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Abstract: How the human brain represents distinct motor features into a unique finalized action still
remains undefined. Previous models proposed the distinct features of a motor act to be hierarchically
organized in separated, but functionally interconnected, cortical areas. Here, we hypothesized that dis-
tinct patterns across a wide expanse of cortex may actually subserve a topographically organized coding
of different categories of actions that represents, at a higher cognitive level and independently from the
distinct motor features, the action and its final aim as a whole. Using functional magnetic resonance
imaging and pattern classification approaches on the neural responses of 14 right-handed individuals
passively watching short movies of hand-performed tool-mediated, transitive, and meaningful intransitive
actions, we were able to discriminate with a high accuracy and characterize the category-specific
response patterns. Actions are distinctively coded in distributed and overlapping neural responses
within an action-selective network, comprising frontal, parietal, lateral occipital and ventrotemporal
regions. This functional organization, that we named action topography, subserves a higher-level and
more abstract representation of finalized actions and has the capacity to provide unique representations
for multiple categories of actions. Hum Brain Mapp 36:3832–3844, 2015. VC 2015
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INTRODUCTION

It has been proposed that the distinct features of a
motor action (e.g., kinematics, effector-target interaction,
target identity) are hierarchically organized in the human
brain [Grafton and Hamilton, 2007] and are represented in
separated, though functionally interconnected, cortical
areas [Kilner, 2011].

At the same time, however, several observations, includ-
ing the substantial overlap of brain areas activated during
both action observation and execution [Macuga and Frey,
2012; Rizzolatti and Luppino, 2001], and the independence
of action representation from a specific sensory modality
[Ricciardi et al., 2014a, 2014b], along with current models
of praxis processing [Petreska et al., 2007; Rothi et al.,
1991] and semantics [Gallese and Lakoff, 2005], concur to
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indicate that, at a higher cognitive level, actions and their
final aims are eventually represented as a whole, and not
as the mere collection or sequence of single motor
features.

Multivariate approaches to the analysis of patterns of
neural responses recently suggested that action category
representation may be actually based on a distributed
functional organization [Ricciardi et al., 2013], similarly to
what has already been described for the representations of
categories of objects and sounds in the ventrotemporal
extrastriate [Haxby et al., 2001] and temporal auditory
[Staeren et al., 2009] cortex, respectively. As a matter of
fact, multivariate methods are particularly suitable for the
analyses of brain functional imaging data when different
brain areas within a network elaborate distinct fragments
of information allowing for a multidimensional, integrated
representation of a complex stimulus with various features
[Davis et al., 2014]. Indeed, these approaches can be used
to identify which distinct pattern of activity is associated
with a specific sensory information or mental state, and
how that information is encoded and organized in each
brain region [Haxby et al., 2014]. In particular, evidence
obtained using multivariate pattern analyses indicates that
distinct fronto-parietal subregions are involved in the
functional processing of specific features —including, view-
point, effector-target interaction, content, and the behavioral
significance— of different motor gestures, when actions are
either recognized (via visual and non-visual stimuli), cov-
ertly imagined or overtly performed [Dinstein et al., 2008;
Jastorff et al., 2010; Molenberghs et al., 2012; Oosterhof
et al., 2010, 2012a, 2012b, 2013; Ricciardi et al., 2013].
Nonetheless, previous functional studies, that focused pri-
marily only on transitive movements and on precise fea-
tures of motor actions, failed to demonstrate that
representations of different categories of actions are truly
distributed and overlapping within the whole action-
selective network. These observations relied on the
hypothesis that a limited number of brain areas are speci-
alized for representing distinct action features [Beauchamp
and Martin, 2007; Goldenberg et al., 2007; Grafton and
Hamilton, 2007; Kroliczak and Frey, 2009; Macuga and
Frey, 2012; Peeters et al., 2013]. In other words, while the
model of a limited number of areas that are specialized for
representing well-defined features of action has been
extensively explored, it is not yet fully understood how
the higher conceptual representation of the action as a
whole emerges at a network level, and to which degree
informative contents are actually shared across neighbor-
ing and distant regions.

Here, we propose that distinct patterns across a wide
expanse of cortex reflect a topographically organized cod-
ing of different categories of actions and underlie action
recognition, similarly to the model previously reported by
Haxby et al. [2001] to explain object category representa-
tion in the visual association cortex. In addition, the topo-
graphically organized representation of distinct action

categories would assimilate previous models of hierarchi-
cally and spatially organized processing of simpler fea-
tures of motor acts [Grafton and Hamilton, 2007] in a
unified, distinctive representation of action features and
goals.

