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Software Engineering for the Internet of Things 
 

Key Abstractions for IoT-Oriented Software 
Engineering 

Franco Zambonelli, University of Modena and Reggio Emilia 

A synthesis of current Internet of Things (IoT) research can help frame the 
key abstractions related to systematic development of IoT systems and 
applications. Such a framework could be the basis for guidelines for IoT-
oriented software engineering. 

Despite the considerable research on the Internet of Things (IoT), the technologies to make the IoT a 
systematic reality are far from being assessed. Early research focused mostly on communication and 
interoperability.1 More recently, researchers have tried to facilitate the integration of resources and services 
toward provisioning software-defined distributed services. This is the case, for example, for the Web of 
Things (WoT) vision,2 which aims to employ standard Web technologies to help develop coordinated IoT 
services. 

The WoT—possibly integrated with concepts from agent-based computing3,4—will likely represent a 
keystone technology in the IoT’s future. Along such lines, several approaches (for example, in terms of 
supporting middleware5,6 and programming7) exist to aid IoT system and application development. Yet, a 
unifying approach to this development, grounded on a common set of abstractions, models, and 
methodologies, is still missing.8 

Here, I try to frame key general characteristics related to the engineering of complex IoT systems and 
applications, by synthesizing the common features of existing proposals and scenarios. I then use these 
features to identify the key software engineering abstractions around which IoT system and application 
development could revolve. That is, these abstractions could be the basis for a general IoT-oriented software 
engineering discipline, including detailed models, methodologies, and guidelines (whose analysis and 
definition, though, is outside this article’s scope). 

To exemplify the analysis, I present a specific case study scenario: an IoT-enabled hotel and conference 
center. I assume the hotel infrastructure (for example, lighting and heating) and facilities (guest rooms, 
conference rooms, and their associated appliances) are densely enriched with connected sensors and 
actuators. There, different actors (from hotel managers to hotel guests or conference attendees) can contribute 
to set up a variety of IoT services. Although this scenario seems simple, it exhibits characteristics and 
engineering challenges representative of more complex scenarios such as energy management in smart cities 
and urban transportation management. 

Common Features 

I identified the following general features of current approaches to IoT system design and development. 

Things 
The “things” in the IoT vision might include a large number of physical objects, along with places and 
persons. 

Objects and places can be made trackable and controllable by being connected to low-cost wireless 
electronic devices. Simple RFID tags or Bluetooth beacons, based on low-cost communication protocols, can 
be attached to any kind of object to enable tracking its position and status and possibly to associate some 
digital information with it. More advanced devices integrating environmental or motion sensors can detect 
the past and present activities associated with objects or places. In addition, objects can incorporate digital 
actuators that enable remote control of their configuration or status, or they can perhaps be made autonomous. 

 



For example, the hotel scenario could have the following features. Objects in rooms, such as remote 
controls, could contain RFID tags to communicate their presence and location. Projection screens in 
conference rooms could have some kind of Arduino-like controller to let people use mobile phones to raise 
and lower them. Conference room window curtains could autonomously regulate the lighting on the basis of 
the activities in the room. Walls could change the meeting rooms’ shape on demand. From this perspective, 
autonomous robots (or robotized objects9) could be considered the highest end of the smart-thing spectrum. 
 

People, even when they aren’t actively using IoT technology, can still be first-class entities in the IoT 
vision. Simply because they have a mobile phone, their activities and positions can be sensed and they can 
be asked to act in the environment or supply sensing. In the hotel scenario, hotel management could 
continuously detect people’s locations and activities in order to manage emergency situations in the most 
efficient way. 

Software Infrastructures 
 
To make things capable of serving purposes, we need software infrastructures (IoT middleware1) that support 
the “gluing together” of different things and provide ways to access the IoT system and its functionalities. 

The gluing together involves four main technical issues. The first is interoperability. The interaction of 
heterogeneous things requires a set of shared communication protocols and data representation schemes, 
which involves more than just a way to identify things.1 The study of this issue dates back to early IoT 
research; several proposals exist, and the road toward assessed standards is well paved. 

