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Abstract

We apply the replica trick to compute the entropy of a cylinder amplitude in

string theory. We focus on the contribution from non-perturbative winding

modes and impose tadpole cancellation to understand the correct prescription for

integrating over moduli. Choosing the entangling surface to cut longitudinally

over the whole length of the cylinder, we obtain an answer that is interpreted as

the entropy of a density matrix. We recast this result in target space language,

both in the open and closed string picture.
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1 Introduction

The replica trick is a powerful method to compute path integrals associated to density

matrices. It is employed in the most diverse fields, from statistical physics and machine

learning to conformal field theory, especially in relation with the study of entanglement,

see e.g. [1–5]. In general, given a region A at some fixed time in a manifold C, the

replica trick allows to compute the q-th power of the reduced density matrix ρA. This

is the partial trace ρA “ trBρ of the full quantum state ρ defined at fixed time in C over

the degrees of freedom contained in the complement of A, called B here. Explicitly,

one has [1, 2]

trpρqAq “
ZqpAq

pZ1pAqqq
, (1)

where ZqpAq is the path integral over a q-sheeted surface obtained by gluing together q

replicas of the original manifold C after having performed a cut along A, which is called

entangling surface. The upper lip of the cut on one sheet is identified with the lower

lip of the cut in the next sheet. Equipped with this trace, the associated von Neumann

entropy can be computed by analytically continuing q to a real number, differentiating

with respect to it, and finally setting q “ 1.

The goal of this note is to apply the replica trick to a basic string theory object: the

cylinder amplitude. We want to compute (1) for the case in which C is the cylindrical

world-sheet formed by a propagating string and A is taken to cut longitudinally over

the whole length of the cylinder, from one boundary to other. The resulting surface

is depicted on Fig. 1. The world-sheet time in the figure parametrizes the compact

dimension. It is obvious that, in this case, Z1pAq is the usual cylinder amplitude, which

shall be called Z in what follows. Note that, as the entangling surface at fixed world-

sheet time covers the full world-sheet, we are not tracing over any external degrees of

freedom. In other words, B is empty in this setup. The output of the computation is

then the usual von Neumann entropy – rather than some entanglement entropy – of

whatever quantum state, either pure or mixed, has been produced by the path integral

at that time. The result for the entropy is non-vanishing if and only if that state is a

density matrix.

The above statement, relating the usual thermal entropy with the entanglement

entropy in the limit of a vanishing complement of the entangling region, comes from a

holographic intuition [6]. For a system of size L, one has

lim
εÑ0
pSentpL´ εq ´ Sentpεqq “ Stherm . (2)

This can be interpreted as the difference in length between a geodesic revolving around
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Figure 1: q cylinders are cut longitudinally, excising an infinitesimally thin strip

between world-sheet times 0´ and 0`, and then glued together. The cut at 0` on

the i-th sheet is glued to the cut at 0´ on the pi ` 1q-th sheet. Finally, the cut at 0`
on the q-th sheet is identified with the cut at 0´ on the first sheet, resulting in a large

cylinder.

the dual black hole horizon and a vanishing one,1 so that the entropy is really produced

by the first term alone. From the replica trick point of view, this translates into the

physical requirement that limεÑ0 Zqpεq “ pZ1pεqq
q (times some power of ε).

Strings have both localized, oscillatory modes carrying momentum and extended,

topologically inequivalent configurations characterized by winding numbers. Here we

shall focus on the non-perturbative contribution originating from the latter modes, for

the case in which the target space is either a two-dimensional torus or a circle. We

do not include the contribution from the string oscillations. This is interesting for a

variety of reasons. First of all, it is one of the first attempts2 to use the replica trick on

the string world-sheet, which is tricky because of the obvious topological nature of the

theory. Here this construction is well defined as the cut stretches from one boundary

of the world-sheet to the other, so it is itself ingrained in the topology. Second, we will

consider non-perturbative contributions that, to the best of our knowledge, have only

been studied before, for entanglement entropy, in [15]. Third, we will deal with some

subtleties in the definition of moduli on the world-sheet replicas by requiring tadpoles

cancellation, displaying yet another application of this mechanism. Finally, the result

will be expressed in terms of target space quantities, like the complex structure and the

