
09/04/2024 10:50

A new boundary driven NEMD scheme for heat and particle diffusion in binary mixtures / Templeton, C.;
Elber, R.; Ferrario, M.; Ciccotti, G.. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - 119:19-20(2021), pp.
e1892849-1-e1892849-13. [10.1080/00268976.2021.1892849]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:



A new Boundary Driven NEMD scheme for heat and particle

di↵usion in binary mixtures

C. Templetona, R. Elberb,c, M. Ferrariod and G. Ciccottie,f,g

aDepartment of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712,
United States; bDepartment of Chemistry, University of Texas at Austin, Austin, Texas
78712, United States; cOden Institute for Computational Engineering and Sciences,
University of Texas at Austin, Austin, Texas 78712, United States; dDipartimento di Scienze
Fisiche, Informatiche e Matematiche, Università di Modena e Reggio E., 41125 Modena,
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Abstract

A new method for Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD) simulation is pre-

sented. It allows the simultaneous imposition of both a constant temperature and concentration gradient. By

varying the strength of the imposed gradients and obtaining stationary values of the mass and energy flux, this

new technique can be used to extract the Onsager transport coe�cients directly. We demonstrate the setup and

measure explicitly the Soret and Dufour e↵ects for a binary mixture of Argon and Krypton. We compare the

Soret coe�cient computed using this new scheme against the experimentally inspired protocol where the sys-

tem has no mass current. However, this method is limited to only an estimate of the Soret coe�cient rendered

ine�cient due to the poor signal-to-noise ratio and cannot give the transport coe�cients explicitly. The new

technique allows for accurate measurements of non-zero flux values and, if run in the linear response domain,

the full set of transport coe�cients can be extracted directly. We also speculate about how this scheme could

be applied to more complex systems with applications for polymer separations and biological activities.

1. Introduction

Thermophoresis or thermal di↵usion is the process by which mixtures of multiple
particle types separate due to an imposed temperature gradient, oftentimes referred
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to as the Soret e↵ect. Thermophoresis is relevant in a variety of processes, ranging
from large solar pond systems where a high salt gradient prevents natural convec-
tion amongst the layers helping to trap heat at the bottom of the pond; all the way
to small biopolymers in which it is used to help characterize protein interactions in
fluids [1]. Experimental estimation of this e↵ect has proven to be challenging as flow
induced by thermal gradients are typically of smaller order than those from concen-
tration gradients. This is where molecular dynamics (MD) experiments have risen as
a means to study this phenomenon, aiming initially at the calculation of transport
coe�cients by means of Green-Kubo formulas or by applying indirect (mechanical)
perturbations [2, 3]. Prior work has examined the impacts of subjecting the system
to a thermal gradient and waiting until mass equilibrium (J1 = 0) is reached and the
particles have naturally separated [4–7]. When this occurs the ratio of the resultant
concentration profile over the thermal gradient gives the Soret coe�cient (ST ); a mea-
sure of the ratio between the thermal di↵usion coe�cient (D0) to the binary di↵usion
coe�cient (D) and allows insight into the key driving force behind particle separation.
Given similar species, the lighter one will typically conglomerate in higher temperature
regions and exhibit negative thermophoretic behavior as it moves from the cold to hot
region. One study has attempted to measure the rate at which this separation occurs
by the sudden imposition of a temperature gradient and measurement of the transient
response [8]. A larger value of ST indicates regimes in which thermal di↵usion becomes
more dominant, particuarly relevant when liquids are near a glassy regime [9].

Conversely, the Dufour e↵ect is the energy flux of the system created by the imposi-
tion of a concentration gradient. It has not been as well characterized in the literature
since it is typically negligible for liquid mixtures [10], but there is experimental evi-
dence for its e↵ect in carbon tetrachloride and cyclohexane mixtures [11]. In addition,
the timescale for the establishment of a stationary thermal gradient is generally much
quicker than that of a stationary concentration gradient, so studying this e↵ect ex-
perimentally is constrained by the establishment of a constant concentration gradient
during which time other e↵ects such as buoyancy can corrupt precise measurements.

In this paper we introduce a new schema to produce Boundary-Driven Nonequilibrium
Molecular Dynamics (BD-NEMD). We attempt to study the impacts of imposing
both a thermal and concentration gradients, rT and rx1 respectively, by means of
fixing the kinetic energy and mole fraction at the edges and aim to answer two main
questions.

(1) Can a stationary state be established by imposing that only one gradient be
di↵erent from zero, and from it, by monitoring the flux values, can an accurate
and direct measurement of the Onsager transport coe�cients (i.e. the thermal
di↵usion D

0, the binary di↵usion coe�cient D and the thermal conductivity )
be obtained?

(2) Can we identify the regime under which linearity is observed and so provide a
reliable estimate for the transport coe�cients to be compared with prior simu-
lation protocols?

In sect. 2 we describe in detail the model and the simulation setup needed to drive
the system out of equilibrium to enforce a stationary condition with the presence of
linear temperature and concentration gradients. In sect. 3 we recall from de Groot-
Mazur [12] the constitutive relationships between the energy and mass fluxes and
the corresponding temperature and chemical potential gradients in the linear regime

2



for heat and mass transport in binary mixtures which define the desired transport
coe�cients. In sect. 4 we describe the technique to extract their precise values from
the simulations and report our estimate of the of these values with comparison to
results obtained using di↵erent protocols. Lastly in sect. 5 we draw some conclusions
from the present study and discuss how this simulation setup can be applied to more
complex molecular systems.

2. Model, Method, and Simulation Setup

For a large class of irreversible thermal-di↵usive phenomena produced by a range of
experimental conditions the flows in a purely phenomenological theory are expressed
as linear function of the thermodynamic forces

Ji =
X

j

LijXj (1)

where J and X are any of the Cartesian components of the independent fluxes and
thermodynamic forces appearing in an expression for entropy production [12].

