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1 Introduction

The worldline formalism applied to Quantum Field Theory is a powerful tool to compute
relevant physical quantities. The guidelines of such method were already introduced in the
1950 by Feynman, who proposed a quantum mechanical path integral model representing
the dressed scalar propagator in scalar QED [1]. In the 80’s the method started to be
systematically used as an alternative to standard second-quantized approaches to QFT,
in particular for the computation of anomalies [2–6], effective actions and Feynman dia-
grams [7–10]. This formalism was then extended to various quantum field theories in curved
spacetime (see ref. [11] for a review) and several applications have so far been considered
such as, one-loop effective actions [12–14], the one-loop graviton photon mixing in an elec-
tromagnetic field [15], gravitational corrections to Euler-Heisenberg lagrangians [16], world-
line representations of quantum gravity [17, 18], supergravity [19] and higher spin field the-
ories [20, 21], and simplified methods for anomaly computations [22, 23], just to name a few.

The effort to move towards non-perturbative worldline calculations led to the devel-
opment of numerical methods for the evaluation of quantum mechanical path integrals in
flat space. The need for such a generalization was in the several interesting applications
that rely on non-perturbative physics, such as the chiral symmetry breaking. The main
issue was the numerical generation of the worldlines in an Euclidean space according to
their relative probability distribution. For such a purpose, Gies and Langfeld [24] proposed
a first numerical algorithm, adopting a Monte Carlo sampling of the coordinate space as
an improvement of a previous work by Nieuwenhuis and Tjon [25]. Such methods are
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now known as Worldline Monte Carlo (WLMC) and have been used for several applica-
tion in QFT, such as the Casimir effect [26], Schwinger pair production in inhomogeneous
fields [27], quantum effective actions [28], strongly-coupled, large-N fermion models [29],
and the nonperturbative propagator of scalar, QED-like, theories [30]. In these works,
all the proposed algorithms are based on a Monte Carlo sampling which models the free
Brownian motion. Thus, instead of using the full (kinetic + potential) action as a weight
to select the points on the worldline, only the kinetic part is used. As explained in the
recent work by Edwards et al. [31], the reason for such a choice is universality, which
then allows the application of the method to a variety of different cases, regardless of the
specific potential involved. Moreover, therein they propose an efficient algorithm, called
YLOOPS, to generate closed worldlines around a point,1 which is an improved version of
the alghoritms VLOOPS and DLOOPS originally designed in [26] and [28] respectively.2

Below, due to its efficiency and easiness of application, we find it convenient to adopt the
YLOOPS algorithm for our calculation: more precisely, we present a slight modification of
such algorithm, where a fictitious quadratic term is inserted in the kinetic term, in order
to make the evaluation of the numerical path integral faster and more stable.

The main goal of the present manuscript, is to extend WLMC techniques to curved
spaces, i.e. to non-linear sigma models representing the propagation of a scalar particle in
curved space. This non-perturbative numerical method would presumably help tackling a
large class of problems in quantum field theory in curved space such as, for example, the
Casimir effect and the Schwinger effect on a non trivial background, and the computation
of effective actions and anomalies in curved space. In order to test our construction we
restrict ourselves to maximally symmetric spaces. In such a context indeed, recently it
was shown that the heat kernel expansion for a scalar particle [33, 34] (later generalized
to a spinor particle [35]) can be efficiently reproduced using an effective model with a flat
kinetic term, where the effects of the curvatures are taken into account through a suitable
effective potential. Therefore, as we show, such a model can be easily simulated with the
conventional (flat space) WLMC methods, mentioned above. Moreover, this constitutes a
perfect benchmark to verify our extension of the WLMC techniques to a genuine non-linear
sigma model representing a particle in curved space.

The paper is organized as follows. In section 2 we review the Worldline Monte Carlo
theory in flat space, providing an example of the calculation of the propagator associated to
a 4-dimensional harmonic oscillator, to get familiar with the method. In section 3 we build
the WLMC setup in curved space and propose our strategy to compute numerical path
integrals on non-trivial backgrounds. In section 4 we describe the theoretical basis of the
case study which we will use to test our method, i.e. the diagonal part of the heat kernel of
a free scalar point particle moving on a D-sphere and on a D-hyperboloid, i.e. maximally
symmetric spaces. The worldline realization of such quantity is given in terms of a quantum
mechanical path integrals with periodic boundary conditions (defining closed trajectories

1Closed worldlines (loops) are due to quantum mechanical path integrals with periodic boundary con-
ditions, often used to describe effective actions in the context of the worldline formalism.

2Actually, a parallelized implementation on GPUs of the DLOOPS algorithm was considered by Aehlig
et al. in [32].
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or loops). After that, we will report our numerical simulations, studying their convergence
with respect to the discretization parameters and the curvature of the sphere. A possible
extension to the case of open trajectories is discussed in section 5. In section 6 we sum
up our conclusions, with possible outlook for future applications. Finally, in appendix A
we report the details of the YLOOPS algorithm generalized to the case of a non-vanishing
quadratic term, whereas in appendix B we see the effect of inserting such mass term in the
WL sampling discussed in section 2.

