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Abstract 

Inherited retinal degeneration (IRD) is a major cause of incurable blindness 

characterized by loss of retinal photoreceptor cells. IRD is characterized by high genetic 

and phenotypic heterogeneity with several genes mutated in patients affected by these 

genetic diseases. The high genetic heterogeneity of these diseases hampers the 

development of effective therapeutic interventions for the cure of a large cohort of 

patients. Common cell demise mechanisms can be envisioned as targets to treat 

patients regardless the specific mutation. One of these targets is the increase of 

intracellular calcium ions, that has been detected in several murine models of IRD. 

Recently, neurotrophic factors that favor the efflux of calcium ions to concentrations 

below toxic levels have been identified as promising molecules that should be evaluated 

as new treatments for retinal degeneration. Here, we discuss therapeutic options for 

IRD and we will focus on neuroprotective approaches, such as the neuroprotective 

activity of the Pigment epithelium-derived factor (PEDF). The characterization of specific 

targets for neuroprotection opens new perspectives together with many questions that 

require deep analyses in order to take advantage of this knowledge and develop new 

therapeutic approaches. We believe that minimizing cell demise by neuroprotection may 

represent a promising treatment strategy for retinal degeneration.  

 

Keywords: retinitis pigmentosa; Leber´s Congenital Amaurosis; congenital stationary 

night blindness; achromatopsia; Stargardt disease; calpains; calcium; calpastatin. 
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Introduction  

Inherited retinal degeneration is a group of diseases characterized by progressive loss 

of photoreceptor cells which affects vision and ultimately leads to complete blindness 

(Broadgate et al., 2017). The complexity of genetic variations in this group of diseases 

demands for gene-independent therapeutic strategies and requires a strong 

collaboration among ophthalmologists, geneticists and biotechnologists (Wubben et al., 

2019). The pathophysiological events occurring at the subcellular and molecular levels 

in the degenerating photoreceptors have been partially characterized and represent 

possible targets for neuroprotective therapeutic strategies. Specifically, Ca2+ overloads 

have been recently identified as harmful events at early stages of photoreceptor 

degeneration. Interestingly, increased intracellular Ca2+ was detected in animal models 

caused by mutations in different genes, identifying high intracellular Ca2+ as a common 

mechanism during the degeneration process (Power et al., 2019). A rationale for 

developing neuroprotective approaches can be the treatment with either calcium pump 

blockers or molecules able to boost calcium pumps favoring the extrusion of the ion 

from the photoreceptor cell (Frasson et al., 1999; Comitato et al., 2018). The topic of 

this review is the discussion of recent characterizations of the molecular events 

activated during photoreceptor degeneration and how these molecules can be targeted 

by neuroprotective approaches. 

 

Search strategy and selection criteria 

The databases used to select the most relevant papers included in this article 

were: https://www.ncbi.nlm.nih.gov/pubmed and https://sph.uth.edu/retnet/. Keywords 
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for searching (selection criteria): retinal degeneration, photoreceptors, rods, 

neuroprotection, gene therapy, cell replacement, optogenetics, retinal prosthesis, 

calcium, calpains, PEDF. We set dates of searching: 2000–2019. 

 

Inherited retinal degeneration 

Inherited retinal degeneration (IRD) is a group of diseases that can lead to vision loss 

and eventually to blindness due, primarily, to photoreceptor cell death (Broadgate et al., 

2017). The incidence of IRD is estimated 1:2000, thus being the most common cause 

for visual loss in the working population of the industrialized world (Cremers et al., 

2018). The term IRD groups several diseases in which photoreceptors are affected and 

can be stationary, as for congenital stationary night blindness (CSNB) and 

achromatopsia (ACHM), or progressive as in Retinitis Pigmentosa (RP), Leber´s 

Congenital Amaurosis (LCA) and Stargardt disease (STGD1) (Verbakel et al., 2018). 

