(x, t) dx dt+

∫
Ω

(
V k
R(p) + Uk[p]

)
(x,0) dx

where, from Hypothesis 5.1 (vi),

V k
R(p)(x, t) :=

∫ p(x,t)

0
f ′R(z)z|z|2k dz ≥

∫ p

0

f [

(1 + |z|)1+ν
z|z|2k dz ≥

∫ p

0

f [

2 max{1, |z|}1+ν
z|z|2k dz

=
f [

2

(∫ 1

0
z|z|2k dz +

∫ p

1
z|z|2k−1−ν dz

)
≥ f [

1 + 2k − ν
|p|1+2k−ν − C,

Uk[p](x, t) :=

∫ ∞
0

∫ pr[p](x,t)

0
v|v|2k ψ(r, v) dv dr ≥ 0.

Note also that, from Hypothesis 5.1 (vi) and an analogous version of (B.31),

V k
R(p)(x,0) =

∫ p0(x)

0
f ′R(z)z|z|2k dz ≤ f ]

2 + 2k
|p0(x)|2+2k,

Uk[p](x,0) =

∫ ∞
0

∫ pr[p0](x)

0
v|v|2k ψ(r, v) dv dr ≤ C∗ψ max{|p0(x)|,K}1+2k.

Moreover

|p|2k|∇p|2 =
1

(1 + k)2
|∇(p|p|k)|2.

Finally, by Young’s inequality with conjugate exponents
(

2+2k
1+2k , 2 + 2k

)
, we see that the boundary

term is such that∫ τ

0

∫
∂Ω
α(x)(p− p∗) p|p|2k ds(x) dt

=

∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt−

∫ τ

0

∫
∂Ω
α(x)p∗p|p|2k(x, t) ds(x) dt

≥
∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt− 1 + 2k

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt

− 1

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p∗|2+2k ds(x) dt

=
1

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt− 1

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p∗|2+2k ds(x) dt.

Hence, using also Hypothesis 5.1 (vii), we obtain

f [

1 + 2k − ν

∫
Ω
|p(x, τ)|1+2k−ν dx+ µ[

1 + 2k

(1 + k)2

∫ τ

0

∫
Ω
|∇(p|p|k)|2 dx dt

+
1

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt

≤ 1

2 + 2k

∫ τ

0

∫
∂Ω
α(x)|p∗|2+2k ds(x) dt+

f ]

2 + 2k

∫
Ω
|p0(x)|2+2k dx+ C∗ψ

∫
Ω

max{|p0(x)|,K}1+2k dx

+ C

∫ τ

0

∫
Ω

(
|divut||p|1+2k + (1 + θ̂) (1 + |p|)1+2k + |p||p|1+2k

)
dx dt.
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Multiplying by (1 + k) and using Hypothesis 5.1 (iv) and (v) yield, for all τ ∈ [0, T ], that there exists

a function h ∈ L2(Ω× (0, T )) such that

‖h‖L2(Ω×(0,T )) ≤ C

independently of R, as well as∫
Ω
|p(x, τ)|1+2k−ν dx+

∫ τ

0

∫
Ω
|∇(p|p|k)|2 dx dt+

∫ τ

0

∫
∂Ω
α(x)|p|2+2k ds(x) dt

≤ C(1 + k)

(
Ck +

∫ τ

0

∫
Ω
|h||p|1+2k dx dt

) (5.89)

with a constant C ≥ 1 independent of R and k. The existence of such a function h comes from

estimates (5.5) and (5.80) for divut, (5.78) for θ̂ and (5.81) for p.

For the sake of simplicity, in the rest of the Section we will denote by |v|r the Lr(Ω)-norm of a function

v ∈ Lr(Ω) and v ∈ Lr(Ω;R3) for r ∈ [0,∞], by |v|1;r the norm of a function v ∈ W 1,r(Ω) and by

‖v‖r the norm of a function v ∈ Lr(Ω × (0, T )). Moreover, since we deal with anisotropic spaces

Lq(0, T ;Lr(Ω)), q /= r, it is convenient to introduce for the norm of a function v ∈ Lq(0, T ;Lr(Ω)) the

symbol

‖v‖rKq :=

(∫ T

0
|v(t)|qr dt

)1/q

. (5.90)

For the function

wk(x, t) = p(x, t)|p(x, t)|k (5.91)

we obtain from (5.89) using Hölder’s inequality and Poincaré’s inequality (A.10) that

sup ess
τ∈[0,T ]

|wk(τ)|sksk +

∫ τ

0
|wk(t)|21;2 dt ≤ C(1 + k)

(
Ck +

(∫ T

0
|wk(t)|qkqk dt

)1/2
)

(5.92)

for all τ ∈ [0, T ], with

sk =
1 + 2k − ν

1 + k
, qk =

2 + 4k

1 + k

and with a constant C independent of τ , R and k. We now show that for a suitably chosen k, the

right-hand side of (5.92) is dominated by the left-hand side, which will imply a bound for the left-hand

side. By the Gagliardo-Nirenberg inequality (A.9) with q = qk, s = sk, p = 2 and N = 3 we have

|wk(t)|qk ≤ C|wk(t)|
1−%k
sk
|wk(t)|%k1;2 , %k =

1
sk
− 1

qk
1
sk
− 1

6

. (5.93)

We now choose k in such a way that %kqk = 2, that is, 3qk = 6 + 2sk, which yields

k = 1− ν, sk =
3(1− ν)

2− ν
, qk =

6− 4ν

2− ν
, qk(1− %k) = qk − 2 =

2(1− ν)

2− ν
=

2

3
sk.

By Hypothesis 5.1 we have sk ≥ 1. Hence, by (5.93),∫ T

0
|wk(t)|qkqk dt ≤ C sup ess

τ∈[0,T ]
|wk(τ)|(2/3)sk

sk

∫ T

0
|wk(t)|21;2 dt.
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Since k < 1, we conclude from (5.92) that there exists a constant C independent of R such that, in

particular,

sup ess
τ∈[0,T ]

|wk(τ)|sk ≤ C ,
∫ T

0
|wk(t)|qkqk dt ≤ C .

Invoking (5.91), we obtain for p the estimates

sup ess
τ∈[0,T ]

|p(τ)|3(1−ν) ≤ C ,
∫ T

0
|p(t)|6−4ν

6−4ν dt ≤ C . (5.94)

We now distinguish two cases: ν ≤ 1/3 and ν > 1/3. For ν ≤ 1/3 (that is, 3(1− ν) ≥ 2) we have

sup ess
τ∈[0,T ]

|p(τ)|2 ≤ C . (5.95)

For ν > 1/3 (that is, 3(1− ν) < 2) we use again the Gagliardo-Nirenberg inequality (A.9) with q = 2,

s = 3(1− ν), p = 2 and N = 3, obtaining

|p(t)|2 ≤ C|p(t)|1−%3(1−ν)|p(t)|
%
1;2 , % =

3ν − 1

1 + ν
,

so that for

qν =
2(1 + ν)

3ν − 1

we have (∫ T

0
|p(t)|qν2 dt

)1/qν

≤ C sup ess
t∈[0,T ]

|p(t)|1−%3(1−ν)

(∫ T

0
|p(t)|21;2 dt

)1/qν

.

Hence by virtue of (5.81) and (5.94) we obtain

‖p‖2Kqν ≤ C (5.96)

with a constant C > 0 independent of R, according to the notation (5.90). Note that qν ≥ 6 thanks

to Hypothesis 5.1.

5.2.6 Estimate for the displacement

Now that we have obtained a suitable estimate for the capillary pressure in (5.96), we derive an

analogous estimate for divut. To this aim we test (5.14) by ψ = ut, which yields∫
Ω

(B∇sut : ∇sut)(x, t) dx ≤
∫

Ω

(
−P[∇su] : ∇sut + |p||divut|+ β|θ̂ − θc||divut|+ |g||ut|

)
(x, t) dx.

By (B.6), Hypothesis 5.1 (v) and (5.80) we have∫
Ω
|P[∇su]|2(x, t) dx ≤ C

(
1 +

∫ T

0

∫
Ω
|∇sut|2(x, τ) dx dτ

)
≤ C,

hence using Hypothesis 5.1 (i) and Young’s inequality as in Subsection 5.2.4 we conclude that the

estimate ∫
Ω
|∇sut|2(x, t) dx ≤ C

(
1 +

∫
Ω

(
p2 + θ̂2

)
(x, t) dx

)
(5.97)
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holds for a. e. t ∈ (0, T ) with a constant C > 0 independent of R. We want to find and estimate for

∇sut in the norm of Lq(0, T ;L2(Ω)) for a suitable q. To this aim we apply the Gagliardo-Nirenberg

inequality (A.9) to θ̂ with the choices q = p = 2, s = 1 + b (with b from Hypothesis 5.1) and N = 3.

We obtain that, for t ∈ (0, T ),

|θ̂(t)|2 ≤ C|θ̂(t)|1−%1+b |∇θ̂(t)|
%
1;2, % =

3− 3b

5− b
,

so that for

qb =
2(5− b)
3− 3b

we have (∫ T

0
|θ̂(t)|qb2 dt

)1/qb

≤ C sup ess
t∈[0,T ]

|θ̂(t)|1−%1+b

(∫ T

0
|∇θ̂(t)|21;2 dt

)1/qb

.

Hence by virtue of (5.72) and (5.77) we get

‖θ̂‖2Kqb ≤ C (5.98)

independently of R. Note that our hypotheses on b imply qb ≥ 6. Thus, coming back to (5.97) we

have obtained that there exists q := min{qν , qb} ≥ 6 such that, thanks to (5.95) or (5.96) and (5.97),

‖∇sut‖2Kq ≤ C (5.99)

independently of R, according to the notation (5.90).

5.2.7 Anisotropic Moser iterations

The starting point of our analysis is the inequality (5.89). Unlike in Subsection 5.2.5, we do not

keep the exponent k bounded, but we let k → ∞ in a controlled way. The key step is the following

modification of [94, Lemma 1.3.1].

Lemma 5.5. Let Ω ⊂ RN be a bounded Lipschitzian domain, and let q̄ ≥ 1, r̄ ≥ 1 be such that

1

r̄
+

2

q̄N
= 1,

1

q̄
≥ 1

r̄
> 1− 2

N
. (5.100)

Let a, b be real numbers satisfying the inequalities

1

2
≤ a ≤ b ≤ N + 2a

N + 2
≤ 1 . (5.101)

Then there exists a constant C > 0 independent of a, b such that for every v ∈ L2(0, T ;W 1,2(Ω)) we

have

‖v‖2b2br̄K2bq̄ ≤ C max

{
1, sup ess

t∈(0,T )
|v(t)|2a2a +

∫ T

0
|v(t)|21;2 dt

}
. (5.102)
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Proof. By virtue of the Gagliardo-Nirenberg inequality (A.9) with q = 2br̄, s = 2a and p = 2, there

exists a constant C > 0 independent of a, b and of v ∈ L2(0, T ;W 1,2(Ω)) such that

|v(t)|2br̄ ≤ C|v(t)|1−%2a |v(t)|%1;2 for t ∈ (0, T ) (5.103)

with

% =
1
a −

1
br̄

1
a + 2

N − 1
, 1− % =

1
br̄ + 2

N − 1
1
a + 2

N − 1
.

Indeed, the fact that 1 ≤ 2a ≤ 2, 1 ≤ 2b ≤ 2 makes the constant C range in a bounded interval, from

which we deduce that such a constant is independent of both a and b. Moreover, we easily check that

% ∈ (0,1). Raising (5.103) to the power 2bq̄ and integrating in t yields∫ T

0
|v(t)|2bq̄2br̄ dt ≤ C2bq̄ sup ess

t∈(0,T )
|v(t)|(1−%)2bq̄

2a

∫ T

0
|v(t)|2%bq̄1;2 dt. (5.104)

We claim that %bq̄ ≤ 1. Indeed,(
1

a
+

2

N
− 1

)
(1−%bq̄) =

1

a
+

2

N
− 1− bq̄

a
+
q̄

r̄

=

(
b

a
− 1

)(
1− q̄

r̄

)
+

1

a
+

2

N
− b

a

(
1 +

2

N

)
≥ 1

aN
(N + 2a− b(N + 2)) ≥ 0

by virtue of (5.100) and (5.101). We can therefore use Hölder’s inequality in (5.104) and obtain∫ T

0
|v(t)|2bq̄2br̄ dt ≤ T 1−%bq̄C2bq̄ sup ess

t∈(0,T )
|v(t)|(1−%)2bq̄

2a

(∫ T

0
|v(t)|21,2 dt

)%bq̄
,

that is,

‖v‖2b2br̄K2bq̄ =

(∫ T

0
|v(t)|2bq̄2br̄ dt

)1/q̄

≤ T (1/q̄)−%bC2b

(
sup ess
t∈(0,T )

|v(t)|2a2a

)(1−%)b/a(∫ T

0
|v(t)|21,2 dt

)%b
.

(5.105)

We check that

ρ̂ := (1− %)
b

a
+ %b ≤ 1 .

This follows from the relation(
1

a
+

2

N
− 1

)
(1− ρ̂) =

(
1

a
− 1

)(
1− 1

r̄

)
− 2

N

(
b

a
− 1

)
≥ 2

N + 2

(
1

a
− 1

)
− 2

N

(
b

a
− 1

)
≥ 0.

We have used hypothesis (5.101) and the fact that r̄ ≥ 1 + 2/N , which follows from (5.100). Further-

more, for all positive numbers λ, µ, c, d we have as a consequence of Young’s inequality that

cλdµ ≤
(

λ

λ+ µ
c+

µ

λ+ µ
d

)λ+µ

,
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so that (5.105) can be rewritten as

‖v‖2b2br̄K2bq̄ ≤ T (1/q̄)−%bC2b

(
sup ess
t∈(0,T )

|v(t)|2a2a +

∫ T

0
|v(t)|21,2 dt

)ρ̂
which implies (5.102).

We apply Lemma 5.5 to (5.89) first in a general space dimension N ≥ 2. It is interesting to note

that a condition similar to (5.100) appears also in [102, Chapter VII], where the authors prove an

L∞-bound for solutions to linear parabolic equations. The measure α of degeneracy of the function

f thus does not seem to play any substantial role here.

As in (5.91), we define auxiliary functions wk = p|p|k and rewrite (5.89) for k ≥ 1− ν as∫
Ω
|wk(x, τ)|2ak dx+

∫ τ

0

∫
Ω
|∇wk|2 dx dt+

∫ τ

0

∫
∂Ω
γ(x)|wk|2 ds(x) dt

≤ (1 + k) max

{
C1+k,

∫ τ

0

∫
Ω
|h||wk|2bk dx dt

} (5.106)

with a constant C ≥ 1 independent of k, and with

ak =
1 + 2k − ν

2 + 2k
, bk =

1 + 2k

2 + 2k
.

Assume now that there exist q ≥ r such that

h ∈ Lq(0, T ;Lr(Ω)) ,
1

q
+
N

2r
=: ε < 1 . (5.107)

From (5.106), Poincaré’s inequality (A.10) and Hölder’s inequality it follows that

sup ess
t∈(0,T )

|wk(τ)|2ak2ak
dx+

∫ T

0

∫
Ω
|wk(t)|21;2 dt ≤ (1 + k) max

{
C1+k, H‖wk‖2bk2bkr′K2bkq′

}
, (5.108)

where

H = max {1, ‖h‖rKq} ,
1

r′
= 1− 1

r
,

1

q′
= 1− 1

q
. (5.109)

We now check that the conditions (5.100) and (5.101) are fulfilled with the choice

r̄ = σr′, q̄ = σq′, σ = 1 +
2

N
(1− ε) > 1 , a = ak, b = bk . (5.110)

Indeed, the inequality r̄ ≥ q̄ is obvious. Furthermore,

σ

(
1

r̄
+

2

N

)
= 1− 1

r
+

2σ

N
≥ 1− 2ε

N
+

2σ

N
= σ +

2

N
(σ − 1) > σ,

hence 1/r̄ > 1− 2/N . The first identity of (5.100) is obtained from the following computation:

σ

(
1

r̄
+

2

q̄N

)
=

1

r′
+

2

q′N
= 1 +

2

N
− 2ε

N
= σ,
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which is precisely the desired result. To check that (5.101) holds, we just notice that the inequalities

1/2 ≤ ak ≤ bk are obvious for k ≥ 1− ν. We also have

1

bk

N + 2ak
N + 2

=
(1 + 2k)(N + 2) +N − 2ν

(1 + 2k)(N + 2)
> 1,

and the assumptions of Lemma 5.5 are thus verified. Therefore, taking into account also (5.108), we

obtain for every k ≥ 1− ν the inequality

‖wk‖2bk2bkσr′K2bkσq′
≤ (1 + k)H max

{
A1+k, ‖wk‖2bk2bkr′K2bkq′

}
, (5.111)

with constants σ > 1 given by (5.110), H ≥ 1 given by (5.109) and A ≥ 1 depending only on the data

of the problem, all independent of k. We are now ready to prove the following result.

Proposition 5.6. Let Hypothesis 5.1 hold and let (p, u, θ, χ) be a solution of (5.13)–(5.16) with the

regularity from Proposition 5.4. Then the function p admits an L∞-bound independent of R, more

precisely,

|p(x, t)| ≤ C
(

(ν̄H)σ/(ν̄(σ−1))σσ/(ν̄(σ−1)2)
)

=: Rσ (5.112)

for a. e. (x, t) ∈ Ω×(0, T ) with σ = 19/18, H = max
{

1, ‖p‖2K6, ‖divut‖2K6, ‖θ̂‖2K6

}
, and with positive

constants ν̄, C depending only on the data.

Proof. By (5.96), (5.98) and (5.99) we are in the situation of (5.107) with r = 2, q = 6, N = 3. Hence

r′ = 2, q′ = 6/5 and by (5.107), (5.110) we have

ε =
11

12
, σ =

19

18
,

and (5.111) holds for all k ≥ 1− ν. We have |wk| = |p|1+k, hence (5.111) can be interpreted as

‖p‖1+2k
(1+2k)σr′K(1+2k)σq′ ≤ (1 + k)H max

{
A1+k, ‖p‖1+2k

(1+2k)r′K(1+2k)q′

}
,

or

max
{
A, ‖p‖(1+2k)σr′K(1+2k)σq′

}
≤ ((1 + k)H)1/(1+2k) max

{
A, ‖p‖(1+2k)r′K(1+2k)q′

}
. (5.113)

We now define an increasing sequence {kj ; j = 0,1, ...} starting at k0 = 1−ν and such that 2kj+1 = ν̄σj

for all j ∈ N ∪ {0} with a suitable ν̄ > 0. A straightforward computation yields ν̄ = 3− 2ν. We also

set

Xj := max
{
A, ‖p‖ν̄σjr′Kν̄σjq′

}
.

It follows from (5.113) that for each j ∈ N we have

Xj ≤ ((1 + kj−1)H)1/(2kj−1+1)Xj−1.
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For Yj = logXj this yields

Yj − Yj−1 ≤
σ−j+1

ν̄
(log ν̄H + (j − 1) log σ) .

The right-hand side is the general term of a convergent series, more precisely,

∞∑
j=1

σ−j+1

ν̄
(log ν̄H + (j − 1) log σ) =

σ log ν̄H

ν̄(σ − 1)
+

σ log σ

ν̄(σ − 1)2
.

Hence,

Xj ≤ X0

(
(ν̄H)σ/(ν̄(σ−1))σσ/(ν̄(σ−1)2)

)
. (5.114)

By (5.94) we have

X0 = max
{
A, ‖p‖ν̄r′Kν̄q′

}
= max

{
A, ‖p‖6−4νK 18

5
− 12

5
ν

}
≤ C

since 18/5− 12ν/5 ≤ 6− 4ν being ν ≤ 1/2, and the assertion follows.

We want to drive the reader’s attention on the fact that the above computations show that L2-

regularity in space is sufficient for starting Moser in 3D if regularity in time is big enough. In

particular, (5.107) shows that in our case ε < 1 if and only if q > 4, hence regularity in time must be

more than L4.

The main consequence of Proposition 5.6 is that, since we aim at taking the limit as R→∞ in (5.13)–

(5.16), we can restrict ourselves to parameter values R > Rσ, with Rσ from (5.112), so that the cut-off

(5.7)–(5.9) is never active and γR(p, θ, divu) = γ(θ̂,divu). Hence we can rewrite (5.13)–(5.16) in the

form∫
Ω

(
(χ+ ρ∗(1− χ))(f(p) + G0[p] + divu)

)
t
φ dx+

∫
Ω

1

ρW
µ(p)∇p · ∇φ dx

=

∫
∂Ω
α(x)(p∗ − p)φ ds(x),

(5.115)

∫
Ω

(P[∇su] + B∇sut) : ∇sψ dx−
∫

Ω

(
p(χ+ ρ∗(1− χ)) + β(θ̂ − θc)

)
divψ dx =

∫
Ω
g · ψ dx, (5.116)∫

Ω

(
CV (θ)t ζ + κ(θ̂)∇θ · ∇ζ

)
dx+

∫
∂Ω
ω(x)(θ − θ∗) ζ ds(x)

=

∫
Ω

(
B∇sut : ∇sut + ‖DP [∇su]t‖∗ +

1

ρW
µ(p)QR(|∇p|2) + (χ+ ρ∗(1− χ))|D0[p]t|

+ γ(θ̂,divu)χ2
t −

(
L

θc
χt + βdivut

)
θ̂

)
ζ dx,

(5.117)

γ(θ̂,divu)χt + ∂I[0,1](χ) 3 (1− ρ∗) (Φ(p) + pG0[p]− U0[p] + pdivu) + L

(
θ̂

θc
− 1

)
a. e. (5.118)

for all test functions φ, ζ ∈ X, ψ ∈ X0, with θ̂ = QR(θ) and with initial conditions (4.29). In order to

pass to the limit as R→∞, we still need to derive some higher order estimates.
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5.2.8 Higher order estimates for the capillary pressure

Before we proceed, let us point out that estimate (5.112) yields the existence of a constant µ] > µ[ > 0

such that µ(p) ≤ µ] for all p ∈ [−Rσ, Rσ], since from Hypothesis 5.1 (vii) it turns out that µ is

continuous on this compact set.

Let us define

M(p) :=

∫ p

0
µ(z) dz (5.119)

for p ∈ R, so that µ(p)∇p = ∇M(p). We would like to test (5.115) by φ = M(p)t = µ(p)pt which,

however, is not an admissible test function since pt /∈ X. Hence we choose a small h > 0 and test by

φ = 1
h (M(p)(t)−M(p)(t− h)), where

φ(x, t) =
1

h
(M(p)(t)−M(p)(t− h))(x) :=

1

h
(M(p(x, t))−M(p(x, t− h))) ,

with the intention to let h→ 0. We obtain∫
Ω

(
(χ+ ρ∗(1− χ))(f(p) + G0[p] + divu)

)
t

1

h
(M(p)(t)−M(p)(t− h)) dx

+

∫
Ω

1

ρW
∇M(p) · ∇

(
1

h
(M(p)(t)−M(p)(t− h))

)
dx

=

∫
∂Ω
α(x)(p∗ − p) 1

h
(M(p)(t)−M(p)(t− h)) ds(x).

(5.120)

Concerning the second summand on the left-hand side of (5.120), note that

∇M(p)(x, t) · ∇
(

1

h
(M(p)(x, t)−M(p)(x, t− h))

)
≥ 1

2h

(
|∇M(p)|2(x, t)− |∇M(p)|2(x, t− h)

)
.

The boundary term is such that∫
∂Ω
α(x)(p− p∗)(x, t) 1

h
(M(p)(x, t)−M(p)(x, t− h)) ds(x)

=

∫
∂Ω
α(x)p(x, t)

1

h
(M(p)(x, t)−M(p)(x, t− h)) ds(x)

−
∫
∂Ω
α(x)p∗(x, t)

1

h
(M(p)(x, t)−M(p)(x, t− h)) ds(x),

(5.121)

where

p∗(x, t)
1

h
(M(p)(x, t)−M(p)(x, t− h))

=
1

h

(
p∗(x, t)M(p)(x, t)− p∗(x, t− h)M(p)(x, t− h)

)
− 1

h
(p∗(x, t)− p∗(x, t− h))M(p)(x, t− h).

To handle the term p 1
h (M(p)(t)−M(p)(t− h)) in (5.121), we use the inequality F (y) − F (z) ≤

F ′(y)(y − z) which holds for every convex function F and every y, z. We interpret M(p)(t) as y,

M(p)(t − h) as z and F ′(y) = M−1(M(p(t))) = M−1(y). The function M−1 is increasing, hence its

antiderivative F is convex. Thus

p (M(p)(t)−M(p)(t− h)) ≥
∫ M(p)(t)

M(p)(t−h)
M−1(z) dz =

∫ p(t)

p(t−h)
ξ M ′(ξ) dξ.
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Defining

µ̂(p) :=

∫ p

0
zµ(z) dz

for p ∈ R, we obtain

p(x, t)
1

h
(M(p)(x, t)−M(p)(x, t− h)) ≥ 1

h
(µ̂(p)(x, t)− µ̂(p)(x, t− h)) .

Thus (5.120) and the above estimates entail∫
Ω

(χ+ ρ∗(1− χ))(f(p)t + G0[p]t)(x, t)
1

h
(M(p)(x, t)−M(p)(x, t− h)) dx

+
1

2ρW

∫
Ω

1

h

(
|∇M(p)|2(x, t)− |∇M(p)|2(x, t− h)

)
dx

+

∫
∂Ω
α(x)

1

h
(µ̂(p)(x, t)− µ̂(p)(x, t− h)) ds(x)

−
∫
∂Ω
α(x)

1

h

(
p∗(x, t)M(p)(x, t)− p∗(x, t− h)M(p)(x, t− h)

)
ds(x)

≤ −
∫

Ω
(1− ρ∗)χt (f(p) + G0[p] + divu)(x, t)

1

h
(M(p)(x, t)−M(p)(x, t− h)) dx

−
∫

Ω
(χ+ ρ∗(1− χ)) divut(x, t)

1

h
(M(p)(x, t)−M(p)(x, t− h)) dx

−
∫
∂Ω
α(x)

1

h
(p∗(x, t)− p∗(x, t− h))M(p)(x, t− h) ds(x).

We are now ready to integrate in time from h to some τ ∈ (0, T ) and then let h → 0. Note that

estimate (5.50) entails that the function M(p)t = µ(p)pt is in L2, so that the convergence is strong in

L2. We obtain∫ τ

0

∫
Ω

(χ+ ρ∗(1− χ))(f(p)t + G0[p]t)µ(p)pt dx dt

+
1

2ρW

∫
Ω
|∇M(p)|2(x, τ) dx− 1

2ρW

∫
Ω
|∇M(p0)|2(x) dx

+

∫
∂Ω
α(x) (µ̂(p)− p∗M(p)) (x, τ) ds(x)−

∫
∂Ω
α(x)

(
µ̂(p0)(x)− p∗(x,0)M(p0)(x)

)
ds(x)

≤ −
∫ τ

0

∫
Ω

(1− ρ∗)χt (f(p) + G0[p] + divu)µ(p)pt dx dt−
∫ τ

0

∫
Ω

(χ+ ρ∗(1− χ)) divut µ(p)pt dx dt

−
∫ τ

0

∫
∂Ω
α(x) p∗tM(p) ds(x) dt.

Combining (B.24) with the identity (B.21) for the play, we see that it holds µ(p)G0[p]t pt ≥ 0, thus

(χ+ ρ∗(1− χ)) (f(p)t + G0[p]t)µ(p)pt ≥ ρ∗µ[
f [

2 max{1, Rσ}1+ν
|pt|2

thanks to Hypothesis 5.1 (vi), (vii) and estimate (5.112). Concerning the initial conditions, we employ

Hypothesis 5.1 (iv) and (v) together with the following computations∫
Ω
|∇M(p0)|2(x) dx =

∫
Ω
µ2(p0)|∇p0|2(x) dx,∫

∂Ω
α(x)|p∗|2(x,0) ds(x) =

∫
∂Ω
α(x)|p∗|2(x, τ) ds(x)− 2

∫ τ

0

∫
∂Ω
α(x)(p∗p∗t )(x, t) ds(x) dτ.
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Note also that µ[p2/2 ≤ µ̂(p) ≤ µ]p2/2 for all p ∈ R. Hence there exists a constant c > 0 such that

for every t ∈ (0, T ) we have

c

∫ τ

0

∫
Ω
|pt|2(x, t) dx dt+

(µ[)2

2ρW

∫
Ω
|∇p|2(x, τ) dx+

µ[

2

∫
∂Ω
α(x)p2(x, τ) ds(x)

≤ C

(
1 +

∫ τ

0

∫
Ω

(|χt|(1 + |divu|)|pt|+ |divut||pt|) (x, t) dx dt+

∫ τ

0

∫
∂Ω
α(x)|p∗t ||p|(x, t) ds(x) dt

)
thanks to Hypothesis 5.1 (vi) and (vii), where we handled the boundary term on the left-hand side as

in (5.47). Arguing as for estimate (5.40), we obtain

|χt(x, t)| ≤

∣∣∣∣∣∣
(1− ρ∗) (Φ(p) + pG0[p]− U0[p] + p divu) + L

(
θ̂/θc − 1

)
γ(θ̂,divu)

∣∣∣∣∣∣ ≤ C (5.122)

for a. e. (x, t) ∈ Ω × (0, T ), this time independently of R thanks to (5.112). Thus, employing also

Young’s inequality, estimates (5.70), (5.71), (5.80) and Hypothesis 5.1 (iii) and (iv), we conclude that

sup ess
τ∈[0,T ]

(∫
Ω
|∇p|2(x, τ) dx+

∫
∂Ω
α(x) p2(x, τ) ds(x)

)
≤ C, (5.123)∫ T

0

∫
Ω
p2
t (x, t) dx dt ≤ C. (5.124)

By (5.70), (5.80), (5.81) and (5.124) and by comparison in equation (5.115), we see that the term

∆M(p) is bounded in L2(Ω× (0, T )) independently of R. In terms of the new variable p̃ = M(p), the

boundary condition in (6.29) is nonlinear, and from considerations similar to those used in the proof

of [95, Theorem 4.1] it follows

‖M(p)‖2L2(0,T ;W 2,2(Ω)) ≤ C. (5.125)

We thus may employ the Gagliardo-Nirenberg inequality (A.8) with s = p = 2, N = 3 obtaining

|∇M(p)(t)|q ≤ C
(
|∇M(p)(t)|2 + |∇M(p)(t)|1−%2 |∆M(p)(t)|%2

)
, % = 3

(
1

2
− 1

q

)
,

which holds for all 2 < q < 6. This yields, elevating to some power s and integrating in time,∫ T

0
|∇M(p)(t)|sq dt ≤ C

(∫ T

0
|∇M(p)(t)|s2 dt+

∫ T

0
|∇M(p)(t)|(1−%)s

2 |∆M(p)(t)|%s2 dt

)
.

Choosing % in such a way that %s = 2, using Hölder’s inequality in time and estimates (5.123), (5.125)

we obtain a uniform bound for the right-hand side, which by Hypothesis 5.1 (vii) yields∫ T

0
|∇p(t)|sq dt ≤ C for q ∈ (2,6) and

1

q
+

2

3s
=

1

2
.

In particular, for s = 4, q = 3 and s = q = 10
3 we obtain, respectively,

‖∇p‖3K4 ≤ C, ‖∇p‖10/3 ≤ C, (5.126)

according to the notation (5.90).
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5.2.9 Higher order estimates for the displacement

Let us consider equation (5.116). Setting

w(x, t) := p(χ+ ρ∗(1− χ)) + β(θ̂ − θc)(x, t) +G(x, t)

and arguing as for (5.55) we deduce∫
Ω
|∇sut|p(x, t) dx ≤ C

∫
Ω
|∇su0|p(x) dx+ Ctp−1

∫ t

0

∫
Ω
|∇sut|p(x, τ) dx dτ

+ C

∫
Ω
|w|p(x, t) dx a. e.

(5.127)

Thus, by choosing p = 8/3 + 2b/3 (with b ∈ [1/2,1) from Hypothesis 5.1) in the above inequality we

obtain from (5.78), (5.112), Hypothesis 5.1 (ii) and Grönwall’s lemma A.2

‖∇sut‖8/3+2b/3 ≤ C. (5.128)

We now derive an estimate for ∇sut in a suitable anisotropic Lebesgue space. To this aim we need

to derive first an additional estimate for θ̂. We use Gagliardo-Nirenberg inequality (A.8) with the

choices s = 1 + b, p = 2 and N = 3 obtaining, for t ∈ (0, T ),

|θ̂(t)|q ≤ C
(
|θ̂(t)|1+b + |θ̂(t)|1−%1+b |∇θ̂(t)|

%
2

)
, % =

(
1

1 + b
− 1

q

)
6(1 + b)

5− b
,

which holds for all 1 + b < q < 6. This yields, elevating to some power s and integrating in time,∫ T

0
|θ̂(t)|sq dt ≤ C

(∫ T

0
|θ̂(t)|s1+b dt+

∫ T

0
|θ̂(t)|(1−ρ)s

1+b |∇θ̂(t)|%s2 dt

)
.

Choosing % in such a way that %s = 2, using Hölder’s inequality in time and estimates (5.72), (5.77)

we obtain ∫ T

0
|θ̂(t)|sq dt ≤ C for q ∈ (1 + b , 6) and

1

q
+

5− b
3s(1 + b)

=
1

1 + b
.

In particular, for s = 4, q = 12(1+b)
7+b we obtain

‖θ̂‖12(1+b)/(7+b)K4 ≤ C. (5.129)

Note that
12(1 + b)

7 + b
<

8

3
+

2b

3
⇔ −7 < b < 2 ∨ b > 5,

which is certainly true under our hypotheses. Therefore, choosing p = 12(1+b)
7+b in (5.127) we obtain,

thanks to (5.128) and Hypothesis 5.1 (v),∫
Ω
|∇sut|12(1+b)/(7+b)(x, t) dx ≤ C

(
1 +

∫
Ω
|w|12(1+b)/(7+b)(x, t) dx

)
for a. e. t ∈ (0, T ). Hypothesis 5.1 (ii) and estimates (5.112), (5.129) then yield

‖∇sut‖12(1+b)/(7+b)K4 ≤ C (5.130)

independently of R.
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5.2.10 Higher order estimates for the temperature

Note that (5.116) with ψ = ut and (5.118) entail, respectively,∫
Ω

B∇sut : ∇sut dx = −
∫

Ω
P[∇su] : ∇sut dx+

∫
Ω

(
p(χ+ ρ∗(1− χ)) + β(θ̂ − θc)

)
divut dx

+

∫
Ω
g · ut dx,

γ(θ̂,divu)χ2
t = (1− ρ∗)χt

(
Φ(p) + pG0[p]− U0[p] + p divu

)
+ Lχt

(
θ̂

θc
− 1

)
.

Plugging these identities into (5.117) we obtain∫
Ω

(
CV (θ)t ζ + κ(θ̂)∇θ · ∇ζ

)
dx+

∫
∂Ω
ω(x)(θ − θ∗) ζ ds(x)

=

∫
Ω

(
− P[∇su] : ∇sut +

(
p(χ+ ρ∗(1− χ))− βθc

)
divut + g · ut

+ ‖DP [∇su]t‖∗ +
1

ρW
µ(p)QR(|∇p|2) + (χ+ ρ∗(1− χ))|D0[p]t|

+ χt

(
(1− ρ∗)

(
Φ(p) + pG0[p]− U0[p] + p divu

)
− L

))
ζ dx

=:

∫
Ω

Γ(x, t) ζ dx (5.131)

for every ζ ∈ X, where Γ(x, t) has the regularity of the worst term. Estimates (5.112), (5.122), (A.11),

(B.6), (B.9) and (B.30) yield

|Γ| . |∇su|2 + |∇sut|2 + |∇p|2 + |pt|,

which from (5.124), (5.126), (5.128) and (5.130) implies

‖Γ‖4/3+b/3 ≤ C, ‖Γ‖6(1+b)/(7+b)K2 ≤ C (5.132)

independently of R, with b as in Hypothesis 5.1.

Assume now that for some p0 ≥ 8/3 + 2b/3 we have proved

‖θ̂‖p0 ≤ C. (5.133)

We know that this is true for p0 = 8/3 + 2b/3 by virtue of (5.78). Set

r0 =
1 + b

4 + b
p0, (5.134)

and set ζ = θ̂r0 in (5.131). We obtain∫
Ω

(
CV (θ)t θ̂

r0 + κ(θ̂)∇θ · ∇θ̂r0
)

dx+

∫
∂Ω
ω(x)(θ − θ∗) θ̂r0 ds(x) =

∫
Ω

Γ θ̂r0 dx. (5.135)

It holds ∫
Ω
CV (θ)t θ̂

r0 dx =
d

dt

∫
Ω
Fr0(θ) dx
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where

Fr0(θ) :=

∫ θ

0
cV (s)(QR(s))r0 ds,

and by Hypothesis 5.1 (ix) also∫
Ω
κ(θ̂)∇θ · ∇θ̂r0 dx =

∫
Ω
κ(θ̂) r0 θ̂

r0−1∇θ · ∇θ̂ dx ≥ r0κ
[

∫
Ω
θ̂r0+a|∇θ̂|2 dx.

Concerning the boundary term, we use Young’s inequality with exponents
(
r0+1
r0

, r0 + 1
)

, and obtain∫
∂Ω
ω(x)(θ − θ∗)θ̂r0 ds(x) ≥

∫
∂Ω
ω(x)θ̂r0+1 ds(x)−

∫
∂Ω
ω(x)θ∗θ̂r0 ds(x)

≥
∫
∂Ω
ω(x)θ̂r0+1 ds(x)− r0

r0 + 1

∫
∂Ω
ω(x)θ̂r0+1 ds(x)− 1

r0 + 1

∫
∂Ω
ω(x)(θ∗)r0+1 ds(x)

≥ 1

r0 + 1

∫
∂Ω
ω(x)θ̂r0+1 ds(x)− C

by Hypothesis 5.1 (iii) and (iv). We now integrate (5.135) in time
∫ τ

0 dt for some τ ∈ [0, T ]. Observe

that Fr0(θ) ≥ θ̂r0+1+b

r0+1+b by Hypothesis 5.1 (viii). Moreover, thanks to the choice (5.134) and Hölder’s

inequality with exponents
(

4+b
3 , 4+b

1+b

)
, the right-hand side is such that∫ τ

0

∫
Ω

Γ θ̂r0 dx dt =

∫ τ

0

∫
Ω

Γ (θ̂p0)(1+b)/(4+b) dx dt ≤ ‖Γ‖(4+b)/3 ‖θ̂‖p0 ≤ C

by estimates (5.132) and (5.133). Hence we have obtained

1

r0 + 1 + b

∫
Ω
θ̂r0+1+b(x, τ) dx+ r0

∫ τ

0

∫
Ω
θ̂r0+a|∇θ̂|2(x, t) dx dt

+
1

r0 + 1

∫ τ

0

∫
∂Ω
ω(x)θ̂r0+1(x, t) ds(x) dt ≤ C.

(5.136)

We now denote

p = 1 +
r0 + a

2
, s =

r0 + 1 + b

p
,

and rewrite (5.136) as

1

r0 + 1 + b

∫
Ω
θ̂ps(x, τ) dx+

1

r0 + 1 + b

r0(r0 + 1 + b)

p2

∫
Ω
p2θ̂2p−2|∇θ̂|2(x, t) dx dt ≤ C

where we neglected the positive boundary term. Introducing the new variable v = θ̂p this is equivalent

to ∫
Ω
|v|s(x, τ) dx+

∫ τ

0

∫
Ω
|∇v|2(x, t) dx dt ≤ C(r0 + 1 + b), (5.137)

since
r0(r0 + 1 + b)

p2
≥ 2r0(2r0 + 3)

(r0 + 3)2
≥ C

for some C > 0 when r0 is far away from zero. For s < q < 6 and t ∈ (0, T ) we have, by virtue of the

Gagliardo-Nirenberg inequality (A.8) with p = 2 and N = 3,

|v(t)|q ≤ C
(
|v(t)|s + |v(t)|1−%s |∇v(t)|%2

)
, % =

1
s −

1
q

1
s −

1
6

.
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If q is chosen in such a way that %q = 2, that is,

q =
2

3
s+ 2,

then integrating in time from 0 to T and employing Young’s inequality with exponents
(

q
q−2 ,

q
2

)
we

obtain

‖v‖q ≤ C

(
sup
t∈[0,T ]

|v(t)|s + sup
t∈[0,T ]

|v(t)|(q−2)/q
s ‖∇v‖2/q2

)
≤ C

(
sup
t∈[0,T ]

|v(t)|s + ‖∇v‖2

)
.

Estimate (5.137) yields

sup
t∈[0,T ]

|v(t)|s ≤ C(r0 + 1 + b)1/s,

‖∇v‖2 ≤ C(r0 + 1 + b)1/2,

so that ‖v‖q ≤ C(r0 + 1 + b). Coming back to the variable θ̂, we have proved that

‖θ̂‖p1 ≤ C(r0 + 1 + b) for p1 = pq = p

(
2

3
s+ 2

)
=

2

3
(r0 + 1 + b) + 2 + r0 + a

=
5r0

3
+

8

3
+ a+

2b

3
=

5(1 + b)p0

3(4 + b)
+

8

3
+ a+

2b

3
.

We now proceed by induction according to the rule

pj+1 =
5(1 + b)pj
3(4 + b)

+
8

3
+ a+

2b

3
, rj =

(1 + b)pj
(4 + b)

.

