
SoftwareX 13 (2021) 100661

D

c
o
m
p
a
e
t
e

e
a

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

WLDT: A general purpose library to build IoT digital twins
Marco Picone ∗, Marco Mamei, Franco Zambonelli
epartment of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy

a r t i c l e i n f o

Article history:
Received 3 August 2020
Received in revised form 7 January 2021
Accepted 7 January 2021

Keywords:
Internet of Things
Digital twin
Library
Software agent

a b s t r a c t

Digital twins are virtual software copies of physical objects and systems, and represent a strategic
technology enabler to support Internet of Things devices and systems. Existing software frameworks for
digital twins mainly operate in the cloud and are based on platform-specific solutions, harming inter-
operability and adaptability. However, it is getting recognized that Internet of Things and digital twins
architectures can take advantage of microservices and platform-independent distributed architectures
(also on the edge), promoting higher scalability, adaptability, and interoperability. In this context, we
introduce WLDT (White Label Digital Twins), a general-purpose library that allows developers to create
digital twins in terms of modular, adaptable, and inter-operable software agents. Among different
features, WLDT library supports multiple standard protocols, caching, software processing pipeline
and metrics monitoring.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00018
Code Ocean compute capsule None
Legal Code License GPL-3.0
Code versioning system used Git
Software code languages, tools, and services used Java and Android
Compilation requirements, operating environments & dependencies Java 8 or greater
If available Link to developer documentation/manual https://github.com/wldt/wldt-core
Support email for questions marco.picone@unimore.it

1. Motivation and significance

In the Internet of Things (IoT) arena, a Digital Twin (DT) is a
omprehensive software representation of an individual physical
bject (e.g., a single IoT device or a more complex composite
achinery), reflecting properties, conditions, and behavior of the
hysical object through models and data [1]. A physical object
nd its associated DT mutually communicate and collaborate with
ach other through bidirectional interactions related, for example,
o telemetry or to incoming commands and configurations from
xternal applications.
Since its introduction [2], the DT concept has proved very

ffective, and has been adopted in a variety of uses cases and
pplication scenarios [3–5]. Gartner identifies DTs as one of the

∗ Corresponding author.
E-mail address: marco.picone@unimore.it (M. Picone).

top 10 strategic trends and the forecast previews is that half of
all corporations might be using them by 2021 [6,7]. One of the
key benefits of DTs is to provide a solid, standard and scalable
abstraction layer on top of physical assets, allowing authorized
applications to easily and securely interact with a device without
the need to be aware of the complexity related to data collection
and networking. Unfortunately, in the design and implementation
of IoT systems based on DTs, current technologies and libraries
exhibit several shortcomings.

The lack of standards or common agreements for DTs design
and development has led to the proliferation of several platform-
specific solutions: IBM DTs are different from AWS ones, called
‘‘shadows’’ and from MS Azure ones, called ‘‘replicas’’. Authors
in [7] emphasizes that the potentials of DTs are harmed by the
existing fragmentation and heterogeneity, where each model is

built from scratch without commonmethods, standards or norms.

ttps://doi.org/10.1016/j.softx.2021.100661
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100661
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100661&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00018
https://github.com/wldt/wldt-core
mailto:marco.picone@unimore.it
mailto:marco.picone@unimore.it
https://doi.org/10.1016/j.softx.2021.100661
http://creativecommons.org/licenses/by/4.0/

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661

d

Fig. 1. Basic structure and main modules of White Label Digital Twin.

Open source organizations and consortiums together with in-
ustries (e.g., the IoT Eclipse Foundation1) proposed their open

platforms for DT management. The Eclipse Ditto project2 rep-
resents the state of the art of open source frameworks for DTs
management and orchestration. It has been designed to be ex-
ecuted in the cloud and to simplify the backend management
of DTs through APIs and SDKs (Software Development Kits), by
targeting already connected things, customer applications and
services. However, such frameworks still lacks flexibility and
modularity. In fact, they are mainly focused on a monolithic
vision of DTs, where the entire complexity of a physical object
is managed by a single software entity, without the possibility to
handle each DT’s feature and task as an independent and flexible
agent. Customization and adaptation implies direct interventions
on the physical object or on intermediate modules (e.g., gateways
and hubs) when the smart object’s software update is unfeasible.