1More precisely, this happens when the entangling region size approaches the UV cut-off and finite

terms depend on the cut-off definition.
2See also the recent [7] for a computation of entanglement entropy in the string theory dual of

2-dimensional Yang-Mills theory. More in general, some references which dealt with entanglement

entropy in string theory include [8–14].
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open string moduli (positions of the branes), thus establishing a precise map between

the entropy of the cylinder and the geometrical properties of the embedding space.

This map will be further checked by deriving the world-sheet results from a target

space perspective, both in the open and closed string channels.

2 The replica trick on the world-sheet

We start with the world-sheet computation of the entropy. To this scope, we consider

open strings stretching between parallel D-branes. As stated above, we only study the

case in which the world-sheet has the topology of a cylinder and the entangling surface

is taken to cover its whole longitudinal length.

The target space we consider is a 2-dimensional torus, times non-compact spectating

dimensions that we suppress for not playing any role in the analysis. Our notation is the

following. The torus has two cycles parameterized by the vectors R1 and R2e
iα, with

R1, R2, α P R, and complex structure σ “ R2

R1
eiα. In terms of target space coordinates

xa “ px1, x2q, related to the standard complex coordinates pz, z̄q by z “ R1x
1`R2e

iαx2,

the Wilson line for the Chan-Paton factor on the i-th brane of the stack is Ai “

θidx
1 ´ φidx

2.

There are a number of equivalent ways to do the computation, which are related by

T-duality. We shall consider D0-branes at positions determined by the Wilson lines.

These are obtained by T-dualizing twice the space-filling D2-branes with Ai, as follows.

In terms of the coordinates xa, the metric is found to be

g11 “ R2
1 , g12 “ R1R2 cosα , g22 “ R2

2, (3)

with the complex structure σ and the torus area t2 “ R1R2 sinα being given by

σ “
g12
g11

` i

a

detpgq

g11
, t2 “

a

detpgq . (4)

The introduction of a B-field b “ b12 dx
1 ^ dx2, with b12 “ R1R2 cosα, complexifies

the area: t “ t1 ` it2 “ b12 ` i
a

detpgq. Doing a T-duality along x1 exchanges area

and complex structure. We see then that R1 Ñ
1
R1

exchanges σ and t. Similarly, a

T-duality along x2 transforms t Ñ ´ 1
σ
„ σ and σ „ ´ 1

σ
Ñ t (the sign „ means that

σ and ´ 1
σ

define the same complex structure). The sequence of these two T-dualities

maps (3) to the dual metric

g̃11 “
1

R2
1

, g̃12 “ ´
cosα

R1R2

, g̃22 “
1

R2
2

, b̃12 “ ´
cosα

R1R2

. (5)
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The D2-brane with Wilson line Ai is mapped into a D0-brane at position θi along

x1 and ´φi along x2. An open string with Chan-Paton factors i, j at the endpoints

extends between two D0-branes localized at pθi,´φiq and pθj,´φjq, respectively.

The cylinder world-sheet C can be parameterized by a coordinate `1 P r0, 1s, stretch-

ing between the two D0-branes, and a coordinate `2 P r0, 2πsq, which is attached on

the D0-branes at the endpoints `1 “ 0, 1. As a consequence, there are two independent

winding numbers for the string when moving along `1: the string can in fact wrap m-

times along R1 and n-times along R2e
iα. Note that, due to the cyclic identification of

the sheets along the entangling surface, one can only have one pair of winding numbers

pn,mq common to all sheets. The classical maps Xa from the world-sheet p`1, `2q to

the target space are

X1
“ `1pm` θijq , X2

“ `1pn´ φijq , (6)

with θij ” θi ´ θj and φij ” φi ´ φj. The corresponding path integral weight e´Scl can

be obtained by evaluating3

Scl “

ż

d2` B`1X
a
B`1X

bg̃ab “ sin2 α
2πs

t2σ2
|n` σm´ uij|

2 , uij ” φij ` σθij . (7)

Computing the winding number contribution to the amplitude Z for C is quite

simple. The prescription is to integrate (7) over the modulus s and to sum over the

winding numbers:

Z “
ÿ

m,n

ż 8

0

ds

4s
exp

ˆ

´ sin2 α
2πs

t2σ2
|n` σm´ uij|

2

˙

. (8)

Evaluating the integral and the sums is a well-known procedure, see for example [16].

