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Abstract

Most recent Deep Learning techniques require large volumes of training data in
order to achieve human-like performance. Especially in Computer Vision, datasets
are expensive to create because they usually require a considerable manual effort
that can not be automated. Indeed, manual annotation is error-prone, inconsistent
for subjective tasks (e.g. age classification), and not applicable to particular
data (e.g. high frame-rate videos). For some tasks, like pose estimation and
tracking, an alternative to manual annotation implies the use of wearable sensors.
However, this approach is not feasible under some circumstances (e.g. in crowded
scenarios) since the need to wear sensors limits its application to controlled
environments. To overcome all the aforementioned limitations, we collected a set
of synthetic datasets exploiting a photorealistic videogame. By relying on a virtual
simulator, the annotations are error-free and always consistent as there is no manual
annotation involved. Moreover, our data is suitable for in-the-wild applications
as it contains multiple scenarios and a high variety of people appearances. In
addition, our datasets are privacy compliant as no real human was involved in
the data acquisition. Leveraging this newly collected data, extensive studies have
been conducted on a plethora of tasks. In particular, for 2D pose estimation and
tracking, we propose a deep network architecture that jointly extracts people body
parts and associates them across short temporal spans. Our model explicitly deals
with occluded body parts, by hallucinating plausible solutions of not visible joints.
For 3D pose estimation, we propose to use high-resolution volumetric heatmaps
to model joint locations, devising a simple and effective compression method
to drastically reduce the size of this representation. For attribute classification,
we overcome a common problem in surveillance, namely people occlusion, by
designing a network capable of hallucinating occluded people with a plausible
aspect. From a more practical point of view, we design an edge-AI system capable
of evaluating in real-time the COVID-19 contagion risk of a monitored area by
analyzing video streams. As synthetic data might suffer domain-shift related
problems, we further investigate image translation techniques for the tasks of head
pose estimation, attribute recognition and face landmark localization.





Abstract (Italian)

Le più recenti tecniche di Deep Learning richiedono enormi quantità di dati di
addestramento per ottenere prestazioni simili a quelle umane. Soprattutto in Com-
puter Vision, i Dataset sono costosi da creare in quanto richiedono uno sforzo
manuale considerevole che non può essere automatizzato. Infatti, l’annotazione
manuale è spesso soggetta ad errori, è incoerente per task soggettivi (ad es. age
classification) e non è applicabile ad ogni tipo di dato (ad es. video ad elevato
frame rate). Per alcuni task, come la pose estimation e il tracking, un’alternativa
all’annotazione manuale implica l’utilizzo di sensori indossabili. Tuttavia, questo
approccio non è praticabile in alcune circostanze (ad es. in scenari affollati),
poiché la necessità di indossare tali sensori limita la sua applicazione ad ambienti
controllati. Per superare questi limiti, abbiamo raccolto una serie di dati sintetici
sfruttando un videogioco fotorealistico. Grazie all’utilizzo di un simulatore vir-
tuale, le annotazioni sono prive di errori e sempre coerenti dato che non sono
coinvolte operazioni manuali. Inoltre, i nostri dati sono adatti per applicazioni in-
the-wild in quanto contengono un’elevata varietà di scenari e persone in ambienti
non controllati. Tali dati sono conformi alle normative sulla privacy, in quanto nes-
sun essere umano è stato coinvolto nell’acquisizione dei video. Sfruttando questi
nuovi dati, sono stati condotti studi approfonditi su una serie di task. In particolare,
per la pose estimation 2D e il tracking, abbiamo sviluppato un’architettura Deep
che estrae congiuntamente i giunti delle persone e le associa su brevi intervalli
temporali. Il nostro modello è in grado di ragionare esplicitamente riguardo a parti
del corpo occluse, proponendo soluzioni plausibili di giunti non visibili. Per la
pose estimation 3D, invece, abbiamo scelto di utilizzare heatmap volumetriche ad
alta risoluzione per modellare le posizioni dei giunti, ideando un metodo di com-
pressione semplice ed efficace per ridurre drasticamente le dimensioni di questa
rappresentazione. Per l’attribute classification, abbiamo proposto una soluzione
ad un problema comune nell’ambito della videosorveglianza, ovvero l’occlusione
delle persone, progettando una rete neurale in grado di generare porzioni di per-
sone occluse con un aspetto plausibile. Da un punto di vista pratico, abbiamo
progettato un sistema di edge-AI in grado di valutare in tempo reale il rischio di
contagio COVID-19 di un’area monitorata analizzando flussi video. Poiché i dati
sintetici potrebbero essere suscettibili al domain-shift, abbiamo approfondito le
tecniche di image-translation per head pose estimation, attribute recognition e face
landmark localization.
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Chapter 1

Introduction

Deep learning-based methods require large volumes of training data to achieve
good performance. However, data acquisition and annotation for computer vision
applications usually demand a substantial amount of manual effort, especially in
the video domain. This poses a significant problem, as data acquisition in crowded
public environments raises data privacy concerns as we are not allowed to simply
record and store data without explicit consent of all participants. Furthermore,
labeling instances of pedestrians in highly crowded-scenarios is very challenging
even for human annotators and may introduce errors in the training data. In this
thesis, we take the performance of pedestrian detection, multi-object tracking, pose
estimation and attributes recognition methods to the next level by generating large,
highly diverse synthetic datasets using a photo-realistic rendering game-engine.
This way, we can simulate highly-crowded and diverse environments with perfect
annotations.

The newly generated data enables a set of new challenging tasks that are not
feasible by solely relying on manually annotated datasets. Specifically, in Sec-
tion 3.1, we propose a deep network architecture that jointly extracts people body
parts and associates them across short temporal spans. Our model explicitly deals
with occluded body parts, by hallucinating plausible solutions of not visible joints.
The architecture trained on virtual data exhibits good generalization capabilities
also on public real tracking benchmarks, when image resolution and sharpness are
high enough, producing reliable tracklets useful for further batch data association
or re-id modules. Indeed, temporal continuity in the detection phase gains more
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importance when scene cluttering introduces the challenging problems of occluded
targets.

In Section 3.2 we present a novel approach for bottom-up multi-person 3D
human pose estimation from monocular RGB images. We propose to use high
resolution volumetric heatmaps to model joint locations, devising a simple and
effective compression method to drastically reduce the size of this representation.
At the core of the proposed method lies the Volumetric Heatmap Autoencoder, a
fully-convolutional network tasked with the compression of ground-truth heatmaps
into a dense intermediate representation. A second model, the Code Predictor,
is then trained to predict these codes, which can be decompressed at test time to
re-obtain the original representation. The experimental evaluation shows that this
method performs favorably when compared to state of the art on both multi-person
and single-person 3D human pose estimation datasets and, thanks to the novel
compression strategy, can process full-HD images at the constant run-time of 8
fps regardless of the number of subjects in the scene.

From a more practical perspective, in Section 3.3 we utilize our synthetic
datasets to benchmark an in-edge AI system designed to monitor the acceptance
of social distancing prevention measures during the COVID-19 pandemic. The
proposed system can model the risk of possible contagiousity in a given area
monitored by RGB cameras where people freely move and interact. The system,
called Inter-Homines, evaluates in real-time the contagion risk by analyzing video
streams: it is able to locate people in 3D space, calculate interpersonal distances
and predict risk levels by building dynamic maps of the monitored area. The
system has been tested on our synthetically generated datasets. Despite being
synthetic, our data features highly challenging and complex situations, peculiar
of surveillance scenarios, where people are often dominated by severe body part
occlusions and truncations. For those reasons, we believe this data is the perfect
choice to validate a system that targets global safety.

Finally, in Section 3.4, we design a network capable of generating a complete
image of a person, given an occluded version in input. The generated image should
depict a fully visible person similar to a completely visible people shape and able
to conserve similar visual attributes of the original one. For the purpose, we pro-
pose a new approach by integrating the state-of-the-art of Generative Adversarial
Networks (GAN) as well as discriminative attribute classification nets, with an
architecture specifically designed to de-occlude people shapes. This work could
be an initial step to many further researches to recognize people and their behavior
in an open crowded world.
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Deep learning methods trained on synthetically generated data usually suffer
domain-shift related problems. For this reason, we investigate domain adaptation
techniques in order to bridge the gap between “source domain” and “target domain”
for head pose estimation, attributes recognition and facial landmark localization.
In particular, in Section 4.1, we propose a complete framework for the estimation
of the head and shoulder pose relying on depth images only where a Face-from-
Depth component based on a Conditional GAN is able to hallucinate a face from
the corresponding depth image. In addition to a performance improvement, the
introduction of the Face-from-Depth module allows us to train the system on wider
datasets since more annotated data on gray-level images are usually available
rather than on depth ones.

Additionally, in Section 4.2, we further explore the capabilities of the Face-
from-Depth component. Although the network cannot reconstruct the exact
somatic features for unknown individual faces, it is capable of reconstructing
plausible faces as their appearance is accurate enough as it can be used in multiple
pattern recognition tasks. In fact, we test the network capability to hallucinate
plausible faces with two perceptual probes: face attributes classification and land-
mark localization. Experimentally, we demonstrate that this domain translation
technique can constitute a new way of exploiting depth data in advanced future
applications.
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Chapter 2

Literature Survey

In the following sections we briefly report other research approaches that have
tackled topics related to this thesis. The list of methods could be much longer but
we chose to restrict ourselves to the ones most relevant for the community and the
ones most relevant to us because of similarities with the proposed algorithms.

2.1 Datasets

Advances in computer vision have been driven by the constant growth of
available datasets and benchmarks. The Pascal VOC [59] was instrumental in
the progress of deep neural networks for object detection. The ImageNet [230]
dataset supported the development of visual classification technique that broadly
influenced the field. Microsoft COCO [149] support research on semantic instance
segmentation and object detection while the SUN [275] and Places [302] datasets
provides data for scene recognition.

Multi-Object Tracking.

In the tracking community, one of the pioneers is the KITTI benchmark [74],
which maintains ground truth for object detection and tracking. Sequences are col-
lected by a camera mounted on a car moving through traffic. However, bounding
box annotation is available for a small number of frames and data only repres-
ents the appearance of a single city in clear weather. nuScenes [26] is a newly
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released large-scale driving dataset that also provides object detection and tracking
annotation of people. It features sequences recorded in two different cities with
varying illuminations and weather conditions. However, like KITTI, nuScenes is
an autonomous driving dataset and lacks crowded scenarios specific of surveillance
contexts. The H3D benchmark [203] tries to cope with low pedestrian density
by providing ground truth for highly interactive and occluded traffic participants.
Yet, the challenges introduced are not comparable to the ones peculiar of the most
crowded areas, like airports, stations, mall or city centers.

Pedestrian Tracking
In the last few years, the MOTChallenge [47] suite played a pivotal role in the
improvement of the most recent multi-object tracking techniques by introducing
clean datasets and a precise framework. In particular, MOT17 [176] is the reference
benchmark for the evaluation of multi-person tracking for surveillance purposes.
It provides challenging sequences of crowded urban scenes with severe occlusions
and scale variations. MOT20 [48] is the latest benchmark of the MOTChallenge
suite which has been specifically designed to push the limits of the emerging
techniques when it comes to handling extremely crowded scenes.

People tracking is deeply entwined with person re-identification, as the most
successful tracking approaches showed the importance of learned reID features
[22]. Among the publicly available datasets that provide ID annotation, Mar-
ket1501 [300], CUHK03 [143] and DukeMTMC [223] are the most commonly
used by the tracking community.

Synthetic Data
Collecting data usually demand a tremendous amount of work as it involves a
series of manual procedures that can not be easily automated. Indeed, creating a
dataset often requires raw data collection, annotation and error check strategies in
a strict and well-defined protocol. As more data is constantly required to train ever
growing models, the cost of such datasets is becoming prohibitive. This burden
can either limit the quality or the quantity of data acquired, slowing down progress
in Computer Vision.

A possible solution to the aforementioned problems is to employ virtual worlds.
Simulated environments have been used to evaluate optical flow algorithms [10, 25,
221, 169, 127], depth estimation [127] visual odometry systems [89, 91, 298, 221]
and to benchmark the robustness of feature descriptors [118]. Simulated worlds
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have been utilized to test visual surveillance systems [254], evaluate multi-object
tracking [73, 63, 127], hand tracking models [240], human pose estimation [242,
63, 82] and crowd counting [266]. Virtual environments have also been applied to
pedestrian detection [163, 2], stereo reconstruction [170], and semantic segmenta-
tion [90, 229, 100, 221, 127, 222].

However, none of the previous attempts of creating synthetic datasets were
able to completely replace real data. In fact, the majority of simulated datasets are
only used to benchmark and validate new techniques, but they fail when models
trained on that data are applied to real world contexts. In fact, domain adaptation
techniques [21] are still required to effectively bridge the gap between synthetic
and real worlds. In this thesis, we go beyond this, by showing that synthetic
data, when varied enough, can be used as a full proxy for real world applications,
without having to rely on fine-tuning or domain adaptation techniques.

2.2 Human Behaviour Understanding
In this section we briefly report other research approaches closely related to Human
Behaviour Understanding for the tasks of people detection, 2D pose estimation and
tracking, 3D pose estimation, head detection, head pose estimation and attribute
recognition.

People Detection
One of the most popular two-stage deep object detectors is R-CNN [78] which
predicts object location from a set of region proposals [273], crops them and
classifies each using a second deep neural network. Fast R-CNN [77], instead,
directly crops image features to save computation. However, both approaches rely
on slow low-level region proposal techniques.

On the other hand, one-stage methods such as Faster R-CNN [217] generates
region candidates within the detection network. It samples bounding boxes with
fixed shape (anchors) around the image grid and classifies them into foreground or
background. Each proposal is then further classified into object classes. Several
improvements to one-stage detectors include anchor shape priors such as in YOLO
[211, 212], SSD’s different feature resolution [151], and loss re-weighting among
different samples [148].

Our people detection approach leverages CenterNet [304], which is closely
related to anchor based one-stage detectors. However, CenterNet does not require
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manual thresholds for foreground and background classification and does not
require Non-Maximum Suppression (NMS) [17] post processing as it simply
extracts local peaks in the keypoint heatmap [29, 63]. Moreover, CenterNet
utilizes an output stride of 4 which is 2 times larger than in traditional object
detectors [94, 93], making it more accurate.

Other methods utilize the same robust keypoint estimation network as Cen-
terNet: CornerNet [134] and ExtremeNet [305]. CornerNet detects the bounding
box corners as keypoints while ExtremeNet predicts the left, top, right and bottom
extremes of the objects. However, those methods require a combinatorial group-
ing stage as post processing, which considerably slows down the whole pipeline.
CenterNet, instead, simply extracts a single center point per object without the
need for grouping or post-processing.

People detection can be also achieved by pose estimation. The trend of pose
estimation [29, 186, 103] is very promising, but often is too computationally severe
to be implemented for real time edge applications with an unknown number of
people. Thus, in more practical applications, we adopt a simplified pose estimation
algorithm, that it is used together with the people detector to make the localization
more robust to occlusions.

Many 3D object detection methods have been proposed in literature. Among
them, 3D R-CNN [129] adds a further head to Faster R-CNN [217] which is
followed by a 3D projection. Also Deep Manta [31] exploits a coarse-to-fine
Faster R-CNN [217] trained on multiple tasks. Finally, Deep3Dbox [180] utilizes
a slow R-CNN [78] by first predicting 2D bounding boxes and then feeding each
detection into a 3D estimation network. However, those methods require huge
computational power and does not leverage constraints such as fixed camera and
flat ground plane.

2D Pose Estimation and Tracking
2D Pose Estimation. Human pose estimation in images has made important
progress over the last few years [30, 270, 99, 186, 24]. However, those techniques
assume only one person per image and are not suitable for videos of multiple
people that occlude each other. The natural extension of single-person pose
estimation, i.e, multi-person pose estimation, has therefore gained much import-
ance recently being able of handling situations with a varying number of people
[208, 103, 105, 198, 185, 29, 138]. Among them, [198] uses graph decomposition
and node labeling with local search while [185] introduces associative embed-
dings to simultaneously generate and group body joints detections. An end-to-end
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architecture for jointly learning body parts and their association is proposed by
[29] while [198], instead, exploits a two-stage approach, consisting of a person
detection stage followed by a keypoint estimation for each person. Moreover,
[208, 103, 105] jointly estimate multiple poses in the image, while also handling
truncations and occlusions. However, those methods still rely on a separate people
detector and do not perform well in cluttered situations. Single person pose es-
timation in videos has been addressed by several researchers, [110, 293, 207, 81].
Nevertheless, all those methods improve the pose estimation accuracy by exploit-
ing temporal smoothing constraints or optical flow data, but neglect the case of
multiple overlapping people.

Tracking. In recent years, online tracking has been successfully extended to
scenarios with multiple targets [287, 272, 231, 40, 8, 234]. In contrast to single
target tracking approaches, which rely on sophisticated appearance models to track
a single entity in subsequent frames, multiple target tracking does not rely solely
on appearance models. [287] exploits a high-performance detector with a deep
learning appearance feature while [231] presents an online method that encodes
long-term temporal dependencies across multiple cues. [40], on the other hand,
introduces spatial-temporal attention mechanism to handle the drift caused by
occlusion and interaction among targets. [8] solves the online multi-object tracking
problem by associating tracklets and detections in different ways according to
their confidence values and [234] exploits both high and low confidence target
detections in a probability hypothesis density particle filter framework.

Joint Learning. In this thesis, we address the problem of multi-person pose
estimation in videos jointly with the goal of multiple people tracking. Early works
that approach the problem [5, 109] do not tackle pose estimation and tracking
simultaneously, but rather target on multi-person tracking alone. More recent
methods [106, 102], which rely on graph partitioning approaches closely related
to [208, 103, 105], simultaneously estimate the pose of multiple people and track
them over time but do not cope with urban scenarios that are dominated by targets
occlusions, scene clutterness and scale variations. In contrast to [106, 102] we
do not tackle the problem as a graph partitioning approach. Instead, we aim
at simplifying the tracking problem by providing accurate detections robust to
occlusions by reasoning directly at video level.
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3D Pose Estimation

Single-Person 3D HPE. Single person 3D HPE from a monocular camera has
become extremely popular in the last few years. Literature can be classified into
three different categories: (i) approaches that first estimate 2D joints and then
project them to 3D space, (ii) works that jointly estimate 2D and 3D poses, (iii)
methods that learn the 3D pose directly from the RGB image.

The majority of works on single person 3D HPE first compute 2D poses and
leverages them to estimate 3D poses, either using off-the-shelf 2D HPE methods
[136, 98, 166, 171, 18, 179, 34] or by having a dedicated module in the 3D HPE
pipeline [189, 204, 147, 284].

Joint learning of 2D and 3D pose is also shown to be beneficial [173, 43, 283,
303, 255, 191, 117, 206], often in conjunction with large-scale datasets that only
provide 2D pose ground-truth and exploiting anatomical or structure priors.

Finally, recent works estimate 3D pose information directly [236, 205, 250,
158, 188, 219, 220]. Among these, Pavlakos et al. [205] were the first to propose
a fine discretization of the 3D space around the target by learning a coarse-to-fine
prediction scheme in an end to end fashion.

Multi-Person 3D HPE. To the best of our knowledge, very few works tackle
multi-person 3D HPE from monocular images. We can categorize them into two
classes: top-down and bottom-up approaches. Top-down methods first identify
bounding boxes likely to contain a person using third party detectors and then
perform single-person HPE for each person detected. Among them, Rogez et al.
[226] classifies bounding boxes into a set of K-poses. These poses are scored by
a classifier and refined using a regressor. The method implicitly reasons using
bounding boxes and produces multiple proposals per subject that need to be
accumulated and fused. Zanfir et al. [290] combine a single person model that
incorporates feed-forward initialization and semantic feedback, with additional
constraints such as ground plane estimation, mutual volume exclusion, and joint
inference. Dabral et al. [43], instead, propose a two-staged approach that first
estimates the 2D keypoints in every Region of Interest and then lifts the estimated
keypoints to 3D. Finally, Moon et al. [178] predict absolute 3D human root
localization, and root-relative 3D single-person for each person independently.
However, these methods heavily rely on the accuracy of the people detector and
do not scale well when facing scenes with dozens of people.

In contrast to top-down approaches, bottom-up methods produce multi-person
joint locations in a single shot, from which the 3D pose can be inferred even under
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strong occlusions. Mehta et al. [172], predict 2D and 3D poses for all subjects
in a single forward pass regardless of the number of people in the scene. They
exploit occlusion-robust pose-maps that store 3D coordinates at each joint 2D
pixel location. However, their 3D pose read-out strategy strongly depends on the
2D pose output which makes it limited by the accuracy of the 2D module. Their
method also struggles to resolve scenes with multiple overlapping people, due to
the missing 3D reasoning in their joint-to-person association process. Zanfir et
al. [291], on the other hand, utilize a multi-task deep neural network where the
person grouping problem is formulated as an integer program based on learned
body part scores parameterized by both 2D and 3D information. Similarly to
the latter, our method directly learns a mapping from image features to 3D joint
locations, with no need of explicit bounding box detections or 2D proxy poses,
while simultaneously being robust to heavy occlusions and multiple overlapping
people.

Multi-Person 3D Pose Representation. In a top-down framework, the simplest
3D pose representation can be expressed by a vector of joints. By casting 3D
HPE as a coordinate regression task, Rogez et al. [226] and Zanfir et al. [290]
indeed utilize x, y, z coordinates of the human joints w.r.t. a known root location.
On the other hand, bottom-up approaches require a representation whose coding
does not depend on the number of people (e.g. an image map). Among the
most recent methods, Mehta et al. [172] and Zanfir et al. [291] both utilize a
pose representation composed by joint-specific feature channels storing the 3D
coordinate x, y, or z at the joint/limb 2D pixel location. This representation,
however, suffers when multiple overlapping people are present in the scene. In
contrast to all these approaches, we adopted the volumetric heatmap representation
proposed by Pavlakos et al. [205], overcoming all the limitations that arise when
facing a multi-person context.

Head Detection.
With RGB or intensity images Viola and Jones [262] face detector is often ex-
ploited, e.g. in [75, 27, 216, 11, 239]. A different approach demands the head
location to a classifier, e.g., [260]. As reported in [174], these approaches suffer
due to the lack of generalization capabilities of exploited models, with different
acquisition devices and scene contexts.

Recently, deep learning approaches trained on huge face datasets allowed to
reach impressive results [282, 29]. However, very few works in literature propose
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methods for head detection or localization using only depth images as input. A
method based on a novel head descriptor and an LDA classifier is described in [37].
Every single pixel is classified as head or non-head, and all pixels are clustered
for final head detection. In [187] a fall detection system is proposed, in which
is included a module for head detection. Heads are detected only on moving
objects through a background suppression. In [65] patches extracted from depth
images are used to both compute the location and the pose of the head, through a
regression forest algorithm.

Head Pose Estimation
Head pose estimation approaches can rely on different input types: RGB images,
depth maps, or both. For this reason, in order to discuss related works, we adopt a
classification based on the input data types leveraged by each method.

RGB. RGB methods take monocular or stereo intensity images as input. In [271]
a discriminative approach to frame-by-frame tracking the head pose is presented,
based on the detection of the centers of both eyes, the tip of the nose and the center
of the mouth. Also, [261, 281, 168] leverage well visible facial features on RGB
input images, and [251] on 3D data. [56] proposed to predict pose parameters
from high-dimensional feature vectors, embedding a Gaussian mixture of linear
inverse-regression model into a dynamic Bayesian model. However, these methods
need facial (e.g. nose and eyes) or pose-dependent features, that should be always
visible: consequently, these methods fail when such features are not detected.

A different approach for head pose estimation involves 3D model registration
techniques. Firstly, Blanz and Vetter [15] propose a technique for modeling
textured 3D faces automatically generated from one or more photographs. Cao et
al. [28] exploited a 3D regression algorithm that learns an accurate, user-specific
face alignment model from an easily acquired set of training data, generated
from images of the user performing a sequence of predefined facial poses and
expressions. Furthermore, [248] proposed a hybrid approach, which exploits the
flexibility of a generative 3D facial model in a combination with a fitting algorithm.
However, those techniques often need a manual initialization which is indeed
critical for the effectiveness of the method.
A first attempt to use deep learning techniques combined with the regression
task in head the pose estimation problem has been performed by Ahn et al. [1],
through a CNN trained on RGB input images. Also, [193] exploits a CNN by
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mapping images of faces on a low dimensional manifold parameterized by pose.
In [276] a framework to jointly estimate the head pose and the face alignment
using global and local CNN features has been presented while a hybrid approach
based on CNN and Gaussian mixture was proposed in [133] and [122]. With deep
learning-based approaches, synthetic datasets were often used to train CNNs, that
generally require a huge amount of data [152].

Additionally, a bunch of methods regard head pose estimation as an optim-
ization problem: in [12] a multi-template, Iterative Closest Point (ICP) [156]
based gaze tracking system is introduced. Besides, other works use linear or
nonlinear regression with extremely low-resolution images [35]. HOG features
and a Gaussian locally-linear mapping model were used in [55] and, finally, recent
works produce head pose estimations performing a face alignment task [308] using
CNNs.
In general, RGB based methods are highly sensitive to illumination, partial occlu-
sions and bad image quality [182].

Depth. Those methods, on the other hand, exploit only range data to perform the
pose estimation task. A first attempt to localize accurate nose locations from depth
maps in order to perform head tracking and pose estimation was done in [161].
Consequently, [23] used geometric features to identify nose candidates to produce
the final pose estimation. A more robust approach was done in [65, 66, 64], where
a Random Regression Forest [146] algorithm is exploited for both head detection
and pose estimation purposes. Furthermore, in [199] facial point clouds were
matched with pose candidates, through a novel triangular surface patch descriptor.
As previously stated for RGB methods, those techniques require facial attributes,
thus are prone to errors when such features are not detected.