To overcome the limitations and constraints of existing DTs so-
lutions, we developed a new Java library, called WLDT (White La-
bel Digital Twin), designed to maximize modularity, re-usability
and flexibility. In particular, WLDT focuses on the simplification of
the design and development of DTs, and provides a set of core fea-
tures and functionalities for their widespread adoption in multi-
ple application scenarios. WLDT integrates a multi-threading core
engine that is able to run multiple independent components at
the same time, so as to effectively shape the behavior of each DT
and its relationship with the physical counterpart. A set of built-
in IoT features and modules provide an out-of-the-box mirroring
for smart objects using both Message Queue Telemetry Transport
(MQTT) [8] and/or Constrained Application Protocol (CoAP) [9].
Furthermore, the internal software processing pipeline system al-
lows to dynamically customize the management for incoming and
outgoing packets in order to adapt the behavior to the target use
case and the physical counterpart. The internal caching system
makes it possible to quickly store and retrieve operational data,
thus improving performances and reducing the communication
response time. WLDT has been also designed and developed with
the characteristic of modeling each DT as an independent and
autonomous software component. It enables to design microser-
vices oriented IoT architectures [10,11], thus overcoming the lim-
itations existing monolithic and legacy solutions by decoupling
the responsibilities among multiple independent components.

The aim of WLDT is to become an enabling building block
for the design and development of DT-driven IoT applications.
The main users and key actors envisioned to interact with the
proposed library are mainly software developers operating in IoT
ecosystems, both at the edge and the cloud level. WLDT can be
integrated and used without any further development or per-
sonalization by relying on the built-in MQTT and CoAP workers

1 Eclipse IoT - https://iot.eclipse.org/.
2 Eclipse Ditto - https://www.eclipse.org/ditto/.

or can be extended through the creation of new modules and
connectors to support specific target communication protocols or
data flows. Any additional module can be re-used across multiple
deployments thanks to the provided modular and configurable
software architecture.

2. Software description

A DT implemented with the WLDT library is an independent
software agent implementing all the features and functionalities
of its physical counterpart. It can be deployed and executed in the
cloud or at the level of edge computers. As illustrated in Fig. 1,
a DT can be attached to a physical thing in order to create and
maintain its virtualized replica by mirroring existing resources
and extending the provided functionalities through additional
modules and components.

2.1. Software architecture

The architectural layers presented in Fig. 1 schematically de-
picts existing components and how they are organized in the
WLDT core. The basic layer of the solution is the ‘‘WLDT Engine’’
designed to handle and orchestrate available and active modules
– denoted as Workers – defining the behavior of the DT. A Worker
is the active module of the library and it is designed to imple-
ment a specific DT’s task or feature related for example to the
synchronization with the original physical counterpart through
a target IoT protocol. WLDT Workers’ implement all the avail-
able communication protocols supported by a DT involving both
standard and well known protocols such as CoAP, MQTT, HTTP or
WebSocket. Legacy protocols may be also supported in specific
IoT deployments through the implementation of dedicated mod-
ules. Each worker is responsible to handle both Request/Response
or Pub/Sub communication paradigms and the synchronization
task required to manage both incoming and outgoing packets.
Both the WLDT engine and the workers are characterized by
multiple configuration options in order to easily change and adapt
the DT behavior according to the target deployment and use
case. The WLDT Configuration Manager is responsible to handle
engine’s parameters associated to DT’s unique identifier, names-
pace, startup delay and the usage of the internal metrics and
monitoring system. On the other hand each Worker can define its
own personalized configuration through the WLDT Worker Con-
figuration layer in order to retrieve the operational parameters
useful for the implementation of its behavior (e.g., physical device
endpoints, target Pub/Sub topics and RESTful resources).

