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Abstract – The Sestola Vidiciatico tectonic Unit (SVU) accommodated the early Miocene conver-
gence between the subducting Adriatic plate and the overriding Ligurian prism, and has been inter-
preted as a field analogue for the shallow portion of subduction megathrusts. The SVU incorporated
sediments shortly after their deposition and was active down to burial depth corresponding to temper-
atures around 150 °C. Here, we describe the internal architecture of the basal thrust fault of the SVU
through a multi-scale structural analysis and investigate the evolution of the deformation mechan-
isms with increasing burial depth. At shallow depth, the thrust developed in poorly lithified sediments
which deformed by particulate flow. With increasing depth and lithification of sediments, deformation
was accommodated in a meter scale, heterogeneous fault zone, including multiple strands of crack-
and-seal shear veins, associated with minor distributed shearing in clay-rich domains and pressure
solution. In the last stage, slip localized along a sharp, 20 cm thick shear vein, deactivating the fault
zone towards the footwall. The widespread formation of crack-and-seal shear veins since the first
stages of lithification indicates that failure along the thrust occurred at high fluid pressure and low
differential stress already at shallow depth. Progressive shear localization occurs in the last phases of
deformation, at temperatures typical of the transition to the seismogenic zone in active megathrusts.
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1. Introduction

Modern subduction megathrusts have been extens-
ively investigated during International Ocean Discov-
ery Program (IODP) / Ocean Drilling Program (ODP)
expeditions over the last 50 years, with great im-
provements in the understanding of their architec-
ture, fluid-transport properties and lithological com-
position (for a review, Saffer & Tobin, 2011). How-
ever, because of the extremely challenging conditions
of drilling in several kilometer-deep oceanic trenches,
scientific drilling is limited in depth, and cores of-
fer just one-dimensional insights on the internal ar-
chitecture of faults. Moreover, the acoustic transpar-
ency and the small scale of features within fault zones
(meters to tens of meters), well below standard seis-
mic resolution, allow only large scale imaging of the
active megathrust faults by means of seismic reflection
surveys.

Hence, field-based studies of fossil subduction
zones are the only method to investigate the meso-
scale architecture of megathrusts. Detailed studies on
exhumed subduction-related shear zones provided use-
ful information by documenting that their shallow
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portion is commonly characterized by heterogeneous
composition and architecture (e.g., Vollmer & Bos-
worth, 1984; Cowan, 1985; Moore & Byrne, 1987;
Meneghini & Moore, 2007; Vannucchi, Remitti &
Bettelli, 2008; Fagereng & Sibson, 2010; Festa et al.
2012; Kimura et al. 2012; Ujiie & Kimura, 2014).
In fact, subduction megathrusts commonly incorpor-
ate poorly to non-consolidated sediments from the sea-
floor level and transport them at depth, where tectonic
deformation is superimposed on sediment consolida-
tion and diagenesis at increasing pressure and temper-
ature (Maltman, 1994). The resulting heterogeneous
rock assemblage (i.e., mélange and broken formation)
displays strong internal contrasts in rheology and fluid
transport properties, inferred to play a significant role
in controlling the complex seismic behavior typical
of shallow megathrusts settings (Fagereng & Sibson,
2010; Wei, McGuire & Richardson, 2012).

In this paper, we describe the internal structure of
the thrust bounding the base of the Sestola Vidiciatico
tectonic Unit (SVU hereafter) in the Northern Apen-
nines (Fig. 1) through multiscale field- and laboratory-
based structural studies. The SVU records deforma-
tion in a range of temperature and depth comparable to
the extent of the shallow portion of active megathrusts
(i.e. maximum temperatures of ∼150 °C and ∼4–5 km
burial depth). We discuss then the implications of our
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Deformation of exhumed shallow megathrusts 439

Figure 1. (Colour online) Simplified structural sketch (a) and geological section of the surroundings of Vidiciatico (b), modified after
(Bettelli & Panini, 1992; Plesi et al. 2002; Botti et al. 2011). The inset shows the location of the study area, enlarged in Figure 2a.

observations for the mechanics of the shallowest por-
tion of megathrusts.