IRD are genetically and clinically heterogeneous retinopathies. More than 100 different 

genes have been linked to the disease and each of them can bear different mutations 

(https://sph.uth.edu/retnet/). There is a great functional diversity in the types of genes 

that have been implicated in IRD and they can be eye specific (e.g. components of the 

visual transduction cascade or of the retinoid cycle, involved in outer segment renewal, 

photoreceptor specific structural proteins, transcription factors, etc.) or ubiquitously 

expressed (e.g. splicing factors, contributing to nucleotide metabolism, etc.) (Daiger et 

al., 2013). The genetic and functional multiplicity of the involved proteins might cause 

the activation of distinctive molecular mechanisms for the different forms of RP. 

However, the most recent findings suggest that some common mechanisms are 
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associated to photoreceptor demise in the animal models for IRD analyzed so far 

(Marigo, 2007).  

While the mutations behind many of the disease types are known, only one treatment 

based on gene therapy for the RPE65 gene is available for LCA2, and some other gene 

therapy treatments are developing for mutations in specific genes (Trapani and 

Auricchio, 2019). Nevertheless, development of gene therapy strategies for each 

mutated gene or, even, for specific mutations in one gene is not feasible and requires 

such highly personalized therapy approaches, that only few patients may benefit from 

every single new treatment that will be generated. Otherwise, recent studies 

characterized cell death mechanisms in several models of IRD, either caused by 

dominant or recessive mutations, and found some events that play key roles in all the 

analysed retinas, such as increases of cGMP and high levels of intracellular calcium 

ions (Power et al., 2019). Based on this evidence, development of new treatments 

targeting the characterized common molecular mechanisms leading to photoreceptor 

cell death may benefit a larger cohort of patients (Marigo, 2007).  

In IRD the causative mutations frequently affect rods but degeneration of diseased rods 

leads to a secondary loss of cones, even if cones are genetically unaffected 

(Campochiaro and Mir, 2018). There are several evidences that preservation of rods, 

although not functional, can save sight, because vision in humans is mainly mediated by 

cones (Sahel and Léveillard, 2018; Vighi et al., 2018). The purpose of neuroprotection 

is, indeed, based on preservation of rod photoreceptor cells and consequently cones to 

save vision. 
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Therapeutic prospects for retinal degeneration 

The slow progression of the disease allows a wide time window for treatments but 

different stages of the disease may be more appropriate to be targeted by different 

therapeutic approaches (Figure 1). At early stages of the disease, when the retinal 

structure and histology are still not fully degenerated and photoreceptor cells are 

present, gene therapy and neuroprotection are the most appropriate approaches 

(Pardue and Allen, 2018). In fact, a successful gene therapy based on AAV2 delivery 

was recently approved for patients bearing mutations in the RPE65 gene and was 

applied to patients that, based on Optical Coherent Tomography (OCT) analysis, 

showed a preserved photoreceptor cell layer (Trapani and Auricchio, 2019). When most 

of photoreceptors are lost, cell replacement is an option. Transplantation of 

photoreceptors in patients is not in clinical trials yet, but several studies evaluated 

photoreceptor transplantation in wild type or IRD mutant mice (Jayakody et al., 2015). 

Seminal studies showed that post-mitotic photoreceptor precursor cells or mature 

photoreceptors can integrate in the degenerating retina of murine models of IRD, 

express photoreceptor markers, are light sensitive and improve function (MacLaren et 

al., 2006; Lakowski et al., 2010; Gust and Reh, 2011). The challenges of these studies 

are to obtain long-term survival of transplanted cells and sufficient integrated cells for 

improved functionality. Endogenous sources of photoreceptors are the ciliary epithelium 

and Müller glia cells (Tropepe et al., 2000; Giannelli et al., 2011), and recent studies 

provided evidences that the regenerative ability of Müller glia cell may represent a new 

therapeutic approach for retinal degeneration (Langhe and Pearson, 2019). While 

several protocols have been developed to differentiate rod-like cells from embryonic 
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stem cells (ESC) (Osakada et al., 2008; Lamba et al., 2009), induced pluripotent stem 

cells (iPSC) (Osakada et al., 2009; Lamba et al., 2010; Tucker et al., 2014) and adult 

retinal stem cells (Coles et al., 2004; Giordano et al., 2007; Demontis et al., 2012), none 

of these differentiation protocols can, at the moment, provide cells in number and 

integration capacity appropriate for an efficient transplantation of photoreceptors 