Specifically, we tested topographically organized repre-
sentations by investigating the neural response as meas-
ured by functional magnetic resonance imaging (fMRI)
while participants passively watched movies of three dis-
tinct categories of hand-performed actions —tool-mediated,
distal transitive, and meaningful intransitive— and using a
multivariate pattern analysis approach. According to this
model, the response patterns for a specific action category
should extend to a wide expanse of cortex in which infor-
mation on different action features are represented (distrib-
uted), and should even maintain their distinctiveness both
when the analysis is restricted to those brain areas that
hold the most informative content for a specific action cat-
egory, or when these most informative clusters are
excluded, thus limiting the analysis to the lesser informa-
tive regions (overlapping representation). The alternative
hypothesis would be that specific brain areas process
information related to a well-defined category of actions,
but not (or to a lesser degree) to other categories. In partic-
ular, in this case the multivariate classifier would rely on a
few, small clusters in limited brain areas (thus, action rep-
resentation would be not distributed but localized) and
show no discrimination capabilities when relying only on
the clusters less specific for that type of action (that is, it
would be not overlapping).

MATERIALS AND METHODS

Subjects

Fourteen right-handed healthy adults (M/F: 4/10, mean
age 6 SD: 37 6 6 years) were enrolled. All subjects received
a medical examination, including a brain structural MRI
scan, to exclude any disorder that could affect brain struc-
ture or function. All participants gave their written
informed consent after the study procedures and potential
risks had been explained. The study was conducted under
protocols approved by the University of Pisa and Univer-
sity of Modena and Reggio Emilia Ethical Committees.

Stimuli

A set of movie clips depicted hand-performed tool-medi-
ated (three arguments: agent, object, tool; e.g., sawing), tran-
sitive (object-directed, two arguments: agent, object; e.g.,
grasping) and meaningful intransitive (non-object directed,
one argument: agent; e.g., thumb up) actions (Fig. 1; see
Supporting Information Table S1 and Fig. 3 for a stimulus
list). Only the agent’s right arm and hand movements
were visible, and represented in a third person perspec-
tive. To improve generalization of the action categories

r Action Topography in the Human Brain r

r 3833 r



(i.e., higher level action representation) and to reduce the
impact of the fine grained details of each movie clip (e.g.,
object form, hand kinematics), each action was filmed four
times [Haxby et al., 2001], changing the observer perspec-
tive (left or right side) and the gender of the agent (male
or female arm) (see Supporting Information Table S2 for a
low-level feature description of this set of stimuli). Overall,
each participant observed 60 movie clips of this first set.

Image Acquisition and Experimental Setup

Patterns of response were measured with a fMRI six-
runs slow event-related design (gradient echo echoplanar
images, Philips Intera 3T, TR 2.5s, FA: 808, TE 35 ms, 35
axial slices, 3 mm isovoxel) while participants watched 3s-
long movies that randomly alternated between different
types of hand-made actions or environmental scenes, with
7s of inter stimulus interval. Movies were presented using

an in-house developed software via the IFIS-SA fMRI
System (Invivo Corp, FL USA; visual field: 158, 7.500, 352 3

288 pixels, 60 Hz). High-resolution T1-weighted spoiled
gradient recall (TR 5 9.9 ms, TE 5 4.6 ms, 170 sagittal sli-
ces, 1 mm isovoxel) images were obtained for each partici-
pant to provide detailed brain anatomy.

fMRI Data Analysis

The AFNI package was used to analyze imaging data
[Cox, 1996]. All volumes from the different runs were tem-
porally aligned, corrected for head movements, spatially
smoothed (Gaussian kernel 5 mm, FWHM) and normal-
ized. Afterwards, a multiple regression analysis was per-
formed. The pattern of response to each stimulus type was
modeled with a separate regressor: two stimulus repeti-
tions were randomly collapsed into a unique regressor to
improve the quality of the hemodynamic response for

Figure 1.

Methodological workflow. BOLD responses to transitive, intransi-

tive, and tool-mediated actions from the training set were used in

a three-way classifier. The trained classifier tested a different

subset of actions to obtain discrimination accuracy, and isolated

the most informative regions. The discrimination ability of this

network was subsequently tested on an independent stimuli

dataset. Refer to Materials and Methods for further details.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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each stimulus. As four repetitions of the same stimulus
were present, two patterns of responses were then
obtained for each stimulus. Movement parameters and sig-
nal trends were included in the multiple regression analy-
sis as regressors of no-interest. The t-score response
patterns of all stimuli were transformed into the Tailairach
space [Talairach and Tournoux, 1988], and resampled into
2 mm isovoxels for group analysis. To limit the number of
voxels, a structural template available in AFNI was used
to select voxels representing grey matter [Holmes et al.,
1998], and only those voxels with an averaged t-score
response across stimuli and participants greater than zero
within the training subset were retained. The resulting t-
score patterns were used with the software SVMlight [Joa-
chims, 1999] as input vectors for the Support Vector
Machine (SVM) classifiers [Cortes and Vapnik, 1995; Joa-
chims, 1999].