2. Geological setting

The Northern Apennine mountain chain results from
the convergence between the European plate and
Adriatic microplate (i.e., African plate), from Late
Cretaceous oceanic crust subduction to Cenozoic con-
tinental collision and related crustal thickening and
uplift (e.g., Boccaletti, Elter & Guazzone, 1971; Cow-
ard & Dietrich, 1989; Vai & Martini, 2001 and refer-
ence therein). Since Late Cretaceous to early Eocene,
the consumption of oceanic crust built up the Ligurian
accretionary complex (e.g., Principi & Treves, 1984;
Bortolotti, Principi & Treves, 2001; Marroni, Me-
neghini & Pandolfi, 2010). The SVU developed during
the early-middle Miocene as a regional-scale shear
zone, 200 km long and about 200 m thick, between the
overthrusting Ligurian paleo-accretionary complex
and the underthrusting Tuscan/Umbrian Units of the
Adriatic continental margin (e.g. Vannucchi, Remitti
& Bettelli, 2008 and reference therein). The SVU
is formed of different tectonically superposed units,
which are hundreds of meters to kilometers wide and
were derived from the Ligurian accretionary complex
(Late Jurassic – middle Eocene) and the slope deposits
emplaced at the toe and atop of its frontal part (late
Eocene – middle Miocene) (Bettelli & Panini, 1992;
Remitti, Bettelli & Vannucchi, 2007; Remitti et al.
2013; Lucente & Pini, 2008). The SVU is bounded and
cut by several anastomosing thrust faults (Vannucchi,
Remitti & Bettelli, 2008; Vannucchi et al. 2012).

Although the SVU has been extensively studied at
the regional scale (e.g., Remitti, Bettelli & Vannucchi,
2007; Vannucchi, Remitti & Bettelli, 2008), here we
present the first detailed study of the thrust bounding
the base of the SVU, which is characterized by a ramp-
flat architecture at regional scale. Vitrinite reflectance,
illite crystallinity and apatite fission track data doc-
ument that the SVU and the footwall rocks reached
maximum temperatures around 150 °C, corresponding
to ∼4-5 km of burial under a geothermal gradient of
30 °C/km (Reutter, 1981; Botti, Aldega & Corrado,
2004; Vannucchi, Remitti & Bettelli, 2008; Thomson
et al. 2010). At the regional scale, the basal thrust is
crosscut by middle-late Miocene thrust faults, which
segmented the basal thrust delimiting substantially un-
deformed portions, as the one outcropping in Vidici-
atico (Fig. 1; Bettelli, Panini & Capitani, 2002, Plesi
et al. 2002; Botti et al. 2011). The deformation struc-
tures within the basal thrust can therefore reasonably
be attributed to the underthrusting activity of the SVU.

3. Methods

We constructed a geological map of the study area of
scale 1:2,000 (Fig. 2a) based on field surveys and the
existing geological map (1:10,000; http://geoportale.
regione.emilia-romagna.it/it/mappe/informazioni-
geoscientifiche/geologia/carta-geologica-1-10.000).
The map highlights lithological variations within
the SVU, but does not refer to official geological
formation names due to the lack of biochronological
constraints, which were beyond the aim of this study.
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Figure 2. (Colour online) Geological setting of the basal thrust near Vidiciatico. (a) Interpreted lithological map of the study area. (b)
Stereoplot of the orientations of the main fault (black), of the sandstone beds (brown) and of the flattening foliation in the SVU tectonic
slices (blue). Equiareal, lower hemisphere projection obtained using the software Stereonet 9 (Allmendinger, Cardozo & Fisher, 2012).

The geological map served to address the mesoscale
structural analysis of the basal thrust and to constrain
sampling finalized to obtain a series of thin sections
used for optical and Scanning Electron microscopy.

4. Meso- to microscale structure of the basal thrust

The footwall of the SVU basal thrust consists of a
poorly deformed turbiditic sequence, attributed to the
Umbrian–Tuscan sequence of Burdigalian age (Botti
et al. 2011). Meter-spaced planar shear calcite veins
dipping at medium to high angle toward NNE cut the
sandstone beds with slight normal offset. The con-
tact between the turbidites and the SVU is marked by
a less than 5 m thick fault zone, whose orientation
is nearly parallel to the turbidites bedding (Fig. 2b).
The SVU in the hanging wall comprises lenticular-
shaped tectonic slices of variable origin (Vannucchi,
Remitti & Bettelli, 2008; Vannucchi et al. 2012). In
the study area, these include Oligo-Miocene marls
(e.g. Marmoreto Marls, Poggialto Formation, Civago
Marls), sedimentary breccias of uncertain age (poly-
genic argillaceous breccias) and slices of varicolored
shale and limestone of pre-middle Eocene age (Botti
et al. 2011). The contacts between lithological units
are in some cases clearly tectonic and bounded by a
thrust fault (e.g., the upper contact in Fig. 2a), while in
other cases the nature of the contacts is undetermined
(simple black lines in Fig. 2a). In the studied outcrops

(Fig. 2), the SVU is composed of oblate slices of light
gray and dark gray marls, which show a tectonic fabric
of centimeter-spaced shear fractures coated by a thin
layer of slickensides of iron oxides. The shear frac-
tures have mostly normal shear sense and obliterate the
sedimentary bedding. Sporadic competent sandstone
or limestone beds are boudinaged, suggesting a com-
ponent of flattening. The flattening foliation of the ob-
late slices of marls form an angle of about 30° with
the basal thrust (Fig. 2b), suggesting low angle imbric-
ation above it.