2 Worldline Monte Carlo in flat space

In order to introduce our computation, let us first review the main ingredients of worldline
Monte Carlo in flat space. Let us consider a D-dimensional flat space heat kernel computed
through an Euclidean quantum mechanical path integral

I(x, x′;β) =
x(β)=x′∫
x(0)=x

Dx e−S[x], (2.1)

with

Dx =
∏

τ=0,...,β
dx(τ) (2.2)

and

S[x] =
β∫

0

dτ

(1
2δµν ẋ

µẋν + V (x)
)
. (2.3)

Expression (2.1) can be seen as the heat kernel of a unit mass non-relativistic point-particle
x(τ) in D-dimensional Euclidean space, or conversely the (Schwinger integrand of the)
propagator of a bosonic relativistic particle, where the affine parameter τ is the proper
time. Its Hamiltonian reads

H[x, p] = 1
2δ

µνpµpν + V (x) (2.4)

The formal expression (2.1) involves the sum over all the possible worldlines joining x

and x′ in time β, weighted by the action (2.3). To provide a numerical realization of the
worldline path integral (2.1), some comments are needed. First of all, it is not possible to
span numerically the entire configuration space, hence a selection on the worldlines must
be taken into account: let us denote NWL the number of worldlines which are considered.
Secondly, each worldline has to be discretized: this is usually done with respect to the
affine parameter, taking a number N of points per worldline. As pointed out in [31],
here discretization is not realized on the points x(τ) of the manifold,3 but directly on the

3As done, for instance, in Lattice Field Theory.
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affine parameter τ . To fulfill the above two requirements, what is usually done in WLMC
approaches [24, 26–28, 31] is to compute worldline averages like

〈
I(x, x′;β)

〉
=

x(β)=x′∫
x(0)=x

Dx e−SKIN[x]−SPOT[x]

x(β)=x′∫
x(0)=x

Dx e−SKIN[x]

, (2.5)

with SKIN[x] and SPOT[x] being the kinetic and potential terms in (2.3) respectively. In
this way, the exponential e−SKIN characterizing each worldline can be used as a weight
function to build the worldlines used for the calculation. To be more precise, worldlines
are constructed point by point using Monte Carlo algorithms: each trajectory produced,
then, satisfies a Monte Carlo-selection criterion which allows to consider all the trajectories
obtained as a set of almost equally meaningful trajectories to simulate the quantum prop-
agation of the point-particle in spacetime. The aforementioned choice of the WL weight
function is the most popular in literature, as it has an evident feature of universality, in fact
in such case the selection of the worldline is independent of the model considered. Once
the configuration space is sampled with the points

{
x

(s)
i

}
i=1,...,N

, with s = 1, . . . , NWL

denoting the worldline index, the potential can be in general approximated by4

S
(s)
POT(β) =

β∫
0

dτ V
(
x(s)

)
' β

N

N∑
i=1

V
(
x

(s)
i

)
, s = 1, . . . , NWL, (2.6)

where all the worldlines start at x and end at x′. At this point, expression (2.5) can be
approximated by the arithmetic average

〈
I(x, x′;β)

〉
'

NWL∑
s=1

e−S
(s)
POT(β)

NWL
, (2.7)

for which, clearly, a good estimate of the path integral is obtained when N and NWL are
large enough. Expression (2.7) is the main prescription for our WLMC computations. Note
that, unlike (2.5), the latter does not occur in the form of a weighted average. However, the
weighing procedure takes place beforehand, upon the selection of the different worldlines
present in the ensemble.

As mentioned before, different algorithms have been developed in order to generate
worldlines. However, historically, the most commonly used algorithm is the VLOOPS de-
veloped by Gies [24]. Here we find it convenient to use the YLOOPS routine developed
by Edwards et al. [31], with a slight modification due to the inclusion of a regularizing
quadratic contribution in the kinetic term that will be taken into account for the computa-
tions in curved space. Such algorithm is developed to diagonalize the discretized version of

4Such approximation works well with well-behaved potentials; when divergences appear, different ap-
proaches should be considered [31].
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the flat kinetic term in (2.3), having vanishing Dirichlet boundary conditions x1 = xN = 0.
The details are discussed in appendix A.

2.1 A simple flat-space test

In order to conclude this preliminary section let us review a simple example where the
WLMC setup can be applied, i.e. the propagator of a bosonic harmonic oscillator with null
endpoints in a D-dimensional Euclidean space. Such quantity can be written as

G̃(β) ..=
x(β)=0∫
x(0)=0

Dx e−
1
2

∫ β
0 dτ(ẋ2+x2), (2.8)

where we have assumed ω = 1 = m. The analytical result is well known and reads

G̃(β) =
[ 1

2π sinh(β)

]D
2
. (2.9)