The matrix of coe�cients, L, is comprised of quantities called the Onsager transport
coe�cients and the relations written above are the corresponding phenomenological
equations. In this work, restricted to heat and particle di↵usion phenomena in binary,
non-reactive, mixtures, we will model the external condition producing di↵usion and
transport of heat. In this case the relevant thermodynamic forces can be defined as
the gradients of 1

T
and µ

T
, where T is the temperature and µ an appropriate chemical

potential, function of temperature, pressure and concentration, to be defined later on.

In this section we introduce a procedure that allows for simultaneous imposition of a
temperature and concentration gradient through BD-NEMD. The system we choose to
study is a binary mixture of Argon (Ar) and Krypton (Kr) atoms which has been well
characterized in the literature previously and allows for more accessible comparisons.

The system is modeled in reduced units using the Ar atom as reference, as characterized
in Plathe [5]. The atomic interactions are described through 6-12 LJ pair potentials
with mAr = 1, ✏Ar = 1, �Ar = 1 and mKr = 2.1, ✏Kr = 1.39, �Kr = 1.07. Mix-
ing interactions between the two are constructed by means of the Lorentz-Berthelot
convention (�12 = �1+�2

2 and ✏12 =
p
✏1✏2). We use a timestep (ts) of 0.005 units (cor-

responding for real Ar to 1.09 · 10�14 s ) and a cuto↵ distance for energy calculation
of Rc = 3�Kr = 3.21.

The box size is 22.47 ⇥ 22.47 ⇥ 40.28 with periodic boundary conditions are applied
only in the x and y directions. In the z-dimension we impose a confining external ‘wall’
potential which mimics the interaction of a molecule with the planar surface of a semi-
infinite crystal made of LJ particles [13]. The z-dimension of the box is chosen so to
achieve, on average, a number density n = 0.725 in the bulk. We choose to employ the
same potential of the wall for both Ar and Kr particles, U (w)(d) =

�
C

45d9 � C

6d3

�
+Ushift

for 0 < d  dc and U
(w)(d) = 0 for d > dc, where d is the particle distance from the

wall, C = ⇡nw and we set the wall number density nw equal to the average density
of the fluid mixture. The values of the potential shift Ushift are chosen in such a way
that U

(w)(dc) = 0. Setting the cut-o↵ distance equal to the position of the minimum
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of the un-shifted potential dc = 6
p

2/5, the interaction of the particles with the wall
becomes purely repulsive with both potential and force continuously going to zero with
increasing distance d ! dc. Shown in Fig. 1 is a schematic diagram of the simulation
setup together with a snapshot of the system with Kr atoms in purple and Ar in green.

bulk region with ∇T > 0 , ∇x1 > 0  regionTC

3σKr 3σKr 3σKr 3σKr24σKr

  regionTH

  regionwall   regionwall

  regionTH, x1H  regionTC, x1C

Je

J1

z

Figure 1. Panel (a) shows the subdivision of the simulation box into the di↵erent regions, the inner zone,
white background, is where the fields and currents are measured, while the regions where the thermostats act
on particle velocities are highlighted by di↵erent shades of blue for the lower temperature TC , and red for the
higher temperature TH , with particle exchanges taking place in the darker zones to fix the concentrations to
the values x1C and x1H respectively, as described in the text. Periodic boundary conditions are only applied
in the x, y directions, while in the z-direction the system is confined by repulsive walls, dark grey area, placed
at the edges of the box. In panel (b) a snapshot is rendered with VMD [14] from the simulation data with
temperature gradient rT > 0 and molar fraction gradient rx1 > 0 between the two reservoirs along the
z-axis (blue arrow on axis compass). Note a separation of Kr species (purple) particles gathering in the higher
temperature region, TH , as a result of the imposed concentration gradient. The empty spaces in the z-direction
are the regions rarely explored by the particles where the wall potential is highly repulsive.
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white background, is where the fields and currents are measured, while the regions where the thermostats act
on particle velocities are highlighted by di↵erent shades of blue for the lower temperature TC , and red for the
higher temperature TH , with particle exchanges taking place in the darker zones to fix the concentrations to
the values x1C and x1H respectively, as described in the text. Periodic boundary conditions are only applied
in the x, y directions, while in the z-direction the system is confined by repulsive walls, dark grey area, placed
at the edges of the box. In panel (b) a snapshot is rendered with VMD [14] from the simulation data with
temperature gradient rT > 0 and molar fraction gradient rx1 > 0 between the two reservoirs along the
z-axis (blue arrow on axis compass). Note a separation of Kr species (purple) particles gathering in the higher
temperature region, TH , as a result of the imposed concentration gradient. The empty spaces in the z-direction
are the regions rarely explored by the particles where the wall potential is highly repulsive.

All simulations are performed with a fixed total number N = 14112 of particles, on
average with a 50/50 split of Ar to Kr atoms. The initial configuration is created
by randomly assigning 7056 Ar and 7056 Kr particles with equal probability to the
sites of a fcc lattice. After the particles have been placed and their identities assigned,
the system is equilibrated by running a 200,000 ts constant temperature dynamics by
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means of the standard velocity Verlet algorithm coupled to an Andersen thermostat,
where random velocity sampling takes place with a 10 ts frequency.

Thermal and concentration gradients are applied to the system in the BD-NEMD
production runs. This is accomplished by first removing for convenience two small
regions of width 0.88 at the edges, most of the time empty of particles, and splitting
the remaining volume, which is of dimension 21�Kr⇥21�Kr⇥36�Kr, along the z-axis into
two reservoir regions at the edges and a central “bulk” region where particles dynamics
is not perturbed, but simply determined by the forces arising from intermolecular
interactions and following Newton’s equations of motion. Each of these regions is split
into slices of width 1�Kr, with constant volume V

(s) = 540.244 in reduced units. The
two reservoir regions consist of 6 slices at both edges while the bulk region consists of
24 such slices in total, and in each slice the temperature, partial density and energy
fields, together with their related currents are calculated at each time step.