Classification of the Patterns of Neural Response

for the Different Categories of Actions

To discriminate between categories and to isolate the
best subset of voxels that contributes to the classification, a
multiclass procedure [Hsu and Lin, 2002] and a Recursive
Feature Elimination algorithm —RFE [De Martino et al.,
2008; Ricciardi et al., 2013]— were adopted to recursively
prune uninformative voxels (Fig. 1). In brief, the first set of
stimuli with transitive, intransitive, and tool-mediated actions
(420 examples overall) was randomly parted across indi-
viduals into three subsets (50% of examples for training,
25% for validation of the RFE procedure and 25% for test-
ing). Here, the multiclass problem was decomposed into
multiple independent binary classification tasks, using a
pairwise strategy, where each pair of categories was
trained and tested separately and subsequently the results
of the three binary classifiers were combined in an unique
three-way accuracy, using the max-wins strategy [Hastie
and Tibshirani, 1998; Hsu and Lin, 2002]. We decided to
adopt such a procedure for two reasons. First, usually the
algorithmic implementation of multiclass was computa-
tionally expensive or intractable on large datasets
[Crammer and Singer, 2001]. Second, using separated
binary classifiers we were able to test the distinctiveness
of the representation of each class.

Thus, a three-way classifier was trained and validated
for each RFE iteration. Specifically, in each iteration, a defi-
nite number of voxels was pruned until the search volume
was empty. To isolate the voxels to be removed, we
adopted the following procedure. First, the feature weights
of the support vectors of each classifier were estimated
thus to generate a discriminative map for each classifier
[Lee et al., 2010]. Within each discriminative map, the
absolute value of each voxel weight was converted to a
z-score and subsequently averaged. After this step, the 2%
of the features with the lowest z-scores were discarded. A
small volume correction (SVC) with an arbitrary minimum

cluster size of 100 voxels, nearest-neighbor, was performed
to remove isolated clusters, thus to reduce the number of
iterations during the RFE procedure [Ricciardi et al., 2013].
For each RFE iteration, an accuracy performance was com-
puted on the validation set. Then, comparing the accura-
cies from all the iterations, the best feature set was
selected based on the highest accuracy [Cawley and Tal-
bot, 2010; De Martino et al., 2008; Pereira et al., 2009] (see
also Supporting Information Fig. S3). Eventually, within
the best RFE iteration, the final accuracy of the three-way
classifier was evaluated with the remaining test subset.

Further, to estimate the goodness of the features (i.e.,
voxels) selection procedure, a comparable machine learn-
ing technique was developed with an independent dataset
of distinct actions, as described below (Fig. 1).

Mapping the Representation of the Different

Action Categories

To map voxels activity of the classifier (Fig. 2), the fea-
ture weights of the three subtended binary classifiers were
averaged in accordance to their function in the recognition
of each category, thus to generate a dataset for each action
category [Lee et al., 2010]. For instance, the absolute values
of the positive feature weights of the classifier tool-mediated
versus transitive were averaged with the absolute values of
the negative feature weights of the classifier intransitive vs.
tool-mediated to generate a new dataset with a value of
intensity for each voxel related the tool-mediated action.
Then, a specific color channel in the 16-bit RGB color
model was assigned to each dataset (red to tool-mediated,
green to transitive and blue to intransitive) according to the
ranked voxel intensities in percentiles. Finally, the datasets
were rendered onto a subject cortical surface mesh using
BrainVISA package.

Testing for General Action Recognition Ability

Does the classifier-defined network truly code for
actions, or merely rely on distinct features (e.g., engage-
ment of object, agent, or tool) to separate categories? To
understand the nature of the enhanced ability to discrim-
inate action features within the action-sensitive regions
selected by the three-way classifier, an independent data-
set is required to confirm the goodness (i.e., reliability) of
the most informative voxels [Guyon et al., 2002]. Conse-
quently, a new binary classifier (“action” vs. “non-
action”) was trained and tested using an independent
validation set of stimuli. Specifically, a set of movie clips,
including “non-action” movies (i.e., environmental scenes)
and three distal transitive actions performed with the
right hand and acted upon a definite list of ten animate
and ten inanimate objects (“action”, Table S1 in the online
Supporting Information), were presented in the same
fMRI session, alternated to the first set of action stimuli.
All “actions” and “non-action” movies of this second set
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were filmed twice. Overall, each participant observed 162
movie clips from this second set. The pattern of response
to each stimulus type was modeled with a separate
regressor in a multiple regression analysis, identically to
what has been described in the fMRI Data Analysis sec-
tion for the other stimuli. Thus, all the “non-action” stim-
uli and a balanced randomly downsampled number of
“action” stimuli from the independent validation set
were divided into two bins (66% of examples for training
and 33% for testing). Similarly to the above procedure, a
linear binary SVM classifier was created without applying
the RFE procedure (Fig. 1).