On the other hand, the propagator can be written as

G̃(β) =
∮

0
Dx e−

1
2

∫ β
0 dτ ẋ2

∮
0
Dx e−

1
2

∫ β
0 dτ(ẋ2+x2)∮

0
Dx e−

1
2

∫ β
0 dτ ẋ2

(2.10)

where we have multiplied and divided by the free path integral, which provides the Feynman

factor
(

1
2πβ

)D
2 — above we denote

∮
0 :=

∫ x(β)=0
x(0)=0 . Expression (2.10) thus reads

G̃(β) =
( 1

2πβ

)D
2
〈
e−

1
2

∫ β
0 dτ x2

〉
(2.11)

and, combining (2.11) with (2.9), we obtain

G(β) ..=
〈
e−

1
2

∫ β
0 dτ x2

〉
=
[

β

sinh(β)

]D
2
, (2.12)

which is accessible to WLMC calculation. Indeed, in figure 1 we report a WLMC calculation
of G(β) in four Euclidean dimensions, with N = 1000 points per loop and NWL = 1000
worldlines. It shows a satisfactory agreement with the analytical result in (2.12). In order
to remove correlation between the data, this calculation — as well as those presented
henceforth — has been performed using a different set of worldlines for each β-value.

Here and throughout the whole manuscript, the uncertainty on the numerical data is
computed considering the standard error of the mean

SEM =

√√√√NWL∑
s=1

[(. . .)s − 〈(. . .)〉]2

NWL(NWL − 1) (2.13)

where the dots represent a quantity computed for each worldline [31].
As we have seen, WLMC in flat space is relatively easy to implement and, even for not

very large values of N and NWL, it faithfully reproduces the theoretical curve. We will show
that the flat space WLMC setup can be fruitfully exploited also for numerical applications
in curved space problems: the price to pay is the introduction of further potential-like
terms that incorporates curvature effects.
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Figure 1. Comparison between a WLMC simulation with N = 1000, NWL = 1000 and the
analytical result for the propagator of the 4-dimensional bosonic harmonic oscillator with endpoints
fixed at zero.

3 Worldline Monte Carlo in curved space

Similarly to what we did in the previous section for the flat space case, let us consider the
classical Hamiltonian of a D-dimensional bosonic scalar point-particle in Euclidean curved
space

H(x, p) = 1
2g

µν(x)pµpν + V (x). (3.1)

At the quantum level the Einstein invariant Hamiltonian operator reads (see [11] for a
complete treatment of particle path integrals in curved space)

Ĥ(x̂, p̂) = 1
2g
− 1

4 (x̂)p̂µg
1
2 (x̂)gµν(x̂)p̂νg−

1
4 (x̂) + V (x̂), (3.2)

with g(x) = det gµν(x), and the heat kernel associated to (3.2) can be expressed as the
following particle path integral

I(x, x′;β) =
x(β)=x′∫
x(0)=x

Dx e−S[x], (3.3)

where the Einstein-invariant formal measure reads

Dx =
∏

τ=0,...,β

√
g (x(τ))dx(τ) (3.4)

and the resulting particle action

S[x] =
β∫

0

dτ

(1
2gµν(x)ẋµẋν + VCT(x) + V (x)

)
, (3.5)

is a one-dimensional non-linear sigma model.
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With respect to the flat space case, there are three main differences: the root factor
in (3.4), the spacetime dependent metric tensor gµν(x) and the counter-term VCT(x) ap-
pearing in (3.5). A few comments are in order. In perturbative computations, one needs
a regularization scheme to treat divergent Feynman diagrams and VCT(x) is the suitable,
finite, counterterm needed, which depends on the adopted regularization scheme. On the
other hand, in non-perturbative computations, no divergences are expected to occur since
these Feynman path integrals represent quantum mechanical transition amplitudes which
are thus finite. Strictly speaking this a formal statement which boils down to a quite
non-obvious definition of the path integral measure, so there is a priori no guarantee that
divergences do not occur in intermediate stages of the computation. On the other hand, in
the present approach, which makes use of Monte Carlo samplings to define the ensemble
of paths which are included, no divergences are seen to show up.

In general, in curved space particle models, there are ordering ambiguities as the kinetic
hamiltonian mixes coordinates and momenta. Yet, a well known scheme that allows to ob-
tain Feynman path integrals from the associated quantum mechanical transition amplitudes
exists: it is the Time Slicing approach, which requires to Weyl-order the Einstein-inviariant
hamiltonian, in order to employ the so-called “mid-point rule” in the costruction of the
path integral. Such reordering produces an order-~ potential, VCT(x), which is the same
potential needed at the perturbative level, since the Time Slicing also encodes a regulariza-
tion procedure. For historical reasons we will refer to such potential as the “counterterm
potential”. Finally, the root factor in (3.4) renders the formal measure Einstein invariant:
for perturbative calculations it is often customary to exponentiate the

√
g(x) in terms of

a particle path integrals over Lee-Yang ghost fields. However, for our non-perturbative,
numeric computation we find it more convenient to keep it as an external factor, evaluated
at each point of the various worldlines involved in the sums.