The present day orientation of the basal thrust, dip-
ping about 30° to N320° (Fig. 2b), results from its
involvement in post-late Miocene thrusts and folds
(Fig. 1), and its original orientation is unknown. The
thrust fault zone, composed of rocks with a pervas-
ive fabric defined by imbricated lens-shaped lithons
and cut by several calcite shear veins (Fig. 3), is in
sharp contact with the footwall turbidites. The trans-
ition to the hanging wall SVU is instead gradual, and
marked by the decrease in the intensity of fractures and
shear veins (Fig. 3a-d). The calcite shear veins are suit-
able for kinematic analysis because they produce nice
calcite slickenfibers and steps, which represent very
clear shear sense indicators (Doblas, 1998, Koehn &
Passchier, 2000). Even dispersed, the slip vectors of the
shear veins within the thrust fault zone indicate domin-
ant top to the NNE sense of transport (Fig. 3e). Within
the fault zone, we distinguish four structural domains
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Figure 3. (Colour online) Internal structure of the basal thrust near Vidiciatico. (a) Photomosaic of one of the outcrops of the basal
thrust fault, where the hanging wall consists of light gray marls. The photomosaic was combined using a cylindrical projection, so
that the vertical lines are preserved, but there is a distortion of horizontal lines. (b) Photograph of one of the outcrops of the basal
thrust fault, where the hanging wall consists in dark gray marls. Due to the prospective distortion, the scale varies in the image. (c and
d) Sketches showing the main structural features and the interpreted structural units represented in Figure 3a and b. (e) Stereoplot of
the calcite shear veins in the basal thrust shear zone, with the slip vectors inferred from the slickensides. Equiareal, lower hemisphere
projection obtained using the software FaultKin7 (Allmendinger, Cardozo & Fisher, 2012).

(D1 to D4, Fig. 3) on the basis of their different de-
formation style at the meso- and microscale.

4.a. Domain 1 (D1)

Domain 1 represents the basal part of the fault zone
and consists of an up to 30 cm thick horizon of lam-
inated dark gray siltstone. The lower contact with the
sandstones in the footwall is lined by a thin, discon-
tinuous calcite shear vein. The upper contact with D2
is lined by a 3–5 cm thick shear vein. Internally, D1 is
deformed by a pervasive and closely spaced (less than
1 mm) foliation subparallel to the sedimentary lamina-
tion and to the shear veins bounding the layer (Fig. 4a).

The shear veins have crack-and-seal texture (Ram-
say, 1980) marked by trails of inclusions of the wall
rock. Individual increments are oriented at 20 to 40°
to the vein walls (Fig. 5a). The siltstone is laminated
at the sub-centimeter scale, with alternating coarse
and fine, clay-rich laminae (Fig. 5b). The clastic
component includes quartz, feldspar, mica and biotite
lamellae, illite and calcareous bioclasts, and the ce-
ment consists in calcite. The sedimentary lamination

is crosscut by deformation bands, shear calcite veins
and extensional calcite veins. Deformation bands are
spaced apart about 10–20 mm and form an angle of
about 30°–40° to the general orientation of the thrust
fault. They are characterized by the reorientation of
mineral grains without fracturing. The alignment of
mica lamellae to the shear bands and their asymmetry
within the bounded volume (Fig. 5c) indicate a dextral
component of movement, synthetic with the main
transport direction of the thrust. Thin (< 1 mm),
discontinuous shear calcite veins are found parallel
to the sedimentary lamination and locally infill the
shear bands. The vein calcite is opaque and contains
small inclusions of sediment particles (Fig. 5d). Shear
veins are crosscut by extensional veins oriented at
80–90° to the sedimentary lamination, up to 8–10 mm
thick (Fig. 5b, d). The extensional veins perpendicular
to the lamination have irregular, wavy interfaces to
the wall rock and include crack-and-seal increments
traced by wall rock inclusions (Fig. 5d, e). The thin-
nest veins have anastomosing geometry, with several
branches enclosing host rock lamellae (Fig. 5b). The
crosscutting relations between different extensional
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Figure 4. (Colour online) Mesoscale structures of the fault zone. (a) Close up of the contacts between the footwall, D1 and D2, where
D2 consists of light gray marls including foliated domains and hard lithons bounded by shear calcite veins. (b) Close up of the contacts
between D2, D3 and D4. The latter consists of fractured competent carbonate-rich light gray marls. (c) Detail of the tail of a hard
lithon embedded in D2, showing angular breccias cemented by calcite crystals. (d) Detail of rounded hard blocks of sandstone-rich
limestone, embedded within foliated marls within D2. The arrow shows the rotation of the block inferred from the deflection of the
foliation in the marls. (e) Detail of the internal texture of D3, showing the pervasive foliation and boudinage of inactive calcite shear
veins. (f) Details of the outcrop in Figure 3b, showing the deflection of the foliation in D4 due to shear along D3, and its gradual
upward decrease. D4 consists of pervasively foliate, clay-rich dark gray marls.