Since the aim of the library is to support scalability and exten-
sibility, the possibility for developers to quickly define dynamic
behaviors into existing or new WLDT workers has been intro-
duced in the library through the ‘‘Processing Pipeline’’ layer.
2

https://iot.eclipse.org/
https://www.eclipse.org/ditto/

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661

a

D
i
i
c
p
s
t
t
i
i
r
c
a
s
t
a
g
w
a
(
s
c
a

2

l

2

c
c
C
i
C
i
A
a
p
n

2

s
p

Fig. 2. Relationships between WLDT core objects and workers. The Engine configures and executes the workers responsible to shape DT’s behavior by exploiting
lso the internal caching and software processing pipeline modules.

evelopers can define a list of personalized software process-
ng steps sequentially executed by the target worker and ded-
cated for example to the management of domain-specific in-
oming/outgoing packets, the integration with an external third
arty services or to data format translation and adaptation. These
teps can be also dynamically loaded and re-used across mul-
iple DT instances to maximize code re-usability. Furthermore,
o support development activities, the library provides also an
nternal caching system where each module or entity can create
ts internal cache with a simplified and unified solution. The
elationship among provided components is shown in Fig. 2 and
an be summarized as follow: (i) The WLDT engine starts with
n initial configuration and the associated list of workers that
hould be executed to shape DT’s behavior; (ii) it instantiates
he specified workers with the associated target configuration
nd the required processing pipeline (if needed); (iii) the en-
ine executes each worker on an independent thread; (iv) active
orkers can send callbacks and notifications related to their oper-
tional phases (start, stop, error, warning, etc.) to the core engine;
v) they can write and read data from and to the internal caching
ystem in order to support their implementation and (vi) workers
an also use configured Processing Pipelines to customize their
ctivities and the adaptation of incoming and outgoing messages.

.2. Software functionalities

This section details some of the main functions of the WLDT
ibrary.

.2.1. Internal data caching system
The library provides an internal shared caching system that

an be adopted by each worker specifying the typology of its
ache in terms of key and value class types. The interface IWldt-
ache<K,V> defines the methods for a WLDTcache and a default
mplementation is provided by the library through the class Wldt-
ache<K, V>. Each cache instance is characterized by an string
dentifier and optionally by an expiration time and a size limit.
n instance can be directly passed as construction parameter of
worker or it can be internally created for example inside a
rocessing pipeline to handle cached data during data synchro-
ization.

.2.2. Processing pipelines
The Processing Pipeline is a configurable chain of software

teps implemented and organized by the developer in order to
ersonalize the DT’s actions through the WLDT library. Each

step can be re-used across multiple pipelines in order to max-
imize re-usability and modularity. A pipeline and its steps are
defined through the interface IProcessingPipeline and the class
ProcessingStep. Main methods to work and configure the pipeline
are: addStep(), removeStep() and start(). The ProcessingStep and
PipelineData classes are used to describe and implement each
single step and to model the data passed through the chain. A
step takes as input an initial PipelineData value and produces
as output a new one of the same type. Two listeners classes
have been also defined (ProcessingPipelineListener and Processing-
StepListener) to notify interested actors about the status of each
step and/or the final results of the processing pipeline through
the use of methods onPipelineDone(Optional<PipelineData> result)
and onPipelineError().

2.2.3. Monitor metrics and performance
The library allows the developer to easily define, measure,

track and send to a local or remote collector all the application’s
metrics and logs. This information can be also useful to dynam-
ically balance the load on active DTs operating on distributed
clusters or to detect unexpected behaviors or performance degra-
dation. The library implements a singleton class called WldtMet-
ricsManager exposing the methods getTimer(String metricId, String
timerKey) and measureValue(String metricId, String key, int value)
used to track elapsed time of a specific processing code block or
with the second option to measure a value of interest associated
to a key identifier. The WLDT metric system provides by default
two reporting option allowing the developer to periodically save
the metrics on a local CSV file or to send them directly to a
Graphite3 collector node.