Now, the key idea in order to perform a numerical WLMC average in curved space
(like the one in (2.5)) is to extract the flat space kinetic term from the curved one

gµν(x)ẋµẋν = δµν ẋ
µẋν + (gµν(x)− δµν) ẋµẋν (3.6)

and use it to sample the worldlines, and treat the remaining part as a potential contribu-
tion, so that it is possible to bring the curved space problem back to a flat space one —
provided one takes into account the suitable counterterm and measure factors. Namely,
after a flat space Monte Carlo sampling of the worldlines, the path integral average will
thus be given by

〈
I(x, x′;β)

〉
'

NWL∑
s=1

√
g(s) e−S

(s)
POT(β)

NWL
, (3.7)

where √
g(s) ..=

N∏
n=2

√
g

(
x̄

(s)
n− 1

2

)
,

S
(s)
POT(β) ..= β

N − 1

N∑
n=2

[
VKIN

(
x̄

(s)
n− 1

2

)
+ VCT

(
x̄

(s)
n− 1

2

)
+ V

(
x̄

(s)
n− 1

2

)]
, (3.8)
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and

x
(s)
n− 1

2

..=
x

(s)
n + x

(s)
n−1

2 (3.9)

is the middle point between adjacent points of the worldline s.
In particular, the first potential term appearing in (3.8) is the one arising from (3.6)

and reads

VKIN

(
x̄

(s)
n− 1

2

)
..= (N − 1)2

β2

(
gµν

(
x̄

(s)
n− 1

2

)
− δµν

)(
x(s) µ
n − x(s) µ

n−1

) (
x(s) ν
n − x(s) ν

n−1

)
. (3.10)

It is easy to verify that, as discussed in the appendix A, definitions (3.8) and (3.10) respect
the backward convention on the first derivative. Focusing on the counter-term poten-
tial VCT, it ought to be observed that the proper time discretization of the path integral
which we performed is equivalent to the Time Slicing (TS) procedure adopted to regular-
ize particle path integrals in curved space from first principles [11]. Thus, the discretized
counter-term is5

VTS

(
x̄

(s)
n− 1

2

)
= −1

8

[
R

(
x̄

(s)
n− 1

2

)
+ gµνΓρµσΓσνρ

(
x̄

(s)
n− 1

2

)]
. (3.11)

Now we have all the ingredients to test our setup.
In the following section we consider a case study which comes particularly handy for

our purpose: it is the study of the free heat kernel of a scalar point particle constrained on
a D-sphere. Recently, in ref. [33] (see also [34]), it was shown that, using Riemann normal
coordinates (RNC), it is possible to map the problem of computing the heat kernel on
spheres, to the evaluation of a flat space heat kernel with a suitable potential which takes
into account the curvature effects. Moreover, as found in [22], for a maximally symmetric
geometry, the metric tensor, in RNC, can be neatly written in closed form as the flat
space metric plus a curvature-dependent contribution. Hence, our numerical problem can
be studied both from a purely flat perspective, by mapping it into the effective flat space
model of [33]—thus using the conventional flat space Worldline Monte Carlo reviewed in
section 2—, and using the curved space WLMC setup discussed in section 3. In other words,
we use the effective flat space model as a benchmark test for our curved construction.

4 Case study: free scalar heat kernel on maximally symmetric spaces

Let us briefly review the model [33] which we are going to use to implement our numerical
WLMC method in curved space. The Hamiltonian operator

Ĥ0(x̂, p̂) = 1
2g
− 1

4 (x̂)p̂µg
1
2 (x̂)gµν(x̂)p̂νg−

1
4 (x̂) (4.1)

of a free scalar point-particle in curved space can be used to build its heat kernel

K̂(β) = e−βĤ0 (4.2)
5Our conventions for the curvature tensors are [∇µ,∇ν ]V λ = Rµν

λ
σV σ, Rµν = Rµ

ρ
νρ.
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satisfying the operatorial equation

− ∂K̂(β)
∂β

= Ĥ0K̂(β) . (4.3)

The matrix elements of the kernel operator

K(x, x′;β) = 〈x| K̂(β) |x′〉 (4.4)

satisfy the heat equation

∂K(x, x′;β)
∂β

= 1
2∇x

2K(x, x′;β) . (4.5)

Defining
K̄(x, x′;β) = g

1
4 (x)K(x, x′;β)g

1
4 (x′) , (4.6)

and using RNC, the curved space heat equation (4.5) can be turned into the flat space heat
equation

∂K̄(x, x′;β)
∂β

=
(
−1

2δ
µν∂µ∂ν + Veff(x)

)
K̄(x, x′;β) (4.7)

if the curved space is a space with maximally symmetry (a D-sphere for definiteness), for
which

Rµνρσ = M2 (gµρgνσ − gµσgνρ) . (4.8)

In such a case we have

gµν(x) = δµν + f(x)Pµν(x), x =
√
δµνxµxν

f(x) = 1− 2M2x2 − cos(2Mx)
2M2x2 , Pµν(x) = δµν −

xµxν
x2

g(x) = (1 + f(x))D−1 . (4.9)

Moreover, the effective potential appearing in (4.7) can be expressed in closed form as

Veff(x) = D(1−D)
12 M2 + (D − 1)(D − 3)

48
5M2x2 − 3 +

(
M2x2 + 3

)
cos(2Mx)

x2 sin2(Mx)
, (4.10)

and can be used in the associated path integral representation of the problem

K̄(x, x′;β) =
x(β)=x′∫
x(0)=x

Dx e−S[x], S[x] =
∫ β

0
dτ

(1
2δµν ẋ

µẋν + Veff(x)
)
. (4.11)

Hence, the heat kernel for a particle on a maximally symmetric space can be obtained
through a linear sigma model with an effective potential that encodes the curvature effects.
We use such effective representation of the heat kernel to test our numerical method.