Action Categories Identification based on the

Less Informative Cortical Regions with a

Knock-Out Procedure

Although whole brain classification may suggest
category-specific patterns of response to be distributed

and overlapping, higher within-action category correla-
tions could be due to the information contributed by the
regions whose content was more specific for a determi-
nate action category, with limited information about other
categories. To test whether the patterns of responses in
lesser informative regions also carry action category-
related information, the discriminative map of the classi-
fier was employed in a “knock-out” procedure [Carlson
et al., 2003; Ricciardi et al., 2013]. First, the voxels of the
discriminative map of the best three-way classifier were
removed from the initial search volume, so to generate a
new mask that would retain the less informative regions
(Supporting Information Fig. S5). Within this “knock-out”
map, a three-way classifier was trained and tested to esti-
mate the potential decreases in classification performan-
ces related only to this set of voxels. The classifier was
built, trained and tested following the same procedure
described above, but without applying the RFE
technique.

Figure 2.

The action-selective network. The most informative regions described by the three-way classifier

for tool-mediated (red), transitive (green) and intransitive (blue) discrimination and projected onto

an inflated surface template. Magnified views of left prefrontal, temporo-occipital and superior

parietal regions in boxes A, B, and C, respectively.
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Action Categories Identification based on

Cortical Regions that Most Coherently

Contributed to the Discrimination of One

Specific Action Category

To investigate whether the action category specificity of
response extends also to those brain regions that are most
informative for a specific action category, a measure of voxels
coherence was derived, through the mapping of the action
category weights of the three-way classifier. For instance, a
voxel that contribute to recognize tool-mediated gesture in
both the comparisons with intransitive and transitive acts was
stated as coherent for the tool-mediated category. Thus, the
volume extracted from the three-way classifier RFE proce-
dure was parted into three subregions, accordingly to their
coherence during category discrimination. Within each sub-
region, specifically related to the discrimination of a defined
category, a linear binary SVM classifier was created to recog-
nize between the other two categories (i.e., discriminate
between transitive and intransitive gestures within the tool-
mediated subregion). The classifier was built, trained and

tested following the same procedure described above, but
without applying the RFE technique.

Assessing Goodness of Classification Accuracies

Accuracy values were tested as significantly different
from chance with permutation tests (n 5 1000), randomiz-
ing the labels of the examples during training phase, and
using one-tailed rank tests [Pereira et al., 2009] (see also
Supporting Information Fig. S4).

Assessing Specificity of Category Representation

To highlight the specificity of action representations
across participants, a heatmap was obtained within the
most informative regions of the action representation net-
work (Fig. 3). In brief, BOLD patterns of response of the
stimuli were averaged across subjects and compared to
each other using cosine distance as measure of dissimilar-
ity, to obtain a heatmap [Kriegeskorte and Kievit, 2013].
Hierarchical clustering was obtained from the heatmap

Figure 3.

Specificity of the distributed representations within the action-selective network. On the left, the

heatmap representing the dissimilarity matrix of the different action stimuli and, on the right, the

derived hierarchical clustering. Stimuli were depicted in red font for tool-mediated, in blue font

for intransitive and in green font for transitive actions. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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using the generalized Ward’s criterion [Batagelj, 1988].
Only the stimuli of the test set of the three-way classifier
procedure were taken into account to generate dissimilar-
ity matrices, so to retrieve an unbiased representational
space and an unbiased hierarchical clustering.

The resulting representational dissimilarity matrix
enabled us to determine the category specificity of the dis-
tinct action stimuli across participants and, at the same
time, to compare the distinctiveness of representation
among categories. Theoretically, we would expect the stim-
uli belonging to the same action category to gather together,
but also to be separated from the stimuli of different action
categories, that is, to show similar within-category and dis-
similar between-categories neural patterns.

Action Category-Specific Neural Responses as

Obtained with a “Standard” Univariate Analysis

To perform univariate analysis, the b-coefficients from
the multiple regression analysis within the initial search
volume (Supporting Information Fig. S5) were used to per-
form a two-ways repeated measure ANOVA, including
the “action category” as a fixed factor (with three levels
that were tool-mediated, transitive, and meaningful intransi-
tive actions) and subjects as a random factor (P< 0.05).
Multiple comparisons correction was performed using
AlphaSim from AFNI package. From this procedure, only
clusters with a minimum size of 1,840 lL resulted to be
significant at P< 0.05. Within the regions that resulted to
be significant from the ANOVA analysis, post hoc t-tests
were performed to assess the specific effects related to the
individual action categories (corrected P< 0.05).

RESULTS

Classification and Mapping of the Patterns of

Neural Response for the Different Categories of

Actions

The three-way pattern classifier significantly discrimi-
nated (accuracy: 75.2%; chance: 33.3%; P< 0.001) and char-
acterized the distinct patterns of response for each action
category within a bilateral action-selective network, com-
prising middle (MF) and inferior (IF) frontal, ventral
(vPM), and dorsal premotor, inferior (IP) and superior
(SP) parietal, lateral occipital (LO) and ventrotemporal
regions (Fig. 2, Supporting Information Table S3). Within
the three-way classifier, sensitivity, and specificity, respec-
tively reached 59% and 86% for transitive, 86% and 86%
for intransitive and 79% and 84% for tool-mediated actions.