In the reservoir regions temperature and concentration can be imposed individually
in each of the 6 slices on both sides of the simulation box. Temperature control is
achieved by rescaling the kinetic energy separately for each atomic type.

Concentration control is achieved by a switch of particle identity at random in the
reservoir, from Ar to Kr or vice versa, with mass changing while keeping fixed the
momentum value, in such a way to attain within ±1 particle the desired concentration
value. The origin of the latter limitation in the ability of fixing the concentration
is simply due to the fact that the particle count in the reservoir slices cannot be a
fractional number. Consider in particular the case of equal concentrations: it can be
enforced only if the total number of particles in the slice is even. If this number happens
to be odd choosing the type of the last unpaired particle will introduce an excess of
one particle type. In the general case of arbitrary concentration, the chosen value to
enforce will always fall between two fractional numbers di↵ering at most by one unit in
the integer in the numerator: the algorithm will then assign the unknown type for such
last remaining particle at random with a probability equal to the desired concentration
value. In this way, the concentration in each reservoir slice will asymptotically attain
the desired imposed value on average.

In the production run the 6 slices of each reservoir region are further split into two
groups. While temperature control is applied in all the 6 slices, concentration control
is only applied to the outermost, with respect to the bulk, 3 slices. This permits
having a thermostatted bu↵er region of width equal to the potential cut-o↵ distance
Rc between the fixed concentration reservoirs and the bulk region in which no particle
swap takes place. The single-step switch of the particle identity does in fact introduce
a numerical noise in the integration algorithm, particularly in the case of the smaller
Ar to larger Kr transformation where a spike in the force value can result in a poor
integration of the dynamics at fixed timestep value. Fortunately for the Ar/Kr swap,
the di↵erences between the LJ potential parameters are small and with the imposed
constant kinetic energy temperature control this problem is minimized. We found that
avoiding direct contact between the concentration reservoirs and the bulk region is
su�cient to obtain the desired accuracy in the dynamics of the total system. We did
observe that without temperature control numerical errors introduced by the sudden
particle identity switches, although very small for Ar/Kr on the local scale, results
in an unwanted and sizeable overall temperature rise on the very long time scales
required to get accurate averages, persisting even over several millions timesteps.
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The thermostat regions are dubbed TH/TC and are outlined in red/blue in Fig. 1. To
impose a temperature gradient we set TH = T + �T/2 and TC = T � �T/2. This
establishes a constant thermal gradient with a value very close to �T/�z around the
mean system temperature (T = 1) across the inner 24 slices of width �z = 25.68.

Velocity rescaling is performed following a similar procedure to the one outlined in
a previous paper [15], where at each timestep, in every thermostatted slice, the total
kinetic energy of the individual particle types are calculated after removing the group
center of mass motion from the individual particle velocity. Temperature control is
performed in such a way that, individually for each particle type and as a result
also globally, the total momentum in each slice is kept unchanged by the velocity
rescaling procedure. The scaling factor is determined according to the instantaneous
temperature T↵ for species ↵ computed from the kinetic energy (EK↵) of the N↵

particles of species ↵, with ↵ = Kr for species 1 or ↵ = Ar for species 2. Locally for
each slice:

T↵ =
2EK↵

3kB(N↵ � 1)
(2)

with

EK↵ =
N↵X

i=1

(p↵,i �m↵v↵)2

2m↵

(3)

where v↵ = 1
N↵m↵

P
N↵

i=1 p↵,i is the instantaneous center of mass velocity of particles
of species ↵, p↵,i is the instantaneous individual particle momentum and the index i

runs over the N↵ particles within the inspected slice. We observed on the very long
time scale of our simulations, particularly for the �T = 0 cases, that thermostats
using a velocity rescaling algorithm have a tendency to return a local temperature
slightly above the desired value in the bulk region. The di↵erence remains indeed
small, below 10�4 parts, and it is hardly visible with respect to the statistical noise
in the local averages even after averaging over several tens of million timesteps. This
shift in temperature e↵ect does not change the temperature gradient as it is constant
across the bulk and we ignore its e↵ect. All the values reported for temperatures and
concentration gradients, as well used in the calculation of transport properties, are
those e↵ectively measured by averaging over the particles in the bulk region.

All calculations were performed at fixed zero total momentum for the simulated system
in the x- and y-directions, while the component in the z-direction fluctuates around
zero only due to the interaction with the containing walls, since the two combined
procedures leave the momentum unchanged at each time step. We choose to impose
temperature gradients and concentration gradients in the ranges �T = [0., 0.1] and
�x1 = [0., 0.1], where each simulation is run for several tens of million timesteps. Long
equilibration times are needed to reach stationary flux values and are on the order of
t = 30 · 103 LJ time units as shown in Fig. 2 by plotting the running average of the
mass flux with (�T, �x1) = (0.1, 0.1).