2.3. MQTT to MQTT worker

The first built-in worker is implemented through the class
Mqtt2MqttWorker providing a configurable way to automatically
synchronize data between the physical and the digital entities
over MQTT. An MQTT physical device can be at the same time
a data producer or consumer for example to publish telemetry
data and to receive external commands at the same time. De-
velopers can use up to four different types of topics inspired by
the categorization provided in the open source projects Eclipse
Hono4 and Ditto5 (also through a template placeholders engine6)

3 Graphite Metrics - https://graphiteapp.org/.
4 Eclipse Hono - https://www.eclipse.org/hono/.
5 Eclipse Ditto - https://www.eclipse.org/ditto/.
6 Mustache template engine - https://mustache.github.io/.
3

https://graphiteapp.org/
https://www.eclipse.org/hono/
https://www.eclipse.org/ditto/
https://mustache.github.io/

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661

t
a
a
r
o

L
M
M

2

l
t
t
d
a
e
i
w
i
t
u
o
r

L
C
C

2

l
h
l
(
d
o
1
w

o dynamically synchronize topics according to available device
nd resource information. As illustrated in the following example,
vailable topics typologies belong to telemetry, events, command
equests and command responses allowing the granular mirroring
f a physical device through the topics mapping.

1 Mqtt2MqttConfiguration mqttConf = new
Mqtt2MqttConfiguration();

2 mqttConf.setOutgoingClientQoS(0);
3 mqttConf.setDestinationBrokerAddress(" 127.0.0.1 ");
4 mqttConf.setDestinationBrokerPort(1884);
5 mqttConf.setDeviceId(" id:97b904ada0f9 ");
6 mqttConf.setDeviceTelemetryTopic(" telemetry/{{

device_id}} ");
7 mqttConf.setEventTopic(" events/{{device_id}} ");
8 mqttConf.setBrokerAddress(" 127.0.0.1 ");
9 mqttConf.setBrokerPort(1883);

10
11 WldtEngine eng = new WldtEngine(new WldtConfiguration

());
12 eng.addNewWorker(new Mqtt2MqttWorker(eng.getWldtId(),

mqttConf));
13 eng.startWorkers();

isting 1: Example a WLDT implementation using the built-in
QTT to MQTT worker to automatically create a DT of an existing
QTT physical object

.4. CoAP to CoAP worker

The second core built-in IoT worker is dedicated to the seam-
ess mirroring of standard CoAP physical objects. The CoAP pro-
ocol through the use of CoRE Link Format [12] and CoRE In-
erface [13] provides by default both resource discovery and
escriptions. It is possible for example to easily understand if
resource is a sensor or an actuator and which RESTful op-

rations are allowed for an external client. Therefore, a WLDT
nstance can be automatically attached to a standard CoAP object
ithout the need of any additional information. As illustrated

n the following example, the class Coap2CoapWorker implements
he logic to create and keep synchronized the two counterparts
sing standard methods and resource discovery through the use
f ‘‘/.well-known/core’’ URI in order to retrieve the list of available
esources and mirror the corresponding digital replicas.

1 Coap2CoapConfiguration coapConf = new
Coap2CoapConfiguration();

2 coapConf.setResourceDiscovery(true);
3 coapConf.setDeviceAddress(" 127.0.0.1 ");
4 coapConf.setDevicePort(5683);
5
6 WldtEngine wldtEngine = new WldtEngine(new

WldtConfiguration());
7 wldtEngine.addNewWorker(new Coap2CoapWorker(coapConf)

);
8 wldtEngine.startWorkers();

isting 2: Example a WLDT implementation using the built-in
oAP to CoAP worker to automatically create a DT of an existing
oAP physical object