veins and branches are not clear, as the blocky cal-
cite crystals are continuous across the intersections
between adjacent veins. The draping of dark dis-
solution seams around veins, which acted as “hard”
indenters, suggests that the siltstone-claystone un-
derwent layer perpendicular compaction after the
emplacement of extensional veins (Fig. 5d, e). In the
siltstone, phyllosilicate lamellae are preferentially
oriented defining a microscale layer-parallel foliation
and are draped around hard quartz and feldspar clasts.
Quartz and feldspar clasts are strongly corroded,
and calcite precipitated in microcracks and pressure
shadows (Fig. 5f). These features altogether suggest
that part of the wavy and anastomosing geometry
of the calcite extensional veins can be due to the
general compaction of the layer, likely due to pressure-
solution processes. The blocky and elongate-blocky
calcite crystals in both extensional and shear veins
often show closely spaced, straight and thin Type I
twins (Burkhard, 1993).

4.b. Domain 2 (D2)

The second domain (D2) is 50–80 cm thick and in-
cludes strongly deformed marls with variable clay, car-
bonate and silt contents. The marls show a penetrat-
ive fabric consisting of rhombohedral lithons, whose
long axis is oriented at low angle of ∼20° to the above
Domain 3 (D3; see below). The bounding surfaces of
the lithons are polished and slickensided, with local
millimeter-scale calcite fibers, suggesting that they ac-
ted as slip surfaces. Lithons become thinner and flat-
ter with the increase of clay content, forming flatten-
ing surfaces which define a mesoscale foliation, often
draped and deflected around decimeter-scale compet-
ent lithons (Fig. 4b, d). In clay-dominated domains,
centimeters-scale diffuse synthetic shear bands form a
typical S-C’ fabric, deflected around hard carbonatic
clasts. At the meter scale, the marls are cut by several
sharp calcite-filled shear veins, parallel or at low angle
of about 20° to D3, synthetic with the top to the NE
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Figure 5. (Colour online) Microstructures of D1. (a) Crack-and-seal calcite shear vein bounding the top of D1. The crack-and-seal
increments are cut at high angle by two extensional veins. Plane polarized micrograph. (b) Overview of anastomosing extensional
veins (ev) perpendicular to the layer. Indentation of the layer-perpendicular veins against a layer-parallel, discontinuous shear vein (sv)
suggest layer-perpendicular compaction. Cross polarized thin section scan. (c) Shear band within the siltstone, showing rearrangement
of grains without fracturing. Plane polarized micrograph. (d) Internally turbid shear vein, crosscuts by a perpendicular extensional
vein with crack-and-seal microstructure traced by wall rock inclusion trails (arrows). Cross polarized micrograph. (e) Crack-and-seal
extensional vein (ev) associated with a partially dissolved shear vein (sv), acting as hard object during general layer-perpendicular
shortening. The dark dissolution seams in the siltstone are draped around the veins, and are almost absent in the shaded area on the
right of the vein (arrow). Cross polarized micrograph. (f) Internal texture of the siltstone, showing evidence of pressure-solution related
flattening and deposition of calcite (cc) in pressure shadows, represented by microcracks in a plagioclase (pl) clast, and smearing of
pyrite (py) parallel to the dissolution seams. Back Scattered Electron image.

sense of transport in D3 (Fig. 3e). In dilational sites at
necks and tails of hard, carbonate-rich lithons, the cal-
cite shear veins include calcite-cemented breccias of
angular clasts of the wall rock (Fig. 4c). Calcite shear
veins are more abundant and continuous in competent
carbonate-rich domains (Fig. 3).

At the microscale, the inner part of the marls lithons
is substantially undeformed and preserves sediment-
ary structures like bioturbation or calcareous bioclasts
(Fig. 6a, b). The surfaces bounding the lithons are
lined by curvilinear and weakly anastomosing dark
dissolution seams, with non-sutured surfaces typical
of relatively phyllosilicate-rich lithologies (Logan &
Semeniuk, 1976) (Fig. 6a). The dark seams bound-
ing the lithons are enriched in phyllosilicates and
slightly sheared, as suggested also by the preferred
orientation of the clay lamellae (sm in Fig. 6c). Sev-
eral calcite shear and extensional veins are localized
around lithons (Fig. 6a-d). Shear veins are filled by
elongated blocky calcite crystals subparallel to the
vein walls. The interfaces between shear veins and
the foliated domains are lobate and often lined by

dark dissolution seams, which are also found in the
sheared, clay-enriched domains (Fig. 6d). Extensional
veins have anastomosing trends subparallel to the dis-
solution seams bounding the lithons and are sealed
by fibrous calcite crystals perpendicular to the vein
boundaries (Fig. 6a-c). The extensional veins crosscut
the shear veins.