We have limj→∞ pj = (8+3a+2b)(4+b)
7−2b . After finitely many iterations we obtain, using also (5.136),

‖θ̂‖p̄ + sup ess
t∈[0,T ]

|θ̂(t)|r̄+1+b ≤ C, for every p̄ <
(8 + 3a+ 2b)(4 + b)

7− 2b
, r̄ =

(1 + b)p̄

(4 + b)
> â, (5.138)

with the constant â introduced in Hypothesis 5.1 (ix). We now come back to (5.131), which we test

by ζ = θ (note that this is an admissible choice by Proposition 5.4). It holds∫
Ω
CV (θ)tθ(x, t) dx =

∫
Ω
cV (θ)θθt(x, t) dx =

d

dt

∫
Ω

(∫ θ(x,t)

0
cV (s)s ds

)
dx,

hence from Hypothesis 5.1 (ix) and (5.132) we obtain, after a time integration,∫
Ω
θ2+b(x, τ) dx+

∫ T

0

∫
Ω
κ(θ̂)|∇θ|2(x, t) dx dt

+

∫ T

0

∫
∂Ω
ω(x)θ2(x, t) ds(x) dt ≤ C‖θ‖(4+b)/(1+b)

(5.139)

where we handled the boundary term by means of Young’s inequality and Hypothesis 5.1 (iii) and

(iv). Using the Gagliardo-Nirenberg inequality (A.8) again with q = 4+b
1+b , s = 1 + b (note that

1 + b < 4+b
1+b < 6 under our hypotheses), p = 2 and N = 3 we have that, for each fixed t ∈ (0, T ),

|θ(t)|(4+b)/(1+b) ≤ C
(
|θ(t)|1+b + |θ(t)|1−%1+b |∇θ(t)|

%
2

)
≤ C (1 + |∇θ(t)|%2)
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with % = 6(3−b2−b)
(5−b)(4+b) and where we used estimate (5.72). Raising to the power (4+b)/(1+b), integrating∫ T

0 dt and using Hölder’s inequality in time (note that 2(1+b)
ρ(4+b) ≥ 1 under our hypotheses) we get

‖θ‖(4+b)/(1+b) ≤ C

(
1 +

∫ T

0

(∫
Ω
|∇θ|2 dx

)ρ(4+b)/2(1+b)

dt

)(1+b)/(4+b)

≤ C

(
1 +

(∫ T

0

∫
Ω
|∇θ|2 dx dt

)ρ(4+b)/2(1+b)
)(1+b)/(4+b)

≤ C

(
1 +

(∫ T

0

∫
Ω
κ(θ̂)|∇θ|2 dx dt

)ρ/2)
.

Plugging this back into (5.139) and using Young’s inequality we deduce∫
Ω
θ2+b(x, τ) dx+

∫ T

0

∫
Ω
κ(θ̂)|∇θ|2(x, t) dx dt+

∫ T

0

∫
∂Ω
ω(x)θ2(x, t) ds(x) dt ≤ C. (5.140)

This enables us to derive an upper bound for the integral
∫

Ω κ(θ̂)∇θ ·∇ζ dx, which we need for getting

an estimate for θt from equation (5.131). By Hölder’s inequality and Hypothesis 5.1 (ix) we have that∫
Ω
|κ(θ̂)∇θ · ∇ζ| dx =

∫
Ω
|κ1/2(θ̂)∇θ · κ1/2(θ̂)∇ζ|dx

≤ C
(∫

Ω
κ(θ̂)|∇θ|2 dx

)1/2(∫
Ω

max{1, θ̂1+â}|∇ζ|2 dx

)1/2

. (5.141)

Let us now choose q̂ > 1 such that (1 + â)q̂ = 1 + r̄+ b, where r̄ is defined in (5.138). Note that such

a q̂ exists since 1 + r̄ + b > 1 + â+ b > 1 + â. Defining

q∗ :=
2q̂

q̂ − 1
= 2 +

2

q̂ − 1
> 2 , (5.142)

we get from Hölder’s inequality with conjugate exponents
(
q̂ , q

∗

2

)
that

∫
Ω
θ̂1+â|∇ζ|2 dx ≤

(∫
Ω
θ̂1+r̄+b dx

)1/q̂ (∫
Ω
|∇ζ|q∗ dx

)2/q∗

≤ C
(∫

Ω
|∇ζ|q∗ dx

)2/q∗

by virtue of (5.138). Inequality (5.141) then yields the bound∫
Ω
|κ(θ̂)∇θ · ∇ζ|dx ≤ C

(∫
Ω
κ(θ̂)|∇θ|2 dx

)1/2(∫
Ω
|∇ζ|q∗ dx

)1/q∗

.

Hence, by (5.140), ∫ T

0

∫
Ω
|κ(θ̂)∇θ · ∇ζ|dx dt ≤ C‖ζ‖L2(0,T ;W 1,q∗ (Ω)).

From (5.132) it follows that testing with ζ ∈ L2(0, T ;W 1,q∗(Ω)) is admissible, in the sense that the

term Γζ is integrable. Indeed, the Sobolev exponent of q∗ is

q∗S =
3q∗

3− q∗
=

6q̂

q̂ − 3
,
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from which

(q∗S)′ =
1

1− 1
q∗S

=
6q̂

5q̂ + 3
=

6

5
− 18

5(5q̂ + 3)
<

6

5
≤ 6(1 + b)

7 + b

for all b ∈ [1/2,1). We thus obtain from (5.131) that∫ T

0

∫
Ω
θtζ dx dt ≤ C‖ζ‖L2(0,T ;W 1,q∗ (Ω)). (5.143)

5.3 Passage to the limit

In this section we conclude the proof of Theorem 5.3 by passing to the limit in (5.115)–(5.118) as

R → ∞. Most of the convergences can be handled as at the end of Subsection 5.1.2, hence we focus

here on the main differences.

Let Ri ↗ ∞ be a sequence such that Ri > Rσ, with Rσ as in (5.112), and let (p, u, χ, θ) =

(p(i), u(i), χ(i), θ(i)) be solutions of (5.115)–(5.118) corresponding to R = Ri, with θ̂ = θ̂(i) = QRi(θ
(i))

and test functions φ, ζ ∈ X, ψ ∈ X0. Our aim is to check that at least a subsequence converges as

i→∞ to a solution of (5.1)–(5.4) with test functions φ ∈ X, ψ ∈ X0 and ζ ∈ Xq∗ .

First, for the capillary pressure p = p(i) we have the estimates (5.112) and (5.123)–(5.126), which

imply that, passing to a subsequence if necessary,

p
(i)
t → pt weakly in L2(Ω× (0, T )),

p(i) → p strongly in Lq(Ω;C[0, T ]) for all q ∈ [1,∞),

∇p(i) → ∇p strongly in Lq(Ω× (0, T );R3) for all q ∈
[
1, 10

3

)
,

where we used also Theorem A.4. We easily show that

QRi(|∇p(i)|2)→ |∇p|2 strongly in Lq(Ω× (0, T );R3) for all q ∈
[
1 ,

5

3

)
. (5.144)

Indeed, let Ω
(i)
T ⊂ Ω × (0, T ) be the set of all (x, t) ∈ Ω × (0, T ) such that |∇p(i)(x, t)|2 > Ri. By

(5.126) we have

C ≥
∫ T

0

∫
Ω
|∇p(i)(x, t)|10/3 dx dt ≥

∫∫
Ω

(i)
T

|∇p(i)(x, t)|10/3 dx dt ≥ |Ω(i)
T |R

5/3
i ,

hence |Ω(i)
T | ≤ CR

−5/3
i . For q < 5

3 we use Hölder’s inequality to get the estimate∫ T

0

∫
Ω

∣∣∣QRi(|∇p(i)|2)− |∇p(i)|2
∣∣∣q dx dt =

∫∫
Ω

(i)
T

∣∣∣Ri − |∇p(i)|2
∣∣∣q dx dt ≤

∫∫
Ω

(i)
T

|∇p(i)|2q dx dt

≤

(∫∫
Ω

(i)
T

|∇p(i)|10/3 dx dt

)3q/5

|Ω(i)
T |

1−3q/5 ≤ CR−(5−3q)/3,

and (5.144) follows.
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For the temperature θ = θ(i) we proceed in a similar way. By estimates (5.140) and (5.143) we obtain

∇θ(i) → ∇θ weakly in L2(Ω× (0, T );R3),

θ
(i)
t → θt weakly in L2(0, T ;W−1,q∗(Ω)),

θ(i) → θ strongly in L2(Ω× (0, T )),

where for the last estimate we exploited Lemma A.6 with B0 = W 1,2(Ω), B = L2(Ω), B1 = W−1,2(Ω),

p0 = p1 = 2 and the embedding W−1,q∗(Ω) ↪→ W−1,2(Ω) (recall that q∗ > 2). Furthermore, estimate

(5.138) entails that θ̂(i) are uniformly bounded in Lq(Ω× (0, T )) for every q < (8+3a+2b)(4+b)
7−2b . Hence

a similar argument as above yields that

θ̂(i) = QRi(θ
(i))→ θ strongly in Lq(Ω× (0, T )) for all q ∈

[
1 ,

(8 + 3a+ 2b)(4 + b)

7− 2b

)
.

The strong convergences ∇su(i) → ∇su, ∇su(i)
t → ∇sut, χ(i) → χ, χ

(i)
t → χt follow as at the end of

Subsection 5.1.2, as well as the convergence of the hysteresis terms.

Therefore the limit as i → ∞ yields a solution to (5.1)–(5.4), and the proof of Theorem 5.3 is

completed.
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Introduction

This third part deals with a model for the cyclic fatigue accumulation in a transversally oscillating

elastoplastic beam. Temperature and phase transition effects, which usually accompany the process,

are taken into account.

The model we present here is part of a project which started some years ago from the scientific

collaboration between M. Eleuteri, P. Krejč́ı and J. Kopfová, with the aim of deriving and studying

models for the cyclic fatigue accumulation in transversally oscillating bodies (beams and plates).

Elastoplastic materials subject to cyclic loading exhibit increasing fatigue, which is manifested by

material softening and material failure in finite time with strong heat release. The analysis of the

so-called rainflow method of cyclic fatigue accumulation in elastoplastic materials carried out in [23]

has shown a qualitative and quantitative relationship between accumulated fatigue and dissipated

energy, similarly as in [63]. Starting from these facts, a first step in the direction of investigating

the well-posedness of the system describing nonisothermal fatigue accumulation in a transversally

oscillating elastoplastic beam was made in the papers [48, 50]. Here the main modeling hypothesis is

that the fatigue accumulation rate is proportional to the dissipation rate. The model is also based on

the results contained in [101], where by means of the Kirchhoff-Love method it was shown that the

3D problem of transversal oscillations of a solid elastoplastic beam with the single-yield von Mises

plasticity law can be transformed, after dimensional reduction, into the beam equation with a multi-

yield hysteresis Prandtl-Ishlinskĭı constitutive operator (see Section B.4 in the Appendix). This can

be explained by the fact that in the 1D model only deformations of longitudinal fibres parameterized

by the transversal coordinate are taken into account, and the individual fibres do not switch from the

elastic to the plastic regime at the same time. More precisely, eccentric layers are subject to larger

deformations than the central ones, so that plastic yielding propagates gradually from the outer surface

towards the midsurface (see Figure 5.1). This is translated into the mathematical language by means

of the Prandtl–Ishlinskĭı combination of elastic–perfectly plastic elements with different yield limits

that are not all simultaneously activated.

In the more recent work [52], still relying on the Prandtl-Ishlinskĭı formalism, the previous models

for transversally oscillating beams were extended. The fatigue accumulation law is still based on the
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Figure 5.1. Deformed beam with grey plastified zone. Picture taken from [101].

observation that there exists a proportionality between accumulated fatigue and dissipated energy.

However, unlike in [50], it is assumed that out of all dissipative components in the energy balance,

only the purely plastic dissipation produces damage. This makes the mathematical problem easier:

the system of equations then does not develop singularities in finite time and a unique regular solution

is proved to exist on every bounded time interval. On the other hand an additional difficulty is here

considered, namely, a fatigue-dependent weight function in the definition of the Prandtl-Ishlinskii

operator. Furthermore, it is assumed that the material can partially recover by the effect of melting

when a solid-liquid phase transition takes place. Thus a differential inclusion for the phase dynamics

completes the system of equations, for which existence and uniqueness of a strong solution are proved

to hold.

Results have been obtained correspondingly also for the plate. We mention the papers [49], which

deals with the simplified situation of fixed temperature, and [51], where existence of solutions is proved

for the nonisothermal model. In [47] the dependence of the plastic dissipation on both the temperature

and the fatigue parameter was considered in the 2D case. It was also mentioned that in principle it

makes sense from the point of view of modeling and applications to allow a further dependence of

the Prandlt-Ishlinskĭı density on the phase parameter, and it was shown, assuming a new special flow

rule for the phase variable, that the resulting model is still thermodynamically consistent.

Here we start the mathematical analysis of this new problem in the 1D case. We take into account

the possibility of partial fatigue recovery by the effect of melting as in [52], and additionally allow the

dependence of the Prandtl-Ishlinskĭı density function not only on the fatigue parameter, but also on

the phase variable. The aim is to show existence and uniqueness of a strong solution of the underlying

system of equations, which brings nontrivial mathematical difficulties. The results are contained in

the paper [42].

The plan is the following: in Chapter 6 we derive the model; Chapter 7 contains the statement of our

main result, whose existence part is proved in Sections 7.1–7.3, whereas Section 7.4 deals with the

uniqueness.
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CHAPTER 6

A model for an oscillating beam

6.1 Derivation of the model

In this chapter we deal with a transversally inhomogeneous beam of length 1. We let x ∈ [0,1] be the

longitudinal variable and t ∈ [0, T ] the time variable, and denote by

m(x, t) fatigue accumulation parameter;

χ(x, t) ∈ [0,1] phase fraction: χ = 0 solid, χ = 1 liquid, χ ∈ (−1,1) mixture;

w(x, t) transversal displacement of the point x at time t;

ε(x, t) = wxx(x, t) linearized curvature;

σ(x, t) bending moment;

θ(x, t) > 0 absolute temperature.

As we have already outlined, the main novelty is the dependence on χ of the Prandtl-Ishlinskĭı

constitutive operator of elastoplasticity. Starting from the basic model presented in Section B.4 in

the Appendix and given m,χ, ε : Ω× (0, T )→ R such that for a. e. x ∈ Ω it holds ε(x, ·) ∈W 1,1(0, T ),

we set

P0[m,χ, ε](x, t) = P0[γ̃(x)(·, r), ε(x, ·)](t) ∀ t ∈ [0, T ],

where γ̃(x) : [0, T ]× (0,∞)→ [0,∞) is defined by

γ̃(x)(t, r) = γ(m(x, t), χ(x, t), r). (6.1)

In other words, we define the fatigue and phase dependent Prantdl-Ishlinskĭı operator by the integral

P0[m,χ, ε] =

∫ ∞
0

γ(m,χ, r) sr[ε] dr. (6.2)

Here sr denotes the stop operator from (B.14)–(B.15) with thresholds −r, r and with the canonical

initial condition sr,0 = sr(0) = Qr(ε(0)), see Remark B.4. In this context, the energy balance (B.34)
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6 – A model for an oscillating beam

becomes

εtP0[m,χ, ε] =
d

dt
V [m,χ, ε] +D[m,χ, ε]

− 1

2

∫ ∞
0

(
γm(m,χ, r)mt + γχ(m,χ, r)χt

)
s2
r [ε](t) dr a. e. in Ω× (0, T ),

where

V [m,χ, ε] =
1

2

∫ ∞
0

γ(m,χ, r) s2
r [ε] dr (6.3)

D[m,χ, ε] =

∫ ∞
0

rγ(m,χ, r)|pr[ε]t| dr (6.4)

are the new fatigue and phase dependent Prandtl-Ishlinskĭı potential and dissipation operators.

6.1.1 Momentum balance

We assume a thermo-visco-elastoplastic scalar constitutive relation in the form

σ = Bε+ P0[m,χ, ε] + νεt − β(θ − θref), (6.5)

with B > 0 elastic modulus, ν viscosity coefficient and β thermal expansion coefficient related to a

layered structure of the beam. Moreover θref is the melting temperature, which is considered as a

fixed referential temperature.

Following [101], Newton’s law of motion is formally written as

µwtt − αwxxtt + σxx = F (x, t), (6.6)

where α = µl2/12 with l > 0 thickness of the beam and µ mass density, assumed to be constant, and

where F is the external load.

6.1.2 Phase and fatigue evolution

The evolution of the phase variable χ is assumed to be of “phase-relaxation” type

−ρχt ∈ ∂I[0,1](χ)− L

θref
(θ − θref) +

1

2

∫ ∞
0

γχ(m,χ, r) s2
r [ε] dr (6.7)

where ρ > 0 is the relaxation coefficient, L > 0 is the latent heat of the process and ∂I[0,1] is the

subdifferential of the indicator function I[0,1]. Indeed, we necessarily have χ ∈ [0,1], and we interpret

χ = 0 as the solid phase, χ = 1 as liquid, and the intermediate values correspond to the relative liquid

content in a mixture of the two.

We now turn our attention to the derivation of a law for the evolution of the fatigue parameter m. As

already mentioned, there is a close relationship between accumulated fatigue and dissipated energy.

Here, following [52], we assume that out of all dissipative components in the energy balance, only the
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6.1 – Derivation of the model

purely plastic dissipation produces damage. This prevents the system of equations from developing

singularities in finite time, see [50]. Still following [52], we assume in addition that partial recovery

of the damaged material is possible under strong local melting. Mathematically, this is expressed in

terms of the evolution equation for the fatigue variable m

mt ∈ −∂I[0,∞)(m)(x, t)− h(χt(t)) +

∫ 1

0
λ(x− y)D[m,χ, ε](y, t) dy, (6.8)

where h is a nonnegative nondecreasing function vanishing for negative arguments, see Hypothesis 7.1,

λ is a nonnegative smooth function with (small) compact support and D[m,χ, ε] is the dissipation op-

erator defined in (6.4) associated with the Prandtl-Ishlinskĭı operator P0[m,χ, ε]. The subdifferential

∂I[0,∞) of the indicator function I[0,∞) ensures that the fatigue parameter remains nonnegative.

The meaning of (6.8) is simple. If no phase transition takes place or if the material solidifies, that is,

χt ≤ 0, then fatigue at a point x increases proportionally to the energy dissipated in a neighborhood

of the point x. On the other hand, under strong melting if χ grows faster than the plastic dissipation

rate, the fatigue may decrease until it possibly reaches the unperturbed state m = 0.

As we have already seen in Chapters 3 and 4, we can interpret (6.7) and (6.8) for the phase variable

χ and fatigue variable m, with a choice χ0(x) ∈ [0,1], m0(x) ≥ 0 of initial conditions, in an equivalent

way in the form

χ(x, t) = s[0,1][A(x, ·), χ0(x)](t), (6.9)

m(x, t) = s[0,∞)[S(x, ·),m0(x)](t), (6.10)

where

A(x, t) :=

∫ t

0

1

ρ

(
L

θref
(θ − θref)−

1

2

∫ ∞
0

γχ(m,χ, r)s2
r [ε](t) dr

)
(x, τ) dτ, (6.11)

S(x, t) :=

∫ t

0

(
−h(χt(τ)) +

∫ 1

0
λ(x− y)D[m,χ, ε](y, τ) dy

)
(x, τ) dτ. (6.12)

The advantage of this representation is that now χ and m are defined by equations involving, by

virtue of Proposition B.5, only operators that are Lipschitz continuous in W 1,1(0, T ).

6.1.3 Energy balance

By the first principle of thermodynamics we have that the internal energy U of the system must be

conserved in the following sense

U(m,χ, ε)t + qx = σεt + g, (6.13)

where q = −κθx is the heat flux with a constant heat conductivity κ > 0, and g is the heat source

density. Moreover, according to the second principle of thermodynamics, there exists a state function
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6 – A model for an oscillating beam

S called the entropy which is nondecreasing in the sense of the Clausius-Duhem inequality

S(m,χ, ε)t +
(q
θ

)
x
≥ g

θ
. (6.14)

We claim that, if the phase dynamics is chosen in the form (6.7) and the fatigue variable m satisfies

the evolution equation (6.8), then the right choice of the free energy F = U − θS for the system to

be thermodynamically consistent, under the assumption of constant heat capacity c and latent heat

L, is given by

F (m,χ, ε) = cθ

(
1− log

(
θ

θref

))
+
B

2
ε2−β(θ− θref)ε+V [m,χ, ε]− L

θref
(θ− θref)χ+ I[0,1](χ) (6.15)

where V [m,χ, ε] is the Prandtl-Ishlinskĭı potential introduced in (6.3). As already explained in Sub-

section 4.1.3, a formula for the free energy can be derived from the constitutive relation (6.5) by a

“formal” integration. However, we prefer to follow an “a posteriori” (and more rigorous) approach

and use the constitutive relation and the energy balance for P0 to prove that for F as in (6.15) the

Clausius-Duhem inequality (6.14) is satisfied.

From (6.15) it follows that the entropy operator S and internal energy operator U have the form

S(m,χ, ε) = −∂F
∂θ

= c log

(
θ

θref

)
+ βε+

L

θref
χ, (6.16)

U(m,χ, ε) = F (m,χ, ε) + θS(m,χ, ε)

= cθ +
B

2
ε2 + βθrefε+ V [m,χ, ε] + Lχ+ I[0,1](χ). (6.17)

Note that (q
θ

)
x

=
qxθ − qθx

θ2
=
qx
θ

+
κθ2

x

θ2
,

hence

S(m,χ, ε)t +
(q
θ

)
x
− g

θ
=
cθt
θ

+ βεt +
L

θref
χt +

qx
θ

+
κθ2

x

θ2
− g

θ
. (6.18)

By (6.13) it follows

qx
θ
− g

θ
=

1

θ

(
σεt − U(m,χ, ε)t

)
which, together with the constitutive relation (6.5) and the energy balance (6.3), yields

qx
θ
− g

θ
=

1

θ

(
Bεεt + εtP0[m,χ, ε] + νε2

t − β(θ − θref)εt − U(m,χ, ε)t

)
=

1

θ

(
Bεεt + νε2

t − β(θ − θref)εt − U(m,χ, ε)t + V [m,χ, ε]t +D[m,χ, ε]

− 1

2

∫ ∞
0

(
γm(m,χ, r)mt + γχ(m,χ, r)χt

)
s2
r [ε] dr

)
.
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6.1 – Derivation of the model

Plugging it into (6.18) gives

S(m,χ, ε)t +
(q
θ

)
x
− g

θ
=
cθt
θ

+ βεt +
L

θref
χt +

κθ2
x

θ2

+
1

θ

(
Bεεt + νε2

t − β(θ − θref)εt − U(m,χ, ε)t + V [m,χ, ε]t +D[m,χ, ε]

− 1

2

∫ ∞
0

(
γm(m,χ, r)mt + γχ(m,χ, r)χt

)
s2
r [ε] dr

)
.

A direct computation of U(m,χ, ε)t, with U from (6.17), yields

U(m,χ, ε)t = cθt +Bεεt + βθrefεt + V [m,χ, ε]t + Lχt + ∂I[0,1]χt, (6.19)

where ∂I[0,1](χ)χt = 0 (see Remark B.2). Hence inserting (6.19) in (6.19) we obtain, after some

cancellations,

S(m,χ, ε)t +
(q
θ

)
x
− g

θ

=
κθ2

x

θ2
+
νε2

t

θ
+

1

θ

(
L

θref
(θ − θref)χt +D[m,χ, ε]− 1

2

∫ ∞
0

(
mtγm(m,χ, r) + χtγχ(m,χ, r)

)
s2
r [ε] dr

)
.

Multiplying the differential inclusion (6.7) by χt we obtain (see Remark B.2)

−ρχ2
t = − L

θref
(θ − θref)χt +

1

2
χt

∫ ∞
0

γχ(m,χ, r) s2
r [ε] dr,

thus we get

S(m,χ, ε)t +
(q
θ

)
x
− g

θ
=
κθ2

x

θ2
+
νε2

t

θ
+

1

θ

(
ρχ2

t +D[m,χ, ε]− 1

2
mt

∫ ∞
0

γm(m,χ, r) s2
r [ε] dr

)
. (6.20)

In the next chapter we will put suitable hypotheses on the function h appearing in the inclusion

(6.8) and on the Prantdl-Ishlinskĭı density γ, and we will check that the absolute temperature θ stays

positive. This will allow us to conclude that the Clausius-Duhem inequality (6.13) holds.

We now rewrite the energy conservation law (6.13) in a more suitable form. Using (6.19), the consti-

tutive law (6.5) and the expression for q, (6.13) becomes

cθt +Bεεt + βθrefεt + V [m,χ, ε]t + Lχt − κθxx = Bεεt + εtP0[m,χ, ε] + νε2
t − β(θ − θref)εt + g.

Note that some terms cancel out. Thus, employing the energy balance (6.3), we obtain

cθt − κθxx = −βθεt + νε2
t +D[m,χ, ε]

− 1

2

∫ ∞
0

(
mtγm(m,χ, r) + χtγχ(m,χ, r)

)
s2
r [ε] dr − Lχt + g.

(6.21)
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6 – A model for an oscillating beam

6.2 The mathematical problem

For any T > 0 we set

ΩT = (0,1)× (0, T ) , u(x, t) =

∫ t

0
σ(x, τ) dτ ,

f(x, t) =

∫ t

0
F (x, τ) dτ + µwt(x,0)− αwxxt(x,0).

We rewrite the equations (6.5), (6.6), (6.7), (6.8), (6.21) as the system

ut = Bwxx + P0[m,χ,wxx] + νwxxt − β(θ − θref), (6.22)

µwt − αwxxt = −uxx + f(x, t), (6.23)

cθt − κθxx = −βθεt + νε2
t +D[m,χ, ε] (6.24)

− 1

2

∫ ∞
0

(
mtγm(m,χ, r) + χtγχ(m,χ, r)

)
s2
r [ε] dr − Lχt + g, (6.25)

−ρχt ∈ ∂I[0,1](χ)− L

θref
(θ − θref) +

1

2

∫ ∞
0

γχ(m,χ, r) s2
r [ε] dr, (6.26)

mt ∈ −∂I[0,∞)(m)− h(χt) +

∫ 1

0
λ(x− y)D[m,χ, ε](y, t) dy, (6.27)

for unknown functions u,w, θ,m, χ, with initial and boundary conditions

w(x,0) = u(x,0) = 0,

m(x,0) = m0(x) = 0,

θ(x,0) = θ0(x),

χ(x,0) = χ0(x),


(6.28)

w(0, t) = u(0, t) = w(1, t) = u(1, t) = 0,

θx(0, t) = θx(1, t) = 0.

 (6.29)

The zero initial conditions for w and m are motivated by the fact that it is difficult to determine

the initial degree of fatigue for a material with unknown loading history, and the most transparent

hypothesis consists in assuming that no deformation (and therefore no fatigue) has taken place prior

to the time t = 0.
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CHAPTER 7

Solvability of the problem

In this chapter we are going to state and prove the main result for problem (6.22)–(6.29). The data

are required to fulfill the following hypotheses:

Hypothesis 7.1.

(i) P0 is a Prandtl-Ishlinskĭı operator (6.2) with a measurable density function γ : [0,∞)× [0,1]×

(0,∞) → [0,∞), which is locally Lipschitz continuous in the first two variables, with γm

and γχ locally Lipschitz continuous as well, and such that there exist γ̃, γ∗ ∈ L1(0,∞) with

γ(m,χ, r) ≤ γ̃(r), 0 ≤ −γm(m,χ, r) ≤ γ∗(r), |γχ(m,χ, r)| ≤ γ∗(r), |γmm(m,χ, r)| ≤ γ∗(r),

|γχm(m,χ, r)| ≤ γ∗(r), |γχχ(m,χ, r)| ≤ γ∗(r) a. e. Moreover, M :=
∫∞

0 rγ̃(r) dr < ∞ and also∫∞
0 (1 + r2)γ∗(r) dr < 2L, being L the latent heat of the process.

(ii) B, ν, β, θref , µ, α, c, κ, L, ρ are given positive constants.

(iii) λ : R→ [0,∞) is a C1 function with compact support, and we set Λ := max{λ(x)+ |λ′(x)| , x ∈

R}.

(iv) f ∈ L2(ΩT ) is a given function for some fixed T > 0, such that fx, ftt, fxt ∈ L2(ΩT ).

(v) θ0 ∈ L∞(0,1) and χ0 ∈ W 1,2(0,1) are such that θ0 ≥ θ∗ with 0 < θ∗ < 1, θ0
x ∈ L2(0,1),

χ0(x) ∈ [0,1] for all x ∈ [0,1].

(vi) h : R → [0,∞) is a nondecreasing Lipschitz continuous function such that 0 ≤ h′(z) ≤ a a. e.

and h(z) ≤ bz2 for z ∈ R, where a, b are positive constants; in particular b is such that bL ≤ ρ,

where L is the latent heat of the process and ρ is the relaxation coefficient from (6.26).

(vii) g : [0,∞)×ΩT → R is a Carathéodory function such that g0(x, t) := g(0, x, t) ≥ 0, g0 ∈ L2(ΩT ),

and |gθ(θ, x, t)| ≤ g1 a. e. with g1 a constant.

Remark 7.2. In this remark we comment on some of the above hypotheses.
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7 – Solvability of the problem

(i) The assumption that γ(m,χ, r) decreases with increasing fatigue m corresponds to the ob-

servation that the stiffness of the material decreases with increasing fatigue. Moreover, the

assumptions on γ together with the definition of the stop operator in (B.14) implies

|P0[m,χ, ε]| =
∣∣∣∣∫ ∞

0
γ(m,χ, r)sr[ε] dr

∣∣∣∣ ≤ ∫ ∞
0

γ̃(r)r dr ≤M,

whereas the assumptions on γm and γχ allow us to conclude that

0 ≤M [m,χ, ε] = −1

2

∫ ∞
0

γm(m,χ, θ, r)s2
r [εk] dr ≤ 1

2

∫ ∞
0

γ∗(r)r2 dr ≤ L,

|K[m,χ, ε]| =
∣∣∣∣−1

2

∫ ∞
0

γχ(m,χ, θ, r)s2
r [εk] dr

∣∣∣∣ ≤ 1

2

∫ ∞
0

γ∗(r)r2 dr ≤ L.

This means that hysteresis effects vanish far away from the equilibrium. Furthermore, estimate

(B.35) yields the following upper bound for the dissipation in terms of the input velocity

D[m,χ, ε](t) ≤M |ε̇(t)|. (7.1)

(iv) In what follows we will frequently use the fact that ft ∈ L2(ΩT ), which is a direct consequence

of the assumption f, ftt ∈ L2(ΩT ). This can be proved for example by comparing the Fourier

series.

(vi) The assumptions on the function h are needed for the proof of the thermodynamic consistency

of the model. Coming back to (6.20), by the positivity of the dissipation operator and by the

inclusion (6.8) for the fatigue, we infer

ρχ2
t +D[m,χ, ε]− 1

2
mt

∫ ∞
0

γm(m,χ, r) s2
r [ε] dr ≥ ρχ2

t − Lh(χt) ≥ ρχ2
t − Lbχ2

t ≥ 0.

Hence the Clausius-Duhem inequality (6.13) holds, provided that the temperature stays positive.

In particular the boundedness of h′ is used to show the positivity of the temperature, see the

first part of Subsection 7.2.

(vii) The assumption that g0(x, t) ≥ 0 makes sense since g is the heat source density, so at zero

temperature we cannot remove heat from the system.

The main result reads as follows.

Theorem 7.3. Let Hypothesis 7.1 hold. Then there exists a unique solution to the system (6.22)–

(6.29) in ΩT such that θ(x, t) > 0 for all (x, t) ∈ ΩT , and with the regularity

� wxxxt, wxxtt, θt, θxx, utt, uxxt ∈ L2(ΩT ),

� θ,mt, χt ∈ L∞(ΩT ).

The proof of the existence result is carried out in three steps: approximation, a priori estimates and

passage to the limit.
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7.1 – Approximation

7.1 Approximation

From now on the values of all physical constants are set to 1 for simplicity, with the exception of

ρ, L, θref in order to emphasize the role of the phase transition.

Let us choose an integer n ∈ N and consider an equidistant partition of the interval [0,1]. Let us take

the space discrete approximations of (6.22)–(6.27) for k = 1, . . . , n− 1:

u̇k = εk + P0[mk, χk, εk] + ε̇k − θk + θref , (7.2)

ẇk − ε̇k = −n2(uk+1 − 2uk + uk−1) + fk, (7.3)

εk = n2(wk+1 − 2wk + wk−1), (7.4)

θ̇k = n2(θk+1 − 2θk + θk−1)− θkε̇k + ε̇2
k +Dk + ṁkMk + χ̇k (Kk − L) + gk(θk, t), (7.5)

ρχk = s[0,1][χ
0
k, Ak], Ak(t) =

∫ t

0

(
L

θref
(θk − θref) +Kk

)
(τ) dτ, (7.6)

mk = s[0,∞)[0, Sk], Sk(t) =

∫ t

0
(−h(χ̇k) +D∗k)(τ) dτ, (7.7)

where

Mk(t) = −1

2

∫ ∞
0

γm(mk(t), χk(t), r)s
2
r [εk](t) dr,

Kk(t) = −1

2

∫ ∞
0

γχ(mk(t), χk(t), r)s
2
r [εk](t) dr,

Dk(t) =

∫ ∞
0

γ(mk(t), χk(t), r) sr[εk](t)(εk − sr[εk])t(t) dr,

D∗k(t) =
1

n

n−1∑
j=1

λk−jDj(t),

λi = λ(i/n),

fk(t) = n

∫ k/n

(k−1)/n
f(x, t) dx,

gk(θ, t) =


n

∫ k/n

(k−1)/n
g(θ, x, t) dx for θ ≥ 0,

gk(0, t) for θ < 0.

Remark 7.4. By Hypothesis 7.1 (i) we have Mk(t) ∈ [0, L], |Kk(t)| ≤ L for a. e. t ∈ [0, T ]. In

addition, by (7.1) and Hypothesis 7.1 (i) we deduce 0 ≤ Dk(t) ≤ M |ε̇k(t)| for a. e. t ∈ [0, T ]. This,

together with Hypothesis 7.1 (iii), yields 0 ≤ D∗k(t) ≤ ΛM
(

1
n

∑n−1
k=1 |ε̇k(t)|

)
for a. e. t ∈ [0, T ].
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7 – Solvability of the problem

We prescribe initial conditions for k = 1, . . . , n− 1

wk(0) = uk(0) = 0,

θk(0) = θ0
k := θ0(k/n),

mk(0) = 0,

χk(0) = χ0
k := n

∫ k/n

(k−1)/n
χ0(x) dx,


(7.8)

and “boundary conditions”

w0 = wn = u0 = un = 0,

θ0 = θ1, θn = θn−1.

 (7.9)

Remark 7.5. Note that by equation (7.4) and by the initial condition for wk we deduce also

εk(0) = 0 for k = 1, . . . , n− 1.

By Remark B.4 this implies sr[εk](0) = 0, which in turn gives

P0[mk, χk, εk](0) = V [mk, χk, εk](0) = Dk(0) = Mk(0) = Kk(0) = 0 for k = 1, . . . , n− 1.

Problem (7.2)–(7.7) turns out to be a system of ODEs for the unknowns uk, wk, θk, χk,mk, which

admits a W 1,∞ solution in an interval [0, Tn]. Indeed, denoting by w the vector (w1, . . . , wn−1), and

ε = (ε1, . . . , εn−1), we have by (7.4) −ε = Sw with a positive definite matrix S, which has the form

S = n2



2 −1 0 0 0 . . . 0 0 0 0

−1 2 −1 0 0 . . . 0 0 0 0

0 −1 2 −1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . −1 2 −1 0

0 0 0 0 0 . . . 0 −1 2 −1

0 0 0 0 0 . . . 0 0 −1 2


.

Hence the left-hand side of (7.3) reads (I+S)ẇ. Hence, by Proposition B.7 together with Hypothesis

7.1 (i) and (vi), we see that (7.7) defines a locally Lipschitz continuous mapping that with ε, ε̇ and

χ̇ = (χ̇1, . . . , χ̇n−1) (and therefore θ = (θ1, . . . , θn−1) by (7.6)) associates the solution mk. By (7.3), ε̇

is itself a Lipschitz continuous mapping of u = (u1, . . . , un−1). Thus (7.2)–(7.5) can be considered as

an ODE system in uk, wk, θk with a right-hand side which is locally Lipschitz in L1(0, t) for t ∈ [0, T ],

and the existence and uniqueness of a local absolutely continuous solution in an interval [0, Tn] follows

from the standard theory of ODEs. Consequently, the right hand side is bounded, and we conclude

that the solution belongs to W 1,∞(0, Tn). We will show in Subsection 7.2.2 that the solution exists

globally, and actually Tn = T .
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7.2 – A priori estimates

7.2 A priori estimates

This subsection is divided into 4 parts:

� Positivity of the temperature: it is important for the thermodynamic consistency of the model;

� Discrete energy estimate: it constitutes the basic a priori estimate giving the first minimal

regularity (which is not enough however to pass to the limit);

� Discrete Dafermos estimates: it provides additional regularity for the temperature, necessary

to deduce further a priori estimates;

� Higher order estimates: this last part provides the necessary estimates in order to proceed with

the passage to the limit.

In what follows the operation of “testing by a function” a discretized equation will consist in multiply-

ing the equation by the function, summing up over k = 1, . . . , n−1 (or in some cases over k = 1, . . . , n)

and then dividing by n.

Moreover, we will systematically use the “summation by parts formula”

n−1∑
k=1

ξk(ηk+1 − 2ηk + ηk−1) +

n∑
k=1

(ξk − ξk−1)(ηk − ηk−1) = ξn(ηn − ηn−1)− ξ0(η1 − η0) (7.10)

for all vectors (ξ0, . . . , ξn), (η0, . . . , ηn).

We will denote by C any generic positive constant independent of n.

7.2.1 Positivity of the temperature

First of all it is important to prove that θk remains positive in the whole range of existence. For this

purpose we test (7.5) by −θ−k , where θ−k is the negative part of θk, getting

− 1

n

n−1∑
k=1

θ̇kθ
−
k =− n

n−1∑
k=1

(θk+1 − 2θk + θk−1) θ−k −
1

n

n−1∑
k=1

(
Dk + ε̇2

k + gk(θk, t)
)
θ−k

− 1

n

n−1∑
k=1

χ̇k (Kk − L) θ−k −
1

n

n−1∑
k=1

ṁkMk θ
−
k +

1

n

n−1∑
k=1

θkε̇kθ
−
k .

(7.11)

The left-hand side is such that

− 1

n

n−1∑
k=1

θ̇kθ
−
k =

d

dt

(
1

2n

n−1∑
k=1

(θ−k )2

)
.

Let us now focus on the right-hand side of (7.11). By (7.10) with ξk = θ−k and ηk = θk we also deduce

−n
n−1∑
k=1

θ−k (θk+1 − 2θk + θk−1) = n
n∑
k=1

(θ−k − θ
−
k−1)(θk − θk−1)− n

[
θ−n (θn − θn−1)− θ−0 (θ1 − θ0)

]
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7 – Solvability of the problem

The second summand vanishes by (7.9), whereas the first is such that

n

n∑
k=1

(θ−k − θ
−
k−1)(θk − θk−1) = n

n∑
k=1

(θ−k − θ
−
k−1)

[
(θ+
k − θ

+
k−1)− (θ−k − θ

−
k−1)

]
= −n

n∑
k=1

(θ−k − θ
−
k−1)2.

Hence

−n
n−1∑
k=1

θ−k (θk+1 − 2θk + θk−1) = −n
n∑
n=1

(θ−k − θ
−
k−1)2 ≤ 0.

Moreover, being Dk(t) ≥ 0 by definition and gk(θ, t) ≥ 0 for θ ≤ 0 by Hypothesis 7.1 (vii), it follows

that

−
(
Dk(t) + ε̇2

k(t) + gk(θk, t)
)
θ−k ≤ 0.

Now we deal with the phase term. By (7.6) and (B.21) (see also Remark B.2) we have

χ̇k(t) θ
−
k (t) = 0 if χ̇k(t) = 0,

χ̇k(t) θ
−
k (t) =

L

θrefρ
(θk(t)− θref) θ

−
k (t) +

Kk

ρ
θ−k (t) otherwise.

 (7.12)

Note that

L

θrefρ
(θk(t)− θref) θ

−
k (t) +

Kk

ρ
θ−k (t) = − L

θrefρ
(θ−k (t))2 +

1

ρ
(Kk − L) θ−k (t) ≤ 0

by Remark 7.4. Hence (7.12) entails

χ̇k(t) θ
−
k (t) ≤ 0, (7.13)

and again by Remark 7.4 we deduce

−(Kk − L)χ̇k(t) θ
−
k (t) ≤ 0.

Finally, by (7.7) and (B.21) (see also Remark B.2) we have

−ṁk(t)Mk(t) θ
−
k (t) = 0 if ṁk(t) = 0,

−ṁk(t)Mk(t) θ
−
k (t) = (h(χ̇k(t))−D∗k(t))Mk(t) θ

−
k (t) otherwise.

 (7.14)

Hypothesis 7.1 (vi) (in particular the Lipschitzianity of h in 0 with Lipschitz constant a) and Remark

7.4 allow us to show that, by (7.13),

(h(χ̇k(t))−D∗k(t))Mk(t) θ
−
k (t) ≤ h(χ̇k(t))Mk(t) θ

−
k (t) ≤ 0.

Hence (7.14) entails

−ṁk(t)Mk(t) θ
−
k (t) ≤ 0.

The last term on the right-hand side of (7.11) is such that

1

n

n−1∑
k=1

θkε̇kθ
−
k =

1

n

n−1∑
k=1

(
θ+
k − θ

−
k

)
ε̇kθ
−
k = − 1

n

n−1∑
k=1

ε̇k(θ
−
k )2.
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7.2 – A priori estimates

Summarizing the above computations we come to

d

dt

(
1

2n

n−1∑
k=1

(θ−k )2

)
≤ 1

n

n−1∑
k=1

|ε̇k|(θ−k )2 ≤ Cε,n
n

n−1∑
k=1

(θ−k )2,

where we set

Cε,n := max{|ε̇k(t)| : k = 1, . . . , n− 1, t ∈ [0, Tn]}.

Grönwall’s lemma A.1 now yields

(θ−k )2(t) ≤ e
∫ t
0 2Cε,n dτ (θ−k )2(0),

and since by (7.8) and Hypothesis 7.1 (v) it holds θ−k (0) =
(
θ0(k/n)

)−
= 0, we finally obtain that

θ−k (t) = 0 for all k and t ∈ [0, Tn].

At this point we prove that in addition θk(t) is bounded away from 0 for all k and all t ∈ [0, Tn]. The

idea is to compare the decay of θk with the solution to the differential equation

ṗ+ ψ(p) = 0 , p(0) = θ∗, (7.15)

with θ∗ > 0 from Hypothesis 7.1 (v) and ψ suitable function of polynomial kind that we will choose

later.