Remaining depth methods regard the head pose estimation task as an optimiz-
ation problem: [195] used the Particle Swarm Optimization (PSO) [120] while
[174] perform pose estimation by registering a morphable face model to the meas-
ured depth data combining PSO and ICP techniques. Furthermore, [126] used a
least-square technique to minimize the difference between the input depth change
rate and the prediction rate, to perform 3D head tracking. Finally, in [241] a
generative model is proposed, that unifies pose tracking and face model adaptation
on-the-fly.
However, no previous method that uses depth maps as the only input exploits
CNNs in an effective way. In this work we propose a method based on [20] which
uses depth maps to produce accurate head pose predictions by leveraging CNNs.
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RGB-D. RGB-D methods combine together RGB images and depth maps. A
first effort to leverage both data was done in [239], where a Neural Network is
exploited to perform head pose predictions. HOG features [45] were extracted
from RGB and depth images in [279, 232], then a Multi Layer Perceptron and
a linear SVM [96] were used for feature classification, respectively. In [119]
Random Forests and tensor regression algorithms are exploited while [260] used a
cascade of tree classifiers to tackle extreme head pose estimation task. Recently,
in [181] a multimodal CNN was proposed to estimate gaze direction: a regression
approach was only approximated through a classifier with a granularity of 1°
and with 360 classes. As for RGB and depth methods, these appearance-based
techniques are not robust enough: they still strongly depend on the detection of
visible facial features.
Following 3D model registration techniques, [11] leverage intensity and depth
data to build a 3D constrained local method for robust facial feature tracking.
Furthermore, in [75, 27, 16, 142] a 3D morphable model is fitted, using both
RGB and depth data to predict head pose. Finally, [216], based on a particle
filter formalism, presents a new method for 3D face pose tracking in color images
and depth data acquired by RGB-D cameras. Several works based on head pose
estimation, however, do not take in consideration the head localization task.

Attributes Recognition
Early works on attribute recognition usually treat attributes independently training
a different classifier for each attribute. Those methods involve the use of AdaBoost,
K Nearest Neighbors [306] or SVM [51]. More recently Convolutional Neural
Networks, enable researchers to mine the relationship between attributes and are
preferred on large scale object recognition problems because of their advanced
performances. There are large bodies of work on CNNs, like [116] which under-
take the task of occlusion and low-resolution robust facial gender classification,
or [88, 301] that predict facial attributes from faces in the wild. Many other
works like [137, 294] propose different methods to achieve attribute classification
like gender, smile and age in an unconstrained environment. However, those
technique involve only facial images and are not suitable for surveillance tasks.
Moreover [36, 131] address respectively the problem of describing people based
on clothing attribute and the problem of clothing identification. Nevertheless,
our work encompass the person as a whole and does not focus only on clothing
classification.

More recent works that rely on full-body images to infer human attributes are
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the Attribute Convolutional Net (ACN) and Deep learning based Multi-Attribute
joint Recognition model (DeepMAR), [249, 139]. ACN jointly learns different
attributes through a jointly-trained holistic CNN model, while DeepMAR utilizes
the prior knowledge in the object topology for attribute recognition. In [295, 79,
80] attributes classification is accomplished combining part-based models and
deep learning by training pose-normalized CNNs.

Additionally, MLCNN [307] splits the human body in 15 parts and train a
CNN for each of them while DeepMAR* [141] divides the whole body in three
parts which correspond to the headshoulder part, upper body and lower body of
a pedestrian respectively. Furthermore, [144] tackles the problem of attribute
recognition improving a part-based method within a deep hierarchical context.

Nevertheless, the majority of those methods relies on high resolution images
and does not encompass the problem of occlusion. There are previous works that
attempt to solve the problem of occlusion: [52] and [53] both leverage a large
image database to find similar faces in order to complete the missing patch, but
results are only shown for low resolution grey scale images.

2.3 Domain Translation
Domain translation is the task of learning a parametric translation function between
two domains. Generative image modeling with deep learning techniques has
received lots of attention in recent years. With the goal of learning a mapping
from input to output images, works on this field can be split into two categories:
unsupervised and supervised approaches.

Unsupervised
The first line of works follows the unsupervised setup. Here, the variational
autoencoders (VAE) proposed by [218] and [125] are the first popular methods
which apply a re-parameterization trick to maximize the lower bound of the data
likelihood. The most popular methods are indeed generative adversarial networks
(GAN) of [83] and [210], which simultaneously learn a generator network to gener-
ate image samples, and a discriminator network to discriminate generated samples
from real ones. GANs are capable of generating sharp images by exploiting the
adversarial loss instead of more canonical losses such as L1 or L2. Among the
most successful methods, Isola et al. [107] demonstrated that their model, namely
pix2pix, is effective at synthesizing photos from label maps, reconstructing objects
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from edge maps and colorizing images. Moreover, Wang et al. [268] proposed a
method that acts as a rendering engine: given a synthetic scene, their Style GAN is
able to render a realistic image. In [297] a cGAN is capable of translating an RGB
face image to depth data. Recently, a coupled generative adversarial networks
framework has been proposed [150], to generate pairs of corresponding images
in two different domains. In our preliminary work [20], we proposed one of the
first approach, based on a traditional CNN with common aspects with respect to
autoencoders [167] and Fully Convolutional Networks [155], that was trained to
compute the appearance of a face using the corresponding depth information.

Supervised
The second group of works produces images conditioned on either categories,
attributes, labels, images or texts. [277] proposed a Conditional Variational Au-
toencoder (CVAE) to achieve an image generation conditioned on attributes. On
the other hand, [177] proposed conditional GANs (CGAN) where both the gener-
ator and the discriminator are conditioned on extra information to perform category
specific image generation. [132] generated people in clothing, by conditioning
on the fine-grained body part segments. [213] proposed a novel deep architecture
and GAN formulation to effectively translating visual concepts from characters to
pixels, by adding textual information to both generator and discriminator. They
also further investigated the use of additional location, key-points, or segmentation
information, to generate images as did by [215, 214]. With only these visual hints
as condition and in contrast to our explicit condition on the occluded image, the
control exerted over the image generation procedure is still abstract. Many works
perform a conditioning over image generation not only on labels or texts but also
on images. [299] generated multi-view cloth images from only a single view
input by proposing a new image generation model that combines the strengths
of the variational inference and the GAN framework. [33] tackled the unseen
view inference by casting the problem in terms of tensor completion and adopt a
factorization approach to accommodate single-view images. [108] provides a gen-
eral purpose architecture that is effective at synthesizing photos from label maps,
reconstructing objects from edge maps, and colorizing images, among other tasks.
[280], [101], [286], [76] addressed the task of face image generation conditioned
on a reference image and a specific face viewpoint. Finally, [278, 285, 202, 264]
tackled the task of image inpainting where large missing regions have to be filled
based on the available visual data. Our work can be seen as a particular case of
inpainting, where the portion of the image to inpaint is not known a priori.
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Chapter 3

Human Behaviour
Understanding

In this chapter we discuss the core of the research done in these past three years,
where synthetic data plays an important role in all the topics related to human
behaviour understanding. In fact, the newly generated datasets enable a series
of possibilities that go from new challenging tasks to more strict benchmark
evaluations. In particular, in Section 3.1 synthetic data unlocks a new ambitious
task, namely joint occlusion detection, where joint locations must be predicted
even under severe occlusion. In Section 3.2 a new solution is enabled for tackling
multi-person 3D human pose estimation in a bottom up fashion. Thanks to the
newly generated data, we are able to evaluate a precise 3D pose estimation for
more than 60 people with constant running time regardless of the number of
subjects in the image. In Section 3.3 the synthetic data let us evaluate a system
that targets human safety with a challenging benchmark, increasing his robustness.
In Section 3.4 we leverage the generative power of GANs for hallucinating the
occluded portion of a person relying in ad hoc generated data for the purpose.
No one of the aforementioned tasks would have been feasible without exploiting
synthetic data, either for the lack of available public data or for the impossibility
of manual annotation and data collection.
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3.1 2D Pose Estimation and Tracking
Multi-People Tracking (MPT) is one of the most established fields in computer
vision. It has been recently fostered by the availability of comprehensive public
benchmarks and data [175, 4]. Often, MPT approaches have been casted in the
tracking by detection paradigm where a pedestrian detector extracts candidate
objects and a further association mechanism arranges them in a temporally con-
sistent trajectory [247, 87, 46]. Nevertheless, in the last years several researchers
[69, 247] raised the question on whether these two phases would be disentangled
or considered two sides of the same problem. The strong influence between detec-
tion accuracy and tracking performance [247] suggests considering detection and
tracking as two parts of a unique problem that should be addressed end-to-end at
least for short-term setups. In this work, we advocate for an integrated approach
between detection and short-term tracking that can serve as a proxy for more
complex association method either belonging to the tracking or re-id family of
techniques. To this aim, we propose:

• an end-to-end deep network, called THOPA-net (Temporal Heatmaps and
Occlusions based body Part Association) that jointly locates people body
parts and associates them across short temporal spans. This is achievable
with modern deep learning architectures that exhibit terrific performance in
body part location [29] but, mostly, neglect the temporal contribution. For
the purpose, we propose a bottom-up human pose estimation network with
a temporal coherency module that jointly enhances the detection accuracy
and allows for short-term tracking;

• an explicit method for dealing with occluded body parts that exploits the
capability of deep networks of hallucinating feasible solutions;

Results are very encouraging in their precision also in crowded scenes. Our exper-
iments tell us that the problem is less dependent on the details or the realism of
the shape than one could imagine; instead, it is more affected by the image quality
and resolution that are extremely high in Computer Graphics (CG) generated
datasets. Nevertheless, experiments on real MPT dataset [175, 4] demonstrate that
the model can transfer positively towards real scenarios.

3.1.1 Dataset
The most widely used publicly available datasets for human pose estimation in
videos are presented in Tab. 3.1. [296, 111, 32] provide annotations for the single-
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Table 3.1: Overview of the publicly available datasets for Pose Estimation and
MPT in videos. For each dataset we reported the numbers of clips, annotated
frames and people per frame, as well as the availability of 3D data, occlusion
labels, tracking information, pose estimation annotations and data type

Dataset #Clips #Frames #PpF 3D Occl. Tracking Pose Est. Type

Penn Action [296] 2,326 159,633 1 X sports
JHMDB [111] 5,100 31,838 1 X diverse
YouTube Pose [32] 50 5,000 1 X diverse
Video Pose 2.0 [235] 44 1,286 1 X diverse

Posetrack [4] 514 23,000 1-13 X X diverse
MOT-16 [176] 14 11,235 6-51 X X urban

JTA 512 460,800 0-60 X X X X urban

person subtask of person pose estimation. Only Posetrack [4] has a multi-person
perspective with tracking annotations but not provide them in the surveillance
context. The reference benchmark for evaluation of multi-person tracking is [176]
which provides challenging sequences of crowded urban scenes with severe occlu-
sions and scale variations. However, it pursuits no pose estimation task and only
provides bounding boxes as annotations. Our virtual world dataset instead, aim at
taking the best of both worlds by merging precise pose and tracking annotations
in realistic urban scenarios. This is indeed feasible when the ground truth can be
automatically computed exploiting highly photorealistic CG environments.

We collected a massive dataset JTA (Joint Track Auto) for pedestrian pose
estimation and tracking in urban scenarios by exploiting the highly photorealistic
video game Grand Theft Auto V developed by Rockstar North. The collected
videos feature a vast number of different body poses, in several urban scenarios
at varying illumination conditions and viewpoints, Figure 3.1. Moreover, every
clip comes with a precise annotation of visible and occluded body parts, people
tracking with 2D and 3D coordinates in the game virtual world. In terms of
completeness, our JTA dataset overcomes all the limitation of existing dataset in
terms of number of entities and available annotations, Table 3.1.

In order to virtually re-create real-world scenarios we manually directed the
scenes by developing a game modification that interacts synchronously with the
video game’s engine. The developed module allowed us to generate and record
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Figure 3.1: Examples from the JTA dataset exhibiting its variety in viewpoints,
number of people and scenarios. Ground truth joints are superimposed to the
original images. See supplementary material for further examples

natural pedestrian flows recreating people behaviors specific to the most crowded
areas. Moreover, exploiting the game’s APIs, the software can handle people
actions: in clips, people occasionally perform natural actions like sitting, running,
chatting, talking on the phone, drinking or smoking. Each video contains a number
of people ranging between 0 and 60 with an average of more than 21 people,
totaling almost 10M annotated body poses over 460,800 densely annotated frames.
The distance from the camera ranges between 0.1 and 100 meters, resulting in
pedestrian heights between 20 and 1100 pixels (see supplementary material for
further details).

We collected a set of 512 Full HD videos, 30 seconds long, recorded at 30 fps.
We halve the sequences into 256 videos for training and 256 for testing purposes.
Through the game modification, we access the game renderer for automatically
annotating the same 14 body parts in [3] and [4] in order to foster cross-dataset
experiments.

In each video, we assigned a unique identifier to every pedestrian that appears
in the scene. The identifier remains the same throughout the entire video even
if the pedestrian moves out the field-of-view. This feature could foster person
re-identification research despite not being the target of this work. Our dataset
also provides occlusion and self-occlusion flags. Each joint is marked as occluded
if it is not directly visible from the camera point of view and it is occluded by
objects or other pedestrians. Instead, a joint is marked as self-occluded if it is
occluded by the same person to whom the joint belongs. As for joints annotation,
occlusion annotation is captured by accessing the game renderer. JTA Dataset also
provides accurate 3D information: for each annotated joint, as well as having the
2D coordinates of the location in the image, we also provide the 3D coordinates of
the location in the simulator’s space. Differently from Posetrack [4], which uses
the annotated head bounding boxes as an estimation of the absolute scale of the
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Figure 3.2: Statistics about JTA Dataset. (a) Number of annotated pose per camera
distance (in meters). (b) Number of frames vs. the number of annotated poses per
frame

person, we provide the precise scale of each pedestrian through the 3D annotation.
Figure 3.2 shows information about camera distances and poses per frame of

the JTA Dataset. Figure 3.3 and Figure 3.4 provide examples from the dataset
exhibiting its variety in viewpoints, number of people, illuminations and scenarios.
The dataset, along with the game modification, are freely accessible at http:
//imagelab.ing.unimore.it/jta.

3.1.2 Method
Our approach exploits both intra-frame and inter-frame information in order to
jointly solve the problem of multi-person pose estimation and tracking in videos.
For individual frames, we extended the architecture in [29] by integrating a branch
for handling occluded joints in the detection process. Subsequently, we propose
a temporal linking network to integrate temporal consistency in the process and
jointly achieve detection and short-term tracking. The Single Image model, Figure
3.5, takes an RGB frame of size w × h as input and produces, as output, the pose
prediction for every person in the image. Conversely, the complete architecture,
Figure 3.6, takes a clip of N frames as input and outputs the pose prediction for
the last frame of the clip and the temporal links with the previous frame.

Single Image Pose Prediction

Our single image model, Figure 3.5, consists of an initial feature extractor based on
the first 10 layers of VGG-19 [245] pretrained on COCO 2016 keypoints dataset
[149]. The computed feature maps are subsequently processed by a three-branch
multi-stage CNN where each branch focuses on a different aspect of body pose
estimation: the first branch predicts the heatmaps of the visible parts, the second
branch predicts the heatmaps of the occluded parts and the third branch predicts
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Figure 3.3: Some images taken from JTA Dataset (I)
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Figure 3.4: Some images taken from JTA Dataset (II)
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the part affinity fields (PAFs), which are vector fields used to link parts together.
Note that, oppositely to [29], we employed a different branch for the occlusion
detection task. It is straightforward that visible and occluded body parts detection
are two related but distinct tasks. The features used by the network in order to
detect the location of a body part are different from those needed to estimate the
location of an occluded one. Nevertheless, the two problems are entangled together
since visible parts allow to estimate the missing ones. In fact, the network exploits
contextual cues in order to perform the desired prediction, and the presence of a
joint is indeed strongly influenced by the person’s silhouette (e.g. a foot detection
mechanism relies heavily on the presence of a leg, thus a visible foot detection
may trigger even though the foot is not completely visible). Each branch is, in turn,
an iterative predictor that refines the predictions at each subsequent stage applying
intermediate supervision in order to address the vanishing gradient problem. Apart
from the first stage, which takes as input only the features provided by VGG-19,
the consecutive stages integrate the same features with the predictions from the
branches at the previous stage. Consequently, information flow across the different
branches and in particular both visible and occluded joints detection are entangled
in the process.
We apply, for each branch, a different loss function at the end of each stage. The
loss is a SSE loss between estimated predictions and ground truth, masked by a
mask M in order to not penalize occluded joints in the visible branch. Specifically,
for the generic output of each branch Xs of stage s ∈ {1, . . . , S} and the ground
truth X∗ we have the loss function:

lsX =
∑
i

w′∑
x=1

h′∑
y=1

M(x, y)� (Xs
i (x, y)−X∗i (x, y))2, (3.1)

where X is in turn H for visible joints heatmaps, O for occluded ones and P for
affinity fields; the outer summation spans the J number of joints for H and O
and the C number of limbs for P . Hs, Os and P s sizes (w′, h′) are eight times
smaller than the input due to VGG19 max pooling operations.

Eventually, the overall objective becomes L =
∑S
s=1(lsH + lsO + lsP ).

Temporal Consistency Branch

In order to jointly solve the problem of multi-person pose estimation and tracking
we enhance the Single Image model by adding our novel temporal network, Figure
3.6. The temporal model takes as inputN RGB frames of size w×h and produces,
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Figure 3.5: Architecture of the three-branch multi-stage CNN with corresponding
kernel size (k) and number of feature maps (n) indicated for each convolutional
layer

as output, the temporal affinity fields (TAFs), as well as heatmaps and part affinity
fields. TAFs, like PAFs, are vector fields that link body parts but, oppositely
to PAFs, are focused on temporal links instead of spatial ones. In detail, PAFs
connect different types of body parts intra-frame while TAFs, instead, connect the
same types of body parts inter-frame, e.g, they connect heads belonging to the
same person in two subsequent frames. The TAF field is, in fact, a proxy of the
motion of the body parts and provide the expected location of the same body part in
the previous frame and can be used both for boosting the body parts detection and
for associating body parts detections in time. At a given time t0, our architecture
takes frames It ∈ Rw×h×3 with t ∈ {t0, t−τ , t−2τ , . . . , t−Nτ+1} and pushes
them through the VGG19 feature extractor, described in Section 3.1.2, to obtain N
feature tensors f t ∈ Rw′×h′×r where r is the number of channels of the feature
tensor. Those tensors are then concatenated over the temporal dimension obtaining
F ∈ Rw′×h′×r×N . F is consecutively fed to a cascade of 3D convolution blocks
that, in turn, capture the temporal patterns of the body part features and distill
them by temporal max pooling until we achieve a feature tensor F ′ ∈ Rw′×h′×r,
Figure 3.6. As in Section 3.1.2, the feature maps are passed through a multi-branch
multi-stage CNN.

Moreover, we add to the Single Image architecture a fourth branch for handling
the TAFs prediction. As a consequence, after the first stage, temporal information
flow to all the branches of the network and acts as a prior for body part estimation
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(visible and occluded) and PAFs computation. The complete network objective
function then becomes L =

∑S
s=1(lsH + lsO + lsP + lsT ) where

lsT =

J∑
j=1

w′∑
x=1

h′∑
y=1

M(x, y)� (T sj (x, y)− T ∗j (x, y))2 (3.2)

is the loss function computed between the ground truth T ∗j and the prediction T sj
at each stage s. The set T = (T1, T2, . . . , Tj) has J vector fields, one for each
part, with Tj ∈ Rw×h, j ∈ {1, . . . , J}.

Training Procedure

During training, we generate both the ground truth heatmaps H∗ and O∗ from the
annotated keypoint coordinates by placing at the keypoint location a 2D Gaussian
with its variance conditioned by the true metric distance, d, of the keypoint from
the camera. Oppositely to [29], by smoothing the Gaussian using distances, it
is possible to achieve heatmaps of different sizes proportional to the scale of the
person itself. This process is of particular importance to force scale awareness in
the network and avoiding the need of multi scale branches. For example, given a
visible heatmap Hj , let qj,k ∈ R2 be the ground truth location of the body part
j of the person k. For each body part j the ground truth H∗j at location p ∈ R2
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Figure 3.7: (a) Visualization of TAFs for different parts: for clarity, we show a
single joint TAF for each person where color encodes direction. (b) Pose prediction
performed on JTA dataset which distinguish between visible and occluded joints

results:

H∗j (p) = max
k

exp

(
−
∥∥p− qj,k∥∥22

σ2

)
, σ = exp

(
1− d

α

)
(3.3)

where σ regulates the spread of the peak in function of the distance d of each joint
from the camera. In our experiments we choose α equals to 20.
Instead, each location p of ground truth part affinity fields P ∗c,k is equal to the
unit vector (with the same direction of the limb) if the point p belongs to the limb.
The points belonging to the limb are those within a distance threshold of the line
segment that connect the pair of body parts.

For each frame, the ground truth part affinity fields are the two channels image
containing the average of the PAFs of all people.

As previously stated, by extending the concept of PAFs to the temporal dimen-
sion, we propose the novel TAFs representation which encodes short-term tubes
of body parts across multiple frames (as shown in Figure 3.7.(b)). The temporal
affinity field is a 2D vector field, for each body part, that points to the location
of the same body part in the previous frame. Consider a body part j of a person
k at frame t and let qt−1j,k and qtj,k be their ground truth positions at frame t − 1
and t respectively. If a point p lies on the path crossed by the body part j between
t− 1 and t, the value at T ∗j,k(p) is a unit vector pointing from j at time t to j at
time t− 1; for all other points the vector is zero. We computed ground truth TAFs
using the same strategy exploited for PAFs.
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Spatio-Temporal Multi-Person Joints Association

In order to connect body parts into skeletons we take into account two different
contributions both at frame level (PAF) and at temporal level (TAF). First, the joints
heatmaps are non-maxima suppressed to obtain a set of discrete locations, Dj , for
multiple people, where Dj = {dmj : for j ∈ {1, . . . , J},m ∈ {1, . . . , Nj}} and
Nj is the number of candidates of part j, and J the number of joint types.
We associate joints by defining a variable zmnj1j2 ∈ {0, 1} to indicate whether two
joints candidates dmj1 and dnj2 are connected. Consequently, the objective is to
find the optimal assignment for the set of possible connections, Z = {zmnj1j2 : for
j1, j2 ∈ {1, . . . , J},m ∈ {1, . . . , Nj1}, n ∈ {1, . . . , Nj2}}. To this aim we score
every candidate limb (i.e. a pair of joints) spatially and temporally by computing
the line integral along PAFs, E and TAFs, G:

E(dj1 , dj2) =

∫ u=1

u=0

PAF (p(u)) · dj2 − dj1∥∥dj2 − dj1∥∥2 du (3.4)

G(dj , d̂j) =

∫ u=1

u=0

TAF (t(u)) · d̂j − dj∥∥d̂j − dj∥∥2 du (3.5)

where p(u) linearly interpolates the locations along the line connecting two joints
dj2 and dj1 and t(u) acts analogously for two joints d̂j at frame t− 1 and dj at
frame t.
We then maximize the overall association score Ec for limb type c and every
subset of allowed connection Zc (i.e. anatomically plausible connections):

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

(E(dmj1 , d
n
j2) + αE(d̂mj1 , d̂

n
j2)) · zmnj1j2 , (3.6)

subject to
∑
n∈Dj2

zmnj1j2 ≤ 1,∀m ∈ Dj1 and
∑
n∈Dj2

zmnj1j2 ≤ 1,∀m ∈ Dj1

where

d̂mj1 = arg max
d̂bj1

G(dmj1 , d̂
b
j1), d̂nj2 = arg max

d̂qj2

G(dnj2 , d̂
q
j2

) (3.7)

are the joints at frame t− 1 that maximize the temporal consistency along the TAF
where b and q span the indexes of the people detected at the previous frame.
In principle, Equation (3.6) mixes both the contribution coming from the PAF in
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Figure 3.8: Qualitative results of THOPA-net on JTA (top row), MOT-16 (middle
row) and PoseTrack (bottom row)

the current frame and the contribution coming from the PAF obtained by warping,
in the previous frame, the candidate joints along the best TAF lines.
In order to speed up the computation, we maximize iteratively Equation (3.6)
by considering only the subsets of joints inside a radius at twice the size of the
skeletons in the previous frame at the same location. The complete skeletons are
then built, by maximizing, for the limbs type set C, E =

∑C
c=1 maxZc Ec.

3.1.3 Experiments

We conducted experiments in two different contexts, either on our virtual world
dataset JTA and on real data. In the virtual world scenario, we evaluated the
capability of the proposed architecture of both reliably extracting people joints
and successfully associating them along the temporal dimension. Real data experi-
ments instead, aimed at empirically demonstrating that our virtual world dataset
can function as a good proxy for training deep models and to which extent it is
necessary to fine-tune the network on real data. In fact, we purposely conducted
the experiments either without retraining the network and testing it out-of-the-box
or by fine-tuning the network on real data. Moreover, all the tracking experiments
do not explicitly model the target appearance, but visual appearance is only taken
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Table 3.2: Detection results on JTA Dataset

Joints Detection
Mean Average Prec. Precision Recall F1 Score

Single Image no occ 50.9 81.5 64.1 71.6
Single Image + occ 56.3 87.9 71.8 78.4
Complete 59.3 92.1 77.4 83.9
[29] 50.1 86.3 55.8 69.5

into account when extracting TAFs, thus exploited only for very short-term target
association (namely tracklet construction).

Experiments on JTA

We tested our proposal on our virtual world scenario in order to evaluate both
the joints extraction accuracy and the tracking capabilities. We started from the
pre-trained VGG19 weights as the feature extractor and we trained our model end-
to-end allowing features fine-tuning. For the temporal branch we randomly split
every sequence into 1 second long clips. Subsequently, we uniformly subsampled
every clip obtaining 8 frames that are inputted to the temporal branch. The train
was performed by using ADAM optimizer with a learning rate of 10−4 and batch
size equal to 16. We purposely kept the batch size relatively small because every
frame carries a high number of different joints at different scales and locations
leading to a reliable average gradient for the task.