(Marigo and Casarosa, 2014; Gasparini et al., 2019). Differently, transplantation of in 

vitro differentiated retinal pigment epithelium (RPE) is at a much more advanced stage 

and in clinical trials, as differentiated human ESC-derived RPE cells have been 

transplanted in patients with age-related macular degeneration and STGD1 (Bertolotti et 

al., 2014; Schwartz et al., 2015). An autologous transplant of RPE derived from iPSC 

was performed in a patient with age-related macular degeneration (Mandai et al., 2017). 

One year after surgery the transplant demonstrated to be safe but with no improved 

visual acuity. Perception of light can also be restored by optogenetic approaches in 

advanced stages of degeneration (Fortuny and Flannery, 2018). Optogenetics is a 

biotechnological approach to allow light perception by a light-sensitive protein 

ectopically expressed in retinal cells that are not photoreceptors. The idea behind 

optogenetics is that, provided the complete loss of the light-sensitive photoreceptors in 

IRD, new light-sensitive cells can be generated by misexpression of proteins, that can 

be membrane integral ion channels, i.e. channelrhodopsin and halorhodopsin, or retinal 

G-protein coupled receptor (GPCR), like opsins, that can change membrane potential 

upon light stimuli (Ostrovsky and Kirpichnikov, 2019). The low light sensitivity of 

channelrhodopsin and halorhodopsin was recently overcome by the finding that cone 

opsin can activate a G-protein-coupled inward-rectifier potassium channel and 
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transduce the signal (Berry et al., 2019). The delivery of the genes encoding for 

optogenetic tools was based in viral delivery, like in gene therapy, in animal models of 

IRD. The targets of the optogenetic gene therapy are second-order neurons, such as 

bipolar cells, or retinal ganglion cells, third-order neurons, because IRD leads to loss of 

photoreceptors but the rest of the retina can be preserved for long time (Stefanov et al., 

2019).  

In case degeneration reaches a terminal stage with complete photoreceptor loss, 

implant of a retinal prosthesis needs to be evaluated (Bloch et al., 2019). Advances in 

retinal prostheses increased in the last decades thanks to improved microelectronics, 

biomaterials and retinal surgery methodologies. Retinal prostheses can be recorded in 

two major groups: epiretinal prostheses and subretinal prostheses. Epiretinal 

prostheses are implanted on the vitreal side of the retina to stimulate retinal ganglion 

cells, the neurons that form the optic nerve and connect the eye to the brain. Clinical 

trials with hundreds of patients enrolled for the Argus II Retinal Prosthesis System 

(Second Sight Medical Products Inc., Sylmar, CA, USA), approved by the Food and 

Drug Administration (FDA) in 2013, demonstrated statistically improved quality of life 

and functional vision tasks (Dagnelie et al., 2017; Duncan et al., 2017). Subretinal 

prostheses are implanted on the side of photoreceptor cells with the aim of stimulating 

the retinal interneurons and possibly benefit from retinal signal amplification. Clinical 

trials with the Alpha IMS by Retinal Implant AG (Reutlingen, Germany) reported safety 

and improvements in quality of life and object recognition (Kitiratschky et al., 2015).  