The second issue is semantics. A common semantics for concepts must be defined to enable the 
cooperation and integration of things. Proposals for this exist that are grounded on standard Web technologies 
and on ontologies suited to the physically and socially embedded nature of the scenario.10 

The third issue is discovery, group formation, and coordination. IoT system functionalities derive from 
the orchestrated exploitation of a variety of things, possibly involving a variety of users and stakeholders. In 
the hotel scenario, configuring conference rooms for slide presentations involves a projector, the lighting 
system, and the conference organizers and speakers. This requires a way to discover and establish relations 
between things and between things and humans and to coordinate their activities.11 

The final issue is context awareness and self-adaptation. System components’ inherent unreliability and 
mobility (for example, chairs or flip charts in the hotel conference center could come and go, be moved, or 
be placed in areas without wireless connections) make it impossible to anticipate which things will be 
available and for how long. This requires discovery and coordination mechanisms that can dynamically adapt 
to their context.4 

Approaches to user access to things’ functionalities and capabilities are currently dominated by the WoT 
vision. The idea is to expose things’ services and functionalities in terms of REST (Representational State 
Transfer) services, enabling the adoption of web technologies to discover things and provision coordinated 
group services. Concerning middleware infrastructures, most proposals recognize the need to integrate three 
key features. The first is some basic infrastructure to support the WoT vision (that is, to expose things in 
terms of simple services). The second is some way to support, according to a specific coordination model, 
the discovery of things (and their associated services) and the coordinated activities of groups of things. The 
third is solutions that enable services and applications to adapt in a context-aware, unsupervised way.1,5,7,12 

Services and Applications 
The term “IoT system” generally refers to a set of IoT devices and the middleware infrastructure that manages 
their networking and interaction. Specific software can be deployed logically above an IoT system to 
orchestrate system activities to provide both specific services and general-purpose applications (or suites of 
applications). 
 

Providing specific services means enabling stakeholders and users to access and exploit things and direct 
their sensing or actuating capabilities. This includes coordinated services that access groups of things and 
coordinate their capabilities. For instance, in a hotel conference room, besides providing access to and control 
of individual appliances, a coordinated service could, by accessing and directing the lighting system, the light 
sensors, and the curtains, change the room from a presentation configuration to a discussion configuration. 

General-purpose applications or suites, on the other hand, are more comprehensive software systems that 



• regulate the functioning of the overall IoT system (or parts of it) to ensure its specific overall 
behavior and 

• provide a harmonized set of services to access the system and (possibly) its configuration. 

In the hotel scenario, applications could control the overall heating and lighting systems and give hotel clerks 
tools to reconfigure services and associated parameters. 

Depending on the scenario, you can think of IoT systems in which services either exist only in the context 
of some general application or are deployed as stand-alone software. 

The Key Abstractions 

From the analysis of the common features, I identified the following key abstractions for the development of 
IoT systems (see Figure 1). 

 

Figure 1. Key abstractions for the engineering of Internet of Things (IoT) systems. These abstractions could 
be the basis for a general IoT-oriented software engineering discipline, including detailed models, 
methodologies, and guidelines. 

Stakeholders and Users 
The first activity in the analysis of a system-to-be is to identify the actors: the system stakeholders and users. 
These persons or organizations will own, manage, or use the system and its functionalities; the requirements 
should be elicited from them. 

In IoT systems, the distinction between IoT services and applications, and the presence of a middleware 
to support them and manage things, leads to the identification of the following three key abstract classes of 
actors. 

First, global managers are the owners of an IoT system and infrastructure or are delegates empowered to 
exert control over and establish policies regarding the configuration and functioning of its applications and 



services. In the hotel scenario, the global manager corresponds to the system manager who controls the 
hotel’s IoT system according to the hotel management’s directives—for example, for deciding heating levels 
or surveillance strategies. 