A Poisson resummation in n and m needs to be performed. Discarding the n “ m “ 0

term, one can sum the series and obtain the amplitude

Z “ ´
1

2
log

ˇ

ˇ

ˇ
eπiθ

2
ijσθ1puij|σqηpσq

´1
ˇ

ˇ

ˇ
, (9)

in terms of the standard modular functions θ1 and η, see for example [17].

A couple of comments are now in order. First, the mechanism of tadpole cancel-

lation plays an important role here. Given an appropriate choice of gauge group, it

cancels the divergent n “ m “ 0 terms between the cylinder, the Möbius strip and

the Klein bottle, leaving a finite series for non-vanishing Wilson lines [16]. Second, the

n “ m “ 0 modes would be the only ones depending on the prefactors in the action (7),

but this dependence disappears from (9).

3Note that the contribution from the B-field is zero, as it necessarily contracts with B`2X
1,2 “ 0.
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The amplitude ZqpAq comes from considering q cylinders, cutting them longitudi-

nally and gluing the cuts together, thus obtaining a big cylinder out of q rectangles,

as shown in Fig. 1. To compute this, one needs to understand the correct prescrip-

tion for integrating over moduli. At first sight, there appear to be two possibilities,

which depend on the order in which the operations of cutting/gluing cylinders and in-

tegrating/modding out the world-sheet metric by the diffˆWeyl symmetries are carried

out.

Suppose one first integrates and mods out by diffˆWeyl on each copy of the cylinder

and then cuts and glues them together. The first operation yields, as usual, q integrals

over moduli from diffˆWeyl-inequivalent metrics, one for each cylinder. When cut-

ting and gluing the cylinders, the fields on adjacent sheets should be identified across

the cuts, so that the moduli also get identified, leaving a single surviving modulus.

Analogously, the measure factors of 1{4s appearing in each integral from translation

invariance along the cylinder are reduced to a single one, as translation along a sheet

moves the cut and leads to the same translation along all other cuts. In the action

(7), instead of a single multiplicative factor of s, we now have a factor of qs, from the

sum of q actions with the same modulus and winding numbers. This first integration

prescription leads to

ZqpAq “
ÿ

m,n

ż 8

0

ds

4s
exp

ˆ

´ sin2 α
2πqs

t2σ2
|n` σm´ uij|

2

˙

. (10)

The other possible choice is to first cut and glue the q cylinders and then to integrate

over diffˆWeyl-inequivalent metrics. In this case, one first constructs the big cylinder

and then deals with the path integral over the world-sheet metric, leading to a single

modulus measuring the entire circumference of the cylinder. This second option gives

just the usual cylinder (8). We note at this point that the factor of q that appears

in the exponent in (10) can be simply reabsorbed by a rescaling of the prefactor.

As seen above, the final result will be independent of this prefactor after tadpole

cancellation has been applied. In summary, the two procedures are equivalent and the

two operations of metric integration and cutting/gluing do in fact commute.4

The Renyi entropy (1) is at this point easily obtained5

tr pρqq “

ˆ

´
1

2
log

ˇ

ˇ

ˇ
eπiθ

2
ijσθ1puij|σqηpσq

´1
ˇ

ˇ

ˇ

˙1´q

. (11)