In clay rich domains, the preferred orientation of
phyllosilicate lamellae forms a penetrative foliation,
displaced by an array of Y, R1, R2, T and P shear bands
(sensu Logan et al. 1992), locally lined by thin calcite
shear veins (Fig. 6e, f). Fracturing and boudinage af-
fect more competent layers (clastic layers or carbonate-
rich layers), clasts or early stage calcite veins
(Fig. 6e-g). The penetrative foliation of the clay mat-
rix is crosscut by several generations of thin exten-
sional veins, oriented at high angle to the fault zone,
or with anastomosing trajectories often subparallel
to the foliation planes. The anastomosing, fault par-
allel extensional veins are sealed by fibrous calcite
crystal perpendicular to the vein walls, and crosscut
the phyllosilicate foliation and the shear veins. The
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Figure 6. (Colour online) Microstructures of D2. (a) Overview of the deformation style of a marl lithon. The internally not deformed
lithon is bounded by two surfaces (hatched white lines) lined by several veins and dark dissolution seams. Both shear veins (sv) and
extensional veins (ev) are emplaced along the lithon boundaries. Cross polarized thin section scan. (b) Detail of the inner part of
a marl lithon, bounded by an extensional vein (ev) preserving bioturbation structures and bioclasts (white arrows). Cross polarized
micrograph. (c) Detail of one of the boundaries of the lithon in (a), showing slightly deformed marls (m), a layer of phyllosilicate-rich
sheared marls (sm), a shear vein with calcite fibers tangential to vein walls and an extensional anastomosing vein with calcite fibers
nearly perpendicular to vein walls. Cross polarized micrograph. (d) Detail of a lithon boundary, lined by a calcite shear vein (sv)
and sheared marls. A pressure-solution seam (ps) is visible within the sheared marls. (e and f) Overview of the deformation style
within the clay-rich domains. The deformation structures are traced in (f), where light pink is calcite, light gray are more competent
layers or clasts, thick black lines are shear bands and thin black lines the foliation traces. Thin section scan, cross polarized nicols. (g)
Deformation structures within clay-rich domains, showing the isoorientation of clay lamellae and of elongated clasts (ec), synthetic
shear bands cutting more competent domains and a partially dissolved calcite shear vein (sv). Plane polarized micrograph. (h) Mu-
tually crosscutting layer-parallel and layer-perpendicular, folded, calcite extensional veins (ev) in a clay-rich domain. Cross polarized
micrograph.

fault-perpendicular extensional veins are folded and
partially dissolved, suggesting fault-perpendicular
compaction of the embedding matrix (Fig. 6h). Fault
perpendicular and fault parallel extensional veins have
mutually crosscutting relations (Fig. 6h).

4.c. Domain 3 (D3)

Domain 3 consists of a 20–30 cm thick continuous
tabular shear zone separating D2 from D4 and marked

at the top by a relatively thick (2-3 cm) calcite shear
vein (Fig. 3). Adjacent to the main shear vein, D3
shows a structural fabric similar to D2 clay-rich do-
mains, but with a higher degree of deformation, as
shown by the closely spaced foliation which involves
also deformed fragments of calcite veins (Fig. 4b, e)
and, at the microscale, by the pervasiveness of several
generation of calcite shear and extensional veins,
which are folded, boudinaged and reoriented (Fig.
7a, b). The calcite crystals in deformed shear veins

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756817000668
Downloaded from https://www.cambridge.org/core. Università di Modena e Reggio Emilia, on 13 Apr 2021 at 09:40:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0016756817000668
https://www.cambridge.org/core


Deformation of exhumed shallow megathrusts 445

Figure 7. (Colour online) Microstructure of D3. (a) The vein bounding the top of D3 and the strongly deformed clay-rich domain
immediately below it. Plane polarized thin section scan. (b) Drawing of (a) highlighting the deformation structures: light pink are
calcite veins, light gray are competent layers and clasts, thick black lines are shear bands and hatched black lines the foliation traces.
(c) Detail of the calcite veins lining the upper boundary of D3, where they are cut by a calcite-cemented breccia of angular clasts of
the wall rock. Cross polarized micrograph.

within clay-rich domains are intensely twinned. At the
microscale, the secondary shear bands adjacent to the
principal shear veins are both synthetic and antithetic
to the shear sense of the main shear vein as inferred
from calcite slickenfibers (Fig. 7a, b), and altogether
suggest flattening of the sediments perpendicular to
the fault plane. The upper boundary vein consists of
multiple parallel shear veins separated by thin layers
of clay or carbonaceous material. These vein strands
are locally cut by breccias of angular clasts of the
wall rock and cemented by elongated-blocky calcite
crystals with closely spaced, straight Type I twins
(Burkhard, 1993) (Fig. 7c).