Second, local managers are the owners of, or delegates (permanent or temporary) given control over, a 
portion of the IoT system. They’re empowered to enforce local control and policies on that portion. In the 
hotel scenario, these could be hotel guests, who can control the IoT system in their room, tuning its local 
parameters and exploiting its services according to their needs. Or, they could be conference organizers in 
charge of managing and configuring the conference rooms’ services. 

Finally, users are persons or groups that have limited access to the overall configuration of the IoT 
applications and services. That is, they can’t impose policies on the IoT but nevertheless are entitled to exploit 
its services. In the hotel scenario, these include conference delegates who are authorized to access the 
conference facilities (for example, uploading presentations to the projector) but aren’t entitled to modify the 
conference rooms’ configuration. 

These three classes of actors are of a general nature, outside the hotel scenario. For example, in the 
scenario of energy management in a smart city, they could correspond to, respectively, city managers, house 
or shop owners, and private citizens and tourists. In the urban-transportation-management scenario, they 
could correspond to, respectively, mobility managers, parking-lot owners or car-sharing companies, and 
private drivers. 

Requirements: Policies, Goals, and Functions 
Once the key actors are identified, analysis of the IoT system-to-be can’t simply reduce to understanding 
from them the services that things or group of things must provide. The analysis must also account for a more 
comprehensive approach to requirements elicitation. 

Regarding functional requirements, the analysis should consider—beside those things that have basic 
sensing or actuating functionalities—the presence of smarter things that can be activated to autonomously 
perform long-term activities associated with their nature and their role in their sociophysical environment. 
These things can range from simple cleaning robots to more sophisticated autonomous personal assistants.9 

Regarding nonfunctional requirements, IoT applications shouldn’t just provide a suite of coordinated 
functionalities. They should also globally regulate IoT system activities continuously, according to the 
system stakeholders’ policies and objectives. 

So, in addition to analyzing the specific functionalities to deliver, the analysis must also identify the 
policies and goals to be associated with services and applications—that is, the desirable state of affairs to 
strive for in the context of the system’s operational scenario. 

Accordingly, the key abstract classes of requirements to be identified are policies, goals, and functions 
(see Figure 2). 



Figure 2. IoT actors and their role in defining and exploiting IoT system requirements. The general classes 
of requirements are policies, goals, and functions. 

Policies express desirable permanent configurations or states of functioning of an overall IoT system 
(global policies) or portions of it (local policies). In the hotel scenario, global policies can be defined, for 
example, to specify each room’s maximum occupancy and have local cameras monitor it, to suggest that 
people move to different rooms when needed. Policies are always active and actively enforced. The definition 
of global and local policies is generally determined by the global managers, although local managers can be 
authorized to enforce temporary local policies on local portions of the system (if this doesn’t conflict with 
the policies the global managers enforce). 

Goals express desirable situations that, in specific cases, can or should be achieved. A goal’s activation 
might rely on specific preconditions (the occurrence of specific events) or a specific user action (that is, a 
goal’s activation is invokable as a service). The typical postcondition (deactivating the pursuit of a goal) is 
the achievement of the goal itself. For example, in the hotel scenario, an evacuation procedure could activate 
when a fire is detected (the precondition); its goal (and postcondition) would be the quick evacuation of all 
the people in the building. Toward that goal, the procedure’s activation could trigger digital signage and 
controllable doors to rationally guide people toward the exits. The definition of global and local goals is 
generally assigned to global, and sometimes local, managers. Users can sometimes be authorized to activate 
simple local goals (or goals associated with individual things) as a service. 

Functions define the sensing, computing, or actuating capabilities of individual things or a group of things, 
or specific resources that are to be made available. Functions are typically accessible as services and can 
sometimes involve coordinated access to the functions of a multitude of things. In the hotel scenario, 
examples include the individual functionalities of the appliances in a conference room (for example, opening 
or closing a curtain or displaying or changing a slide in a projector), as well as more complex functionalities 
achieved by orchestrating things (for example, setting up a room for presentation by closing curtains and 
switching off lights). Functions and the associated services are typically defined by global and possibly local 
managers but are also exploited by the IoT system’s everyday users (for example, the hotel guests and 
conference attendees). 