.5. Experimental evaluation

In order to understand the performance of the proposed WLDT
ibrary and its current implementation a group of experiments
ave been defined focusing on measuring: (i) the introduced de-
ay compared with the main state of the art reference;
ii) computational and memory costs; and (iii) modularity and
evelopment complexity. Conducted tests have been performed
n a local Linux Edge Node equipped with an i7 Intel CPU and
6GB of RAM. As first evaluation, we compared the WLDT library
ith the Eclipse Ditto project measuring the introduced overhead

delay for both MQTT and CoAP smart objects. Evaluated configu-
rations take into account both objects that can directly integrate
Ditto’s SDK and things that cannot be customized requiring an
intermediate module to communicate with. External consumer
applications has been also implemented to test and measure the
performance of the bidirectional communication through the DTs.

Fig. 3(a) shows the introduced delay as a function of the mes-
sage rate with a fixed Payload size of 100 Bytes. On average the
overhead introduced by Ditto is significantly higher with respect
to the performance obtained by WLDT DTs both for MQTT and
CoAP. The same trend is also confirmed by Fig. 3(b) considering
instead the Payload size variation and a fixed message rate of
10 msg/s. The obtained performance are attributable to the fact
that the Ditto framework has been designed to provides a set of
extensive and inventory-oriented features for DTs management
and communication with a structured storage and multiple ar-
chitectural layers. This monolithic design introduce a relevant
overhead if compared with the effective one-to-one DT mirroring
provided by the presented library. Ditto remains excellent for a
centralized DT management and it can potentially work side-by-
side with the WLDT library in order to combine the advantages
of both solutions.

Graphs in Figs. 3(c) and (d) analyze the CPU and the mem-
ory heap usages for CoAP and MQTT DT instances taking into
account different configurations in order to understand how and
if the performance will be affected over a period of approxi-
mately 15 min and a continuous rate of communications and
data exchanges for devices with 10 distinct IoT resources. Pre-
sented results illustrate how DTs instances efficiently mirror a
physical IoT device consuming a limited amount of memory (8
Mbytes for MQTT and 10 Mbytes for CoAP) and computational re-
sources allowing to execute multiple DTs on the same computing
infrastructure.

The presented library has been also successfully experimented
for the creation of IoT DTs during the victorious Droidcon MEC
(Multi-access Edge Computing) Hackathon 20207 in the con-
text of an innovative Smart Cities experimentation. The library
has been adopted to implement DTs of Road Side Units (RSU)
and moving vehicles responsible to uniform data formats from
heterogenous sources and bi-directionally communicate with an
Edge Traffic Information System (E-TIS). With the aim to illustrate
WLDT development complexity, Figs. 3(e) and (f) respectively
report the required number of lines of code and the associated
size footprint related to vehicle and RSU DTs and a shared Sen-
sor Measurement Lists (SenML) data management module with
respect to the size of the core library. Results shows how, thanks
to the presented modular architecture, it is possible to easily and
effectively digitalize a physical entity extending also its behavior
overcoming the limitations and the heterogeneity of deployed
legacy physical devices.

3. Illustrative examples

In the following subsections we present three illustrative and
really implemented examples in order to highlight the core func-
tionalities of the presented library. All the illustrated solutions
have been developed and tested through the use of the WLDT
library and have been also released as open source reference
projects in the official GitHub organization and repositories.

7 Droidcon MEC Hackathon 2020 - https://it.droidcon.com/2020/hackathon/.
4

https://it.droidcon.com/2020/hackathon/

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661

3

s
a
p
a
r
a
F
p
v
d
d
u
p
r
f
t
t
w
P
t

3

a

Fig. 3. (Average WLDT Communication Overhead with respect to Message Rate (a) and Payload size (b). Memory (c) and CPU (d) consumption of a WLDT instance.
Code statistics in terms of code lines (e) and size (f) to digitalize MQTT IoT objects in a vehicular use case.

Fig. 4. Example a MQTT WLDT instance with a software pipeline processing raw values and forwarding the resulting as SenML packets.