4.d. Domain 4 (D4)

Above D3, a 3 m thick damage zone marks the trans-
ition to the hanging wall, which consists in either more
calcareous light gray (Fig. 3a) or less calcareous dark
gray marls (Fig. 3b). Light gray marls in the hanging
wall are rather competent and cut by shear fractures,
spaced some centimeters to some decimeters apart,
which define elongate rhombohedra with flattening
plane oriented at about 40° from D3 (Fig. 4b, e). Dark
gray marls are instead cut by a pervasive foliation
defined by sub-centimetric flattened lithons. The pen-
etrative tectonic fabric in dark gray marls is deflected
in a way consistent with shearing along D3 and is cut
by thin synthetic shear veins either parallel or at a low
angle of 30° to D3 (Figs 3, 4f).

5. Discussion

5.a. Faulting mechanisms at increasing depth

The basal thrust fault zone includes slices of differ-
ent lithologies that underwent shear strain during thrust
faulting at increasing pressure and temperature up to
150 °C (Botti, Aldega & Corrado, 2004). Based on

the meso- and microscale deformation structures de-
scribed above, we suggest a three-stage evolution of
the fault zone (Fig. 8).

5.a.1. First stage

The first stage is recorded only in D1 siltstone,
where shear bands show inter-particle rearrangement
without fracturing or internal deformation of the grains
(Fig. 5c). Sliding of grains without deformation of the
particles themselves is typical of independent partic-
ulate flow (Borradaile, 1981; Knipe, 1986), enhanced
by low effective mean stresses (low confining pressure
and/or high fluid pressure), compatible with fluid-rich
porous sediments embedded in the thrust fault at shal-
low depth. Locally, the shear bands are infilled by thin,
discontinuous shear veins having internal dirty appear-
ance, suggesting that they developed in not completely
lithified sediments (Maltman, 1994). This indicates a
gradual transition to dilatant brittle deformation with
the increasing grade of cementation of the siltstone,
at very shallow depth and temperatures typical of car-
bonate diagenesis. Similar calcite veins that formed
at early diagenetic conditions have been documented
in shallow subduction settings, such as the Palaeo-
gene accretionary complex of the central European
Alps (Dielforder et al. 2015; Dielforder, Berger & Her-
wegh, 2016) and in the Apennines (Labaume, Berty &
Laurent, 1991).

5.a.2. Second stage

Diagenesis and embrittlement of the sediments lead
to a second stage of deformation, where shear strain
is attained in a heterogeneous shear zone, at least 1
m thick, involving mainly marls, and minor clay-rich
or siltstone domains (D2). The deformation is partly
brittle, localized along multiple fault strands lined by
shear veins (Fig. 3a, c), and partly accommodated by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756817000668
Downloaded from https://www.cambridge.org/core. Università di Modena e Reggio Emilia, on 13 Apr 2021 at 09:40:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0016756817000668
https://www.cambridge.org/core


446 S . M I T T E M P E R G H E R A N D OT H E R S

Figure 8. (Colour online) Sketch showing the spatial and temporal evolution of the studied fault zone and comparison with an active
megathrust setting, based on Ranero et al. (2008). The zone of high fluid pressure is shown as estimated on the basis of high amplitude
seismic reflectivity along megathrusts. The three phases of deformation of the studied fault zone at the base of the SVU are transitional
and partly overlapped, and represent different faulting stages as occurred with increasing depth.

distributed deformation structures such as pressure-
solution seams (Fig. 6d) and diffuse shearing of clay-
rich domains (Fig. 6c, e, f).

The deformation style in D2 depends on lithology.
In marls, shear veins and pressure solution seams are
localized along the anastomosing surfaces bounding
competent lithons, which are not deformed intern-
ally (Fig. 6a, b). The lack of intergranular deforma-
tion in marls suggests that they were already cemented
when embedded within the SVU, unlike the D1 silt-
stone. Shearing, fluid flow and fluid-rock interactions
in marls are likely driven by fracturing, which occurred
at a very early stage as documented in other portions
of the SVU exhumed from shallower settings (Remitti,
Bettelli & Vannucchi, 2007; Remitti et al. 2012). The
size of lithons in marls varies from few millimeters to
some decimeters (Figs 3, 4), being larger in competent,
carbonate-rich domains. Where large lithons prevail,
deformation is localized along meter-scale synthetic
shear veins (Fig. 3a, c), with local dilational breccias of
angular fragments of the wall rock (Fig. 4c) developed
at the edges of competent lithons. Where small, thin
lithons prevail, deformation is diffuse without macro-
scopic shear veins (Fig. 4d. f), and the deformation
style is macroscopically ductile. Clay-rich domains
can be sedimentary, or, in marls, produced by passive
enrichment in insoluble clay minerals, during the de-
velopment of pressure-solution seams (Fig. 6c, d). In
both cases, clay-rich domains show a microscale tec-
tonic fabric characterized by the preferred orientation
of clay lamellae displaced by shear bands. This fab-
ric is typical of phyllosilicate-rich gouges deformed by
frictional sliding (e.g., Logan et al. 1992; Haines et al.
2009). Episodic dilatancy and embrittlement in clay-
rich domains are registered by the emplacement of cal-
cite shear veins (Fig. 6e, f). The frictional strength of