These new biotechnological approaches are attracting a lot of attention for patients with 

no residual photoreceptors left and thus at a stage of complete blindness.  
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Patients at early stages of the disease and still presenting photoreceptor cells can 

aspire to a treatment to delay degeneration. Pharmacological approaches are mostly 

based on neuroprotection aimed at slowing the progression of the disease by interfering 

with inflammation or oxidative stress or apoptosis (Dias et al., 2018). The purpose of 

neuroprotection is the survival and maintenance of neurons and, in the case of IRD, of 

photoreceptors. The neuroprotective treatment is suitable for the slow degenerative 

progress characterizing IRD, however, at the moment, no pharmacological therapy 

demonstrated enough efficacy to restore vision. Some neuroprotective approaches 

have been attempted by injection of stem cells. Exogenous sources of stem cells are 

non-retinal stem cells such as mesenchymal stem cell (MSCs), derived from adipose 

tissue, bone marrow or dental pulp. Recent studies showed that injections of these 

types of cells have neuroprotective effects without any replacement of photoreceptors in 

the murine retina (Mead et al., 2015). Genetically modified bone marrow mesenchymal 

stromal cells overexpressing brain derived neurotrophic factor (BDNF), injected in the 

rd6 IRD mouse model, could effectively rescue the damaged retina by neuroprotective 

means (Lejkowska et al., 2019). Some clinical trials are now undergoing based on 

injections of autologous MSCs in IRD patients (Labrador-Velandia et al., 2016). We 

should keep in mind that the therapeutic possibilities of MSCs can be unpredictable 

because these cells are often derived from patients for autologous transplants and their 

ability to secrete neuroprotective molecules will vary from one individual to the other.  

Neuroprotection is, otherwise, often achieved by the delivery of small molecules at 

specific concentrations either locally in the eye or systemically (Sieving et al., 2006; 

Perusek and Maeda, 2013; Scholl et al., 2015; Vighi et al., 2018). This requires 
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prolonged administration of the drug and one treatment is usually not definitive. 

Therefore, appropriate delivery systems, necessary to allow the drug to reach the neural 

retina, need to be developed based on the chemical characteristics of the different 

neuroprotective molecules (Himawan et al., 2019). The promising aspects of 

neuroprotective approaches are based on the fact that neuroprotection is not driven by 

a specific mutation in one gene but aims at targeting common cell stress pathways for 

the treatment of a broad spectrum of patients in a mutation-independent modality. This 

therapeutic approach allows also combined therapies and is less dependent on the 

stage of the disease because it will target cells that, at the specific moment of the 

treatments, are facing molecular and metabolic changes associated to cell death. 

Production of promising neuroprotective drugs requires a deep knowledge of the 

physiological and metabolic changes as well as molecular pathways activated in 

photoreceptor cells during the degenerative process. 

 

Cell death mechanisms in rod photoreceptor cells 

The definition of whether different genetic lesions trigger similar cell death mechanisms 

and the identification of the crucial players during the degenerative process are strategic 

matters to be addressed for the development of new treatments for this genetically 

heterogeneous but phenotypically similar group of diseases. 

The role of apoptotic pathways engaging executioner caspases during photoreceptor 

degeneration has been quite controversial. Caspase 3 and caspase 7, both executioner 

of apoptosis, were found activated in transgenic rats and mice with a mutation in the 

Rhodopsin (Rho) gene (Liu et al., 1999; Gorbatyuk et al., 2010; Comitato et al., 2019b). 
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Several data, otherwise, on different models of the disease indicated that a caspase-

independent mechanism is triggered during retinal degeneration (Donovan and Cotter, 

2002; Doonan et al., 2003; Comitato et al., 2019b). The limited impact of caspase 3 in 

IRD was confirmed by taking advantage of caspase 3-deficient mice, in which knock-out 

of caspase 3 provided only transient photoreceptor protection (Zeiss et al., 2004). 