Detection experiment We first performed a detection experiment in order to
quantify the contribution of the individual branch of our architecture. The detection
experiment evaluated the location of people joints and the overall bounding box
accuracy in terms of detection metrics. Analogously to [106], we used the PCKh
(head-normalized probability of correct keypoint) metric, which considers a body
joint to be correctly localized if the predicted location of the joint is within a
certain threshold from the true location. Table 3.2 reports the results in term of
mean average precision of joints location and bounding box detection metrics
such as precision, recall and F1-score with an intersection over union threshold
of 50%. We additionally ablated different branch of our architecture in order to
empirically measure the contribution of every individual branch (i.e. the occlusion
branch and the temporal branch). By observing the Table we can confirm that
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Table 3.3: Mean Average Precision (mAP) per body joint. Experiments are
performed on JTA Dataset

Head Shou Elb Wri Hip Knee Ankl Total
Single Image no occ 63.5 55.1 48.4 41.1 55.0 46.4 38.5 50.9
Single Image + occ 70.5 61.3 53.7 45.9 61.0 51.6 42.8 56.3
Complete 74.4 64.8 56.9 48.5 64.3 54.5 45.1 59.3
[29] 62.5 54.3 47.5 40.6 54.0 45.5 37.9 50.1

the network benefits from the presence of the occlusion estimation branch both
in terms of joints location accuracy and detection performances. This is due to
two different positive effects given by occluded joints. The first is the chance
of estimate/guess the position of a person even if visually strong occluded, the
second is about maximizing the presence of body joints that greatly simplifies their
clustering into skeletons and consequently the detection metrics results improved,
Figure 3.7.(b). Moreover, the temporal branch strengthens this process by adding
short-term temporal consistency to the joints location. In fact, results indicate this
boosts the performance leading to a more accurate joints detection in presence of
people that overlaps in the scene. The improvement is due to the TAFs contribution
that helps to disambiguate the association among body joints on the basis of the
target direction, Figure 3.7.(a). Additionally we compared with [29] that was
retrained on JTA and tested at 2 different scales (since the method does not deal
with multiple scales), against which we score positively. The architecture in [29] is
the same as our Single Image no occ model in Table 3.2, with the only difference
that the latter has been trained with distance rescaled versions of heatmaps and
PAFs, according to Section 3.1.2, and it deals with multiple scales without any
input rescaling operation. Table 3.3 also report per joint results in term of mean
average precision .

Tracking Experiment We additionally tested the extent of disentanglement
between temporal short-term detection and people tracking by performing a com-
plete tracking experiments on the JTA test set. The experiments have been carried
out by processing 1 second clips with a stride of 1 frame and associating targets
using a local nearest neighbour approach maximizing the TAFs scores. As previ-
ously introduced, the purpose of the experiment was to empirically validate the
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Table 3.4: Tracking Results on JTA Dataset

MOTA IDF1 MT ML FP FN IDs FRAG
[247] + our det 57.4 57.3 45.3 21.7 40096 103831 15236 15569
[247] + DPM det 31.5 27.6 25.3 41.7 80096 170662 10575 19069
THOPA-net 59.3 63.2 48.1 19.4 40096 103662 10214 15211

claim that mixing short-term tracking and detection can still provide acceptable
overall tracking performance even when adopting a simple association frame-
by-frame method. Secondly, this is indeed more evident when the association
algorithm exploits more than a single control point (e.g. usually the bounding box
lower midpoint), which is the case of tracking sets of joints. For the purpose, we
compared against a hungarian based baseline (acting on the lower midpoint of
the bounding box), [247], inputed with either our detections and DPM [70] ones.
Table 3.4 reports results in terms of Clear MOT tracking metrics [175]. Results
indicate that the network trained on the virtual world scores positively in terms of
tracked entities but suffers of a high number of IDs and FRAGS. This behavior is
motivated by the absence of a strong appearance model capable of re-associating
the targets after long occlusions. Additionally, the motion model is purposely
simple suggesting that a batch tracklet association procedure can lead to longer
tracks and reduce switches and fragmentations.

Tracking people in real data

We tested our solution on real data with the purpose of evaluating the generalization
capabilities of our model and its effectiveness in real surveillance scenarios. We
choose to adopt two datasets: the commonly used MOT-16 Challenge Benchmark
[175] and the new PoseTrack Dataset [4].

MOT-16. The MOT-16 Challenge Benchmark consists of 7 sequences in urban
areas with varying resolution from 1980 × 1024 to 640 × 480 for a total number
of approx 5000 frames and 3.5 minutes length. The benchmark exhibits strong
challenges in terms of viewpoint changes, from top-mounted surveillance cameras
to street level ones, Figure 3.8. All results are expressed in terms of Clear MOT
metrics according to the benchmark protocol [175] and as for the virtual world
tracking experiment the tracks were associated by maximizing the TAF scores
between detections. The network was end-to-end fine-tuned, with the exception of
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Table 3.5: Results on MOT-16 benchmark ranked by MOTA score

MOTA IDF1 MT ML FP FN IDs FRAG
[287] 66.1 65.1 34.0 20.8 5061 55914 805 3093
[272] 61.4 62.2 32.8 18.2 12852 56668 781 2008
THOPA-net 56.0 29.2 25.2 27.9 9182 67059 4064 5557
[231] 47.2 46.3 14.0 41.6 2681 92856 774 1675
[40] 46.0 50.0 14.6 43.6 6895 91117 473 1422
[8] 43.9 45.1 10.7 44.4 6450 95175 676 1795
[234] 38.8 42.4 7.9 49.1 8114 102452 965 1657

Table 3.6: Results on MOT-16 benchmark per sequence

Sequence MOTA IDF1 MT ML FP FN IDs FRAG
MOT16-01 36.8 30.8 30.4 13.0 1110 2710 222 280
MOT16-03 71.6 34.7 46.6 10.1 1156 26839 1723 2454
MOT16-06 55.1 14.4 31.7 29.0 721 4159 302 323
MOT16-07 41.9 29.8 18.5 16.7 1233 7759 489 713
MOT16-08 32.5 22.7 15.9 34.9 862 10109 327 476
MOT16-12 38.5 20.7 20.9 38.4 958 4027 115 247
MOT16-14 16.2 13.0 4.3 40.2 3142 11456 886 1064

the occlusion branch. Fine-tuning was performed by considering the ground truth
detections and inserting a default skeleton when our Single Image model scored a
false negative obtaining an automatically annotated dataset.

Table 3.5 reports the results of our fine-tuned network compared with the best
published state of the art competitors up to now. We include in the Table only
online trackers, that are referred on the benchmark website as causal methods.
The motivation is that our method performs tracking at low level, using TAFs,
for framewise temporal association thus it configures as an online tracker. Addi-
tionally, it is always possible to consider our tracklets as an intermediate output
and perform a subsequent global association by possibly assessing additional high
level information such as strong appearance cues and re-id techniques. Our method
performs positively in terms of MOTA placing at the top positions. We observe
a high IDS value and FRAG given by the fact that our output is an intermediate
step between detections and long-term tracking. Nevertheless, we remark that
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Figure 3.9: Bar-chart of THOPA-net (trained on JTA dataset) results on MOT16
training set with and without fine-tuning on real data

we purposely choose a trivial association method that does not force any strong
continuity in terms of target trajectories, instead, we argue that given temporal
consistency to the target detections the association among them results satisfying
for short-term tracking applications. This is possible also thanks to the fact that
we use several control points for association (i.e. the joints) that are in fact reliable
cues when objects are close each other and the scene is cluttered. Contrary to [287]
and [272] our model do not employ strong appearance cues for re-identification.
This suggests that the performance can be further improved by plugging a re-id
module that connects tracks when targets are lost. Moreover, contrary to [231]
we do not employ complex recurrent architecture to encode long-term dynamics.
Nevertheless, the performances are comparable suggesting that when a tracker
disposes of a plausible target candidate, even if occluded, the association simplify
to keep subsequent frames temporally consistent that is indeed what our TAF
branch do. Figure 3.8 shows qualitative results of our proposal.

Table 3.6 reports the metrics per sequence performed on MOT-16. A further
experiment was conducted on the MOT-16 benchmark training set Figure 3.9 where
we compared the MOTA scored by our model with and without fine-tuning on real
data. Fine-tuning was performed by considering the ground truth detections and
inserting a default skeleton when our Single Image model scored a false negative
obtaining an automatically annotated dataset. The network was subsequently
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Figure 3.10: Results on PoseTrack dataset compared with a BBox-Tracking +
CPM (trained on MPII) baseline (used also in PoseTrack; red/green lines are the
average of performances on the selected sequences to avoid plot clutter)

end-to-end fine-tuned, with the exception of the occlusion branch. By observing
the results, we can conclude that the features extracted on our virtual world are
still capable of extracting people joints in real-world images with a high resolution
and sharpness (MOT16-09, MOT16-11) but with limited generalization as the
image quality decreases. Nevertheless, even with a limited fine-tuning the network
achieves the capability of adapting the features even in presence of a self-annotated
dataset with potential errors and inaccuracies.

PoseTrack. The PoseTrack Dataset is a large-scale benchmark for multi-person
pose estimation and tracking in videos. It contains 550 videos including around
23,000 annotated frames, split into 292, 50, 208 videos for training, validation
and testing, respectively. The annotations include 15 body keypoints location, a
unique person id and a head bounding box for each person instance. We tested
our solution on a subset of PoseTrack Dataset with surveillance like features
(e.g. people standing, walking, etc.). We remark that PoseTack exhibits different
features w.r.t. surveillance context in which the targets number is higher and the
camera FoV is mostly a far FoV. In Fig. 3.10 we show MOTA and mAP results of
THOPA-net on PoseTrack sequences (solely using synthetic data for training). We
used training and validation sequences in order to obtain per-sequence results. The
results are satisfying (see Fig 3.8) even if the network is trained solely on CG data
suggesting it could be a viable solution for fostering research in the joint tracking
field, especially for urban scenarios where real joint tracking datasets are missing.
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3.2 3D Pose Estimation
Human Pose Estimation (HPE) has seen significant progress in recent years,
mainly thanks to deep Convolutional Neural Networks (CNNs). Best performing
methods on 2D HPE are all leveraging heatmaps to predict body joint locations
[29, 274, 253]. Heatmaps have also been extended for 3D HPE, showing promising
results in single person contexts [236, 205, 250].

Despite their good performance, these methods do not easily generalize to
multi-person 3D HPE, mainly because of their high demands for memory and
computation. This drawback also limits the resolution of those maps, that have to
be kept small, leading to quantization errors. Using larger volumetric heatmaps
can address those issues, but at the cost of extra storage, computation and training
complexity.

In this thesis, we propose a simple solution to the aforementioned problems
that allows us to directly predict high-resolution volumetric heatmaps while keep-
ing storage and computation small. This new solution enables our method to
tackle multi-person 3D HPE using heatmaps in a single-shot bottom-up fashion.
Moreover, thanks to our high-resolution output, we are able to produce fine-grained
absolute 3D predictions even in single person contexts. This allows our method to
achieve state of the art performance on the most popular single person benchmark
[104].

The core of our proposal relies on the creation of an alternative ground-truth
representation that preserves the most informative content of the original ground-
truth but reduces its memory footprint. Indeed, this new compressed representation
is used as the target ground-truth during our network training. We named this
solution LoCO, Learning on Compressed Output.

By leveraging on the analogy between compression and dimensionality reduc-
tion on sparse signals [265, 238, 6], we empirically follow the intuition that 3D
body poses can be represented in an alternative space where data redundancy is
exploited towards a compact representation. This is done by minimizing the loss
of information while keeping the spatial nature of the representation, a task for
which convolutional architectures are particularly suitable. Concurrently w.r.t. our
proposal, compression-based approaches have been effectively used for both data-
set distillation and input compression [267, 257] but, to the best of our knowledge,
this is the first time they are applied to ground truth remapping. For this purpose,
deep self-supervised networks such as autoencoders represent a natural choice for
searching, in a data-driven way, for an intermediate representation.

Specifically, our HPE pipeline consists of two modules: at first, the pretrained
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Volumetric Heatmap Autoencoder is used to obtain a smaller/denser representation
of the volumetric heatmaps. These “codes" are then used to supervise the Code
Predictor, which aims at estimating multiple 3D joint locations from a monocular
RGB input.

To summarize, the novel aspects of our proposal are:

• We propose a simple and effective method that maps high-resolution volu-
metric heatmaps to a compact and more tractable representation. This saves
memory and computational resources while keeping most of the informative
content.

• This new data representation enables the adoption of volumetric heatmaps to
tackle multi-person 3D HPE in a bottom-up fashion, an otherwise intractable
problem. Experiments on both real [114] and simulated environments [63]
(see Fig. 3.11) show promising results even in 100 meters wide scenes
with more than 50 people. Our method only requires a single forward pass
and can be applied with constant running time regardless of the number of
subjects in the scene.

• We further demonstrate the generalization capabilities of LoCO by applying
it to a single person context. Our fine-grained predictions establish a new
state of the art on Human3.6m [104] among bottom-up methods.

3.2.1 Method
The following subsections summarize the key elements of LoCO. Section 3.2.1
gives a preliminary definition of the chosen volumetric heatmap representation and
elaborates on its merits. Section 3.2.1 illustrates our proposed data mapping which
addresses the high dimensional nature of the volumetric heatmaps by producing a
compact and more tractable representation. Next, in Section 3.2.1, we describe
how our strategy can be easily exploited to effectively tackle the problem of multi-
person 3D HPE in a single-shot bottom-up fashion. Finally, Section 3.2.1 illustrates
our simple refining approach that prevents poses from being implausible.

Volumetric Heatmaps

By considering a voxelization of the RGB-D volumetric space [44, 205], we refer
as a volumetric heatmap, h, the 3D confidence map with size D ×H ×W , where
D represents the depth dimension (appropriately quantized), while H and W
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Figure 3.11: Examples of 3D poses estimated by our LoCO approach. Close-ups
show that 3D poses are correctly computed even in very complex and articulated
scenarios

represent the height and width of the image plane respectively. Given the body joint
j with pseudo-3D coordinates uj = (u1,j , u2,j , u3,j), where u1,j ∈ {1, ..., D}
is the quantized distance of joint j from the camera, and u2,j ∈ {1, ...,H} and
u3,j ∈ {1, ...,W} are respectively the row and column indexes of its pixel on the
image plane, the value of hj at a generic location u is obtained by centering a fixed
variance Gaussian in uj :

hj(u) = e−
‖u−uj‖2

σ2 (3.8)

In a multi-person context, in the same image we can simultaneously have
several joints of the same kind (e.g. “left ankle"), one for each of the K different
people in the image. In this case we aggregate those K volumetric heatmaps hj(k),
into a single heatmap hj with a max operation:

hj(u) = maxk{hj(k)(u)} (3.9)

Finally, consideringN different types of joint andK people, we have a set ofN
volumetric heatmaps (each associated with a joint type), H = {hj , j = 1, ..., N},
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Figure 3.12: Schematization of the proposed LoCO pipeline. At training time,
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used as ground truth from the Code Predictor f . At test time, the intermediate
representation f(I) computed by the Code Predictor is fed to the Decoder d for
the final output. In our case, H ′ = H/8 and W ′ = W/8

resulting from the aggregation of the individual heatmaps of the K people in the
scene. Note that, given pseudo-3D coordinates u = (u1, u2, u3) and the camera
intrinsic parameters, i.e. focal length f = (fx, fy) and principal point (cx, cy),
the corresponding 3D coordinates x = (x, y, z) in the camera reference system
can be retrieved by directly applying the equations of the pinhole camera model.

The benefit of choosing a volumetric heatmap representation over a direct
3D coordinate regression is that it casts the highly non-linear problem to a more
tractable configuration of prediction in a discretized space. In fact, joint predictions
do not estimate a unique location but rather a per voxel confidence, which makes
it easier for a network to learn the target function [205]. In the context of 2D HPE,
the benefits of predicting confidences for each pixel instead of image coordinates
are well known [207, 256]. Moreover, in a multi-person environment, directly
regressing the joint coordinates is unfeasible when the number of people is not
known a priori, making volumetric heatmaps a natural choice for tackling bottom-
up multi-person 3D HPE.

The major disadvantage of this representation is that it is memory and compu-
tational demanding, requiring some compromise during implementation that limits
its full potential. Some of those compromises consist in utilizing low resolution
heatmaps that introduce quantization errors or complex training strategies that
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block layer in ch. out ch. stride

e-c2d
Conv2D + ReLU D D/d1 s1
Conv2D + ReLU D/d1 D/d2 s2
Conv2D + ReLU D/d2 D/d3 s2

e-c3d Conv3D + ReLU N 4 1
Conv3D + ReLU 4 1 1

Table 3.7: Structure of the encoder part of the Volumetric Heatmap Autoen-
coder (VHA). The decoder is not shown as it is perfectly mirrored to the en-
coder. VHAv1: (d1, d2, d3) = (1, 2, 2) and (s1, s2, s3) = (1, 2, 1); for VHAv2:
(d1, d2, d3) = (2, 4, 4) and (s1, s2, s3) = (2, 2, 1); VHAv3: (d1, d2, d3) =
(2, 4, 8) and (s1, s2, s3) = (2, 2, 2)

involve coarse-to-fine predictions through iterative refining of network output
[205].

Volumetric Heatmap Autoencoder

To overcome the aforementioned limitations without introducing quantization
errors or training complexity, we propose to map volumetric heatmaps to a more
tractable representation. Inspired by [157], we propose a multiple branches Volu-
metric Heatmap Autoencoder (VHA) that takes a set of N volumetric heatmaps
H as input. At first, the volumetric heatmaps {h1, ..., hN} are processed inde-
pendently with a 2D convolutional block (e-c2d) in which the kernel does not
move along the D dimension. In order to capture the mutual influence between
joints locations, the obtained maps are then stacked along a fourth dimension and
processed by a subsequent set of 3D convolutions (e-c3d). The resulting encoded
representation, e(H) is finally decoded by its mirrored architecture d (e (H)) = H̃.
The general structure of the model is outlined in Fig. 3.12 top.

The goal of the VHA is therefore to learn a compressed representation of the
input volumetric heatmaps that preserve their information content, which results
in the preservation of the position of the Gaussian peaks of the various joints in
the original maps. For the purpose, we maximize the F1-score, F1

(
QH, QH̃

)
,

between the set of ground truth peaks (QH) and the set of the decoded maps (QH̃).
We define the set of peaks as follows:
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QH =
⋃

n=1,...,N

{u : hn (u) > u′ ∀u′ ∈ Nū} (3.10)

where Nū is the 6-connected neighborhood of ū, i.e. the set of coordinates
Nū = {u : ‖u− ū‖ = 1} at unit distance from ū. Since the procedure for
extracting the coordinate sets from the volumetric heatmaps is not differentiable,
the former objective cannot be directly optimized as a loss component for training
the VHA. To address this issue, we propose to use mean squared error (MSE) loss
between H and H̃ as training loss.

Note that our proposed mapping purposely reduces the volumetric heatmap’s
fourth dimension, making its shape coherent with the output of 2D convolutions
and thus exploitable by regular CNN backbones. Additional architecture details
can be found in the supplementary material.

Code Predictor and Body Joints Association

The input of the Code Predictor is represented by a RGB image, I, while its
output, f (I), aims to predict the codes obtained with the VHA, Fig. 3.12. The
architecture, Fig. 3.12 bottom, is inspired by [274] thus composed by a pre-
trained feature extractor (convolutional part of Inception v3 [252]), and a fully
convolutional block (f -c2d) composed of four convolutions. We trained the Code
Predictor by minimizing the MSE loss between f (I) and e (H), where H is the
volumetric heatmap associated with the image I.

At inference time, the pseudo-3D coordinates of the body joints are obtained
from the decoded volumetric heatmap H̃ = d(f (I)) through a local maxima search.
Eventually, if camera parameters are available, the pinhole camera equations
recover the true three-dimensional coordinates of the detected joints. Additional
details in the supplementary material.

As in almost all recent 2D HPE bottom-up approaches [29, 71, 39] (i.e. meth-
ods which does not require a people detection step) detected joints have to be
linked together to obtain people skeletal representations. In a single person con-
text, joint association is trivial. On the other hand, in a multi-person environment,
linking joints is significantly more challenging. For the purpose, we rely on
a simple distance-based heuristic where, starting from detected heads (i.e. the
joint with the highest confidence), we connect the remaining (N − 1) joints by
selecting the closest ones in terms of 3D Euclidean distance. Associations are
further refined by rejecting those that violates anatomical constraints (e.g. length
of a limb greater than a certain threshold). Despite its simplicity, this approach is
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F1 on JTA
model bottleneck size @0vx @1vx @2vx

VHA(1) D
2 ×

H′

2 ×
W ′

2 97.1 98.4 98.5

VHA(2) D
4 ×

H′

4 ×
W ′

4 92.5 97.0 97.1

VHA(3) D
8 ×

H′

8 ×
W ′

8 56.5 90.3 92.9

F1 on Panoptic
model bottleneck size @0vx @1vx @2vx

VHA(1) D
2 ×

H′

2 ×
W ′

2 - - -

VHA(2) D
4 ×

H′

4 ×
W ′

4 97.1 98.6 98.9

VHA(3) D
8 ×

H′

8 ×
W ′

8 91.9 98.7 99.6

F1 on Human3.6m
model bottleneck size @0vx @1vx @2vx

VHA(1) D
2 ×

H′

2 ×
W ′

2 - - -

VHA(2) D
4 ×

H′

4 ×
W ′

4 100.0 100.0 100.0

VHA(3) D
8 ×

H′

8 ×
W ′

8 99.7 100.0 100.0

Table 3.8: VHA bottleneck/code size and performances on the JTA, Panoptic and
Human3.6m (protocol P2) test set in terms of F1 score at different thresholds
@0, @1, and @2 voxel(s); @t indicates that a predicted joint is considered “true
positive” if the distance from the corresponding ground truth joint is less than t

particularity effective when 3D coordinates of body joints are available, especially
in surveillance scenarios where proxemics dynamics often regulate the spatial
relationships between different individuals. Additional details are reported in the
supplementary material.

Pose Refiner

The predicted 3D poses are subsequently refined by a MLP network trained to
account for miss-detections and location errors. The objective of the Pose Refiner
is indeed to make sure that the detected poses are complete (i.e. all the N joints
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PR RE F1 PR RE F1 PR RE F1
@0.4 m @0.8 m @1.2 m

LM [172, 173] 5.8 5.3 5.4 24.0 21.6 22.2 41.4 36.9 38.2
LM [172, 173] + ref. 5.8 5.8 5.7 23.2 23.5 23.0 38.8 39.1 38.4
[212] + [166] 75.8 28.3 39.1 92.8 34.1 47.3 96.3 35.3 49.0
Uncompr. VH 25.3 24.4 24.4 45.4 43.1 43.5 55.5 52.4 53.0

LoCO(1) 48.1 42.7 44.7 65.6 58.5 61.2 72.4 64.8 67.7
LoCO(1)+. 49.3 43.4 45.7 66.8 59.0 62.0 73.5 65.0 68.2
LoCO(2) 54.7 46.9 50.1 70.6 60.4 64.6 77.0 65.9 70.4
LoCO(2)+. 55.3 47.8 50.8 70.6 60.9 64.7 76.8 66.3 70.4
LoCO(3) 48.1 41.9 44.4 66.9 58.2 61.7 74.4 64.7 68.6
LoCO(3)+. 49.1 42.8 45.3 67.1 58.4 61.9 74.3 64.7 68.5

GT LM 76.0 64.8 69.5 76.0 64.8 69.5 76.0 64.8 69.5
GT VH 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 3.9: Comparison of our LoCO approach with other strong baselines and
competitors on the JTA test set. In PR (precision), RE (recall) and F1, @t
indicates that a predicted joint is considered “true positive" if the distance from the
corresponding ground truth joint is less than t. Last two rows contain the upper
bounds obtained using the ground truth location maps and volumetric heatmaps
respectively

are always present). To better understand how the Pose Refiner works, we define
the concept of 3D poses and root-relative poses. Given a person k, its 3D pose is
the set p(k) =

{
x
(k)
n , n = 1, ..., N

}
of the 3D coordinates of its N joints. The

corresponding root-relative pose is then given by:

prr
(k) =

{
x
(k)
n − x

(k)
1

ln
, n = 2, ..., N

}
(3.11)

where x1 are the 3D coordinates of the root joint (“head-top” in our exper-
iments) and ln is a normalization constant computed on the training set as the
maximum length of the vector that points from the root joint to any other joint of
the same person.

The Pose Refiner is hence trained with MSE loss taking as input the root-
relative version of the 3D poses with randomly removed joints, and an additional
Gaussian noise applied to the coordinates. Given the 3D position of the root joint
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and the refined poses, it is straightforward to re-obtain the corresponding 3D poses
by using Eq. (3.11).

3.2.2 Experiments

A series of experiments have been conducted on two multi-person datasets, namely
JTA [63] and CMU Panoptic [114, 244, 115], as well as one well established
single-person benchmark: Human3.6m [104].

JTA is a large synthetic dataset for multi-person HPE and tracking in urban
scenarios. It is composed of 512 Full HD videos, 30s long, each containing an
average of 20 people per frame. Due to its recent publication date, this dataset
does not have a public leaderboard and it is not mentioned in other comparable
HPE works. Despite this limitation, we believe it is crucial to test LoCO on JTA
because it is much more complex and challenging than older benchmarks.

CMU Panoptic is another large dataset containing both single-person and
multi-person sequences for a total of 65 sequences (5.5 hours of video). It is less
challenging than JTA as the number of people per frame is much more limited,
but it is currently the largest real-world multi-person dataset with 3D annotations.

To further demonstrate the generalization capabilities of LoCO, we also
provide a direct comparison with other HPE approaches on the single person
task. Without any modification to the multi-person pipeline, we achieve state of
the art results on the popular Human3.6m dataset.

For each dataset we also show the upper bound obtained by using the GT
volumetric heatmaps in order to highlight the strengths of this data representa-
tion. In all the following tables, we will indicate with LoCO(n) our complete
HPE pipeline, composed of the Code Predictor, the decoder of VHA(n) and the
subsequent post-processing. LoCO(n)+ is the same system with the addition of
the Pose Refiner.

For all the experiments related to this work we utilized Adam optimizer with
learning rate 10−4. We employed batch size 1 when training the VHA and batch
size 8 when training the Code Predictor. We employed Inception v3 [252] as
backbone for the Code Predictor, which is followed by 3 convolutions with ReLU
activation having kernel size 4 and with 1024, 512 and 256 channels respectively. A
last 1×1 convolution is performed to match the compressed volumetric heatmap’s
number of channels. Additional training details in the supplementary material.
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Compression Levels

In order to understand how different code sizes in the VHA affects the perform-
ance of our Code Predictor network, multiple VHA versions have been tested.
Specifically, we designed three VHA versions with decreasing bottleneck sizes.
Each version has been trained on JTA first and then finetuned on CMU Panoptic
and Human3.6m. VHA’s architecture details are depicted in Tab. 3.7 for every
version.

As shown in Tab. 3.8, as the bottleneck size decreases, there is a corresponding
decrease in the F1-score. Intuitively, the more we compress, the less information
is being preserved. VHA(1) is only considered when using JTA, as VHA(2)

and VHA(3) already obtain an almost lossless compression on Panoptic and
Human3.6m, due to their smaller number of people in the scene.