Specifically, we summarize in table 1 the details of the two numerical calculations that
we have performed. The first one, which we refer to as “Effective Potential Method” (EPM)
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Effective Potential Method (EPM) Non-linear Sigma Model Method (NSMM)
WL algorithm original YLOOPS generalized (massive) YLOOPS

quantity 〈I(0, 0;β)〉 '

NWL∑
s=1

e−S
(s)
POT(β)

NWL
〈I(0, 0;β)〉 '

NWL∑
s=1

√
g(s) e−S

(s)
POT(β)

NWL

WL action S
(s)
POT(β) = β

N

N∑
n=1

Veff(x(s)
n ) S

(s)
POT(β) = β

N−1

N∑
n=2

[
VKIN

(
x̄

(s)
n− 1

2

)
+ VTS

(
x̄

(s)
n− 1

2

)]
potential eq. (4.10) eqs. (3.10) and (3.11)

Table 1. Details of the two types of computation performed for the same heat kernel expansion,
with a linear sigma model and with a non-linear sigma model respectively.

makes use of the potential given in eq. (4.10) to effectively reproduce the heat kernel of a
scalar particle on a maximally symmetric space through a linear sigma model (flat metric).
In the second calculation, we compute the same heat kernel making use of a “genuine” non-
linear sigma model action, which amounts to consider the two potentials (3.10) and (3.11)
within the WLMC technique — we refer to this case as the “Non-linear Sigma Model
Method” (NSMM). Note that, for the EPM computation we have adopted the original
YLOOPS algorithm, developed in [31], whereas for the NSMM we found it convenient to
use a generalized version of YLOOPS, where a tiny quadratic term is included in the kinetic
part of the action. Namely,

SKIN[x] = 1
2δµν ẋ

µẋν → S̃KIN[x] = 1
2δµν ẋ

µẋν + 1
2αx

2, 0 < α� 1. (4.12)

Let us stress that such mass term is used solely at the stage of the construction of the
worldline ensemble, to improve the convergence, and does not contribute to the potential
term, which is left untouched. The details of the generalized YLOOPS algorithm are
discussed in appendix A, whereas its numerical outcomes are shown in appendix B, where
an analysis of the effect of the inclusion of the fictitious mass term is provided. Our findings
show that there is range of values of the mass parameter α which minimize the discrepancy
between the two methods, at large values of β.

In figure 2, we report the results of our calculations for a D = 4 sphere with M = 1.
Figures 2(a) and 2(b) show a comparison between the data of the Non-linear Sigma Model
Method (NSMM, blue) and the Effective Potential Method (EPM, green), together with the
perturbative, analytical computation performed in [33], for couples of values (NWL, N) =
(100, 100) and (1000, 3000) respectively. As we can see, the EPM is considerably more
precise than the NSMM, presumably because of the form of the associated potential: in
the first case it is expressed in regular form (4.10), whilst in the second case by means of
numerical derivatives (3.10), and this contributes to reduce precision. Thus, we take the
green points as a benchmark to test the blue ones. We notice that the agreement between
the two calculations gets better as the discretized approximation improves, i.e. when NWL
and N become large. Indeed, the absolute value of the maximum relative error passes from
∼ 35% with (NWL, N) = (100, 100) (figure 2(a)) to ∼ 4% with (NWL, N) = (3000, 3000)
(figure 2(b)). In fact, it was noticed that WLMC calculations generally lose accuracy at
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(a) (b)

Figure 2. Calculations of the heat kernel of a free scalar particle in a D=4 sphere with endpoints
x = x′ = 0 for various parameters (NWL, N) both using the effective potential method (green data)
with known potential and using the non-linear sigma model method (blue data). The red curve is
the analytical and perturbative computation for small β performed in [33].

large time values due to the numerical phenomenon of undersampling [31] of worldlines.
This issue is also studied in [28] for the specific case of the harmonic oscillator. It would
seem that our results confirm this feature, even though a source of systematic deviation from
the reference curve has to be ascribed to a minor efficiency in representing the derivative
interactions. In the attempt to increase the efficiency of the code, one may think of using
a higher order discrete derivative to insert into (3.10), like the two-point method

f(x+ h)− f(x− h)
2h = df

dh
(x) + o(h2) (4.13)

or, say, the five-point method

−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)
12h = df

dh
(x) + o(h4). (4.14)

However, the specific form of the counter-term (3.11) is compatible only with a first or-
der backward derivative, as it was derived [11] in this way, and numerical simulations
confirmed that.