4A similar issue appears when dealing with fermions. In that case the question is whether the sum

over spin structures has to be done on each sheet before or after the replica. The two procedures lead

to different results, see for example [6, 13,18,19], unlike what happens in the present case.
5As ρA “ ρ, we suppress from now on the somewhat misleading label A, which may induce to

believe we are computing entanglement entropy, when in fact we are computing the usual entropy.
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The entropy of ρ is given by differentiating this expression with respect to q and setting

in the end q “ 1, which results in

Storus
“ ´tr pρ log ρq “ ´Bqtrpρ

q
q|q“1 “ log

ˆ

´
1

2
log

ˇ

ˇ

ˇ
eπiθ

2
ijσθ1puij|σqηpσq

´1
ˇ

ˇ

ˇ

˙

. (12)

This quantity Storus measures the non-perturbative contribution to the entropy of the

quantum state ρ propagating on the cylinder with the cut A. This result would be

trivially zero if ρ were pure. We can therefore conclude that this state is a density

matrix. We shall discuss the nature of this density matrix below, when we recast it in

a target space language in terms of open and closed string channels.

The reader may also note at this point that we have not introduced any cut-off

in the result. Indeed, it is well-known that the replica trick is essentially blind to

cut-offs (which can, however, be seen as coming from curvature singularities at the

branch points [2]). In the present case, a cut-off will have to be introduced below, from

requiring that the entropy be real.

Let us now specialize to the case when the target space is not a torus, but a circle

of radius R. This will be useful in the following. We can obtain the cylinder amplitude

Z from (8) by considering a purely imaginary complex structure α “ π{2, resulting

in σ “ iσ2 “ iR2

R1
and t2 “ R1R2, a Wilson line ´φi along the x2 direction, and by

removing the winding number m. After an obvious renaming of R2, the amplitude

reads

Z “
ÿ

n

ż 8

0

ds

4s
exp

ˆ

´
2πs

R2
pn´ φijq

2

˙

, (13)

whose evaluation is straightforward. One first Poisson resums and then does the inte-

gral, with the n “ 0 term removed as before, obtaining

Z “
ÿ

n‰0

1

4|n|
e2πinφij “ ´

1

2
log |1´ e2πiφij | . (14)

The entropy of ρ on the target space circle becomes

Scircle
“ log

ˆ

´
1

2
log |1´ e2πiφij |

˙

. (15)

Note that the result is not defined for values of φij such that (14) is negative, namely

1{6 ă φij ă 5{6. To avoid this, we introduce by hand a cut-off. Not having dimen-

sionful quantities to guide our choice and being the replica trick itself blind to cut-off

dependence, we can just guess a viable ad hoc answer which is replacing (15) with

Scircle
“ log

ˆ

´
1

2
log

`

µ|1´ e2πiφij |
˘

˙

, (16)

for 1{2 ě µ ě 0. The resulting entropy as a function of the distance φij is symmetric

around φij “ 1{2, monotonically decreasing in the first half, and convex.
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3 Target space derivation of the density matrix

We want to interpret these results from a target space point of view, using a construc-

tion for open and closed strings summarized in Fig. 2. The main idea is to select an

appropriate target space density matrix which reproduces the world-sheet expressions.

⇢

j

i

�

k
=

(n
�
� i

j
)

k ⇠ n

��i

��j

Additional non-compact dimensions

Xµ(`1, `2)
Xµ(`1, `2)

�⌧

Figure 2: Target space interpretation of the world-sheet density matrix ρ, in the open

(left) and closed (right) string channels. The open string stretches between two D1-

branes and carries momentum k “ n´φij, whereas the closed string stretches between

two D0-branes and carries momentum k „ n.

3.1 Open string picture

We initially look at open strings, corresponding to space-filling D-branes with Wilson

lines. Limiting our attention to the center of mass of the strings and suppressing their

oscillations, as done above in (6), we can think of them as particles charged under

the Wilson lines. To further simplify things, we consider a circle instead of a torus

target space, thus aiming to reproduce (15). The density matrix we consider is a

sum over projectors, each corresponding to a particle of momentum k, charged under

the i, j Wilson lines, and that has propagated along a path of length 2πλ, see Fig. 2

(left). The path integral weight for such a particle is given by 1
4λ

expp´2πλk2q (see for
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example [20]) and we get