foliated clay-rich rocks with interconnected layers of
phyllosilicates is lower than their non-oriented equi-
valent (Collettini et al. 2009; Tesei et al. 2012; Te-
sei, Lacroix & Collettini, 2015), with friction coef-
ficient at the order of 0.2-0.4, i.e. significantly lower
than commonly inferred friction coefficients of 0.6 to
0.85 (Byerlee, 1978). Clay-rich domains are thus weak
compared with calcareous competent lithons, and tend
to accommodate strain at low differential stress, al-
though they are only locally present within D2. The
very thin shear veins developed in clay-rich domains
(e.g., Fig. 6e, f) suggest that they episodically under-
went dilatancy and embrittlement.

During the second stage, D1 likely experienced only
limited shear strain. Shear veins in D1 are crosscut by
extensional veins perpendicular to the layer (Fig. 5b).
Grain-scale pressure-solution structures such as calcite
precipitation in microcracks and in pressure shadows
(Fig. 5f) are pervasive in D1 siltstone, producing an
alignment of elongated phyllosilicate minerals parallel
to the layer. The alignment of pressure-solution seams
and the development of extensional veins perpendic-
ular to the layer are coherent with layer parallel flat-
tening, suggesting that, during this second stage of de-
formation, shear strain was progressively localized in
the above D2, producing a strain decoupling across the
shear vein separating D1 from D2.

5.a.3. Third stage

An up to 30 cm thick shear zone (D3), which rep-
resents the last stage of deformation at the maximum
depth and temperature reached by the thrust (Fig. 8),
truncates the brittle and ductile deformation structures
in D2. Deformation in D3 is partitioned between a
sharp shear vein and a layer of strongly foliated, veined
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and locally clay-rich marls. The deformation style in
D3 is similar to what is described in D2, a combin-
ation of shear veins with frictional sliding in clay-
rich domains and pressure-solution, but deformation
is extremely pervasive due to the strong localization of
shear strain in a relatively thin domain (Fig. 7a, b). D4
represents the hanging wall damage zone, and displays
deformation structures compatible with shearing along
D3, i.e., in light gray marls, synthetic shears (Fig. 3a,
c) and, in dark gray marls, a foliation at 30–40° to D3
crosscut by synthetic shears (Fig. 3b, d).

In D2, late deformation structures consist of exten-
sional veins, either perpendicular, or, most frequently,
having anastomosing trends roughly parallel to the
thrust. Extensional veins in D2 have fibrous structure
typical of mode I extensional veins (e.g. Bons, El-
burg & Gomez-Rivas, 2012), and a dilatant character
whatever their orientation. Such characteristics suggest
extension nearly independent on the orientation, thus
reflecting local, transient conditions of low differential
stress and high fluid pressure. Thus, episodically, the
state of stress in D1 and D2 (fault parallel shortening
or dilation) was incompatible with shearing along D3.

After the first stage of soft sediment deformation
recorded in D1, brittle faulting in the basal thrust
was always associated with shear veins, as also ob-
served in other exhumed thrusts and megathrusts (e.g.,
Fisher et al. 1995; Fagereng, Remitti & Sibson, 2011;
Yamaguchi et al. 2011, 2012). Shear veins have crack-
and-seal texture resulting from multiple episodes of
cracking, fluid pressure drop and mineral precipitation
(Ramsay, 1980, Labaume, Berty & Laurent, 1991).
The widespread occurrence of shear veins, the lack of
wear products like cataclasites or gouge in the fault
zone and the formation of extensional veins nearly par-
allel to the fault are coherent with failure at low differ-
ential stress and high fluid pressure (e.g., Cox, 2010).