In figure 3 we report a higher precision calculation with respect to those of figures 2,
in particular with parameters (NWL, N) = (3000, 10000) and for the interval (0.3, 1) of
β-values, i.e. the tails of the figures 2. Here we confirm a consistent suppression of Monte
Carlo fluctuations, due to the consistent increase of the parameters NWL and N . To
have a deeper insight of the effect of the fictitious mass α, in figure 4 we report a higher
precision calculation performed with a set of three different values of α, i.e. αmin = 0.0064,
α− = 0.0002 and α+ = 0.2031. The choice of αmin is actually explained in appendix B: it
represents the optimized value of α which minimizes the average discrepancy between the
NSMM-data and the EPM-data. α− and α+ lie respectively on the left and on the right
of αmin on a logarithmic scale.

Next, in figures 5, we show the comparison between the two calculations performed for
different values of the curvature parameter M (the inverse radius of the sphere), namely
M = 1 and M = 0.1, reporting also the relative errors between the two methods. What we
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Figure 3. High precision calculation of the heat kernel for the free scalar particle on the sphere
with (NWL, N) = (3000, 10000).

Figure 4. Calculations of the heat kernel for the free scalar particle on the sphere with (NWL, N) =
(3000, 10000) and or different values of the fictitious mass.

observe is that, locally, the decrease of curvature improves the agreement between NSMM
and EPM — the precision has gained roughly two orders of magnitude (the full-scale
changes from 2% to 0.04%) passing from M = 1 to M = 0.1. This is due to the fact that,
magnifying the radius of the sphere, the space in the vicinity of x = x′ = 0 gets closer to
be flat, reducing the stronger effects which affect the precision of the NSMM.

In general, the different degree of precision between the two methods considered, can
be ascribed to the fact that — as already observed in perturbative computations [33]—
the flat effective model (EPM) takes into account of the curvature effects in a much more
efficient way than the non-linear sigma model, as in the former the curvature effects are
all encoded in the effective potential. In fact, in the non-linear sigma-model, derivative
interactions do appear, which are less efficiently represented in the heat-kernel expansion.
This can be understood, by rewriting the action (3.5) in terms of a rescaled time s = τ/β

– 12 –
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(a) (b)

(c) (d)

Figure 5. Calculations of the heat kernel for the free scalar particle on the sphere with M = 1
(top) and M = 0.1 (bottom). The relative errors between the blue and the green data have been
shown in the figures on the right. All other parameters are kept fixed.

which yields

S[x] =
∫ 1

0
ds

(
1

2β gµν ẋ
µẋν + β

(
VCT(x) + V (x)

))
, (4.15)

in which, the potentials appear with an order-β2 higher than the derivative terms. Thus,
in a perturbative expansion about a fixed point, one needs higher order terms from the
Taylor expansion of gµν to match the corresponding orders in the potential. On the other
hand, the flat effective model — unlike the non-linear sigma model — has, so far, been
shown to work only in maximally symmetric backgrounds.

Finally, we present the calculation of the free particle heat kernel constrained on a
maximally symmetric space with negative curvature (a 4-hyperboloid in our case). Fol-
lowing [33], the sectional curvature is negative M2 < 0 and, defining |M | =

√
−M2, the

metric is written as
gµν(x) = δµν + f̃(x)Pµν(x) (4.16)

with
f̃(x) = −1− 2 (|M |x)2 + cosh (2 |M |x)

2 (|M |x)2 . (4.17)

All other quantities appearing in (4.9) are defined in the same way as before, whereas
in the potential (4.10) we have the replacement M → iM . Figure 6 shows a satisfying
agreement between the curved method and the flat one for (NWL, N) = (1000, 1000) for
β-values ranging from 0.01 to 10.
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Figure 6. Calculations of the heat kernel for the free scalar particle on a hyperboloid with D = 4
and |M | = 1.

5 An extension to open worldlines

So far we have seen an efficient way to numerically compute particle path integrals in
curved space, with a direct application to the case of the heat kernel of a free scalar
particle on a maximally symmetric space with Dirichlet boundary conditions at the origin,
x(0) = x(β) = 0. In this section we present a possible way to easily extend the above
computation to the case of non-zero boundary conditions. First of all, let us denote the
endpoints with x(0) = y and x(β) = z for the particle x(τ) propagating from time τ = 0
to time τ = β. The path integral we are interested in, is

I(y, z;β) =
x(β)=z∫
x(0)=y

Dx e−S[x], (5.1)

with

Dx =
∏

τ=0,...,β

√
g (x(τ))dx(τ), S[x] =

β∫
0

dτ

(1
2gµν(x)ẋµẋν + Ṽ (x)

)
, (5.2)

where the potential Ṽ (x) includes the counter-term (3.11) and a possible external potential.
Now, we perform a splitting of the particle path into the classical one xcl(τ) (i.e. a straight
line, being the solution of the classical equation of motion for the free particle) and quantum
fluctuations q(τ),

xµ(τ) = xµcl(τ) + qµ(τ), xµcl(τ) = yµ + τ

β
(zµ − yµ) . (5.3)