First of all, if χ̇k /= 0 then by Remark 7.4

−ρχ̇k = − L

θref
(θk − θref)−Kk ≥ −

Lθk
θref

. (7.16)

Thus

χ̇k(Kk − L) ≥ Lθk
θref ρ

(Kk − L) ≥ − 2L2

θrefρ
θk, (7.17)

where the second inequality follows again from Remark 7.4. On the other hand by Hypothesis 7.1 (vi)

and (7.16)

ṁk ≥ −h(χ̇k) ≥ −aχ̇k ≥ −
aL θk
θrefρ

,

from which we deduce thanks to Remark 7.4

ṁkMk ≥ −
aL2

θrefρ
θk. (7.18)

Moreover, since we already proved that θk > 0, by Hypothesis 7.1 (vii) it follows

gk(θk, t) = n

∫ k/n

(k−1)/n
g(θk, x, t) dx ≥ n

∫ k/n

(k−1)/n
(g(θk, x, t)− g(0, x, t)) dx

= n

∫ k/n

(k−1)/n

(∫ θk

0
gθ(θ, x, t) dθ

)
dx ≥ n

∫ k/n

(k−1)/n
(−g1) θk dx = −g1θk. (7.19)

By the elementary inequality a2 − ab+ b2

4 ≥ 0 ∀ a, b ∈ R we additionally have

ε̇2
k − θkε̇k ≥ −

1

4
θ2
k. (7.20)
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7 – Solvability of the problem

Inserting (7.17)–(7.20) in (7.5) we deduce

θ̇k − n2(θk+1 − 2θk + θk−1) ≥ −ψ(θk), (7.21)

where

ψ(z) := −1

4
z2 −

[
L2

θrefρ
(2 + a) + g1

]
z.

Coming back to (7.15), it is not difficult to check that for such a choice for ψ we obtain

p(t) =
µθ∗e

−µt

δθ∗(1− e−µt) + µ
with δ =

1

4
, µ =

L2

θrefγ
(2 + a) + g1.

Note that p is nonnegative and nonincreasing in [0,∞). We are going to show that θk(t) ≥ p(t) > 0

for all k and all t ∈ [0, Tn]. To this aim we compare θk and p. By (7.21) and (7.15) it holds

(ṗ− θ̇k)− n2
(
(p− θk+1)− 2(p− θk) + (p− θk−1)

)
+ ψ(p)− ψ(θk) ≤ 0.

We now test by (p− θk)+, getting

1

n

n−1∑
k=1

(ṗ− θ̇k)(p− θk)+ − n
n−1∑
k=1

(
(p− θk+1)− 2(p− θk) + (p− θk−1)

)
(p− θk)+

+
1

n

n−1∑
k=1

(ψ(p)− ψ(θk)) (p− θk)+ ≤ 0.

It holds

� 1

n

n−1∑
k=1

(ṗ− θ̇k)(p− θk)+ =


1

n

n−1∑
k=1

(ṗ− θ̇k)(p− θk) if p > θk

0 if p ≤ θk

=
d

dt

(
1

2n

n−1∑
k=1

(
(p− θk)+

)2)
;

� for the second term

− n
n−1∑
k=1

(
(p− θk+1)− 2(p− θk) + (p− θk−1)

)
(p− θk)+

(7.10)
= n

n∑
k=1

(
(p− θk)+ − (p− θk−1)+

) (
(p− θk)− (p− θk−1)

)
− n

[(
(p− θn)− (p− θn−1)

)
(p− θn)+ −

(
(p− θ1)− (p− θ0)

)
(p− θ0)+

]
(7.9)
= n

n∑
k=1

(
(p− θk)+ − (p− θk−1)+

) (
(p− θk)− (p− θk−1)

)
= n

n∑
k=1

(
(p− θk)+ − (p− θk−1)+

) (
(p− θk)+ − (p− θk)− − (p− θk−1)+ + (p− θk−1)−

)
≥ n

n∑
k=1

(
(p− θk)+ − (p− θk−1)+

)2
;

� 1

n

n−1∑
k=1

(ψ(p)− ψ(θk)) (p− θk)+ =


1

n

n−1∑
k=1

(ψ(p)− ψ(θk)) (p− θk) if p > θk

0 if p ≤ θk
hence it is always nonnegative since ψ is nondecreasing for positive arguments.
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7.2 – A priori estimates

Thus
d

dt

(
1

2n

n−1∑
k=1

(
(p− θk)+

)2) ≤ 0,

from which we obtain

1

n

n−1∑
k=1

(
(p− θk)+

)2
(t) ≤ 1

n

n−1∑
k=1

(
(p− θk)+

)2
(0) =

1

n

n−1∑
k=1

(
(θ∗ − θ0(k/n))+

)2
= 0

since θ0 ≥ θ∗ by Hypothesis 7.1 (v). Hence (p − θk)
+(t) = 0 for all k and all t ∈ [0, Tn], so that

θk(t) ≥ p(t) > 0 for all k and all t ∈ [0, Tn], which is the desired result. Note that the positive

lower bound is independent of the discretization parameter, and therefore is preserved in the limit

and implies the positivity of the temperature.

7.2.2 Discrete energy estimate

We test (7.2) by ε̇k, then we differentiate (7.3) in time, test it by ẇk and sum up the two equations.

We start by testing (7.2) by ε̇k. We obtain

1

n

n−1∑
k=1

u̇kε̇k =
1

n

n−1∑
k=1

ε̇k (εk + P0[mk, χk, εk] + ε̇k − θk + θref) .

Using (7.4) on the left-hand side this is equivalent to

1

n

n−1∑
k=1

ε̇k (εk + P0[mk, χk, εk] + ε̇k − θk + θref) = n
n−1∑
k=1

u̇k(ẇk+1 − 2ẇk + ẇk−1)

(7.10)
= −n

n∑
k=1

(u̇k − u̇k−1) (ẇk − ẇk−1) + n [u̇n (ẇn − ẇn−1)− u̇0 (ẇ1 − ẇ0)]

(7.9)
= −n

n∑
k=1

(u̇k − u̇k−1) (ẇk − ẇk−1) . (7.22)

Then we differentiate (7.3) in time. This yields

ẅk − ε̈k = −n2(u̇k+1 − 2u̇k + u̇k−1) + ḟk.

Testing it by ẇk we get

1

n

n−1∑
k=1

ẅkẇk −
1

n

n−1∑
k=1

ε̈kẇk = −n
n−1∑
k=1

(u̇k+1 − 2u̇k + u̇k−1)ẇk +
1

n

n−1∑
k=1

ḟkẇk

(7.10)
= n

n∑
k=1

(u̇k − u̇k−1) (ẇk − ẇk−1)− n [(u̇n − u̇n−1) ẇn − (u̇1 − u̇0) ẇ0] +
1

n

n−1∑
k=1

ḟkẇk

(7.9)
= n

n∑
k=1

(u̇k − u̇k−1) (ẇk − ẇk−1) +
1

n

n−1∑
k=1

ḟkẇk. (7.23)

Summing up (7.22) and (7.23) we obtain

1

n

n−1∑
k=1

(ẅkẇk − ε̈kẇk) +
1

n

n−1∑
k=1

ε̇k (εk + P0[mk, χk, εk] + ε̇k − θk + θref) =
1

n

n−1∑
k=1

ḟkẇk.
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7 – Solvability of the problem

Note that by (7.4) we also have

− 1

n

n−1∑
k=1

ε̈kẇk = −n
n−1∑
k=1

(ẅk+1 − 2ẅk + ẅk−1)ẇk

(7.10)
= n

n∑
k=1

(ẅk − ẅk−1) (ẇk − ẇk−1)− n [(ẅn − ẅn−1) ẇn − (ẅ1 − ẅ0) ẇ0]

(7.9)
= n

n∑
k=1

(ẅk − ẅk−1) (ẇk − ẇk−1) ,

hence we get

1

n

n−1∑
k=1

ẅkẇk + n
n∑
k=1

(ẅk − ẅk−1) (ẇk − ẇk−1)

+
1

n

n−1∑
k=1

ε̇k (εk + P0[mk, χk, εk] + ε̇k − θk + θref) =
1

n

n−1∑
k=1

ḟkẇk.

This entails

d

dt

(
1

2n

n−1∑
k=1

(
ẇ2
k + ε2

k

)
+

1

n

n−1∑
k=1

θrefεk +
n

2

n∑
k=1

(ẇk − ẇk−1)2

)

+
1

n

n−1∑
k=1

ε̇kP0[mk, χk, εk] =
1

n

n−1∑
k=1

(−ε̇2
k + θkε̇k + ḟkẇk).

(7.24)

Now we test (7.5) by 1 obtaining

1

n

n−1∑
k=1

θ̇k = n
n−1∑
k=1

(θk+1 − 2θk + θk−1)

+
1

n

n−1∑
k=1

(
−θkε̇k + ε̇2

k +Dk + ṁkMk + χ̇k (Kk − L) + gk(θk, t)
)
.

(7.25)

Adding (7.24) to (7.25) allows us to obtain

d

dt

(
1

2n

n−1∑
k=1

(
ẇ2
k + ε2

k

)
+

1

n

n−1∑
k=1

θrefεk +
n

2

n∑
k=1

(ẇk − ẇk−1)2 +
1

n

n−1∑
k=1

θk

)
+

1

n

n−1∑
k=1

ε̇kP0[mk, χk, εk]

= n
n−1∑
k=1

(θk+1 − 2θk + θk−1) +
1

n

n−1∑
k=1

(
Dk + ṁkMk + χ̇k (Kk − L) + gk + ḟkẇk

)
.

Then, by virtue of the discrete version of (B.34) it holds also

d

dt

(
1

2n

n−1∑
k=1

(
ẇ2
k + ε2

k

)
+

1

n

n−1∑
k=1

θrefεk +
n

2

n∑
k=1

(ẇk − ẇk−1)2 +

n−1∑
k=1

θk

)

+
1

n

n−1∑
k=1

(
V [mk, χk, εk]t +Dk + ṁkMk + χ̇kKk

)

= n

n−1∑
k=1

(θk+1 − 2θk + θk−1) +
1

n

n−1∑
k=1

(
Dk + ṁkMk + χ̇k (Kk − L) + gk + ḟkẇk

)
,
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that is,

d

dt

(
1

n

n−1∑
k=1

(
1

2
ẇ2
k +

1

2
ε2
k + θrefεk + θk + V [mk, χk, εk] + Lχk

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2

)

= n
n−1∑
k=1

(θk+1 − 2θk + θk−1) +
1

n

n−1∑
k=1

(
gk + ḟkẇk

)
.

Note that the summation by parts formula (7.10) with ξk ≡ 1 and ηk = θk implies

n

n−1∑
k=1

(θk+1 − 2θk + θk−1) = (θn − θn−1)− (θ1 − θ0)
(7.9)
= 0.

Hence we get

d

dt

(
1

n

n−1∑
k=1

(
1

2
ẇ2
k +

1

2
ε2
k + θrefεk + θk + V [mk, χk, εk] + Lχk

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2

)

=
1

n

n−1∑
k=1

(
gk + ḟkẇk

)
.

We now integrate in time
∫ τ

0 dt for some τ ∈ [0, Tn]. Note that it holds

θrefεk = 2θref ·
1

2
εk ≥ −

1

2
(2θref)

2 − 1

2

(
1

2
εk

)2

= −2θ2
ref −

1

8
ε2
k, (7.26)

hence we obtain

1

n

n−1∑
k=1

(
1

2
ẇ2
k(τ) +

3

8
ε2
k(τ) + θk(τ) + V [mk, χk, εk](τ) + Lχk(τ)

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2(τ)

≤
∫ τ

0

1

n

n−1∑
k=1

(
gk(θk, t) + ḟk(t)ẇk(t)

)
dt+ 2θ2

ref

+
1

n

n−1∑
k=1

(
1

2
ẇ2
k(0) +

3

8
ε2
k(0) + θk(0) + V [mk, χk, εk](0) + Lχk(0)

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2(0).

(7.27)

Since we have already proved that θk > 0 for all k, by Hypothesis 7.1 (vii) the first summand on the

right-hand side is such that∫ τ

0

1

n

n−1∑
k=1

gk(θk, t) dt =

∫ τ

0

1

n

n−1∑
k=1

(
n

∫ k/n

(k−1)/n
g(θ, x, t) dx

)
dt

=

∫ τ

0

1

n

n−1∑
k=1

(
n

∫ k/n

(k−1)/n

(∫ θk

0
gθ(θ, x, t) dθ + g0(x, t)

)
dx

)
dt

≤
∫ τ

0

1

n

n−1∑
k=1

(
g1θk(t) + n

∫ k/n

(k−1)/n
g0(x, t) dx

)
dt

≤
∫ τ

0

1

n

n−1∑
k=1

g1θk(t) dt+

∫∫
ΩT

g0(x, t) dx dt

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

θk(t) dt

)
. (7.28)
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We now estimate the second summand using the discrete Hölder’s inequality (see Remark A.10) and

then Young’s inequality. It holds

∫ τ

0

1

n

n−1∑
k=1

ḟk(t)ẇk(t) dt ≤
∫ τ

0

(
1

n

n−1∑
k=1

ḟ2
k (t)

)1/2(
1

n

n−1∑
k=1

ẇ2
k(t)

)1/2

dt

≤
∫ τ

0

1

2n

n−1∑
k=1

ḟ2
k (t) dt+

∫ τ

0

1

2n

n−1∑
k=1

ẇ2
k(t) dt,

where ∫ τ

0

1

n

n−1∑
k=1

ḟ2
k (t) dt =

∫ τ

0
n
n−1∑
k=1

(∫ k/n

(k−1)/n
ft(x, t) dx

)2

dt

≤
∫ τ

0
n
n−1∑
k=1

(∫ k/n

(k−1)/n
f2
t (x, t) dx

)1/2(∫ k/n

(k−1)/n
12 dx

)1/2
2

dt

=

∫ τ

0
n

n−1∑
k=1

∫ k/n

(k−1)/n
f2
t (x, t) dx · 1

n
dt ≤

∫∫
ΩT

f2
t (x, t) dx dt ≤ C (7.29)

by Hypothesis 7.1 (iv) and Remark 7.2 (iv). Hence from (7.27) we obtain

1

n

n−1∑
k=1

(
1

2
ẇ2
k(τ) +

3

8
ε2
k(τ) + θk(τ) + V [mk, χk, εk](τ) + Lχk(τ)

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2(τ)

≤ C

(
1 +

∫ τ

0

1

2n

n−1∑
k=1

ẇ2
k(t) dt+

∫ τ

0

1

n

n−1∑
k=1

θk(t) dt

)

+
1

n

n−1∑
k=1

(
1

2
ẇ2
k(0) +

3

8
ε2
k(0) + θk(0) + V [mk, χk, εk](0) + Lχk(0)

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2(0).

(7.30)

We need to estimate the initial data. To bound the terms 1
n

∑n−1
k=1 ẇ

2
k(0) and n

∑n
k=1(ẇk − ẇk−1)2(0)

we write equation (7.3) for t = 0

ẇk(0)− ε̇k(0) = fk(0), (7.31)

where we exploited also the initial condition (7.8) for uk. Then we test it by ẇk(0) to get

1

n

n−1∑
k=1

ẇ2
k(0)− 1

n

n−1∑
k=1

ε̇k(0)ẇk(0) =
1

n

n−1∑
k=1

fk(0)ẇk(0). (7.32)

It holds

1

n

n−1∑
k=1

ε̇k(0)ẇk(0)
(7.4)
= n

n−1∑
k=1

(ẇk+1 − 2ẇk + ẇk−1)(0)ẇk(0)
(7.10)

= −n
n∑
k=1

(ẇk − ẇk−1)2 (0) (7.33)

where we used also the zero initial condition in (7.8) for ẇk. Thus we obtain, by Young’s inequality,

1

2n

n−1∑
k=1

ẇ2
k(0) + n

n∑
k=1

(ẇk − ẇk−1)2 (0) ≤ 1

2n

n−1∑
k=1

f2
k (0). (7.34)
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We need to estimate the term on the right-hand side. It holds

1

n

n−1∑
k=1

f2
k (0) =

1

n

n−1∑
k=1

f2
k (τ)− 2

∫ τ

0

1

n

n−1∑
k=1

fk(t)ḟk(t) dt

≤ 1

n

n−1∑
k=1

f2
k (τ) + 2

∫ τ

0

1

n

n−1∑
k=1

|fk(t)||ḟk(t)| dt.

Arguing as in (7.29) we get

1

n

n−1∑
k=1

f2
k (τ) ≤

∫ 1

0
f2(x, τ) dx. (7.35)

Moreover, Hölder’s inequality in space yields∫ τ

0

1

n

n−1∑
k=1

|fk(t)||ḟk(t)|dt =

∫ τ

0

1

n

n−1∑
k=1

∣∣∣∣∣n
∫ k/n

(k−1)/n
f(x, t) dx

∣∣∣∣∣
∣∣∣∣∣n
∫ k/n

(k−1)/n
ft(x, t) dx

∣∣∣∣∣dt
≤ n

∫ τ

0

n−1∑
k=1

(∫ k/n

(k−1)/n
|f(x, t)|dx

)(∫ k/n

(k−1)/n
|ft(x, t)|dx

)
dt

≤ n
∫ τ

0

1

n

n−1∑
k=1

(∫ k/n

(k−1)/n
f2(x, t) dx

)1/2(∫ k/n

(k−1)/n
f2
t (x, t) dx

)1/2

dt

which entails, applying first the discrete Hölder’s inequality and then Hölder’s inequality in time,∫ τ

0

1

n

n−1∑
k=1

|fk(t)||ḟk(t)| dt

≤ n
∫ τ

0

(
1

n

n−1∑
k=1

∫ k/n

(k−1)/n
f2(x, t) dx

)1/2(
1

n

n−1∑
k=1

∫ k/n

(k−1)/n
f2
t (x, t) dx

)1/2

dt

≤
(∫ τ

0

∫ 1

0
f2(x, t) dx dt

)1/2(∫ τ

0

∫ 1

0
f2
t (x, t) dx dt

)1/2

.

Hence we obtain

1

n

n−1∑
k=1

f2
k (0) ≤

∫ 1

0
f2(x, τ) dx+ 2

(∫ τ

0

∫ 1

0
f2(x, t) dx dt

)1/2(∫ τ

0

∫ 1

0
f2
t (x, t) dx dt

)1/2

.

Integrating now in time
∫ T

0 dτ we get

T

n

n−1∑
k=1

f2
k (0) ≤

∫∫
ΩT

f2(x, τ) dx dτ + 2T

(∫∫
ΩT

f2(x, t) dx dt

)1/2(∫∫
ΩT

f2
t (x, t) dx dt

)1/2

,

that is, by Hypothesis 7.1 (iv),

1

n

n−1∑
k=1

f2
k (0) ≤ C. (7.36)

Coming back to (7.34) this implies

1

n

n−1∑
k=1

ẇ2
k(0) + n

n∑
k=1

(ẇk − ẇk−1)2 (0) ≤ C. (7.37)

119
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From Remark 7.5 we deduce

ε2
k(0) = V [mk, χk, εk](0) = 0, (7.38)

whereas by (7.8) and Hypothesis 7.1 (v)

θk(0) = θ0(k/n) ≤ sup ess
(0,1)

θ0 ≤ C, (7.39)

Lχk(0) = Ln

∫ k/n

(k−1)/n
χ0(x) dx ≤ L, (7.40)

for all k = 1, . . . , n−1. Hence, exploiting also the positivity of V [mk, χk, εk] (see (6.3) and Hypothesis

7.1 (i)) and of Lχk, from (7.30) we deduce

1

n

n−1∑
k=1

(
ẇ2
k(τ) + ε2

k(τ) + θk(τ)
)

+
n

2

n∑
k=1

(ẇk − ẇk−1)2(τ) ≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

(
ẇ2
k(t) + θk(t)

)
dt

)
.

Using Grönwall’s lemma A.2, we see that the approximate solution remains bounded in the maximal

interval of existence [0, Tn]. Hence the solution exists globally, and for every n ∈ N we have Tn = T .

We thus have obtained

1

n

n−1∑
k=1

(
ẇ2
k + ε2

k + θk
)

(τ) +
n

2

n∑
k=1

(ẇk − ẇk−1)2(τ) ≤ C. (7.41)

for all τ ∈ [0, T ]. In particular the approximate solutions exist globally, and Tn = T .

7.2.3 Discrete Dafermos estimate

We test (7.5) by θ
−1/3
k and obtain

0 =
1

n

n−1∑
k=1

(
−θ̇kθ

−1/3
k

)
+ n

n−1∑
k=1

(θk−1 − 2θk + θk−1) θ
−1/3
k +

1

n

n−1∑
k=1

ṁkMk θ
−1/3
k +

1

n

n−1∑
k=1

Dkθ
−1/3
k

+
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k − 1

n

n−1∑
k=1

θkε̇kθ
−1/3
k +

1

n

n−1∑
k=1

χ̇k(Kk − L) θ
−1/3
k +

1

n

n−1∑
k=1

gk θ
−1/3
k

=: T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

Observe that T4 ≥ 0 since Dk ≥ 0, and we already proved that the temperature stays positive. Hence

we can rewrite the previous equality as an inequality of the form

T1 + T2 + T3 + T5 + T6 + T7 + T8 ≤ 0. (7.42)

We estimate the remaining terms. The term T1 can be rewritten as

T1 :=
1

n

n−1∑
k=1

(
−θ̇kθ

−1/3
k

)
= − d

dt

(
3

2n

n−1∑
k=1

θ
2/3
k

)
.
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Concerning the term T2, using the summation by parts formula (7.10) and the elementary inequality

−(x− y)(x−1/3 − y−1/3) ≥ 3(x1/3 − y1/3)2 ∀x, y > 0

with the choice x = θk, y = θk−1, we deduce

T2 := n
n−1∑
k=1

(θk−1 − 2θk + θk−1) θ
−1/3
k

= −n
n∑
k=1

(θk − θk−1)(θ
−1/3
k − θ−1/3

k−1 ) + n[(θn − θn−1)θ−1/3
n − (θ1 − θ0)θ

−1/3
0 ]

≥ 3n
n∑
k=1

(θ
1/3
k − θ1/3

k−1)2,

where the term n[θ
−1/3
n (θn − θn−1)− θ−1/3

0 (θ1 − θ0)] vanishes due to (7.9).

Concerning the term T3, we observe that by (7.18)

T3 :=
1

n

n−1∑
k=1

ṁkMk θ
−1/3
k ≥ − aL

2

θrefρ

1

n

n−1∑
k=1

θ
2/3
k .

The same happens for the term T7 noticing that, by (7.17),

T7 :=
1

n

n−1∑
k=1

χ̇k(Kk − L)θ
−1/3
k ≥ − 2L2

θrefρ

1

n

n−1∑
k=1

θ
2/3
k .

Concerning the term T8, by (7.19) we have

T8 :=
1

n

n−1∑
k=1

gkθ
−1/3
k ≥ −g1

1

n

n−1∑
k=1

θ
2/3
k .

Hence from (7.42) we deduce

3n
n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 +
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k ≤ C1

1

n

n−1∑
k=1

θ
2/3
k +

d

dt

(
3

2n

n−1∑
k=1

θ
2/3
k

)
+

1

n

n−1∑
k=1

|ε̇k|θ
2/3
k ,

where we set

C1 :=
L2

θrefρ
(2 + a) + g1.

Integrating in time we obtain for all τ ∈ [0, T ]∫ τ

0

(
3n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 +
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k

)
dt+

3

2n

n−1∑
k=1

(θ0
k)

2/3

≤ C1

∫ τ

0

1

n

n−1∑
k=1

θ
2/3
k dt+

3

2n

n−1∑
k=1

θ
2/3
k (τ) +

∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ
2/3
k dt.

(7.43)

The first two terms on the right-hand side of (7.43) are bounded due to (7.41). We estimate third

term by the discrete Hölder’s inequality (see Remark A.10) as follows. We have∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ
2/3
k dt =

∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ
5/6
k θ

−1/6
k dt ≤

(∫ τ

0

1

n

n−1∑
k=1

θ
5/3
k dt

)1/2(∫ τ

0

1

n

n−1∑
k=1

θ
−1/3
k ε̇2

k dt

)1/2

,
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thus Young’s inequality and (7.43) yield∫ τ

0

(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 +
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k

)
dt ≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

θ
5/3
k dt

)
. (7.44)

We now apply the discrete Gagliardo-Nirenberg inequality (see Remark A.11) with v = θ
1/3
k , s = 3,

q = 5, p = 2, % = 4/25. By (7.9) we have(
1

n

n−1∑
k=1

θ
5/3
k

)1/5

≤ C

( 1

n

n−1∑
k=1

θk

)1/3

+

(
1

n

n−1∑
k=1

θk

)21/75(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2

)2/25


≤ C

1 +

(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2

)2/25
 ,

where the second inequality follows from (7.41). Raising to the power 5, integrating in time and

inserting the resulting inequality into (7.44) we obtain

∫ τ

0

(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 +
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k

)
dt ≤ C

1 +

∫ τ

0

(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2

)2/5

dt


≤ C +

3

5
C5/3 +

2

5

∫ τ

0
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 dt,

where in the last inequality we used Young’s inequality with conjugate exponents (5/3 , 5/2). This

gives ∫ τ

0

(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2 +
1

n

n−1∑
k=1

ε̇2
k θ
−1/3
k

)
dt ≤ C. (7.45)

Applying again the discrete Gagliardo-Nirenberg inequality with the choices v = θ
1/3
k , s = 3, q = 8,

p = 2, N = 1, % = 1/4, by (7.9) we obtain that(
1

n

n−1∑
k=1

θ
8/3
k

)1/8

≤ C

( 1

n

n−1∑
k=1

θk

)1/3

+

(
1

n

n−1∑
k=1

θk

)1/4(
n

n∑
k=1

(θ
1/3
k − θ1/3

k−1)2

)1/8
 .

This, after a time integration, together with (7.41) and (7.45) brings the estimate∫ τ

0

1

n

n−1∑
k=1

θ
8/3
k (t) dt ≤ C. (7.46)

Now that we have more regularity for the temperature, we come back to (7.24) and derive a further

estimate. We start by rewriting it as

d

dt

(
1

2n

n−1∑
k=1

(
ẇ2
k + ε2

k

)
+

1

n

n−1∑
k=1

θrefεk +
n

2

n∑
k=1

(ẇk − ẇk−1)2

)
+

1

n

n−1∑
k=1

ε̇2
k

=
1

n

n−1∑
k=1

(
(θk − P0[mk, χk, εk]) ε̇k + ḟkẇk

)
.
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We now integrate in time
∫ τ

0 dt for some τ ∈ [0, T ]. Concerning the initial conditions, we have already

pointed out in (7.38) that the term containing εk(0) vanishes, whereas the other two terms involving

the initial data are bounded thanks to (7.37). Hence Young’s inequality and (7.26) give

1

2n

n−1∑
k=1

(
ẇ2
k(τ) +

3

4
ε2
k(τ)

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2(τ) +

∫ τ

0

1

2n

n−1∑
k=1

ε̇2
k dt

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

(
θ2
k + |P0[mk, χk, εk]|2 + ḟ2

k + ẇ2
k

)
dt

)
.

Then, by Remark 7.2 (i) and estimates (7.29), (7.41) and (7.46) we infer∫ τ

0

1

n

n−1∑
k=1

ε̇2
k(t) dt ≤ C, (7.47)

where we neglected the first two terms on the left-hand side since they were estimated in (7.41).

7.2.4 Higher order estimates

Before continuing, we need to extend the validity of (7.2), (7.6), (7.7) to k = 0 and k = n. For this

purpose for k = 0 we solve the system of these three equations in the unknowns ε0, χ0,m0, and for

k = n in the unknowns εn, χn,mn. Let us deal with the case k = 0, for k = n the argument is the

same. By (7.9) we have

0 = ε0 + P0[m0, χ0, ε0] + ε̇0 − θ0 + θref , (7.48)

ρχ0 = s[0,1][χ
0
0, A0], A0(t) =

∫ t

0

(
L

θref
(θ0 − θref) +M0

)
(τ) dτ, (7.49)

m0 = s[0,∞)[0, S0], S0(t) =

∫ t

0
(−h(χ̇0) +D∗0)(τ) dτ, (7.50)

where

M0(t) = −1

2

∫ ∞
0

γχ(m0(t), χ0(t), r)s2
r [ε0](t) dr,

D0(t) =

∫ ∞
0

γ(m0(t), χ0(t), r) sr[ε0](t)(ε0 − sr[ε0])t(t) dr,

D∗0(t) =
1

n

n−1∑
j=1

λ−jDj(t),

λi = λ(i/n),

and with initial conditions

ε0(0) = 0,

m0(0) = 0,

χ0(0) = χ0
0 := χ0(0).


(7.51)
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By Proposition B.5 system (7.48)–(7.50) admits a Lipschitz continuous right-hand side, which implies

that ε0, χ0,m0 are determined uniquely. The same holds for εn, χn,mn.

In this way (7.2) makes sense for all k = 0, . . . , n, so that we can take space increments as follows

n (u̇k − u̇k−1) = n (εk − εk−1 + P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1] + ε̇k − ε̇k−1 − θk + θk−1)

for all k = 1, . . . , n. We now take the square of both sides and test by 1, obtaining

n
n∑
k=1

(u̇k − u̇k−1)2

= n
n∑
k=1

(εk − εk−1 + P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1] + ε̇k − ε̇k−1 − θk + θk−1)2 .

The summation by parts formula (7.10) and the boundary conditions (7.9) give on the left-hand side

n

n∑
k=1

(u̇k − u̇k−1)2 = −n
n−1∑
k=1

u̇k(u̇k+1 − 2u̇k + u̇k−1),

and equations (7.2)–(7.3) imply

−n
n−1∑
k=1

u̇k (u̇k+1 − 2u̇k + u̇k−1) =
1

n

n−1∑
k=1

(εk + P0[mk, χk, εk] + ε̇k − θk + θref) (ẅk − ε̈k − ḟk).

Then we get

n

n∑
k=1

(εk − εk−1 + P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1] + ε̇k − ε̇k−1 − θk + θk−1)2

=
1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P0[mk, χk, εk] + ε̇k − θk + θref).

By the elementary inequality (a+ b)2 ≥ a2

2 − b
2 ∀ a, b ∈ R we obtain

n

2

n∑
k=1

(
(εk − εk−1) + (ε̇k − ε̇k−1)

)2

≤ n
n∑
k=1

(
(P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1])2 + (θk − θk−1)2

)

+
1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P0[mk, χk, εk] + ε̇k − θk + θref)

or, equivalently,

n

2

n∑
k=1

(
(εk − εk−1)2 + (ε̇k − ε̇k−1)2

)
+

d

dt

(
n

2

n∑
k=1

(εk − εk−1)2

)

≤ n
n∑
k=1

(
(P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1])2 + (θk − θk−1)2

)

+
1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P0[mk, χk, εk] + ε̇k − θk + θref).

(7.52)
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We briefly focus on the last summand. We have

1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P0[mk, χk, εk] + ε̇k − θk + θref)

=
1

n

n−1∑
k=1

(ẅk − ε̈k)ε̇k +
1

n

n−1∑
k=1

(ẅk − ε̈k)(εk + P0[mk, χk, εk]− θk + θref)

− 1

n

n−1∑
k=1

ḟk(εk + P0[mk, χk, εk] + ε̇k − θk + θref).

(7.53)

Concerning the first term on the right-hand side, using (7.4) and (7.10) we deduce

1

n

n−1∑
k=1

(ẅk − ε̈k)ε̇k = n
n−1∑
k=1

ẅk(ẇk+1 − 2ẇk + ẇk−1)− d

dt

(
1

2n

n−1∑
k=1

ε̇2
k

)

= − d

dt

(
n

2

n∑
k=1

(ẇk − ẇk−1)2 +
1

2n

n−1∑
k=1

ε̇2
k

)
, (7.54)

whereas the second term is such that

1

n

n−1∑
k=1

(ẅk − ε̈k)(εk + P0[mk, χk, εk]− θk + θref)

=
d

dt

(
1

n

n−1∑
k=1

(ẇk − ε̇k)(εk + P0[mk, χk, εk]− θk + θref)

)

− 1

n

n−1∑
k=1

(ẇk − ε̇k)(ε̇k + P0[mk, χk, εk]t − θ̇k).

(7.55)

Inserting (7.54) and (7.55) in (7.53), from (7.52) we obtain

d

dt

(
n

2

n∑
k=1

(ẇk − ẇk−1)2 +
1

2n

n−1∑
k=1

ε̇2
k +

n

2

n∑
k=1

(εk − εk−1)2

)
+
n

2

n∑
k=1

(
(εk − εk−1)2 + (ε̇k − ε̇k−1)2

)

≤ n
n∑
k=1

(
(P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1])2 + (θk − θk−1)2

)

+
1

n

n−1∑
k=1

|ḟk| |εk + P0[mk, χk, εk] + ε̇k − θk + θref |

+
d

dt

(
1

n

n−1∑
k=1

(ẇk − ε̇k)(εk + P0[mk, χk, εk]− θk + θref)

)
+

1

n

n−1∑
k=1

|ẇk − ε̇k| |ε̇k + P0[mk, χk, εk]t − θ̇k|.

(7.56)

We now integrate in time
∫ τ

0 for some τ ∈ [0, T ]. The initial conditions

n

2

n∑
k=1

(ẇk − ẇk−1)2(0) +
1

2n

n−1∑
k=1

ε̇2
k(0) +

n

2

n∑
k=1

(εk − εk−1)2(0)

can be controlled in the following way. For the first term we use (7.37), whereas the third term

vanishes by Remark 7.5. It remains to derive a bound for the second term. To this aim we test (7.31)

by ε̇k(0), getting

1

n

n−1∑
k=1

ẇk(0)ε̇k(0)− 1

n

n−1∑
k=1

ε̇2
k(0) =

1

n

n−1∑
k=1

fk(0)ε̇k(0).
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By (7.33) and Young’s inequality it holds

n

n∑
k=1

(ẇk − ẇk−1)2(0) +
1

2n

n−1∑
k=1

ε̇2
k(0) ≤ 1

2n

n−1∑
k=1

f2
k (0),

hence by (7.36) we finally get

1

n

n−1∑
k=1

ε̇2
k(0) ≤ C. (7.57)

Concerning the initial conditions coming from the right-hand side of (7.56), by (7.37), (7.39) and

(7.57) we obtain the bound∣∣∣∣∣ 1n
n−1∑
k=1

(ẇk − ε̇k)(0)(εk + P0[mk, χk, εk]− θk + θref)(0)

∣∣∣∣∣ ≤ C
recalling that εk(0) = P0[mk, χk, εk](0) = 0 by Remark 7.5. Thus we get

n

2

n∑
k=1

(ẇk − ẇk−1)2(τ) +
1

2n

n−1∑
k=1

ε̇2
k(tτ) +

n

2

n∑
k=1

(εk − εk−1)2(τ)

+

∫ τ

0

n

2

n∑
k=1

(
(εk − εk−1)2(t) + (ε̇k − ε̇k−1)2(t)

)
dt

≤
∫ τ

0
n

n∑
k=1

(
(P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1])2(t) + (θk − θk−1)2(t)

)
dt

+

∫ τ

0

1

n

n−1∑
k=1

|ḟk(t)| |εk + P0[mk, χk, εk] + ε̇k − θk + θref |(t) dt

+
1

n

n−1∑
k=1

(ẇk − ε̇k)(t)(εk + P0[mk, χk, εk]− θk + θref)(τ)

+

∫ τ

0

1

n

n−1∑
k=1

|ẇk − ε̇k|(t)|ε̇k + P0[mk, χk, εk]t − θ̇k|(t) dt+ C

=: H1 +H2 +H3 +H4 + C. (7.58)

Let us deal first with the last three terms. By the discrete Hölder’s inequality (see Remark A.10) and

by Hölder’s inequality in time it holds

H2 :=

∫ τ

0

1

n

n−1∑
k=1

|ḟk| |εk + P0[mk, χk, εk] + ε̇k − θk + θref | dt

≤
∫ τ

0

(
1

n

n−1∑
k=1

ḟ2
k

)1/2(
1

n

n−1∑
k=1

|εk + P0[mk, χk, εk] + ε̇k − θk + θref |2
)1/2

dt

≤

(∫ τ

0

1

n

n−1∑
k=1

ḟ2
k dt

)1/2(∫ τ

0

1

n

n−1∑
k=1

|εk + P0[mk, χk, εk] + ε̇k − θk + θref |2 dt

)1/2

≤ C (7.59)

where for the final bound we used (7.29), Remark 7.2 (i) and the previous a priori estimates (7.41),
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(7.46), (7.47). Arguing analogously we also obtain

H3 :=
1

n

n−1∑
k=1

(ẇk − ε̇k)(εk + P0[mk, χk, εk]− θk + θref)

≤

(
1

n

n−1∑
k=1

(ẇk − ε̇k)2

)1/2(
1

n

n−1∑
k=1

(εk + P0[mk, χk, εk]− θk + θref)
2

)1/2

≤ C

(
1 +

1

n

n−1∑
k=1

ε̇2
k

)1/2(
1 +

1

n

n−1∑
k=1

θ2
k

)1/2

= 2C

(
1

4
+

1

4n

n−1∑
k=1

ε̇2
k

)1/2(
1 +

1

n

n−1∑
k=1

θ2
k

)1/2

≤ 1

8n

n−1∑
k=1

ε̇2
k + C

(
1 +

1

n

n−1∑
k=1

θ2
k

)
,

where in the last line we used Young’s inequality. Note that applying first the discrete Hölder’s

inequality and then Hölder’s inequality in time we obtain

1

n

n−1∑
k=1

θ2
k(τ) =

1

n

n−1∑
k=1

(θk(0))2 + 2

∫ τ

0

1

n

n−1∑
k=1

θkθ̇k dt

≤ C

1 +

(∫ τ

0

1

n

n−1∑
k=1

θ2
k dt

)1/2(∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt

)1/2
 ,

where we used also (7.39). Then estimate (7.47) yields

H3 ≤
1

8n

n−1∑
k=1

ε̇2
k + C

1 +

(∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt

)1/2
 . (7.60)

Concerning the term H4, note that

|P0[mk, χk, εk]t| ≤
∣∣∣∣ṁk

∫ ∞
0

γm(mk, χk, r)sr[εk] dr

∣∣∣∣
+

∣∣∣∣χ̇k ∫ ∞
0

γχ(mk, χk, r)sr[εk] dr

∣∣∣∣+

∣∣∣∣∫ ∞
0

γ(mk, χk, r)(sr[εk])t dr

∣∣∣∣ .
Then

� by (B.14) we have |sr[εk]| ≤ r;

� by (B.21) we have |sr[εk]t| ≤ |ε̇k|;

� equation (7.6) and identity (B.21) (see also Remark B.2) yield

|χ̇k| ≤
∣∣∣∣ Lθref

(θk − θref) +Kk

∣∣∣∣ ,
from which by Remark 7.4

|χ̇k| ≤ C(1 + θk); (7.61)

� equation (7.7), Hypothesis 7.1 (vi) and Remark 7.4 yield

|ṁk| ≤ | − h(χ̇k) +D∗k| ≤ C

(
|χ̇k|+

1

n

n−1∑
k=1

|ε̇k|

)
,
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from which by (7.61)

|ṁk| ≤ C

1 + θk +
1

n

n−1∑
j=1

|ε̇j |

 . (7.62)

From Hypothesis 7.1 (i) we thus obtain the bound

|P0[mk, χk, εk]t| ≤ C

1 + θk + |ε̇k|+
1

n

n−1∑
j=1

|ε̇j |

 a. e. (7.63)

and this, together with the discrete Hölder’s inequality and Hölder’s inequality in time employed as

above, enables us to get

H4 :=

∫ τ

0

1

n

n−1∑
k=1

|ẇk − ε̇k||ε̇k + P0[mk, χk, εk]t − θ̇k|dt

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇2
k dt

)1/2
∫ τ

0

1

n

n−1∑
k=1

1 + ε̇2
k + θ2

k +
1

n

n−1∑
j=1

ε̇2
j + θ̇2

k

 dt

1/2

≤ C

1 +

(∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt

)1/2
 (7.64)

where we used also the previous a priori estimates (7.41), (7.46) and (7.47). It is a bit more complicated

to deal with the term H1. First of all we have by Hypothesis 7.1 (i) and (B.14)

|P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1]|

=

∣∣∣∣∫ ∞
0

(γ(mk, χk, r)sr[εk]− γ(mk−1, χk−1, r)sr[εk−1]) dr

∣∣∣∣
≤
∫ ∞

0

(
|γ(mk, χk, r)− γ(mk−1, χk, r)| |sr[εk]|+ |γ(mk−1, χk, r)− γ(mk−1, χk−1, r)| |sr[εk]| dr

)
+

∫ ∞
0
|γ(mk−1, χk−1, r)||sr[εk]− sr[εk−1]|dr

≤
∫ ∞

0

(
γ∗(r)|mk −mk−1|r + γ∗(r)|χk − χk−1|r dr

)
+

∫ ∞
0
|γ(mk−1, χk−1, r)||sr[εk]− sr[εk−1]| dr.

Then by Hypothesis 7.1 (i) and Proposition B.5 (note that sr[εk](0) = sr[εk−1](0) = 0, see Remark

7.5)

|P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1]| (t)

≤ C
(
|mk −mk−1|(t) + |χk − χk−1|(t) +

∫ t

0
|ε̇k − ε̇k−1|(s) ds

)
.