.1. MQTT to MQTT & processing pipeline

The first example, depicted in Fig. 4, focuses on an application
cenario where multiple physical IoT MQTT objects (e.g., associ-
ted to temperature sensors) are mirrored into DTs allowing the
rotection of the core layer by means of decoupling the physical
nd the digital counterparts. The external direct access to the
eal device will be limited and the interaction with applications
nd consumers is instead securely handled by the virtual replicas.
urthermore, the scenario takes into account a custom processing
ipeline on each DT instance in order to average received raw
alues and forward them in a standard format using the SenML
ata format [14]. The processing pipeline considers two indepen-
ent and dedicated processing steps: (i) MqttAverageProcessingStep:
ses the internal caching system to keep a buffer of n samples
roducing a new output value with the averaged value of the
eceived measurements; and (ii) MqttSenmlBuilderProcessingStep:
ormats incoming data from the previous step using SenML+Json,
he obtained result is used by the MQTT worker and forwarded
o the external broker on a dedicated topic. Both involved steps
ork with a MqttPipelineData class implementing the interface
ipelineData maintaining the message payload and the original
arget topic across all the processing chain.

.2. Legacy protocol worker - Philips Hue lights

This second example, depicted in Fig. 5, focuses on the cre-

Hue8 light bulbs into their digital and standard CoAP replicas.
The Philips solution provides a set of legacy HTTP APIs different
from IoT standard protocols in terms of communication and data
format. Through the creation of a dedicated PhilipsHueLightWorker

class it is possible to implement digital replicas retrieving all
the information from the physical objects and exposing them as
standard CoAP resources for a standard IoT interoperability with
external applications and consumers. Each lights is digitalized as
an independent CoAP resource and exposed to the external world
through CoRE Link Format, CoRE Interface and SenML. External
requests are directly handled by the digital replicas by forwarding
them to the devices or using the local caching system to reduce
the response time and the communication load on the physical
objects.

3.3. White Label Digital Twins real-time monitoring

As illustrated in Fig. 6, the third example considers a use
case where multiple independent DTs are operating in the same
environments using the WLDT library and its metrics layer. The
developer can define its own metrics inside each worker and
through the engine’s configuration how they should be measured
and collected using both CSV files and/or a Graphite reporter. In
the described example, involved metrics are automatically sent

8 Philips Hue Platform - https://www2.meethue.com.
tion of a custom worker to seamlessly mirror physical Philips

5

https://www2.meethue.com

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661
Fig. 5. Example of a WLDT instance mirroring Philips Hue lights through the standard use of CoAP and SenML.

Fig. 6. Example of multiple WLDT instances with the metrics module enabled. All metrics are sent both to CSV filed and tho a Graphite Engine in order to be
visualized on a Graphana reporting Dashboard.

to a Graphite collector active in the local network and visual-
ized through the use of the Grafana9 dashboard and reporting
tool. Without any customization and additional dedicated layer,
each single DT will be automatically monitored in real-time al-
lowing to properly orchestrate the available services and detect
performance degradation or anomaly situations.

4. Impact

WLDT represents a step towards the creation of independent,
modular and intelligent IoT DTs. The library allows developers to
easily create DTs for already deployed or new physical IoT smart
objects without the need of directly operating on the device or
being bound to a monolithic core and with the flexibility to adapt
and customize the behavior according to the need of the target
applications scenario.

Furthermore, thanks to the proposed solution, DTs can be
easily designed to support a standard collaboration in terms of
connection, data management and processing. The library pro-
vides an highly modular design, allowing an easy integration into
new or existing business applications with the peculiar character-
istic to be used both in the cloud and on the edge also through
microservices and containerized deployments. WLDT overcomes
the existing lack of DT models or common development ap-
proaches that are actually forcing the development of legacy
solutions through monolithic and centralized layers. The real
possibility to create a general purpose software agent attachable
to a physical object to automatically clone it into its digital replica
enables new scalable, distributed and extensible architectures for
the real autonomy and collaboration among things and services.