Supporting this hypothesis were in vivo treatments with a pan-caspase inhibitor, such as 

Z-VAD-FMK, that offered very limited neuroprotection in murine models of IRD  (Sanges 

et al., 2006; Comitato et al., 2019b). The focus on caspases was based on the fact that 

BAX (BCL2-associated X protein) had been found activated in the degenerating retinas 

of animal models of IRD. Our studies extensively evaluated BAX activation in at least 

three models of RP, the rd1 mouse bearing a recessive mutation in the Pde6b gene, the 

Rho knock-out mouse and a transgenic mouse expressing the P23H mutation in RHO, 

and demonstrated that its function is mainly related to the efflux of the apoptosis 

inducing factor (AIF) from mitochondria and not to caspase activation (Comitato et al., 

2014). These and other studies suggested that executioner caspases may be activated 

but they are not critical in mediating retinal degeneration in vivo. Based on these 

evidences the use of the term “apoptosis” for photoreceptor cell death in IRD is, thus, 

considered not appropriate and scientists in the field prefer to refer to photoreceptor cell 

death or photoreceptor degeneration for these events (Power et al., 2019).  

Accumulating evidences from our and other laboratories implied that mitochondria and 

the endoplasmic reticulum (ER) are major points of integration of cell death signals. 

These two organelles contribute to tides and ebbs in calcium ions leading to unbalance 

of Ca2+ fluxes triggering cell demise. Intracellular Ca2+ levels are strictly regulated 
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because they can affect neuronal survival (Yamashima and Oikawa, 2009). Several 

studies on models for photoreceptor cells death reported that the molecular pathways 

following calcium overload differ from classical caspase mediated apoptosis and 

engage calpains (Paquet-Durand et al., 2006, 2019; Sanges et al., 2006; Comitato et 

al., 2019b) (Figure 2).  

Calpains are cysteine proteases sensitive to intracellular calcium and are activated by 

increases in intracellular [Ca2+]. Inactive calpains are heterodimers, composed of an 80 

kDa proteolytic subunit and a 28 kDa regulatory subunit (Ravulapalli et al., 2009). In the 

ER the heterodimer is associated with an endogenous calpain inhibitor called 

calpastatin. Calpastatin release and Ca2+ stimulated dissociation of the regulatory 

subunit lead to the activation of the calpain enzymes (Hood et al., 2004). Activation of 

calpains has been associated to cell death in IRD (Marigo, 2007; Paquet-Durand et al., 

2019). Calpains do not directly cause chromatin condensation but they are proteases 

with a broad spectrum of substrates such as cytoskeleton components, AIF and BAX 

(Goll et al., 2003; Comitato et al., 2014) (Figure 2). AIF is a flavoprotein localized in the 

mitochondrial intermembrane space. Upon proper cell death stimuli, AIF exits the 

mitochondrion through BAX-formed pores and translocates to the nucleus where 

induces chromatin fragmentation (Arnoult et al., 2003; Comitato et al., 2014). Cleavage 

and release of AIF from mitochondria are regulated by calpain 1 and can occur in the 

absence of cytochrome c release, an event that otherwise induces apoptosis (Polster et 

al., 2005; Ozaki et al., 2009). In several neuronal degeneration models, including retinal 

degeneration, activation of AIF and its translocation to the nucleus had been observed 

(Cande et al., 2002; Sanges et al., 2006; Cao et al., 2007; Mizukoshi et al., 2010; 
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Rosenbaum et al., 2010; Comitato et al., 2016, 2019b). The activated form of AIF 

recruits Cyclophilin A for chromatin fragmentation that culminates in cell death (Arnoult 

et al., 2003; Cande et al., 2004).  

Dysregulation of different photoreceptor factors may cause calcium overloads leading to 

calpain activation. Recessive mutations in the Pde6b gene in the rd1 mouse model 

cause lack of PDE6 enzyme activity. PDE6 is a key enzyme in the phototransduction 

cascade. PDE6 hydrolyses cGMP in response to light and rhodopsin (RHO) activation. 