ρ “
1

trρu
ρu , ρu “

ÿ

n

ż 8

0

dλ

4λ
e´2πλk

2

|n, λy xn, λ| . (17)

As the integration measure from modding out translations, time reversal invariance and

the i Ø j symmetry of unoriented strings is dλ
4λ

, we change variables to γpλq “ 1
4

log λ

so that the measure in (17) becomes dγ. We emphasize that we are integrating over the

particle world-line length, rather than the modulus of the cylinder world-sheet (to which

it reduces, however, when the string length goes to zero). The states |n, γy are taken

to be orthonormal in both discrete and continuous labels: xn, γ|n1, γ1y “ δnn1δpγ ´ γ1q.

The momentum k is quantized on the circle and shifted by the Wilson line

k2 “
1

R2
pn´ φijq

2 . (18)

To compute the entropy we first construct ρq, whose trace is6

trpρqq “
1

ptrρuqq

ÿ

n

ż 8

´8

dγ e´
2πqλpγq

R2 pn´φijq
2

. (19)

The normalization ptrρuq
q is similarly evaluated

ptrρuq
q
“

˜

ÿ

n

ż 8

´8

dγ e´
2πλpγq

R2 pn´φijq
2

¸q

. (20)

Remembering that the q in the exponential of (19) can be rescaled away thanks to

tadpole cancellation, one finds that in terms of the original λ variable

trpρqq “

˜

ÿ

n

ż 8

0

dλ

4λ
e´

2πλ
R2 pn´φijq

2

¸1´q

, (21)

which leads precisely to the world-sheet expression (15) for Scircle.

3.2 Closed string picture

A complementary approach to recover Scircle from the target space is to consider closed

strings. It is well-known that an open string cylinder between two D-branes can be

6Formally, this should be obtained by considering first a generic matrix element of ρq and in-

tegrating over all states as
ş

dγ
ş

dγ1 xγ|ρq|γ1y. The trace should be then seen as coming from

one of the two states, say |γ1y, approaching the other, i.e. restricting one of the two domains

of integration to a vanishing interval Oγ centered around the value of γ of the other integral:

trpρqq “ limOγÑ0

ş

dγ
ş

Oγ
dγ1 xγ|ρq|γ1y. Evaluating the delta functions before the limiting process

gets rid of factors of δp0q that would otherwise appear in (19).
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thought of as a closed string propagation, see Fig. 2 (right). The target space circle

will be in the T-dual picture with respect to the previous section, where branes are

positioned on their Wilson line values ´φi and ´φj. The density matrix ρ will be a

linear combination of projectors corresponding to all possible propagations of a closed

string between the i-th and j-th brane, with all possible momenta (depending on an

integer n) and winding numbers m around the circle. The weights will be expressed in

the boundary state formalism:

ρu “
πR2

2

ÿ

n,m

ż

Xpτiq“φi
Xpτf q“φj`m

dx dp∆τq |n,m;x,∆τy xn,m;x,∆τ | xB, τf |B, τiy xB, τf |B, τiy
: . (22)

Here x and ∆τ ” τf ´ τi represent, respectively, the position at τ “ 0 and the time

of propagation for the classical part of the euclidean string map: Xpτq “ x ´ iτk, in

units of α1. The quantity xB, τf |B, τiy is the scalar product between the two boundary

states for the closed string cylinder, representing the two D-branes at path times τi
and τf (for the closed string world-sheet, this is the longitudinal coordinate). We also

have that

|B, τiy “ epτi´τf qpL0`L̃0q |B, τfy , (23)

and xB, τ |B, τy “ 1. Orthonormality in all indices is assumed. We can then repeat the

procedure of the previous section. The only difference is that the weights in (19) will

be replaced by the ones in (22).

The first step in the evaluation of this amplitude is to enforce the conditions on the

embedding Xpτq to start and finish on the proper brane, after having wound up around

the circle m-times. These conditions are delta functions that will fix the initial position

of the map x and ∆τ (being the origin for τ irrelevant by translational symmetry).