Nevertheless, a software agent oriented vision for DTs follows
also the microservice technological trend allowing applications to

9 Grafana - https://grafana.com/.

be orchestrated among multiple edge and cloud distributed com-
putation facilities taking also advantage of dynamic and software
controlled networking. A containerized WLDT enabled DT has
the possibility to easily migrate or be cloned to one or multiple
locations in order to be close to the data and the applications
reducing latency and improving performance for example in 5G
MEC (Multi-access Edge Computing) infrastructures [15,16].

WLDT has been publicly released with this software publica-
tion and it has been already used, in collaboration with other
researchers and Universities to carry out different experimenta-
tion and research activities related in particular to IoT and edge
computing. The WLDT library has been experimented within:
(i) the POLIS-EYE project10 to support and standardize IoT data
acquisition from presence and traffic sensors; and (ii) the Bosch
Smart Parking Pilot in Mantua11 (Italy) to digitalize and virtu-
alize physical parking smart objects. Both application scenarios
allowed to show the importance of building an efficient, stan-
dard and flexible abstraction layer on top of physical devices
in order to simplify and support application development and
business logics. Furthermore, as previously introduced in Sec-
tion 2.5 the WLDT has been also successfully experimented on
Edge computing MEC infrastructures showing its modularity and
the reduced implementation cost. The developers having worked
with the library have explicitly appreciated the built-in sup-
port for IoT standard protocols, modularity, flexibility and the
reduced amount of code to be written. WLDT will help to sup-
port new projects from both academia and industries related
to the creation of new IoT cyber physical interaction forms and
applications.

10 POLIS-EYE Official Website - https://www.poliseye.it/.
11 Bosch - https://www.bosch-press.it/pressportal/it/it/press-release-41216.
html.
6

https://grafana.com/
https://www.poliseye.it/
https://www.bosch-press.it/pressportal/it/it/press-release-41216.html
https://www.bosch-press.it/pressportal/it/it/press-release-41216.html

M. Picone, M. Mamei and F. Zambonelli SoftwareX 13 (2021) 100661

5

c
g
m
C
b
d
s

t
o
p
c
e

D

c
t

A

S
P
P

R

. Conclusions

WLDT is a novel, powerful, modular and flexible library that
an be adopted and used to create IoT DTs in multiple hetero-
eneous application scenarios. It can be used for automatically
irroring standard IoT smart objects (e.g., through MQTT and
oAP) or custom and legacy devices. Personalization is supported
y the possibility to define custom processing pipeline to han-
le incoming and outgoing data, by a modular internal caching
ystem and by the built-in support for metrics and logging.
We hope that WLDT can become a common and widespread

ool for researchers and developers to design and implement their
wn DT-oriented solutions and services. As WLDT is an ongoing
roject, we hope that developers and researchers will join it to
ontribute to the codebase, thus speeding up its evolution and
xtending the range of provided features.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

Work supported by: (i) POR-FESR 2014–2020 Project: POLIcy
upport systEm for smart citY data governancE - POLIS-EYE.
G/2018/631990. CUP E21F18000200007 and (ii) Italian MIUR,
RIN 2017 Project ‘‘Fluidware’’, N. 2017KRC7KT.

eferences

[1] Minerva R, Lee GM, Crespi N. Digital twin in the IoT context: A sur-
vey on technical features, scenarios, and architectural models. Proc IEEE
2020;108(10):1785–824. http://dx.doi.org/10.1109/JPROC.2020.2998530.

[2] Grieves M. Product lifecycle management: driving the next generation of
lean thinking. New York: McGraw-Hill Education; 2005.

[3] Haag S, Anderl R. Digital twin – proof of concept. Manuf Lett. 2018;15.
http://dx.doi.org/10.1016/j.mfglet.2018.02.006.

[4] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S.
air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, struc-
tural dynamics and materials conference 20th AIAA/ASME/AHS adaptive
structures conference 14th AIAA; 2012. p. 1818.