Impaired PDE6 activity causes elevated levels of cGMP (Farber and Lolley, 1974; Vighi 

et al., 2018). The correlation of elevated intracellular cGMP and photoreceptor cell 

death is quite well documented and appears to underlie photoreceptor cell demise 

caused by mutations in several genes linked to IRD (Power et al., 2019). In healthy 

photoreceptors, cGMP binds and keep open the cGMP-gated channels (CNGC), 

channels regulating entrance of cations and, among them, Ca2+. Excessive cGMP, thus, 

results in elevated intracellular calcium (Sanges et al., 2006). Increased cGMP, on the 

other hand, can also activate PKG (cGMP-dependent protein kinase) enzymes that 

trigger cell death mechanisms (Paquet-Durand et al., 2009; Vighi et al., 2018) (Figure 

2).  

Mutations that cause misfolding of the RHO protein have been also associated with 

increased intracellular Ca2+ in rod photoreceptors (Shinde et al., 2016; Comitato et al., 

2019b). Dominant mutations in RHO account for 20-25% of the dominant forms of RP 

and most of these mutations lead to misfolding of the protein and retention in the ER 

(Behnen et al., 2018). Dominant mutations in RHO have been studied for several years 

and numerous murine models are available as transgenic or knock-in mice. Activation of 
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ER resident sensors, such as IRE (inositol-requiring enzyme 1), ATF6 (activating 

transcription factor-6) and PERK (protein kinase R-like ER protein kinase) have been 

reported but the functions of these sensors in  the unfolded protein response (UPR) to 

activate protective mechanisms or in ER-stress leading to cell death are still not 

completely defined in degenerating photoreceptors (Lin et al., 2007; Kunte et al., 2012; 

Chiang et al., 2015; Athanasiou et al., 2017; Comitato et al., 2018). In transgenic mice, 

in which expression of mutant RHO is combined with RHO protein overexpression, ER-

stress sensors linked to apoptosis are activated (Gorbatyuk et al., 2010; Kunte et al., 

2012; Comitato et al., 2016). Differently, in RHO recessive mutations, as in the knock-

out mouse of the Rho gene, no ER-stress could be revealed but high [Ca2+] was 

reported (Comitato et al., 2016). Interestingly, in murine models of IRD with an equal 

gene dosage of wild type and mutant proline 23 to histidine (P23H) Rho, such as in the 

P23H knock-in mouse (RhoP23H/+), activation of the ER resident sensors, i.e. 

phosphorylated IRE1 and PERK, could be detected but this activation appeared to be 

related to ER-associated protein degradation (ERAD) and UPR and not to cell death 

(Chiang et al., 2015; Comitato et al., 2019b). Specifically, we defined that activation of 

PERK leads to phosphorylation of the nuclear factor erythroid 2–related factor 2 

(NRF2) transcription factor, which is a mediator of the antioxidant response and 

possibly a protective mechanism during photoreceptor degeneration (Comitato et al., 

2019b). On this line of evidences, inhibition of the PERK pathway revealed to be 

detrimental, suggesting that PERK sustains UPR and is a compensatory response in 

the degenerating retina (Athanasiou et al., 2017; Comitato et al., 2019b). These data 

are relevant for the studies on IRD because the RhoP23H/+ knock-in mouse models the 
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degenerative progression of photoreceptors similarly to what found in RP patients 

bearing the P23H mutation in RHO, i.e. with a slow degeneration starting from the 

ventral side of the retina (Sakami et al., 2011).  

Altogether the studies suggest common mechanisms of cell demise in dominant and 

recessive forms of RP caused by mutations in the PDE6B and RHO genes. In murine 

models of these types of RP intracellular increase of calcium ions and activation of 

calpains have been pinpointed as key players triggering photoreceptor degeneration. 