While all these action-selective clusters participated in
the distributed representation of action categories (Fig. 2
and boxes A-B-C), left prefrontal regions, together with a
left anterior supramarginal (aSM) and postcentral (PoC)
cluster, were maximally informative for tool-mediated
actions, the right MF, IP, and ventrotemporal regions for
intransitive gestures, while the bilateral SP, inferior

occipital, and right precentral cortex for transitive actions.
Additionally, critical nodes of action processing, such as
the left vPM (Fig. 2A), left intraparietal (IPS) and SP cor-
tex, represented multiple categories (Fig. 2B).

A “Proneness” to a Broader Action

Representation

To demonstrate that the classifier-defined network
mainly codes for action representations and may rely only
minimally, if any, on distinct motor features to separate
categories, neural responses of these brain areas were
tested using an independent stimuli set comprising hand-
performed actions and environmental scenes. Remarkably,
the “action” versus “non-action” discrimination reached
an excellent accuracy (94%; chance 50%; P< 0.001), thus
indicating that our approach likely defines the most
informative cortical areas for action representation. More-
over, a multidimensional scaling procedure was performed
to better represent the differences in patterns of neural
activity between actions and environmental scenes in these
brain areas (see Supporting Information Fig. S6).

Category identification based on patterns limited to the
either less or most informative cortical regions: distributed
and overlapping representations. Although the whole
brain classification identified category-specific patterns
that were distributed and overlapping, one could argue
that discrimination accuracy actually could be related
mainly to the information contained in selective brain
areas whose neural content is more specific for a determi-
nate action category, with limited or null information
about other categories. To exclude this possibility, we per-
formed the following tests.

First, we removed the most discriminative areas from
the original search volume (Supporting Information Fig.
S5). Action categories resulted still identifiable (accuracy:
55%; chance: 33.3%; P< 0.01). Thus, the distributed pat-
terns of responses in lesser informative regions also carry
action category-related information that is sufficient to dis-
criminate among action categories.

Second, we tested the ability to discriminate between
the other two remaining categories within the cortical
regions that most coherently contributed to the discrimina-
tion of a specific category. Within the tool-mediated action
category regions, transitive versus intransitive categories
were also separable (accuracy: 70%; chance: 50%;
P< 0.001), as well as tool-mediated vs. intransitive actions
within transitive action areas (accuracy: 71%, P< 0.001).
Conversely, within intransitive action category subregions,
the classification of other categories was at a chance level
(accuracy: 56%; P 5 n.s.; see also Fig. 3).

Category-Specific Representations within the

Action-Selective Network

The topographic category-specificity of these
distributed representations across subjects was tested
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via a representational dissimilarity matrix and a derived
hierarchical clustering of the different action
stimuli (Fig. 3). A simple visual inspection confirms the
specificity of representation across participants for the
distinct action categories: the patterns of neural
responses gathered in three distinct clusters that overlap
with our original stimuli selection. In addition, consis-
tently with the discrimination accuracies reported above,
intransitive gestures showed a more distinctive represen-
tation (i.e., a lower within- and a higher between-
category distance) than tool-mediated and than transitive

actions that are clustered together and also share few
mislabeled items.

The ANOVA results indicated that a volume of
�103,000 lL of gray matter retained a significant effect
related to the action categories. These results extended
mostly on the left hemisphere, comprising middle and
inferior frontal, ventral and dorsal premotor, inferior and
superior parietal, lateral occipital and ventrotemporal
regions (Fig. 4).

Within these regions, the results of the comparison
between transitive vs. tool-mediated actions were located

Figure 4.

Comparative action category-specific neural responses of a

“standard” univariate analysis. Brain regions showing a significant

effect for “action category” were projected onto an inflated sur-

face template, as identified by a univariate repeated measure

ANOVA (first row). Post hoc direct comparisons between

tool-mediated, intransitive and transitive action categories have

been also reported (second, third, and fourth rows). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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almost entirely on the left hemisphere and were specific
for the tool-mediated action category (e.g., higher BOLD
responses during tool-mediated category relative to the tran-
sitive one —Figure 4, second row, blue regions). Moreover,
a similar representation of the tool-mediated category dur-
ing the contrast with intransitive actions was observed (Fig.
4, third row, blue clusters), although intransitive actions
retained higher BOLD activity on the right superior and
ventrotemporal areas (Fig. 4, third row, red/yellow clus-
ters). Finally, the contrast between the intransitive versus
transitive categories showed that the right superior and
ventrotemporal areas still maintained a specific effect for
intransitive actions (Fig. 4, fourth row, red/yellow clusters),
while the transitive actions had a significant higher
response in left superior temporal and bilateral lateral
occipital cortex (Fig. 4, fourth row, blue clusters).