5.b. Comparison with active shallow megathrusts

The basal thrust fault in Vidiciatico is one of the sev-
eral anastomosing thrust faults which accommodated
shearing within the 200 m thick SVU shear zone (Re-
mitti, Bettelli & Vannucchi, 2007; Vannucchi, Remitti
& Bettelli, 2008). Its cumulative thickness of about
4–5 m is similar to what is measured for single fault
strands within active megathrust plate boundary faults
(Rowe, Moore & Remitti, 2013). In the latest stages of
activity at the maximum depth and estimated temper-
ature of about 150 °C, the thickness of the actively de-
forming fault is reduced to the 20–30 cm of D3. Loc-
alization to a thin slipping zone is generally associated
with seismic slip (e.g., Sibson, 2003), and the observed
thinning of the active shear zone might be related with
the progressive transition to the seismogenic, locked
zone of active megathrusts at similar temperature (e.g.,
Oleskewich, Hyndman & Wang, 1999). Alternatively,
the planar, continuous D3 shear zone might result from
the by-pass of a geometric irregularity (such as a ramp,
not outcropping) that caused the deformation of the

whole D2 thickness and, generally, the imbrication of
tectonic slices in the first hundred meters above the
basal thrust mapped in the study area (Fig. 2a). A re-
duction of fault waviness and of the perturbing ef-
fects of geometric heterogeneities is generally associ-
ated with increasing displacement accumulated by the
fault, and, in the case of the basal thrust, increasing
maturity (e.g., Sagy, Brodsky & Axen, 2007).

The localization of the deformation to D3 is asso-
ciated with the deactivation of the structural domains
below it, where the shear component of strain is over-
printed by thrust-parallel flattening, more evident in
D1 and recognizable also in D2, where fault perpendic-
ular extensional veins are folded and shortened. Sim-
ilar strain decoupling across actively shearing décolle-
ments has been measured in magnetic susceptibility
studies in cores from the basal décollement of active
megathrusts, as the one of the Barbados accretionary
prism (Housen et al. 1996) and of the Japan Trench
prism (Yang et al. 2013). Strain decoupling, likely re-
sponding to stress decoupling, suggests that the basal
thrust of the SVU was weak.

The mode of brittle failure in the basal thrust of
the SVU, characterized by crack-and-seal shear veins
since early, shallow stages of activity, is coherent with
several qualitative geophysical (high amplitude seis-
mic reflectivity, e.g., Ranero et al. 2008; anomalously
low P-wave velocity, e.g., Park et al. 2010; high P-
to S-wave velocity ratios, Moreno et al. 2014) and
geological observations (e.g., Byrne & Fisher, 1990;
Labaume et al. 1997) that suggest higher than hydro-
static fluid pressure in the shallowest portion of act-
ive megathrusts. Episodic locally higher than litho-
static fluid pressures in the thrust zone is also sugges-
ted by the emplacement of thrust-parallel, anastomos-
ing extensional veins. As suggested in deepest fossil
exhumed subduction complexes (Fisher et al. 1995;
Fagereng, Remitti & Sibson, 2011) and in other fluid-
dominated geological settings (Renard et al. 2005), the
fault-fracture meshes in the basal thrust of Vidiciatico
likely result from multiple, repeated failures accom-
modating very low displacements. As suggested for
deeper settings (Fagereng, Remitti & Sibson, 2011),
such intermittent failure style might be related with the
very low frequency earthquakes recently discovered
also in the shallowest portion of several active mega-
thrusts (Obara & Ito, 2005; Nakamura & Sunagawa,
2015), at depths similar to those estimated for the
activity of basal thrust of the SVU.

6. Conclusions

We described in detail the internal architecture and de-
formation mechanisms of the thrust bounding the base
of the SVU, a regional-scale shear zone sandwiched
between the overlying Late Cretaceous – Early Eo-
cene Ligurian accretionary complex, and the underly-
ing Tuscan – Umbrian Units of the Adriatic continental
margin, and active from the seafloor down to depths
experiencing temperatures of about 150 °C. Because
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the basal thrust incorporated sediments shortly after
their deposition, and transported them down to depths
typical of the onset of seismicity in active megathrusts,
it represents a good analog for investigating the de-
formation processes of shallow present day megath-
rusts above the transition to the seismogenic zone.

Our observations suggest that:
(i) The thrust fault zone has maximum thickness of

4–5 m, similar to present day megathrust fault strands,
and, with increasing maturity and depth, the active por-
tion of the fault further localizes in a thinner fault zone,
less than 30 cm thick. The increasing localization of
slip with increasing depth is coherent with conditions
approaching those estimated for the transition to the
seismogenic zone in active megathrusts.

(ii) Early stage diffuse deformation in the sediments
within the fault zone is accommodated by soft sedi-
ment particulate flow in siltstone domains, and lately
by frictional sliding in clay-rich domains, while pres-
sure solution occurs in all lithologies.

(iii) Brittle faults are always associated with calcite-
filled veins and extensional ones are often unfavorably
oriented relative to the stress field required for thrust-
ing, suggesting that faulting was promoted by repeated
failures at low effective stresses and in presence of flu-
ids in all stages of activity of the thrust, from shallow
settings down to the depth of transition to the seismo-
genic zone.

(iv) The basal thrust fault was active under low dif-
ferential stress, and the state of stress within the active
fault was likely decoupled from that in the footwall,
suggesting that the components of the basal thrust fault
were weak compared with the footwall.
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