All the experiments has been conducted considering a 14 joints volumetric
heatmap representation of shape 14 × D × H ′ × W ′, where H ′ and W ′ are
height and width downsampled by a factor of 8, while D has been fixed to 316
bins. Note that the real-world depth grid covered by our representation is a
uniform discretization in [0, 100]m for JTA, [0, 7]m for Panoptic and [1.8, 8.1]m
for Human3.6m. Thus, every bin has a depth size of approximately 0.32m for JTA
and 0.02m for Panoptic and Human3.6m.

HPE Experiments on JTA Dataset

On the JTA dataset we compared LoCO against the Location Maps based ap-
proaches of [172, 173]. Currently the Location Maps representation is the most
relevant alternative to volumetric heatmaps to approach the 3D HPE task in a
bottom-up fashion and therefore represents our main competitor.

A Location Maps is a per-joint feature channel that stores the 3D coordinate x,
y, or z at the joint 2D pixel location. For each joint there are three location-maps
and the 2D heatmap. The 2D heatmap encodes the pixel location of the joint
as a confidence map in the image plane. The 3D position of a joint can then
be obtained from its Location Map at the 2D pixel location of the joint. For a
fair comparison, we utilized the same network (Inception v3 + f -c2d) to directly
predict the Location Maps. The very low F1 score demonstrate that Location
Maps are not suitable for images with multiple overlapping people, not being able
to effectively handle the challenging situations peculiar of crowded surveillance
scenarios (see Tab. 3.9).

Additionally, we report a comparison with a strong top-down baseline that
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Figure 3.13: Qualitative results of LoCO(2)+ on the JTA and Panoptic datasets. We
show both the 3D poses (JTA: 2nd row, Panoptic: 4th row) and the corresponding
2D versions re-projected on the image plane (JTA: 1st row, Panoptic: 3rd row)

uses YOLOv3 [212] for the people detection part and [166] as the single-person
pose estimator. [166], like almost all single person methods, provides root-relative
joint coordinates and not the absolute 3D position. We thus performed the 3D
alignment according to [226] by minimizing the distance between 2D pose and re
projected 3D pose. We outperform this top-down pipeline by a large margin in
terms of F1-score, while being significantly faster; LoCO is able to process Full
HD images with more than 50 people at 8 FPS on a Tesla V100 GPU, while the
top-down baseline runs at an average of 0.5 FPS (16 times slower). The recall gap
is mostly due to the fact that the detection phase in top-down approaches usually
miss overlapped or partially occluded people on the crowded JTA scenes.

Finally, we compared against an end-to-end model trained to directly predict
the volumetric heatmaps without compression (“Uncompr. Volumetric Heatmaps"
in Tab. 3.9). Specifically, we stacked the Code Predictor and the VHA(2)’s decoder
and trained it in an end-to-end fashion. Our technique outperforms this version at
every compression rate. In fact, the sparseness of the target makes it difficult to
effectively exploit the redundancy of body poses in the ground truth annotation
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leading to a more complex training phase.
We point out that LoCO(2)+ obtains by far the best result in terms of F1-

score compared to all evaluated approaches and baselines, thus demonstrating
the effectiveness of our method. Moreover, the best result has been obtained
using the VHA(2)’s mapping, which seemingly exhibits the best compromise
between information preserved and density of representation. It is also very
interesting to note that the upper bound for Volumetric Heatmaps is much higher
than that of Location Maps (last two rows of Tab. 3.9), highlighting the superiority
of volumetric heatmaps in crowded scenarios. It is finally worth noticing that
LoCO(1)+ and LoCO(3)+ obtain very close results, indicating that an extremely
lossy compression can lead to a poor solution as much as utilizing a too sparse
and oversized representation.

Following the protocol in [63], we trained all our models (and those with
Location Maps) on the 256 sequences of the JTA training set and tested our
complete pipeline only on every 10th frame of the 128 test sequences. Qualitative
results are presented in Fig. 3.13.

HPE Experiments on Panoptic Dataset

Here we propose a comparison between LoCO and three strong multi-person
approaches [291, 290, 209] on CMU Panoptic following the test protocol defined
in [290]. The results, shown in the Tab. 3.10, are divided by action type and
are expressed in terms of Mean Per Joint Position Error (MPJPE). MPJPE is
calculated by firstly associating predicted and ground truth poses, by means of
a simple Hungarian algorithm. In the Tab. 3.10 we also report the F1-score: the
solely MPJPE metric is not meaningful as it does not take into account missing
detections or false positive predictions.

The obtained results show the advantages of using volumetric heatmaps for
3D HPE, as LoCO(2)+ achieves the best result in terms of average MPJPE on
the Panoptic test set. For the sake of fairness, we also tested on the no longer
maintained “mafia” sequence. However, the older version of the dataset utilizes a
different convention for the joint positions. This, in fact, is reflected by the worst
performance in that sequence only. Once again, the best trade-off is obtained
using VHA(2), due to VHA(3)’s mapping partial loss of information. The GT
upper bound in Tab. 3.10 further demonstrate the potential of our representation.
Qualitative results are presented in Fig. 3.13.
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MPJPE [mm]

Haggl. Mafia Ultim. Pizza Mean F1

[209] 218 187 194 221 203 -
[290] 140 166 151 156 153 -
[291] 72 79 67 94 72 -

LoCO(2)+ 45 95 58 79 69 89.21
LoCO(3)+ 48 105 63 91 77 87.87

GT 9 12 9 9 10 100

Table 3.10: Comparison on the CMU Panoptic dataset. Results are shown in
terms of MPJPE [mm] and F1 detection score. Last row: results with ground truth
volumetric heatmaps

HPE Experiments on Human3.6m Dataset

In analogy with previous experiments, we tested LoCO on Human3.6m. Unlike
most existing approaches, we apply our multi-person method as it is, without
exploiting the knowledge of the single-person nature of the dataset, as we want
to demonstrate its effectiveness even in this simpler context. Results, with and
without rigid alignement, are reported in terms of MPJPE following the P1 and P2
protocols. In the P1 protocol, six subjects (S1, S5, S6, S7, S8 and S9) are used for
training and every 64th frame of subject S11/camera 2 is used for testing. For the
P2 protocol, all the frames from subjects S9 and S11 are used for testing and only
S1, S5, S6, S7 and S8 are used for training.

Tab. 3.11 shows a comparison with recent state-of-the-art multi-person meth-
ods, showing that our method is well suited even in the single person context, as
LoCO(3)+ achieves state of the art results among bottom up methods. Note that,
although Moon et al. reports better numerical performance, they leverage addi-
tional data for training and evaluate on a more redundant set of joints containing
pelvis, torso and neck. It is worth noticing that LoCO(3)+ performs substantially
better than LoCO(2)+, demonstrating that a smaller representation is preferred
when the same amount of information is preserved (99.7 and 100.0 F1@0vx re-
spectively on VHA(3) and VHA(2)). Qualitative results are presented in Fig. 3.14.
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method N P1 P1 (a) P2 P2 (a)

to
p-

do
w

n Rogez et al. [225] 13 63.2 53.4 87.7 71.6
Dabral et al. [43] 16 - - - 65.2
Rogez et al. [226] 13 54.6 45.8 65.4 54.3
Moon et al. [178] 17 35.2 34.0 54.4 53.3

bo
tto

m
-u

p Mehta et al. [173] 17 - - 80.5 -
Mehta et al. [172] 17 - - 69.9 -
LoCO(2)+ 14 84.0 75.4 96.6 77.1
LoCO(3)+ 14 51.1 43.4 61.0 49.1

GT Vol. Heatmaps 14 15.6 14.9 15.0 14.3

Table 3.11: Comparison on the Human3.6m dataset in terms of average MPJPE
[mm]. “(a)" indicates the addition of rigid alignment to the test protocol; N is the
number of joints considered by the method. Last row: results with ground truth
volumetric heatmaps

Detection Experiments

To show how our LoCO approach can be effectively adopted also for the
detection task in crowded scenarios under heavy occlusions, we have tested our
system in terms of 2D people detection comparing it with YOLOv3 [212] on the
JTA test set. Using LoCO, we predict 3D poses and project them on 2D bounding
boxes using the camera intrinsic parameters.

In terms of precision, recall, and F1 (with the bounding box IoU threshold
at 0.5), using our LoCO(2)+ trained on JTA, we get 81.94, 69.73, and 75.39
respectively; with out of the box YOLOv3, instead, we obtain 99.12, 30.81 and
44.50.

Although our model is less precise than YOLOv3 (around -20%), it surpasses
it by a large margin (around +40%) in terms of recall, resulting in an F1-score that
is clearly in our favor (almost +30%). The scenes in JTA, in fact, are extremely
crowded and present a very high percentage of occlusion with multiple overlapping
people. It is not easy for a detector to handle situations of this type, while a part-
based bottom-up method is much less affected by this problem.
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Figure 3.14: Qualitative results of LoCO(3)+ on the Human3.6m dataset

3.2.3 Implementation
For the sake of reproducibility, in this section we illustrate the architectures of the
Code Predictor and the Pose Refiner modules of our LoCO pipeline. Code and
models available at https://github.com/fabbrimatteo/LoCO.

Code Predictor Inspired by [274], our method simply adds a few convolutional
layers (f -c2d) to the last convolution stage of a backbone network. Tab. 3.12 reports
the detailed structures of the various f -c2d blocks utilized in our experiments.
ConvTr2D refers to transposed 2D convolutions while Conv2D refers to simple 2D
convolutions. For each layer, we provide: number of input channels, number of
output channels, kernel size and stride. In all the proposed experiments we utilized
InceptionV3 [252] pretrained on Imagenet [49] as backbone architecture.

Pose Refiner The structure of the Pose Refiner is shown in Fig. 3.15. It is a
simple network composed by three fully connected layers with ReLU activation
followed by a skip connection. Input and output are normalized root-relative
representations of a single 3D pose, with values in range [0, 1]. During training,
Gaussian noise (mean: 0m, variance: 0.08m) is applied to the input pose while
some joints are randomly removed with probability 0.1. The removed joints are
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layer in ch. out ch. ker. str.

L
oC

O
(1

) ConvTr2D→ReLU F 1024 4 2
ConvTr2D→ReLU 1024 512 4 2
Conv2D→ReLU 512 256 4 1

Conv2D 256 158 1 1
L

oC
O

(2
) ConvTr2D→ReLU F 1024 4 2

Conv2D→ReLU 1024 512 4 1
Conv2D→ReLU 512 256 4 1

Conv2D 256 79 1 1

L
oC

O
(3

) Conv2D→ReLU F 1024 4 1
Conv2D→ReLU 1024 512 4 1
Conv2D→ReLU 512 256 4 1

Conv2D 256 39 1 1

Table 3.12: Structure of the three f -c2d block variants of the Code Predictor used
for our HPE experiments. F represents the number of output channels of the
exploited feature extractor. In all our experiments we used Inception v3 with
F = 2048

coded with a default value of (−1,−1,−1).

Volumetric Heatmap Spaces In our experiments, we defined our Volumetric
Heatmap representation according to two different pseudo-3D spaces, depending
on which dataset we used:

• The first space is defined as S1 = D ×H ′ ×W ′, where H ′ and W ′ are the
height and width, downsampled by a actor of 8, of the image plane and D is
the maximum distance from the camera in meters, quantized with 316 bins.
We adopted S1 for JTA.

• The second space is defined as S2 = Z ×H ′ ×W ′, where H ′ and W ′ are
defined as in S1, and Z is the maximum z axis value of the real 3D space
in the standard coordinate system centered to the camera. Z is expressed
in meters and quantized with 316 bins. We adopted S2 for Panoptic and
Human3.6m.
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Figure 3.15: Structure of our Pose Refiner: 3 fully connected layers with ReLU
activation followed by a skip connection. N is the number of joints. In all our
experiments we considered N = 14.

Although the difference between these two spaces is minimal, we adopted S1 for
JTA because this dataset already provide a maximum camera distance, which is
100 meters.

Skeleton Grouping Details Let’s consider K type of joints and N0, . . . , NK−1
number of detections for each joint type. Given N0 different predicted heads,
j0,0, . . . , j0,N0−1 ∈ R3, and Nk, k ∈ [1,K − 1] predicted joints of another type,
jk,0, . . . , jk,Nk−1 ∈ R3, we defineK−1 cost matrices, D1, . . . ,Dk−1, as follows:
Dk : {0, . . . , N0 − 1}×{0, . . . , Nk − 1} → R where each element da,b is defined
as

da,b =

{
‖j0,a − jk,b‖ if ‖j0,a − jk,b‖ ≤ 1.5 · τk
+∞ otherwise

(3.12)

The threshold τk in (3.12) is the maximum distance between a head and a joint
of type k (belonging to the same person) on the entire training set. For each
k = 1, . . . ,K − 1, joint-head associations are made with the Hungarian algorithm
using Dk as cost matrix. The same joint-grouping procedure is applied on both
multi-person datasets. By removing the anatomical constraints, results on Panoptic
show an MPJPE degradation of about 9 millimeters while on JTA, no degradation
in terms of metric has been observed.
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input output GT

Figure 3.16: Qualitative results of our Pose Refiner model on the JTA dataset. 1st

and 2nd rows: examples where the output is anatomically plausible and consistent
with the ground truth; 3rd and 4th rows: examples where the output is anatomically
plausible, but inconsistent with the ground truth.
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Figure 3.17: Additional qualitative results of our LoCO approach. 1st and 2nd rows:
result of LoCO(2)+ on the JTA dataset; 3rd and 4th rows: result of LoCO(2)+
on the CMU Panoptic dataset; 5th and 6th rows: result of LoCO(3)+ on the
Human3.6m dataset
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3.3 3D People Detection

The COVID-19 emergency has changed the way we live interpersonal social
relationships, at work, in public and private spaces, in places of education, culture
and leisure. The risk of contagion seems full-blown; until now, there are no
conclusive studies which correlate environmental and endogenous factors with the
greatest spread of the virus: instead, everything seems to correlate the contagion
to proximity or to the contact between infected people and people susceptible to
infection [7]. The spread of the infection seems to follow the epidemiological
models that derive from the SIR models [38].

The phases that all the world is going to undertake after the lock-down will
be characterized by living with the risk of contagion: the prerogative will be to
take conscious and possibly interactive measures to minimise the possibility of
contagion, while seeking a necessary resumption of social and working life.

Certainly, the IT technologies and in particular Artificial Intelligence can be
valuable tools to monitor and predict risk levels in potentially crowded places.

Figure 3.18: GUI of our system. In the main frame, anonymized bounding boxes
are superimposed to the image. Colored links encodes people reciprocal distance.
On the right, two maps shows the bird-eye view of the area. The estimated risk
level of the scene resides at the bottom of the interface.
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In fact, we propose an innovative and effective technological contribution based
on Computer Vision and Deep Learning, in order to dynamic monitoring the
acceptance of social distancing prevention measures through real-time calculation
of the risk level, with particular reference to workplaces, public places and social
areas. For statistical purposes, people behavior dynamics are stored in a database
in a completely privacy compliant manner. The data can be used to identify the
most critical areas and hours of the day in terms of number of people and risk
level, in order to better address distance-related interpersonal prevention measures.

The system is called Inter-Homines (from the “Homo inter homines sum,
capite aperto ambulo” - “I am a human among humans and I can walk with
my face uncovered”) because people should be free to move and interact with
uncovered faces while being safe at the same time.

The system has a twofold goal. The first is to provide a reliable tool, in
accordance with European privacy and usage guidelines of the AI, to calculate
in real time the actual compliance with the prevention measures for "spacing",
also interactively reporting any risky situations. In particular, the implemented
system can generate real-time alarms when people form crowds. The second goal
is to provide an innovative model for the dynamic calculation of the risk of the
monitored site that can be used as a tool for prevention, control, monitoring, and
planning, support to the population and workers in order to implement conscious
attendance, linked to effective compliance with the measures in force.

Detecting people, their position in the space, their mutual distance is a typical
application of Computer Vision. Many tools are available, using state-of-the-art
deep learning architecture and geometry-based 3D reconstruction. Results are
promising although still far to be applied everywhere by everyone. In this project,
we can take advantage of a long term experience in computer vision for surveillance
and people behavior understanding [63, 62], providing a novel detection pipeline
running in real-time. It exploits standard fast camera calibrations, a people detector
and a pose estimation methods.

Inter-Homines defines a model, validated by epidemiologists and parameteriz-
able according to current regulations, which allows, in real-time, to associate each
monitored area with: a) a space-time risk index, b) a dynamic safety level of the
area, c) a dynamic map of interpersonal distances and d) a real time visualization
of detected persons and distances. See Fig. 3.18 for the system output overview.
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Figure 3.19: Schematization of the Inter-Homines pipeline: the input frame is
processed to produce bounding box detections. Each detection is then refined
by the Occlusion Correction module that copes with truncated bounding boxes.
The image plane detection coordinates are then transformed to ground plane
coordinates using an Homography Transformation. Those coordinates are then
used to calculate the global risk. People coordinates and risk level are then stored
into a database. Finally, the system outputs the anonymized frame along with the
risk level and the risk maps.

3.3.1 Risk Model

After the outbreak of the COVID-19 pandemic, all the world learned the import-
ance of the basic reproduction number,R0, as the statistical index indicating the
degree of spread of the infection. In commonly used infection models, when
R0 > 1 (in Italy has reached 4.3 during the spring of 2020) the infection will be
able to start spreading in a population, but not ifR0 < 1. Generally, the larger the
value ofR0, the harder it is to control the epidemic.
R0 is defined as the expected number of secondary cases produced by an

infection in a completely susceptible population:

R0 = α · c · d (3.13)

where α is the transmissibility, c is the average rate of contact between susceptible
and infected individuals, and d is the duration of infectiousness.

To understand if this quantity defines the epidemic threshold of a particular
infection, we need to formulate a Susceptible-Infected-Removed (SIR) epidemic
model [121]. This model deploys several assumptions: 1) closed population, 2)
constant rates, 3) no births and deaths and 4) well mixed population.

Given a population of N individuals, let’s consider S the number of susceptible
people, I the infected, and R the removed. Removed people are those that cannot
be infected, as they might have developed antibodies. Now let’s define s = S

N ,
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i = I
N , r = R

N as the fraction in each set. The SIR model is defied as:

ds

dt
= −βsi, di

dt
= βsi− vi, dr

dt
= vi (3.14)

An epidemic occurs if the number of infected increases: didt > 0. By consider-
ing that everyone is susceptible, we can substitute s = 1 obtaining the following
inequality:

αcd = R0 > 0 (3.15)

R0 is essentially the entire theoretical basis of public health interventions
for infectious diseases and it is simply the product of the transmissibility, the
mean contact rate, and the duration of infection. In order to reduce transmiss-
ibility α we can develop vaccines, get people to use barrier contraceptives or
use anti-retrovirals. To decrease mean contact c, the world decided to use isola-
tion/quarantine, and health education programs. Finally, to reduce the duration of
infection d, therapeutics and antibiotic treatment of bacterial infections that boost
innate immune response can be exploited.
R0 is in generally computed as a posterior measure, but cannot be dynamically

predicted in a robust way since the factor influencing R0 are not a priori easily
measurable. In this work we cannot do anything a part from monitoring the
acceptance of health education programs. In the past months, many countries
decided the mandatory measures of security that concern the use of DPI and the
social distance guidelines. Thus, in order to make c as small as possible, we should
keep all the people at a distance larger that a threshold distance of a possible
infection.

A viable way is to force people to stay in queues, maybe with some marker
placed on the floor and with the constant attention of a human guard that controls
the compliance of the social distancing norms. This is not always possible,
especially in big malls and wide areas. Moreover, the human monitoring is not
always optimal as the guard is subject to tiredness and lost of focus.

This is the reason why computer based systems joined with risk models can
substitute human controllers and help to perform real-time monitoring of areas by
assessing a level of possible risk, and, if necessary, giving a real time feedback
to improve the safety and decrease the risk. In the following section, we propose
a very simple model, that, using some thresholds validated by epidemiologists,
models the dynamic risk in a given area.

The SIR model formulation, as described in the previous section, has validity
when considering a population. Now, let’s consider a much more restricted zone.
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This could be an indoor area, like a waiting room of a public office, an entrance
in a cinema or a shop. More precisely, let’s consider a scene with N people
k0, . . . , kN−1 at a given time t. Given two subjects ki and kj with distance di,j ,
we define their reciprocal risk as follows:

rr
(t)
i,j = η e−βmax(0, di,j−τ) (3.16)

where η, β and τ are parameters that respectively control height, slope and the full
width at maximum of the function. In this specific application, η is a mitigator
used to decrease the risk when some criteria are met, e.g., when at least one of the
two people is wearing a facial mask. β, instead, controls how the risk decreases
when the distance is greater than τ and can model environmental characteristics
such as air temperature and the presence of air conditioning. Lastly, τ , controls
the transmissibility of the disease via respiratory droplets and define the minimal
distance allowed between two people. It should follow World Health Organization
and national guidelines but can be further increased to better preserve the safety
of people in critical places such as COVID-19 hospital units. We then define the
individual risk at time t as:

R
(t)
i = max

j=0...N−1,j 6=i
{rr(t)i,j } (3.17)

The global risk at t of the scene is then computed as follows:

G(t) = min
(

1,
1

C

N−1∑
i=0

R
(t)
i

)
(3.18)

where C is the maximum capacity of the scene. This capacity can be either given
by the user or calculated using simple covering algorithms. Finally. the dynamic
global risk is computed as:

D(t) =
1

W

W−1∑
w=0

G(t−w) (3.19)

where W is the size of the temporal window. At a given time t, D(t) ∈ [0, 1] is
the global risk of the scene and it is used to trigger alarms when it reaches a given
threshold.
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3.3.2 Method
Here we give an overview of the pipeline we used to process videos in real time.
The aim of our Inter-Homines system is to detect people, compute their distance
and provide a dynamic risk level of the area, as well as producing a human readable
visualization with anonymized people. For GDPR constraints, no visual data is
recorded but, instead, only people coordinates are extracted and stored. Data is
acquired with a variable rate, up to one time per second for each camera. See
Fig. 3.19 for a schematization of the pipeline.

The following subsections summarize the key elements of our system. Sec-
tion 3.3.2 describes the people detection stage and elaborates on its challenges.
Section 3.3.2 illustrates our proposed keypoint localization solution which ad-
dresses the occulsion problem peculiar of surveillance scenarios and also provide
the head position for anonymization purposes. Next, in Section 3.3.2, we describe
how we convert points from image plane to ground plane and, finally, Section 3.3.2
illustrates the system outputs.

People Detection

As we are interested in the best speed-accuracy trade-of, we choose CenterNet
[304] as a people detector. In particular, we rely on the DLA backbone [288]
which yields 51.3% AP for the people class on MS COCO [149], running at 52
FPS on a Titian XP.

Let I ∈ RW×H×3 be the input image having width W and height H . Center-
Net outputs a keypoint heatmap Ŷ ∈ [0, 1]

W
R ×

H
R×C , where R = 4 is the output

stride and C is the number of keypoint types. Keypoint types include C = 80
object categories but in this work we only consider the “people” class. Detected
keypoints corresponds to a prediction Ŷx,y,c,= 1 and 0 otherwise. To recover the
discretization error generated by the output stride, CenterNet further predicts a
local offset Ô ∈ RW

R ×
H
R×2 for each center point.

Let (x
(k)
1 , y

(k)
1 , x

(k)
2 , y

(k)
2 ) be the bounding box of object k of the “people”

class and pk = (
x
(k)
1 +x

(k)
2

2 ,
y
(k)
1 +y

(k)
2

2 ) it’s center point. CenterNet predicts all
center points for each object k and further regresses to the object size sk =

(x
(k)
2 − x(k)1 , y

(k)
2 − y(k)1 ).

At running time, we first extract the peaks in the heatmap for the “people”
category. We consider all the responses whose value is greater or equal to its
8-connected neighbors. Let P̂ = {(x̂i, ŷi)}ni=1 be the set of n detected center
points where keypoint values Ŷxiyic are utilized as a measure of its detection
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Figure 3.20: Examples of CenterNet bounding boxes (pink), refined bounding
boxes and head localization (green).

confidence. Bounding boxes are produced at location:

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2,

x̂i + δx̂i + ŵi/2, ŷi + δŷi + ĥi/2),
(3.20)

where (δx̂i, δŷi) = Ôx̂i,ŷi is the predicted offset and (ŵi, ĥi) = Ŝx̂i,ŷi is the
predicted size. Since the prediction are directly produced from the keypoint estim-
ation, there is no need for IoU-based NMS or other post-processing techniques.
This makes CenterNet faster w.r.t. other detectors, making it suitable for real time
applications.

CenterNet is capable of producing a precise localization of every person in the
image, however, it does not take into account occlusions that usually happen in
real world scenarios. As shown in Fig. 3.20 (pink bounding boxes), if a person
is occluded by an object or by other people, CenterNet predicts a tight bounding
box that only contains the visible part of the person, ignoring his full shape. This
usually happens with the bottom part of the body, as the camera is commonly
placed several meters above the ground. Since we are ultimately interested in
recovering the ground plane coordinate of each person through homograpy, we
need to know the exact position (in image plane) of the feet of each detected
person. This task cannot be accomplished by solely relying on CenterNet.
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Feet and Head Localization

To overcome the aforementioned limitations without introducing complexity to the
overall system, we propose to utilize a small network to predict the feet position
given a bounding box containing a person, even if the feet are not visible.

To this aim we rely on a simple but effective CNN that, given an image M
tightly containing a person, it regresses to the midpoint Pf = (xf , yf ) of the
segment having the two feet as endpoints. This ensures that we know the exact
position in image plane where every person touches the ground. Since we are also
interested in anonymizing the face of each detected person, we further predict the
location of the head Ph = (xh, yh).

We replaced the last 1000 class classification layer of Resnet50 [94] with
two heads composed by an adaptive average pooling layer and a fully connected
layer with output size equal to 2. The adaptive average pooling takes care of the
difference in size that each bounding box fed to the network can have. Training
has been carried out for 10 epochs using an MSE loss with Adam optimizer, batch
size of 64 and learning rate 0.001.