From the simulations we extract the particle count, mass flux, heat flux, and tempera-
ture at each timestep and coarse grain them by averaging in each of the slices over 200
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Figure 2. Running average of the mass flux for (�T, �x1) = (0.1, 0.1) with error shown by the shaded region.
Relaxation to the stationary value occurs after t = 30 · 103 units with minor long-living fluctuations around

the mean value afterward as shown by the horizontal green line. Shown in the inset is the signal-to-noise ( µ
2

�2 )
ratio which encouragingly continues to steadily climb with increasing statistics.

timesteps. The typical coarse-grained result along the z-dimension from a single sim-
ulation run are shown in Fig. 3 for the case (�T,�x1) = (0.1, �0.045), corresponding
(see Section 4) to J1 ! 0 in the bulk region. The darker colors at the edges in the
panel highlight the di↵erent reservoir regions with the adjoining slightly lighter colors
indicating the additional thermostat slices.
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Figure 3. A plot of the temperature (a), mol fraction (b), mass flux of Kr (c), and energy flux (d) as a function
of position along the z-direction measured in units of slice width, i.e. �Kr, with (�T, �x1) = (0.1, �0.045).
Each point represents the average over a slice and TH/TC are indicated by the red/blue shaded regions. The
reservoir region in which the mol fraction is controlled consists of only the first and last 3 slices in TH/TC as
described in the text and are shaded darker. The values reported in (c) and (d) are for the flux averaged across
the entire bulk region, neglecting the slices in direct contact with the thermostats and where the faint green
line shows the zero level. The vertical green lines in panels (a) and (b) show the equidistant point in the bulk
from the reservoirs and it may be observed that the concentration profile (b) is not symmetric in shape for the
two species across the bulk and indicates a preference of the heavier Kr towards the colder regions.

3. Theory

The mass and energy flux drive the evolution of a system and the Onsager transport
coe�cients, notably D

0, D, and , measure the strength of the response to imposed
gradients. Note that, due to the Curie principle, viscosity belongs to independent
transport equations and we will not be concerned with it in the present manuscript. It
should be highlighted that these coe�cients are only meaningful in the linear regime
for which they are derived, where it has been assumed that the system is only at the
first order expansion away from equilibrium. Outside of this regime the higher orders
of the gradients become relevant and need to be considered explicitly.

For a binary system, one can write the constitutive relationships, Eq. (1), relating these
coe�cients and the gradients to the energy and mass flux. Microscopically, spatial
variations in the chemical potential and temperature are what drive this evolution
and give rise to non-zero fluxes. The relevant chemical potential of the system (µ =
µ1 �µ2 with µ1, µ2 respectively the chemical potential of Kr and Ar, defined per unit
mass) is taken to be a function of temperature, pressure, and the molar fraction of
component 1 x1, i.e. µ = µ(T, p, x1). We can exploit the fact that in the linear regime
the average temperature and pressure remain constant and use Gibbs-Duhem and

chain rule (see Appendix) to write rµ = ⇢

m2x2n

⇣
@µ1

@x1

⌘

T,p

rx1. We choose to take the

specific constitutive relations from equation (229) and (230) on page 276 of chapter
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XI of de Groot-Mazur book [12] expressed in terms of the molar fraction x1 in the
following format:

�Jq =
⇥
rT + x1 nm1µ11T D

00 rx1
⇤

(4)

�J1 =
m1m2 n

⇢

⇥
x1x2 nD

0 rT + nDrx1
⇤

(5)

where J1 is the mass flux of Kr, Jq the heat flux, µ11 =
⇣

@µ1

@x1

⌘

T,p

the partial derivative

of the Kr chemical potential at constant temperature and pressure, ⇢ = m1x1n+m2x2n

the mass density with n the number density, x1 =
⇣

nKr

nAr+nKr

⌘
the mole fraction of Kr,

and x2 =
⇣

nAr

nAr+nKr

⌘
the mole fraction of Ar. Onsager’s reciprocal relations express the

equality of the cross coe�cients and relate the mass flow induced by a temperature
gradient to the energy flux coming from a concentration gradient and manifest itself
in the above equations by setting D

0
= D

00
.

To estimate the heat flux in eq. 4 for a given slice we can use equivalently, as shown
by Ercole et. al [16], the energy flux defined by Irving and Kirkwood [17] as

J(s)
e =

1

V (s)

2

4
X

i2slice

ei

⇣
vi � v(s)

⌘
+

1

2

X

i2slice

X

j 6=i

(Fij · rij)
⇣
vi � v(s)

⌘
3

5 (6)

where ei is the sum of potential and kinetic energy, vi the velocity for atom i, v(s) the
barycentric velocity of the tagged slice, Fij the force on atom i from atom j, and rij

the vector joining the positions of atom i and atom j. Note that index j extends to
particles outside the slice with the slice volume given by V

(s) = 21�Kr ⇥ 21�Kr ⇥ �Kr.

We estimate the mass flux in eq. 5 by summation of the species momentum in each
slice

J(s)
1 =

1

V (s)

X

i2slice

⇣
pi �miv

(s)
⌘

(7)

where pi is the momentum of Kr atoms in slice i. By definition J(s)
1 + J(s)

2 = 0.
The choice of the fixed repulsive wall at the edges permits the system to remain
immobile and allows the total momentum to fluctuate, throughout the simulation run,
around the initial zero value. We specifically choose to impose along the z-direction
confining walls rather than periodic boundary conditions as with the latter we observed
a permanent non-zero barycentric mass flow in the central bulk region compensated
by an overall opposite flux created in the two reservoir regions since they are in direct
contact through the periodic boundaries. This would contradict the hypothesis of zero
bulk barycentric mass flow under which de Groot-Mazur’s equations were derived.
Finally, we choose to present the results in terms of the heavier particle 1 (Kr), note
that only the sign of the Soret coe�cient ST would change if referring to Ar.

We make in passing the remark that an additional way to write the constitutive rela-
tions has been formulated by Trimble [18] and followed, not completely consistently, by
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other studies for transport coe�cients [7, 15]. This results in defining the coe�cients
in a slightly di↵erent notation. However, conversion between the two can be found and
is presented in the Appendix. Note that for the purpose of this manuscript we present
the results using eqn 4, 5, following de Groot-Mazur formalism.