(7.65)
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By (7.7) and again Proposition B.5 (note that mk(0) = mk−1(0) = 0 by (7.8)), it holds∫ t

0
|ṁk − ṁk−1|(s) ds ≤

∫ t

0
|Ṡk − Ṡk−1|(s) ds

≤
∫ t

0

(
|h(χ̇k−1)− h(χ̇k)|+

∣∣D∗k −D∗k−1

∣∣) ds

≤
∫ t

0

a |χ̇k − χ̇k−1|+
1

n

n−1∑
j=1

|λk−j − λk−j−1|Dj(s)

 ds

≤
∫ t

0

a |χ̇k − χ̇k−1|+
1

n

n−1∑
j=1

Λ

n
M |ε̇j |

 ds,

where we used the lipschitzianity of h (see Hypothesis 7.1 (vi)), Remark 7.4 and Hypothesis 7.1 (iii)

together with Lagrange’s theorem. Thus, by the discrete Hölder’s inequality and estimate (7.47), we

obtain ∫ t

0
|ṁk − ṁk−1|ds ≤ C

∫ t

0
|χ̇k − χ̇k−1| ds+

1

n

∫ t

0

 1

n

n−1∑
j=1

ε̇2
j

1/2 1

n

n−1∑
j=1

12

1/2

ds


≤ C

(∫ t

0
|χ̇k − χ̇k−1|ds+

1

n

)
. (7.66)

We now estimate the terms |χk − χk−1| in (7.65) and
∫ t

0 |χ̇k − χ̇k−1| ds in (7.66). By (7.6) and

Proposition B.5 we obtain∫ t

0
|χ̇k − χ̇k−1| ds ≤ 2

(
|χ0
k − χ0

k−1|+
∫ t

0
|Ȧk − Ȧk−1| ds

)
≤ C

(
|χ0
k − χ0

k−1|+
∫ t

0

(
|θk − θk−1|+ |Kk −Kk−1|

)
ds

)
,

where by Hypothesis 7.1 (i)

|Kk −Kk−1| ≤
∫ ∞

0

(
|γχ(mk, χk, r)− γχ(mk−1, χk, r)|s2

r [εk]

+ |γχ(mk−1, χk, r)− γχ(mk−1, χk−1, r)|s2
r [εk] + |γχ(mk−1, χk−1, r)||s2

r [εk]− s2
r [εk−1]|

)
dr

≤
∫ ∞

0

(
γ∗(r)|mk −mk−1|r2 + γ∗(r)|χk − χk−1|r2 + γ∗(r)|s2

r [εk]− s2
r [εk−1]|

)
dr.

Note that by (B.14) and Proposition B.5 (recall that sr[εk](0) = sr[εk−1](0) = 0, see Remark 7.5) it

follows

|s2
r [εk]− s2

r [εk−1]| = |sr[εk] + sr[εk−1]||sr[εk]− sr[εk−1]| ≤ 2r · 2
∫ s

0
|ε̇k − ε̇k−1|(s′) ds′.

Hence by Hypothesis 7.1 (i) we infer∫ t

0
|χ̇k − χ̇k−1|ds

≤ C
(
|χ0
k − χ0

k−1|+
∫ t

0

(
|θk − θk−1|+ |mk −mk−1|+ |χk − χk−1|+

∫ s

0
|ε̇k − ε̇k−1| ds′

)
ds

)
≤ C

(
|χ0
k − χ0

k−1|+
∫ t

0

(
|θk − θk−1|+

∫ s

0
(|ṁk − ṁk−1|+ |χ̇k − χ̇k−1|+ |ε̇k − ε̇k−1|) ds′

)
ds

)
.
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Grönwall’s lemma A.2 then yields∫ t

0
|χ̇k − χ̇k−1| ds

≤ C

(
|χ0
k − χ0

k−1|+
∫ t

0

(
|θk − θk−1|+

∫ s

0

(
|ṁk − ṁk−1|+ |ε̇k − ε̇k−1|

)
ds′
)

ds

)
.

(7.67)

Plugging this back into (7.66) we obtain, using Grönwall’s lemma A.2 again together with Fubini

Theorem,

|mk −mk−1|(t) + |χk − χk−1|(t) ≤
∫ t

0

(
|ṁk − ṁk−1|+ |χ̇k − χ̇k−1|

)
ds

≤ C

(
|χ0
k − χ0

k−1|+
∫ t

0
(|θk − θk−1|+ |ε̇k − ε̇k−1|) ds+

1

n

)
.

Coming back to (7.65) we get

|P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1]| (t)

≤ C
(
|χ0
k − χ0

k−1|+
∫ t

0

(
|θk − θk−1|+ |ε̇k − ε̇k−1|2

)
ds+

1

n

)
,

thus

H1 :=

∫ τ

0
n

n∑
k=1

(
(P0[mk, χk, εk]− P0[mk−1, χk−1, εk−1])2(t) + (θk − θk−1)2(t)

)
dt

≤ C

(
1 + n

n∑
k=1

(χ0
k − χ0

k−1)2 +

∫ τ

0
n

n∑
k=1

(θk − θk−1)2 dt+

∫ τ

0

∫ t

0
n

n∑
k=1

(ε̇k − ε̇k−1)2 ds dt

)
.

Note that the term n
∑n

k=1(χ0
k − χ0

k−1)2 is nothing but the L2-norm (squared) of the discrete space

derivative of term χ0
k, see Remarks A.10 and A.11. We are going to show that this term is bounded,

provided that χ0
x ∈ L2(0,1) (as stated in Hypothesis 7.1 (v)). Indeed by definition in (7.8)

n
n∑
k=1

(χ0
k − χ0

k−1)2 = n
n∑
k=1

(
n

∫ k/n

(k−1)/n
χ0(x) dx− n

∫ (k−1)/n

(k−2)/n
χ0(x) dx

)2

.

Performing the change of variable ξ = x+ 1/n in the second integral we get

n

n∑
k=1

(
n

∫ k/n

(k−1)/n
χ0(x) dx− n

∫ k/n

(k−1)/n
χ0(ξ − 1/n) dξ

)2

= n3
n∑
k=1

(∫ k/n

(k−1)/n

(
χ0(x)− χ0(x− 1/n)

)
dx

)2

= n3
n∑
k=1

(∫ k/n

(k−1)/n

∫ x

x−1/n
χ0
x(ξ) dξ dx

)2

.
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Since x ∈ [(k − 1)/n, k/n] it holds x− 1/n ≥ (k − 2)/n and x ≤ k/n, thus

n
n∑
k=1

(χ0
k − χ0

k−1)2 = n3
n∑
k=1

(∫ k/n

(k−1)/n

∫ x

x−1/n
χ0
x(ξ) dξ dx

)2

≤ n3
n∑
k=1

(∫ k/n

(k−1)/n

∫ k/n

(k−2)/n
χ0
x(ξ) dξ dx

)2

= n3
n∑
k=2

(
1

n

∫ k/n

(k−2)/n
χ0
x(ξ) dξ

)2

≤ n
n∑
k=2

( 2

n

)1/2
(∫ k/n

(k−2)/n
|χ0
x(ξ)|2 dξ

)1/2
2

= 2
n∑
k=2

∫ k/n

(k−2)/n
|χ0
x(ξ)|2 dξ ≤ 2 · 2

∫ 1

0
|χ0
x(ξ)|2 dξ ≤ C (7.68)

by Hypothesis 7.1 (v), and where we used also Hölder’s inequality in space. Then it holds

H1 ≤ C

(
1 +

∫ τ

0
n

n∑
k=1

(θk − θk−1)2 dt+

∫ τ

0

∫ t

0
n

n∑
k=1

(ε̇k − ε̇k−1)2 ds dt

)
. (7.69)

Inserting (7.59), (7.60), (7.64) and (7.69) in (7.58) we obtain

n

2

n∑
k=1

(ẇk − ẇk−1)2(τ) +
3

8n

n−1∑
k=1

ε̇2
k(τ) +

n

2

n∑
k=1

(εk − εk−1)2(τ)

+

∫ τ

0

n

2

n∑
k=1

(εk − εk−1)2(t) dt+

∫ τ

0

n

2

n∑
k=1

(ε̇k − ε̇k−1)2(t) dt

≤ C

(
1 +

(∫ τ

0

1

n

n−1∑
k=1

θ̇2
k(t) dt

)1/2

+

∫ τ

0
n

n∑
k=1

(θk − θk−1)2(t) dt

+

∫ τ

0

∫ t

0
n

n∑
k=1

(ε̇k − ε̇k−1)2(s) ds dt

)
.

Grönwall’s lemma A.2 yields

1

n

n−1∑
k=1

ε̇2
k(τ) +

∫ τ

0
n

n∑
k=1

(ε̇k − ε̇k−1)2(t) dt

≤ C

(
1 +

(∫ τ

0

1

n

n−1∑
k=1

θ̇2
k(t) dt

)1/2

+

∫ τ

0
n

n∑
k=1

(θk − θk−1)2(t) dt

)
,

(7.70)

where we neglected the terms n
2

∑n
k=1(ẇk − ẇk−1)2 because we already have the estimate (7.41), and

n
∑n

k=1(εk−εk−1)2,
∫ τ

0 n
∑n

k=1(εk−εk−1)2 dt because the term
∫ τ

0 n
∑n

k=1(ε̇k− ε̇k−1)2 dt is dominant.

We need now more regularity for the temperature, since we have to estimate the W 1,2-norm of θk in
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both space and time. To this aim we now test (7.5) by θk and obtain

1

n

n−1∑
k=1

θ̇kθk = n

n−1∑
k=1

(θk+1 − 2θk + θk−1) θk

+
1

n

n−1∑
k=1

(
− θkε̇k + ε̇2

k +Dk + ṁkMk + χ̇k (Kk − L) + gk

)
θk.

By (7.9) and (7.10) it holds

n
n−1∑
k=1

(θk+1 − 2θk + θk−1) θk = −n
n∑
k=1

(θk − θk−1)2,

then we get

d

dt

(
1

n

n−1∑
k=1

θ2
k

)
+ n

n∑
k=1

(θk − θk−1)2 ≤ 1

n

n−1∑
k=1

(
θk|ε̇k|+ ε̇2

k +Dk + |ṁk|Mk + |χ̇k||Kk − L|+ |gk|
)
θk.

We now estimate the right-hand side. By Remark 7.4 and estimates (7.61)–(7.62) for |χ̇k| and |ṁk|

we infer

1

n

n−1∑
k=1

(
θk|ε̇k|+ ε̇2

k +Dk + |ṁk|Mk + |χ̇k||Kk − L|+ |gk|
)
θk

≤ C

(
1 +

1

n

n−1∑
k=1

θk|ε̇k|+ ε̇2
k + |ε̇k|+ θk +

1

n

n−1∑
j=1

|ε̇j |+ |gk|

 θk

)
.

Note that

1

n

n−1∑
k=1

 1

n

n−1∑
j=1

|ε̇j |

 θk =

(
1

n

n−1∑
k=1

θk

) 1

n

n−1∑
j=1

|ε̇j |

 ≤ C ( 1

n

n−1∑
k=1

|ε̇k|

)

by estimate (7.41). Hence we get

d

dt

(
1

n

n−1∑
k=1

θ2
k

)
+ n

n∑
k=1

(θk − θk−1)2 ≤ C

(
1 +

1

n

n−1∑
k=1

(
ε̇2
k θk + θ2

k + |ε̇k|θk + |ε̇k|θ2
k + |ε̇k|+ |gk|θk

))
.

Integrating in time
∫ τ

0 dt and using the discrete Hölder’s inequality yields

1

n

n−1∑
k=1

θ2
k +

∫ τ

0
n

n∑
k=1

(θk − θk−1)2 dt

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇2
k θk dt+

∫ τ

0

1

n

n−1∑
k=1

θ2
k dt+

∫ τ

0

1

n

n−1∑
k=1

ε̇2
k dt+

∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ2
k dt+

∫ τ

0

1

n

n−1∑
k=1

g2
k dt

)
,

where the initial condition can be controlled as in (7.39). Arguing as for (7.28) and using Hölder’s
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7.2 – A priori estimates

inequality in space we deduce∫ τ

0

1

n

n−1∑
k=1

g2
k(θk, τ) dτ =

∫ τ

0

1

n

n−1∑
k=1

(
n

∫ k/n

(k−1)/n
g(θ, x, t) dx

)2

dt

≤ C

∫ τ

0

1

n

n−1∑
k=1

g2
1θ

2
k(t) +

(
n

∫ k/n

(k−1)/n
g0(x, t) dx

)2

dt


≤ C

(∫ τ

0

1

n

n−1∑
k=1

g2
1θ

2
k(t) dt+

∫∫
ΩT

|g0(x, t)|2 dx dt

)

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

θ2
k(t) dt

)
. (7.71)

Hence by (7.46)–(7.47) we obtain

1

n

n−1∑
k=1

θ2
k +

∫ τ

0
n

n∑
k=1

(θk − θk−1)2 dt ≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇2
k θk dt+

∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ2
k dt

)
. (7.72)

Now, by (7.46)∫ τ

0

1

n

n−1∑
k=1

ε̇2
k θk dt ≤

∫ τ

0

(
1

n

n−1∑
k=1

ε̇4
k

)1/2(
1

n

n−1∑
k=1

θ2
k

)1/2

dt

≤

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/2(∫ τ

0

1

n

n−1∑
k=1

θ2
k dt

)1/2

≤ C

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/2

,

∫ τ

0

1

n

n−1∑
k=1

|ε̇k|θ2
k dt ≤

∫ τ

0

(
1

n

n−1∑
k=1

ε̇4
k

)1/4(
1

n

n−1∑
k=1

θ
8/3
k

)3/4

dt

≤

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/4(∫ τ

0

1

n

n−1∑
k=1

θ
8/3
k dt

)3/4

≤ C

1 +

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/2
 .

Plugging these two estimates into (7.72) we get

1

n

n−1∑
k=1

θ2
k +

∫ τ

0
n

n∑
k=1

(θk − θk−1)2 dt ≤ C

1 +

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/2
 . (7.73)

We need to estimate the term on the right-hand side. To this aim we test (7.5) by θ̇k, and obtain

1

n

n−1∑
k=1

θ̇2
k = n

n−1∑
k=1

(θk+1 − 2θk + θk−1) θ̇k +
1

n

n−1∑
k=1

(
− θkε̇k + ε̇2

k +Dk + ṁkMk + χ̇k (Kk − L) + gk

)
θ̇k.

By (7.9) and (7.10) we infer

n

n−1∑
k=1

(θk+1 − 2θk + θk−1) θ̇k = −n
n∑
k=1

(θk − θk−1)(θ̇k − θ̇k−1) = −1

2

d

dt

(
n

n∑
k=1

(θk − θk−1)2

)
,

then by Young’s inequality

1

2n

n−1∑
k=1

θ̇2
k +

1

2

d

dt

(
n

n∑
k=1

(θk − θk−1)2

)
≤ 1

2n

n−1∑
k=1

(
θk|ε̇k|+ ε̇2

k +Dk + |ṁk|Kk + |χ̇k||Mk − L|+ |gk|
)2
.
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Integrating in time
∫ τ ′

0 dt for some τ ′ < τ gives

∫ τ ′

0

1

n

n−1∑
k=1

θ̇2
k dt+ n

n∑
k=1

(θk − θk−1)2(τ ′)

≤ C

(∫ τ ′

0

1

n

n−1∑
k=1

(
θk|ε̇k|+ ε̇2

k +Dk + |ṁk|Mk + |χ̇k||Kk − L|+ |gk|
)2

dt

)
+ n

n∑
k=1

(θ0
k − θ0

k−1)2.

Concerning the initial condition, arguing as for (7.68) we see that it holds

n

n∑
k=1

(θ0
k − θ0

k−1)2 = n
n∑
k=1

(
θ0

(
k

n

)
− θ0

(
k − 1

n

))2

= n
n∑
k=1

(∫ k/n

(k−1)/n
θ0
x(ξ) dx

)2

≤
∫ 1

0
|θ0
x(ξ)|2 dξ ≤ C (7.74)

thanks to Hypothesis 7.1 (v). We estimate the first term on the right-hand side similarly as we did to

obtain (7.72), getting

∫ τ ′

0

1

n

n−1∑
k=1

(
θk|ε̇k|+ ε̇2

k +Dk + |ṁk|Mk + |χ̇k||Kk − L|+ |gk|
)2

dt

≤ C

1 +

∫ τ ′

0

1

n

n−1∑
k=1

θ2
kε̇

2
k + ε̇4

k + θ2
k +

(
1

n

n−1∑
k=1

|ε̇k|

)2

+ g2
k

 dt


≤ C

(
1 +

∫ τ ′

0

1

n

n−1∑
k=1

ε̇4
k dt+

∫ τ ′

0

1

n

n−1∑
k=1

θ4
k dt

)
(7.75)

thanks to estimates (7.46), (7.47) and (7.71). Hence

∫ τ ′

0

1

n

n−1∑
k=1

θ̇2
k dt+ n

n∑
k=1

(θk − θk−1)2(τ ′) ≤ C

(
1 +

∫ τ ′

0

1

n

n−1∑
k=1

ε̇4
k dt+

∫ τ ′

0

1

n

n−1∑
k=1

θ4
k dt

)

for some τ ′ ∈ [0, τ ]. Passing to the maxτ ′∈[0,τ ] yields

∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt+ max

τ ′∈[0,τ ]

(
n

n∑
k=1

(θk − θk−1)2(τ ′)

)
≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt+

∫ τ

0

1

n

n−1∑
k=1

θ4
k dt

)
. (7.76)

The last term on the right-hand side can be estimated using Hölder’s inequality and estimate (7.46)

as follows∫ τ

0

1

n

n−1∑
k=1

θ4
k dt =

∫ τ

0

1

n

n−1∑
k=1

θ
4/3
k θ

8/3
k dt ≤

∫ τ

0

(
max

k=1,...,n−1
θ

4/3
k

)(
1

n

n−1∑
k=1

θ
8/3
k

)
dt

≤
(

max
t∈[0,τ ]

max
k=1,...,n−1

θ
4/3
k (t)

)∫ τ

0

1

n

n−1∑
k=1

θ
8/3
k dt ≤ C max

t∈[0,τ ]
max

k=1,...,n−1
θ

4/3
k (t). (7.77)

Moreover the discrete Gagliardo-Nirenberg inequality (see Remark A.11) with the choices v = θk,
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s = 1, q =∞, p = 2, N = 1, % = 2/3 yields, taking into account (7.9),

max
k=1,...,n−1

θk(t) ≤ C

 1

n

n−1∑
k=1

θk +

(
1

n

n−1∑
k=1

θk

)1/3(
n

n∑
k=1

(θk − θk−1)2

)1/3


≤ C

1 +

(
n

n∑
k=1

(θk − θk−1)2(t)

)1/3
 , (7.78)

where the last inequality follows from estimate (7.41) and Hypothesis 7.1 (vii). Hence it holds also

max
k=1,...,n−1

θ
4/3
k (t) =

(
max

k=1,...,n−1
θk(t)

)4/3

≤ C

1 +

(
n

n∑
k=1

(θk − θk−1)2(t)

)4/9
 .

Substituting in (7.77) we deduce

∫ τ

0

1

n

n−1∑
k=1

θ4
k dt ≤ C

1 + max
t∈[0,τ ]

(
n

n∑
k=1

(θk − θk−1)2(t)

)4/9
 . (7.79)

Inserting the previous inequality in (7.76) we get∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt+ max

t∈[0,τ ]

(
n

n∑
k=1

(θk − θk−1)2(t)

)

≤ C

1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt+ max

t∈[0,τ ]

(
n

n∑
k=1

(θk − θk−1)2(t)

)4/9
 .

Young’s inequality with conjugate exponents (9/5 , 9/4) gives∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt+ n

n∑
k=1

(θk − θk−1)2(τ) ≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)
. (7.80)

This and (7.73) in turn give, substituting in (7.70),

1

n

n−1∑
k=1

ε̇2
k(τ) +

∫ τ

0
n

n∑
k=1

(ε̇k − ε̇k−1)2(t) dt ≤ C

1 +

(∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt

)1/2
 . (7.81)

The term on the right-hand side can be estimated using once more the discrete Gagliardo-Nirenberg

inequality (see Remark A.11). Note that, however, the “Neumann boundary conditions” (7.9) for θk

made the previous applications of Gagliardo-Nirenberg inequality easier. This time, instead, we have

to consider the whole vectors ε̇ and Dε̇ (see the vector notation in Remark A.11). Using equation

(7.48) and the “boundary condition” (7.9) we see that it holds

|ε̇(τ)|22 =
1

n

n−1∑
k=1

ε̇2
k(τ) +

C

n

(
1 + ε̇2

0(τ) + ε̇2
n(τ)

)
≤ 1

n

n−1∑
k=1

ε̇2
k(τ) +

C

n

(
1 +

∫ τ

0

n−1∑
k=1

θ2
k(t) dt

)

≤ C +
1

n

n−1∑
k=1

ε̇2
k(τ),
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where in the last line we used (7.46). Thus (7.81) for the whole vector reads

max
τ∈[0,τ ′]

|ε̇(τ)|22 +

∫ τ

0
|Dε̇(t)|22 dt ≤ C

(
1 +

(∫ τ

0
|ε̇(t)|44 dt

)1/2
)

(7.82)

form some τ ′ > τ . We are now ready to estimate the right-hand side by using the discrete Gagliardo-

Nirenberg inequality with the choices v = ε̇k, q = 4, p = s = 2, N = 1 % = 1/4. This yields

|ε̇(t)|4 ≤ C
(
|ε̇(t)|2 + |ε̇(t)|3/42 |Dε̇(t)|

1/4
2

)
.

The above computations and estimates (7.46)–(7.47) entail∫ τ

0
|ε̇(t)|22 dt ≤

∫ τ

0

1

n

n−1∑
k=1

ε̇2
k(t) dt+ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

θ2
k(t) dt

)
≤ C.

Hence, applying twice Hölder’s inequality in time,∫ τ

0
|ε̇(t)|44 dt ≤ C

∫ τ

0
|ε̇(t)|22

(
|ε̇(t)|22 + |ε̇(t)|2|Dε̇(t)|2

)
dt

≤ C max
t∈[0,τ ]

|ε̇(t)|22
(∫ τ

0

(
|ε̇(t)|22 + |ε̇(t)|2|Dε̇(t)|2

)
dτ

)
≤ C max

t∈[0,τ ]
|ε̇(t)|22

(∫ τ

0
|ε̇(t)|22 dt+

(∫ τ

0
|ε̇(t)|22 dt

)1/2(∫ τ

0
|Dε̇(t)|22 dt

)1/2
)

≤ C max
t∈[0,τ ]

|ε̇(t)|22
(

1 +

∫ τ

0
|Dε̇(t)|22 dt

)1/2

,

which combined with (7.82) by Young’s inequality yields

max
t∈[0,τ ]

|ε̇(t)|22 +

∫ τ

0
|Dε̇(t)|22 dt ≤ C.

Therefore there exists a constant C > 0 such that

1

n

n−1∑
k=1

ε̇2
k(τ) +

∫ τ

0
n

n∑
k=1

(ε̇k − ε̇k−1)2(t) dt+

∫ τ

0

1

n

n−1∑
k=1

(ε̇4
k + ε4

k)(t) dt ≤ C, (7.83)

and substituting in (7.80) also∫ τ

0

1

n

n−1∑
k=1

θ̇2
k(t) dt+ n

n∑
k=1

(θk − θk−1)2(τ) ≤ C. (7.84)

Then (7.78) and (7.79) yield ∫ τ

0

1

n

n−1∑
k=1

θ4
k dt ≤ C, (7.85)

max
t∈[0,τ ]

max
k=1,...,n−1

θk(t) ≤ C. (7.86)

This last estimate together with (7.61) gives

max
t∈[0,τ ]

max
k=1,...,n−1

|χ̇k(t)| ≤ C, (7.87)
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whereas together with (7.62) and (7.83) gives

max
t∈[0,τ ]

max
k=1,...,n−1

|ṁk(t)| ≤ C. (7.88)

We now derive a higher order estimate for the temperature. Note now that by (7.5), arguing as in

(7.75) we also have∫ τ

0
n3

n−1∑
k=1

(θk+1 − 2θk + θk−1)2(t) dt

=

∫ τ

0

1

n

n−1∑
k=1

(
θ̇k − ṁkMk −Dk − ε̇2

k + θkε̇k + χ̇k (Kk − L)− gk
)2

dt

≤ C

(
1 +

∫ τ

0

1

n

n−1∑
k=1

θ̇2
k dt+

∫ τ

0

1

n

n−1∑
k=1

ε̇4
k dt+

∫ τ

0

1

n

n−1∑
k=1

θ4
k dt

)
,

thus it holds by (7.83), (7.84) and (7.86)∫ τ

0
n3

n−1∑
k=1

(θk+1 − 2θk + θk−1)2(t) dt ≤ C. (7.89)

Finally, we differentiate (7.2) once in t and test by ε̈k, (7.3) twice in t and test by ẅk, and sum up

the two equations. We obtain

1

n

n−1∑
k=1

ükε̈k =
1

n

n−1∑
k=1

(
ε̇k + P0[mk, χk, εk]t + ε̈k − θ̇k

)
ε̈k

added to
1

n

n−1∑
k=1

...
wkẅk −

1

n

n−1∑
k=1

...
εkẅk = −n

n−1∑
k=1

(ük+1 − 2ük + ük−1)ẅk +
1

n

n−1∑
k=1

f̈kẅk,

which gives

1

n

n−1∑
k=1

...
wkẅk −

1

n

n−1∑
k=1

...
εkẅk +

1

n

n−1∑
k=1

(
ε̇k + P0[mk, χk, εk]t + ε̈k − θ̇k

)
ε̈k

=
1

n

n−1∑
k=1

ükε̈k − n
n−1∑
k=1

(ük+1 − 2ük + ük−1)ẅk +
1

n

n−1∑
k=1

f̈kẅk.

(7.90)

Note that

1

n

n−1∑
k=1

ükε̈k − n
n−1∑
k=1

(ük+1 − 2ük + ük−1)ẅk

(7.4)
= n

n−1∑
k=1

ük(ẅk+1 − 2ẅk + ẅk−1)− n
n−1∑
k=1

(ük+1 − 2ük + ük−1)ẅk
(7.10)

= 0.

Moreover

1

n

n−1∑
k=1

...
εkẅk

(7.4)
= n

n−1∑
k=1

(
...
wk+1 − 2

...
wk +

...
wk−1)ẅk

(7.10)
= −n

n∑
k=1

(
...
wk −

...
wk−1)(ẅk − ẅk−1) = −1

2

d

dt

(
n

n∑
k=1

(ẅk − ẅk−1)2

)
.
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Hence (7.90) becomes

1

2

d

dt

(
1

n

n−1∑
k=1

ẅ2
k + n

n∑
k=1

(ẅk − ẅk−1)2

)
+

1

n

n−1∑
k=1

ε̈2
k

= −1

2

d

dt

(
1

n

n−1∑
k=1

ε̇2
k

)
− 1

n

n−1∑
k=1

(
P0[mk, χk, εk]t − θ̇k

)
ε̈k +

1

n

n−1∑
k=1

f̈kẅk.

Integrating in time
∫ τ

0 dt yields

1

2n

n−1∑
k=1

ẅ2
k(τ) +

n

2

n∑
k=1

(ẅk − ẅk−1)2(τ) +

∫ τ

0

1

n

n−1∑
k=1

ε̈2
k dt

= − 1

2n

n−1∑
k=1

ε̇2
k(τ) +

1

2n

n−1∑
k=1

ε̇2
k(0)−

∫ τ

0

1

n

n−1∑
k=1

(
P0[mk, χk, εk]t − θ̇k

)
ε̈k dt

+

∫ τ

0

1

n

n−1∑
k=1

f̈kẅk dt+
1

2n

n−1∑
k=1

ẅ2
k(0) +

n

2

n∑
k=1

(ẅk − ẅk−1)2(0).

We now use Young’s inequality on the right-hand side. To estimate the term P0[mk, χk, εk]t we employ

(7.63), whereas for the term f̈k we argue as in (7.29) obtaining∫ τ

0

1

n

n−1∑
k=1

f̈2
k (t) dt ≤

∫∫
ΩT

f2
tt(x, t) dx dt ≤ C

by Hypothesis 7.1 (iv). Employing estimates (7.46)–(7.47), (7.57) and (7.83)–(7.84) we get

1

n

n−1∑
k=1

ẅ2
k(τ) + n

n∑
k=1

(ẅk − ẅk−1)2(τ) +

∫ τ

0

1

n

n−1∑
k=1

ε̈2
k(t) dt

≤ C

(
1 +

1

n

n−1∑
k=1

ẅ2
k(0) + n

n∑
k=1

(ẅk − ẅk−1)2(0) +

∫ τ

0

1

n

n−1∑
k=1

ẅ2
k(t) dt

)
.

(7.91)

We need to estimate the initial values

1

n

n−1∑
k=1

ẅ2
k(0) + n

n∑
k=1

(ẅk − ẅk−1)2(0).

To this aim we consider equation (7.2) for t = 0, where εk(0) = P0[mk, χk, εk](0) = 0 by Remark 7.5.

Hence we have

u̇k(0) = ε̇k(0)− θk(0) + θref ,

from which also

n(u̇k − u̇k−1)(0) = n(ε̇k − ε̇k−1)(0)− n(θk − θk−1)(0). (7.92)

On the other hand by equation (7.3) and (7.8) it holds

n(ẇk − ẇk−1)(0)− n(ε̇k − ε̇k−1)(0) = n(fk − fk−1)(0) (7.93)

and also

ẅk(0)− ε̈k(0) = −n2(u̇k+1 − 2u̇k + u̇k−1)(0) + ḟk(0). (7.94)
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We now test (7.93) by n(ε̇k − ε̇k−1)(0) obtaining

n
n∑
k=1

(ẇk − ẇk−1)(ε̇k − ε̇k−1)(0)− n
n∑
k=1

(ε̇k − ε̇k−1)2(0) = n
n∑
k=1

(fk − fk−1)(ε̇k − ε̇k−1)(0).

By Young’s inequality we infer

n

2

n∑
k=1

(ε̇k − ε̇k−1)2(0) ≤ n
n∑
k=1

(ẇk − ẇk−1)2(0) + n

n∑
k=1

(fk − fk−1)2(0). (7.95)

The first term on the right-hand side is bounded thanks to (7.37). We are going to derive a bound

for the second term. Note that it holds

n
n∑
k=1

(fk − fk−1)2(0) = n
n∑
k=1

(fk − fk−1)2(τ)− 2

∫ τ

0
n

n∑
k=1

(fk − fk−1)(ḟk − ḟk−1) dt

= n

n∑
k=1

(
n

∫ k/n

(k−1)/n
f(x, τ) dx− n

∫ (k−1)/n

(k−2)/n
f(x, τ) dx

)2

− 2

∫ τ

0
n

n∑
k=1

(
n

∫ k/n

(k−1)/n
f(x, t) dx− n

∫ (k−1)/n

(k−2)/n
f(x, t) dx

)

·

(
n

∫ k/n

(k−1)/n
ft(x, t) dx− n

∫ (k−1)/n

(k−2)/n
ft(x, t) dx

)
dt

= n
n∑
k=1

(
n

∫ k/n

(k−1)/n
(f(x, τ)− f(x− 1/n, τ)) dx

)2

− 2

∫ τ

0
n

n∑
k=1

(
n

∫ k/n

(k−1)/n
(f(x, t)− f(x− 1/n, t)) dx

)(
n

∫ k/n

(k−1)/n
(ft(x, t)− ft(x− 1/n, t)) dx

)
dt

= n3
n∑
k=1

(∫ k/n

(k−1)/n

∫ x

x−1/n
fx(y, τ) dy dx

)2

− 2

∫ τ

0
n3

n∑
k=1

(∫ k/n

(k−1)/n

∫ x

x−1/n
fx(y, t) dy dx

)(∫ k/n

(k−1)/n

∫ x

x−1/n
fxt(y, t) dy dx

)
dt.

Following the same steps leading to (7.68) and using Hölder’s inequality in time in the last summand,

what we eventually get is

n

n∑
k=1

(fk − fk−1)2(0) ≤ C

(∫ 1

0
f2
x(y, τ) dy +

(∫ τ

0

∫ 1

0
f2
x(y, t) dy dt

)1/2(∫ τ

0

∫ 1

0
f2
xt(y, t) dy dt

)1/2
)
.

Integrating in time
∫ T

0 dτ and using Hypothesis 7.1 (iv) then yield

n
n∑
k=1

(fk − fk−1)2(0) ≤ C.

Coming back to (7.95) we thus obtain

n

2

n∑
k=1

(ε̇k − ε̇k−1)2(0) ≤ C. (7.96)
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Testing now (7.92) by n(u̇k − u̇k−1)(0) and using Young’s inequality we get

n

2

n∑
k=1

(u̇k − u̇k−1)2(0) ≤ n
n∑
k=1

(ε̇k − ε̇k−1)2(0) + n

n∑
k=1

(θk − θk−1)2(0),

hence by (7.74) and (7.96)

n
n∑
k=1

(u̇k − u̇k−1)2(0) ≤ C. (7.97)

We finally test (7.94) by ẅk(0) obtaining

1

n

n−1∑
k=1

ẅ2
k(0)− 1

n

n−1∑
k=1

ε̈kẅk(0) = −n
n−1∑
k=1

(u̇k+1 − 2u̇k + u̇k−1)ẅk(0) +
1

n

n−1∑
k=1

ḟkẅk(0).

Note that formula (7.10) entails

− 1

n

n−1∑
k=1

ε̈kẅk(0)
(7.4)
= −n

n−1∑
k=1

(ẅk+1 − 2ẅk + ẅk−1)ẅk(0) = n
n∑
k=1

(ẅk − ẅk−1)2(0),

− n
n−1∑
k=1

(u̇k+1 − 2u̇k + u̇k−1)ẅk(0) = n

n∑
k=1

(u̇k − u̇k−1)(ẅk − ẅk−1)(0).

Hence we obtain

1

n

n−1∑
k=1

ẅ2
k(0) + n

n∑
k=1

(ẅk − ẅk−1)2(0) = n
n∑
k=1

(u̇k − u̇k−1)(ẅk − ẅk−1)(0) +
1

n

n−1∑
k=1

ḟkẅk(0),

and by Young’s inequality

1

2n

n−1∑
k=1

ẅ2
k(0) +

n

2

n∑
k=1

(ẅk − ẅk−1)2(0) ≤ n

2

n∑
k=1

(u̇k − u̇k−1)2(0) +
1

2n

n−1∑
k=1

ḟ2
k (0).

Arguing as for (7.36) we obtain

1

n

n−1∑
k=1

ḟ2
k (0) ≤ 1

T

∫∫
ΩT

f2
t (x, t) dx dt+ 2

(∫∫
ΩT

f2
t (x, t) dx dt

)1/2(∫∫
ΩT

f2
tt(x, t) dx dt

)1/2

≤ C

thanks to Hypothesis 7.1 (iv) and Remark 7.2 (iv). This, together with estimate (7.97), finally gives

1

n

n−1∑
k=1

ẅ2
k(0) + n

n∑
k=1

(ẅk − ẅk−1)2(0) ≤ C.

Coming back to (7.91), by Grönwall’s lemma A.2 we obtain the estimate

1

n

n−1∑
k=1

ẅ2
k(τ) + n

n∑
k=1

(ẅk − ẅk−1)2(τ) +

∫ τ

0

1

n

n−1∑
k=1

ε̈2
k(t) dt ≤ C (7.98)

which, combined with (7.29) by comparison in (7.3) gives∫ τ

0
n3

n−1∑
k=1

(u̇k+1 − 2u̇k + u̇k−1)2(t) dt ≤ C. (7.99)

Another higher order estimate can be deduced by (7.47) and by comparison in equation 7.4, namely∫ τ

0
n3

n−1∑
k=1

(wk+1 − 2wk + wk−1)2(t) dt ≤ C. (7.100)
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7.3 Proof of the existence

We are now ready to prove our main Theorem 7.3. The existence part will be carried out by passing

to the limit in the approximating system (7.2)–(7.7), whose solutions satisfy the a priori estimates we

have derived in the previous subsection.

Here and in the next section we will denote by | · |p the norm in Lp(0,1), and by ‖ · ‖p the norm in

Lp(ΩT ).

For a generic sequence {ϕk : k = 0,1, . . . , n} we set ∆kϕ = n(ϕk−ϕk−1) and ∆2
kϕ = n2(ϕk+1− 2ϕk +

ϕk−1), with the aim to define correspondingly piecewise constant, piecewise linear and piecewise

quadratic interpolations

ϕ̄(n)(x) =


ϕk for x ∈

[
k−1
n , kn

)
, k = 1, . . . , n− 1,

ϕn−1 for x ∈
[
n−1
n , 1

]
,

(7.101)

ϕ̂(n)(x) = ϕk−1 +
(
x− k−1

n

)
∆kϕ for x ∈

[
k−1
n , kn

)
, k = 1, . . . , n, (7.102)

ϕ̃(n)(x) =



1
2(ϕk−1 + ϕk) +

(
x− k−1

n

)
∆kϕ+ 1

2

(
x− k−1

n

)2
∆2
kϕ

for x ∈
[
k−1
n , kn

)
, k = 1, . . . , n− 1 ,

1
2(ϕn−1 + ϕn) +

(
x− n−1

n

)
∆nϕ+ 1

2

(
x− n−1

n

)2
∆2
n−1ϕ

for x ∈
[
n−1
n , 1

]
.

(7.103)

We also define

λ(n)(x, y) = λk−j for (x, y) ∈
[
k − 1

n
,
k

n

)
×
[
j − 1

n
,
j

n

)
. (7.104)

The estimates we have derived in the previous section can be rewritten by using this notation for

functions ε̄(n), θ̄(n), ū(n), w̄(n), χ̄(n), m̄(n), ε̂(n), θ̂(n), ŵ(n), θ̃(n), ũ(n), w̃(n). In particular

- by (7.83) ∣∣ε̄(n)
t (τ)

∣∣2
2

+

∫ τ

0

∣∣ε̂(n)
xt (t)

∣∣2
2

dt+

∫ τ

0

(∣∣ε̄(n)
t (t)

∣∣4
4

+
∣∣ε̄(n)(t)

∣∣4
4

)
dt ≤ C, (7.105)

- by (7.84)–(7.85) ∫ τ

0

(∣∣θ̄(n)
t (t)

∣∣2
2

+
∣∣θ̄(n)(t)

∣∣4
4

)
dt+

∣∣θ̂(n)
x (τ)

∣∣2
2
≤ C, (7.106)

- by (7.89) ∫ τ

0

∣∣θ̃(n)
xx (t)

∣∣2
2

dt ≤ C, (7.107)

- by (7.98) ∣∣w̄(n)
tt (τ)

∣∣2
2

+
∣∣ŵ(n)

xtt (τ)
∣∣2
2

+

∫ τ

0

∣∣ε̄(n)
tt (t)

∣∣2
2

dt ≤ C, (7.108)

- by (7.86)–(7.88)

|θ̄(n)(τ)|∞ + |χ̄(n)
t (τ)|∞ + |m̄(n)

t (τ)|∞ ≤ C, (7.109)
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- by (7.99)–(7.100) ∫ τ

0

(∣∣w̃(n)
xxt(t)

∣∣2
2

+
∣∣ũ(n)
xxt(t)

∣∣2
2

)
dt ≤ C. (7.110)

With the above notation system (7.2)–(7.7) can be expressed in the form

ū
(n)
t = ε̄(n) + P0[m̄(n), χ̄(n), ε̄(n)] + ε̄

(n)
t − (θ̄(n) − θref), (7.111)

w̄
(n)
t − ε̄

(n)
t = −ũ(n)

xx + f̄ (n), (7.112)

ε̄(n) = w̃(n)
xx , (7.113)

θ̄
(n)
t = θ̃(n)

xx + m̄
(n)
t K̄(n) + χ̄

(n)
t M̄ (n) + D̄(n) + (ε̄

(n)
t )2 − θ̄(n)ε̄

(n)
t + ḡ(n)(θ̄(n))− Lχ̄(n)

t , (7.114)

χ̄(n)(x, t) = s[0,1][χ̄
(n)(0), Ā(n)(x, ·)](t), (7.115)

m̄(n)(x, t) = s[0,∞)[0, S̄
(n)(x, ·)](t), (7.116)

with χ̄(n)(0) chosen according to (7.8) and where

Ā(n)(x, t) =

∫ t

0

1

γ

(
L

θref
(θ̄(n) − θref) + M̄ (n)

)
(x, τ) dτ,

S̄(n)(x, t) =

∫ t

0

(
−h(χ̄

(n)
t (x, τ)) +

∫ 1

0
λ(n)(x, y)D̄(n)(y, τ) dy

)
dτ,

K̄(n)(x, t) = −1

2

∫ ∞
0

γm(m̄(n), χ̄(n), r)s2
r [ε̄

(n)] dr,

M̄ (n)(x, t) = −1

2

∫ ∞
0

γχ(m̄(n), χ̄(n), r)s2
r [ε̄

(n)](x, t) dr,

D̄(n)(x, t) =

∫ ∞
0

γ(m̄(n), χ̄(n), r)sr[ε̄
(n)](ε̄(n) − sr[ε̄

(n)])t(x, t) dr.

It holds

|ε̂(n)
tt (t)|22 =

∫ 1

0
|ε̂(n)
tt (x, t)|2 dx

=
n∑
k=1

∫ k/n

(k−1)/n

∣∣∣∣ε̈k−1(t) +

(
x− k − 1

n

)
n (ε̈k − ε̈k−1) (t)

∣∣∣∣2 dx

=
n∑
k=1

∫ k/n

(k−1)/n

∣∣∣∣(x− k − 1

n

)
n ε̈k(t)−

(
x− k

n

)
n ε̈k−1(t)

∣∣∣∣2 dx

≤
n∑
k=1

∫ k/n

(k−1)/n

∣∣∣∣ 1n · n |ε̈k(t)|+ 1

n
· n |ε̈k−1(t)|

∣∣∣∣2 dx

≤ 1

n

n∑
k=1

ε̈2
k(t) +

1

n

n∑
k=1

ε̈2
k−1(t) ≤ 2

n

n∑
k=0

ε̈2
k(t),

hence employing equation (7.48) and (7.9) we further have∫ τ

0

∣∣ε̂(n)
tt (t)

∣∣2
2

dt ≤
∫ τ

0

2

n

n∑
k=0

ε̈2
k(t) dt ≤

∫ τ

0

(
2

n

n−1∑
k=1

ε̈2
k(t) +

2

n
(ε̈2

0(t) + ε̈2
n(t))

)
dt

≤ C

(
1 +

∫ τ

0

2

n

n−1∑
k=1

(
ε̈2
k + θ̇2

k

)
(t) dt

)
.
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From (7.84) and (7.98) we finally get ∫ τ

0

∣∣ε̂(n)
tt (t)

∣∣2
2

dt ≤ C. (7.117)

Now, looking at estimates (7.105) and (7.117), we see that we can apply the embedding theorem A.3

with p′0 = q0 = q1 = 2, p1 = ∞, N = 1 and Rellich-Kondrakov theorem, getting the existence of

ε ∈W 1,2(ΩT ) such that εxt, εtt ∈ L2(ΩT ), and a subsequence of {ε̂(n)}, still indexed by n, such that

ε̂(n) → ε strongly in C(ΩT ) ,

ε̂
(n)
t → εt strongly in Lp(ΩT ) for all p ∈ [1,∞).