We used JTA [63] as the training dataset since it is the only surveillance dataset
available in literature that provide pose estimation annotations with occlusion in-
formation. Thanks to this, we were able to simulate occlusion situations by simply
picking, during training, the pedestrians with the bottom keypoints occluded, like
ankles, knees, and hips. During training, we also randomly shortened some of the
bounding boxes in order to simulate CenterNet behaviours. This step ensures a
more precise localization of the feet while also coping with truncated bounding
boxes. As shown in Fig. 3.20 (green bounding boxes), our network can effectively
obtain an accurate position of each head and it is used to extend the bounding box
to its regular shape.

From Image Plane to Ground Plane

The camera projection matrix P is a 3× 4 matrix which describes the mapping of
a pinhole camera [92] from 3D points in the world to 2D points in an image. Let
X be a representation of a 3D point in homogeneous coordinates (a 4-dimensional
vector), and let y be a representation of the image of this point in the pinhole
camera (a 3-dimensional vector), we have y = PX . The camera projection matrix
can be decomposed as:
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where the intrinsic parameters fx, fy and cx, cy are the camera focal length and
principal points respectively while ri,j and ti are the extrinsic parameters which
define the rotation and the translation used to describe the rigid motion of an object
in front of a still camera. Finally, u and v are the coordinates of the projected
point in pixels while X , Y and Z are the coordinates of a 3D point in the world
coordinate space. By considering the simpler case of a projection of planar points,
where each 3D point lies on the same plane (e.g. the ground), we can simplify
the formulation considering Z = 0. For planar surfaces, 3D to 2D perspective
projection reduces to a 2D to 2D transformation:uv

1
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fx 0 cx
0 fy cy
0 0 1

r1,1 r1,2 t1
r2,1 r2,2 t2
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XY
1

 (3.22)

and by doing the products we finally obtain the planar homography matrix H . The
planar homography relates the transformation between two planes (e.g. the image
plane and the ground plane):uv

1

 =

h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

XY
1

 = H

XY
1

 (3.23)

Since H maps from ground plane to image plane, but we are interested in the
opposite transformation (from image plane to ground plane), we now need to
calculate the inverse homography matrix H−1. An homography matrix H is
always invertible, and its inverse is still an homography transformation:XY

1

 = H−1

uv
1

 (3.24)

A practical way to calculate the homography matrix H of Eq. 3.23 is to find a
set of at least four points pairs of target and source planes and to minimize the

Exploiting Synthetic Data to Improve Human Behavior Understanding 63



Table 3.13: 3D detection results on JTA Dataset. In PR (precision), RE (recall)
and F1, @t indicates that a predicted person is considered “true positive” if the
distance from the corresponding ground truth location is less than t. The max
range indicates the maximum distance considered in the calculation.

PR RE F1 PR RE F1 PR RE F1
max range @0.5 m @1.0 m @1.5 m

10m
w/o Occ. Corr. 83.3 78.2 80.0 90.4 85.2 87.0 92.5 87.6 89.3
Full Pipeline 88.0 84.7 85.5 92.9 89.2 90.2 94.2 90.5 91.5

20m
w/o Occ. Corr. 69.1 59.7 63.4 85.3 73.8 78.3 91.8 79.7 84.4
Full Pipeline 74.9 66.9 70.0 88.8 79.2 82.8 93.6 83.6 87.4

30m
w/o Occ. Corr. 59.4 46.8 51.5 77.3 60.7 66.9 85.8 67.2 74.1
Full Pipeline 65.3 53.0 57.5 81.2 65.4 71.1 88.3 70.9 77.3

100m
w/o Occ. Corr. 53.7 31.6 38.0 71.3 41.7 50.4 80.3 46.8 56.7
Full Pipeline 60.9 36.2 43.3 77.1 45.2 54.5 84.7 49.4 59.7

back-projection error:

N∑
i=0

[(
ui −

h1,1Xi + h1,2Yi + h1,3
h3,1Xi + h3,2Yi + h3,3

)2

+

(
vi −

h2,1Xi + h2,2Yi + h2,3
h3,1Xi + h3,2Yi + h3,3

)2
]

(3.25)
However, if not all of the point pairs fit the rigid perspective transformation,

this initial estimate will be poor. To solve this problem we employ the RANSAC
iterative method, trying many different random subsets of the corresponding point
pairs (of four pairs each). We then estimate the homography matrix applying a
simple least-square algorithm using this subset, and then compute the quality of
the computed homography, which is the number of inliers. The best subset is then
used to produce the initial estimate of the homography matrix. The computed
homography matrix is refined further (using only the inliers) with the Levenberg-
Marquardt method to further reduce the re-projection error. The homography
matrix is determined up to a scale. Thus, it is normalized so that h3,3 = 1.

This method of using an homography transformation to obtain 3D coordinates
is the most appropriate when we want to monitor an approximately flat area (such
as a town square) using a fixed camera and there is the possibility of making
appropriate measurements in the monitored space.

To easily obtain the points pairs of image and ground planes needed to find
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Figure 3.21: GUI used during system calibration for homography matrix calcula-
tion (top) and for walking area selection (bottom).
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the homography matrix H , we designed a simple procedure that we call “system
calibration”. This procedure consists in placing nine markers at the center of the
monitored area, fully visible from the camera. The markers are placed in a grid
pattern as in Fig. 3.21. By means of a simple graphic interface, the user can take a
snapshot of the camera and click with the cursor the centers of the nine markers
in order to acquire the pixel coordinates. In practice, we utilize a special carpet
with the nine markers printed on it. The use of the carpet automates the real world
measurements as we already know the distance between markers in the carpet,
making the system calibration fast, less prone to errors and feasible by everyone.
Once the nine pairs of points have been identified and the homography matrix
calculated, the carpet can be safely removed and the system will continue to work
properly as long as the camera maintains its position.

During the system calibration an optional procedure of selecting the “walking
area” can be carried out. Again, a simple graphic interface let the user draw
a polygon on the snapshot taken from the camera, as shown in Fig. 3.21. The
pixel vertices are then converted to ground coordinates that are used to exclude
detections whose 3D position is outside the walking area. This is useful, for
example, to ignore mirrors or windows that can reflect people causing unwanted
detections.

Given a bounding box of a person, we can now extract its central point (u, v)
of the lower side of the box (i.e. the image coordinate where the person touches
the ground with his feet), and utilize Eq 3.24 to obtain the corresponding (X,Y )
point in ground plane. Now that we have the 3D position of every person in the
scene, the dynamic global risk in Eq. 3.19 can be calculated and given as output
along with other information that we summarize in the following subsection.

System Output

A convenient graphical interface highlights all the main results of the analysis of
our Inter-Homines system, allowing to evaluate at a glance the crowding conditions
in the monitored area (see Fig. 3.18). This interface is made with Qt to guarantee
compatibility with all the main operating systems.

Anonymized Frame It shows real-time the bounding box detections superim-
posed to the input RGB frame. The system is privacy compliant and all the faces
are obscured. Colored segments connect people who are at an estimated distance
lower than a defined upper threshold distance (typically 3 m). The color indicates
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the extent of the infraction, going from a dark red for the most serious infraction
to yellow for the minor ones.

People Counter At the top right of the frame we also display the number of
detected people updated in real time. This number is an average computed in a
window of W frames to account for miss detections and false positives.

Dynamic Risk and Occupation Maps In the right part of the interface two bird
eye views of the walking area are updated real-time. The Dynamic Risk map
shows a snapshot of the current situation of the area. The Occupation map, instead,
displays the overall aggregated risk and it is computed by averaging the Dynamic
Risk maps of the whole day. It is used to identify areas with a larger risk for
statistical and predictive purposes. Note that people outside of the walking area
are completely ignored and do not affect the statistics.

Estimated Warning Level In the lower part of the window a bar represents
the total estimated risk in the monitored area and it is computed using Eq. 3.19.
The application provides the possibility to send an alarm signal (example: send
an email / audio notification) if certain thresholds on the number of people or
on the risk level are exceeded. The thresholds and the notification methods of
their exceeding will be defined according to the needs of the context in which the
system will operate.

Weekly Report Since we want to give insightful statistics to help with the
prevention of the infection, our system periodically produce a report. The report
contains statistics about number of people, risk level, number of infractions and
occupation maps aggregated by hours and days. To this end we utilize a non-
relational database to store timestamp and position of each person captured by our
system.

3.3.3 Experiments
In order to validate the effectiveness of our system, we performed a series of
experiments leveraging JTA [63]. JTA is a massive dataset for pedestrian pose
estimation and tracking in urban scenarios created exploiting the highly photoreal-
istic video game Grand Theft Auto V. The videos feature a vast number of different
people appearances, in several urban scenarios at varying illumination conditions
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Figure 3.22: Examples from the JTA dataset exhibiting its variety in viewpoints,
number of people and scenarios. Ground truth bounding boxes are superimposed
to the original images. Green color is used for people having a distance from the
camera between 0 and 20 meters, yellow for people between 20 and 40 meters and
red for people between 40 and 100 meters.

and viewpoints. Each clip comes with a precise annotation of visible and occluded
body parts, people tracking with 2D coordinates in image plane and 3D coordinates
in camera space. JTA overcomes all the limitation of existing datasets in terms
of number of entities and available annotations. Each video contains a number
of people ranging between 0 and 60 with an average of more than 21 people,
totaling almost 10M annotated body poses over 460,800 densely annotated frames.
The distance from the camera ranges between 0.1 and 100 meters, resulting in
pedestrian heights between 20 and 1100 pixels. JTA is composed by a set of 512
Full HD videos, 30 seconds long, recorded at 30 fps.

As shown in Fig. 3.22, despite being a synthetic dataset, JTA features highly
challenging and complex situations, peculiar of surveillance scenarios, where
people are often dominated by severe body part occlusions and truncations. We
believe this dataset is the perfect choice to validate a system that targets global
safety.

Since we can not perform the system calibration procedure on an already
recorded dataset, i.e. we can not physically place the markers at the center of
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the scene, we designed a simple heuristic to directly recover the nine points pairs
using the dataset annotations. With the assumption that every foot of each person
lies on the same plane, for each JTA sequence, we linearly regressed the ground
plane utilizing the 3D coordinates of every foot in every frame of that sequence.
By recovering a unit normal vector of the plane and two orthonormal vectors
lying on the plane we were able to find the orthonormal base of the new space
that allowed us to move each 3D coordinate into a space where each foot has
the same y coordinate (according to the standard camera system). Now, since
each foot coordinate has the same y, we can get rid of it and considering the new
(x, z) coordinates as ground coordinates. As we are interested in nine points pairs
of target and source planes, we utilized a K-Means implementation to find nine
foot cluster centers. Utilizing a clustering method ensures that the nine points
are far from each other. Once recovered the foot cluster centers, we remapped
those coordinates into the original standard camera space and projected them into
the image plane using the pinhole camera model. The 2D projected coordinates
and the 2D foot clusters now form the nine points pairs needed to calculate the
homography matrix.

Experiments are conducted on every 10th frame of a subset of the JTA test
set where we carefully removed the sequences that contain camera motion and
people at different heights, e.g. people going up the stairs, as our method assumes
static camera and flat ground plane. Tab. 3.13 shows the precision, recall and
F1 obtained using different thresholds and considering different camera distance
ranges. As the range increase, we observe a decrease in performances, due to
the fact that small people are hardly detected and homography transformation
becomes less reliable. Since we are interested in evaluating the impact of that
occlusions have in the performance of our system, we reported the results with
and without the occlusion correction module. As can be shown, the correction is
always beneficial, especially when people are close to the camera.

To better understand how performance degrades as distance increases, in
Fig. 3.23, first row, we plotted the F1 score at different thresholds w.r.t. the camera
distance. It is interesting to note that performance worsens when people are too
close to the camera. In Fig. 3.23, second row, we plotted the same quantity but,
this time, the F1 score is calculated considering all the people with distance less
than the camera distance, and not equal to the camera distance.
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Figure 3.23: F1 score vs. camera distance at different thresholds (first column)
and F1 score vs. max camera distance at different thresholds (second column).
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3.4 Attribute Recognition

While recent efforts in people detection, recognition, and tracking enabled a
plethora of video-surveillance applications, e.g. people identification by [159],
pose estimation by [224] and action analysis by [97], occlusion is still an open
problem. The occlusion issue is well known in the people detection and tracking
literature and generally affects any intelligent video surveillance system, but it
is debatable whether a real solution to the problem could exist effectively. In
fact, whenever an occlusion occurs we observe a removal of information from the
observed scene. The occluded portion of an object, indeed, becomes unknown
and, in a Parmenidean sense, it does not exist until it can be observed. For
this motivation, most of the literature focused on counteracting the phenomenon
conveying occlusion robustness to either detection, tracking, or re-id systems as
by [184, 145, 196, 269, 41]. In the matter of fact, recovering the image content
from an occlusion is feasible only in the case where the target has been previously
observed e.g. in a video stream. This is the approach followed also by many
tracking solutions which memorize several detected appearance of the person, to
discard occlusions as “less frequent accidents” w.r.t. the normal visible appearance.
Nevertheless, leveraging on the generative capabilities of GANs by [83], we aim
at demonstrating that it is indeed possible to hallucinate a plausible representation
of the occluded content even when it has never been previously observed, i.e. in
single images.

Following on our previous work on the topic ([60]), in this work, we introduce
a novel network that leverages the generative power of GANs for hallucinating the
occluded portion of the image without any guidance of an attention mechanism
that could provide instance level information about the occluding person. The
proposed solution aims at generating or reconstructing the image of a person
which could be plausible in many senses: a) similar to images of real people,
observed in the training dataset; b) acceptable at pixel level as a person shape;
c) capable to preserve similar visual attributes of the ground truth de-occluded
image. This is carried out by exploiting solutions for attribute classifications (e.g.
male/female, young/old, with/without trousers, etc.) and integrating them in a
U-net like generative and adversarial architecture.

Another major problem that arises when dealing with occlusions, through
learning-based solutions, is the lack of large-scale datasets providing realisticly
occluded and non-occluded pairs of images. Most of the proposed solution in
literature, like the ones introduced by [60, 194, 192] paste together different people
detections, or manually add random objects or textures to a non-occluded image.
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Figure 3.24: A schematic representation of the training procedure adopted in
our work. The Generator (a) takes the occluded image IOCC as input and the
attributes of the person AGT (e) as a further conditioning element. The output
of the Generator IGEN is the restored image, with no occlusion. To train the
Generator, we fed IGEN to three different networks: ResNet-101, VGG-16, and
the Discriminator. (b) ResNet-101 gives a prediction of the IGEN attributes which
are compared with the ground-truth ones for the Latr computation, in order to
maximize high-level similarity. (c) The feature maps extracted from different
layers of VGG-16 are used to calculate the content loss between IGEN and IGT
with the aim of encouraging low-level similarity. (d) The Discriminator, which
gives the judgment between “real” and “fake” distributions, has to be fooled by
the Generator in order to produce images belonging to the non-occluded domain
of pedestrians. The Discriminator is trained alongside the Generator to distinguish
between generated “fake” images and “real” ones. At evaluation time, only the
Generator network and the Attributes Concatenation are used.
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These processes ultimately fail to generate realistic data and are thus a liability
when employed for training a neural network that aims at resolving the occlusion
while keeping the rest of the image coherent (e.g. the background) and preserving
the person’s attributes. To address this issue, we propose a novel, fully automatic,
way to generate realistic occlusion pairs by exploiting the recent achievements in
object segmentation by [93]. These results are high-fidelity occlusion pairs, where
the background of the original image is preserved and the generated occlusion is
more realistic. Additionally, thanks to the software provided by [63], we created
a massive computer graphics generated dataset1, in which we artificially created
a large collection of occluded pedestrians. Additionally, we recovered from the
game engine their attributes by manually annotating just the models. To our
knowledge, this is the first CG dataset for the purpose of de-occluding people
having a set of annotated person attributes (e.g. sex, hair color, dress style, etc.).

To summarize, our contributions are threefold:

• We propose a novel generative adversarial network that is able to solve
occlusions in pedestrian images by hallucinating the missing parts while
keeping both the appearance and the background coherent;

• We devise a new way for synthetically generating occlusion pairs that
result in more realistic images when compared to other methods previously
employed, also by creating a huge CG dataset;

• We propose a method for conditioning the occluded body part restoration
on pedestrian attributes and consequently improving the generation process.

We show by experiments that the design of a conditional GAN that is aware of the
attributes can acceptably hallucinate pedestrian and we experimentally demonstrate
that this information is helpful in guiding the generation process. Results are
interesting in terms of very high accuracy, outperforming other previous methods.
We believe that our method could be useful in many computer vision systems,
from surveillance, automotive to human behavior understanding tasks.

3.4.1 Method
The goal of our work is to reconstruct occluded body parts of pedestrians in
different surveillance scenarios. Given an image of an occluded pedestrian as the
network input, we aim at removing the obstructions and replacing them with body

1Leveraging on the highly photo-realistic graphics of GTA V video-game.
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Figure 3.25: Architecture of our Generator network with corresponding number of
feature maps and kernel sizes. The figure also depicts max-pooling and upsampling
operations, along with skip connection gates.

parts that could likely belong to the occluded person. Note that, differently from
the task of inpainting, we don’t want to guide the network with the information
about what portion of the image we want to remove and complete. For this purpose,
we want to learn an image transformation between pairs of occluded images IOCC
and not occluded images IGT .

In order to accomplish this, we propose the training procedure depicted in
Fig. 3.24: our pipeline takes as input the occluded image IOCC , along with the
relative attributes AGT and outputs the restored image IGEN . IGEN is then
inputted to the three networks ResNet-101, VGG-16, and the Discriminator in
order to compute the three components of our loss. Each loss component is then
backpropagated through the input, updating only the Generator’s weights.

More precisely, to achieve a full body restoration, we train the Generator
network G as a feed-forward CNN Gθg with parameters θg . For N training pairs
images (IOCC , IGT ) and their relative attributes AGT , we solve:

θ̂g = arg min
θg

1

N

N∑
n=1

Ltotal
(
Gθg (InOCC , A

n
GT ) , InGT

)
(3.26)

Here θ̂g is obtained by minimizing the loss function Ltotal described in the next
subsection. As a result, our generator network learns a mapping from observed
images IOCC to output image IGEN . This differs from what did by [108] and
[177] which use random noise along with the input image.
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Table 3.14: Classification performances of our ResNet-101 on RAP dataset

Method mA Accuracy Precision Recall F1
ACN [249] 69.66 62.61 80.12 72.26 75.98
DeepMAR [140] 73.79 62.02 74.92 76.21 75.56
DeepMAR* [141] 74.44 63.67 76.53 77.47 77.00
HP-Net [153] 76.12 65.39 77.33 78.79 78.05
ACN-Res50 [60] 79.73 64.13 76.96 78.72 77.83
Ours 78,66 66,23 77.85 79.71 78.77

Table 3.15: Detailed comparison between various pedestrian attribute datasets

Dataset # Scenes # Samples # Attributes Min Res. Max Res.
PETA [50] - 19,000 61(+4) 17 × 39 169 × 365
RAP [141] 26 41,585 69(+3) 36 × 92 344 × 554
PA-100K [153] 598 100,000 26 50 × 100 758 × 454
AiC 512 125,000 24 35 × 85 602 × 1080

Following [83], we further define the Discriminator network Dθd with para-
meters θd, that we train alongside Gθg with the aim of solving the adversarial
min-max problem:

min
G

max
D

EIGT∼pdata(IGT )[logD (IGT )]+

EIOCC∼pgen(IOCC ,)[log 1−D (G (IOCC , AGT ))] (3.27)

whereD(IGT ) is the probability of IGT being a “real” image while the component
(1 − D(G(IOCC , AGT )) is the probability of G(IOCC , AGT ) = IGEN being
a “fake” image. The min-max formulation force G to fool the D, which is
adversarially trained to distinguish between generated “fake” images and “real”
ones. Thanks to this approach, we obtain a Generator network capable of learning
solutions that are similar to not occluded images thus indistinguishable by the
Discriminator. Note also that, differently from what did by [108], we do not
concatenate input images IOCC to the “fake” images IGEN or to the “real” images
IGT as Discriminator input.
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Loss Function

The definition of the loss function Ltotal is crucial for the effectiveness of our
Generator network. We propose the following loss formulation, composed by a
weighted combination of three components:

Ltotal =

total loss︷ ︸︸ ︷
Ladv︸︷︷︸

adver. loss

+λ1 · Lvgg︸ ︷︷ ︸
cont. loss

+λ2 · Latr︸ ︷︷ ︸
attr. loss

(3.28)

The intuition behind this loss formulation is that we want the generated images
to contain real people (thanks to Ladv), to have similar feature representations
(thanks to Lvgg) and to preserve visual attributes (thanks to Latr) w.r.t. their non
occluded ground truth versions.

The first term of Eq. (3.28) is the adversarial loss Ladv. This component
encourages the Generator network G to generate images belonging to the not
occluded domain of pedestrians by fooling the Discriminator network D. The
adversarial component relative to the Generator network is calculated as follows:

Ladv = −
N∑
n=1

logD (G (IOCC , AGT )) (3.29)

Where D(G(IOCC , AGT )) is the probability that G(IOCC , AGT ) is classified as
“real” by the discriminator network. Minimizing logD (G (IOCC , AGT )) instead
of logD [1− (G (IOCC , AGT ))] is preferred in order to reach a better gradient
behavior as indicated by [83]. As a possible drawback, the images produced by
the Generator network G are forced to be realistic thanks to the Discriminator
network D, but they can be unrelated to the original input. For instance, the
output could be a plausible image of a pedestrian displaying a very different aspect
w.r.t. the input image. Thus, is essential to mix the adversarial loss Ladv with
an additional loss, such as L1 or L2, that evaluate the per-pixel distance between
the generated and the ground truth image. Usually, training a network using such
losses leads to reasonable solutions. However, the outputs appear blurred with
lack of high-frequency details.

A possible solution for generating sharper results is to adopt a different content
loss, like the perceptual loss introduced by [113] and used also by [135] and [130]:

Lvgg(i,j) =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(IGT )x,y − φi,j(IGEN )x,y)
2 (3.30)
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Figure 3.26: Examples from the AiC dataset exhibiting its variety in viewpoints,
illuminations and scenarios.

where Wi,j and Hi,j are the dimensions of the feature maps φi,j obtained by
the j-th convolution after ReLU activation and before the i-th max-pooling layer
within the VGG16 network, pre-trained on ImageNet by [49], as done by [113].

The Lvgg that we employed in our work is based on the sum of different
intermediate layers of VGG16:

Lvgg =
∑
i,j∈L

Lvgg(i,j) (3.31)

where Lvgg(i,j) is taken from eq. 3.30 and L is the set of used activations. Rather
than encouraging the pixels of the output image IGEN to exactly match the
pixels of the target image IGT , we instead encourage them to have similar feature
representations as computed by the VGG16 network. As demonstrated by [113]
and [160], minimizing the content loss for higher layers do not preserve color
and textures. As we reconstruct from early layers, instead, images tend to be
perceptually similar to the target image IGT in terms of color and texture.

Since our main purpose is not limited to naively restore the occluded parts
of pedestrians, but also to maintain and highlight their attributes, we introduced
an additional loss component Latr. Like for the perceptual loss Lvgg, we used a
classification network as loss function. In particular, we adapted ResNet-101 by
[95], pre-trained on ImageNet, to the task of multi-attribute classification. More
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precisely, we replaced the last two layers (the average pooling and the last fully
connected layer) in order to fit the desired input shapes. Differently, from the
VGG loss, we work on a higher level of abstraction, forcing the Generator network
to produce images that exhibit characteristics coherent with the attributes of the
person. In this case, we used a weighted binary cross entropy:

Latr = −
NA∑
i=1

exp (1− ri) · (yi · log (ψi(IGEN )))

+ exp (ri) · (1− yi) · log (1− ψi(IGEN )) . (3.32)

Here,NA is the number of attributes classified by the ResNet-101, ri is the positive
ratio of i-th attribute. ψ is the output of our attribute classification network and yi
is the i-th ground truth label.

Networks Architecture

Generator Network Our Generator structure differs from those presented by
[210] and [60]: following [227] and [108] we propose the “U-Net” like architecture
depicted in Fig. 3.25. In particular, the structure of our network slightly differs
from the one described by [227] and [108]. The network is composed by 4
down-sampling blocks and a specular number of up-sampling components. Each
down-sampling block consists of 2 convolutional layers with a 3× 3 kernel. Each
convolutional layer is followed by a batch normalization and a ReLU activation.
Finally, each block has a max-pooling layer with stride 2. The up-sampling part
has a very similar but overturned structure, where each block is composed by an up-
sampling layer of stride 2. After that, each block is equipped with 2 convolutional
layers with a 3×3 kernel. The last block has an additional 1×1 kernel convolution
which is employed to reach the desired number of channels: 3 RGB channels
in our case. A tanh has been used as final activation. We additionally inserted
skip connections between mirrored layers, in the down-sampling and up-sampling
streams, in order to shuttle low-level information between input and output directly
across the network. Eventually, padding is added to avoid cropping the feature
maps coming from the skip connections and concatenate them directly to the up-
sampling blocks outputs. Roughly speaking, our task can be seen as a particular
case of image-to-image translation, where a mapping is performed between the
input image and the output image. Additionally, for the specific problem we are
considering, input and output share the same underlying structure despite differing
in superficial appearance. Therefore, a rough alignment is present between the
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Figure 3.27: Qualitative results based on the ablation study on RAP dataset
(leftmost) and AiC dataset (rightmost). GT columns indicate ground truth images
while in the OCC columns are presented the input occluded images. Columns 3
and 9 indicate the outputs of our baseline, where adversarial loss and MSE are
used. Columns 4 and 10 represents results of the VGG loss. On 5 and 11 we have
results of experiments using all the 3 losses combined: adversarial loss, VGG loss,
and attribute loss. Finally, columns 6 and 12 show results where attributes are
injected as input to the network.

two images. In fact, all the non-occluded parts that are visible in the input images
must be transferred to the output with no alterations. The structure of the U-Net
lends itself optimally to our task, and the skip connections are fundamental for
the conservation of the non-occluded image content. In this way, useful low-level
information is not lost during the encoding passage: by leveraging this kind of
information, we are able to maintain the appearance of visible parts in the image.