In order for the theory to be correctly applied there are two requirements that must
be fulfilled, first that the system reaches a asymptotic state in which the fluxes reach a
uniform stationary value across the central bulk region and second that the strength of
the imposed gradients remains in the linear regime region. Once that is assessed we also
need to make a proper estimate of the errors associated with the statistical averages
which provides the values of the fluxes. We can postpone to the next section the checks
for both requirements, while we conclude this section discussing the algorithm we will
use to evaluate the errors.

We remind that values sampled along a trajectory generated by Molecular Dynamics
are often correlated in time and for error analysis we need to estimate correctly the
number of independent contributions to the averages. The error associated to the flux
value is computed via a block averaging approach which allows for independent samples
to be obtained by uniformly partitioning the trajectory into di↵erent blocks, giving Nb

blocks of equal length ⌧b, as described in Flyvbjerg [19]. The Nb necessary to determine
when the independence of block averages occurs is taken through observation of when
the estimated variance of the block averages of length ⌧b divided by Nb reaches a
plateau. An example of this procedure is shown in Fig. 4 . The error of the overall
average is then computed through the following set of equations:

Jb =
1

⌧b

⌧bX

i=1

Jb,i , b = 1, 2, . . . , Nb (8)

J =
1

Nb⌧b

NbX

b=1

⌧bX

i=1

Jb,i (9)

s
2
⌧b

=
1

Nb � 1

NbX

b=1

�
Jb � J

�2
(10)

s
2
J =

s
2
⌧b

Nb

(11)

where Jb,i is either the mass or energy flux value at an instant i in time within the
particular time block b, s2

⌧b
is the, generally biased, estimate of the variance of Jb and

is a function of the time length ⌧b of the blocks. For high frequency sampling rates the
estimate is biased due to the values being correlated in time. The unbiased estimated
variance of J is taken as the value of s2

⌧b
/Nb as a function of ⌧b in the range where it

remains approximately constant.
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Figure 4. The estimated standard deviation for J1 from the block analysis of three independent trajectory

segments each of 107 timesteps for the (�T = 0.1, �x1 = 0) condition. Values for (
q

s2
⌧b

/Nb) are plotted

against the number of timesteps in each block ⌧b, where Nb is the number of blocks and Nb ⌧b = 107. The
region between 100 and 10000 steps shows a relatively flat profile, which implies that there the block averages
can be considered as independent samples. Going to shorter intervals of time, the decrease can be traced back
to increasing correlations while at the other end the number of blocks Nb becomes too small to provide a
reliable estimate of the variance of the sample.

4. Results

We start by showing that both requirements mentioned in Section 3 are met, namely
that the flux values are relaxing to stationary values and that the gradients applied
are kept in the linear regime. The relaxation of the mass flux of particle 1 is shown
in Fig. 2 for the case of (�T, �x1) = (0.1, 0.1). We see that the presence of long-
lived fluctuations after an initial “fast” relaxation requires averages over time intervals
lasting longer than O(103), but that the value does plateau and promisingly that the
signal-to-noise ratio climbs steadily with time, testifying the achievement of asymptotic
stationary conditions.

A first check for linearity can be quickly performed by comparing the values of the
fluxes with the corresponding gradients when, while keeping �T = 0, we double the
imposed concentration boundary value from �x1 = 0.05 to �x1 = 0.10. Result-

ing in rx
(0.05)
1 = (1.540 ± 0.004) · 10�3 with J(0.05)

1 = (�7.73 ± 0.25) · 10�5 and

rx
(0.1)
1 = (2.980±0.004) ·10�3 with J(0.1)

1 = (�14.67±0.29) ·10�5. Thus giving a ratio

of rx
(0.1)
1 /rx

(0.05)
1 = J(0.1)

1 /J(0.05)
1 = 1.9. We recall that while for the temperature

gradient rT ⇡ �T/�z holds to a high degree of accuracy, this is not the case for
the concentration gradient rx1 in the presence of a non-zero temperature gradient
in the bulk region. Therefore the general test for linearity consist in showing that
J1(rTa +rTb,rx1,a +rx1,b) = J1(rTa,rx1,a)+J1(rTb,rx1,b) for any combination
of the individual imposed gradients. Results from combining the imposed boundary
conditions �T = 0.0, 0.05, �x1 = 0.0, 0.05, are analysed in Table 1 and show that,
with small relative errors, the condition for linearity is well satisfied.
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Table 1.: Check of linearity using the measured values of the temperature gradient,
the energy flux, the molar fraction gradient and the mass flux for component 1,
reported in LJ units. The value obtained summing the fluxes for case (a) and case
(b) are compared with the values measured with the case (a+b) with boundary val-
ues chosen to impose simultaneously both the temperature and the molar fraction
gradients imposed in (a) and (b) separately. The fluxes satisfy the linear regime
hypothesis within the numerical accuracy, with the resulting gradients adding up
consistently. The relative error (a+b)-(sum)

(sum) is also included. Note that, since we can
impose the boundary values but not the gradients, the check cannot be performed
with exactly the same total gradients.

103 ·rT 103 · Je 103 ·rx1 105 · J1

(a) 1.861(0.004) -8.50(0.03) -0.121(0.004) -3.56(0.25)
(b) 0.003(0.004) 0.07(0.03) 1.540(0.004) -7.73(0.25)

(sum) 1.864(0.006) -8.32(0.4) 1.419(0.006) -11.29(0.35)