Furthermore

|ε̄(n)
t − ε̂

(n)
t |2(x, t) ≤

∣∣∣∣ε̇k − ε̇k−1 −
(
x− k − 1

n

)
n(ε̇k − ε̇k−1)

∣∣∣∣2 (t)

= |(k − nx)(ε̇k − ε̇k−1)|2(t) ≤ |ε̇k − ε̇k−1|2(t)

for x ∈ [(k − 1)/n, k/n], so that from estimate (7.83)∫ τ

0

∫ 1

0
|ε̄(n)
t − ε̂

(n)
t |2(x, t) dx dt ≤

∫ τ

0

1

n

n∑
k=1

(ε̇k − ε̇k−1)2(t) dt ≤ C

n2
.

This yields, together with (7.3),

ε̄
(n)
t → εt strongly in L2(ΩT ). (7.118)

Similarly, from estimate (7.83)

|ε̄(n) − ε̂(n)|2(x, t) ≤
∣∣∣∣εk − εk−1 −

(
x− k − 1

n

)
n(εk − εk−1)

∣∣∣∣2 (t) = |(k − nx)(εk − εk−1)|2(t)

≤ max
k=1,...,n

|εk − εk−1|2(t) ≤
n∑
k=1

(εk − εk−1)2(t) ≤ C

n
,

hence by (7.3)

ε̄(n) → ε strongly in L∞(ΩT ). (7.119)

Using (7.113), (7.118) we find that

w̃
(n)
xxt = ε̄

(n)
t → εt = wxxt strongly in L2(ΩT ).

Arguing as above, we deduce the existence of w ∈ C(ΩT ) such that

ŵ
(n)
t → wt strongly in C(ΩT ),

w̄
(n)
t → wt strongly in L∞(ΩT ).

This, together with Hypothesis 7.1 (iv), equation (7.112) and (7.118), entails

ũ(n)
xx = ε̄

(n)
t − w̄

(n)
t + f̄ (n) → εt − wt + f = uxx strongly in L2(ΩT )
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where u ∈ C(ΩT ). From estimates (7.106) and (7.107) we immediately obtain

θ̄
(n)
t → θt, θ̂

(n)
x → θx, θ̃

(n)
xx → θxx weakly in L2(ΩT )

from which θ ∈ C(ΩT ) and, arguing as above,

θ̄(n) → θ strongly in L∞(ΩT ). (7.120)

The main complications come when dealing with the phase term. Using Proposition B.5 as for (7.67)

we obtain for all n, l ∈ N

|χ̄(n) − χ̄(l)|(x, τ) ≤
∫ τ

0
|χ̄(n)
t − χ̄

(l)
t |(x, t) dt

≤ C
(
|χ̄(n) − χ̄(l)|(x,0) +

∫ τ

0
(|θ̄(n) − θ̄(l)|+ |m̄(n) − m̄(l)|)(x, t) dt+ max

t∈[0,τ ]
|ε̄(n) − ε̄(l)|(x, t)

)
.

(7.121)

In an analogous way, with Ā(n) replaced by S̄(n), we also get

|m̄(n) − m̄(l)|(x, τ) ≤
∫ τ

0
|m̄(n)

t − m̄
(l)
t |(x, t) dt

≤ C
∫ τ

0
|χ̄(n)
t − χ̄

(l)
t |(x, t) dt (7.122)

+

∫ τ

0

∫ 1

0

∫ ∞
0

∣∣∣∣λ(n)(x, y)γ(m̄(n), χ̄(n), r)δ(n)(y, t, r)− λ(l)(x, y)γ(m̄(l), χ̄(l), r)δ(l)(y, t, r)

∣∣∣∣dr dy dt

where we denote

δ(n) = δ(n)(y, t, r) = sr[ε̄
(n)](ε̄(n) − sr[ε̄

(n)])t(y, t)
(B.18)

= r|pr[ε̄(n)]t(y, t)|.

Now (7.122) implies

|m̄(n) − m̄(l)|(x, τ) ≤ C
∫ τ

0
|m̄(n)

t − m̄
(l)
t |(x, t) dt

≤ C
(∫ τ

0
(|θ̄(n) − θ̄(l)|+ |m̄(n) − m̄(l)|)(x, t) dt+ max

t∈[0,τ ]
|ε̄(n) − ε̄(l)|(x, t)

)
+ |χ̄(n) − χ̄(l)|(x,0)

+

∫ τ

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)γ(m̄(n), χ̄(n), r)|δ(n) − δ(l)|(y, t, r) dr dy dt (7.123)

+

∫ τ

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)|γ(m̄(n), χ̄(n), r)− γ(m̄(l), χ̄(l), r)|δ(l)(y, t, r) dr dy dt

+

∫ τ

0

∫ 1

0

∫ ∞
0
|λ(n)(x, y)− λ(l)(x, y)|γ(m̄(l), χ̄(l), r)|δ(l)(y, t, r) dr dy dt.

Proposition B.7 allows us to conclude that∫ τ

0
|δ(n) − δ(l)|(y, t) dt ≤ r

∫ τ

0
|ε̄(n)
t − ε̄

(l)
t |(y, t) dt,

hence∫ τ

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)γ(m̄(n), χ̄(n), r)|δ(n) − δ(l)|dr dy dt ≤ Λ

∫ τ

0

∫ 1

0

∫ ∞
0

γ̃(r)|δ(n) − δ(l)| dr dy dt

≤ C
∫ τ

0

∫ 1

0
|ε̄(n)
t − ε̄

(l)
t |(y, t) dy dt (7.124)
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7.3 – Proof of the existence

by Hypothesis 7.1 (i), (iii). In a similar way, exploiting (B.21) and Hypothesis 7.1 (i) we have∫ τ

0

∫ 1

0

∫ ∞
0

δ(l)λ(n)(x, y)|γ(m̄(n), χ̄(n), r)− γ(m̄(l), χ̄(l), r)|dr dy dt

≤ Λ

∫ τ

0

∫ 1

0

∫ ∞
0

r|ε̄(l)
t (y, t)|

(
|γ(m̄(n), χ̄(n), r)− γ(m̄(l), χ̄(n), r)|

+ |γ(m̄(l), χ̄(n), r)− γ(m̄(l), χ̄(l), r)|
)

dr dy dt

≤ Λ

∫ τ

0

∫ 1

0

∫ ∞
0

r|ε̄(l)
t (y, t)|

(
γ∗(r)|m̄(n) − m̄(l)|+ γ∗(r)|χ̄(n) − χ̄(l)|

)
dr dy dt,

thus employing Hypothesis 7.1 (i) again we end up with∫ τ

0

∫ 1

0

∫ ∞
0

δ(l)λ(n)(x, y)|γ(m̄(n), χ̄(n), r)− γ(m̄(l), χ̄(l), r)| dr dy dt

≤ C
∫ τ

0

(∫ 1

0
|ε̄(l)
t (y, t)| dy

)
max
x∈(0,1)

(
|m(n) −m(l)|(x, t) + |χ(n) − χ(l)|(x, t)

)
dt.

(7.125)

Finally, for every (x, y) ∈
(
[(k− 1)/n, k/n)× [(j− 1)/n, j/n)

)
∩
(
[(w− 1)/l, w/l)× [(v− 1)/l, v/l)

)
by

Hypothesis 7.1 (iii) we have the pointwise upper bound

|λ(n)(x, y)− λ(l)(x, y)| = |λk−j − λw−v| =
∣∣∣∣λ(k − jn

)
− λ

(
w − v
l

)∣∣∣∣
≤ Λ

(∣∣∣∣kn − w

l

∣∣∣∣+

∣∣∣∣ jn − v

l

∣∣∣∣) ≤ 4Λ

min{n, l}
. (7.126)

Combining (7.121)–(7.126) gives the inequality

max
x∈(0,1)

(
|m̄(n) − m̄(l)|(x, τ) + |χ̄(n) − χ̄(l)|(x, τ)

)
≤ max

x∈(0,1)

∫ τ

0

(
|m̄(n)

t − m̄
(l)
t |(x, t) + |χ̄(n)

t − χ̄
(l)
t |(x, t)

)
dt

≤ qnl + C

∫ τ

0

(∫ 1

0
|ε̄(l)
t (y, t)|dy

)
max
x∈(0,1)

(
|m̄(n) − m̄(l)|(x, t) + |χ̄(n) − χ̄(l)|(x, t)

)
dt, (7.127)

with

qnl = C

(
1

min{n, l}
+ |χ̄(n)(·,0)− χ̄(l)(·,0)|∞ + ‖θ̄(n) − θ̄(l)‖∞ + ‖ε̄(n)

t − ε̄
(l)
t ‖1 + ‖ε̄(n) − ε̄(l)‖∞

)
.

Inequality (7.127) can be interpreted as an inequality of the form

q(τ) ≤ qnl +

∫ τ

0
s(l)(t)q(t) dt,

with

q(t) = max
x∈(0,1)

(
|m̄(n) − m̄(l)|+ |χ̄(n) − χ̄(l)|

)
(x, t),

s(l)(t) = C

∫ 1

0
|ε̄(l)
t (y, t)| dy,
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7 – Solvability of the problem

where s(l) is uniformly bounded in L1(0, T ). We obtain using Grönwall’s lemma A.2 that

q(τ) ≤ qnl e
∫ τ
0 s(l)(t) dt ≤ Cqnl.

Note that the sequence χ̄(n)(·,0) is uniformly convergent to χ0(·) by Hypothesis 7.1 (v). Indeed, by

definition of χ̄(x) in (7.101) for x ∈ [(k − 1)/n, k/n), k = 1, . . . , n− 1 it holds

|χ0(x)− χ̄(n)(x,0)| = |χ0(x)− χk(0)| =

∣∣∣∣∣χ0(x)− n
∫ k/n

(k−1)/n
χ0(y) dy

∣∣∣∣∣ =

∣∣∣∣∣n
∫ k/n

(k−1)/n

∫ x

y
χ0
x(ξ) dξ dy

∣∣∣∣∣
≤ n

∫ k/n

(k−1)/n

∫ k/n

(k−1)/n
|χ0
x(ξ)| dξ dy ≤ 1√

n

(∫ k/n

(k−1)/n
|χ0
x(ξ)|2 dξ

)1/2

,

and the same for x ∈ [(n − 1)/n,1] since |χ0(x) − χ̄(n)(x,0)| = |χ0(x) − χn−1(0)|. Hence χ̄(n)(·,0) is

a Cauchy sequence in L∞(0,1). This, together with the convergences (7.118), (7.119) and (7.120),

implies that qnl is small if n, l are large. Hence, m̄(n) and χ̄(n) are Cauchy sequences in L∞(ΩT ), and

this gives

m̄(n) → m, χ̄(n) → χ strongly in L∞(ΩT ), (7.128)

m̄
(n)
t → mt, χ̄

(n)
t → χt strongly in L∞(0,1;L1(0, T )). (7.129)

By virtue of (5.80) m̄
(n)
t and χ̄

(n)
t are uniformly bounded in L∞(ΩT ), hence

m̄
(n)
t → mt, χ̄

(n)
t → χt weakly-star in L∞(ΩT ).

Concerning the hysteretic terms, arguing as for (7.65) and using Proposition B.5 we get∫ τ

0
|P0[m̄(n), χ̄(n), ε̄(n)]− P0[m,χ, ε]|2(x, t) dt

≤ C
(∫ τ

0

(
|m̄(n) −m|2 + |χ̄(n) − χ|2

)
(x, t) dt+ max

t∈[0,τ ]
|ε̄(n) − ε|2(x, t)

)
,

whereas by Hypothesis 7.1 (i), identity (B.21) for the play and Proposition B.7 we obtain for all

x ∈ [0,1]∫ τ

0
|D̄(n) −D[m,χ, ε]|2(x, t) dt

=

∫ t

0

∣∣∣∣∫ ∞
0

γ(m̄(n), χ̄(n), r)r|pr[ε̄(n)]t| dr −
∫ ∞

0
γ(m,χ, r)r|pr[ε]t|dr

∣∣∣∣2 dτ

=

∫ τ

0

∣∣∣∣ ∫ ∞
0

r(γ(m̄(n), χ̄(n), r)− γ(m, χ̄(n), r))|pr[ε̄(n)]t| dr

+ r(γ(m, χ̄(n), r)− γ(m,χ, r))|pr[ε̄(n)]t|dr + rγ(m,χ, r)(|pr[ε̄(n)]t| − |pr[ε]t|) dr

∣∣∣∣2 dt

≤ C
(∫ τ

0

(
|m̄(n) −m|2 + |χ̄(n) − χ|2 + |ε̄(n)

t |2
)

(x, t) dt+ max
t∈[0,τ ]

|ε̄(n) − ε|2(x, t)

)
,
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and arguing analogously∫ τ

0
|K̄(n) −K[m,χ, ε]|2(x, t) dt

=

∫ τ

0

∣∣∣∣−1

2

∫ ∞
0

γm(m̄(n), χ̄(n), r)s2
r [ε̄

(n)] dr +
1

2

∫ ∞
0

γm(m,χ, r)s2
r [ε] dr

∣∣∣∣2 dt

≤ C
(∫ τ

0

(
|m̄(n) −m|2 + |χ̄(n) − χ|2

)
(x, t) dt+ max

t∈[0,τ ]
|ε̄(n) − ε|2(x, t)

)
,

∫ τ

0
|M̄ (n) −M [m,χ, ε]|2(x, t) dt

=

∫ τ

0

∣∣∣∣−1

2

∫ ∞
0

γχ(m̄(n), χ̄(n), r)s2
r [ε̄

(n)] dr +
1

2

∫ ∞
0

γχ(m,χ, r)s2
r [ε] dr

∣∣∣∣2 dt

≤ C
(∫ τ

0

(
|m̄(n) −m|2 + |χ̄(n) − χ|2

)
(x, t) dt+ max

t∈[0,τ ]
|ε̄(n) − ε|2(x, t)

)
since for t ∈ [0, τ ]

|s2
r [ε̄

(n)]− s2
r [ε]|(x, t) = |sr[ε̄(n)] + sr[ε]||sr[ε̄(n)]− sr[ε]|(x, t) ≤ 2r · 2 max

t∈[0,τ ]
|ε̄(n) − ε|(x, t)

by Proposition B.5. Hence using the convergences (7.118), (7.119) and (7.128) we obtain, for all

x ∈ (0,1),

P0[m̄(n), χ̄(n), ε̄(n)](x, ·) → P0[m,χ, ε](x, ·)

D̄(n)(x, ·) → D[m,χ, ε](x, ·)

K̄(n)(x, ·) → K[m,χ, ε](x, ·)

M̄ (n)(x, ·) → M [m,χ, ε](x, ·)


strongly in L2(0, T ).

We can then pass to the limit in (7.111)–(7.116), and conclude that (u,w, θ,m, χ) is a strong solution

to (6.22)–(6.26) with the regularity stated in Theorem 7.3 and satisfying the initial conditions (6.28).

It remains to check that the boundary conditions (6.29) hold. By (7.9) we have wn(t) = 0, hence

|w̃(n)(1, t)| =
∣∣∣∣12(wn(t)− wn−1(t)) +

(
1− n− 1

n

)
n(wn(t)− wn−1(t))

+
1

2

(
1− n− 1

n

)2

n2(wn − 2wn−1 + wn−2)

∣∣∣∣
=

∣∣∣∣wn(t)− wn−1(t)− 1

2
(wn−1(t)− wn−2(t))

∣∣∣∣
≤ 2
( n∑
k=1

|wk − wk−1|2(t)
)1/2

≤ C√
n
,

where the last inequality follows from estimate (7.41) for the dominant term
∑n

k=1(ẇk − ẇk−1)2. A

similar argument holds also for w(0, t), u(1, t), u(0, t). To complete the existence proof, we only need

to check the homogeneous Neumann boundary condition for θ. In other words, we have to check that

for every ψ̃ ∈ C1(ΩT ) we have ∫ T

0

∫ 1

0
(θxψ̃x + θxxψ̃)(x, t) dx dt = 0 . (7.130)
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Integrating by parts in space and using the boundary conditions (7.9) yields

∫ T

0

∫ 1

0
(θ̃(n)
x ψ̃x + θ̃(n)

xx ψ̃)(x, t) dx dt

=

∫ T

0

(
n−1∑
k=1

∫ k/n

(k−1)/n

(
n(θk − θk−1) +

(
x− k − 1

n

)
n2(θk+1 − 2θk + θk−1)

)
ψ̃x dx

+

∫ 1

(n−1)/n

(
n(θn − θn−1) +

(
x− n− 1

n

)
n2(θn − 2θn−1 + θn−2)

)
ψ̃x dx

+
n−1∑
k=1

∫ k/n

(k−1)/n
n2(θk+1 − 2θk + θk−1) ψ̃ dx+

∫ 1

(n−1)/n
n2(θn − 2θn−1 + θn−2) ψ̃ dx

)
dt

=

∫ T

0

(
n−1∑
k=1

(
n(θk+1 − θk)(t) ψ̃

(
k

n
, t

)
− n(θk − θk−1)(t) ψ̃

(
k − 1

n
, t

))

− n(θn−1 − θn−2)(t) ψ̃(1, t)

)
dt

=

∫ T

0

(
n(θn − θn−1)(t) ψ̃(1, t)− n(θ1 − θ0)(t) ψ̃(0, t)− n(θn−1 − θn−2)(t) ψ̃(1, t)

)
dt,

hence using (7.9) one more time we obtain

∫ T

0

∫ 1

0
(θ̃(n)
x ψ̃x + θ̃(n)

xx ψ̃)(x, t) dx dt = −
∫ T

0
n(θn−1 − θn−2)(t) ψ̃(1, t) dt .

We have

∫ T

0
n2(θn−1 − θn−2)2(t) dt =

∫ T

0
n2(θn − 2θn−1 + θn−2)2(t) dt

≤
∫ T

0
n2

n−1∑
k=1

(θk+1 − 2θk + θk−1)2(t) dt ≤ C

n

by (7.89), hence

lim
n→∞

∫ T

0

∫ 1

0
(θ̃(n)
x ψ̃x + θ̃(n)

xx ψ̃)(x, t) dx dt = 0

and (7.130) follows.

7.4 Proof of the uniqueness

Let (u,w, θ, χ,m), (ũ, w̃, θ̃, χ̃, m̃) be two solutions to (6.22)–(6.27), (6.29) with the regularity as in

Theorem 7.3, and with the same initial conditions and the same right-hand sides.
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We start by integrating in time
∫ t

0 dτ the difference of (6.25) for θ and θ̃ obtaining

(θ − θ̃)(x, t)−
∫ t

0
κ(θxx − θ̃xx) dτ

= −
∫ t

0
β(θwxxt − θ̃w̃xxt) dτ +

∫ t

0
ν(w2

xxt − w̃2
xxt) dτ

+

∫ t

0
(D[m,χ,wxx]−D[m̃, χ̃, w̃xx]) dτ +

∫ t

0
(mtK[m,χ,wxx]− m̃tK[m̃, χ̃, w̃xx]) dτ

+

∫ t

0
(χtM [m,χ,wxx]− χ̃tM [m̃, χ̃, w̃xx]) dτ −

∫ t

0
L(χt − χ̃t) dτ +

∫ t

0
(g(θ, x, τ)− g(θ̃, x, τ)) dτ.

Next we test by (θ(x, t)− θ̃(x, t)) and integrate in space
∫ 1

0 dx, getting∫ 1

0
(θ − θ̃)2(x, t) dx−

∫ 1

0

(∫ t

0
κ(θxx − θ̃xx) dτ

)
(θ − θ̃)(x, t) dx

= −
∫ 1

0

(∫ t

0
β(θwxxt − θ̃w̃xxt) dτ

)
(θ − θ̃)(x, t) dx+

∫ 1

0

(∫ t

0
ν(w2

xxt − w̃2
xxt) dτ

)
(θ − θ̃)(x, t) dx

+

∫ 1

0

(∫ t

0
(D[m,χ,wxx]−D[m̃, χ̃, w̃xx]) dτ

)
(θ − θ̃)(x, t) dx

+

∫ 1

0

(∫ t

0
(mtK[m,χ,wxx]− m̃tK[m̃, χ̃, w̃xx]) dτ

)
(θ − θ̃)(x, t) dx

+

∫ 1

0

(∫ t

0
(χtM [m,χ,wxx]− χ̃tM [m̃, χ̃, w̃xx]) dτ

)
(θ − θ̃)(x, t) dx

−
∫ 1

0

(∫ t

0
L(χt − χ̃t) dτ

)
(θ − θ̃)(x, t) dx+

∫ 1

0

(∫ t

0
(g(θ, x, τ)− g(θ̃, x, τ)) dτ

)
(θ − θ̃)(x, t) dx.

(7.131)

Concerning the second summand on the left-hand side, note that integrating by parts in space and

exploiting (6.29) we obtain

−
∫ 1

0

(∫ t

0
(θxx − θ̃xx) dτ

)
(θ − θ̃)(x, t) dx =

∫ 1

0

(∫ t

0
(θx − θ̃x) dτ

)
(θx − θ̃x)(x, t) dx

=
1

2

d

dt

∫ 1

0

(∫ t

0
(θx − θ̃x)(x, τ) dτ

)2

dx.

We now estimate the terms on the right-hand side, where we are going to apply Hölder’s inequality

in space. It holds∫ t

0
|θwxxt − θ̃w̃xxt|(x, τ) dτ ≤

∫ t

0
|wxxt| |θ − θ̃|(x, τ) dτ +

∫ t

0
|θ̃| |wxxt − w̃xxt|(x, τ) dτ

≤
(∫ t

0
|wxxt|2(x, τ) dτ

)1/2(∫ t

0
|θ − θ̃|2(x, τ) dτ

)1/2

+ ‖θ̃‖∞
∫ t

0
|wxxt − w̃xxt|(x, τ) dτ.

The continuous embedding W 1,2(0,1;L2(0, T )) ↪→ L∞(0,1;L2(0, T )) yields

max
x∈[0,1]

∫ t

0
|wxxt|2(x, τ) dτ ≤ C

(
‖wxxt‖22 + ‖wxxxt‖22

)
,

hence by the regularity part of Theorem 7.3 and Hölder’s inequality we obtain∫ t

0
|θwxxt − θ̃w̃xxt|(x, τ) dτ ≤ C

((∫ t

0
|θ − θ̃|2(x, τ) dτ

)1/2

+

∫ t

0
|wxxt − w̃xxt|(x, τ) dτ

)
.
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Similarly

∫ t

0
|w2
xxt − w̃2

xxt|(x, τ) dτ =

∫ t

0
(|wxxt − w̃xxt| |wxxt + w̃xxt|)(x, τ) dτ

≤ C
(∫ t

0
|wxxt − w̃xxt|2(x, τ) dτ

)1/2

.

The dissipation term is estimated as

∫ t

0
|D[m,χ,wxx]−D[m̃, χ̃, w̃xx]| (x, τ) dτ

=

∫ t

0

∣∣∣∣∫ ∞
0

rγ(m,χ, r)|pr[wxx]t| dr −
∫ ∞

0
rγ(m̃, χ̃, r)|pr[w̃xx]t|dr

∣∣∣∣ dτ

=

∫ t

0

∣∣∣∣∣
∫ ∞

0
r(γ(m,χ, r)− γ(m̃, χ, r))|pr[wxx]t|dr +

∫ ∞
0

r(γ(m̃, χ, r)− γ(m̃, χ̃, r))|pr[wxx]t| dr

+

∫ ∞
0

rγ(m̃, χ̃, r)|pr[wxx]t − pr[w̃xx]t|dr

∣∣∣∣∣ dτ
≤ C

∫ t

0
(|m− m̃||wxxt|+ |χ− χ̃||wxxt|+ |wxxt − w̃xxt|) (x, τ) dτ,

where we have used identity (B.21) for the play, Proposition B.7 and Hypothesis 7.1 (i). Arguing as

above, by the regularity part of Theorem 7.3 we then obtain

∫ t

0
|D[m,χ,wxx]−D[m̃, χ̃, w̃xx]| (x, τ) dτ

≤ C

((∫ t

0
|m− m̃|2(x, τ) dτ

)1/2

+

(∫ t

0
|χ− χ̃|2(x, τ) dτ

)1/2

+

∫ t

0
|wxxt − w̃xxt|(x, τ) dτ

)
.

(7.132)

The terms containing K and M are estimated similarly as

∫ t

0
|mtK[m,χ,wxx]− m̃tK[m̃, χ̃, w̃xx]| (x, τ) dτ

=
1

2

∫ t

0

∣∣∣∣mt

∫ ∞
0

γm(m,χ, r)s2
r [wxx] dr − m̃t

∫ ∞
0

γm(m̃, χ̃, r) s2
r [w̃xx] dr

∣∣∣∣ dτ

=
1

2

∫ t

0

∣∣∣∣∣mt

∫ ∞
0

(γm(m,χ, r)− γm(m̃, χ, r))s2
r [wxx] dr

+mt

∫ ∞
0

(γm(m̃, χ, r)− γm(m̃, χ̃, r))s2
r [wxx] dr +mt

∫ ∞
0

γm(m̃, χ̃, r)(s2
r [wxx]− s2

r [w̃xx]) dr

+ (mt − m̃t)

∫ ∞
0

γm(m̃, χ̃, r)s2
r [w̃xx] dr

∣∣∣∣∣dτ
≤ C

∫ t

0

(
|mt|(|m− m̃|+ |χ− χ̃|+ |wxxt − w̃xxt|) + |mt − m̃t|

)
(x, τ) dτ (7.133)
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and∫ t

0
|χtM [m,χ,wxx]− χ̃tM [m̃, χ̃, w̃xx]| (x, τ) dτ

=
1

2

∫ t

0

∣∣∣∣χt ∫ ∞
0

γχ(m,χ, r)s2
r [wxx] dr − χ̃t

∫ ∞
0

γχ(m̃, χ̃, r) s2
r [w̃xx] dr

∣∣∣∣ dτ

=
1

2

∫ t

0

∣∣∣∣∣χt
∫ ∞

0
(γχ(m,χ, r)− γχ(m̃, χ, r))s2

r [wxx] dr + χt

∫ ∞
0

(γχ(m̃, χ, r)− γχ(m̃, χ̃, r))s2
r [wxx] dr

+ χt

∫ ∞
0

γχ(m̃, χ̃, r)(s2
r [wxx]− s2

r [w̃xx]) dr + (χt − χ̃t)
∫ ∞

0
γχ(m̃, χ̃, r)s2

r [w̃xx] dr

∣∣∣∣∣dτ
≤ C

∫ t

0

(
|χt|(|m− m̃|+ |χ− χ̃|+ |wxxt − w̃xxt|) + |χt − χ̃t|

)
(x, τ) dτ, (7.134)

where we used Hypothesis 7.1 (i) and Proposition B.5. Our aim is now to estimate the terms |m− m̃|,

|mt − m̃t|, |χ− χ̃|, |χt − χ̃t|. Arguing in a similar way as we did in (7.121) we deduce

|χ− χ̃|(x, t) ≤
∫ t

0
|χt − χ̃t|(x, τ) dτ ≤ C

∫ t

0
(|θ − θ̃|+ |m− m̃|+ |wxxt − w̃xxt|)(x, τ) dτ, (7.135)

whereas arguing as for (7.122)–(7.125) we obtain

|m− m̃|(x, t) ≤
∫ t

0
|mt − m̃t|(x, τ) dτ

≤ C
∫ t

0

(
|χt − χ̃t|(x, τ) +

∫ 1

0
(|m− m̃||wxxt|+ |χ− χ̃||wxxt|+ |wxxt − w̃xxt|)(y, τ) dy

)
dτ.

(7.136)

We observe that, again by the regularity part of Theorem 7.3,∫ t

0

∫ 1

0
|m− m̃||wxxt| dy dτ ≤ C

∫ t

0

(∫ 1

0
|m− m̃|2 dy

)1/2

dτ,∫ t

0

∫ 1

0
|χ− χ̃||wxxt|dy dτ ≤ C

∫ t

0

(∫ 1

0
|χ− χ̃|2 dy

)1/2

dτ.

Plugging this back into (7.136) together with (7.135) we have

|m− m̃|(x, t) ≤
∫ t

0
|mt − m̃t|(x, τ) dτ

≤ C
∫ t

0
(|θ − θ̃|+ |m− m̃|+ |wxxt − w̃xxt|)(x, τ) dτ

+ C

∫ t

0

(∫ 1

0
|m− m̃|2(x, τ) dy

)1/2

dτ + C

∫ t

0

(∫ 1

0
|χ− χ̃|2(x, τ) dy

)1/2

dτ

+ C

(∫ t

0

∫ 1

0
|wxxt − w̃xxt|2(y, τ) dy dτ

)1/2

.

(7.137)

Then (7.135) and (7.137) imply

|m− m̃|2(x, t) + |χ− χ̃|2(x, t)

≤ C

(∫ t

0
(|θ − θ̃|2 + |m− m̃|2 + |wxxt − w̃xxt|2)(x, τ) dτ

+

∫ t

0

∫ 1

0
(|m− m̃|2 + |χ− χ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)
.
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Integrating in space and using Grönwall’s lemma (A.2), we obtain from (7.137) that∫ t

0
|mt − m̃t|(x, τ) dτ

≤ C

(∫ t

0
(|θ − θ̃|+ |m− m̃|+ |wxxt − w̃xxt|)(x, τ) dτ

+

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
,

from which by (7.135) also∫ t

0
|mt − m̃t|(x, τ) dτ +

∫ t

0
|χt − χ̃t|(x, τ) dτ

≤ C

(∫ t

0
(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ +

∫ t

0

∫ τ

0
|mt − m̃t|(x, τ ′) dτ ′ dτ

+

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
.

Applying Grönwall’s lemma A.2 one more time produces the desired inequality

|m− m̃|(x, t) + |χ− χ̃|(x, t) ≤
∫ t

0
(|mt − m̃t|+ |χt − χ̃t|)(x, τ) dτ

≤ C

(∫ t

0
(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ

+

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
.

(7.138)

Substituting in (7.132) and exploiting the regularity part of Theorem 7.3 we obtain∫ t

0
|D[m,χ,wxx]−D[m̃, χ̃, w̃xx]| (x, τ) dτ

≤ C
(∫ t

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(x, τ) dτ +

∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2

,

and from (7.133)–(7.134)∫ t

0
|mtK[m,χ,wxx]− m̃tK[m̃, χ̃, w̃xx]| (x, τ) dτ

≤ C

(∫ t

0
(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ +

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
,

∫ t

0
|χtM [m,χ,wxx]− χ̃tM [m̃, χ̃, w̃xx]| (x, τ) dτ

≤ C

(∫ t

0
(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ +

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
.

We finally observe that, by Hypothesis 7.1 (vii),∫ t

0
|g(θ, x, τ)− g(θ̃, x, τ)|dτ ≤ g1

∫ t

0
|θ − θ̃|(x, τ) dτ.
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Coming back to (7.131), applying Hölder’s inequality in space we see that all these estimates yield∫ 1

0
|θ − θ̃|2(x, t) dx+

1

2

d

dt

∫ 1

0

(∫ t

0
(θx − θ̃x)(x, τ) dτ

)2

dx

≤ C
∫ t

0

∫ 1

0

(
|wxxt − w̃xxt|2 + |θ − θ̃|2

)
(x, τ) dx dτ.

(7.139)

Next we test the difference of the time derivatives of (6.23) for w and w̃ by wt − w̃t, the difference of

(6.22) for u and ũ by wxxt − w̃xxt and subtract the two equations. We obtain∫ 1

0
µ(wtt − w̃tt)(wt − w̃t) dx−

∫ 1

0
α(wxxtt − w̃xxtt)(wt − w̃t) dx−

∫ 1

0
(ut − ũt)(wxxt − w̃xxt) dx

= −
∫ 1

0
(uxxt − ũxxt)(wt − w̃t) dx−

∫ 1

0
B(wxx − w̃xx)(wxxt − w̃xxt) dx

−
∫ 1

0
(P [m,χ,wxx]− P [m̃, χ̃, w̃xx])(wxxt − w̃xxt) dx−

∫ 1

0
ν(wxxt − w̃xxt)2 dx

+

∫ 1

0
β(θ − θ̃)(wxxt − w̃xxt) dx.

Integrating by parts and rearranging the terms we get, up to constants,

1

2

d

dt

∫ 1

0

(
|wt − w̃t|2 + |wxt − w̃xt|2 + |wxx − w̃xx|2

)
(x, t) dx+

∫ 1

0
|wxxt − w̃xxt|2 dx

= −
∫ 1

0
(P [m,χ,wxx]− P [m̃, χ̃, w̃xx])(wxxt − w̃xxt) dx+

∫ 1

0
(θ − θ̃)(wxxt − w̃xxt) dx.

Note that arguing as for (7.65) and using (7.138) gives

|P [m,χ,wxx]− P [m̃, χ̃, w̃xx]| ≤ C
(
|m− m̃|+ |χ− χ̃|+

∫ t

0
|wxxt − w̃xxt| dτ

)
≤ C

(∫ t

0
(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ +

(∫ t

0

∫ 1

0
(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)1/2
)
,

hence by Young’s inequality we finally get

1

2

d

dt

∫ 1

0

(
|wt − w̃t|2 + |wxt − w̃xt|2 + |wxx − w̃xx|2

)
(x, t) dx+

∫ 1

0
|wxxt − w̃xxt|2(x, t) dx

≤ C
(∫ 1

0
|θ − θ̃|2(x, t) dx+

∫ t

0

∫ 1

0

(
|wxxt − w̃xxt|2 + |θ − θ̃|2

)
(x, t) dx dτ

)
.

(7.140)

We now multiply (7.139) by 2C and add the result to (7.140) to obtain∫ 1

0

(
|wxxt − w̃xxt|2 + C|θ − θ̃|2

)
(x, t) dx

+
1

2

d

dt

∫ 1

0

(
2C

(∫ t

0
(θx − θ̃x)(x, τ) dτ

)2

+ |wt − w̃t|2 + |wxt − w̃xt|2 + |wxx − w̃xx|2
)

(x, t) dx

≤ (C + 2C2)

∫ t

0

∫ 1

0

(
|wxxt − w̃xxt|2 + |θ − θ̃|2

)
(x, τ) dx dτ.

Integrating in time
∫ t′

0 dt for some t′ > t and using Grönwall’s lemma A.2, we see that w = w̃, θ = θ̃,

and by equation (6.23) and estimate (7.138) also u = ũ, m = m̃, χ = χ̃. Hence the proof of Theorem

7.3 is complete.
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Introduction

In this last part we deal with phase transitions from a different point of view, namely, by using

the directs methods pertaining to the regularity theory in the field of Calculus of Variations. More

precisely, we are going to prove regularity results for a class of integral functionals that belong to the

realm of nonuniformly elliptic problems. An example of such functionals is given by those satisfying

the so-called nonstandard growth conditions. Here the primary model we have in mind is given by the

double-phase functional

J qp (u,Ω) :=

∫
Ω

(|Du|p + a(x)|Du|q) dx, (IV.1)

where Ω ⊂ Rn is a bounded open domain, n > 2, and

1 < p ≤ q, 0 ≤ a(·) ∈ L∞(Ω).

The significant case occurs when p < q. The main feature of the functional J qp is the change of

ellipticity/growth type occurring on the zero set {a(x) = 0}. Indeed, while in those points x where

a(x) is positive the energy density of J qp exhibits a growth/ellipticity in the gradient which is of order

q, on {a(x) = 0} the energy density has p-growth in the gradient.

In his seminal works [133–136], V. V. Zhikov was the first to introduce and study functionals whose

integrands change their ellipticity rate according to the point, and, in particular, the one in (IV.1).

Such functionals provide a useful paradigm for describing the behavior of strongly anisotropic mate-

rials whose hardening properties (linked to the exponent ruling the growth of the gradient variable)

drastically change with the point. The coefficient a(·) serves to regulate the mixture between two

different materials, with p and q hardening, respectively. In this class of functionals J qp appears to

be the one exhibiting the most dramatic phase-transition and therefore the most difficult to treat.

However in this last part we will be more interested in the theoretical aspects of the problem rather

than to its applications, since the functional J qp appears to be very interesting from the point of view

of regularity theory. Indeed, while in the standard situation p = q the coefficient a(·) acts in the

energy density as a local perturbation of the main elliptic terms, this is not obviously the case when

q > p, since it is a(·) to dictate the ellipticity rate of the energy density.

As mentioned above, the functional in (IV.1) is the primary example of a functional exhibiting a

nonstandard growth. More generally, the Lagrangian F may be requested to satisfy the following
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growth conditions

α (|u|p − 1) ≤ F (x, u) ≤ β (|u|q + 1) , 1 < p ≤ q,

for some positive constants α, β. However, here we are also interested in relaxing the lower bound by

essentially taking p = 1, hence allowing nearly-linear growth conditions in the gradient. In this case

the model functional is given by

J q1 (u,Ω) :=

∫
Ω

(
|Du| log(1 + |Du|) + a(x)(1 + |Du|2)q/2

)
dx

with q > 1 and a ∈ L∞(Ω). Energy densities with logarithmic growth are not only of interest from

a theoretical point of view, since they naturally occur in the context of generalized Newtonian fluids

where they serve as models for so-called Prandtl-Eyring fluids. Moreover, this kind of behavior is

observed in the theory of plasticity with logarithmic hardening law.

For nonuniformly elliptic energy functionals as above, we are concerned with the study of the regularity

of their minimizers among all functions belonging to some given set. The variational problem we have

in mind is the so-called obstacle problem. Given Ω ⊂ Rn, n > 2, bounded open domain, we consider

the variational obstacle problem in the form

min

{∫
Ω
F (x,Dw) dx : w ∈ Kψ(Ω)

}
. (IV.2)

The function ψ : Ω → [−∞,+∞), called obstacle, belongs to the Sobolev class W 1,p(Ω) and the set

Kψ(Ω) contains the functions above the obstacle that share at least its regularity, that is,

Kψ(Ω) =
{
w ∈ u0 +W 1,p

0 (Ω) : w ≥ ψ a.e. in Ω
}

(IV.3)

where u0 ∈W 1,p(Ω) is a fixed boundary value. For the Lagrangian F we assume nonuniform ellipticity

conditions as the ones outlined above.

The obstacle problem appeared in the mathematical literature in the work by G. Stampacchia [127] in

the special case ψ = χE and related to the capacity of a subset E b Ω. In an earlier independent work,

G. Fichera [62] solved the first unilateral problem, the so-called Signorini problem in elastostatics.

It consists in finding the elastic equilibrium configuration of an anisotropic nonhomogeneous elastic

body, resting on a rigid frictionless surface and subject only to its mass forces.

The study of the regularity theory for obstacle problems is now a classical topic in Partial Differential

Equations and Calculus of Variations. It is well known that its solution cannot be of class C2

independently of how regular the obstacle is: this led to the concept of weak solution and to the

theory of variational inequalities, after the fundamental work of J. L. Lions and G. Stampacchia [108].

Thus, in general, the regularity of solutions to the obstacle problems is influenced by the one of the

obstacle. For example, for linear obstacle problems, obstacle and solutions have the same regularity
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(see [20, 28, 87]). This does not apply in the nonlinear setting, hence along the years there have been

intense research activities for the regularity of the obstacle problem in this direction.

A first important result by J. H. Michael and W. P. Ziemer [114] establishes Hölder continuity of

solutions to the obstacle problem when the obstacle itself is Hölder continuous. H. J. Choe [33]

proved that if the gradient of the obstacle is Hölder continuous, the same happens for the gradient of

solutions. Other results that deserve to be quoted are [34, 66, 106]. Since then, many regularity results

have been obtained in different situations: for instance we quote [41] in the setting of Morrey and

Campanato spaces, [10, 118] for gradient continuity for nonlinear obstacle problems, [46] for global

results up to the boundary, [18] for the parabolic case, [19] for the porous medium problem. A higher

differentiability result in the case of standard growth conditions was recently obtained in [56] (see

Theorem 9.3). Here both the integer and the fractional differentiability are established.

Our purpose is to investigate the regularity of solutions to (IV.2)–(IV.3) for nonuniformly elliptic

functionals. In the nonstandard setting we quote [26, 43, 45, 119] in the case of a single obstacle

problem (see also [27, 44, 117] for Calderón–Zygmund case), and [13] in the case of double obstacle

problems. In the nearly-linear setting we refer to the papers [38, 66], dealing with Lipschitz and

C1,α regularity, respectively. However, to our knowledge, no result had been given in the direction

of higher differentiability prior to the the papers [71–73]. More precisely, these works investigate the

extra integer differentiability of solutions to the obstacle problem assuming that the gradient of the

obstacle has some differentiability property. We are going to report the results therein.

The program is as follows. In Chapter 8 we report some preliminary results that will be used in the

sequel, whereas Chapter 9 contains the main higher differentiability results for the obstacle problem. In

particular, in Section 9.1 we report some already known facts abound the standard case. Then we turn

our attention to the nonstandard case, and in Section 9.2 we state and prove the two (independent)

results from [71, 72]. Finally, Section 9.3 is devoted to the nearly-linear case, and contains the result

developed in the paper [73].
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CHAPTER 8

Notation and preliminary results

This chapter is devoted to fix the notation and collect some results that will be needed in the next

chapter.

Here and in the sequel we shall denote by C or c a generic positive constant that may vary on different

occasions, even within the same line of estimates. Relevant dependencies will be suitably emphasized

using parentheses or subscripts. The norm we use on Rn will be the standard euclidean one. In what

follows, B(x, r) = Br(x) = {y ∈ Rn : |y − x| < r} will denote the ball centered at x of radius r. We

shall omit the dependence on the center and on the radius when no confusion arises.