Discriminator Network The Discriminator, instead, aims to determine if an
image is true or if it has been generated. In particular, the structure is similar to the
one proposed by [210], composed by 4 convolutional layers with kernel size 5× 5.
The resulting features are followed by one sigmoid activation function in order to
obtain a probability for the classification problem. We use batch normalization
before every Leaky ReLU activation, except for the first layer.
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Table 3.16: Ablation study results on RAP dataset

Method mAcc. Acc. Prec. Rec. F1 SSIM PSNR
Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57
Baseline 70.74 56.55 70.61 71.78 71.19 0.7982 20.31
VGG loss 72.48 58.89 72.58 73.56 73.06 0.8293 20.88
VGG + attr. loss 72.18 59.59 73.51 73.72 73.62 0.8239 20.65
VGG + attr. loss (+input) 81.10 74.8 84.29 85.61 84.94 0.8274 20.7
GT data 78,66 66,23 77.85 79.71 78.77 - -

Table 3.17: Ablation study results on AiC dataset

Method mAcc. Acc. Prec. Rec. F1 SSIM PSNR
Occlusion 72.24 45.77 48.78 79.03 60.32 0.6148 18.38
Baseline 72.72 45.48 48.23 80.87 60.42 0.6236 20.49
VGG loss 78.12 53.11 55.52 85.65 67.37 0.7088 21.5
VGG + attr. loss 78.37 53.3 55.73 85.46 67.46 0.7101 21.81
VGG + attr. loss (+input) 90.86 72.15 74.0 95.1 83.23 0.6986 21.47
GT data 91.89 74.87 76.80 95.43 85.11 - -

Training Details

We trained our GAN with 320× 128 resized input images while simultaneously
providing the target image in order to compute the supervised losses. We adop-
ted the standard approach by [83] to optimize the networks alternating gradient
descent updates between the Generator and the Discriminator with K = 1. Data
augmentation is performed by randomly flipping the images horizontally. We used
mini-batch SGD applying the Adam solver with momentum parameters β1 = 0.5
and β2 = 0.999, learning rate 2 · 10−4 and a batch size of 20. Each training is
performed using a Titan Xp GPU.

3.4.2 Datasets
We evaluated our method on the RAP dataset, proposed by [141], comparing state-
of-the-art methods and performing the ablation study over each loss employed.
In addition, we further propose a new large-scale computer-graphics dataset AiC
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for pedestrian attribute recognition in crowded scenes. Differently, from existing
publicly available datasets, AiC is mainly focused on occlusion events.

RAP Dataset

RAP by [141] is a very richly annotated dataset with 41,585 pedestrian samples,
each of which is labeled with 72 attributes as well as viewpoints, occlusions, and
body parts information. In order to evaluate our method, we corrupted the dataset
with occlusions. Differently, from what did by [60], where obstructions were
created by cutting parts of images according to regular geometric shapes, we have
adopted a more sophisticated approach that has led us to more realistic results. By
exploiting the state-of-the-art performances of Mask R-CNN proposed by [93],
pre-trained on the COCO Dataset ([149]), we produced segmentation masks for
each person in the RAP dataset. The computed silhouettes were then used to crop
people’s shapes from the dataset. Those figures are then used to reproduce the
occlusions, simply by randomly overlapping the crops to each image sample of
RAP dataset. In addition, to reduce the visual gap between the original image and
the overlapped person, we performed a Gaussian blurring. However, this is not
applied to the whole image but only to the area given by the difference between
an expansion and an erosion of the segmentation mask of the overlapping image.
The only constraint that we have introduced is that the occluding person must not
occupy the portion of the image that has the y coordinate that exceeds the 6/7 of
the image height. Each sample is computed as follows:

IOCC = IGT 1 � ¬α (β (IGT 2)) + α (β (IGT 2)� IGT 2) (3.33)

where β(IGT 2) is the binary mask generated using Mask R-CNN and morphology
operations and α is a function used to translate the overlap section randomly over
the destination image IGT 1 . The dataset is already organized in 5 random splits.
Each of which contains 33,268 images for training and 8,317 for testing. As did
by [141], due to the unbalanced distribution of attributes in RAP, we selected the
51 attributes that have the positive example ratio in the dataset higher than 0.01.

AiC Dataset

Most of the publicly available pedestrian attribute datasets, like RAP by [141],
PETA by [50] and PA-100K by [153] does not contemplate occlusion events.
They only provide samples of full visible people, completely ignoring crowded
situations of pedestrians occluding each other (which is indeed common in urban
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scenarios). To overcome this limitation, we propose the Attributes in Crowd
dataset, a novel synthetic dataset for people attribute recognition in presence
of strong occlusions. AiC features 125,000 samples, all being a unique person,
each of which is automatically labeled with information concerning sex, age
etc. The dataset is split into 100,000 samples for training and 25,000 for testing
purposes. Each of the 24 attributes is present at least in a 10% of samples which
highlight a good balance in terms of labels. The collected samples feature a
vast number of different body poses, in several urban scenarios with varying
illumination conditions and viewpoints. Skeleton joints are also available for each
identity. Joints are additionally labeled with an occlusion flag which tells if the
specific body part is directly visible from the camera point of view. Moreover,
each image sample has his vanilla version where each obstacle is removed from
the image. Thus, for each occluded pedestrian, we know exactly how it really
is behind the occlusion (this is obviously not achievable in real environments).
Fig. 3.26 exhibits some examples of the dataset. AiC was created by exploiting
the highly photo-realistic video game Grand Theft Auto V developed by Rockstar
North. To foster future research on this topic, the dataset is publicly available here
https://github.com/fabbrimatteo/AiC-Dataset.

3.4.3 Experiments
In this section, we provide details about the metrics adopted, followed by a detailed
ablation study that presents qualitative and quantitative results for three different
combinations of losses (that we added to the adversarial loss): MSE loss, VGG
loss and a combination of VGG loss and attribute loss. We also investigate how
the information about the attributes of a person can enhance the quality of the
produced images. Additionally, we explain the choice of different hyperparameters,
exploring their impacts. Finally, we compare our method with the most related
works presented by [108] and [60].

Evaluation Metrics

Evaluating the quality of synthesized images is an open and challenging problem
as stated by [233]. Traditional metrics such as per-pixel MSE do not estimate joint
statistics of the result, and therefore do not extrapolate the full structure of the
result. In order to more holistically evaluate the visual quality of our results, we
employed two tactics. Firstly, we compared the performance of the proposed model
through metrics directly calculated over the reconstructed images. Specifically, we
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Figure 3.28: Qualitative results on both RAP and AiC datasets. (first line) an
example using a configuration of λ1 = 0 and λ2 = 15 on RAP: the color of the
jacket mutate from pink to gray to facilitate the classification, as the majority of
jackets in the dataset are dark. (second line) an example using a configuration of
λ1 = 10 and λ2 = 0.1 on AiC: blurring the occlusion and not hallucinating new
body parts results in a better strategy to facilitate ResNet-101.

adopted the structural similarity SSIM and the peak signal-to-noise ratio PSNR.
Secondly, we measured the capability of the proposed network of being able to
preserve original attributes, like gender, hairstyle or wearing jacket, by exploiting
the ResNet-101 network of [95] trained on the task of multi-attribute classification.
Thus, following [141], [60] and [153], we provide five evaluation metrics for the
attribute classification task, namely mean Accuracy, Accuracy, Precision, Recall
and F1.
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ResNet-101 Classification Network We trained the network with 320 × 128
resized images with Adam as optimizer and learning rate set to 2 · 10−4. In Table
3.14 a comparison on the classification task with other state-of-the-art networks
on RAP dataset is presented. The same network is trained independently for each
dataset, in order to provide reliable metrics for both RAP and AiC.

Ablation Study

As previously stated, we investigated three loss combinations in order to clarify
and highlight the solutions adopted in our work:

• Baseline: the Baseline architecture uses, in conjunction with the adversarial
loss, the MSE loss as content loss;

GT OCC 1 2 3 GT OCC 4 5 6

Figure 3.29: Qualitative comparison with state-of-the-art approaches: results are
presented for both RAP (leftmost) and AiC (rightmost). GT columns indicate
ground truth images while in the OCC columns are presented the input occluded
images. Columns 1 and 4 are the images recovered by Pix2Pix. On 2 and 5 are
presented results obtained from the method used by Fabbri et al. The last two
columns, 3 and 5, show our best comparable approach output (Vgg loss + Attr.
loss).
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• VGG loss: differently from the Baseline, we replaced the MSE loss with the
VGG loss. The layers (1,2), (2,2), (3,3) and (4,3) are chosen as the set L of
activations on Eq. 3.31. In Eq. 3.28, we set λ1 to 10 and λ2 to 0 (further
details about λ1 and λ2 are presented in the next subsection);

• VGG loss + Attr. loss: in this case, all the three losses are employed. The
VGG loss always refers to the same four activation layers. The Attribute loss
is computed between the output of the ResNet-101 classification network
computed on the generated images and the ground truth labels provided by
the datasets. In Eq. 3.28, we set λ1 to 10 and λ2 to 5 for RAP and to 0.01
for AiC. Note that we did not use all the available attributes of RAP dataset,
but only the first 51 for the reason explained at the end of section 3.4.2. For
AiC dataset, instead, we used all the available attributes.

In order to further investigate how some additional information about the attributes
can improve the restoration process, we performed a further experiment where
attributes are fed as input to the network, along with the occluded image:

• Entire: in this setup, we adopted both the VGG loss and the Attribute
loss, along with the adversarial loss. Differently, from our main method,
attributes are injected directly to the main flow of the Generator network.
Specifically, the attribute vector of the occluded pedestrian is fed to a fully
connected layer in order to produce a feature vector that is reshaped to
match the bottleneck dimension of our Generator network.

Fig. 3.27 shows some qualitative results. The baseline performs considerably
worse than the other setups, not being able to completely remove the occlusions
on AiC (column 9 of Fig. 3.27). This is probably due to the fact that AiC is a
more challenging dataset compared to our corrupted version of RAP. For the same
reason, RAP results are overall more appealing than the ones of AiC. Moreover,
no substantial difference appears between the other setups, highlighting the fact
that the VGG loss is the main component that guides the network to produce
high-quality results.

Table 3.16 and Table 3.17 present quantitative results for RAP and AiC re-
spectively based on our ablation study. The tables also provide metrics referred to
the occluded images before the restoration process. By observing the tables, we
can state that, despite being visually indistinguishable, the images obtained from
the VGG loss and from our Entire configuration produce very different results
in terms of attribute metrics. We can also observe that there is no substantial
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Table 3.18: Comparison with the state-of-the-art method on RAP dataset

Method mAcc. Acc. Prec. Rec. F1 SSIM PSNR
Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57
Pix2Pix [108] 69.49 52.05 65.07 70.06 67.47 0.7348 17.91
[60] 65.92 51.44 65.77 67.94 66.84 0.6798 18.4
Ours 72.18 59.59 73.51 73.72 73.62 0.8239 20.65

Table 3.19: Comparison with the state-of-the-art method on RAP dataset

Method mAcc. Acc. Prec. Rec. F1 SSIM PSNR
Occlusion 72.24 45.77 48.78 79.03 60.32 0.6148 18.38
Pix2Pix [108] 71.93 44.27 46.75 81.61 59.45 0.6351 21.22
[60] 67.14 38.21 40.61 79.9 53.85 0.573 20.11
Ours 78.37 53.3 55.73 85.46 67.46 0.7101 21.81

difference between the VGG loss and the VGG loss with Attributes loss. In fact,
RAP shows a gap of one percentage point in almost all the classification metrics,
while AiC shows very little differences, probably due to the more challenging
nature of AiC. Moreover, Table 3.16 shows that the Entire setup reach higher
scores compared to the upper bound of the ground truth images. Also Table 3.17
shows performances that are close to the ground truth metrics when we input
attribute information directly to the Generator. In fact, with attributes as input, the
Generator network, by restoring the occluded images, is able to produce an output
that has enhanced attribute characteristics (although this is not visible to the naked
eye). As can be shown in the next subsection, further forcing the generation output
on classification metrics, we can reach results that exceed the ground truth upper
bound even on AiC, at a price of a drop on reconstruction metrics.

Hyperparameter Optimization

Hyperparameter tuning is a crucial aspect in designing machine learning frame-
works, as the performance of an algorithm can be highly dependent on the choice
of hyperparameters. In fact, λ1 and λ2 were selected using a grid search technique.
In particular, we searched for a trade off between classification metrics (accuracy,
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precision, recall, f1) and pixel-level reconstruction metrics (PSNR, SSIM). We
performed a different grid search for four different configurations combining each
dataset with the two main setups: VGG loss + Attr. loss and the Entire pipeline.

For what concerns the VGG loss + Attr. loss setup, we observed that, in
general, a configuration with λ1 � λ2 brings to better pixel-level reconstruction
metrics but poor classification performances. On the other hand, solutions with
λ1 � λ2 show good classification performances but low pixel-level reconstruction
metrics. Also, increasing λ1 over the value of 10 does not further improve PSNR
and SSIM metrics (for both RAP and AiC). The same behavior happens for λ2:
the classification metrics do not improve for values greater than 5 (for RAP) and
0.01 (for AiC). This difference of λ2 between the two datasets may be caused
by the fact that AiC is more challenging than RAP. In fact, during training, the
Attributes Loss on AiC is orders of magnitude greater than the same loss on RAP,
thus, a smaller λ2 is needed to maintain the balance between the losses.

For what concern the Entire pipeline, we observed a different behavior on
λ2: increasing λ2 does steadily improve the classification metrics (reaching up to
98.89 mean Accuracy with λ2 = 5) while drastically decreasing PSNR and SSIM.
This behavior happens on both RAP and AiC. By giving more importance to the
Attributes Loss, the Generator network is able to enhance attribute characteristics
to the point that they are highly recognizable by the classification network, at the
price of not maintaining low-level similarity. Fig. 3.28 shows a direct consequence
at qualitative level on both RAP and AiC. The first line depicts an extreme con-
figuration of λ1 = 0 and λ2 = 15 on RAP. With no low-level constraints, the
Generator network is able to mutate the color of the jacket to facilitate the ResNet-
101 “jacket attribute” recognition. The second line of Fig. 3.28, instead, shows an
example obtained using λ1 = 10 and λ2 = 0.1 on AiC. In this case, the behavior
is completely different: due to the high diversity of attributes in AiC, the Generator
learns to simply remove the obstacle, not adding (hallucinating) many details to
the removed portion of the image. Adding imprecise details would, in fact, mislead
the attribute classification network.

Comparison Against State-Of-The-Art Techniques

Since our task of de-occlusion is novel, there are no direct works to compare with.
So, to match the results of our network, in addition to our previous work, we also
retrained the Pix2Pix framework on both RAP and AiC.
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Our Previous work Like our current method, [60] exploits an adversarial based
framework to achieve a translation from an occluded-pedestrian domain to a
completely visible body domain. The main difference with our current method
resides in the loss formulation: [60] minimizes a combination of adversarial loss
and sum of squared error loss (SSE), completely ignoring high-level and low-level
similarities. Another important difference lies in the Generator architecture: our
previous work uses a simple hourglass architecture with no skip connections,
while in our current method we adopted a U-net based solution. The U-net
architecture shows better performances in tasks where some input information has
to be shuttled directly to the output with no variation. In fact, as can be seen in
Fig. 3.29, our previous work fails to preserve the portions of the image that should
remain unchanged (especially the faces).

Pix2Pix [108] investigates conditional adversarial networks as a general-purpose
solution to image-to-image translation problems. As in our Generator network,
Pix2Pix exploits a U-net based architecture. The only substantial architectural
difference is in the number of convolutional layers before each downsampling and
after each upsampling operation. Also, the Discriminators differs: Pix2Pix uses a
patch level discriminator that only penalizes structure at the scale of patches, while
in our work we adopt an image level discriminator that takes the whole image as
input. A patch level discriminator models the image as a Markov random field,
assuming independence between pixels separated by more than a patch diameter.
This is indeed not the case when dealing with images of people. In fact, for
example, the skin color of the face should match the skin color of the hands. Also,
the trousers are usually made of the same color. Another significant difference lies
in the content loss: Pix2Pix, like our previous work, uses a pixel-level loss (L1
instead of SSE), assuming pixel independence, and forcing pixels of the output
image to exactly match the pixels of the target image. In our work, instead, we
exploit a combination of high-level and low-level consistency by encouraging the
overall images the have similar feature representations as computed by the VGG16
network, and similar visual attributes as computed by the ResNet-101.

From Table 3.18 and Table 3.19 it can be shown that our network perform
favourably for each metric, both for RAP and AiC datasets. From Fig. 3.29 it
also emerges that our method, despite not using attention mechanisms, is able
to detect and to remove the occlusion, with no external additional information.
Furthermore, differently from the works by[60] and [108], our method learns to
transfer with no alterations the portion of images that are not occluded.
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Chapter 4

Domain Adaptation

Deep learning methods trained on synthetically generated data usually suffer from
domain-shift related problems. For this reason, in this chapter, we investigate
domain adaptation techniques in order to bridge the gap between “source domain”
and “target domain” for head pose estimation, attributes recognition and facial
landmark localization. In particular, in Section 4.1, we propose a complete
framework for the estimation of the head and shoulder pose relying on depth
images only where a Face-from-Depth component based on a Conditional GAN is
able to hallucinate a face from the corresponding depth image. Additionally, in
Section 4.2, we further explore the capabilities of the Face-from-Depth component.
Although the network cannot reconstruct the exact somatic features for unknown
individual faces, it is capable of reconstructing plausible faces as their appearance
is accurate enough as it can be used as input for face attributes classification and
land-mark localization.

4.1 Head Pose Estimation

Computer vision has been addressing the problem of head pose estimation for
several years.
In 2009, Murphy-Chutorian and Trivedi [182] made a first assessment of the
proposed techniques. More recently, different approaches have been proposed
together with some annotated datasets useful for both training and testing those
systems. The interest of the research community is mainly due to a large number
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of applications that require or are improved by a reliable head pose estimation:
face recognition with aliveness detection, human-computer interaction, people
behavior understanding are some examples. Moreover, a large effort has been
recently devoted to applications in the automotive field, such as monitoring drivers
and passengers. Together with the estimation of the upper-body and shoulder
pose, the head monitoring is one of the key technologies required to set up (semi)-
autonomous driving cars, human-car interaction for entertainment, and driver’s
attention measurement.

In the automotive field, vision-based systems are required to cooperate or even
replace other traditional sensors, due to the increasing presence of cameras inside
new cars’ cockpits and to the ease of capturing images and videos in a completely
non-invasive manner.
In the past, encouraging results for driver head pose estimation have been achieved
using RGB images [182, 258, 13, 54, 42] as well as different camera types, such as
infrared [112], thermal [259], or depth [174, 161, 20]. Among them, the last ones
are very promising, since they allow robustness when facing strong illumination
variations. Moreover, standard techniques based on RGB images are not always
feasible due to poor or absent illumination conditions during the night or to the
continuous illumination changes during the day.

Nowadays, the acquisition of depth data is feasible thanks to commercial
low-cost, high-quality and small-sized depth sensors, that can be easily placed
inside the vehicle.

In this work, we propose a robust and fast solution for head and shoulder pose
estimation, especially devoted to drivers in cars, but that can be easily generalized
to any application where depth images are available. The presented framework
provides impressive results, reaching an accuracy higher than 73% on the new
Pandora dataset (see Fig. 4.3) and a low average error on the Biwi dataset, thus
overcoming all state-of-art related works.

The core of the framework is a Convolutional Neural Network (CNN), called
POSEidon+, that combines depth, appearance and Motion Images as input to
estimate the 3D pose angles in regression. An overview of the model is depicted
in Figure 4.4. The model is enhanced with a Face-from-Depth (FfD) component.
This is motivated by recent literature results[1, 55] that testifies the importance of
intensity images for the task. The FfD component is able to reconstruct the gray-
level appearance of a face directly from the corresponding depth image. Thanks
to the insensitivity of the depth image to the external illumination conditions, the
provided reconstruction is more stable and reliable than gray or color images
captured from the same RGB-D sensor. Moreover, the reconstruction can be
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Figure 4.1: Visual examples of the proposed framework output in indoor (first row)
and automotive (second and third row) settings. Head pose angles are reported
as colored arrows. Depth maps, Face-from-Depth and Motion Image inputs are
depicted on the left of each frame.

applied in situations where the depth sensor is exploited alone without the color
stream for computational or implementation constraints.
As an example, in Figure 4.2, we have reported two frames captured from an
RGB-D sensor in correspondence of an abrupt illumination change (from light to
dark). The depth images are not affected by the illumination change and thus the
corresponding FfD reconstructions are identical. The provided output highlights
the reliability of the developed network as well as the quality of the results.
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Figure 4.2: Example of reliability of the FfD network on depth images. Two
consecutive frames have been selected from a sequence with an abrupt illumination
change (from light to dark). In the first column the auto equalized RGB, then the
corresponding depth maps and finally the FfD reconstruction output.

The overall system is split into two components: the Face-from-Depth architec-
ture followed by the pose estimation module, that takes as input the reconstructed
gray level images. From a first glance, this approach could be improper since
we are somehow forcing the FfD model to output a human understandable inter-
mediate representation, i.e., the gray level image. Training an end-to-end system
enables the network to find the best internal/intermediate representation. How-
ever, in addition to a performance improvement as reported in Section 4.1.4, the
introduction of the Face-from-Depth component allows the second part of the
system to be trained on wider datasets since more annotated datasets on gray-level
images are usually available rather than on depth ones. More generally, FfD moves
input depth images on a domain where more experience is available in order to
understand and process them.

This work is an improved and extended version of our preliminary work, that
has been described in [20], where the body pose estimation task was carried
on through a baseline version of the POSEidon+ framework, here referred as
POSEidon. In this thesis we present the overall framework, introducing a new
Face-from-Depth architecture, which exploits the recent Deterministic Conditional
GAN models [107] to reconstruct gray-level face images. To the best of our
knowledge, this is one of the first proposal to generate intensity images from depth
data for the head pose estimation task with an adversarial approach. Moreover,
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Figure 4.3: Sample frames from the Pandora dataset. As depicted, extreme poses
and challenging camouflage can be present.

we evaluate and check the overall quality of the computed face images and results
confirm their high quality and accuracy.
Extensive experiments have been carried out and results show that the POSEidon+,
equipped with the improved version of the Face-from-Depth architecture, achieves
significant improvements in the head pose estimation task. Besides, we show that
is possible to obtain competitive results exploiting a CNN trained on gray-level
faces and tested on generated ones.

4.1.1 Method

An overview of the POSEidon+ framework is depicted in Figure 4.4. The final
goal is the estimation of the pose of the driver’s head and shoulders, defined as the
mass center position and the corresponding orientation relative to the reference
frame of the acquisition device [182]. The orientation is provided using three
rotation angles pitch, roll and yaw. POSEidon+ directly processes the stream of
depth frames captured in real-time by a commercial sensor. Position and size of the
foremost head are estimated by a head localization module based on a regressive
CNN (Sect. 4.1.1). The output provided is used to crop the input frames around
the head and the shoulder bounding boxes, depending on the further pipeline type.
Frames cropped around the head are fed to the head pose estimation block, while
the others are exploited to estimate the shoulders pose.
The core components of the system are the Face-from-Depth network (Sect. 4.1.2),
and POSEidon+ (Sect. 4.1.3), the network which gives the name to the whole
framework. Its trident shape is due to the three included CNNs, each working on a
specific source: depth, gray level (the output of FfD) and Motion Images data. The
first one plays the main role on the pose estimation, while the others cooperate to
reduce the estimation error.
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Figure 4.4: Overview of the whole POSEidon+ framework. Depth input images
are acquired by depth sensors (black) and provided to a head localization CNN
(blue) to suitably crop the images around the upper-body or head regions. The head
crop is used to produce the three inputs for the following networks (green), that
are then merged to output the head pose (red). In particular, the Face-from-Depth
architecture reconstructs gray-level face images from the corresponding depth
maps, while the Motion Images are obtained by applying the Farneback algorithm.
Finally, the upper-body crop is used for the shoulder pose estimation (orange).
[best in color]

Head Localization

In this step, we defined and trained a network for head localization, relying on the
main assumption that a single person is in the foreground. The image coordinates
(xH , yH) of the head center are the network outputs, or rather, the center mass
position of all head points in the frame [243].
Details on the deep architecture adopted are reported in Figure 4.5. A limited
depth and small-sized filters have been chosen to meet real-time constraints while
keeping satisfactory performance. For this reason, input images are firstly resized
to 160× 132 pixels. A max-pooling layer (2× 2) is run after each of the first four
convolutional layers, while a dropout regularization (σ = 0.5) is exploited in fully
connected layers. The hyperbolic tangent activation (tanh) function is adopted,
in order to map continuous output values to a predefined range [−∞,+∞] →
[−1,+1]. The network has been trained by Stochastic Gradient Descent (SGD)
[128] and the L2 loss function.
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Given the head position (xH , yH) in the frame, a dynamic size algorithm provides
the head bounding box with center (xH , yH), width wH and height hH , around
which the frames are cropped:

wH =
fx ·Rx
D

, hH =
fy ·Ry
D

(4.1)

where fx, fy are the horizontal and the vertical focal lengths in pixels of the
acquisition device, respectively. Rx, Ry are the average width and height of a face
(for head pose task Rx = Ry = 320) and D is the distance between the head
center and the acquisition device, computed averaging the depth values around the
head center.
Some examples of bounding boxes estimated by the network are superimposed in
the frames of Figure 4.1.

4.1.2 Face-from-Depth
Due to illumination issues, the appearance of the face is not always available if
acquired with a RGB camera, e.g. inside a vehicle at night. On the contrary, depth
maps are generally invariant to illumination conditions but lack of texture details.
We aim to investigate if it is possible to imagine the appearance of a face given

Figure 4.5: Architecture of the Head Localization network with corresponding
kernel size (k), number of feature maps (n) and stride (s) indicated for each
convolutional layer.
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Figure 4.6: Architecture of the Face-from-Depth network.

the corresponding depth data. Metaphorically, we ask the model to mimic the
behavior of a blind person when he tries to figure out the appearance of a friend
through the touch.

Deterministic Conditional GAN

The Face-From-Depth network exploits the Deterministic Conditional GAN (det-
cGAN) paradigm [107] and it is obtained as a generative network G capable of
estimating a gray-level image IE of a face from the corresponding depth represent-

Figure 4.7: Architecture of the Head and Shoulder Pose Estimation networks.
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Table 4.1: Head Pose Estimation Results on Biwi. To allow fair comparisons
with state of the art methods, POSEidon+ has been evaluated using different
evaluation protocols.