(a+b) 1.853(0.004) -8.39(0.03) 1.395(0.004) -10.73(0.25)
(rel.err) 0.6 0.8 1.7 5

With the requirements for linearity and stationarity of the fluxes and gradients fulfilled,
we next move to the calculation of the transport coe�cients with the BD-NEMD
method. We can see from the constitutive relations, Eq.s (1), that if we impose all
but one gradient to be zero we can measure one by one the elements of the matrix of
coe�cients while varying the strength of the non-zero gradient. So, at least in principle,
in our procedure we have to set one of the two gradients equal to zero to extract directly
the two transport relevant coe�cients from the ratio of the resultant measured fluxes
and the strength of the other gradient. As said, we only impose boundary values,
so this is possible only after ensuring that the observed value of the first gradient is
actually close to zero in the central bulk region, otherwise the residual value of the
non-vanishing gradient needs to be taken into account explicitly. However, while we
can impose the condition rT = 0 with any desired degree of accuracy, in the presence
of a non-zero temperature gradient a non negligible molar fraction gradient rx1 6= 0
is unavoidable in the bulk region. Therefore we start by extracting the transport
coe�cients from Eq.s (4) and (5) in the case when rT = 0 and rx1 6= 0. With both
J1 and Je known, the binary di↵usion coe�cient D and the product µ11D

0 can be
computed by rearranging the two equations to give

µ11 D
0 =

�Je

m1x1nTrx1
. (12)

D =
�J1⇢

m1m2 n
2 rx1

(13)

The gradients rT and rx1 are the ones calculated from the temperature and molar
fraction profiles in the bulk region between (z = 9�Kr to z = 33�Kr), as shown in
Fig. 5(c) for the case �T = 0 and �x1 = 0.1. We can observe that the corresponding
temperature profile is indeed flat, satisfying the condition rT = 0. One can see that
in the bulk region there is a slight temperature increase with respect to the reservoir
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regions, but it remains uniform and therefore gives no contribution to the flux so that
D and the product D

0
µ11 can be readily estimated from the above equations.

Figure 5. The temperature (top) and concentration (bottom) profiles where panels (a),(b),(c) are for con-
ditions �T, �x1 = {(0.1, 0.1), (0.1, 0), (0, 0.1)} respectively. Each point represents the average over a slice and
regions TH/TC are indicated by the red/blue shaded areas. The reservoir region in which the mol fraction is
controlled consists of only the first and last 3 slices in TH/TC as described in the text and are shaded darker.
From panel (b), one can see that while the concentration is equal at both edges, it is not enough to force the
profile in the bulk to be uniform and a small gradient emerges, with opposite sign to the temperature gradient.

We next impose the conditions �x1 = 0 in order to obtain the heat conductivity  and
the thermal di↵usion coe�cient D

0. However in this case, as it can be observed from
Fig. 5 (b) for �T = 0.1, a residual, stationary, non-zero gradient in concentration is
present in the bulk region, despite the imposed equimolar ratio in the reservoirs, and
its contribution to the mass flux of component 1 cannot be ignored. Thus in order to
compute the latter two transport coe�cients correctly we need to account for both
the temperature and the concentration gradients from the observed profiles fig. 5 (b)
and plug their values in the following expressions for  and D

0, derived again from
Eq.s (4) and (5):

 =
�1

rT

⇥
Je + x1nm1µ11TD

0rx1
⇤

(14)

D
0 =

�1

x1x2 nrT


J1⇢

m1m2 n
+ nDrx1

�
(15)

Summarizing, from the simulation with rT = 0 an accurate computation of D and the
product D0

µ11 can be performed. Then these results can be used in a second simulation
with rT 6= 0 to complete the calculation of all coe�cients for the remaining values of
D

0 and . Note that also µ11 can now be computed.
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Table 2.: Heat and mass transport coe�cients from the BD-NEMD protocol. All
values reported are in LJ units with error given in the parenthesis.

D D
0

 µ11 ST = D
0
/D

0.0501(0.001) 0.087(0.003) 4.603(0.009) �0.83(0.34) 1.7(0.1)

With the flux values and necessary profiles in hand and following the procedure out-
lined above, we recollect the transport coe�cients from the present study in Table 2.

This numbers, reported to the Onsager coe�cients, are compared in Table 3 with
those calculated by Sarman and Evans [2], where the coe�cients were extracted from
Green-Kubo relations for a system of Ar-Kr using the Evans-Cummings scheme [20], an
algorithm to drive NEMD simulations by equating the time derivative of the Hamilto-
nian to a product of the flux and a mechanical force which gives the exact Green-Kubo
relations in the linear limit.

Table 3.: Comparison of the Onsager coe�cients between our results (BD-NEMD)
and those from the mechanical perturbation scheme by Sarman and Evans [2] for
a system of 1024 particles of Ar-Kr.

Onsager BD-NEMD Ref. [2]
coe�cient (T =1.0, n=0.725) (T =0.965, n=0.7137)

Lqq 4.60(0.01) 4.24(0.01)
L1q 0.0214(0.0007) 0.0182(0.001)
L11 0.0191(0.0075) 0.0174(0.0005)

Rather than the values of the transport coe�cients , D
0
, D and of µ11, which are

not calculated directly in the mechanical perturbation scheme, we compare with the
values of the Onsager coe�cients Lqq, L1q = Lq1 and L11 calculated from our data (see
Appendix for the details of definitions).

We see relative agreement between the two methods despite a small di↵erence in our
thermodynamic points and it should also be considered that the Sarman and Evans
results were obtained with less statistics and for a smaller system size.

As a further check of the new method, we also compare the Soret coe�cient defined as
ST = D

0
/D [12] with the one computed using the protocol following studies used in [5]

and [15], which consists of imposing a temperature gradient at the edges of the simu-
lation box and allowing the system to relax to mass equilibrium by establishment of a
natural concentration gradient. When J1 = 0, the Soret coe�cient can be taken as the
ratio of the observed concentration gradient over the observed thermal gradient [12],
i.e. ST = � 1

x1x2

rx1

rT
.

We explored the behavior of our system resulting from the imposition of only the
di↵erence �T = 0.1 in temperature between the two reservoir regions in order to
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estimate the naturally occurring concentration gradient. In practice we found that
the relaxation time needed to establish the asymptotic concentration and temperature
profiles, i.e. to achieve mass equilibrium in the central bulk region, can be exceedingly
long and that, correspondingly, the average mass flux remains small but non-zero
even after very long times, reaching a final value that, divided by a number of the
same order of magnitude (the product of the binary di↵usion coe�cient and thermal
gradient) lead to an important correction for ST , as we now show.