 

 

Targeting cell death mechanisms for neuroprotection of degenerating 

photoreceptors 

Several studies demonstrated that targeting calpains can be a promising therapeutic 

neuroprotective option for the degenerating retina. We showed that, in the rd1 mouse 

model with a recessive mutation in the Pde6b gene, calpain 1 appears to play a major 

role in the activation of the cell death pathway leading to AIF nuclear translocation 

(Comitato et al., 2014). Several calpain inhibitors have been tested in this mouse model 

of IRD and many of them showed neuroprotective effect in short-term delivery (Paquet-

Durand et al., 2006, 2010; Sanges et al., 2006). However, some calpain inhibitors, such 

as CX295 and SJA6017, demonstrated to be toxic when the retina was exposed for a 

prolong time period to the inhibiting compounds (Paquet-Durand et al., 2010). Calpain 1 

and calpain 2 are maintained in an inactive state by binding to calpastatin, a highly 

specific endogenous inhibitor (Hood et al., 2004). A peptide derived from the natural 

inhibitor calpastatin was tested in the degenerating eyes and provided neuroprotection 
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in recessive and dominant models of IRD after short and prolonged exposure times in 

vitro, on retinal explants, and in vivo after intravitreal injection (Paquet-Durand et al., 

2010; Comitato et al., 2014, 2016). Neuroprotection by in vivo injection in the eye of the 

calpastatin peptide gave variable results in different models of IRD, with effects ranging 

from 30% to 80% reduction of dying cells (Paquet-Durand et al., 2010; Comitato et al., 

2014, 2019a). A possible explanation is the high specificity of calpastatin for two types 

of calpains, i.e. calpain 1 and calpain 2. In case other calpains are activated, calpastatin 

cannot block them. In fact, while in the knock-in mouse RhoP23H/+ we found 80% 

correlation of calpain activation with the cell death marker TUNEL (Terminal 

deoxynucleotidyl transferase dUTP nick end labeling) at the peak of degeneration, 

calpastatin peptide could reduce cell death only by 30% (Comitato et al., 2019a). We 

reasoned that other calpains, aside calpain 1 and calpain 2, might be activated during 

retinal degeneration caused by the P23H mutation in RHO and found that a different 

calpain inhibitor (PD150606), which can target the majority of calpain types, could 

protect the retina from cell death by 65%. The strong neuroprotective activity of 

PD150606 suggests that different calpains are activated in retinas bearing different 

mutations leading to IRD. Nevertheless, the common mechanism activated by changes 

in [Ca2+] appears to be shared by several models of the disease and, thus, lowering 

calcium ions should also be evaluated as new therapeutic avenue (Comitato et al., 

2019b).  

In a recent study we confirmed the hypothesis that decreasing intracellular calcium can 

be neuroprotective in models of IRD. We and others showed that the Pigment 

Epithelium Derived Factor (PEDF) can preserve the degenerating retina of recessive 
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and dominant models of IRD (Holekamp et al., 2002; Wang et al., 2013; Kenealey et al., 

2015; Polato and Becerra, 2016; Comitato et al., 2018). Short-term treatments by 

intravitreal injection of human recombinant PEDF restrained cell death in the rd1 mutant 

retina by binding the PEDF receptor  (PEDF-R) encoded by the PNPLA2 (patatin-like 

phospholipase domain containing family) gene (Kenealey et al., 2015) and a small 

peptide of 17 amino acids (17mer) was identified as the neurotrophic domain of the 

protein. PEDF or the 17mer were demonstrated to act by targeting the PMCA (plasma 

membrane Ca2+ ATPase) pumps at the plasma membrane of photoreceptors and, thus, 

by favoring calcium efflux with a consequent reduction of intracellular [Ca2+] below toxic 

levels (Comitato et al., 2018). Interestingly, the PEDF-R is an integral membrane protein 

with a phospholipase A2 activity stimulating the release of the omega-3 fatty acid 

docosahexaenoic acid (DHA) from phospholipids (Subramanian et al., 2013; Pham et 

al., 2017). DHA was proven in myocytes and cardiomyocytes to support PMCA pumps 

and to interfere L-type Ca2+ channels counteracting calcium overload (Pepe et al., 1994; 

Mączewski et al., 2016). We, thus, propose that PEDF neuroprotective activity for 

degenerating photoreceptors acts by releasing intracellular DHA, which increases 

PMCA pump activity to extrude calcium ions. The decrease of intracellular [Ca2+] 

induced by PEDF attenuate the cell death mechanism with lowered calpain activation 

and reduced mitochondrial BAX and nuclear translocation of AIF (Comitato et al., 2018). 