The condition at τi translates into a delta δpXpτiq´φiq that becomes just the condition

x “ φi ` iτik. The condition at τf becomes instead δpXpτf q ´ φj ´mq which can be

transformed into a delta for ∆τ

δpXpτf q ´ φj ´mq “ δ

ˆ

∆τ ` i
φij ´m

k

˙

1

|k|
. (24)

We can now exploit (23) with L0 “ L̃0 “ k2{4R2. The momentum k is quantized

around the circle, k “ 2πR2n for some integer n. Putting everything together, we

obtain (the dagger also exchanges i and j)

xB, τf |B, τiy “ eiπnpφij´mq , xB, τf |B, τiy
:
“ eiπnpφij`mq . (25)

Combining this with (24) one obtains e2πinφij{2πR2|n|, having the dependence on m

disappeared. After removing, as usual, the n “ 0 term from the sum, the final result

9



for the Renyi entropy reads

trpρqAq “

˜

ÿ

n‰0

1

4|n|
e2πinφij

¸1´q

, (26)

whose corresponding entropy is in perfect agreement with (15).

4 Discussion

We have computed the entropy associated to the winding modes of a string wrapping

a torus, finding a non-vanishing result that depends only on the complex structure

σ of the torus and on the position of the branes on which the string endpoints are

attached. It is worth emphasizing that this entropy does not originate from locali-

zed degrees of freedom, but from extended, topologically inequivalent configurations.

This is the first time, to the best of our knowledge, that the replica trick has been

applied to non-perturbative states and for a string world-sheet. We have chosen a

prototypical problem to clarify important issues. The first one is about the correct

moduli prescription on the q-sheeted cylinder, which has been solved by applying the

tadpole cancellation mechanism to show equivalence between two different approaches.

It would be interesting to understand if this idea can be generalized to more compli-

cated Riemann surface topologies. Moreover, although the result we have obtained is

non-singular, a cut-off has to be introduced in order to guarantee reality and positivity

of the entropy. The replica trick is insensitive to the cut-off and our proposal in (16)

is quite ad hoc and most likely not unique. Exploring the origin and justification for

the cut-off in (16) is certainly something important to look at with more care, which

is something we leave for the future. Finally, we have reproduced the result from a

density matrix constructed using target space quantities, both in the open and closed

string channels, making transparent the origin of the entropy we have found.

It would also be interesting to obtain the full result for the entropy, including

perturbative contributions, as the natural expectation of the entropy being the one

associated with a canonical ensemble, with inverse temperature given by the cylinder

radius, is spoiled by the necessity to integrate over this radius, i.e. the modulus of

the cylinder. However, in order to do this computation, some non-trivial issues with

the replica trick on the cylinder need to be sorted out first. These include: possible

boundary contributions [21]; the fact that string theory is conformal only locally, so that

the usual CFT computations should be adapted somehow;7 the topological structure of

7In particular, the operations of integrating over diffˆWeyl-inequivalent metrics and cutting/gluing

the Riemann surfaces might not necessarily commute, so that the corresponding expressions (8) and

(10) might not be equivalent in general.
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the world-sheet that may create problems in defining non-topological entangling regions

as, for example, a region that does not extend from one boundary to the other;8 the

still unresolved issue on how to sum over spin structures [13, 19]. This last problem,

in particular, is quite relevant, as computations on a torus have shown that modular

invariance is preserved only if appropriate spin structures are chosen. More specifically,

one has to sum over each sheet and then glue sheets together in the limit of a small

entangling region, whereas for a large entangling region one has to select the same spin

structure for each sheet first and then sum over structures [19]. These two procedures

were inspired by imposing (2). We wonder whether similar issues arise for the world-

sheet moduli as well, whenever the entangling region does not span the whole length

of the world-sheet. Finally, a last challenge would be the target space interpretation of

this full result.

On a more speculative level, it would be worthwhile to explore the implications of

our computation to the understanding of the density of string states and the transitions

related to winding modes. Perhaps, our entropy could be used as some order parameter

for the Hagedorn behavior [22]. We hope to come back to these explorations in the

near future.
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