Avatars and Coalitions 
The things involved in implementing the functions, goals, and policies can correspond to a variety of objects 
and devices (besides places and humans), each relying on a plethora of technologies and capabilities. 
Accordingly, from both the gluing-software-infrastructure and software engineering viewpoints, it’s 
necessary to define higher-level abstractions to handle the design and development of applications and 
services and to harmoniously exploit IoT system components. 

Most proposals for programming models and middleware acknowledge this need by virtualizing 
individual things in some sort of software abstraction.2 The WoT perspective abstracts things and their 
functionalities in terms of generic resources, to be accessed through RESTful calls, possibly associating 
external HTTP gateways to individual things if they can’t directly support HTTP interfacing.13 Other 
approaches suggest adopting a standard service-oriented architecture (SOA).14 Also, some proposals 
consider associating autonomous software agents with individual things,3 which particularly suits the fact 
that some goals to be pursued in autonomy might be associated with things. 

In addition, regarding the provisioning of specific services and applications, some things make no sense 
as individual entities, as I already stated. Those things are to be considered part of a group and provide their 
services as a coordinated group. This applies to cases in which the group’s functionalities complement each 
other and must be orchestrated.3 It also applies to cases in which a multitude of equivalent devices must be 
collectively exploited, abstracting from the presence of the individuals.4,12 
 

With these considerations in mind, to create a synthesis from a variety of proposals, I suggest the unifying 
abstractions of avatars (or groups of avatars) and coalitions (see Figure 3). 

Figure 3. Combinations of avatars. (a) An individual avatar. (b) An avatar group. (c) An avatar coalition. 
An avatar is a general abstraction for individual things or a group of things (and possibly other avatars) that 
contribute to define a unique functionality or service. 



Avatars and groups. Borrowing the term from Michael Mrissa and his colleagues,6 I define an avatar as 
the general abstraction for individual things and for a group of things (and possibly other avatars) that 
contribute to define a unique functionality or service. Avatars abstract away from the specific physical, social, 
or technological characteristics of the things they represent. They have four main characteristics: 

• An avatar has a unique identity and is addressable. An avatar representing a group doesn’t 
necessarily hide the inner avatars’ identities, but it has its own identity. 

• Services represent access points for exploiting avatars’ unique capabilities. Depending on the 
things and functionalities a service abstracts, this exploitation could involve triggering and 
directing the sensing, computing, or actuating capabilities or accessing managed resources. 

• Goals, in the sense of desired states of affairs, can be associated with avatars. A goal might have 
a precondition for autonomous activation or might be explicitly activated by a user or another 
avatar. 

• Events represent specific states of affairs that an avatar can detect and that might be of interest 
to other avatars or users. Those avatars or users can subscribe to those events. 

In the hotel scenario, individual avatars could be associated with conference room appliances and 
objects—for example, the projector and window curtains. Groups of avatars could help set up a conference 
room for a presentation by coordinating several appliances or objects. Such a group might be able to perceive 
events in the room (such a door opening) and react accordingly (for example, to preserve specific lighting 
conditions). 

Clearly, a group of avatars requires an internal orchestration scheme for coordinating the activities or 
functionalities of the things (or other avatars) it includes. Such a scheme defines the internal workflow of 
activities among the things and avatars and the constraints or conditions they’re subjected to. The scheme 
might also account for contextual information, to make the group’s activities context-aware. (For example, 
the service for setting up a conference room for a presentation must adapt to the current lighting conditions.) 
Most IoT middleware and programming approaches address the need to define orchestration schemes and 
constraints regarding the access and use of things (or groups of things).4,5,14 

Coalitions. Borrowing the term from the area of multiagent systems,3 I define a coalition as a group of 
avatars that coordinate each other’s activities to reach specific goals or enact specific policies. Accordingly, 
coalitions might be temporary or permanent. Unlike avatar groups, coalitions don’t necessarily have an 
identity or provide services. 