Altogether, the central cell death mechanism triggered by high intracellular [Ca2+] is 

diminished by PEDF. The open question that needs to be addressed is whether long-

term exposure to PEDF can support photoreceptor survival or may have undesired side 

effects which will preclude the use of PEDF in therapy. 
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Perspectives and conclusions 

A limiting aspect in designing a cure for IRD is the high genetic heterogeneity found by 

molecular diagnosis in patients and the high percentage of isolated instances. General 

and common factors activated by mutations in different genes can be keystones for 

translational research. We identified activation of calpains, engaged by high intracellular 

Ca2+, as features shared by several murine models of IRD. In order to plan effective 

treatments to stop cell death during retinal degeneration we need specific studies aimed 

at defining whether high Ca2+ and calpains activate all the downstream catastrophic 

events leading to cell death or whether they cooperate with other proteases. The 

identification and characterization of molecules acting on these events needs also to be 

complemented by the development of appropriate delivery systems for the retina 

(Himawan et al., 2019). In fact, the different chemico-physical properties of 

neuroprotective agents tested in mice by short-term delivery will require specific and 

differentiated delivery systems. A second challenge will be a specific delivery either to 

rod or to cone photoreceptors to avoid side effects, such as bioconjugated compounds, 

in case of synthetic molecules (Wadhawan et al., 2019) or viral pseudotypes and rod-

specific promoters in case of gene therapy approaches (Auricchio et al., 2001; 

Mussolino et al., 2011). Treatments with neuroprotectants targeting cell death 

mechanisms can delay photoreceptor degeneration but may also be of interest for 

combined treatments. In fact, gene therapy for recessive forms of IRD is in the clinic but 

appears to be more effective in young individuals and thus on cells at an early stage of 

degeneration (Trapani and Auricchio, 2019). A healthier photoreceptor appears to be a 
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better target for gene therapy. Neuroprotection could, thus, be envisaged as a treatment 

to prolong sight but also for combined therapies to enhance the effectiveness of gene 

therapy approaches. Similarly, we may expect that also cell transplantation may have 

more chance of integration in a retinal tissue with a limited stressed status and low 

inflammation.  
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Figure legends 

 

Figure 1. Stages of photoreceptor degeneration and applicable therapies. 

Degeneration is represented in a graph showing the reduction in photoreceptors cells 

during degeneration. Below we report the time windows of different therapeutic options. 

Gene therapy is appropriate for early stages of photoreceptor degeneration and 

neuroprotective strategies can treat ongoing photoreceptor cell degeneration. Both 

these treatments act on endogenous photoreceptors. Cell replacement, optogenetics 

and retinal prosthesis are strategies to treat patients at advanced/late stages of 

degeneration. 

 

Figure 2. Cell death mechanisms 

 The calcium-calpain pathway plays a major role in photoreceptor demise linked to IRD. 

Increases of intracellular calcium trigger calpain proteases which, by acting on AIF, lead 

to cell death through BAX activation. High intracellular Ca2+ can be caused by increases 

of intracellular cGMP, which can also activate PKG, as well as by protein misfolding, 

such as in photoreceptors bearing mutations in rhodopsin (RHO). High intracellular 

cGMP can be a consequence of loss of function in the Phosphodiesterase 6 enzyme 

(PDE6), which idolizes cGMP.  
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