8.1 Difference quotient

Our proof is achieved by means of the difference quotient method (which goes back to L. Nirenberg,

see [116]), that is quite natural when trying to establish higher differentiability results. Thus we recall

some properties of the finite difference operator that will be needed in the following chapter. Let us

recall that, for every function F : Rn → RN , the finite difference operator is defined by

τs,hF (x) := F (x+ hes)− F (x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.

We start with the description of some elementary properties that can be found, for example, in [81].

Proposition 8.1. Let F and G be two functions such that F,G ∈ W 1,p(Ω), with p ≥ 1, and let us

consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then

(d1) τhF ∈W 1,p(Ω) and

Di(τhF ) = τh(DiF ) .
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(d2) If at least one of the functions F or G has support contained in Ω|h|, then∫
Ω
F τhG dx =

∫
Ω
Gτ−hF dx.

(d3) We have

τh(FG)(x) = F (x+ h) τhG(x) +G(x) τhF (x).

The next result about finite difference operator is a kind of integral version of Lagrange Theorem.

Lemma 8.2. If 0 < ρ < R, |h| < R−ρ
2 , 1 < p <∞, and F,DF ∈ Lp(BR) then∫

Bρ

|τhF (x)|p dx ≤ c(n, p)|h|p
∫
BR

|DF (x)|p dx.

Moreover ∫
Bρ

|F (x+ h)|p dx ≤
∫
BR

|F (x)|p dx.

Now, we recall the fundamental Sobolev embedding property.

Lemma 8.3. Let F : Rn → RN , F ∈ Lp(BR) with 1 < p < n. Suppose that there exist ρ ∈ (0, R) and

M > 0 such that
n∑
s=1

∫
Bρ

|τs,hF (x)|p dx ≤Mp|h|p

for every h with |h| < R−ρ
2 . Then F ∈W 1,p(Bρ) ∩ L

np
n−p (Bρ). Moreover

‖DF‖Lp(Bρ) ≤M

and

‖F‖
L

np
n−p (Bρ)

≤ c
(
M + ‖F‖Lp(BR)

)
,

with c = c(n,N, p, ρ,R).

8.2 Other auxiliary results

In view of the next chapter, it is convenient to introduce auxiliary functions

V1(ξ) :=
ξ(

12 + |ξ|2
) 1

4

, (8.1)

Vp(ξ) :=
(
µ2 + |ξ|2

) p−2
4
ξ for p ≥ 2 , (8.2)

defined for all ξ ∈ Rn and for µ ∈ [0,1]. Note that for Vp we allow for the degenerate case, which

corresponds to µ = 0. One can easily check that there exist positive constants c1, c2 such that

c1 (|ξ| − 1) ≤ |V1(ξ)|2, (8.3)

c2 |ξ|p ≤ |Vp(ξ)|2. (8.4)

We also recall the following results from [2, Lemma 2.1] and [81, Lemma 8.3], respectively.
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Lemma 8.4. For every γ ∈ (−1/2, 0) and µ ≥ 0 we have

(2γ + 1)|ξ − η| ≤ |(µ
2 + |ξ|2)γ ξ − (µ2 + |η|2)γ η|

(µ2 + |ξ|2 + |η|2)γ
≤ c(n)

2γ + 1
|ξ − η|

for all ξ, η ∈ Rn, not both zero if µ = 0.

Lemma 8.5. Let 1 < p <∞. There exists a constant c = c(n, p) > 0 such that

c−1
(
µ2 + |ξ|2 + |η|2

) p−2
2 ≤ |Vp(ξ)− Vp(η)|2

|ξ − η|2
≤ c
(
µ2 + |ξ|2 + |η|2

) p−2
2

for any ξ, η ∈ Rn.

Finally, we we state a very well-known iteration lemma (see [81], pp. 191–192 for the proof).

Lemma 8.6. Let Φ :
[
R
2 , R

]
→ R be a bounded nonnegative function, where R > 0. Assume that for

all R
2 ≤ r < s ≤ R we have

Φ(r) ≤ ϑΦ(s) +A+
B

(s− r)2
+

C

(s− r)γ

where ϑ ∈ (0,1), A,B,C ≥ 0 and γ > 0 are constants. Then there exists a constant c = c(ϑ, γ) such

that

Φ

(
R

2

)
≤ c

(
A+

B

R2
+

C

Rγ

)
.
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CHAPTER 9

Higher differentiability for the obstacle

problem

The obstacle problem is a well known motivating example in the Calculus of Variations. It comes

from a classical problem in elasticity theory, namely, finding the equilibrium position of an elastic

membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle.

In its classical mathematical formulation, the problem consists in seeking minimizers of the Dirichlet

energy functional

I(u) :=

∫
Ω
|∇u|2 dx

in some domain Ω ⊂ Rn, n > 2, where u represents the vertical displacement of the membrane.

In addition to satisfying Dirichlet boundary conditions corresponding to the fixed boundary of the

membrane, the function u is constrained to be greater than some given obstacle function ψ.

Existence and uniqueness of a solution for the above problem is easy to prove. The same argument

works for more general functionals, actually. If we consider

J (u) :=

∫
Ω
F (x,Du) dx

such that F satisfies the coercivity inequality F (x, ξ) ≥ α|ξ|p − β for some α > 0, β ≥ 0 and

1 < p <∞, then the constrained minimization problem has at least one solution. Furthermore, if the

mapping ξ → F (x, ξ) is uniformly convex for each x, the solution is also unique. A good reference for

such results is e. g. [37].

The regularity problem is less straightforward to address, especially in the nonlinear setting. As

already mentioned in the introduction, the regularity of the obstacle influences the regularity of

the solution. In this chapter we are interested in the problem of higher differentiability, that is,

determining whether (and, possibly, how) higher differentiability assumptions on the obstacle transfer

to the solutions.
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9.1 The case of standard growth conditions

We start our analysis by reporting some already known results about the obstacle problem satisfying

standard growth conditions. More precisely, on the Lagrangian F in (IV.2) we assume that there

exist an exponent 1 < p <∞ and some positive constants ν̃, L̃, ˜̀ such that

1
˜̀

(
|ξ|p − µ2

)
≤ F (x, ξ) ≤ ˜̀

(
µ2 + |ξ|p

)
(F̂1)

〈DξξF (x, ξ)λ, λ〉 ≥ ν̃ (µ2 + |ξ|2)
p−2
2 |λ|2 (F̂2)

|DξξF (x, ξ)| ≤ L̃ (µ2 + |ξ|2)
p−2
2 (F̂3)

|DξxF (x, ξ)| ≤ k(x) (µ2 + |ξ|2)
p−1
2 (F̂4)

for a.e. x ∈ Ω and every ξ ∈ Rn, where µ ∈ [0,1] is a parameter that allows to consider both the

degenerate and the nondegenerate situation. Here k is a function whose regularity is related to the

“extra-differentiability transfer” from the obstacle to the solution, and that will be specified when

needed.

The first result states that, in case of functionals with standard growth, the obstacle problem can be

reformulated as a problem in the theory of variational inequalities.

Proposition 9.1. Let the Lagrangian F satisfy (F̂1)− (F̂4). Then u ∈W 1,p(Ω) is a solution to the

obstacle problem (IV.2)–(IV.3) if and only if u ∈ Kψ(Ω) solves the variational inequality∫
Ω
〈A(x,Du), D(ϕ− u)〉 dx ≥ 0 for all ϕ ∈ Kψ(Ω), (9.1)

where we set

A(x, ξ) := DξF (x, ξ) .

Before proving the above statement, we point out that from conditions (F̂1) − (F̂4) we deduce the

existence of positive constants ν, L, ` such that in terms of A the p-ellipticity and p-growth conditions

read

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ ν |ξ − η|2(µ2 + |ξ|2 + |η|2)
p−2
2 (A1)

|A(x, ξ)−A(x, η)| ≤ L |ξ − η|(µ2 + |ξ|2 + |η|2)
p−2
2 (A2)

|A(x, ξ)| ≤ ` (µ2 + |ξ|2)
p−1
2 (A3)

|DxA(x, ξ)| ≤ k(x) (µ2 + |Du|2)
p−1
2 (Ã4)

for a.e. x ∈ Ω and every ξ, η ∈ Rn.

Proof. Let us prove the two implications separately.
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1. (IV.2)–(IV.3) ⇒ (9.1)

Let u ∈W 1,p(Ω) be a solution to (IV.2)–(IV.3) under the assumptions (F̂1)−(F̂4). Let ϕ ∈ Kψ(Ω).

Since the set Kψ(Ω) is convex, also the combination (1 − ε)u + εϕ = u + ε(ϕ − u), 0 ≤ ε ≤ 1,

belongs to this set. Then, being u a minimizer, it holds

0 ≤
∫

Ω

(
F (x,D(u+ ε(ϕ− u)))− F (x,Du)

)
dx.

Therefore, we have

0 ≤ ε
∫

Ω

∫ 1

0
〈DξF (x,Du+ s εD(ϕ− u)), D(ϕ− u)〉 dsdx

= ε

∫
Ω
〈DξF (x,Du), D(ϕ− u)〉 dsdx

+ ε

∫
Ω

∫ 1

0
〈DξF (x,Du+ s εD(ϕ− u))−DξF (x,Du), D(ϕ− u)〉 dsdx

= ε

∫
Ω
〈DξF (x,Du), D(ϕ− u)〉 dsdx

+ ε2

∫
Ω

∫ 1

0
s

∫ 1

0
〈DξξF (x,Du+ ts εD(ϕ− u))D(ϕ− u), D(ϕ− u)〉 dt dsdx.

Dividing both sides of the previous inequality by ε we obtain

0 ≤
∫

Ω
〈DξF (x,Du), D(ϕ− u)〉 ds dx

+ ε

∫
Ω

∫ 1

0
s

∫ 1

0
〈DξξF (x,Du+ ts εD(ϕ− u))D(ϕ− u), D(ϕ− u)〉 dt ds dx

=: I1 + I2. (9.2)

We focus on the term I2. Note that by (F3) with q = p and by Hölder’s inequality with conjugate

exponents p/(p− 2), p/2

I2 ≤ ε
∫

Ω

∫ 1

0
s

∫ 1

0
|DξξF (x,Du+ ts εD(ϕ− u))||D(ϕ− u)|2 dtds dx

≤ ε
∫

Ω

∫ 1

0
s

∫ 1

0
L̃
(
µ2 + |Du+ ts εD(ϕ− u)|2

) p−2
2 |D(ϕ− u)|2 dt ds dx

≤ εL̃
∫

Ω

(
µ2 + |Du|2 + ε2|D(ϕ− u)|2

) p−2
2 |D(ϕ− u)|2 dx

≤ εL̃

((∫
Ω
|Du|p dx

) p−2
2
(∫

Ω
|D(ϕ− u)|p dx

) 2
p

+

∫
Ω

(1 + |D(ϕ− u)|p) dx

)
.

Since the above integrals are finite, we infer that limε→0 I2 = 0. Hence passing to the limit as

ε→ 0 in (9.2) yields (9.1).

2. (9.1) ⇒ (IV.2)–(IV.3)

This implication is straightforward, and does not depend on the growth hypotheses. Indeed,

defining

j(ε) :=

∫
Ω
F (x,D(u+ ε(ϕ− u))) dx,
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condition (9.1) is essentially saying that j′(0) ≥ 0 for every ϕ ∈ Kψ(Ω). This means that there

exists a sufficiently small neighborhood in which u is a minimum for
∫

Ω F (x,Dw) dx.

Remark 9.2. We obtain a variational inequality instead of the usual Euler-Lagrange equation since

we can only take one-sided variations of the minimizer. However, this happens only in the contact

set, that is, the set defined as {x ∈ Ω : u(x) = ψ(x)}. If we are in a region where the minimizer u is

strictly above the obstacle, then we are allowed to take double-sided variations for sufficiently small ε.

As a result, (9.1) will turn into an equality, as in unconstrained problems. Indeed, this is reasonable.

If we take a minimizer u of an obstacle problem in the region of the domain where u is away from

the constraint, then it will not be influenced by the obstacle. The obstacle shapes the minimizer only

where u is forced to stay in contact with it.

Dealing with nonstandard growth, the equivalence between the two formulations is not guaranteed

if the functional F is not regular enough. Actually, already for non constrained problems with non-

standard growth conditions, the relation between minima and extremals (i. e. solutions of the corre-

sponding Euler-Lagrange system) is an issue that requires a careful investigation (see e. g. [30, 31]).

More precisely, looking at the proof of Proposition 9.1, we see that in case of nonstandard growth

conditions the summand labeled I2 may be unbounded. However, once we have gained more regularity

by means of our higher differentiability result, we will show in Remark 9.11 that our hypotheses (in

particular the closeness condition between the growth and the ellipticity exponents) still allow us to

reformulate the minimization problem as a variational inequality, provided we consider a new class

Knew
ψ (Ω).

We are now in the position of briefly commenting on the higher differentiability for the obstacle

problem with standard growth, which can be considered in the formulation (9.1), (A1) − (Ã4). It

is usually observed that the regularity of its solutions is strictly connected to the analysis of the

regularity of solutions to partial differential equations of the form

divA(x,Du) = divA(x,Dψ).

It is well known that no extra differentiability properties for the solutions of partial differential equa-

tions of the type

divA(x,Du) = div G (9.3)

can be expected even if G is smooth, unless some assumption is given on the x-dependence of A. On

the other hand, recent results concerning the higher differentiability of solutions to (9.3) show that

the weak differentiability of the map A, as function of the x-variable, is a sufficient condition (see
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[79, 80, 120, 121, 123]). In [79, 120, 121] the higher differentiability of solutions to the equation in

(9.3) is obtained assuming a W 1,n-type regularity on the partial map x → A(x, ξ) that is expressed

through a pointwise condition on A(·, ξ). This condition relies on the characterization of the Sobolev

spaces due to P. Haj lasz ([83]). More precisely, for Carathéodory functions A satisfying assumptions

(A1)− (A3) we reformulate (Ã4) assuming that there exists a non negative function κ depending on

k and with its same summability such that the following inequality

|A(x, ξ)−A(y, ξ)| ≤ (κ(x) + κ(y))|x− y|(µ2 + |ξ|2)
p−1
2 (A4)

holds true for a.e. x, y ∈ Ω and for every ξ ∈ Rn.

In case of standard growth conditions, the differentiability of the map is sufficient also in the context

of obstacle problems to prove that the differentiability of the gradient of the obstacle transfers to the

gradient of the solution with no loss in the order. More precisely, the following higher differentiability

result from [56, Theorem 1.1] holds.

Theorem 9.3. Let u ∈ Kψ(Ω) be the solution to the obstacle problem (9.1), and suppose that A

satisfies (A1)− (A4) for 2 ≤ p < n and for a function κ ∈ Lnloc(Ω). Then we have

Dψ ∈W 1,p
loc (Ω) ⇒ (µ2 + |Du|2)

p−2
4 Du ∈W 1,2

loc (Ω).

Note that, thanks to (8.2) and (8.4), the above theorem essentially states that Du ∈ W 1,p
loc (Ω). Thus

it effectively represents a higher differentiability result.

Remark 9.4. The reader has certainly noticed that Theorem 9.3 does not take into account the

case 1 < p < 2, namely, the case of sub-quadratic growth conditions. Already for unconstrained

problems it is known that the sub-quadratic growth conditions require specific tools and, in general,

the expected regularity of the solution strongly differs from the case p ≥ 2 (for a detailed explanation

of this phenomenon see [8]). A higher differentiability result for the obstacle problem with p-growth,

1 < p < 2, was recently proved in [77], thus it was not available when we started to investigate the

higher differentiability for the obstacle problem with nonstandard growth. For this reason, in Section

9.2 we will limit ourselves to the case p ≥ 2. The (p, q)-growth case with 1 < p < 2 will be the object

of further studies.

Starting from these facts, our purpose is to investigate the extra integer differentiability of solutions to

the obstacle problem for nonuniformly elliptic functionals, assuming that the gradient of the obstacle

has some differentiability property. This will be done in the next two sections. More precisely, Section

9.2 is devoted to the nonstandard case with p ≥ 2, whereas Section 9.3 deals with the nearly-linear

one, which essentially corresponds to the choice p = 1.
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9.2 The case of nonstandard growth conditions

An important contribution to the study of problems in the field of Calculus of Variations involving

functionals with nonstandard growth was given by P. Marcellini in his seminal papers [109–112]. He

was able to show that the standard growth condition is not actually a necessary condition in the

regularity theory for minimizers, and regularity theorems can be obtained also under nonstandard

growth assumptions. More precisely, the regularity can only be expected if the difference between the

growth exponents p and q is not “too large”, that is, the q/p gap ratio cannot differ too much from

1. A huge number of papers have been devoted to the subject since then (see [29, 36, 53–55] for the

elliptic case and [15–17, 113] for the parabolic case), and it turned out that the right condition to

impose on the two exponents 1 < p < q is of the form

q

p
< 1 +

1

n
− 1

r
(9.4)

with r > n.

Our purpose consists in extending the analysis of the regularity to the case of the obstacle problem

(IV.2)–(IV.3), investigating the higher differentiability of the solutions. To this aim we require the

data of our problem to fulfill the following hypotheses.

Hypothesis 9.5. Let Ω ⊂ Rn be a bounded open domain. For the Lagrangian functional F :

Ω× Rn → [0,+∞) we shall assume that:

(i) it is a Carathéodory function, that is, F (·, ξ) measurable for every ξ ∈ Rn and F (x, ·) continuous

for a. e. x ∈ Ω;

(ii) ξ → F (x, ξ) is a strictly convex C2 function for a. e. x ∈ Ω;

(iii) there exists a function f̃ : Ω× [0,+∞)→ [0,+∞) such that F (x, ξ) = f̃(x, |ξ|);

(iv) there exist positive constants ν̃, L̃, ˜̀ and exponents 2 ≤ p < q <∞ such that

1
˜̀

(
|ξ|p − µ2

)
≤ F (x, ξ) ≤ ˜̀

(
µ2 + |ξ|q

)
(F1)

〈DξξF (x, ξ)λ, λ〉 ≥ ν̃ (µ2 + |ξ|2)
p−2
2 |λ|2 (F2)

|DξξF (x, ξ)| ≤ L̃ (µ2 + |ξ|2)
q−2
2 (F3)

for a.e. x ∈ Ω and every ξ ∈ Rn. We assume moreover that there exists a nonnegative function

k(x) belonging to a suitable Sobolev space such that

|DξxF (x, ξ)| ≤ k(x) (µ2 + |ξ|2)
q−1
2 (F4)

for a.e. x ∈ Ω and every ξ ∈ Rn. We denote with µ ∈ [0,1] a parameter that will allow us to

consider in our analysis both the degenerate and the nondegenerate situation.
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Finally, to avoid trivialities, we shall assume that the set of admissible functions Kψ(Ω) is not empty

and that u0 in (IV.3) is such that F (x,Du0(x)) ∈ L1
loc(Ω). Note that, as long as our regularity results

have local nature, we are not requiring further assumptions on the boundary datum u0.

Remark 9.6. Hypothesis 9.5 (iii), known in the literature as Uhlenbeck structure, makes the functional

“less anisotropic”. For example, in the vectorial case (that is, when the Lagrangian F is such that

F : Ω× RnN → [0,+∞) for some N > 1) it rules out singularities of minima. In the case of systems

an important problem is clearly the one of identifying classes of functionals for which everywhere C1,α

(or even just continuity) of minimizers occurs, in analogy with the De Giorgi-Nash-Moser theorem for

single equations. Indeed, in 1968 E. De Giorgi showed that this result cannot be extended to systems,

providing a famous counterexample (see [39]). Hence it is crucial to find conditions for everywhere

regularity of minimizers or, in other words, additional structure assumptions on the integrand F under

which the singular set is void. This is still an open problem and, up to now, the only known structure

preventing the formation of singularities for minimizers is the Uhlenbeck one (see [128]).

However, the above considerations do not affect our problem, since we are dealing with the scalar

case. Here we are interested in a secondary effect of the Uhlenbeck structure, which is of fundamen-

tal importance in the framework of nonstandard growth conditions, both in the scalar and in the

vector case. Indeed, if the functional satisfies the above structure condition, then we are allowed to

approximate it from below by means of a family of functionals with p-growth (see Lemma 9.10). This

rules out the occurrence of the so-called Lavrentiev phenomenon, which nonautonomous functionals

typically exhibit when under (p, q)-growth conditions. Indeed, in this framework there might occur

an inequality of the type

inf
u∈u0+W 1,p

0 (Ω)

∫
Ω
F (x,Du) dx < inf

u∈u0+W 1,q
0 (Ω)

∫
Ω
F (x,Du) dx, (9.5)

for a suitable (even smooth) boundary datum u0. In other words, it is not possible to achieve the

minimum of the functional via more regular maps, although these are dense. This is a tautological

obstruction to regularity of minima since it prevents minimizers to be in W 1,q, and several coun-

terexamples in regularity are based on the occurrence of (9.5) (see e. g. [58, 135]). It is interesting

and significant to see that F never exhibits the Lavrentiev phenomenon either when p = q or when

F (x, ξ) = F (ξ), see again [58].

A useful way to quantify the Lavrentiev phenomenon can be introduced according to [25] by consid-

ering the relaxed functional

F(u,B) := inf
uj

{
lim inf

j
F(uj , B) :=

∫
B
F (x,Duj) dx : uj ∈W 1,q(B), uj ⇀ u in W 1,p(B)

}
where B b Ω. Since F (x, z) is convex with respect to z, we have

F(u,B) :=

∫
B
F (x,Du) dx ≤ lim inf

j
F(uj , B)
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whenever uj ⇀ u and vj ∈ W 1,p(B). Therefore F(u,B) ≤ F(u,B), and it is possible to define the

following nonnegative Lavrentiev gap functional

L(u,B) := F(u,B)−F(u,B) ≥ 0 for all u ∈W 1,p(B).

The value of the functional L(u,B) gives a measure of the impossibility of finding a sequence of more

regular maps uj ∈W 1,q(B) such that uj ⇀ u in W 1,p(B) and
∫
B F (x,Duj) dx→

∫
B F (x,Du) dx (see

Lemma 9.15). Hence, in general, approximating the functional from above does not guarantee the

convergence to the desired minimizer, but it could result in the convergence to the minimum of the

relaxed functional.

This leads to the following developments: usually one assumes that L(u,B) ≡ 0 (and this is the case

of Section 9.3) or, alternatively, some structure conditions must be imposed on the integrand in order

to perform an approximation from below.

Remark 9.7. Conditions (F2) − (F3) are nothing but a uniform (with respect to x) boundedness

condition on the eigenvalues of DξξF (x, ξ). In other words, we are asking that there exist two functions

γ(ξ), Γ(ξ) : Rn → [0,+∞) such that

γ(ξ)|λ|2 ≤ 〈DξξF (x, ξ)λ, λ〉 ≤ Γ(ξ)|λ|2,

and since in (F1) we asked for p, q-growth conditions then γ(ξ) = γ|ξ|p−2 and Γ(ξ) = Γ|ξ|q−2 for

some positive constants γ, Γ. Furthermore, since we want to consider both the degenerate and the

nondegenerate situation, we replace ξ by
√
µ2 + |ξ|2 in both functions. Then the condition on the

eigenvalues becomes

γ (µ2 + |ξ|2)
p−2
2 |λ|2 ≤ 〈DξξF (x, ξ)λ, λ〉 ≤ Γ (µ2 + |ξ|2)

q−2
2 |λ|2,

which is just a different formulation of (F2) − (F3). This leads us to the definition of the rate of

nonuniform ellipticity, quantified by the ratio

R(ξ,B) :=
supx∈B of the highest eigenvalue of DξξF (x, ξ)

infx∈B of the lowest eigenvalue of DξξF (x, ξ)

on any ball B ⊂ Ω, that in the nonuniformly elliptic case becomes unbounded as |ξ| → ∞. In the case

of the double-phase functional (IV.1) it is R(ξ,B) ≈ 1 + ‖a‖L∞(B)|z|q−p on any ball B intersecting

the set {a(x) = 0}.

If Hypothesis 9.5 holds, then the obstacle problem (IV.2)–(IV.3) has a unique solution. This can be

proved by using standard existence results like, e.g., [37, Theorem 3.30] together with the fact that

the admissible set Kψ(Ω) is closed. In particular, the requirement that the functional
∫

Ω F (x,Dw) dx
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9.2 – The case of nonstandard growth conditions

is finite at some point is essential in order to rule out the possibility that the infimum is infinite. In

case of standard growth conditions, this is automatically ensured by the p-growth of the functional.

The main result of this section is the following theorem from [71].

Theorem 9.8. Let u be the solution to the obstacle problem (IV.2)–(IV.3). Suppose that F satisfies

Hypothesis 9.5 for exponents 2 ≤ p < n, p < q, r > n as in (9.4) and for a function k ∈ Lrloc(Ω).

Then it holds

Dψ ∈W 1,2q−p
loc (Ω) ⇒ (µ2 + |Du|2)

p−2
4 Du ∈W 1,2

loc (Ω) . (9.6)

Contrary to the standard case, here the W 1,r-type regularity on the partial map x → Fξ(x, ξ) no

longer allows the differentiability of the gradient of the obstacle to entirely transfer to the gradient

of the solution, and there is a loss in the order of differentiability. However the exponent r plays an

important role in determining the distance between p and q (which must be “small”), so that this loss

turns out to be not “too big”.

Remark 9.9. Inequality (9.4) yields the sharp estimate

(2q − p)r
r − 2

<
np

n− 2
, (9.7)

which will be frequently used in the sequel. Indeed, setting m := r
r−2 , 2∗ := 2n

n−2 , (9.4) entails

2q − p < 2p

(
1 +

1

n
− 1

r

)
− p = p

(
1 +

1

m
− 2

2∗

)
so that

(2q − p)r
r − 2

= (2q − p)m < pm

(
1 +

1

m
− 2

2∗

)
.

It turns out that

pm

(
1 +

1

m
− 2

2∗

)
≤ np

n− 2
=

2∗

2
p ⇔ 1 +

1

m
− 2

2∗
≤ 2∗

2m
⇔ 1 +

1

m
− 2

2∗
− 2∗

2m
≤ 0.

Note now that 2∗

2m > 1 since r > n, hence we can write

2∗

2m
= 1 + ε

for some ε > 0. Therefore

1 +
1

m
− 2

2∗
− 2∗

2m
= 1 +

2

2∗
(1 + ε)− 2

2∗
− 1− ε =

(
2

2∗
− 1

)
ε ≤ 0,

which is what we wanted to prove.
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9.2.1 Proof of the main result

We are now going to prove Theorem 9.8. In the first part of the proof we construct an approximating

minimization problem satisfying standard growth conditions. This problems will then be suitable for

the application of Theorem 9.3, whose conclusion will become the starting point for deriving a priori

estimates for the solution to the approximating problems. Then in the second part we conclude by

showing that the a priori estimate is preserved in passing to the limit.

Step 1: Approximation and derivation of estimates

We start our proof by constructing a suitable approximating minimization problem. The main tool

is the following lemma, which can be found in [35, Lemma 4.1].

Lemma 9.10. Let F : Ω × Rn → [0,+∞) be a Carathéodory function, convex with respect to ξ,

such that F (x, ξ) = f̃(x, |ξ|) for some f̃ : Ω × [0,+∞) → [0,+∞), and which satisfies assumptions

(F1) − (F4). Then there exists a sequence (Fε) of Carathéodory functions Fε : Ω × Rn → [0,+∞),

convex with respect to ξ and monotonically convergent to F , such that

(I) for a.e. x ∈ Ω, for every ξ ∈ Rn and for every ε1 < ε2, it holds

Fε1(x, ξ) ≤ Fε2(x, ξ) ≤ F (x, ξ),

(II) for a.e. x ∈ Ω and every ξ ∈ Rn, we have

〈DξξFε(x, ξ)λ, λ〉 ≥ ν̄ (µ2 + |ξ|2)
p−2
2 |λ|2

with ν depending only on p and ν̃,

(III) for a.e. x ∈ Ω and for every ξ ∈ Rn, there exist K0,K1 independent of ε and K1 depending on

ε such that

K0(|ξ|p − µ2) ≤ Fε(x, ξ) ≤ K1(µ2 + |ξ|)q,

Fε(x, ξ) ≤ K1(ε) (µ2 + |ξ|)p,

(IV) for a.e. x ∈ Ω and for every ξ ∈ Rn, there exists a constant C(ε) > 0 such that

|DξxFε(x, ξ)| ≤ k(x) (µ2 + |ξ|2)
q−1
2 ,

|DξxFε(x, ξ)| ≤ C(ε) k(x) (µ2 + |ξ|2)
p−1
2 .

In addition, it holds Fε(x, ξ) = f̃ε(x, |ξ|) for every ξ ∈ Rn.
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9.2 – The case of nonstandard growth conditions

In other words, the Lagrangian F can be approximated by means of a sequence of Carathéodory

functionals Fε monotonically convergent to F , and satisfying nonstandard growth conditions with

constants independent of ε and standard growth conditions with constants all depending on ε.

Let us consider the sequence of functionals Fε(x, ξ) obtained applying Lemma 9.10 to the integrand

F (x, ξ) of problem (IV.2)–(IV.3), and fix a ball BR b Ω. Let uε ∈ u + W 1,p
0 (BR) be the solution to

the obstacle problem

min

{∫
Ω
Fε(x,Dz) : z ∈ Kψ(Ω)

}
. (9.8)

Setting

Aε(x, ξ) = DξFε(x, ξ),

by Proposition 9.1 we infer that uε solves the variational inequality∫
Ω
〈Aε(x,Duε), D(ϕ− uε)〉dx ≥ 0 for all ϕ ∈ Kψ(Ω). (9.9)

Moreover the Carathéodory function Aε is such that for a.e. x, y ∈ Ω and every ξ, η ∈ Rn the following

conditions hold

〈Aε(x, ξ)−Aε(x, η), ξ − η〉 ≥ ν |ξ − η|2(µ2 + |ξ|2 + |η|2)
p−2
2 (Aε1)

|Aε(x, ξ)−Aε(x, η)| ≤ 2L |ξ − η|(µ2 + |ξ|2 + |η|2)
q−2
2 (Aε2)

|Aε(x, ξ)| ≤ 2` (µ2 + |ξ|2)
q−1
2 (Aε3)

|Aε(x, ξ)−Aε(y, ξ)| ≤ (κ(x) + κ(y)) |x− y|(µ2 + |ξ|2)
q−1
2 (Aε4)

with constants independent of ε, and also

|Aε(x, ξ)−Aε(x, η)| ≤ L̃ε |ξ − η|(µ2 + |ξ|2 + |η|2)
p−2
2 (Hε1)

|Aε(x, ξ)| ≤ ˜̀
ε (µ2 + |ξ|2)

p−1
2 (Hε2)

|Aε(x, ξ)−Aε(y, ξ)| ≤ C(ε) (κ(x) + κ(y)) |x− y|(µ2 + |ξ|2)
p−1
2 (Hε3)

with constants all depending on ε.

Before we start with the derivation of estimates, observe that, since 2q − p > p, we have

Dψ ∈W 1,2q−p
loc (Ω) ⇒ Dψ ∈W 1,p

loc (Ω).

Thus, by virtue of (Aε1), (Hε1) − (Hε3) and since r > n, all the hypotheses of Theorem 9.3 are

satisfied. We then get, according to the notation introduced in (8.2),

Vp(Duε) = (µ2 + |Duε|2)
p−2
4 Duε ∈W 1,2

loc (Ω)
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9 – Higher differentiability for the obstacle problem

from which we deduce, applying Lemma 8.3 with p = 2, F = Vp(Duε) together with inequality (8.4),

Duε ∈ L
np
n−2

loc (Ω).

Thus the integral ∫
BR

(1 + |Duε(x)|)
np
n−2 dx,

which will frequently appear in the sequel, is finite. In particular by the Sobolev embedding we obtain

uε ∈W
1, np
n−2

loc (Ω).

Now let us fix radii 0 < R
8 < ρ < s < t < t′ < R

4 and a cut off function η ∈ C∞0 (Bt) such that

0 ≤ η ≤ 1, η = 1 on Bs, |∇η| ≤ C
t−s . Consider the function

ϕ(x) = uε(x)− λ

h2
τ−h
(
η2(x) τh(uε − ψ)(x)

)
with τh defined in Subsection 8.1. Observe that, for λ > 0 sufficiently small, ϕ is an admissible test

function in the variational inequality (9.9), that is, ϕ ∈ Kψ(Ω). Indeed

ϕ(x)− ψ(x) = (uε − ψ)(x)− λ

h2
τ−h
(
η2(x) τh(uε − ψ)(x)

)
= (uε − ψ)(x) +

λ

h2
η2(x)

(
(uε − ψ)(x+ h)− (uε − ψ)(x)

)
− λ

h2
η2(x− h)

(
(uε − ψ)(x)− (uε − ψ)(x− h)

)
= (uε − ψ)(x)

(
1− λ

h2
η2(x)− λ

h2
η2(x− h)

)
+

λ

h2

(
η2(x)(uε − ψ)(x+ h) + η2(x− h)(uε − ψ)(x− h)

)
≥ 0 ,

provided 0 < λ < h2

2 . Hence, using ϕ as test function in (9.9) we get, with the aid of Proposition 8.1,

∫
Ω
〈τh(Aε(x,Duε)), D(η2τh(uε − ψ))〉 dx ≤ 0.

Carrying out the computations, we get

∫
Ω

〈
Aε(x+ h,Duε(x+ h))−Aε(x,Duε(x)), D(η2τh(uε − ψ))

〉
dx

=

∫
Ω

〈
Aε(x+ h,Duε(x+ h))−Aε(x,Duε(x)), η2τh(Duε −Dψ)

〉
dx

+

∫
Ω

〈
Aε(x+ h,Duε(x+ h))−A(x,Duε(x)), 2η Dη τh(uε − ψ)

〉
dx ≤ 0.
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9.2 – The case of nonstandard growth conditions

We can rewrite the previous inequality as∫
Ω

〈
Aε(x+ h,Duε(x+ h))−Aε(x+ h,Duε(x)), η2τhDuε

〉
dx

−
∫

Ω

〈
Aε(x+ h,Duε(x+ h))−Aε(x+ h,Duε(x)), η2τhDψ

〉
dx

+

∫
Ω

〈
Aε(x+ h,Duε(x+ h))−Aε(x+ h,Duε(x)), 2η Dη τh(uε − ψ)

〉
dx

+

∫
Ω

〈
Aε(x+ h,Duε(x))−Aε(x,Duε(x)), η2τhDuε

〉
dx

−
∫

Ω

〈
Aε(x+ h,Duε(x))−Aε(x,Duε(x)), η2τhDψ

〉
dx

+

∫
Ω

〈
Aε(x+ h,Duε(x))−Aε(x,Duε(x)), 2η Dη τh(uε − ψ)

〉
dx

=: I + II + III + IV + V + V I ≤ 0,

which yields

I ≤ |II|+ |III|+ |IV |+ |V |+ |V I|. (9.10)

We now estimate each of the six summands. The ellipticity assumption expressed by (Aε1) implies

I ≥ ν
∫

Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx. (9.11)

By virtue of assumption (Aε2) and by Young’s and Hölder’s inequalities, we get

|II| ≤ 2L

∫
Ω
η2|τhDuε|(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

q−2
2 |τhDψ|dx

≤ ϑ
∫

Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ Cϑ(L)

∫
Ω
η2|τhDψ|2(1 + |Duε(x+ h)|2 + |Duε(x)|2)

2q−p−2
2 dx

≤ ϑ
∫

Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ Cϑ(L)

(∫
Bt

|τhDψ|2q−p dx

) 2
2q−p

(∫
Bt′

(1 + |Duε(x)|)2q−p dx

) 2q−p−2
2q−p

where we used also the properties of η, and with a constant ϑ that will be specified later. Note that

(9.7) implies

2q − p < (2q − p)r
r − 2

<
np

n− 2
. (9.12)

Hence, being Dψ ∈ L2q−p
loc (Ω) by hypothesis, we can use Lemma 8.2 together with Hölder’s inequality

to get

|II| ≤ ϑ
∫

Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ Cθ(n, p, q, L,R) |h|2
(∫

Bt′

|D2ψ|2q−p dx

) 2
2q−p

(∫
Bt′

(1 + |Duε(x)|)
np
n−2 dx

) (2q−p−2)(n−2)
np

,
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9 – Higher differentiability for the obstacle problem

and by Young’s inequality with conjugate exponents p
2+2p−2q and p

2q−p−2 (which are bigger than 1

thanks to (9.4)) also

|II| ≤ ϑ
∫

Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ Cθ,Θ(L,R) |h|2
(∫

Bt′

|D2ψ|2q−p dx

) p
(2q−p)(2+p−q)

+ Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

(9.13)

for some constant Θ = Θ(n, p, q, r), 0 < Θ < 1, that will be determined later. Arguing analogously,

we get

|III| ≤ 4L

∫
Ω
|τhDuε| |Dη| η (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

q−2
2 |τh(uε − ψ)| dx

≤ ϑ
∫

Ω
η2|τhDuε|2 (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ Cϑ(L)

∫
Ω
|Dη|2(1 + |Duε(x+ h)|2 + |Duε(x)|2)

2q−p−2
2 |τh(uε − ψ)|2 dx

≤ ϑ
∫

Ω
η2|τhDuε|2 (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+
Cϑ(L)

(t− s)2

(∫
Bt′

(1 + |Duε(x)|)2q−p dx

) 2q−p−2
2q−p (∫

Bt

|τh(uε − ψ)|2q−p dx

) 2
2q−p

where we used the fact that |Dη| ≤ C
t−s . Since we already noticed that uε ∈W

1, np
n−2

loc (Ω) ↪→W 1,2q−p
loc (Ω),

we deduce D(uε − ψ) ∈ L2q−p
loc (Ω). Hence we may use the first estimate of Lemma 8.2 to control the

last integral on the right-hand side, obtaining

|III| ≤ ϑ
∫

Ω
η2|τhDuε|2 (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ |h|2Cϑ(n, p, q, L)

(t− s)2

(∫
Bt′

(1 + |Duε(x)|)2q−p dx

) 2q−p−2
2q−p

(∫
Bt′

|D(uε − ψ)|2q−p dx

) 2
2q−p

≤ ϑ
∫

Ω
η2|τhDuε|2 (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ |h|2 Cϑ(n, p, q, L)

(t− s)2

∫
Bt′

(1 + |Duε(x)|)2q−p dx

+ |h|2 Cϑ(n, p, q, L)

(t− s)2

∫
BR/2

|Dψ(x)|2q−p dx, (9.14)

where we used also Young’s inequality. Since (9.12) holds, we can use the interpolation inequality

‖Dv‖L2q−p(Ω′) ≤ ‖Dv‖δ0Lp(Ω′) ‖Dv‖
1−δ0
L
np
n−2 (Ω′)

∀Ω′ b Ω , (9.15)

where 0 < δ0 < 1 is defined through the condition

1

2q − p
=
δ0

p
+

(1− δ0)(n− 2)

np
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9.2 – The case of nonstandard growth conditions

which implies

δ0 =
p(n− 1)− q(n− 2)

2q − p
, 1− δ0 =

n(q − p)
2q − p

.

We get ∫
Bt′

(1 + |Duε(x)|)2q−p dx

≤

(∫
Bt′

(1 + |Duε(x)|)p dx

) δ0(2q−p)
p

(∫
Bt′

(1 + |Duε(x)|)
np
n−2 dx

) (q−p)(n−2)
p

.

(9.16)

Inserting (9.16) in (9.14) and using Young’s inequality which conjugate exponents p
p−n(q−p) and p

n(q−p)

(which are bigger than 1 thanks to (9.4)), we conclude that

|III| ≤ ϑ
∫

Ω
η2|τhDuε|2 (µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ |h|2
Cϑ,Θ(L)

(t− s)
2p

p−n(q−p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ0(2q−p)
p−n(q−p)

+ Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ |h|2 Cϑ(n, p, q, L)

(t− s)2

∫
BR/2

|Dψ(x)|2q−p dx

(9.17)

with Θ as above. In order to estimate the integral IV , we use assumption (Aε4), Young’s and Hölder’s

inequalities as follows

|IV | ≤ |h|
∫

Ω
η2(κ(x+ h) + κ(x))(µ2 + |Duε(x)|2)

q−1
2 |τhDuε| dx

≤ ϑ
∫

Ω
η2|τhDuε|2

(
µ2 + |Duε(x)|2 + |Duε(x+ h)|2

) p−2
2 dx

+ Cϑ |h|2
∫
Bt

(κ(x+ h) + κ(x))2(1 + |Duε(x)|2)
2q−p

2 dx

≤ ϑ
∫

Ω
η2|τhDuε|2

(
µ2 + |Duε(x)|2 + |Duε(x+ h)|2

) p−2
2 dx

+ Cϑ |h|2
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 2
r
(∫

Bt

(1 + |Duε(x)|)
r(2q−p)
r−2 dx

) r−2
r

, (9.18)

where we also used that suppη ⊂ Bt ⊂ BR. Since (9.7) holds, we can use the interpolation inequality

‖Dv‖
L

(2q−p)r
r−2 (Ω′)

≤ ‖Dv‖δLp(Ω′) ‖Dv‖
1−δ
L
np
n−2 (Ω′)

∀Ω′ b Ω ,

where 0 < δ < 1 is defined through the condition

r − 2

(2q − p)r
=
δ

p
+

(1− δ)(n− 2)

np

which implies

δ =
p(nr − n− r)− q(nr − 2r)

(2q − p)r
, 1− δ =

n(qr − pr + p)

(2q − p)r
.
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We get

(∫
Bt

(1 + |Duε(x)|)
(2q−p)r
r−2 dx

) r−2
r

≤
(∫

Bt

(1 + |Duε(x)|)p dx

) δ(2q−p)
p

(∫
Bt

(1 + |Duε(x)|)
np
n−2 dx

) (qr−pr+p)(n−2)
pr

.