[5] Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F. Digital twin-driven product
design, manufacturing and service with big data. Int J Adv Manuf Technol
2018;94(9–12):3563–76.

[6] Botkina D, Hedlind M, Olsson B, Henser J, Lundholm T. Digital twin of
a cutting tool. Procedia CIRP 2018;72:215–8. http://dx.doi.org/10.1016/j.
procir.2018.03.178.

[7] Tao F, Qi Q. Make more digital twins. Nature 2019;573(7775):490–1.
http://dx.doi.org/10.1038/d41586-019-02849-1.

[8] MQTT Version 3.1.1. 2014, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
mqtt-v3.1.1.html.

[9] Shelby Z, Hartke K, Bormann C. The Constrained Application Protocol
(CoAP). 2014, RFC 7252, http://dx.doi.org/10.17487/RFC7252.

[10] Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture en-
ables DevOps: Migration to a cloud-native architecture. IEEE Softw
2016;33(3):42–52. http://dx.doi.org/10.1109/MS.2016.64.

[11] Busanelli S, Cirani S, Melegari L, Picone M, Rosa M, Veltri L. A sidecar object
for the optimized communication between edge and cloud in internet of
things applications. Future Internet 2019;11(7). http://dx.doi.org/10.3390/
fi11070145.

[12] Shelby Z. Constrained RESTful Environments (CoRE) Link Format. Tech. Rep.
6690, 2012, http://dx.doi.org/10.17487/RFC6690.

[13] Shelby Z, Koster M, Groves C, Zhu J, Silverajan B. Reusable interface
definitions for constrained restful environments. Internet-Draft draft-ietf-
core-interfaces-14, IETF Secretariat; 2019, https://tools.ietf.org/html/draft-
ietf-core-interfaces-14.

[14] Jennings C, Shelby Z, Arkko J, Keränen A, Bormann C. Sensor Measurement
Lists (SenML). 2018, RFC 8428, http://dx.doi.org/10.17487/RFC8428.

[15] Samanta A, Tang J. Dyme: Dynamic microservice scheduling in edge
computing enabled IoT. IEEE Internet Things J 2020;7(7):6164–74. http:
//dx.doi.org/10.1109/JIOT.2020.2981958.

[16] Mach P, Becvar Z. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Commun Surv Tutor 2017;19(3):1628–56.
http://dx.doi.org/10.1109/COMST.2017.2682318, arXiv:1702.05309.
7

http://dx.doi.org/10.1109/JPROC.2020.2998530
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb2
http://dx.doi.org/10.1016/j.mfglet.2018.02.006
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb5
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb5
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb5
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb5
http://refhub.elsevier.com/S2352-7110(21)00006-6/sb5
http://dx.doi.org/10.1016/j.procir.2018.03.178
http://dx.doi.org/10.1016/j.procir.2018.03.178
http://dx.doi.org/10.1016/j.procir.2018.03.178
http://dx.doi.org/10.1038/d41586-019-02849-1
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://dx.doi.org/10.17487/RFC7252
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.3390/fi11070145
http://dx.doi.org/10.3390/fi11070145
http://dx.doi.org/10.3390/fi11070145
http://dx.doi.org/10.17487/RFC6690
https://tools.ietf.org/html/draft-ietf-core-interfaces-14
https://tools.ietf.org/html/draft-ietf-core-interfaces-14
https://tools.ietf.org/html/draft-ietf-core-interfaces-14
http://dx.doi.org/10.17487/RFC8428
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/COMST.2017.2682318
http://arxiv.org/abs/1702.05309

	WLDT: A general purpose library to build IoT digital twins
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Internal data caching system
	Processing pipelines
	Monitor metrics and performance

	MQTT to MQTT worker
	CoAP to CoAP worker
	Experimental evaluation

	Illustrative examples
	MQTT to MQTT & processing pipeline
	Legacy protocol worker - Philips Hue lights
	White Label Digital Twins real-time monitoring

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