Overall, the univariate results indicated that tool-mediated
actions retained a specific representation in a large extent
of cortex on the left hemisphere, while the intransitive
actions were represented only in temporal cortex of the
right hemisphere, and finally no specific regions were
found for transitive actions. Moreover, in our set of stimuli
and experimental task of passive action recognition, no
evidence for a specific left hemisphere representation for
transitive and meaningful intransitive actions was found.
Intransitive-specific regions were shown in the right supe-
rior temporal and ventrotemporal regions, while represen-
tation of transitive actions relied on limited clusters in left
superior parietal and bilateral lateral occipital cortex, just
when compared to intransitive but not to tool-mediated
actions.

DISCUSSION

Action Topography

How the human brain merges different motor features
into a higher-level, distinctive conceptual representation of
a finalized action still remains undefined. To date, brain
functional studies have focused primarily on univariate
approaches to define brain areas that specifically supply
discrete features of finalized movements, as action repre-
sentation in the human brain would rely on hierarchically
organized, separate but functionally interconnected, corti-
cal areas.

In the present study, using a novel multivariate
approach, we demonstrated that different categories of
action are distinctively coded in distributed and overlap-
ping patterns of neural responses: this functional cortical
organization, that we named action topography, subserves a
higher-level and more abstract representation of distinct
finalized action categories.

Specifically, a three-way pattern classifier discriminated
with high accuracy neural patterns of response among
transitive, intransitive, and tool-mediated actions. Distinct
patterns of neural response for each action category were
distributed across a brain network that comprises frontal,

premotor, parietal, lateral occipital, and ventrotemporal
clusters, belonging to well-known bilateral action-selective
regions [Binkofski and Buccino, 2006; Kroliczak and Frey,
2009]. Therefore, this network retains a topographically
organized representation that subserves action category
recognition.

According to this model of action topography, the
response patterns for a specific action category should pos-
sess two characteristics [Haxby et al., 2001]. First, the
response pattern of each action category should extend to
the whole network, that is, each category relies on a dis-
tributed representation. At the same time, the response pat-
tern for a specific action category should maintain its
distinctiveness both when the analysis is restricted to those
brain areas that hold the most informative content for a
specific action category, and also when these most inform-
ative clusters are excluded, thus limiting the analysis to
the lesser informative regions. That is, each category relies
on a neural representation that overlaps with those of other
action categories. Actually, as discussed below, the distinc-
tiveness of within-action category representation could be
related to the information contributed by the regions
whose content was more specific for a determinate action,
or a specific action feature (e.g., presence of a manipulable
object, hand preshaping, etc.), with a limited information
about other categories. Consequently, the specificity of
these patterns of responses have been demonstrated also
when removing the most category-selective clusters from
the original search volume, and when investigating
whether the action category specificity of response extends
also to those brain regions that are most informative for
another distinct specific action category.

Furthermore, the present multivariate approach showed
that these category-specific patterns of neural response are
consistent across subjects. The topographic specificity of
these distributed representations within action category is
also confirmed by the dissimilarity matrix and the derived
hierarchical clustering of the different action stimuli (Fig. 3).
In addition, consistent with the discrimination accuracies,
intransitive gestures showed a more distinctive representa-
tion (i.e., a lower within- and a higher between-category
distance) than tool-mediated and transitive actions, likely
related to their more “evolved” communicative content
[Rizzolatti and Craighero, 2004].

An Increased Sensitivity in Defining Category-

Selective Regions

In general, as stated above, multivoxel pattern analyses
appear to particularly improve the sensitivity towards
multidimensional psychological variables, such as the rep-
resentation of the whole action and its distinct features
(e.g., kinematics, effector-target interaction, target identity),
as compared with “more classical” univariate voxel-wise
approaches [Davis et al., 2014; Naselaris et al., 2011].
Indeed, our pattern classification not only localized the
most informative clusters, in line with findings from
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previous neuroimaging studies, but, because of this
increased sensitivity, identified category-specific neural
responses that were not detected by the univariate
analysis.

Most of the previous functional studies typically con-
trasted neural responses between two separate action cate-
gories only, and consequently identified limited clusters,
putatively specialized for a restricted number of actions,
as activated most strongly during processing a specific
action category [Buxbaum et al., 2006; Frey, 2008; Gallivan
et al., 2013].

Consistently with this approach, in the cortical mapping
of the action category weights of the three-way classifier,
the left aSM and vPM contained clusters greatly informa-
tive for manipulative objects and tools [Binkofski and Buc-
cino, 2006]. As well, superior parietal regions encoded
visuomotor transformations of transitive actions [Abdollahi
et al., 2013; Valyear et al., 2007], arranged more dorsally
and medially than tool-mediated representation [Valyear
et al., 2007]. Similarly, superior temporal and fusiform
areas were more informative for body parts and intransi-
tive (non-object directed) biological motion, while middle
temporal and LO cortex for non-biological motion and
object form implied in transitive (object prehension or
interaction) or tool-mediated (object utilization) actions
[Orban et al., 2004; Peelen and Downing, 2007] (Fig. 2C).