In particular, the fluctuations satisfy q(0) = q(β) = 0. Hence, the average of the path
integral (5.1) takes the form

〈I(y, z;β)〉 = e
− (y−z)2

2β

〈 q(β)=0∫
q(0)=0

Dq e−SKIN[xcl,q]−SPOT[xcl,q]
〉
, (5.4)
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Figure 7. Calculations of the heat kernel for the free scalar particle propagating from y = (0, 0, 0, 0)
to z = (5, 5, 5, 5) on a hyperboloid with D = 4 and |M | = 1. The blue points show a calculation
performed with the non-linear sigma model method, whereas the green points are referred to a
benchmark calculation obtained with the flat space setup.

with

Dq =
∏

τ=0,...,β

√
g (xcl(τ) + q(τ))dq(τ), (5.5)

SKIN[x] =
β∫

0

dτ

[1
2 (gµν(xcl + q)− δµν)

( 1
β

(zµ − yµ) + q̇µ
)( 1

β
(zµ − yµ) + q̇µ

)]
, (5.6)

SPOT[x] =
β∫

0

dτ
[
Ṽ (xcl + q)

]
. (5.7)

As equations (5.4)–(5.7) show, it is possible to calculate the averaged path integral
〈I(y, z;β)〉 with non-vanishing endpoints in terms of another one with null Dirichlet bound-
ary conditions (like those computed in section 4), provided a few replacements/adjustments,
namely:

• a factor which depends upon the squared difference of the endpoints appears in front
of the average (5.4)—which corresponds to the free flat action;

• the sampled points of the worldlines around zero (which here are denoted by q) must
be displaced by the corresponding points of the classical path xcl when we evaluate
the potentials (5.6) and (5.7).

In figure 7 we report the calculation of the heat kernel of a free scalar particle prop-
agating on a maximally symmetric space with D = 4, from point y = (0, 0, 0, 0) to point
z = (5, 5, 5, 5), done using both numerical methods introduced above, and showing very
good agreement.
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6 Conclusions and outlook

In the past couple of decades the numerical Monte Carlo approach to the Worldline formal-
ism in flat space has seen a variety of applications. In the meantime, worldline techniques
have been extended to QFT in curved spaces, but restricted to perturbative, analytic com-
putations. The present manuscript intends to be a first attempt to link these two avenues,
in order to be able to extend the Worldline approach to QFT in curved space beyond an-
alytic perturbation theory. Applications can be numerous. Firstly, the study of quantum
field theory effective actions can be extended beyond the regime where the inclusion of
gravity is treated perturbatively, as for instance in the derivation of gravitational correc-
tions to the Euler-Heisenberg lagrangians [16]. On the other hand, the effect of curvatures
in strongly-coupled fermionic models, such as the Gross-Neveu model, which describe the
low-energy limit of several physical systems, can be studied with great efficiency with the
present setup. In fact, in flat space, the Worldline Monte Carlo approach to large N

fermionic models was already successfully considered [29, 36], whereas, at the perturbative
level, the heat kernel expansion of the Gross-Neveu model in 3d curved space with constant
curvature was studied, for example in ref. [37]. The results that we have presented here
clearly show the possibility of performing worldline path integrals associated to scalar point
particles moving in curved space by means of Monte Carlo numerical procedures.

In the present manuscript, we have considered maximally symmetric geometries. By
using a recently studied effective flat space model — which encodes the curvature effects
inside a suitable potential — as a benchmark, we have described a possible extension of
the Worldline Monte Carlo to curved spaces with maximal symmetry. We have found it
convenient to add a mass term in the kinetic action that serves to construct the worldline
ensemble. Let us stress that, although the computation presented above focuses on maxi-
mally symmetric spaces, in the numerical NSMM approach there is a priori no particular
constraint on the curved space background, nor is there any limitation on the chosen set
of coordinates. However, as in other numerical methods, the main drawback of the present
approach is the necessity of having a specific background, dependent on a finite set of real
parameters.

The construction described in the present manuscript focuses on the computation of
the diagonal part of a particle heat kernel which is linked to the computation of one-loop
effective actions. However, a possible strategy to simulate open worldlines has been pre-
sented and might also be used to study dressed particle propagators, for instance. Finally,
the inclusion of spinorial degrees of freedom would certainly be a welcome generalization.
This problem can be tackled either with the inclusion of suitable matrix-valued potentials
(spin factors) or in terms of spinning particle models, which involve Grassmann odd coor-
dinates, along with the geometric, Grassmann even, coordinates. Numerical approaches in
the presence of Grassmann odd variables were already considered in [38], and it would be
helpful to apply such construction to the present worldline Monte Carlo method.
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A Modified YLOOPS algorithm

To diagonalize the flat kinetic term (2.3), we first define the discretized derivative as the
backward difference

ẋµ(τ) ' N

β
(xk − xk−1) . (A.1)

The index k parameterizes the discretized x-points in the same way as the continuous
parameter τ parameterizes the continuous x-points. Now, the full kinetic term will be
proportional to the summation