A coalition must be defined in terms of a coordination scheme, which includes the following: 

• Membership rules specify the conditions upon which an avatar could or should enter a coalition. 
From the viewpoint of individual avatars, the act of entering a coalition can be represented by 
the activation of a specific goal whose preconditions correspond to the membership rules. 

• A coordination pattern defines the interaction protocol and shared strategy by which the 
coalition members must interact. This pattern might include an explicit representation of the goal 
that activates the coalition. However, such a goal can also be implicit in the definition of the 
protocol and strategy. 

• A coordination law expresses constraints on how the avatars in the coalition act and interact. 
This includes the possibility to subscribe and react to events occurring in the coalition. 

The view of avatar coalitions can be useful to realize policies or aggregate groups of avatars based on 
their similarity, so as to make them work collectively in a mission-oriented way without forcing them into 
specific identity-centered orchestration schemes. This is coherent with the idea of collective self-organized 
programming in sensor networks and IoT systems,4,12 enabling the dynamic formation of service ensembles 
focused on short-term goals. 

In the hotel scenario, a permanent coalition of all the thermostats and air-conditioning fans in the hotel’s 
public areas could continuously coordinate to preserve specific climate conditions, according to the hotel 
management’s policies. Also, when a fire alarm activates, a temporary coalition of the hotel’s digital signage 
could provide evacuation directions in a coordinated way. For these two examples, membership in these 
coalitions would rely not on the avatars’ unique identities but on their attributes (for example, public-area	=	



true) and preconditions. 

From Design to Implementation 
The design of avatars, groups, and coalitions abstracts from implementation details. From my perspective, 
and on the basis of my analysis of the state of the art, such design concepts are abstract enough to tolerate 
implementation above most existing systems and infrastructures. 

Although a detailed discussion of implementation issues is outside this article’s scope, the following 
general considerations are worth reporting. 

Infrastructural needs. Increasingly, new IoT applications and services will have to be deployed over an 
existing IoT hardware infrastructure, possibly with some associated middleware. So, analyzing an 
infrastructure’s characteristics and limitations will be a prerequisite for developing software over it. This is 
because deployment of the desired IoT services and applications might require enriching and updating the 
hardware infrastructure and its appliances. 

For instance, in the hotel scenario, the conference room light switches might require updating to make 
them wirelessly controllable and make it possible to virtualize them as avatars with associated set-light-level 
services. 

Implementing avatars. The abstraction of avatars is of a very general nature, but the specific 
implementation model clearly depends on the adopted middleware infrastructure and programming model. 
By adopting an agent-based model and associated agent-based middleware, developers can straightforwardly 
implement an avatar as a software agent, with its services, goals, and ability to sense events.3,15 The adoption 
of a RESTful WoT approach is viable as well. Although RESTful architectures can’t directly accommodate 
the stateful concepts of avatar goals and events, most WoT models and middleware recognize the need to 
somehow incorporate similar concepts.2 

Implementing coordinators. The implementation of orchestration of avatar groups and coordination 
schemes for coalitions depends strongly on the adopted middleware and its underlying coordination models. 
Yet, as a general guideline, for relatively small groups and coalitions with well-defined, predictable 
coordination needs (such as in setting up a conference room for a presentation), the best solution might be 
assessed SOA orchestration models14 or rule-based orchestration engines.5 For large-scale groups and 
coalitions in dynamic situations (such as the coalition of digital signage for emergency evacuation), 
coordination models based on aggregate programming12 or nature-inspired mechanisms4 are preferable. 

As technologies mature and real-world experiences accumulate, more research on software engineering for 
IoT systems will be needed. This research might exploit overlap with related engineering areas,3,4 eventually 
leading to the identification of general models and methodologies—and associated tools—for IoT-oriented 
software engineering. 
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