(9.19)

Inserting (9.19) in (9.18), using the second inequality of Lemma 8.2 and Young’s inequality with

conjugate exponents pr
pr−n(qr−pr+p) and pr

n(qr−pr+p) (which are bigger than 1 thanks to (9.4))

|IV | ≤ ϑ
∫

Ω
η2|τhDuε|2

(
µ2 + |Duε(x)|2 + |Duε(x+ h)|2

) p−2
2 dx

+ Cϑ,Θ |h|2
(∫

BR/2

κr(x) dx

) 2p
pr−n(qr−pr+p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ(2q−p)r
pr−n(qr−pr+p)

+ Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

(9.20)

with Θ as above. Assumption (Aε4) also entails

|V | ≤ |h|
∫

Ω
η2(κ(x+ h) + κ(x))(µ2 + |Duε(x)|2)

q−1
2 |τhDψ|dx

≤ |h|
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 1
r

·
(∫

Bt

(1 + |Duε(x)|)
(q−1)(2q−p)r
(2q−p)(r−1)−r dx

) (2q−p)(r−1)−r
(2q−p)r

(∫
Bt

|τhDψ|2q−p dx

) 1
2q−p

≤ C(n, p, q) |h|2
(∫

BR/2

κr(x) dx

) 1
r

·
(∫

Bt

(1 + |Duε(x)|)
(q−1)(2q−p)r
(2q−p)(r−1)−r dx

) (2q−p)(r−1)−r
(2q−p)r

(∫
BR/2

|D2ψ|2q−p dx

) 1
2q−p

where we used Hölder’s inequality, the properties of η and Lemma 8.2 by virtue of the fact that

D2ψ ∈ L2q−p
loc (Ω) by hypothesis. On the other hand, our assumptions on p, q, r and (9.7) imply

(q − 1)(2q − p)r
(2q − p)(r − 1)− r

<
(2q − p)r
r − 2

<
np

n− 2
. (9.21)

Hence from Hölder’s inequality we obtain

|V | ≤ C(n, p, q) |h|2
(∫

BR/2

κr(x) dx

) 1
r (∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

) (q−1)(n−2)
np

·

(∫
BR/2

|D2ψ|2q−p dx

) 1
2q−p

,

and by Young’s inequality with conjugate exponents p
q−1 and p

1+p−q (which are bigger than 1 thanks
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to (9.4)) also

|V | ≤ CΘ(R) |h|2
(∫

BR/2

κr(x) dx

) p
(1+p−q)r

(∫
BR/2

|D2ψ|2q−p dx

) p
(1+p−q)(2q−p)

+ Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

(9.22)

with Θ as above. Finally, using assumption (Aε4) again and the properties of Dη we get

|V I| ≤ 2|h|
∫

Ω
η |Dη| (κ(x+ h) + κ(x)) (µ2 + |Duε(x)|2)

q−1
2 |τh(uε − ψ)|dx

≤ |h| C

(t− s)2

(∫
Bt

|τhuε|
qr
r−1 dx

) r−1
qr
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 1
r

·
(∫

Bt

(1 + |Duε(x)|)
qr
r−1 dx

) (r−1)(q−1)
qr

+ |h| C

(t− s)2

(∫
Bt

|τhψ|2q−p dx

) 1
2q−p

(∫
Bt

(κ(x+ h) + κ(x))r dx

) 1
r

·
(∫

Bt

(1 + |Duε(x)|)
(q−1)(2q−p)r
(2q−p)(r−1)−r dx

) (2q−p)(r−1)−r
(2q−p)r

=: V Ia + V Ib,

where we used also Hölder’s inequality. Let us focus on the term V Ia. Note that (9.7) implies

qr

r − 1
<

(2q − p)r
r − 1

<
(2q − p)r
r − 2

<
np

n− 2
. (9.23)

Since we already noticed that uε ∈W
1, np
n−2

loc (Ω), we can apply Lemma 8.2 obtaining

V Ia ≤ |h|2
C(n, q, r)

(t− s)2

(∫
Bt′

(1 + |Duε(x)|)
qr
r−1 dx

) r−1
r
(∫

BR/2

κr(x) dx

) 1
r

. (9.24)

Hence, owing again to (9.23), we can use the interpolation inequality

‖Dv‖
L

qr
r−1 (Ω′)

≤ ‖Dv‖δ′Lp(Ω′) ‖Dv‖
1−δ′

L
np
n−2 (Ω′)

∀Ω′ b Ω ,

where 0 < δ′ < 1 is defined through the condition

r − 1

qr
=
δ′

p
+

(1− δ′)(n− 2)

np

which implies

δ′ =
p(nr − n)− q(nr − 2r)

2qr
, 1− δ′ = n(qr − pr + p)

2qr
.

We get (∫
Bt′

(1 + |Duε(x)|)
qr
r−1 dx

) r−1
r

≤

(∫
Bt′

(1 + |Duε(x)|)p dx

) δ′q
p
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

) (n−2)(qr−pr+p)
2pr

.

(9.25)
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9 – Higher differentiability for the obstacle problem

Plugging (9.25) into (9.24) and using Young’s inequality with conjugate exponents 2pr
2pr−n(qr−pr+p) and

2pr
n(qr−pr+p) (which are bigger that 1 thanks to (9.4)) yields

V Ia ≤ |h|2
CΘ

(t− s)
4pr

2pr−n(qr−pr+p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ′2qr
2pr−n(qr−pr+p)

·

(∫
BR/2

κr(x) dx

) 2p
2pr−n(qr−pr+p)

+ Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

with Θ as above. Finally, concerning the term V Ib, since Dψ ∈ L2q−p
loc (Ω) we can apply Lemma 8.2

and then argue as we did to obtain (9.22), getting

V Ib ≤ |h|2
CΘ(R)

(t− s)
2p

1+p−q

(∫
BR/2

|Dψ(x)|2q−p dx

) p
(1+p−q)(2q−p)

(∫
BR/2

κr(x) dx

) p
(1+p−q)r

+ Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

with Θ as above. Summarizing the above computations we come to

|V I| ≤ |h|2 CΘ

(t− s)
4pr

2pr−n(qr−pr+p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ′2qr
2pr−n(qr−pr+p)

·

(∫
BR/2

κr(x) dx

) 2p
2pr−n(qr−pr+p)

+ |h|2 CΘ(R)

(t− s)
2p

1+p−q

(∫
BR/2

|Dψ(x)|2q−p dx

) p
(1+p−q)(2q−p)

(∫
BR/2

κr(x) dx

) p
(1+p−q)r

+ Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

.

(9.26)
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Inserting estimates (9.11), (9.13), (9.17), (9.20), (9.22) and (9.26) in (9.10), we infer

ν

∫
Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

≤ 3ϑ

∫
Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ 2Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ Cθ,Θ(L,R) |h|2
(∫

Bt′

|D2ψ|2q−p dx

) p
(2q−p)(2+p−q)

+ |h|2
Cϑ,Θ(L)

(t− s)
2p

p−n(q−p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ0(2q−p)
p−n(q−p)

+ |h|2 Cϑ(n, p, q, L)

(t− s)2

∫
BR/2

|Dψ(x)|2q−p dx

+ Cϑ,Θ |h|2
(∫

BR/2

κr(x) dx

) 2p
pr−n(qr−pr+p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ(2q−p)r
pr−n(qr−pr+p)

+ CΘ(R) |h|2
(∫

BR/2

κr(x) dx

) p
(1+p−q)r

(∫
BR/2

|D2ψ|2q−p dx

) p
(1+p−q)(2q−p)

+ |h|2 CΘ

(t− s)
4pr

2pr−n(qr−pr+p)

(∫
BR/2

(1 + |Duε(x)|)p dx

) δ′2qr
2pr−n(qr−pr+p)

(∫
BR/2

κr(x) dx

) 2p
2pr−n(qr−pr+p)

=: 3ϑ

∫
Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

+ 2Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ |h|2A+ |h|2 B

(t− s)2
+ |h|2 C1

(t− s)γ1
+ |h|2 C2

(t− s)γ2
+ |h|2 C3

(t− s)γ3
.

Choosing ϑ = ν
6 , we can reabsorb the first integral on the right-hand side of previous estimate by the

left-hand side thus getting

ν

2

∫
Ω
η2|τhDuε|2(µ2 + |Duε(x+ h)|2 + |Duε(x)|2)

p−2
2 dx

≤ 2Θ |h|2
(∫

Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ |h|2A+ |h|2 B

(t− s)2
+ |h|2 C1

(t− s)γ1
+ |h|2 C2

(t− s)γ2
+ |h|2 C3

(t− s)γ3
.

(9.27)

Using Lemma 8.5 on the left-hand side of the previous estimate and recalling that η ≡ 1 on Bs we get

ν

2c

∫
Bs

|τhVp(Duε)|2 dx

≤

(
2Θ

(∫
Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ 3Θ

(∫
Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+A+
B

(t− s)2
+

C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3

)
|h|2 ,
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9 – Higher differentiability for the obstacle problem

and from Lemma 8.3 and inequality (8.4) also∫
Bs

|Duε(x)|
np
n−2 dx

≤ 2Θ

(∫
Bt

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+ 3Θ

(∫
Bt′

(1 + |Duε(x)|)
np
n−2 dx

)n−2
n

+A+
B

(t− s)2
+

C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3
.

Setting

φ(r) =

(∫
Br

|Duε(x)|
np
n−2 dx

)n−2
n

and possibly redefining the constants, we can rewrite the previous inequality as

φ(s) ≤ 2Θφ(t) + 3Θφ(t′) +A+
B

(t− s)2
+

C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3
.

Notice that we can choose Θ small enough to satisfy Θ < 1/3 < 1/2. Thus we can apply Lemma 8.6

obtaining

φ(ρ) ≤ c
(

2Θφ(t′) +A+
B

(t′ − ρ)2
+

C1

(t′ − ρ)γ1
+

C2

(t′ − ρ)γ2
+

C3

(t′ − ρ)γ3

)
for some c = c (Θ, γ1, γ2, γ3). But then, applying Lemma 8.6 one more time we get

φ

(
R

8

)
≤ c̃

(
A+

B

R2
+

C1

Rγ1
+

C2

Rγ2
+

C3

Rγ3

)
with c̃ = c̃ (Θ, γ1, γ2, γ3). Then, using again Lemma 8.3 with p = 2, F = Vp(Duε) on the left-hand

side of (9.27), by the arbitrariness of the ball BR/8 and our regularity hypothesis on the obstacle we

infer the a priori estimate∫
BR/8

|D (Vp(Duε(x))) |2 dx ≤ C

(∫
BR/2

(1 + |Duε(x)|)p dx

)β
(9.28)

with C = C(n, p, q, r, ν, L,R) and

β = max

{
δ0(2q − p)
p− n(q − p)

,
δ(2q − p)r

pr − n(qr − pr + p)
,

δ′2qr

2pr − n(qr − pr + p)

}
.

Step 2: Passage to the limit

Now we conclude the proof by passing to the limit in the approximating problem. The limit procedure

is standard (see e. g. [35]). By the growth conditions at (III) of Lemma 9.10 and the minimality of

uε for Fε we get ∫
BR

|Duε(x)|p dx ≤ C(K0)

∫
BR

Fε(x,Duε(x)) dx

≤ C(K0)

∫
BR

Fε(x,Du(x)) dx

≤ C(K0)

∫
BR

F (x,Du(x)) dx,
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9.2 – The case of nonstandard growth conditions

where in the last inequality we used also (I) of Lemma 9.10. Since F (x,Du0(x)) ∈ L1
loc(Ω) by assump-

tion, by the minimality of u for F we deduce also F (x,Du) ∈ L1
loc(Ω). Then, up to subsequences,

there exists ū ∈ u+W 1,p
0 (BR) such that

uε → ū weakly in u+W 1,p
0 (BR).

Our next step is to show that ū is a solution to our obstacle problem over the ball BR, that is, it

minimizes the functional
∫

Ω F (x,Dw) dx in u+W 1,p
0 (BR). To this aim fix ε0 and observe that, by (I)

in Lemma 9.10, it holds∫
BR

Fε0(x,Duε(x)) dx ≤
∫
BR

Fε(x,Duε(x)) dx ≤
∫
BR

F (x,Duε(x)) dx (9.29)

for ε > ε0. By the lower semicontinuity of the functional v →
∫
BR

Fε0(x,Dv(x)) dx on W 1,p, estimate

(9.29) and again the minimality of uε it follows∫
BR

Fε0(x,Dū) dx ≤ lim inf
ε→0

∫
BR

Fε0(x,Duε) dx ≤
∫
BR

F (x,Du) dx.

Again by (I) in Lemma 9.10, we can use the Monotone Convergence Theorem on the left-hand side

of the previous estimate to deduce∫
BR

F (x,Dū) dx = lim
ε0→0

∫
BR

Fε0(x,Dū) dx ≤
∫
BR

F (x,Du) dx.

Note also that, since uε ∈ Kψ(Ω) for every ε and Kψ(Ω) is a closed set, we have ū ∈ Kψ(Ω). We have

then proved that the limit function ū is a solution to the minimization problem

min

{∫
Ω
F (x,Dw) dx : w ∈ u+W 1,p

0 (BR), w ∈ Kψ(Ω)

}
.

It only remains to show that the minimizer has the regularity stated in Theorem 9.8. First of all, note

that the strict convexity of F yields ū = u. From estimate (9.28) and by compact embedding we infer

Vp(Duε)→ v weakly in W 1,2
loc (Ω),

Vp(Duε)→ v strongly in L2
loc(Ω),

from which we deduce, together with inequality (8.2),

Duε → w̄ strongly in Lploc(Ω).

We thus have the strong convergence

uε → ū = u strongly in u+W 1,p
0 (BR).

Hence we can pass to the limit in estimate (9.28) and conclude that Vp(Du) ∈W 1,2
loc (Ω), which is the

claim of Theorem 9.8.
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9 – Higher differentiability for the obstacle problem

Remark 9.11. As already mentioned, now that we have gained some extra regularity for the solution

of the obstacle problem (IV.2), we can reformulate it as a variational inequality in the spirit of

Proposition 9.1, provided we consider a new class Knew
ψ (Ω).

Let u ∈ Kψ(Ω) be a solution to (IV.2) under Hypothesis 9.5. Let ϕ ∈ Kψ(Ω). Looking at the proof of

Proposition 9.1, we see that the growth conditions came into play only when we proved that I2 was

finite. Now, by (F3),

I2 ≤ ε
∫

Ω

∫ 1

0
s

∫ 1

0
|DξξF (x,Du+ ts εD(ϕ− u))||D(ϕ− u)|2 dtds dx

≤ ε
∫

Ω

∫ 1

0
s

∫ 1

0
L̃
(
µ2 + |Du+ ts εD(ϕ− u)|2

) q−2
2 |D(ϕ− u)|2 dt dsdx

≤ εL̃
∫

Ω

(
µ2 + |Du|2 + ε2|D(ϕ− u)|2

) q−2
2 |D(ϕ− u)|2 dx.

Note that the sharp inequality (9.7) coming from condition (9.4) entails

q <
(2q − p)r
r − 2

<
np

n− 2
< p∗ ,

hence by Theorem 9.8 and the Sobolev embedding we have that

Du ∈ Lp
∗

loc(Ω) ↪→ Lqloc(Ω).

Thus, arguing as in the proof of Proposition 9.1 and letting ε→ 0 we see that∫
Ω
〈A(x,Du), D(ϕ− u)〉 dx ≥ 0 for all ϕ ∈ Knew

ψ (Ω),

where

Knew
ψ (Ω) :=

{
w ∈ u0 +W 1,q

0 (Ω) : w ≥ ψ a.e. in Ω
}

with u0 ∈W 1,q(Ω) fixed boundary value.

9.2.2 A second higher differentiability result

In this section we report and briefly comment the achievements from [72], where we proved that the

higher differentiability result remains true also under the hypothesis Dψ ∈ W 1,r
loc (Ω). The statement

is the following.

Theorem 9.12. Let u ∈ Kψ(Ω) be the solution to the obstacle problem (IV.2). Suppose that F satisfies

Hypothesis 9.5 for exponents 2 ≤ p < n, p < q, r > n as in (9.4) and for a function κ ∈ Lrloc(Ω).

Then it holds

Dψ ∈W 1,r
loc (Ω) ⇒ (µ2 + |Du|2)

p−2
4 Du ∈W 1,2

loc (Ω) . (9.30)
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9.3 – The case of nearly-linear growth conditions

We are not going to give the proof of this result, since it exploits the same techniques we have already

seen in the previous section.

It is worth noting that if q < n then Theorem 9.12 ends up to be a consequence of Theorem 9.8, since

in this case 2q − p < r. Indeed (9.4) is equivalent to

r >
1

1 +
1

n
− q

p

.

If we are able to show that

2q − p < 1

1 +
1

n
− q

p

,

then our result follows. We have

2q − p < 1

1 +
1

n
− q

p

⇔ 2q − p < np

np+ p− nq
⇔ pq + p(q − p) < np+ nq(q − p) + n(q − p)2

which holds true as long as p(q − p) < nq(q − p) and qp < np, since we are assuming q < n.

However, if nothing is assumed on the relationship between q and n, the previous turns out to be a

completely independent result.

9.3 The case of nearly-linear growth conditions

There are few results in the literature dealing with the case of nearly-linear growth conditions. We

mention the classical papers [67, 82] and the more recent [122] in the case of equations of functionals,

and [38, 66] in the case of obstacle problems.

The aim of this section is the study of the higher differentiability properties of the gradient of functions

u ∈W 1,1(Ω) which are solutions to variational obstacle problems of the form (IV.2) in the setting of

nearly-linear growth conditions. The obstacle ψ belongs to the Sobolev space W 1,1(Ω), and the class

Kψ(Ω) is defined as

Kψ(Ω) :=
{
w ∈W 1,1(Ω) : w ≥ ψ a. e. in Ω

}
. (9.31)

We require the data of our problem to fulfill the following hypotheses.

Hypothesis 9.13. Let Ω ⊂ Rn be a bounded open domain. For the Lagrangian functional F :

Ω× Rn → [0,+∞) we shall assume that:

(i) it is a Carathéodory function, that is, F (·, ξ) measurable for every ξ ∈ Rn and F (x, ·) continuous

for a. e. x ∈ Ω;

(ii) ξ → F (x, ξ) is a strictly convex C2 function for a. e. x ∈ Ω;
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9 – Higher differentiability for the obstacle problem

(iii) there exist positive constants ν̃, L̃, ˜̀ and an exponent 1 < q <∞ such that

1
˜̀
F̄ (|ξ|) ≤ F (x, ξ) ≤ ˜̀(1 + |ξ|q) (Fnl1)

〈DξξF (x, ξ)λ, λ〉 ≥ ν̃ (1 + |ξ|2)−
1
2 |λ|2 (Fnl2)

|DξξF (x, ξ)| ≤ L̃ (1 + |ξ|2)
q−2
2 (Fnl3)

|DξxF (x, ξ)| ≤ k(x)(1 + |ξ|2)
q−1
2 (Fnl4)

for a.e. x ∈ Ω and every ξ ∈ Rn. The two functions k : Ω→ [0,+∞) and F̄ : [0,+∞)→ [0,+∞)

satisfy respectively k ∈ Lrloc(Ω) with r > n and

lim
t→+∞

F̄ (t)

t
= +∞. (9.32)

Finally, to avoid trivialities, we shall assume that the set of admissible functions Kψ(Ω) is not empty

and that a solution u to (IV.2), (9.31) is such that F (x,Du) ∈ L1
loc(Ω).

Remark 9.14. The growth assumption (Fnl) together with (9.32) guarantees the coercivity of the

functional F , so that we can still apply [37, Theorem 3.30] to deduce the existence of a solution to

the obstacle problem (IV.2), (9.31).

Note that functionals with nearly-linear growth have features in common with the ones satisfying

nonstandard growth since, by virtue of (9.32), we have that

c |ξ| ≤ F (x, ξ) ≤ ˜̀(1 + |ξ|q) .

It is well-known that in this setting the Lavrentiev phenomenon may occur (see Remark 9.7). We

therefore assume to be in the situation where irregularity phenomena can be ruled out, in the following

sense. According to [38], for any B b Ω we consider the set

K∗ψ(Ω) := W 1,1
loc (Ω) ∩

{
w ∈W 1,q(B) : w ≥ ψ a. e. in B

}
.

Then, in the spirit of Remark 9.7, we define

F(u,Ω) :=

∫
Ω
F (x,Du) dx

and introduce the relaxed functional

F(u,B) := inf
C(u)
{lim inf

j
F(uj , B)}, (9.33)

where

C(u) :=
{
{uj}j∈N ⊂ K∗ψ(Ω) : uj ⇀ u weakly in W 1,1(B)

}
. (9.34)
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9.3 – The case of nearly-linear growth conditions

Then we consider the Lavrentiev gap functional

L(u,B) := F(u,B)−F(u,B).

We will assume that in our setting it holds L(u,B) = 0 for all B b Ω. This leads to the following

nice characterization that will be useful in the passage to the limit procedure.

Lemma 9.15. For any fixed ball B b Ω, let u ∈ Kψ(Ω) be such that F(u,B) <∞. Then L(u,B) = 0

if and only if there exists a sequence {uj}j∈N ⊂W 1,q(B) such that uj ≥ ψ a. e. in B, uj ⇀ u weakly

in W 1,1(B) and F(uj , B)→ F(u,B).

Proof. Following [1], we define the set of good sequences for u in B as

G(u,B) :=

{
{uj}j∈N ∈ C(u) : F(u,B) = lim

j→∞
F(uj , B)

}
,

where C(u) is defined in (9.34). It is clear that G(u,B) is nonempty. Hence, that L(u,B) = 0 implies

the existence of the desired sequence follows immediately from the definition of F(u,B) by choosing

any good sequence for u in B.

Conversely, in view of Ioffe’s Theorem (see [86]), the functional F is lower semicontinuous and thus

F(u,B) ≤ F(u,B) for all u ∈ Kψ(Ω). On the other hand, since we are assuming F(uj , B)→ F(u,B),

by the definition of F(u,B) in (9.33) we obtain the converse inequality. Thus L(u,B) = 0.

In analogy with (9.4), we shall assume also that

q < 1 +
1

n
− 1

r
. (9.35)

Remark 9.16. Inequality (9.35) implies that q is such that

1 < q < 1 +
1

2
=

3

2
.

The main result of this section is the following theorem from [73].

Theorem 9.17. Let u be a solution to the obstacle problem (IV.2), (9.31) such that L(u,BR) = 0 for

all BR b Ω. Suppose that F satisfies Hypothesis 9.13 for exponents q, r as in (9.35). Then

Dψ ∈W 1,r
loc (Ω) ⇒ (1 + |Du|2)−1/4Du ∈W 1,2

loc (Ω).

9.3.1 Proof of the main result

We are now going to prove Theorem 9.17. The first part of the proof is devoted to the construction

of an approximating minimization problem, whose solution satisfies a suitable a priori estimate. In

the second step we conclude showing that the estimate is preserved in passing to the limit, and this

yields the desired regularity result.
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Step 1: Approximation and derivation of estimates

Let us fix a ball BR b Ω. We first use Proposition 9.5 to get the existence of a sequence {ũj}j∈N ⊂

W 1,q(BR) such that

ũj ≥ ψ a. e. in BR, ũj ⇀ u weakly in W 1,1(BR),∫
BR

F (x,Dũj) dx→
∫
BR

F (x,Du) dx.
(9.36)

Then, following [38], we consider the sequence of functionals Fj(x, ξ) defined by

Fj(x, ξ) := F (x, ξ) +
εj
q

(
1 + |ξ|2

) q
2 , (9.37)

where

εj :=
(

1 + j + ‖Dũj‖2qLq(BR)

)−1
. (9.38)

By Direct Methods and convexity, we get that for any j ∈ N there exists a unique solution uj ∈

ũj +W 1,q
0 (BR) to the obstacle problem

min

{∫
Ω
Fj(x,Dw) dx : w ∈ Kψ(Ω)

}
.

Since Fj(x, ξ) satisfies standard growth conditions, setting

Aj(x, ξ) = DξFj(x, ξ)

from Proposition 9.1 we get that uj is a solution to the variational inequality∫
Ω
〈Aj(x,Duj), D(ϕ− uj)〉 dx ≥ 0 ∀ϕ ∈ Kψ(Ω) . (9.39)

Moreover, from (Fnl1) − (Fnl4) it follows that there exist positive constants ν, L, ` and a function

κ ∈ Lrloc(Ω) such that for a. e. x, y ∈ Ω and every ξ, η ∈ Rn the following conditions hold

〈Aj(x, ξ)−Aj(x, η), ξ − η〉 ≥ ν |ξ − η|2(1 + |ξ|2 + |η|2)−
1
2 (Aj1)

|Aj(x, ξ)−Aj(x, η)| ≤ L |ξ − η|(1 + |ξ|2 + |η|2)
q−2
2 (Aj2)

|Aj(x, ξ)| ≤ ` (1 + |ξ|2)
q−1
2 (Aj3)

|Aj(x, ξ)−Aj(y, ξ)| ≤ (κ(x) + κ(y)) |x− y|(1 + |ξ|2)
q−1
2 . (Aj4)

Before we start with the derivation of estimates, note that it holds, according to the notation intro-

duced in (8.1),

|V1(Duj)|2 =
|Duj |2√

1 + |Duj |2
≤ |Duj |

Thus, since we are considering uj ∈W 1,q(BR) with q > 1, we find that V1(Duj) ∈ L2(BR). Applying

Lemma 8.3 with p = 2, F = V1(Duj) together with inequality (8.3) we obtain

Duj ∈ L
n
n−2 (BR).
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9.3 – The case of nearly-linear growth conditions

Thus the integral

∫
BR

(1 + |Duj(x)|)
n
n−2 dx,

which will frequently appear in the sequel, is finite.

Let us now fix radii 0 < R
8 < ρ < s < t < t′ < R

4 and a cut off function η ∈ C∞0 (Bt) such that

0 ≤ η ≤ 1, η = 1 on Bs, |Dη| ≤ C
t−s . Consider the function

ϕ(x) = uj(x)− λ

h2
τ−h
(
η2(x) τh(uj − ψ)(x)

)

with τh defined in Subsection 8.1. Notice that, when λ > 0 is sufficiently small, ϕ is an admissible

test function in the variational inequality (9.39), that is, ϕ ∈ Kψ(Ω). Indeed

ϕ(x)− ψ(x) = (uj − ψ)(x)− λ

h2
τ−h
(
η2(x) τh(uj − ψ)(x)

)
= (uj − ψ)(x) +

λ

h2
η2(x)

(
(uj − ψ)(x+ h)− (uj − ψ)(x)

)
− λ

h2
η2(x− h)

(
(uj − ψ)(x)− (uj − ψ)(x− h)

)
= (uj − ψ)(x)

(
1− λ

h2
η2(x)− λ

h2
η2(x− h)

)
+

λ

h2

(
η2(x)(uj − ψ)(x+ h) + η2(x− h)(uj − ψ)(x− h)

)
≥ 0 ,

provided 0 < λ < h2

2 . Hence, using ϕ as test function in (9.39) we get, with the aid of Proposition

8.1,

∫
Ω
〈τh(Aj(x,Duj)), D(η2 τh(uj − ψ))〉dx ≤ 0 .

Performing the calculations we obtain

0 ≥
∫

Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x,Duj(x)), D(η2τh(uj − ψ))

〉
dx

=

∫
Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x,Duj(x)), η2τh(Duj −Dψ)

〉
dx

+

∫
Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x,Duj(x)), 2 η Dητh(uj − ψ)

〉
dx.
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The previous inequality can be rewritten as follows∫
Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), η2τhDuj

〉
dx

−
∫

Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), η2τhDψ

〉
dx

+

∫
Ω

〈
Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), 2η Dητh(uj − ψ)

〉
dx

+

∫
Ω

〈
Aj(x+ h,Duj(x))−Aj(x,Duj(x)), η2τhDuj

〉
dx

−
∫

Ω

〈
Aj(x+ h,Duj(x))−Aj(x,Duj(x)), η2τhDψ

〉
dx

+

∫
Ω

〈
Aj(x+ h,Duj(x))−Aj(x,Duj(x)), 2η Dητh(uj − ψ)

〉
dx

=: I + II + III + IV + V + V I ≤ 0 ,

which entails

I ≤ |II|+ |III|+ |IV |+ |V |+ |V I| . (9.40)

By virtue of (Aj1) we get

I ≥ ν

∫
Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx . (9.41)

Assumption (Aj2) together with Young’s inequality implies

|II| ≤ L
∫

Ω
η2|τhDuj |(1 + |Duj(x+ h)|2 + |Duj(x)|2)

q−2
2 |τhDψ|dx

≤ ϑ
∫

Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ Cϑ(L)

∫
Ω
η2|τhDψ|2(1 + |Duj(x+ h)|2 + |Duj(x)|2)

2q−3
2 dx.

Concerning the second summand, it holds

(1 + |Duj(x+ h)|2 + |Duj(x)|2)
2q−3

2 =
(1 + |Duj(x+ h)|2 + |Duj(x)|2)

2q−2
2

(1 + |Duj(x+ h)|2 + |Duj(x)|2)
1
2

≤ (1 + |Duj(x+ h)|2 + |Duj(x)|2)
2q−2

2 , (9.42)

thus employing Hölder’s inequality and using the properties of η we obtain

|II| ≤ ϑ
∫

Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ Cϑ(L)

(∫
Bt

|τhDψ|r dx

) 2
r

(∫
Bt′

(1 + |Duj(x)|)
(2q−2)r
r−2 dx

) r−2
r

.

Remark 9.16 yields
(2q − 2)r

r − 2
<

r

r − 2
<

n

n− 2
.
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9.3 – The case of nearly-linear growth conditions

Hence, being D2ψ ∈ Lrloc(Ω), we can use Lemma 8.2 together with Hölder’s inequality to get

|II| ≤ ϑ
∫

Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ Cϑ(n, q, r, L,R) |h|2
(∫

Bt′

|D2ψ|r dx

) 2
r
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

) (n−2)(2q−2)
n

,

and by Young’s inequality with conjugate exponents 1
2q−2 and 1

3−2q (which are bigger than 1, see

Remark 9.16) also

|II| ≤ ϑ
∫

Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ Cϑ,Θ(n, q, r, L,R) |h|2
(∫

BR/2

|D2ψ|r dx

) 2
(3−2q)r

+ Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

(9.43)

for some constant Θ = Θ(n, q, r), 0 < Θ < 1, that we will specify later. Similarly, we also get

|III| ≤ 4L

∫
Ω
|τhDuj | |Dη| η (1 + |Duj(x+ h)|2 + |Duj(x)|2)

q−2
2 |τh(uj − ψ)|dx

≤ ϑ
∫

Ω
η2|τhDuj |2 (1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ Cϑ(L)

∫
Ω
|Dη|2(1 + |Duj(x+ h)|2 + |Duj(x)|2)

2q−3
2 |τhuj |2 dx

+ Cϑ(L)

∫
Ω
|Dη|2(1 + |Duj(x+ h)|2 + |Duj(x)|2)

2q−3
2 |τhψ|2 dx .

By the fact that |Dη| ≤ C
t−s and Hölder’s inequality we deduce

|III| ≤ ϑ
∫

Ω
η2|τhDuj |2 (1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+
Cϑ(L)

(t− s)2

(∫
Bt′

(1 + |Duj(x)|)2q−1 dx

) 2q−3
2q−1 (∫

Bt

|τhuj |2q−1 dx

) 2
2q−1

+
Cϑ(L)

(t− s)2

(∫
Bt′

(1 + |Duj(x)|)
(2q−3)r
r−2 dx

) r−2
r (∫

Bt

|τhψ|r dx

) 2
r

≤ ϑ
∫

Ω
η2|τhDuj |2 (1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+
Cϑ(n, q, L)

(t− s)2

∫
Bt′

(1 + |Duj(x)|)2q−1 dx

+
Cϑ(n, r, L)

(t− s)2

(∫
Bt′

(1 + |Duj(x)|)
(2q−3)r
r−2 dx

) r−2
r (∫

BR

|Dψ(x)|r dx

) 2
r

. (9.44)

Here we used Lemma 8.2 as long as Dψ ∈ Lrloc(Ω). Now, assumption (9.35) entails

2q − 1 < 1 +
2

n
− 2

r
< 1 +

2

n
<

n

n− 2
.
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9 – Higher differentiability for the obstacle problem

By means of the interpolation inequality

‖Dv‖L2q−1(Ω′) ≤ ‖Dv‖δ0L1(Ω′)
‖Dv‖1−δ0

L
n
n−2 (Ω′)

∀Ω′ b Ω ,

with 0 < δ0 < 1 defined as
1

2q − 1
= δ0 +

(1− δ0)(n− 2)

n

that is

δ0 =
n− 1− q(n− 2)

2q − 1
, 1− δ0 =

n(q − 1)

2q − 1
,

we obtain ∫
Bt′

(1 + |Duj(x)|)2q−1 dx

≤

(∫
Bt′

(1 + |Duj(x)|) dx

)δ0(2q−1)(∫
Bt′

(1 + |Duj(x)|)
n
n−2 dx

)(q−1)(n−2)

.

(9.45)

Inserting (9.45) in (9.44) and using Young’s inequality with conjugate exponents 1
n(q−1) and 1

1−n(q−1)

(which are bigger than 1 thanks to (9.35)), with the aid of (9.42) and the subsequent computations

we conclude that

|III| ≤ ϑ
∫

Ω
η2|τhDuj |2 (1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ |h|2
Cϑ,Θ(n, q, L)

(t− s)
2

1−n(q−1)

(∫
BR

(1 + |Duj(x)|) dx

) δ0(2q−1)
1−n(q−1)

+ |h|2
Cϑ,Θ(n, q, r, L,R)

(t− s)
2

3−2q

(∫
BR

|Dψ(x)|r dx

) 2
(3−2q)r

+ Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

(9.46)

with Θ as above. In order to estimate the integral IV , we use assumption (Aj4) followed by Young’s

and Hölder’s inequalities to obtain

|IV | ≤ |h|
∫

Ω
η2(κ(x+ h) + κ(x))(1 + |Duj(x)|2)

q−1
2 |τhDuj | dx

≤ ϑ
∫

Ω
η2|τhDuj |2

(
1 + |Duj(x)|2 + |Duj(x+ h)|2

)− 1
2 dx

+ Cϑ|h|2
∫
Bt

(κ(x+ h) + κ(x))2(1 + |Duj(x)|2)
2q−1

2 dx

≤ ϑ
∫

Ω
η2|τhDuj |2

(
1 + |Duj(x)|2 + |Duj(x+ h)|2

)− 1
2 dx

+ Cϑ|h|2
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 2
r
(∫

Bt

(1 + |Duj(x)|)
(2q−1)r
r−2 dx

) r−2
r

, (9.47)

where we also used the fact that suppη ⊂ Bt. On the other hand, assumption (9.35) implies

(2q − 1)r

r − 2
<

n

n− 2
(9.48)
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in a sharp way, as long as r > n. The proof of this fact can be carried out as in Remark 9.9. By

means of the interpolation inequality

‖Dv‖
L

(2q−1)r
r−2 (Ω′)

≤ ‖Dv‖δL1(Ω′) ‖Dv‖
1−δ
L

n
n−2 (Ω′)

∀Ω′ b Ω ,

with 0 < δ < 1 defined as
r − 2

(2q − 1)r
= δ +

(1− δ)(n− 2)

n

that is

δ =
(nr − n− r)− q(nr − 2r)

(2q − 1)r
, 1− δ =

n(qr − r + 1)

(2q − 1)r
,

we obtain (∫
Bt

(1 + |Duj(x)|)
(2q−1)r
r−2 dx

) r−2
r

≤
(∫

Bt

(1 + |Duj(x)|) dx

)δ(2q−1)(∫
Bt

(1 + |Duj(x)|)
n
n−2 dx

) (qr−r+1)(n−2)
r

.

(9.49)

Inserting (9.49) in (9.47), using the second inequality of Lemma 8.2 and Young’s inequality with

conjugate exponents r
n(qr−r+1) and r

r−n(qr−r+1) (which are bigger than 1 thanks to (9.35)), we obtain

|IV | ≤ ϑ
∫

Ω
η2|τhDuj |2

(
1 + |Duj(x)|2 + |Duj(x+ h)|2

)− 1
2 dx

+ Cϑ|h|2
(∫

BR

κr(x) dx

) 2
r
(∫

BR

(1 + |Duj(x)|) dx

)δ(2q−1)

·
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

) (qr−r+1)(n−2)
r

≤ ϑ
∫

Ω
η2|τhDuj |2

(
1 + |Duj(x)|2 + |Duj(x+ h)|2

)− 1
2 dx

+ Cϑ,Θ |h|2
(∫

BR

κr(x) dx

) 2
r−n(qr−r+1)

(∫
BR

(1 + |Duj(x)|) dx

) δ(2q−1)r
r−n(qr−r+1)

+ Θ |h|2
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

(9.50)

with Θ as above. Assumption (Aj4) also yields

|V | ≤ |h|
∫

Ω
η2(κ(x+ h) + κ(x))(1 + |Duj(x)|2)

q−1
2 |τhDψ| dx

≤ |h|
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 1
r
(∫

Bt

(1 + |Duj(x)|)
(q−1)r
r−2 dx

) r−2
r
(∫

Bt

|τhDψ|r dx

) 1
r

≤ C(n, r) |h|2
(∫

BR

κr(x) dx

) 1
r
(∫

Bt

(1 + |Duj(x)|)
(q−1)r
r−2 dx

) r−2
r
(∫

BR

|D2ψ|r dx

) 1
r

where we used Hölder’s inequality, the properties of η and Lemma 8.2 by virtue of the fact that

D2ψ ∈ Lrloc(Ω). On the other hand, Remark 9.16 yields

(q − 1)r

r − 2
<

r

r − 2
<

n

n− 2
. (9.51)
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Hence we can apply Hölder’s inequality again to obtain

|V | ≤ C(n, q, r, R) |h|2
(∫

BR

κr(x) dx

) 1
r
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

) (n−2)(q−1)
n

(∫
BR

|D2ψ|r dx

) 1
r

,

and by Young’s inequality with conjugate exponents 1
q−1 and 1

2−q (which are bigger than 1, see Remark

9.16) also

|V | ≤ CΘ(n, q, r, R) |h|2
(∫

BR

κr(x) dx

) 1
(2−q)r

(∫
BR

|D2ψ|r dx

) 1
(2−q)r

+ Θ |h|2
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

(9.52)

with Θ as above. Finally, assumption (Aj4) and the properties of Dη yield

|V I| ≤ 2|h|
∫

Ω
η |Dη|(κ(x+ h) + κ(x))(1 + |Duj(x)|2)

q−1
2 |τh(uj − ψ)|dx

≤ 2|h|
∫

Ω
η |Dη|(κ(x+ h) + κ(x))(1 + |Duj(x)|2)

q−1
2 |τhuj |dx

+ 2|h|
∫

Ω
η |Dη|(κ(x+ h) + κ(x))(1 + |Duj(x)|2)

q−1
2 |τhψ| dx

≤ |h| C

(t− s)2

(∫
Bt

|τhuj |
qr
r−1 dx

) r−1
qr
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 1
r

·
(∫

Bt

(1 + |Duj(x)|)
qr
r−1 dx

) (q−1)(r−1)
qr

+ |h| C

(t− s)2

(∫
Bt

|τhψ|r dx

) 1
r
(∫

Bt

(κ(x+ h) + κ(x))r dx

) 1
r

·
(∫

Bt

(1 + |Duj(x)|)
(q−1)r
r−2 dx

) r−2
r

(9.53)

where we used also Hölder’s inequality. Moreover, since Dψ ∈ Lrloc(Ω) we can employ Lemma 8.2 to

obtain

|V I| ≤ |h|2 C(n, q, r)

(t− s)2

(∫
Bt′

(1 + |Duj(x)|)
qr
r−1 dx

) r−1
r (∫

BR

κr(x) dx

) 1
r

+ |h|2 C(n, r)

(t− s)2

(∫
BR

|Dψ(x)|r dx

) 1
r
(∫

BR

κr(x) dx

) 1
r
(∫

Bt

(1 + |Duj(x)|)
(q−1)r
r−2 dx

) r−2
r

.

On the other hand, the fact that q > 1 and the sharp inequality (9.48) imply

qr

r − 1
<

(2q − 1)r

r − 2
<

n

n− 2
.

By means of the interpolation inequality

‖Dv‖
L

qr
r−1 (Ω′)

≤ ‖Dv‖δ′L1(Ω′) ‖Dv‖
1−δ′

L
n
n−2 (Ω′)

∀Ω′ b Ω ,

with 0 < δ′ < 1 defined as
r − 1

qr
= δ′ +

(1− δ′)(n− 2)

n
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that is

δ′ =
(nr − n)− q(nr − 2r)

2qr
, 1− δ′ = n(qr − r + 1)

2qr
,

we obtain

(∫
Bt′

(1 + |Duj(x)|)
qr
r−1 dx

) r−1
r

≤

(∫
Bt′

(1 + |Duj(x)|) dx

)δ′q (∫
Bt′

(1 + |Duj(x)|)
n
n−2 dx

) (n−2)(qr−r+1)
2r

.

(9.54)

Inserting (9.54) into (9.53) and using Young’s inequality with conjugate exponents 2r
n(qr−r+1) and

2r
2r−n(qr−r+1) (which are bigger that 1 thanks to (9.35)), with the aid of (9.51) and the subsequent

computations we finally obtain

|V I| ≤ |h|2 CΘ(n, q, r)

(t− s)
4r

2r−n(qr−r+1)

(∫
BR

(1 + |Duj(x)|) dx

) δ′2qr
2r−n(qr−r+1)

(∫
BR

κr(x) dx

) 2
2r−n(qr−r+1)

+ |h|2CΘ(n, q, r, R)

(t− s)
2

2−q

(∫
BR

κr(x) dx

) 1
(2−q)r

(∫
BR

|Dψ(x)|r dx

) 1
(2−q)r

+ Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

(9.55)
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with Θ as above. Inserting estimates (9.41), (9.43), (9.46), (9.50), (9.52) and (9.55) in (9.40), we infer

ν

∫
Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

≤ 3ϑ

∫
Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

+ 2Θ |h|2
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ Cϑ,Θ(n, q, r, L,R) |h|2
(∫

BR

|D2ψ|r dx

) 2
(3−2q)r

+ |h|2
Cϑ,Θ(n, q, L)

(t− s)
2

1−n(q−1)

(∫
BR

(1 + |Duj(x)|) dx

) δ0(2q−1)
1−n(q−1)

+ |h|2
Cϑ,Θ(n, q, r, L,R)

(t− s)
2

3−2q

(∫
BR

|Dψ(x)|r dx

) 2
(3−2q)r

+ Cϑ,Θ |h|2
(∫

BR

κr(x) dx

) 2
r−n(qr−r+1)

(∫
BR

(1 + |Duj(x)|) dx

) δ(2q−1)r
r−n(qr−r+1)

+ CΘ(n, q, r, R) |h|2
(∫

BR

κr(x) dx

) 1
(2−q)r

(∫
BR

|D2ψ|r dx

) 1
(2−q)r

+ |h|2 CΘ(n, q, r)

(t− s)
4r

2r−n(qr−r+1)

(∫
BR

(1 + |Duj(x)|) dx

) δ′2qr
2r−n(qr−r+1)

(∫
BR

κr(x) dx

) 2
2r−n(qr−r+1)

+ |h|2 CΘ(n, q, r, R)

(t− s)
2

2−q

(∫
BR

κr(x) dx

) 1
(2−q)r

(∫
BR

|Dψ(x)|r dx

) 1
(2−q)r

=: 3ϑ

∫
Ω
η2|τhDu|2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx+ 2Θ |h|2

(∫
Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ |h|2A+ |h|2 C1

(t− s)γ1
+ |h|2 C2

(t− s)γ2
+ |h|2 C3

(t− s)γ3
+ |h|2 C4

(t− s)γ4
.