Validation Procedure Year Data Head Avg
Depth RGB Pitch Roll Yaw

ALL SEQUENCES USED AS TEST SET

Padeleris [195] 2012
√

6.6 6.7 11.1 8.1
Rekik [216] 2013

√ √
4.3 5.2 5.1 4.9

Martin [164] 2014
√

2.5 2.6 3.6 2.9
Papazov [199] 2015

√
2.5± 7.4 3.8± 16.0 3.0± 9.6 4.0± 11.0

Meyer [174] 2015
√

2.4 2.1 2.1 2.2
Li [142] 2016

√ √
1.7 3.2 2.2 2.4

Sheng [241] 2017
√

2.0 1.9 2.3 2.1

LEAVE ONE OUT (LOO)
Drouard [55] 2015

√
5.9± 4.8 4.7± 4.6 4.9± 4.1 5.2± 4.5

Drouard [56] 2017
√

10.0± 8.7 8.4± 8.0 8.6± 7.2 9.0± 7.9
POSEidon+ 2017

√
2.4± 1.3 2.6± 1.5 2.9± 1.5 2.6± 1.4

K4-FOLD SUBJECT CROSS VALIDATION

Fanelli [64] 2011
√

3.5± 5.8 5.4± 6.0 3.8± 6.5 -± -
POSEidon+ 2017

√
2.8± 1.7 2.9± 2.1 3.6± 2.5 3.1± 2.1

K5-FOLD SUBJECT CROSS VALIDATION

Fanelli [66] 2011
√

8.5± 9.9 7.9± 8.3 8.9± 13.0 8.43± 10.4
POSEidon+ 2017

√
2.8± 1.8 2.8± 2.2 3.6± 2.2 3.0± 2.1

K8-FOLD SUBJECT CROSS VALIDATION

Lathuiliere [133] 2017
√

4.7 3.1 3.1 3.6
POSEidon+ 2017

√
2.8± 1.9 2.8± 1.8 3.3± 2.0 3.0± 1.9

FIXED TRAIN AND TEST SPLITS

Yang [279] 2012
√ √

9.1± 7.4 7.4± 4.9 8.9± 8.3 8.5± 6.9
Baltrusaitis [11] 2012

√ √
5.1 11.3 6.3 7.6

Kaymak [119] 2013
√ √

7.4 6.6 5.0 6.3
Wang [263] 2013

√ √
8.5± 14.3 7.4± 10.8 8.8± 14.3 8.2± 12.0

Ahn [1] 2014
√

3.4± 2.9 2.6± 2.5 2.8± 2.4 2.9± 2.6
Saeed [232] 2015

√ √
5.0± 5.8 4.3± 4.6 3.9± 4.2 4.4± 4.9

Liu [152] 2016
√

6.0± 5.8 5.7± 7.3 6.1± 5.2 5.9± 6.1
POSEidon [20] 2017

√
1.6± 1.7 1.8± 1.8 1.7± 1.5 1.7± 1.7

POSEidon+ 2017
√

1.6± 1.3 1.7± 1.7 1.7± 1.3 1.6± 1.4
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ation ID. The generator G is trained to produce outputs as much indistinguishable
as possible from real images I by an adversarially trained discriminator D, which
is expressly trained to distinguish the real images from the fake ones produced by
the generator. Differently from a traditional GAN [84, 210], the Generator network
of a det-cGAN takes an image as input (to be Conditional) and not a random noise
vector (to be Deterministic). As a result, a det-cGAN learns a mapping from
observed images x to output images y: G : x→ y.

The objective of a det-cGAN can be expressed as follows:

Ldet−cGAN (G,D) = EI∼pdata(I)[logD(I)]

+ EID∼pdata(ID)[log(1−D(G(ID)))] (4.2)

where logD(I) represents the log probability that I is real rather than fake while
log(1−D(G(ID))) is the log probability that G(ID) is fake rather than real. G
tries to minimize the term Ldet−cGAN (G,D) of Equation 4.2, against D that tries
to maximize it. The optimal solution is:

G∗ = arg min
G

max
D

Ldet−cGAN (G,D) (4.3)

As a possible drawback, the images generated by G are forced to be realistic
thanks to D, but they can be unrelated with the original input. For instance, the
output could be a nice image of a head with a very different pose with respect
to the input depth. Thus, is fundamental mixing the GAN objective with a more
traditional loss, such as SSE distance [202]. While discriminator’s job remains
unchanged, the generator, in addition to fooling the discriminator, tries to emulate
the ground truth output in an SSE sense. The pixel-wise SSE is calculated between
downsized versions of the generated and target images, first applying an averaged
pooling layer. We formulate the final objective as the weighted sum of a content
loss and an adversarial loss as:

G∗ = arg min
G

max
D

Ldet−cGAN (G,D) + λLSSE(G) (4.4)

where λ is the weight controlling the content loss impact.

Network Architecture

We propose to modify the classic hourglass generator architecture, performing a
limited number of upsampling and downsampling operations. As shown in the
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Table 4.2: Evaluation metrics computed on the reconstructed gray-level face
images with Biwi and Pandora datasets. Starting from the left, L1 and L2 distances
are reported, then the absolute and the squared differences, the root-mean-square
error and, finally, the percentage of pixels under a certain threshold.

Dataset Method Norm ↓ Difference ↓ RMSE ↓ Threshold ↑
L1 L2 Abs Squared linear log scale-inv 1.25 2.5 3.75

Biwi FfD [20] 33.35 2586 0.454 24.07 40.55 0.489 0.445 0.507 0.806 0.878
FfD 24.44 2230 0.388 19.81 35.50 0.653 0.610 0.615 0.764 0.840

Pandora

FfD [20] 41.36 3226 0.705 46.00 50.77 0.603 0.485 0.263 0.725 0.819
pix2pix [107] 19.37 1909 0.468 24.07 30.80 0.568 0.539 0.583 0.722 0.813

AVSS [61] 23.93 2226 0.629 34.49 35.46 0.658 0.579 0.541 0.675 0.764
FfD + U-Net 23.75 2123 0.653 34.96 33.89 0.639 0.553 0.555 0.689 0.775

FfD 18.21 1808 0.469 22.90 28.90 0.556 0.501 0.605 0.743 0.828

following experimental section, the U-Net architecture [228] can be adopted in
order to shuttle low-level information between input and output directly across the
network [107], but it is less convenient in our case.
Following the main architecture guidelines for stable Deep Convolutional GANs
by Radford et al. [210], we instead adopt the architecture illustrated in Figure 4.6
for the Generator. Specifically, in the encoder part, we use three convolutional
layers followed by a strided convolutional layer (with stride 2) to halve the image
resolution.
The decoding stack uses three convolutional layers followed by a transposed
convolutional layer (also referred as fractionally strided convolutional layers) with
stride 1/2 to double the resolution, and a final convolution. The number of filters
follows a power of 2 pattern, from 128 to 1024 in the encoder and from 512 to 64
in the decoder. Leaky ReLU is used as activation function in the encoding phase
while ReLU is used in the decoding phase.
We adopt batch normalization before each activation (except for the last layer)
and a kernel size 5× 5 for each convolution.
The discriminator architecture complies with the generator’s encoder in terms of
activation and number of filters, but contains only strided convolutional layers
(with stride 2) to halve the image resolution each time the number of filters is
doubled. The network then outputs one sigmoid activation. In the discriminator,
we use batch normalization before every Leaky ReLU activation, except for the
first layer.
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Training details

We trained the det-cGAN with depth images and simultaneously providing the
network with the original gray-level images associated with the depth data in
order to compute the LSSE . To optimize the network we adopted the standard
approach from Goodfellow et al. [84] and alternate the gradient descent updates
between the generator and the discriminator with K = 1. We used mini-batch
SGD applying the Adam solver [124] with β1 = 0.5 and batch size of 64. We
set λ = 10−1 in Equation 4.4 for the experiments. Moreover, to encourage the
discriminator to estimate soft probabilities rather than to extrapolate extremely
confident classifications, we used a technique called one-sided label smoothing
[233] where the target for the real examples are replaced with a value slightly less
than 1, such as 0.9. This solution prevents the discriminator to produce extremely
confident predictions that could unbalance the adversarial learning.

4.1.3 Pose Estimation from depth
POSEidon+ network

The POSEidon+ network is a fusion of three CNNs and has been developed to
perform a regression on the 3D pose angles. As a result, continuous Euler values –
corresponding to the yaw, pitch and roll angles – are estimated (right part of Fig.
4.4). The three POSEidon+ components have the same shallow architecture based
on 5 convolutional layers with kernel size of 5× 5, 4× 4 and 3× 3 and a 2× 2
max-pooling is conducted only on the first three layers due to the limited size of
the input (64 × 64). The first four convolutional layers have 32 filters each, the
last one has 128 filters. tanh is exploited as activation function; we are aware
that ReLU [183] converges faster, but better performance in term of accuracy
prediction are achieved.
The three networks are fed with different input data types: the first one, directly
takes as input the head-cropped depth images; the second one is connected to the
Face-from-Depth output and the last one operates on Motion Images, obtained
applying the standard Farneback algorithm [67] on pairs of consecutive depth
frames. The presence of depth discontinuities around the nose and the eyes
generates specific motion patterns which are related to the head pose. Motion
Images, thus, provide useful information for the estimation of the pose of a moving
head. Frames with motionless heads are very rare in real videos. However, in those
cases the common image compression creates artifacts around the face landmarks
which allow the estimation of the head pose.
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A fusion step combines the contributions of the three above described networks.
The last fully connected layer of each component is removed in order to provide
the following layers with more data and not only the estimated angles. As a results,
the output of the whole POSEidon+ network is not only a weighted mean of
the three component outputs, but a more complex combination. Different fusion
approaches that have been proposed by Park et al. [200] are investigated. Given
two feature maps xa, xb with a certain width w and height h, for every feature
channel dxa, d

x
b and y ∈ Rw×h×d:

• Multiplication: computes the element-wise product of two feature maps,
as ymul = xa ◦ xb, dy = dxa = dxb

• Concatenation: stacks two features maps, without any blend ycat =
[xa|xb], dy = dxa + dxb

• Convolution: stacks and convolves feature maps with a filter k of size
1 × 1 × (dxa + dxb )/2 and β as bias term, yconv = ycat ∗ k + β, dy =
(dxa + dxb )/2

The final POSEidon+ framework exploits a combination of two fusing meth-
ods, in particular, a convolution followed by a concatenation. After the fusion step,
three fully connected layers composed of 128, 84 and 3 activations respectively
and two dropout regularization (σ = 0.5) complete the architecture. POSEidon+

is trained with a double-step procedure. First, each individual network described
above is trained with the following Lw2 weighted loss:

Lw2 =

3∑
i=1

∥∥wi · (yi − f(xi))
∥∥
2

(4.5)

where wi ∈ [0.2, 0.35, 0.45]. This weight distribution gives more importance to
the yaw angle, which is preponderant in the selected automotive context. During
the individual training step, the last fully connected layer of each network is
preserved, then is removed to perform the second training phase. Holding the
weights learned for the trident components, the new training phase is carried out
on the last three fully connected layers of POSEidon+ only, with the loss function
Lw2 reported in Equation 4.5. In all training steps, the SGD optimizer [128] is
exploited, the learning rate is set initially to 10−1 and then is reduced by a factor 2
every 15 epochs.

Exploiting Synthetic Data to Improve Human Behavior Understanding 101



Shoulder Pose Estimation

The framework is completed with an additional network for the estimation of the
shoulder pose. We employ the same architecture adopted for the head (Sect. 4.1.3),
performing regression on the three pose angles.
Starting from the head center position (Sect. 4.1.1), the depth input images
are cropped around the driver neck, using a bounding box {xS , yS , wS , hS} with
center (xS = xH , yS = yH−(hH/4)), and width and height obtained as described
in Equation 4.1, but with different values of Rx, Ry to produce a rectangular crop:
these values are tested and discussed in Section 4.1.4. The network is trained with
SGD optimizer [128], using the weighted Lw2 loss function described above (see
Eq. 4.5). As usual, hyperbolic tangent is exploited as activation function.

4.1.4 Experiments

Datasets

Network training and testing phases have been done exploiting two publicly
available datasets, namely Biwi Kinect Head Pose and ICT-3DHP. In addition,
we collected a new dataset, called Pandora, which also contains shoulder pose
annotations. Data augmentation techniques are employed to enlarge the training
set, in order to achieve space invariance and avoid overfitting [128].
Random translations on vertical, horizontal and diagonal directions, jittering,
zoom-in and zoom-out transformation of the original images have been exploited.
Percentile-based contrast stretching, normalization and scaling of the input images
are also applied to produce zero mean and unit variance data.
Other datasets for head pose estimation and related tasks have been collected in
last decades [9, 85, 190, 289, 165], but in most cases there are some not desirable
features, for instance, no depth or 3D data, no continuous ground truth annotations
and not enough data for deep learning techniques.
Follows a detailed description of the three adopted datasets.

Biwi Kinect Head Pose dataset Fanelli et al. [65] introduced this dataset in
2013. It is acquired with the Microsoft Kinect sensor, i.e., a structured IR light
device. It contains about 15k frames, with RGB (640 × 480) and depth maps
(640× 480). Twenty subjects have been involved in the recordings: four of them
were recorded twice, for a total of 24 sequences. The ground truth of yaw, pitch
and roll angles is reported together with the head center and the calibration matrix.
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Figure 4.8: Test (a) and train (c) images on Pandora dataset, test (b) and train
(d) images on Biwi dataset. For each block, gray-level images and then the
corresponding depth faces are depicted in the first columns; face images taken
from the method described by Borghi et al. are reported in the third column; finally,
the output of the Face-from-Depth network proposed in this work is depicted in
the last column.

The original paper does not report the adopted split between training and testing
sets; fair comparisons are thus not guaranteed. To avoid this, we clearly report the
adopted split in the following.

ICT-3DHP dataset ICT-3DHP dataset has been introduced by Baltrusaitis et al.
in 2012 [11]. It has been collected using a Microsoft Kinect sensor and contains
RGB images and depth maps of about 14k frames, divided into 10 sequences. The
image resolution is 640× 480 pixels. An additional hardware sensor (Polhemus
Fastrack) is exploited to generate the ground truth annotation. The device is placed
on a white cap worn by each subject, visible in both RGB and depth frames. The
presence of a few subjects and the limited number of frames make this dataset
unsuitable for training deep learning approaches.

Pandora dataset In addition to publicly available datasets, we have also collec-
ted and used a new challenging dataset, called Pandora. It has been specifically
created for head center localization, head pose and shoulder pose estimation in
automotive contexts (See Fig.4.3). A frontal and fixed device acquires the upper
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body part of the subjects, simulating the point of view of a camera placed inside
the dashboard. The subjects mainly perform driving-like actions, such as holding
the steering wheel, looking to the rear-view or lateral mirrors, shifting gears and
so on. Pandora contains 110 annotated sequences of 10 male and 12 female actors.
Each subject has been recorded five times. Pandora is the first publicly available
dataset which combines the following features:

• Shoulder angles: in addition to the head pose annotation, Pandora contains
the ground truth data of the shoulder pose expressed as yaw, pitch, and roll.

• Wide angle ranges: subjects perform wide head (±70° roll, ±100° pitch
and ±125° yaw) and shoulder (±70° roll, ±60° pitch and ±60° yaw) move-
ments. For each subject, two sequences are performed with constrained
movements, changing the yaw, pitch and roll angles separately, while three
additional sequences are completely unconstrained.

• Challenging camouflage: garments, as well as various objects are worn or
used by the subjects to create head and/or shoulder occlusions. For example,
people wear prescription glasses, sunglasses, scarves, caps, and manipulate
smart-phones, tablets or plastic bottles.

• Deep-learning oriented: the dataset contains more than 250k full resolu-
tion RGB (1920 × 1080) and depth images (512 × 424) with the corres-
ponding annotation.

• Time-of-Flight (ToF) data: a Microsoft Kinect One device is used to ac-
quire depth data, with a better quality than other datasets created with the
first Kinect version [237].

Each frame of the dataset is composed of an RGB appearance image, the cor-
responding depth map, and the 3D coordinates of the skeleton joints corresponding
to the upper body part, including the head center and the shoulder positions. For
convenience’s sake, the 2D coordinates of the joints on both color and depth
frames are provided as well as the head and shoulder pose angles with respect to
the camera reference frame. Shoulder angles are obtained through the conversion
to Euler angles of a corresponding rotation matrix, obtained from a user-centered
system [197] and defined by the following unit vectors (N1, N2, N3):

N1 = pRS−pLS
‖pRS−pLS‖ U = pRS−pSB

‖pRS−pSB‖

N3 = N1×U
‖N1×U‖ N2 = N1 ×N3

(4.6)
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Table 4.3: Results obtained on Pandora dataset with head pose network trained on
gray level images and tested with the original gray-level and reconstructed ones.

Testing input Head Acc.
Pitch Roll Yaw

gray-level 7.1± 5.6 5.6± 5.8 9.0± 10.9 0.613

pix2pix [107] 7.9± 8.0 5.9± 6.3 12.8± 21.4 0.581
AVSS [61] 8.9± 8.5 6.2± 6.4 13.4± 20.4 0.543
FfD [20] 8.5± 8.9 6.1± 6.2 12.4± 17.3 0.559

FfD + U-Net 8.7± 8.4 6.4± 6.6 13.5± 19.9 0.552
FfD 7.6± 6.9 5.8± 6.0 10.1± 12.6 0.613

where pLS , pRS and pSB are the 3D coordinates of the left shoulder, right shoulder
and spine base joints. The annotation of the head pose angles has been collected
using a wearable Inertial Measurement Unit (IMU) sensor. To avoid distracting
artifacts on both color and depth images, the sensor has been placed in a non-
visible position, i.e., on the rear of the subject’s head. The IMU sensor has been
calibrated and aligned at the beginning of each sequence, assuring the reliability
of the provided angles. The dataset is publicly available (http://aimagelab.
ing.unimore.it/pandora/).

Table 4.4: Results of the head pose estimation on Pandora comparing different
system architectures. The baseline is a single CNN working on the source depth
map (Row 1). The accuracy is the percentage of correct estimations (err <15°).
FfD: Face-from-Depth, MI: Motion Images.

HEAD POSE ESTIMATION ERROR [EULER ANGLES]

# Input Crop Fusion Head Accuracy
Depth FfD MI Gray Pitch Roll Yaw

1
√

- 8.1± 7.1 6.2± 6.3 11.7± 12.2 0.553
2

√ √
- 6.5± 6.6 5.4± 5.1 10.4± 11.8 0.646

3
√ √

- 6.8± 6.1 5.8± 5.0 10.1± 12.6 0.658
4

√ √
- 7.7± 7.5 5.3± 5.7 10.0± 12.5 0.609

5
√ √

- 7.1± 6.6 5.6± 5.8 9.0± 10.9 0.639
6

√ √ √
concat 5.6± 5.0 4.9± 5.0 9.7± 12.1 0.698

7
√ √ √

concat 6.0± 6.1 4.5± 4.8 9.2±11.5 0.690
8

√ √ √ √
conv+concat 5.6± 5.2 4.8± 5.0 8.2± 9.8 0.736
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Quantitative Results

The proposed framework has been deeply tested using the datasets described in
Section 4.1.4. For evaluation with the Pandora dataset, sequences of subjects 10,
14, 16 and 20 have been used for testing, the remaining for training and validation.
With Biwi dataset, test subjects are determined by the validation procedure adopted.
Finally, we tested the system on all the sequences contained in ICT-3DHP dataset.

Domain Translation. First, we check the capabilities of the Face-from-Depth
network alone. Some visual examples of input, output, and ground-truth images
are reported in Figure 4.8.
With this aim, we propose two types of evaluation. The first is based on metrics
related to the reconstruction accuracy. Following the work of Eigen etal [58], Table
4.2 reports some results. The system is evaluated both on Biwi and on Pandora
datasets. FfD network is compared with other Image-to-Image methods taken
from the recent literature. In particular, we trained from scratch the deep models
proposed in [107, 61] (referred here as pix2pix and AVSS, respectively), following
procedures reported in the corresponding papers.
Moreover, in order to investigate how architectural choices impact the reconstruc-
tion quality of FfD, we tested a different design. We modified the network adding
the U-Net [228] skip connections between mirrored layers (cf. Sect. 4.1.2).
We also compared the presented approach with our preliminary version of Face-
from-Depth network [20], that fuses the key aspects of encoder-decoder [167] and
fully convolutional [155] neural networks.
For the sake of comparison, we report here key details about the preliminary FfD
version [20]. It has been trained in a single step, with input head images resized
to 64 × 64 pixels. The activation function is the hyperbolic tangent and best
training performance are reached through the self adaptive Adadelta optimizer
[292]. A particular loss function is exploited in order to highlight the central area
of the image, where the face is supposed to be after the cropping step, and takes
in account the distance between the reconstructed image and the corresponding
gray-level ground truth:

L =
1

R · C

R∑
i

C∑
j

(
||yij − ȳij ||22 · wNij

)
(4.7)

where R,C are the number of rows and columns of the input images, respect-
ively. yij , ȳij ∈ Rch are the intensity values from ground truth (ch = 1)
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Table 4.5: Results for head pose estimation task on Pandora dataset. In particular,
here we compare our preliminary work with the proposed one. In addition, we
include a comparison with POSEidon+ framework, in which we replace the head
pose estimation network trained on reconstructed face images with the same
network trained on gray-level images, here referred as POSEidon*.

Method Head Acc.
Pitch Roll Yaw

POSEidon [20] 5.7± 5.6 4.9± 5.1 9.0± 11.9 0.715
POSEidon* 5.6± 5.8 4.8± 5.0 8.8± 10.9 0.720

POSEidon+ 5.6± 5.2 4.8± 5.0 8.2± 9.8 0.736

and predicted appearance images. Finally, the term wNij introduces a bivariate
Gaussian prior mask. Best results have been obtained using µ = [R2 ,

C
2 ]T and

Σ = I · [(R/α)
2
, (C/β)

2
]T with α and β empirically set to 3.5, 2.5 for squared

images of R = C = 64. Other details about network architecture and training are
reported in [20].

The second set of tests is specific to the head pose estimation task. The head
pose network described in Section 4.1.3, trained with gray-level images taken from
the Pandora dataset, is tested on the reconstructed face images. Since the network
has been trained on real gray-level images to output the angles of the head pose,
we can suppose that the more generated images are similar to the corresponding
gray-level ones, the better the results are. The comparison is presented in Table
4.3. In the first row, results obtained using gray-level images as testing input are
reported, this is the best case and should be used as a reference baseline. Results
present in the following rows confirm that our FfD is able to generate high-quality
faces, very similar to gray-level faces. Moreover, we note that the head pose
network has the ability to generalize well on cross-dataset evaluations since we
generally obtain a good accuracy even with different types of face images as input.
The Face-from-Depth network has been created to this goal, even if the output is
not always realistic and visually pleasant: however, the promising results confirm
their positive contribution in the estimation of the head pose.

Head Pose Estimation. An ablation study of POSEidon+ framework on Pandora
is conducted and results are reported in Table 4.4, providing mean and standard
deviation of the estimation errors obtained on each angle and for each system
configuration. Similar to Fanelli et al. [64], we also report the mean accuracy as
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percentage of good estimations (i.e., angle error below 15°).
The first row of Table 4.4 shows the performance of a baseline system, obtained
using the head pose estimation network only, and input depth frames are directly
fed to the network without processing and cropping the input around the head. As
expected, results are reasonable proving the ability of the deep network to extract
useful features for head pose estimation from whole images.
The cropping step is included instead in the other rows, using the ground truth head
position as the center and the cropping method described in Section 4.1.1. All three
branches (i.e., depth, FfD, and Motion Images) of POSEidon+ framework are
individually evaluated. In particular, the fifth row includes an indirect evaluation
of the reconstruction capabilities of the Face-from-Depth network. The same
network trained and tested on the original gray level images performs similarly to
the one trained and tested on FfD outputs (Row 3). The similar results confirm
that the image reconstruction quality is sufficiently accurate, at least for the pose
estimation task.
Results obtained using couples of networks are shown in rows 6 and 7, exploiting
concatenation to merge the final layers of each component. Finally, the last row
reports the performance of the complete framework. To merge layers, we use a
conv fusion of couples of input types, followed by the concat step. We found
that it is the best combination, as described in [20]. Even if the choice of the
fusion method has a limited effect (as deeply investigated in [200, 68]), the most
significant improvement of the system is reached by combining and exploiting the
three input types together.

Figure 4.9 shows a comparison of the performance provided by each trident
component: each graph plots the error distribution of a specific network with
respect to the ground truth value. Depth data allows reaching the lowest error rates
for frontal heads, while the other input data types are better in presence of rotated
poses. The graphs highlight the averaging capabilities of POSEidon+ too.
Furthermore, in Table 4.5 we compare best performance of POSEidon+ on Pan-
dora dataset, obtained exploiting the FfD network proposed in this work and the
previous one described in [20]. We also evaluate POSEidon+ replacing the central
CNN (see Fig. 4.4) trained on reconstructed face images with the same CNN but
trained on gray-level images (this experiment is here referred as POSEidon*). Res-
ults confirm that the proposed POSEidon+ overcomes our preliminary work. The
overall quality of reconstructed face images is confirmed and also the feasibility
to train and test the pose network on different dataset without a significant drop in
performance.

Finally, we compare the results of POSEidon+ with the state-of-art on the
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Table 4.6: Estimation errors and mean accuracy of the shoulder pose estimation
on Pandora

Parameters Shoulders Accuracy
Rx Ry Pitch Roll Yaw

No crop 2.5± 2.3 3.0±2.6 3.7± 3.4 0.877
700 250 2.9± 2.6 2.6±2.5 4.0± 4.0 0.845
850 250 2.4± 2.2 2.5±2.2 3.1± 3.1 0.911
850 500 2.2± 2.1 2.3±2.1 2.9± 2.9 0.924

Biwi dataset. Due to the lack of a common validation and test protocol, Table 4.1
is split accordingly to the evaluation procedures adopted, in order to allow fair
comparisons. For each validation procedure, we report results of POSEidon+. In
particular, we implement a 2-folds (half subjects in train and half in test), 4-folds,
5-folds (as adopted in the original works [66, 64], respectively) and 8-folds subject
independent cross evaluations. We also conduct the Leave-One-Out (LOO) valid-
ation protocol. We dedicate the last section of Table 4.1 also for those methods
that do not follow a standard evaluation procedure since they create a fixed or
random [1] sets with a limited number of subjects (or sequences) to test their
systems. Besides, we note that a fair comparison with methods reported in the top
part of Table 4.1 is not possible since they exploit all sequences of Biwi dataset for
test, while deep learning approaches need a certain amount of training data.
Results confirm the excellent performance of POSEidon+ and the generalization
ability across different training and testing subsets with different validation pro-
tocol. The system overcomes all the reported methods, included our previous
proposal [20]. The average error is lower than other approaches, even those are
not using all the frames available on Biwi dataset (some works exclude the frames
on which the face detection fails [66, 64]).