However, according to our topographically organized
representations, category specificity of responses within
the action selective network is not just restricted solely to
the cortical regions that respond maximally to certain
stimuli, but all large- and small-amplitude neural
responses also contribute to convey category-related infor-
mation and to build a specific action representation. For
instance, our more sensitive methods not only confirmed
that tool-mediated actions rely on a bilateral, though left-
dominant representation [Binkofski and Buccino, 2006;
Kroliczak and Frey, 2009], but also revealed a representa-
tion for transitive and intransitive actions in both left and
right action selective network.

As a matter of fact, previous univariate comparisons
between transitive versus intransitive or tool-mediated versus
intransitive motor acts often reported a left-dominant cir-
cuit for transitive and tool-mediated actions and typically
failed in defining a bilaterally distributed action-specific
network, particularly for the transitive and intransitive ges-
tures [Buxbaum, 2001; Buxbaum et al., 2007; Cubelli et al.,
2006; Goldenberg et al., 2007; Kroliczak and Frey, 2009;
Lewis, 2006]. Nonetheless, consistently with our results,
many neuropsychological reports on apraxic patients and
a few functional studies in healthy individuals suggest a
distributed bilateral network for both transitive and intran-
sitive gestures [De Renzi et al., 1980; Helon and Kroliczak,
2014; Rothi et al., 1991; Streltsova et al., 2010; Villarreal
et al., 2008]. Even when applying a “standard” univariate
analysis to our experimental data, we failed to demon-
strate a category-specific, bilateral representation for either

transitive or intransitive actions. In particular, the univariate
contrasts among the three action categories revealed signif-
icant responses mainly in the left action-sensitive regions.
On the contrary, a multivariate approach, based on multi-
class discrimination, was able to assess specific cortical
patterns involved in the representation of different action
categories, with a higher specificity and to a finer detail in
both the left and right hemisphere (clearly observable
when comparing Figs. 2–4). In addition, the use of a multi-
variate approach allows to identify the most informative
cortical areas for each action category overcoming many
methodological constraints of the univariate analyses,
including the use of predefined statistical thresholds or
contrasts.

While the left hemisphere appears to have a predomi-
nant role in action representation, an independent involve-
ment of the right hemisphere in praxis is acknowledged,
though the nature of this recruitment is still undefined
[Goldenberg, 2013]. Several neuropsychological [De Renzi
et al., 1980; Goldenberg, 1996 1999; Haaland and Flaherty,
1984; Heath et al., 2001; Stamenova et al., 2010] and func-
tional [Harrington et al., 1998; Rao et al., 1997; Streltsova
et al., 2010; Weiss et al., 2006] observations appear to indi-
cate that right hemisphere involvement is somehow
related to specific features of the gesture (e.g., motor, spa-
tial and temporal complexity) or to other cognitive mecha-
nisms inherent to action representation (e.g., linguistic or
social knowledge for intransitive actions). Unfortunately,
the multivariate decoding analysis applied to our experi-
mental setup did not allow to draw any specific conclu-
sion either on the specific role of a single region within the
action selective network, or on the distinct functioning of
the left or right hemisphere that could be directly com-
pared to cortical lesions observed in apraxia disorder.
Nonetheless, according to our topographical-organization
model, all these distant and localized pieces of information
that may reflect distinct features of motor acts, or specific
processing of action representation, are at a bilateral net-
work level merged into a unified, distinctive representa-
tion of actions.

Which are the Action Features Represented in a

Distributed Pattern of Neural Response?

While multivariate decoding approaches that rely on
distributed patterns of neural activation enhance the capa-
bility to identify informative brain areas, they do not spe-
cifically allow for a clear identification of the individual
features, or dimensions encoded in each region. One may
wonder whether it is the action categories per se that are
represented (and thus isolated), or whether the classifier
merely relies on other physical attributes of the stimuli—
for example, dynamicity, imageability, onset time, and so
forth—or on their specific content—for example, form of
manipulable objects toward which the actions are directed
(i.e., hands alone vs. graspable objects vs. tools), the
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number of objects involved in each clip, hand preshaping,
and so forth.

Though we cannot completely rule out that one of these
features or dimensions may have contributed to drive the
whole classification accuracy, several elements make this
highly unlikely.

First, from a methodological perspective, each action
within the three categories was chosen to be as different
from the others as possible, so that they share only the dis-
tinctive feature of each specific action category representa-
tion and so to limit any possible confounds related to
stimulus selection or perceptual processing. Furthermore,
additional analyses have been performed to demonstrate
that the low-level features of our set of stimuli did not
impact neural representation in early visual areas or in
regions within the action-selective network (see Support-
ing Information Figs. S1 and S2). Finally, if we assume
that “simpler” object-based topography could have guided
our classification, one would expect that the most informa-
tive areas be limited to a smaller and more localized set of
brain regions, such as the objects-selective ventrotemporal
cortex [Bracci and Peelen, 2013; Haxby et al., 2001], which
is actually not the case in the present results.