Making use of the binary di↵usion coe�cient D measured with the BD-NEMD scheme,
we take the residual value of J1 into account to obtain the improved expression

ST = � 1

x1x2

✓
rx1

rT

◆
� ⇢

m1m2 x1x2 n
2

✓
J1

DrT

◆
(16)

and use it to compute the Soret coe�cient using the gradients in two equivalent J1 ⇡
0 conditions. In fact, thanks to the ability to fix both the concentration and the
temperature in the reservoirs to our liking, we can pursue an alternative route to
establish the same stationary flux J1 = 0 in a driven condition by imposing at the same
time as �T = 0.1 an appropriate boundary value for the concentration, �x1 = �0.045.
Comparison of the gradients and fluxes obtained with these two alternative routes is
summarized in Table 4. Both setups show a similar deviation from zero mass flux,
J1 = �0.2 in one case and J1 = +0.2 in the other, so that, after treatment, both give
ST ⇡ 1.7.

Table 4.: Results of the measured fluxes and gradients in the bulk for the experi-
mentally inspired protocol where J1 ⇡ 0. The results dubbed Driven were obtained
imposing �T = 0.1 and �x1 = �0.045, fixing both the thermal and molar frac-
tion gradients, while Natural refers to values with only �T = 0.1 imposed, fixing
the temperature gradient and allowing the system to relax naturally until mass
equilibrium is reached and a stationary concentration gradient is created.

Condition 105 · J1 103 · Je 103 ·rT 103 ·rx1 ST

Natural �0.2(0.3) �16.85(0.03) 3.678(0.004) �1.512(0.004) 1.69(0.07)
Driven +0.2(0.1) �16.89(0.02) 3.691(0.002) �1.612(0.002) 1.70(0.04)

Indeed, the values from Table 4 give for �rx1

x1x2rT
two non consistent values, that is

1.747(0.003) when we drive the system imposing both gradients and 1.644(0.003) when
we allow the system to reach the mass equilibrium state in the presence of a tempera-
ture gradient alone. Consistence is regained with Eq. 16 including the correction due
to the non-zero mass flux, as shown in Table 4. In this way we do also get a consis-
tent agreement with the value ST = D

0
/D = 1.7(0.1) previously calculated from the

transport coe�cients from BD-NEMD.

In Fig. 6 we show the behavior of the running average of J1 in the driven condition.
We can see that even after 105 LJ-units, the average mass flux is small but non-zero,
reaching a final value (J1 = 0.2 ·10�5) and that frustratingly the error associated with
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Figure 6. Running average of the mass flux with the shaded region showcasing the error with �T = 0.1 and
�x1 = �0.045 to achieve mass equilibrium. Note that even after t = 40 · 103 there is still a measurable mass
flux value and that at t = 100 · 103 the uncertainty is as large as the signal. This is shown more prominently
in the inset where the signal-to-noise is given over time and contrasting to the inset of Fig. 2 where the SNR
rose monotonically with simulation time.

it is not insignificant in comparison (sJ = 0.1 ·10�5). The increased uncertainty in the
value of the Soret coe�cient calculated from Eq. (16) stems from such non negligible
error associated to the evaluation of J1 as highlighted in the inset of Fig. 6.

Note that we showed that not considering the second term with J1 ⇡ 0 results in un-
derestimating the error on the value of ST . While it has been reported that the Soret
coe�cient has an extreme sensitivity to even a minor perturbation in the imposed
gradient, our results point rather to the large uncertainties on ST coming from the dif-
ficulty to achieve the condition J1 = 0 with su�cient accuracy to justify neglecting its
value. If this factor cannot be safely ignored, then knowledge of the binary di↵usion co-
e�cient must be obtained. In this respect the benefit of the new BD-NEMD technique
becomes apparent in that we can derive the value of the Soret coe�cient directly from
D

0
/D computing the two transport coe�cients in stationary non-equilibrium condi-

tions, with an accuracy that can be improved at will by increasing the statistics or
exploring in the linear regime a range of gradients conditions that can be plotted
against the fluxes and the coe�cients found through a simple linear fitting procedure.

5. Discussion

In the present manuscript we introduced a method that permits to set at will both
a concentration and a temperature linear gradient by imposing simultaneously ap-
propriate conditions at the edges of the simulation box and we used it to make a
direct simulation of transport processes. The method has been applied here to binary
mixtures but it can be straightforwardly generalized to multicomponent systems.
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These are moreover real thermodynamics forces as opposed to the mechanical pertur-
bations used by Evans et al. [2] [3]. The bulk region in between the edges is run with
Newtonian dynamics and it is from this bulk that we can obtain stationary mass and
energy flux values, varying the imposed temperature or concentration gradients while
keeping the other gradient fixed to zero. This gives the desired transport coe�cients
using the constitutive relations presented by de Groot-Mazur and valid in the linear
regime. We compare the results for ST to the one obtained by running with a protocol
where the system establishes a mass equilibrium by creating a concentration gradi-
ent countering the temperature polarization of the system so that J1 ⇡ 0. The two
methods give consistent results, but to get complete alignment we need to consider
the explicit residual value of J1 from this setup even for apparently very small order
of magnitudes in order to correctly determine the uncertainty. Because of this, two
other benefits of running the new BD-NEMD technique over this protocol are that (i)
because no flux signal is perfectly zero, the stationary values give a higher signal-to-
noise ratio and (ii) we can explicitly compute all the various transport coe�cients and
not be constrained to only extract their relative ratios or have to rely on equilibrium
sampling techniques. This opens the possibility for exploration into the driving forces
for glassy systems or purification where the thermal and concentration gradients are of
similar magnitude and it is desired to compute the specific contributions to the magni-
tude of the flux evolution. Moreover, by fixing one species type and varying the other,
this technique allows for a range of transport properties to be determined and thus
allows for creation of more suitable mixtures. This is particularly useful in applications
involving nanofluids [21] in specific applications like refrigerant cooling where thermal
di↵usion is thought to play a more significant role and screening possible candidates
based on observed properties can be di�cult.