Shoulder Pose Estimation. The network performing the shoulder pose es-
timation has been tested on Pandora only, due to the lack of the corresponding
annotation in the other datasets. Results are reported in Table 4.6.
In particular, we conduct evaluation on different input types, varying the values
Rx and Ry (cf. Section 4.1.3) that affect head and shoulder crops. We test also
the shoulder pose network using the whole input depth frame, without any crop.
The reported results are very promising, reaching an accuracy of over 92%.

Complete pipeline. In order to have a fair comparison, results reported in
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Table 4.7: Results on Biwi, ICT-3DHP and Pandora dataset of the complete
POSEidon+ pipeline (i.e., head localization, cropping and pose estimation).

Dataset Local. Head
Pitch Roll Yaw

Biwi 3.27±2.19 1.5±1.4 1.6±1.6 2.2±2.0
ICT-3DHP - 4.9±4.2 3.5±3.4 6.8±6.0

Pandora 4.27±3.25 7.3±8.2 4.6±4.5 10.3±11.4

Tables 4.1 and 4.4 are obtained using the ground truth head position as input
to the crop procedure. We finally test the whole pipeline, including the head
localization network described in section 4.1.1, using also ICT-3DHP dataset.
The mean error of the head localization (in pixels) and the pose estimation errors
are summarized in Table 4.7. Sometimes, the estimated position generates a
more effective crop of the head and, as a result, the whole pipeline performs
better on the head pose estimation over the Biwi dataset. POSEidon+ reaches
valuable results also on the ICT-3DHP dataset and it provides comparable results
with respect to state-of-the-art methods working on both depth and RGB data
(4.9±5.3, 4.4±4.6, 5.1±5.4 [232], 7.06, 10.48, 6.90 [11], for pitch, roll and yaw
respectively). We note that ICT-3DHP does not include the head center annotation,
but the position of the device used to acquire pose data placed on the back of the
head, and this partially compromises the performance of our method. Besides, we
can not suppose a coherency between the annotations obtained with different IMU
devices, in particular regarding the definition of the null position (i.e., when the
head angles are equal to zero).
The complete framework – except for the FfD module – has been implemented
and tested on a desktop computer equipped with a NVidia Quadro k2200 GPU
board and on a laptop with a NVidia GTX 860M. Real-time performance has been
obtained in both cases, with a processing rate of more than 30 frames per second.
The whole system has been tested instead on a Nvidia GTX 1080 and is able to
run at more than 50 frames per second. Some examples of the system output are
reported in Figure 4.1. In addition, the original depth map, the Face-from-Depth
reconstruction and the motion data given in input to POSEidon+ are placed on the
left of each frame.
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Figure 4.9: Error distribution of each POSEidon+ components on Pandora dataset.
On x-axis are reported the ground truth angles, on y-axis the distribution of error
for each input type.

4.2 Attribute Recognition and Landmark Localiza-
tion

As previously shown, Generative Adversarial Networks (GANs) have been adop-
ted as a viable and efficient solution for the Image-to-Image translation task, or
rather the ability to transform images into other images across domains, according
to a specific training set. Initially, Autoencoders, and in particular Convolutional
Autoencoders [167], have been investigated and designed for several image pro-
cessing tasks, such as image restoration [162], deblurring [14], and for image
transformations such as image inpainting [86] or image style transformation. They
have been used also as transfer learning mechanism for the Domain Transfer
task: for sensor to image transformation [246] or from depth to gray-level images
of faces [20]. As mentioned above, the Goodfellow’s proposal of GANs [84]
became the reference architecture for unsupervised generative modeling and for
sampling new images from the underlying distribution of an unlabeled dataset by
exploiting the joint capabilities of a Generative and a Discriminative Networks
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Figure 4.10: Overview of Reconstruction Comparison and Probe Perceptual Tasks
for performance evaluation.

[210]. Furthermore, Conditional GANs [107, 61] provided conditional generative
models by conditioning the sampling process with a partially observed input image.
Several experiments show the power and effectiveness of conditional GANs, as
for instance to improve resolution or to provide de-occlusion of images of people
[61].

In this work, we explore the capability of face-to-face domain translation
exploiting conditional GANs. The ability of a network to hallucinate and define
a face aspect (in color or gray level), starting from a range map, could be a
useful basic step for many computer vision and pattern recognition tasks, from
biometric to expression recognition, from head pose estimation to interaction,
especially in those contexts where intensity or color images cannot be recorded,
for instance when shadows, light variations or darkness make the luminance and
color acquisition not feasible enough. Our contribution is the definition of a
Conditional Generative Adversarial Network that, starting from an annotated
dataset with coupled depth and RGB faces (acquired by RGB-D sensors), learns
to generate a plausible RGB face from solely the depth data. The network learns
a proper transformation across the color and depth domains. Nevertheless, in
generative settings, the result is likely a plausible face which could be qualitatively
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Figure 4.11: Training schedule for Conditional GANs. The Discriminator learns
to classify between generated fake images and real images while the Generator
learns to fool the Discriminator. For each layer, the image provide information
about number of filters (n) and stride (s).

satisfactory (e.g., the Discriminator network is fooled by it) but it is objectively
difficult to properly measure the adherence to the conditioned input.
Therefore, another important contribution of our proposal is the adoption of some
vision tasks as Perceptual Probes for performance evaluation, under the assumption
that the domain translation task is viewed as an initial step of a more complex
visual recognition task. We assess that the face-to-face translation is acceptable
if the new generated RGB face (from depth input) exhibits similar proprieties of
other RGB-native faces in the selected probe perceptual tasks (i.e., categorical
attributes are maintained across domains). In accordance with this assumption, we
will provide several experiments to test the proposed solution: we will use two
different perceptual probes – namely, a network for face attribute classification and
a method for landmark extraction – and we will evaluate how these tasks perform
on generated faces. The overview of our Probe Perceptual Task is depicted in
Figure 4.10. Results are really encouraging so that this approach could be a first
attempt to “see and recognize faces in the dark”, in analogy to how blind people
captures the appearance only by touching a face and sensing the depth shape.
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Figure 4.12: Best results on the MotorMark dataset. For each triplets of images:
(Leftmost) the original image; (Middle) the input depth map; (Rightmost) the
Generated face image.

4.2.1 Proposed Method

A general view of the proposed method is depicted in Figure 4.11. It consists of a
GAN trained and tested on two different datasets, detailed in the following section.
GANs are generative models that learn a mapping from random noise vector z
to output image y: G : z → y [84]. Conditional GANs instead are generative
models introduced by [107] that learn a mapping from an observed image x
and random noise z to an output image y: G : {x, z} → y. Like GANs, they
are composed of two components: a Generator G and a Discriminator D. The
Generator G is trained to generate outputs that are indistinguishable from “real”
by the adversarially trained Discriminator D which is trained to recognize the
Generator’s “fake” images from the “real” ones.

Using random noise as input, the generator G creates completely new samples,
drawn from a probability distribution that approximates the distribution of the train-
ing data. This procedure leads to a non-deterministic behavior, that is undesired for
our goal. By removing the noise z, the probability distribution approximated by
the model becomes a delta function with the property of preserving a deterministic
behavior. Deterministic Conditional GANs (det-cGAN) thus learn a mapping from
observed image x to output image y: G : x→ y.

Framework

The main goal is to train a generative function G capable of estimating the RGB
face appearance Igen from the corresponding depth input map Idpt with the
objective of reproducing the original image Irgb associated with the depth map.
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Table 4.8: Evaluation metrics computed on the generated RGB face images with
MotorMark dataset. Starting from left are reported L1 and L2 distances, absolute
and squared error differences, root-mean-squared error and finally the percentage
of pixels under a defined threshold.

Method Norm ↓ Difference ↓ RMSE ↓ Threshold ↑
L1 L2 Abs Squared linear log scale-inv 1.25 2.5 3.75

Autoencoder 39.80 6327 2.21 273.33 58.74 1.248 1.791 1.389 1.878 2.120
pix2pix [107] 37.77 6150 2.06 253.11 56.01 1.240 1.846 1.400 1.882 2.157

Our 37.12 6021 2.05 245.88 54.86 1.222 1.749 1.423 1.914 2.188

Our (Binary Maps) 43.58 6868 2.45 320.93 62.53 1.320 1.830 1.319 1.778 2.047

To this aim, we train a Generator Network as a feed-forward CNN Gθg with
parameters θg . For N training pairs images (Idpt, Irgb) we solve:

θ̂g = arg min
θg

1

N

N∑
n=1

LossG
(
Gθg (Idptn ), Irgbn

)
. (4.8)

We obtained θ̂g by minimizing the loss function defined at the end of this sub-
section. Following the det-cGAN paradigm we further define a Discriminator
Network Dθd with parameters θd that we train alongside Gθg with the aim of
solving the adversarial min-max problem:

min
θg

max
θd

EIrgb∼pdata(Irgb)[logD(Irgb)]

+ EIgen∼pgen(Igen)[log 1−D(G(Idpt))] (4.9)

whereD(Irgb) is the probability of Irgb being a “real” image while 1−D(G(Idpt))
is the probability of G(Idpt) being a “fake” image. The main idea behind this
min-max formulation is that it gives the possibility to train a generative model G
with the target of fooling the discriminator D, which is adversarially trained to
distinguish between generated “fake” images and “real” ones. With this approach,
we achieve a generative model capable of learning solutions that are highly similar
to “real” images, thus indistinguishable from the Discriminator D.

As a possible drawback, those solutions could be highly realistic thanks to D
but unrelated to the input. A generated output could be a realistic face image with
very different visual attributes and different pose with respect to the original image.
This setup does not guarantee, for example, that a depth map of a girl with wavy
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hair looking to the right will generate an RGB image preserving those features. In
order to tackle this problem, we mixed the Generator loss function LossG with a
more canonical loss such as MSE. Borrowing the idea from [61], we propose a
Generator loss that is a weighted combination of two components:

LossG = λLossMSE + Lossadv (4.10)

where LossMSE is calculated using the mean squared errors of prediction (MSE)
which measure the discrepancy between the generated image Igen and the ground
truth image Irgb associated with the corresponding input depth map Idpt. The
MSE component is subject to a multiplication factor λ which controls its impact
during training. The Lossadv component is the actual adversarial loss of the
framework which encourages the Generator to produce perceptually good solutions
that reside in the manifold of face images. The loss is defined as follows:

Lossadv =

N∑
n=1

− log(D(G(Idpt))) (4.11)

where D(G(Idpt) is the probability of the Discriminator labeling the generated
image G(Idpt) as being a “real” image. Rather than training the Generator to
minimize log(1−D(G(Idpt))) we train G to minimize log(D(G(Idpt))). This
objective provides strongest gradients early in training [84]. The combination of
those two component grants the required behavior: the Generator has not only to
fool the Discriminator but has to be near the ground truth output in an MSE sense.

Architecture

The task of Image-to-Image translation can be expressed as finding a mapping
between two images. In particular, for the specific problem we are considering,
the two images share the same underlying structure despite differing in surface
appearance. Therefore, the structure in the input depth image is roughly aligned
with the structure in the output RGB image. In fact, both images are representing
the same subject in the same pose thus details like mouth, eyes, and nose share the
same location through the two images. The generator architecture was designed
following those considerations.

A recent solution [107] to this task adopted the “U-Net” [228] architecture with
skip connections between mirrored layers in the encoder and decoder segments in
order to shuttle low-level information between input and output directly across
the network. We found this solution less profitable because the strictly underlying
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structural coherence between input and output makes the network use the skip
connections to jump at easier but not optimal solutions and ignoring the main
network flow.

Consequently, our architecture implementation follows the FfD implement-
ation in [19]. We relaxed the structure of the classical hourglass architecture
performing less upsampling and downsampling operations in order to preserve
the structural coherence between input and output. We found that using the half
of feature maps described in [19] at each layer in both Generator and Discrimin-
ator networks sped up the training without a significant reduction of qualitative
performance.

We propose the Generator’s architecture depicted in Figure 4.11. Specifically,
in the encoder, we used three convolutions followed by a strided convolution (with
stride 2, in order to reduce the image resolution). The decoder uses three convo-
lutions followed by a fractionally strided convolution (also known in literature
as transposed convolutions) with stride 1/2 to increase the resolution, and a final
convolution. Leaky ReLU is adopted as activation function in the encoding stack
while ReLU is preferred in the decoding stack. Batch normalization layers are
adopted before each activation, except for the last convolutional layer which uses
the Tanh activation. The number of filters follows a power of 2 pattern: from 64
to 512 in the encoder and from 256 to 32 in the decoder. All convolutions use
a kernel of size 5 × 5. The Discriminator architecture is similar to the Gener-
ator’s encoder in terms of number of filters and activations functions but uses only
strided convolutional layers with stride 2 to halve the image resolution each time
the number of filters is doubled. The resulting 512 feature maps are followed by
one sigmoid activation to obtain a probability useful for the classification problem.

Training Details

We trained our det-cGAN with 64 × 64 resized depth maps as input and simultan-
eously providing the original RGB images associated with the depth data in order
to compute the MSE loss. We adopted the standard approach in [84] to optimize
the network alternating gradient descent updates between the generator and the
discriminator with K = 1. We used mini-batch SGD applying the Adam solver
with momentum parameters β1 = 0.5 and β2 = 0.999. In our experiments we chose
a λ value of 10−1 in Equation (4.10) and a batch size of 64. Some best results are
presented in Figure 4.12.
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4.2.2 Experiments

Generally, evaluating the quality of reconstructed images is still an open problem,
as reported in [107]. Traditional metrics such as L1 distance are not sufficient to
assess joint statistic on the produced images, and therefore do not extrapolate the

Figure 4.13: Visual examples of generated images that preserve (left column) and
do not preserve (right column) some attributes.

Figure 4.14: Visual examples of landmark predictions on real and generated
images.
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Table 4.9: Per attribute concordance between the true RGB face and the hallucin-
ated one using VGG-Face CNN.

Attribute Accuracy Precision Recall F1
Male 90.30 95.51 93.49 94.49

Young 93.01 97.69 95.09 96.37
Mouth Open 82.86 92.16 51.07 65.71

Smiling 96.25 99.54 66.48 79.72
Wearing Hat 98.40 99.38 58.05 73.29
Wavy Hair 98.46 95.28 48.44 64.24
No Beard 48.18 63.89 40.88 49.86

Straight Hair 79.12 07.78 57.76 13.71
Eyeglasses 80.12 24.91 08.14 12.27

full structure of the result. In order to more holistically investigate the capabilities
of our network to synthesize RGB face images directly from depth maps, a
reconstruction comparison and two perceptual probes are performed. Firstly, we
compared the performance of the proposed model with other Image-to-Image
recent methods present in the literature, through metrics directly calculated over
the reconstructed images. Secondly, we measured the capability of the proposed

Figure 4.15: Visual examples of issues using binary maps instead of depth maps:
attributes are not preserved (left column) and landmark localization is not precise
(right column).
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network of being able to preserve original facial attributes, like wearing hat and
smiling, by exploiting a classification network trained with RGB face images.
Thirdly, we measured whether or not reconstructed RGB face images are realistic
enough that an off-the-shelf landmark localization system is able to localize
accurate key-points. Eventually, in order to investigate how much the depth map
information impacts the reconstruction task, we repeated the previous experiments
testing our network trained with binary maps derived from the original depth maps.

Datasets

Experiments are conducted exploiting two publicly available datasets: Pandora
[20] and MotorMark [72]. Pandora contains more than 250k frames, splitted
into 110 annotated sequences of 22 different actors (10 males and 12 females),
while MotorMark is composed of more than 30k frames of 35 different subjects,
guaranteeing a great variety of face appearances. Subjects can wear garments and
sunglasses and may perform driving activities actions like turning the steering
wheel, adjust the rear mirror and so on. Both datasets have been acquired with a
Microsoft Kinect One. In our experiments, Pandora has been used as the training
set and MotorMark as the test set, performing a cross-dataset validation of the
proposed method.

Reconstruction Comparison

Here, we check the capabilities of the proposed network to reconstruct RGB
images from the correspondent depth ones. We exploited the metrics described in
[57]: these metrics were originally used to evaluate depth images generated from
RGB image sources. Results are reported in Table 4.8. In particular, we compared
our generative method with two other techniques: an Autoencoder trained with
the same architecture as our Generator network, and pix2pix [107], a recent work
that exploits the Conditional GAN framework. In the last line of Table 4.8, is
also reported the comparison with our network trained on binary maps, detailed
at the end of this section. As shown, results confirm the superior accuracy of the
presented method.

Attribute Classification

In the previous section, we checked the overall quality of the reconstructed RGB
images. Here, we focus on the capability of our network to generate face images
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Table 4.10: Quantitative comparison about the average attributes concordance
between true and hallucinated RGB faces.

Method Accuracy Precision Recall F1
Autoencoder 75.21 61.84 40.55 51.38

pix2pix 84.57 74.42 56.01 60.78
Our 85.19 75.13 57.71 61.07

Our (Binary Maps) 60.51 49.48 29.12 42.76

that specifically preserve the facial attributes of the original person. To this end,
we exploited a pre-trained network, the VGG-Face CNN [201], trained on RGB
images for face recognition purposes. In order to extrapolate only the attributes
that can be carried by depth information, we fine-tuned the network with the
CelebA Dataset [154].

By observing Table 4.9, it is evident the good capability of the network to
preserve gender, age, pose, and appearance attributes. Nevertheless, the depth
sensor resolution fails at modeling hair categories such as curly or straight and
glasses since such details are not always correctly captured in terms of depth.
Glasses lenses, for example, are neglected by IR sensors and significantly captured
only when the glasses structure is solid and visible. In all the other cases they
tend to be confused by the network with the ocular cavities. Nonetheless, Table
4.10 exhibits the superiority of our proposal against state of the art generative
networks also in attribute preservation. Moreover in Figure 4.13 are presented
both successful and failure cases.

Landmark Localization

The intuition behind this experiment is that if the synthesized images are realistic
and accurate enough, then a landmark localization method trained on real images
will be able to localize key-points also on the generated images. To this aim, we
exploited the algorithm included in the dLib libraries [123], which gives landmark
positions on RGB images. In Figure 4.14 qualitative examples that highlight the
coherence of landmark predictions between original and generated images are
presented. The last column of Table 4.11 reports, for each method, the average L2
Norm between the position of landmarks predicted and the ground truth provided
by the dataset. The results show that our method is able to produce outputs that
can fool an algorithm trained on RGB face images.
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Table 4.11: Quantitative comparative results of our proposal against the Autoen-
coder and pix2pix baselines in terms of face detector accuracy and landmark
localization.

Method Accuracy L2 Norm
Autoencoder 54.03 2.219

pix2pix 85.21 2.201
Our 86.86 2.089

Our (Binary Maps) 62.37 2.980

Binary Maps

An ablation study is conducted to investigate the importance of depth information,
by training our network providing as input binary maps instead of depth maps.
Binary maps were gathered thresholding the depth maps. Figure 4.15 shows
examples where the reconstructed face images are not coherent with the original
images in terms of attributes preservation and landmark position. At the end
of Tables 4.8, 4.10 and 4.11 are reported the results of the previous experiment
where we used binary maps instead of depth maps. Results show that the depth
information has a fundamental importance in the face generation task, to preserve
coherent facial attributes and head pose orientation.
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Chapter 5

Conclusions

The aim of this thesis - and of the research work done during my PhD - was to
enable a deeper understanding of human behaviour in surveillance scenarios. This
aim disclosed a variety of open problems in computer vision that will need to be
addressed before reaching any satisfactory answer. In the quest for reaching such
objective, I contributed to five of those open problems, namely 2D pose estimation
and tracking, 3D pose estimation, attribute recognition, 3D people detection and
head pose estimation. The synthetically generated data collected during my PhD
played a pivotal role by enabling new possibilities that go beyond the scope of this
thesis.

2D Pose Estimation and Tracking

In this thesis, we presented a massive CG dataset for human pose estimation and
tracking which simulates realistic urban scenarios. The precise annotation of
occluded joints provided by our dataset allowed us to extend a state-of-the-art
network by handling occluded parts. We further integrated temporal coherency
and proposed a novel network capable of jointly locate people body parts and
associate them across short temporal spans. Results suggest that the network, even
if trained solely on synthetic data, adapts to real world scenarios when the image
resolution and sharpness are high enough. We believe that the proposed dataset
and architecture jointly constitute a starting point for considering tracking in
surveillance as a unique process composed by detection and temporal association

Exploiting Synthetic Data to Improve Human Behavior Understanding 123



and can provide reliable tracklets as the input for batch optimization and re-id
techniques.

3D Pose Estimation
In this work we presented a single-shot bottom-up approach for multi-person
3D HPE suitable for both crowded surveillance scenarios and for simpler, even
single person, contexts without any changes. Our LoCO approach allowrd us
to exploit volumetric heatmaps as a ground truth representation for the 3D HPE
task. Instead, without compression, this would lead to a sparse and extremely
high dimensional output space with consequences on both the network size and
the stability of the training procedure. In comparison with top-down approaches,
we removed the dependency on the people detector stage, hence gaining both in
terms of robustness and assuring a constant processing time at the increasing of
people in the scene. The experiments showed state-of-the-art performance on all
the considered datasets. We also believe that this new simple compression strategy
can foster future research by enabling the full potential of the volumetric heatmap
representation in contexts where it was previously intractable.

Attributes Recognition
As for attribute recognition, we presented the use of GANs for image enhancing
in people attributes classification. Our generator network has been designed to
overcome a common problem in surveillance scenarios, namely people occlusion.
Experiments showed that jointly enhancing images before feeding them to an
attribute classification network can improve the results even when input images
are affected by this issue. We think that this line of work can foster research
about the problem of attribute classification in surveillance contexts, where camera
resolution and positioning cannot be neglected.

3D People Detection
For 3D people detection we proposed a simple and effective system that deals with
the COVID-19 emergency by providing a social distancing tool that can prevent
the spread of the infection. We validated it using a highly challenging benchmark,
obtaining a lower bound on the performance of the method. We believe that our
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system can be a practical solution to an important problem, hoping to see areas
less crowded than the JTA dataset in the near future.

Head Pose Estimation
An end-to-end framework to monitor the driver’s body pose called POSEidon+

has been presented. In particular, a new Face-from-Depth architecture has been
proposed, based on a Deterministic Conditional GAN approach, to convert depth
faces in gray-level images and supporting head pose prediction.
The system is based only on depth images, no previous computation of specific
facial features is required and has shown real-time and impressive results with
two public datasets. All these aspects make the proposed framework suitable to
particular challenging contexts, such as automotive. Since the system has been
developed with a modular architecture, each module can be used as single or
in combination, reaching worst but still satisfactory performances. This work
provides a comprehensive review and a comparison of recent state-of-art works
and can be used as a brief review to understanding the current state of the 3D head
pose estimation task.
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Appendix A

List of publications

In this section we briefly report the research papers published during the PhD
period (including preprint if proceeding not available).

• Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation
Matteo Fabbri, Fabio Lanzi, Simone Calderara, Stefano Alletto, Rita Cuc-
chiara
Computer Vision and Pattern Recognition. 2020.

• Inter-Homines: Distance-Based Risk Estimation for Human Safety
Matteo Fabbri, Fabio Lanzi, Riccardo Gasparini, Simone Calderara, Lorenzo
Baraldi, Rita Cucchiara
arXiv preprint arXiv:2007.10243. 2020.

• Can Adversarial Networks Hallucinate Occluded People With a Plausible
Aspect?
Federico Fulgeri, Matteo Fabbri, Stefano Alletto, Simone Calderara, Rita
Cucchiara
Computer Vision and Image Understanding. 2019.

• Face-from-Depth for Head Pose Estimation on Depth Images
Guido Borghi, Matteo Fabbri, Roberto Vezzani, Simone Calderara, Rita
Cucchiara
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018.
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• Learning to Detect and Track Visible and Occluded Body Joints in a Virtual
World
Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto
Vezzani, Rita Cucchiara
IEEE European Conference on Computer Vision. 2018.

• Domain Translation with Conditional GANs: from Depth to RGB Face-to-
Face
Matteo Fabbri, Guido Borghi, Fabio Lanzi, Roberto Vezzani, Simone Cal-
derara, Rita Cucchiara
ICPR International Conference on Pattern Recognition. 2018.

• Generative Adversarial Models for People Attribute Recognition in Surveil-
lance
Matteo Fabbri, Simone Calderara, Rita Cucchiara
IEEE International Conference on Advanced Video and Signal based Sur-
veillance. 2017.
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Appendix B

Activities carried out during
the PhD

Here we report research activities carried out during the 3 years of PhD.

Foreign collaborations

• Research Internship at Panasonic R&D Company of America. Mountain
View - California (US), January - December 2019

• Research collaboration with Technical University of Munich (Prof. Laura
Leal-Taixé) and TU Darmstadt (Prof. Stefan Roth), January 2020 - March
2021

Conferences, courses, seminars attended

Conferences and Tutorials

• International Conference on Computer Vision and Pattern Recognition
(CVPR), virtual, 2020

• Panasonic Technological Symposium (PTS), Osaka, 2019
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• International Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, 2019

• Barkeley Spring 2019 BAIR/BDD Retreat, Santa Rosa, 2019

• European Conference on Computer Vision (ECCV), Munich, 2018

• International Computer Vision Summer School (ICVSS), Sicily, 2018

• International Conference on Computer Vision (ICCV), Venice, 2017

Courses and seminars

• Managing the Company of the Future - Prof. Julian Birkinshaw - September
24th 2020

• Deep Learning for Fault Prediction - Prof. Roberto Paredes Palacios -
February 2018

• Algoritmi Avanzati - Dr. Mauro Leoncini - September 2017

• Learn how to activate learn: Meta-learning approaches to (deep) active
learning - Prof. Massimiliano Ruocco - May 9th, 2018

• Computational and experimental neuroscience toward artificial intelligence
- Prof. Jonathan Mapelli - April 10th, 2018

• Deep learning technologies: from hardware components to vertical frame-
works - Dr. Piero Altoè, NVIDIA - November 29th, 2017.

Award and Prizes
• Winner of Best Demo Award, ECCV 2020

• Winner of Best Paper Award, PTS 2019
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