Second, from a theoretical point of view, our observations
demonstrated distinct patterns of brain response for multiple
categories of actions in a distributed and overlapping net-
work. These patterns of response (i.e., functional representa-
tions) are specific for each action and consistent across
participants, both when considering the most informative
brain areas for a specific action category and when limiting
the analysis to the lesser informative clusters. Although a
final consideration about the dimensionality of action repre-
sentation cannot be directly inferred from the present
decoding analysis [Davis et al., 2014], this multivariate meth-
odology is capable to offer a unique, category-selective and
topographically organized representation of a specific action
category. These category-selective patterns of response reflect
a higher level, distinctive representation of “action-as-a-
whole”.

In this sense, we believe that action topography includes
the representation of the simpler features of motor acts,
and integrates previous hierarchically and spatially organ-
ized models of action representation. For instance, as dis-
cussed above, the distinctiveness of the neural patterns in
ventral temporo-occipital regions may reflect differences in
hand-object interactions, or target object forms, among
tool-mediated, transitive, and meaningful intransitive action
categories. Similarly, the specificity of the patterns in supe-
rior parietal and ventral premotor areas may convey infor-
mation about movement selection (e.g., hand preshaping,
reaching, etc.). Nonetheless, all these distant and localized
pieces of information are at a network level merged into a
unified, distinctive representation of action category.

Of note, even if action topography relies on a widely dis-
tributed network, the fact that different features of motor
acts are incorporated within the “most informative”

regions may contribute to explain how even localized
lesions are sufficient to cause selective impairments in rec-
ognizing specific categories of actions, or in dealing with a
particular action feature [Buxbaum et al. (2014); Urgesi
et al. (2014)].

In these regards, machine learning approaches using
multivariate analysis aim at isolating those brain areas that
provide the informative regions that mostly enhance the
differences among the categories of selected stimuli. We
could therefore expect that particular cortical clusters,
involved in action representation, might have been dis-
carded by our classifier, if those voxels (i.e., brain areas),
although “action-selective,” would have not conveyed
sufficiently significant information to discriminate tool-

mediated, transitive, and intransitive actions. Actually, as
shown in Supporting Information Figure S5, the final dis-
criminative volume after the RFE procedure loses several
portions of precentral and inferior parietal cortex directly
involved in motor control and action representation. Even
if these areas convey sufficient information to allow dis-
crimination among action categories, none of them appear
to be category-specific.

Ultimately, to strengthen the hypothesis that our
classifier-defined network relies on the most informative
cortical areas for action representation, and not merely on
single motor features, to distinguish among categories,
neural responses were tested using an independent stimuli
set comprising hand-performed actions and “non-action”
(i.e., environmental scenes). When limited to action-
selective regions, discrimination reached a notable recogni-
tion accuracy (94%)—well above other performances
(about 80%) that our group previously reported in actions
versus “non-action” discrimination [Ricciardi et al., 2013].

CONCLUSIONS

Using fMRI in combination with an innovative multi-
class pattern discrimination approach (i.e., a three-way
classifier), we were able to identify the distinct patterns of
neural response that discriminate among different action
categories. This topographical organization subserves a
more abstract, conceptual representation of distinct final-
ized action categories.

According to this hypothesis, action topography assimi-
lates previous models of hierarchically and spatially
organized processing of simpler features of motor acts
[Grafton and Hamilton, 2007] into a more abstract, distinc-
tive representation of “action-as-a-whole”. Moreover,
action topography is consistent with neuropsychological
pieces of evidence of a “conceptual” representation of
action categories [Rothi et al., 1991], matches with the
action execution-recognition functional overlapping [Mac-
uga and Frey, 2012; Rizzolatti et al., 2001] and with a
sensory-independent representation of action goals [Ric-
ciardi et al., 2009, 2013]. Ultimately, action topography
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provides this network with the capacity to produce unique
representations for multiple categories of actions.

In this perspective, these findings provide a novel view
of how the human brain recognizes and represents various
motor features into a unique finalized action, similarly to
what has already been described for object form and
sound category representations [Haxby et al., 2001;Staeren
et al., 2009].

Nevertheless, future studies should necessarily explain
how these action features are processed, organized and
merged into a distinct representation as conveyed by a
distributed pattern of neural response.

Moreover, these results have general implications for
other research and clinical fields, such as neurorehabilita-
tion and robotics. In fact, action topography clearly indicates
that optimal brain–computer interfaces and neuroprosthe-
ses should take into account that a satisfying decoding of
a human action necessarily depends on the ability to
recover different pieces of information topographically dis-
tributed across distinct brain areas.
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