Choosing ϑ = ν
6 , we can reabsorb the first integral on the right-hand side of the previous estimate by

the left-hand side, thus obtaining

ν

∫
Ω
η2|τhDuj |2(1 + |Duj(x+ h)|2 + |Duj(x)|2)−

1
2 dx

≤ 2Θ |h|2
(∫

Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ 3Θ |h|2
(∫

Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ |h|2A+ |h|2 C1

(t− s)γ1
+ |h|2 C2

(t− s)γ2
+ |h|2 C3

(t− s)γ3
+ |h|2 C4

(t− s)γ4
.
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Using Lemma 8.4 with γ = −1/4 we have

|τhDuj |2

(1 + |Duj(x+ h)|2 + |Duj(x)|2)
1
2

=

(
|Duj(x+ h)−Duj(x)|

(1 + |Duj(x+ h)|2 + |Duj(x)|2)
1
4

)2

≥ c(n)|(1 + |Duj(x+ h)|2)−
1
4Duj(x+ h)− (1 + |Duj(x)|2)−

1
4Duj(x)|2

= c(n)|τhV1(Duj)|2,

where V1 was defined in (8.1). Therefore, inserting this last estimate in the previous one and recalling

that η ≡ 1 on Bs, we get∫
Bs

|τhV1(Duj)|2 dx

≤

(
2Θ

(∫
Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ 3Θ

(∫
Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+A+
C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3
+

C4

(t− s)γ4

)
|h|2,

(9.56)

where we absorbed ν in the constants on the right-hand side. We now apply Lemma 8.3 with F =

V1(Du) and p = 2, obtaining(∫
Bs

|V1(Duj)|
2n
n−2 dx

)n−2
n

≤ 2Θ

(∫
Bt

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+ 3Θ

(∫
Bt′

(1 + |Duj(x)|)
n
n−2 dx

)n−2
n

+A+
C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3
+

C4

(t− s)γ4
.

(9.57)

Hence, setting

φ(r) =

(∫
Br

|Duj(x)|
n
n−2 dx

)n−2
n

and possibly redefining the constants, exploiting (8.3) we can rewrite inequality (9.57) as

φ(s) ≤ 2Θφ(t) + 3Θφ(t′) +A+
C1

(t− s)γ1
+

C2

(t− s)γ2
+

C3

(t− s)γ3
+

C4

(t− s)γ4
.

Note that we can choose the constant Θ small enough to satisfy Θ < 1/3 < 1/2. Thus we can apply

Lemma 8.6 with B = 0 obtaining

φ(ρ) ≤ c
(

2Θφ(t′) +A+
C1

(t′ − ρ)γ1
+

C2

(t′ − ρ)γ2
+

C3

(t′ − ρ)γ3
+

C4

(t′ − ρ)γ4

)
for some c = c (Θ, γ1, γ2, γ3, γ4). But then, employing Lemma 8.6 one more time we get

φ

(
R

4

)
≤ c̃

(
A+

C1

Rγ1
+

C2

Rγ2
+

C3

Rγ3
+

C4

Rγ4

)
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with c̃ = c̃ (Θ, γ1, γ2, γ3, γ4) = c̃(n, q, r). Recalling the definition of φ and using Lemma 8.3, from

inequality (9.56) and our hypotheses on the data we infer the a priori estimate∫
BR/8

|D (V1(Duj(x))) |2 dx ≤ C

(∫
BR/2

(1 + |Duj(x)|) dx

)σ
(9.58)

with C = C(ν, n, q, r, L,R) and

σ := max

{
δ(2q − 1)r

r − n(qr − r + 1)
,

δ0(2q − 1)

1− n(q − 1)
,

δ′2qr

2r − n(qr − r + 1)

}
.

Step 2: Passage to the limit. We conclude the proof by passing to the limit in the approximating

problem. For simplicity, here we denote by o(j) a quantity such that limj→∞ o(j) = 0. By the growth

condition (Fnl1), the minimality of uj for Fj and the definition of Fj in (9.37) we have

1
˜̀

∫
BR

F̄ (|Duj(x)|) dx ≤
∫
BR

Fj(x,Dũj(x)) dx

=

∫
BR

F (x,Dũj(x)) dx+
εj
q

∫
BR

(
1 + |Dũj(x)|2

) q
2 dx

(9.59)

where ũj is as in (9.36). The definition of εj in (9.38) entails

εj
q

∫
BR

(
1 + |Dũj(x)|2

) q
2 dx =

1

q
(

1 + j + ‖Dũj‖2qLq(BR)

) ∫
BR

(
1 + |Dũj(x)|2

) q
2 dx −−−→

j→∞
0 ,

hence we obtain, using also (9.36),

1
˜̀

∫
BR

F̄ (|Duj(x)|) dx ≤
∫
BR

F (x,Dũj(x)) dx+ o(j) =

∫
BR

F (x,Du(x)) dx+ o(j) . (9.60)

The fact that we are assuming F (x,Du) ∈ L1
loc(Ω) implies that the sequence {F̄ (|Duj |)} is bounded

in L1(BR). Now, (9.32) and the Dunford-Pettis criterion imply that there exists ū ∈ u + W 1,1
0 (BR)

such that

uj ⇀ ū weakly in W 1,1
0 (BR) .

Our next step is to show that ū is a solution to our obstacle problem over the ball BR, that is, it

minimizes the functional
∫

Ω F (x,Dw) dx in u + W 1,1
0 (BR). To this aim note that (9.37) and (9.59)–

(9.60) entail ∫
BR

F (x,Duj(x)) dx ≤
∫
BR

Fj(x,Duj(x)) dx ≤
∫
BR

F (x,Du(x)) dx+ o(j).

Hence by the lower semicontinuity of the map v →
∫
BR

F (x,Dv(x)) dx we get∫
BR

F (x,Dū(x)) dx ≤ lim inf
j→∞

∫
BR

F (x,Duj(x)) dx ≤
∫
BR

F (x,Du(x)) dx.

Moreover, since uj ∈ Kψ(Ω) for every j ∈ N and Kψ(Ω) is a closed set, we have ū ∈ Kψ(Ω). We have

then proved that the limit function ū ∈ u+W 1,1
0 (BR) is a solution to the minimization problem

min

{∫
Ω
F (x,Dw) dx : w ∈ u+W 1,1

0 (BR), w ∈ Kψ(Ω)

}
.
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Note also that the strict convexity of F yields ū = u. It only remains to show that the minimizer has

the regularity stated in Theorem 9.17. From estimate (9.58) and by compact embedding we infer

V1(Duj) ⇀ v weakly in W 1,2
loc (Ω),

V1(Duj)→ v strongly in L2
loc(Ω),

from which we deduce, together with inequality (8.3),

Duj → w̄ strongly in L1
loc(Ω).

We thus have the strong convergence

uj → ū = u strongly in u+W 1,1
0 (BR).

Hence we can pass to the limit in estimate (9.58), which allows us to conclude that V1(Du) ∈W 1,2
loc (Ω).

Recalling the definition of V1 in (8.1), we see that this is exactly the claim of Theorem 9.17.

Final remark

The higher differentiability results contained in this last part of the thesis have already been used to

prove further regularity results. In particular, Theorem 9.8 is employed in [32], where the authors

prove the local Lipschitz continuity of solutions to a quite large class of variational inequalities whose

principal part satisfies nonstandard growth conditions. This was the first result about Lipschitz

regularity for the obstacle problem with p, q-growth. In the same spirit, Theorem 9.17 has been

recently used in [11] to prove Lipschitz continuity results for functionals with nearly-linear growth

conditions.
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APPENDIX A

Auxiliary tools

This Appendix contains several results and concepts which are recalled and used in this thesis. They

are all presented without proof, but we quote in each case some references where further details may

be found. Here Ω will be a nonempty open bounded connected subset of Rn, n ∈ N, with Lipschitz

boundary.

A.1 Some useful results

A.1.1 Grönwall’s lemma

The result stated below is well-known and fundamental when dealing with differential equations. Its

proof can be found for example in [59].

Lemma A.1 (Grönwall’s Lemma – differential form). Let η be a nonnegative, absolutely continuous

function on [0, T ], which satisfies for a. e. t the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t),

where φ, ψ are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ e
∫ t
0 φ(s) ds

(
η(0) +

∫ t

0
ψ(s) ds

)
for all 0 ≤ t ≤ T .

Lemma A.2 (Grönwall’s Lemma – integral form). Let ξ be a summable function on [0, T ] which

satisfies for a. e. t the integral inequality

ξ(t) ≤ β(t) +

∫ t

0
α(s)ξ(s) ds,

where α, β are summable functions on [0, T ] and, in addition, α is nonnegative. Then

ξ(t) ≤ β(t) +

∫ t

0
α(s)β(s) e

∫ t
s α(r) dr ds
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A – Auxiliary tools

for all 0 ≤ t ≤ T . If, in addition, β is nondecreasing, then

ξ(t) ≤ β(t) e
∫ t
0 α(s) ds

for all 0 ≤ t ≤ T .

A.1.2 Anisotropic embedding theorems

In evolution problems, one deals with functions depending on a space variable x ∈ Ω and time t ∈ ω,

where ω ⊂ R is an open interval corresponding to the time of the process. It is thus natural to expect

that the partial derivatives of u with respect to space and time are integrable with different exponents.

For 1 ≤ p, q ≤ ∞ we introduce the norms

|u|p,q,Ω,ω :=


(∫

ω
|u(·, t)|pq,Ω dt

)1/p

if 1 ≤ p <∞,

sup ess
t∈ω

|u(·, t)|q,Ω if p =∞,
(A.1)

where | · |q,Ω denotes the usual norm of Lq(Ω), and the spaces

Lp(ω;Lq(Ω)) :=
{
u ∈ L1(Ω× ω) : |u|p,q,Ω,ω <∞

}
.

We further define

W 1,(p0,q0);(p1,q1)(ω; Ω) :=

{
u ∈ L1(Ω× ω) :

∂u

∂t
∈ Lp0(ω;Lq0(Ω)),

∂u

∂xi
∈ Lp1(ω;Lq1(Ω)) for i = 1, . . . , N

}
.

Here we report two anisotropic embedding theorems established in [12].

Theorem A.3. If q2 ≥ max{q0, q1}, p2 ≥ max{p0, p1} and(
1− 1

p0
+

1

p2

)(
1

N
− 1

q1
+

1

q2

)
>

(
1

p1
− 1

p2

)(
1

q0
− 1

q2

)
, (A.2)

then W 1,(p0,q0);(p1,q1)(ω; Ω) is compactly embedded in Lp2(ω;Lq2(Ω)). If moreover (A.2) holds for

q2 =∞ with the convention 1/∞ = 0, that is,(
1− 1

p0
+

1

p2

)(
1

N
− 1

q1

)
>

1

q0

(
1

p1
− 1

p2

)
,

then W 1,(p0,q0);(p1,q1)(ω; Ω) is compactly embedded in Lp2(ω;C(Ω̄)). If (A.2) holds for p2 = q2 = ∞,

that is,
p′0
p1q0

+
1

q1
<

1

N
, (A.3)

then W 1,(p0,q0);(p1,q1)(ω; Ω) is compactly embedded in C(Ω̄× ω̄).
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Note that the order of integration in (A.1) cannot be reversed. For p ≥ q we have that Lq(Ω;Lp(ω)) is

embedded into Lp(ω;Lq(Ω)), but the opposite inclusion does not hold. On the other hand, denoting

W 1,(q0,p0);(q1,p1)(Ω;ω) :=

{
u ∈ L1(Ω× ω) :

∂u

∂t
∈ Lq0(Ω;Lp0(ω)),

∂u

∂xi
∈ Lq1(Ω;Lp1(ω)) for i = 1, . . . , N

}
,

it is possible to repeat the computations leading to Theorem A.3 with reversed order of integration, to

check that conditions (A.2) and (A.3) remain valid for the compact embedding of W 1,(q0,p0);(q1,p1)(Ω;ω)

into Lq2(Ω;Lp2(ω)) and C(Ω̄ × ω̄), respectively. Let us report one important particular case which

frequently occurs in applications.

Theorem A.4. If q2 ≥ max{q0, q1} and

1

p′0

(
1

N
− 1

q1
+

1

q2

)
>

1

p1

(
1

q0
− 1

q2

)
,

then the space W 1,(q0,p0);(q1,p1)(Ω;ω) is compactly embedded in Lq2(Ω;C(ω̄)).

From Theorem A.4 we immediately obtain the following result which we use in the first part of this

thesis.

Corollary A.5. The space W 1,2(0, T ;L2(Ω))∩L∞(0, T ;W 1,2(Ω)) is compactly embedded in the space

L2(Ω;C([0, T ])) endowed with the norm

‖w‖2,∞ =

(∫
Ω

max
t∈[0,T ]

|w(x, t)|2 dx

)1/2

for w ∈ L2(Ω;C([0, T ])). (A.4)

We report also the following compactness result from [107, Theorem 5.1].

Theorem A.6. Let B0, B and B1 be three Banach spaces with B0 ⊂ B ⊂ B1, B0 and B1 reflexive.

Suppose that the embedding of B0 into B is compact. For 1 < p0, p1 <∞ let

W :=
{
w ∈ Lp0(0, T ;B0) : wt ∈ Lp1(0, T ;B1)

}
,

where T > 0 is finite. Then the embedding of W into Lp0(0, T ;B) is compact.

The following statement about Nemytskĭı (or superposition) operators is frequently used in the passage

to the limit procedure. Its proof can be found in [69].

Theorem A.7. Let p1, p2, . . . , pm and r be real numbers, pi ≥ 1 (i = 1, . . . ,m), r ≥ 1. Let h = h(ξ)

be a function defined for ξ ∈ Rm, and let h ∈ C(Rm). Denote by H(u1, . . . , um) the Nemytskĭı operator

determined by h.
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(i) Then, for an arbitrary m-tuple of functions ui ∈ Lpi(Ω) (i = 1, . . . ,m),

H(u1, . . . , um) ∈ Lr(Ω)

holds if and only if the following condition is satisfied: (a) A function g ∈ Lr(Ω) and a number

c ≥ 0 exist such that for a. e. x ∈ Ω and for all ξ ∈ Rm

|h(ξ1, . . . , ξm)| ≤ g(x) + c

m∑
i=1

|ξi|pi/r.

(ii) If condition (a) is satisfied, then the Nemytskĭı operator H is continuous from Lp1(Ω)×Lp2(Ω)×

· · · × Lpm(Ω) into Lr(Ω).

A.1.3 Traces on the boundary

Trace operators arise from the fact that one needs to assign “boundary values” along ∂Ω to a function

w ∈W 1,p(Ω), assuming that ∂Ω is regular enough. The problem is that a typical function in this space

is not in general continuous and, even worse, is only defined a. e. in Ω. Since ∂Ω has n-dimensional

Lebesgue measure zero, there is no direct meaning we can give to the expression “w restricted to ∂Ω”.

The notion of trace operator solves this problem.

We say that a function ū belongs to Lp(∂Ω) if the boundary norm

|ū|p,∂Ω :=


(∫

∂Ω
|ū(x)|p dS(x)

)1/p

if 1 ≤ p <∞,

sup ess
x∈∂Ω

|ū(x)| if p =∞

is finite. One important property of functions in W 1,p(Ω) for domains Ω with Lipschitzian boundary

is that the trace of u on ∂Ω is well defined, as stated by the following theorem whose proof can be

found e. g. in [115].

Theorem A.8 (Trace Theorem). Let 1 ≤ p < ∞. Then there exists a linear continuous mapping

Tp : W 1,p(Ω)→ Lp(∂Ω) such that for every u ∈ C1(Ω̄) and every x ∈ ∂Ω we have Tpu(x) = u(x).

The trace operator satisfies also the following compactness result.

Corollary A.9. Let

q ≥ Np− p
N − p

.

Then the trace operator Tp is continuous from W 1,p(Ω) to Lq(∂Ω). If moreover the inequality is strict,

then the trace operator is compact.
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A.2 Some useful inequalities

We recall here some classical inequalities that we often employ throughout the thesis. To simplify

the presentation we use the notation |v|r for the Lr(Ω)-norm of a function v ∈ Lr(Ω) for r ∈ [0,∞],

whereas the norm of a function v ∈W 1,r(Ω) will be denoted by |v|1;r.

For the proofs see e. g. [12, 78, 103, 115].

Hölder’s inequality

Let p, q ∈ [1,∞] with 1
p + 1

q = 1. Then the inequality

|vw|1 ≤ |v|p|w|q (A.5)

holds for every v ∈ Lp(Ω), w ∈ Lq(Ω).

Remark A.10. In the third part of the thesis we make use of a discrete version of Hölder’s inequality

(A.5) by setting

|v|p :=

(
1

n

n∑
k=1

|vk|p
)1/p

if 1 ≤ p <∞ (A.6)

|v|∞ := max
k=1,...,n

|vk| if p =∞ (A.7)

for a vector v = (v1, . . . , vn).

Gagliardo-Nirenberg inequality

There exists a constant C > 0 such that for every v ∈W 1,p(Ω) the inequality

|v|q ≤ C
(
|v|s + |v|1−%s |∇v|%p

)
(A.8)

or, equivalently,

|v|q ≤ C|v|1−%s |v|%1;p, (A.9)

holds for every 1 ≤ s < q, 1/q > 1/p− 1/N , where

% =

1
s −

1
q

1
s + 1

N −
1
p

∈ (0,1).

Remark A.11. In the third part of the thesis we make use of a discrete version of Gagliardo-Nirenberg

inequality (A.8). Let v = (v0, v1, . . . , vn) be a vector, and let Dv = (n(v1 − v0), . . . , n(vn − vn−1))

be the associated vector of difference quotients of v. For norms defined as in (A.6) and (A.7), the

discrete counterpart of (A.8) reads

|v|q ≤ C
(
|v|s + |v|1−%s |Dv|%p

)
, % =

1
s −

1
q

1
s + 1− 1

p

∈ (0,1).
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It can be derived from (A.8) when N = 1 by defining v as equidistant piecewise linear interpolations

of vk.

Poincaré’s inequality

Let b ∈ L∞(∂Ω) be such that b(x) ≥ 0 a. e. and
∫
∂Ω b(x) ds(x) > 0. Then there exists a constant

C > 0 such that the inequality

|v|21;2 ≤ C
(∫

Ω
|∇v|2 dx+

∫
∂Ω
b(x)|v|2 ds(x)

)
(A.10)

holds for every v ∈W 1,2(Ω).

Korn’s inequality

This inequality essentially states that, in the case of zero Dirichlet boundary condition, the L2-norms

of ∇ and ∇s are equivalent. More precisely it holds∫
Ω
|∇sw|2(x) dx ≥ c‖w‖2W 1,2(Ω;R3) (A.11)

for every w ∈W 1,2
0 (Ω;R3), with a constant c > 0 independent of w.
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APPENDIX B

Hysteresis operators

Hysteresis occurs in several phenomena in physics, engineering, chemistry, biology and economics.

Even if this phenomenon has been known and studied since the end of the eighteenth century, it was

only more or less fifty years ago that, dealing with plasticity, a small group of Russian mathematicians

introduced the concept of hysteresis operator and started a systematic investigation of its properties.

The pioneers in this new field were certainly M. A. Krasnosel’skĭı and A. V. Pokrovskĭı with their

important monograph [88]. From that moment many scientists have contributed to the mathematical

study of hysteresis: see M. Brokate & J. Sprekels [24], P. Krejč́ı [91] and A. Visintin [130].

According to this formalism, the state of the system is characterized by two scalar variables u and w,

that play the role of independent and dependent variable, and that are also called input and output.

The construction of the hysteresis relation u→ w is made by choosing a suitable hysteresis operator,

with the aim of describing rate independent memory effects.

(i) Memory effects: this means that the output w(t) is not determined by the value of the input

u(t) at the same instant, but it depends also on the previous evolution of u.

(ii) Rate independence: this means that the couple (u(t), w(t)) is invariant with respect to any

increasing time homeomorphism. In other words, at any time t, w(t) depends only on the range

of the restriction u : [0, t] → R and on the order in which values have been attained. So there

is no dependence on the derivatives of u, which may even fail to exist. Note that this condition

is essential for giving a graphic representation of hysteresis in the (u,w)-plane by means of the

so-called hysteresis loop.

The two variables u and w are assumed to depend continuously on time. Since at any instant the

state is described by the value of the couple (u,w), it is then possible to define the operator

F : D(F) ⊂ C0([0, T ])× R −→ C0([0, T ])

(u, u(0)) → w
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where D(F) stands for the domain of F .

In the next sections we are going to give a precise characterization of the operator F , reporting the

definitions and properties of the hysteresis operators that are needed in the first three parts of the

thesis.

B.1 Hysteresis in elastoplasticity I

In the second part of this thesis we model elastoplasticity by means of a constitutive operator P,

which represents the elastoplastic part of the stress tensor σ. Following [105], we assume that a

convex subset 0 ∈ Z ⊂ R3×3
sym with nonempty interior representing the admissible plastic stress domain

is given in the space R3×3
sym of symmetric tensors, and that the constitutive relation between the strain

tensor ε and the stress tensor σ involves two fourth order tensors Ah (the kinematic hardening tensor)

and Ae (the elasticity tensor) satisfying Hypothesis 5.1 (i). We define the constitutive operator P by

the formula

P[ε] = Ahε+ σp, (B.1)

where σp is the solution of the variational inequality

σp ∈ Z,
(
ε̇−A−1

e σ̇p
)

:
(
σp − z

)
≥ 0 a. e. ∀z ∈ Z, σp(0) = QZ(ε(0)) (B.2)

for a given ε ∈W 1,1(0, T ;R3×3
sym), where QZ : R3×3

sym → Z is the orthogonal projection onto Z.

We list some properties of the variational problem (B.2) whose proof can be found in [91, Chapter I].

Proposition B.1. For every ε ∈ W 1,1(0, T ;R3×3
sym) there exists a unique σp ∈ W 1,1(0, T ;R3×3

sym) satis-

fying the variational inequality (B.2). The solution mapping

W 1,1(0, T ;R3×3
sym)→W 1,1(0, T ;R3×3

sym) : ε→ σp

is strongly continuous and the operator P has the following additional properties.

(i) The operator P can be extended to a continuous operator in the space C([0, T ];R3×3
sym) in the

sense that if {εm;m ∈ N} is a sequence in C([0, T ];R3×3
sym), then

lim
m→∞

max
t∈[0,T ]

|εm(t)− ε(t)| = 0 =⇒ lim
m→∞

max
t∈[0,T ]

|P[εm](t)− P[ε](t)| = 0.

(ii) For two inputs ε1, ε2 ∈W 1,1(0, T ;R3×3
sym) we denote σi = P[εi], i = 1,2. Then

(σ1 − σ2) : (ε̇1 − ε̇2) ≥ 1

2

d

dt

(
Ah(ε1 − ε2) : (ε1 − ε2) + A−1

e (σp1 − σ
p
2) : (σp1 − σ

p
2)
)

a. e., (B.3)

|σ1(t)− σ2(t)| ≤ C
(
|ε1(0)− ε2(0)|+

∫ t

0
|ε̇1 − ε̇2|(τ) dτ

)
∀t ∈ [0, T ] (B.4)

with a constant C depending only on Ah and Ae.
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(iii) For inputs ε ∈ L2(Ω;W 1,1(0, T ;R3×3
sym)) we obtain from (B.4), similarly to [40, Formula (6.25)],

the inequality

|∇σ(x, t)| ≤ C
(
|∇ε(x,0)|+

∫ t

0
|∇εt(x, τ)|dτ

)
a. e.. (B.5)

It can also be proved that for all ε ∈W 1,1(0, T ;R3×3
sym) it holds

|P[ε]t| ≤ |εt| a. e. (B.6)

The energy potential UP and the dissipation operator DP associated with P are defined by the formula

UP [ε] =
1

2
Ahε : ε+

1

2
A−1
e σp : σp, DP [ε] = ε−A−1

e σp. (B.7)

Let MZ∗ denote the Minkowski functional of the polar set Z∗ to Z. The energy identity

P[ε] : εt − UP [ε]t = ‖DP [ε]t‖∗ a. e., (B.8)

where ‖ · ‖∗ = MZ∗(·) is a seminorm in R3×3
sym, and the pointwise inequalities

UP [ε] ≥ A[

2
|ε|2, ‖DP [ε]t‖∗ ≤ C|εt| (B.9)

hold for all inputs ε ∈W 1,1(0, T ;R3×3
sym).

B.2 The scalar stop and play operators

Given a parameter r > 0, the scalar stop operator with threshold r is defined as the mapping which

with a function u ∈ W 1,1(0, T ) and with an initial condition sr,0 ∈ [−r, r] associates the solution

sr ∈W 1,1(0, T ) of the differential inclusion

ṡr(t) + ∂I

(
1

r
sr(t)

)
3 u̇(t) a. e., sr(0) = sr,0, (B.10)

where

I(y) = I[−r,r](y) =


0 if y ∈ [−r, r],

+∞ otherwise,

(B.11)

is the indicator function of the interval [−r, r] and

∂I(y) = ∂I[−r,r](y) =


(−∞, 0] if y = −r,

{0} if − r < y < r,

[0,+∞) if y = r,

(B.12)

is its subdifferential. Let us recall the meaning of the differential inclusion:

γ ∈ ∂I[−r,r](y) ⇐⇒ y ∈ [−r, r], γ(y − z) ≥ 0 ∀ z ∈ [−r, r]. (B.13)
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B – Hysteresis operators

Thus (B.10) can be equivalently rewritten in the form of a variational inequality
|sr(t)| ≤ r ∀ t ∈ [0, T ],

(u̇(t)− ṡr(t))(sr(t)− z) ≥ 0 a. e. for all z ∈ [−r, r],

sr(0) = sr,0.

(B.14)

It is well known, see [24, 88, 91, 130], that for each u ∈W 1,1(0, T ) and each sr,0 ∈ [−r, r], the solution

sr ∈ W 1,1(0, T ) of (B.10) or (B.14) exists and is unique. We denote the stop operator, that is, the

solution mapping of (B.10) or (B.14), by sr : W 1,1(0, T )× [−r, r]→W 1,1(0, T ), and write

sr(t) = sr[u, s
r,0](t). (B.15)

Remark B.2. From (B.12) (or, equivalently, (B.13)) it follows

∂I[−1,1](y) yt = 0 . (B.16)

The above identity implies that, in the case of relaxed phase-dynamics of the form

γ ∈ ∂I[−1,1](y) + yt

(or, equivalently, in the case of the stop operator (B.10)), we obtain γ yt = y2
t ≥ 0.

We now turn our attention to the scalar play operator . For given memory parameter r > 0, input

function u ∈W 1,1(0, T ) and initial condition ξr,0 ∈ [u(0)− r, u(0) + r], we define the function ξr(t) as

the solution of the variational inequality
|u(t)− ξr(t)| ≤ r ∀ t ∈ [0, T ],

ξ̇r(t)(u(t)− ξr(t)− z) ≥ 0 a. e. for all z ∈ [−r, r],

ξr(0) = ξr,0.

(B.17)

This is indeed a scalar version of (B.2) with Z replaced by the interval [−r, r], ε replaced by u and

σp replaced by u− ξr.

The mapping pr : W 1,1(0, T ) × [−r, r] → W 1,1(0, T ) which with each u ∈ W 1,1(0, T ) associates the

solution

ξr(t) = pr[u, ξ
r,0](t)

in W 1,1(0, T ) of (B.17) is called the play. This concept goes back to [88].

Remark B.3. Comparing (B.14) and (B.17) we see that, provided we choose ξr,0 = u(0)− sr,0, the

play operator is related to the stop by the simple formula

ξr(t) = u(t)− sr(t). (B.18)
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−r

r

u
−A

A

sr

O

−r
r u

−A
A

ξr

O

Figure B.1. Input-output diagram for the stop (on the left) and play (on the right) in the case
u(t) = A sinωt for A > r > 0.

Remark B.4. The initially unperturbed state (“virginal state” in the terminology of [129]) is char-

acterized by the choice

sr(0) = Qr(u(0)) := max {−r,min {u(0), r}}

ξr(0) = Pr(u(0)) := min {u(0) + r,max {0, u(0)− r}} = u(0)−Qr(u(0))

of the initial conditions in (B.14) and (B.17), respectively. This is be the case of Section B.4, where

we use the simplified notation

sr[u] := sr[u,Qr(u(0))], pr[u] := pr[u, Pr(u(0))].

−r

r

u

sr

O u(0)

sr(0)

−r
r u

ξr

O u(0)

ξr(0)

Figure B.2. Canonical initial conditions for the stop (on the left) and play (on the right).

We give a brief survey of basic properties of these two operators that are needed in the thesis. The

proofs can be found in [91].

Proposition B.5 (Lipschitz continuity of the stop). For each r > 0, the mapping sr : W 1,1(0, T ) ×

[−r, r] → W 1,1(0, T ) is Lipschitz continuous and admits a Lipschitz continuous extension to sr :

C[0, T ]× [−r, r]→ C[0, T ] with Lipschitz constant 2.
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Also the dependence of sr(t) on r, which can be interpreted as a memory variable and represents the

memory depth, is Lipschitz continuous in the following sense.

Proposition B.6. For all u ∈ C[0, T ] and all t ∈ [0, T ] we have the implication

|sr1,0 − sr2,0| ≤ |r1 − r2| ∀r1, r2 > 0 ⇒ |sr1(t)− sr2(t)| ≤ |r1 − r2| ∀r1, r2 > 0.

A result like Proposition B.5 holds also for the play operator.

Proposition B.7 (Lipschitz continuity of the play). For each r > 0, the mapping pr : W 1,1(0, T )→

W 1,1(0, T ) is Lipschitz continuous and admits a Lipschitz continuous extension to pr : C[0, T ] →

C[0, T ].

It can also be proved that the variational inequalities (B.14) and (B.17) can be rewritten equivalently

in “energetic form”, that is, the energy balance equations

ξ̇r(t)u(t) =
d

dt

(
1

2
(ξr)2(t)

)
+ |rξ̇r(t)| (B.19)

sr(t) u̇(t) =
d

dt

(
1

2
(sr)2(t)

)
+ |rξ̇r(t)| (B.20)

hold a. e. in (0, T ). With this notation, ξ̇r(t)u(t) and sr(t) u̇(t) represent the power supplied to the

system: part of it is used for the increase of the corresponding potentials 1
2(ξr)2(t) and 1

2(sr)2(t), and

the rest |rξ̇r(t)| is dissipated. Furthermore, directly from the definitions (B.14) and (B.17) (compare

also with Remark B.2), we can infer that the identities

ṡr(t) u̇(t) = (ṡr(t))2, ξ̇r(t) u̇(t) = (ξ̇r(t))2 (B.21)

hold a. e. for every u ∈W 1,1(0, T ).

The play and the stop can be extended to space and time dependent inputs in the following way. For

each function u : Ω× (0, T )→ R such that for a. e. x ∈ Ω it holds u(x, ·) ∈W 1,1(0, T ) we define

sr[u](x, t) = sr[u(x, ·)](t), pr[u](x, t) = pr[u(x, ·)](t)

for all t ∈ [0, T ], where for the sake of simplicity we used the same symbol both for the operators and

their extensions. Note that they are applied at each point x ∈ Ω independently: the output depends

on u(x, ·)|[0,t], but not on u(y, ·)|[0,t] for any y /= x. Hence this model can represent memory effects,

but not space interaction.

By virtue of Propositions B.5 and B.7, the stop and the play are both Lipschitz continuous in

Lp(Ω;C[0, T ]) for all 1 ≤ p ≤ ∞.

The play and the stop are the main building blocks of more complex hysteresis operators. In the next

sections we are going to introduce the Preisach operator and the Prandtl-Ishlinskĭı operator.
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B.3 Hysteresis in capillarity phenomena: the Preisach operator

In order to define the Preisach hysteresis operator, we need to consider the whole continuous family

of variational inequalities (B.17) parameterized by r > 0. We then introduce the configuration space

Λ =
{
λ ∈W 1,∞(0,∞) : |λ′(r)| ≤ 1 a. e.

}
of memory configurations λ, and its subspaces

ΛK = {λ ∈ Λ : λ(r) = 0 for r ≥ K} .

By fixing K > 0 and an initial state λ−1 ∈ ΛK , the initial condition is chosen in the form

ξr(0) = max{u(0)− r,min{λ−1(r), u(0) + r}}.

We have for all r > 0 the initial bound

ξr(0) ≤ max{|u(0)|,K}. (B.22)

The proof of the following statement can be found in [91].

Proposition B.8. Let λ−1 ∈ ΛK be given, and let {pr : r > 0} be the family of play operators. Then

for every u ∈ C[0, T ] and every t ∈ [0, T ] we have

(i) pr[u, λ](t) = 0 for r ≥ K∗(t) := max{K,maxτ∈[0,t] |u(τ)|};

(ii) the function r → pr[u, λ](t) belongs to ΛK∗(t).

The pressure-saturation operator G appearing in the second part of this thesis is considered as a sum

G[p] = f(p) + G0[p], (B.23)

where f is a monotone function satisfying Hypothesis 5.1 (vi) and G0 is a Preisach operator that we

describe here.

Note that the original Preisach construction in [124] was based on averaging over a two-parameter

system of the so-called delayed relay operators, see also [130]. It was shown in [90] that the Preisach

definition of a hysteresis relationship w(t) = F [u](t) can be equivalently expressed by the following

integral formula. Given a nonnegative function ψ ∈ L∞(Ω;L1((0,∞)×R)) (the Preisach density), we

define the Preisach operator G0 : Lp(Ω;C[0, T ]→ Lp(Ω;C[0, T ])) for (x, t) ∈ Ω× [0, T ] as the integral

G0[p](x, t) =

∫ ∞
0

∫ pr[p](x,t)

0
ψ(x, r, v) dv dr, (B.24)

where pr is the play operator introduced in the previous Section B.2.
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Remark B.9. Definition (B.24) is meaningful (that is, the integral is finite) since pr[p](t) = 0 for r

sufficiently large, see Proposition B.8.

For our purposes, we adopt the following hypotheses on the Preisach density.

Hypothesis B.10. There exists a function ψ∗ ∈ L1(0,∞) such that for a. e. x ∈ Ω and a. e. v ∈ R

we have 0 ≤ ψ(x, r, v) ≤ ψ∗(r), 0 ≤ rψ(x, r, v) ≤ ψ∗(r) and we set

C∗ψ =

∫ ∞
0

ψ∗(r) dr.

Remark B.11. We require the above hypotheses to hold for mathematical purposes. Nevertheless

they are reasonable, since in applications the Preisach density decays exponentially.

The following statement is an easy consequence of Proposition B.7.

Proposition B.12 (Lipschitz continuity of the Preisach operator). The mapping

G0 : Lp(Ω;C[0, T ])→ Lp(Ω;C[0, T ])

is Lipschitz continuous for every 1 ≤ p ≤ ∞ with Lipschitz constant C∗ψ.

From (B.19) and (B.24) we immediately deduce the Preisach energy identity

G0[p]t p− U0[p]t = |D0[p]t| a. e. (B.25)

provided we define the Preisach potential U0 and the dissipation operator D0 by the integrals

U0[p](x, t) =

∫ ∞
0

∫ pr[p](x,t)

0
vψ(x, r, v) dv dr, D0[p](x, t) =

∫ ∞
0

∫ pr[p](x,t)

0
rψ(x, r, v) dv dr. (B.26)

Then, considering the whole operator G = f + G0, the following counterpart of (B.25)

G[p]t p = UG [p]t + |DG [p]t| (B.27)

holds with the choice

UG [p] = pf(p)−
∫ p

0
f(z) dz + U0[p], DG [p] = D0[p].

We denote by

Φ(p) :=

∫ p

0
f(z) dz, V (p) := pf(p)− Φ(p) =

∫ p

0
f ′(z)z dz, (B.28)

so that with this notation we can split the potential UG in hysteretic and nonhysteretic part, namely,

UG [p] = V (p) + U0[p]. (B.29)

From Hypothesis B.10 and identity (B.21) for the play we also obtain

0 < U0[p] ≤ C∗ψ(1 + |p|), |D0[p]t| ≤ C|pt|. (B.30)
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We similarly get, using (B.22),

|U0[p](x,0)| =

∣∣∣∣∣
∫ ∞

0

∫ pr[p0](x)

0
vψ(x, r, v) dv dr

∣∣∣∣∣ ≤ C∗ψ max{|p0(x)|,K} . (B.31)

Remark B.13. The Preisach potential is continuous from L2(Ω;C[0, T ]) to L1(Ω;C[0, T ]). Indeed,

defining

W (ξ, r) =

∫ ξ

0
v ψ(x, r, v) dv,

we see that Hypothesis B.10 yields

|W (ξ2, r)−W (ξ1, r)| ≤
(∣∣∣∣∫ ξ2

ξ1

|v| dv
∣∣∣∣)ψ∗(r) ≤ 1

2

∣∣|ξ2|2 − |ξ1|2
∣∣ψ∗(r) ≤ 1

2
(|ξ2|+ |ξ1|) |ξ2 − ξ1|ψ∗(r).

Thus, again from Hypothesis B.10 and from Proposition B.7,

|U0[p2]− U0[p1]|(x, t) =

∫ ∞
0
|W (pr[p2](x, t), r)−W (pr[p1](x, t), r)|dr

≤ 1

2
max
τ∈[0,t]

|p2 − p1|(x, τ)

∫ ∞
0

(|p2(x, t)|+ |p1(x, t)|+ 2r)ψ∗(r) dr

≤
C∗ψ
2

max
τ∈[0,t]

|p2 − p1|(x, τ) (|p2(x, t)|+ |p1(x, t)|+ 2) .

The Preisach operator admits also a family of “nonlinear” energies. As a consequence of (B.19), we

have for a. e. t the inequality

pr[p]t(p− pr[p]) ≥ 0,

thus

pr[p]t(h(p)− h(pr[p])) ≥ 0

for every nondecreasing function h : R→ R. Hence a counterpart of (B.25) in the form

G0[p]t h(p)− Uh[p]t ≥ 0 a. e. (B.32)

holds with a modified potential

Uh[p](x, t) =

∫ ∞
0

∫ pr[p](x,t)

0
h(v)ψ(x, r, v) dv dr. (B.33)

This is related to the fact that for every absolutely continuous nondecreasing function ĥ : R→ R, the

mapping Gĥ := G0 ◦ ĥ is also a Preisach operator, see [93].

B.4 Hysteresis in elastoplasticity II: the Prandtl-Ishlinskĭı operator

In the third part of this thesis we model elastoplasticity by means of a constitutive operator P0,

the Prandtl-Ishlinskĭı operator, which represents the elastoplastic part of the stress tensor σ. This

model is constructed as a linear combination of stops (B.10) or (B.14) with all possible yield points
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r > 0, and with initial conditions sr,0 chosen as in Remark B.4. Given a nonnegative function

γ̃ : [0, T ] × (0,∞) → [0,∞) such that γ̃(t, ·) ∈ L1(0,∞) for all t ∈ [0, T ], we define the Prandtl-

Ishlinskĭı operator by the integral

P0[ε](t) =

∫ ∞
0

γ̃(t, r) sr[ε](t) dr .

Identity (B.20) enables us to establish the energy balance for the Prandtl-Ishlinskĭı operator. Indeed,

if we define the Prantdl-Ishlinskĭı potential

V [ε](t) =
1

2

∫ ∞
0

γ̃(t, r) s2
r [ε](t) dr

and the dissipation operator

D[ε](t) =

∫ ∞
0

rγ̃(t, r)|pr[ε]t(t)| dr ,

we can write the Prandtl-Ishlinskĭı energy balance in the form

ε̇(t)P0[ε](t) =
d

dt
V [ε](t) +D[ε](t) . (B.34)

As a consequence of identity (B.21) for the play we obtain the estimate

D[ε](t) ≤ |ε̇(t)|
∫ ∞

0
rγ̃(t, r) dr . (B.35)

By imposing suitable boundedness hypotheses for γ̃(t, r) (and this is the case of Part III), we can

estimate the dissipation from above in terms of the input velocity.
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[11] G. Bertazzoni and S. Riccò. Lipschitz regularity results for a class of obstacle problems with

nearly linear growth. Journal of Elliptic and Parabolic Equations, 6(2):883–918, 2020.

221



BIBLIOGRAPHY

[12] O.V. Besov, V.P. Il’in, and S.M. Nikol’skii. Integral Representations of Functions and Embedding

Theorems. Scripta Series in Mathematics. Halsted Press (John Wiley & Sons), New York-

Toronto, Ont.-London, 1978 (Vol. 1), 1979 (Vol. 2).

[13] M. Bildhauer, M. Fuchs, and G. Mingione. A priori gradient bounds and local C1,α-estimates

for (double) obstacle problems under non-standard growth conditions. Zeitschrift für Analysis

und ihre Anwendungen, 20(4):959–985, 2001.

[14] M.A. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics,

12(2):155–164, 1941.
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[74] C. Gavioli and P. Krejč́ı. On the null controllability of the heat equation with hysteresis in

phase transition modeling. In Extended Abstracts Spring 2018, pages 63–71. Springer, 2019.

226



BIBLIOGRAPHY
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