Y (0) =
N∑
k=2

(xk − xk−1)2 , (A.2)

which we generalize to

Y (α) =
N∑
k=2

[
(xk − xk−1)2 + αx2

k

]
, α > 0. (A.3)

Following the same steps of [31],

Y (α) =
N∑
k=2

[
(xk − xk−1)2 + αx2

k

]
=

N−1∑
k=3

[
(xk − xk−1)2 + αx2

k

]
+ x2

2 + x2
N−1 + αx2

2

=
N−2∑
k=1

C
(α)
k

(
xN−k −

1
C

(α)
k

xN−k−1

)2

=
N−1∑
k=2

C
(α)
N−kx̄

2
k, (A.4)

where

x̄k = xk −
1

C
(α)
N−k

xk−1 (A.5)

and

C
(α)
1 = 2 + α

C
(α)
k = C

(α)
1 − 1

C
(α)
k−1

, k = 2, . . . , N − 2. (A.6)
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(a) (b)

Figure 8. Two calculations of the heat kernel of a free scalar particle on a 4-sphere with (NWL, N) =
(1000, 1000) and M = 1. For the left figure, a tiny fictitious mass has been introduced (α = 0.0025)
in the WL sampling. The right figure is obtained with (α = 0), i.e. no fictitious mass term.

The algorithm finally reads as follows.

1. Generate N − 2 vectors ωi, i = 1, . . . , N − 2 distributed according to 1
(2π)D/2 e

−ωi2 .

2. Compute

x̄i =
√√√√ 2
N

1
C

(α)
N−i

ωi−1, i = 2, . . . , N − 1. (A.7)

3. Construct the loop according to

x1 = xN = 0
x2 = x̄2

xi = x̄i + 1
C

(α)
N−i

xi−1, i = 3, . . . , N − 1. (A.8)

It is easy to see that coefficients C(α)
k reproduce those of [31] for vanishing α, i.e. k+1

k .

B WLMC convergence with tiny mass term

The effect of adding a tiny mass term to the sampling algorithm of the worldlines (cf.
eq. (A.3)) has an important effect on WLMC computations. In figure 8, we report the
case of two calculations of the heat kernel introduced in section 4. Both calculations have
been performed with the same parameters, namely NWL = 1000, N = 1000, D = 4 and
M = 1: however, for the one on the left a tiny fictitious mass has been introduced in the
sampling, whilst for the other it has not. It can be easily noticed that 8(a) follows with
good accuracy the expected behaviour, while 8(b) not only has a lot more broadened data,
but they also qualitatively deviate from the green reference points. In this context, the
addition of a mass term has the role of a regulator for the sampling of the worldlines. We
stress that this fictitious mass has not been taken into account during the evaluation of the
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(a) (b)

Figure 9. Comparison between heat kernel calculations of a free scalar particle on the hyperboloid
for |M | = 1, 0.01. Each point denotes a single simulation: on the horizontal axis we have the
value of the fictitious mass parameter α adopted, whereas vertically we have reported an arithmetic
average of distance between the data of the non-linear sigma model method and the ones of the
effective potential method (assumed as a benchmark). The α-value which minimizes the error does
not qualitatively depend on the curvature of the space.

potential; rather, its only role is to modify the diagonalization coefficients (A.6) appearing
in (A.4) and (A.5).

Finally, we investigated a possible qualitative dependence of the fictitious mass which
minimizes the error between the non-linear sigma model method and the effective potential
method, with respect to the curvature of the maximally symmetric space. We considered
the hyperboloid case with |M | ranging from 1 to 0.01. However, nothing would forbid to
consider the positive curvature case, and the results are expected to hold unchanged.

In figure 9 we report the cases of |M | = 1 and |M | = 0.01 (intermediate curvatures
exhibit the same behaviour). Each point of the plot represents the average error between a
simulation with the non-linear sigma model method and the associated effective potential
method for different values of the α parameter. It can be seen that the optimization value
αmin does not change over two orders of magnitude of the curvature of the space. Hence
we conclude that the fictitious mass parameter α is substantially curvature-independent.
It is possible to see the minimized average error directly at work: let us consider the left
panel of figure 9 (M = i) and extrapolate the minimum through a quadratic fitting (still
on the log-scale), obtaining αmin = 10ᾱ. Then we consider two logarithmically equally
spaced values, i.e. α− = 10ᾱ−∆ and α+ = 10ᾱ+∆, with ∆ > 0. In figure 10 we adopted
∆ = 1.5 (arbitrary) and ᾱ = 2.1923 (logarithmic minimum fitted for the left panel of
figure 9) and computed a portion of the propagator of the free particle on the hyperboloid:
as expected the red data (corresponding to αmin) are those which better reproduce the
expected behaviour of the propagator.
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Figure 10. Calculations of the heat kernel for the free scalar particle on a hyperboloid with D = 4
and |M | = 1, for a window of β-values. The plot shows the comparison of the calculation when
different values of α are implemented, in particular αmin = 0.0064, α− = 0.0002 and α+ = 0.2031.
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