We highlight that while the technique is broad and applicable to any system, the results
themselves can have a dependence on the thermodynamic point making comparison
and estimation for di↵erent systems challenging. The results we present are only for
a system of moderate packing density (n ⇡ 0.725) and only for the mild change of Ar
to Kr and vice versa. In the future we plan to explore more dramatic changes such
as Na+ to K+, as the depolarization of this specific type of concentration gradient
is responsible in biological system signalling [22]. Other avenues include dramatically
varying the particle size such as in the separation of polymers. This may require a
modification to the current simulation setup as a sudden particle type change in the
reservoir regions can lead to instabilities caused by large steric overlap. This could
potentially be circumvented by introducing a di↵erent time integration scheme in the
reservoir regions or by the gradual growing or shrinking as is commonly done in free
energy perturbation methods [23][24][25]. We hope to apply this technique in a wide
variety of applications where non-equilibrium states due to imposed gradients can be
found and help elucidate the strength of the elusive cross-coe�cient terms.

6. Appendix: Reconciling Trimble-Deutch to de Groot-Mazur

In the present manuscript we attempted to make comparisons primarily to the results
in Ref. [3] [7] [15]. However, we found that the coe�cients defined in the constitutive
equations in Ref. [18] relating the flux to the transport equations do not match properly
the ones given by de Groot-Mazur [12]. We know that Onsager’s relation states that
the mass flow per unit of imposed temperature di↵erence should be equivalent to the
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energy flow per unit of imposed concentration gradient [26]. Under the assumption of
microscopic reversibility this means that the cross coe�cients Lq1, L1q, when defined
with respect to the thermodynamic forces r 1

T
, r µ

T
, should be identical. However, with

the introduction of additional coe�cients in the equations that is not immediately
evident.

We first start by recalling the constitutive relations for a binary system in equations
(212 and 213) from page 274 in Chapter XI of Non-Equilibrium Thermodynamics [12].
In order to simplify the comparison with the corresponding expressions of Trimble-
Deutch [18], without having to include too many additional constant conversion factors
that can ultimately hide the important part of the result, we choose here to follow
de Groot-Mazur to work, rather than with the previously used molar fractions, in terms
of the mass fractions c1 = m1x1

m1x1+m2x2
and c2 = m2x2

m1x1+m2x2
. The relation within the two

alternative descriptions if fully given in Chapter XI of Ref. [12]. For a binary system
the relevant chemical potential appearing in the expression of the thermodynamic
force r(µ/T ) driving mutual di↵usion is given by µ = µ1 � µ2 where µ1 and µ2 are
the specific chemical potential of components 1 and 2, respectively, and at constant
T and p satisfy the Gibbs-Duhem relation c1(rµ1)T,p + c2(rµ2)T,p = 0. The following
expression for the gradient of µ at constant temperature in terms of the gradient of the
mass fraction c1, r (µ1 � µ2) = rµ1/c2 = µ

c

11rc1/c2 can then be derived, introducing

here for brevity the quantity µ
c

11 =
⇣

@µ1

@c1

⌘

T,p

. Note that the quantity µ11 =
⇣

@µ1

@x1

⌘

T,p

introduced in Section 3 is the equivalent abbreviation when using µ1 as a function of
the molar fraction x1 rather than of the mass fraction c1. We can transform from one
to the other by means of the relation µ

c

11rc1 = µ11rx1, that can be easily derived
from the above definition of c1 and c2.

The transport coe�cients D
0 and D

00 are then defined

J
(dm)
e = �

"
L
(dm)
qq

T 2
rT +

L
(dm)
q1

c2T
µ

c

11rc1

#
= �

(dm)rT � ⇢c1T D
00
µ

c

11rc1 (17)

J
(dm)
1 = �

"
L
(dm)
1q

T 2
rT +

L
(dm)
11

c2T
µ

c

11rc1

#
= �⇢c1c2 D

0 rT � ⇢D
(dm)rc1 (18)

and showed to satisfy the equality D
00 = D

0 as a result of Onsager’s relation

L
(dm)
q1 = L

(dm)
1q

. The superscripts (dm) has been used here to identify the quanti-
ties defined using the formalism of de Groot-Mazur, while the superscript (td) will be
used in the following to distinguish similar, but somehow di↵ering, quantities defined
in Trimble and Deutch formalism. In equations (90) and (91) on page 167 of Trim-
ble and Deutch [18] the Onsager’s relation is imposed in terms of somewhat di↵erent

phenomenological coe�cients L(td)
q1 = L

(td)
1q and the equations are then recast defining

di↵erent transport coe�cients 
(td)

, DT , D
(td):

J
(td)
e = �

"
L
(td)
qq

T
rT +

L
td
q1

c2
µ

c

11rc1

#
= �

(td)rT � DT

c2
µ

c

11rc1 (19)

J
(td)
1 = �

"
L
(td)
1q

T
rT +

L
(td)
11

c2
µ

c

11rc1

#
= �DT

T
rT � D

(td)

c2
µ

c

11rc1 (20)
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Finally, by comparing, term by term, the expressions in front of the imposed gradients
in Eq.s (17) and (18) with those in Eq.s (19) and (20) the conversion between the two
formalisms can be fully expressed as


(dm) = 

(td) (heat conductivity) (21)

D
(dm) =

µ
c

11

⇢c2
D

(td) (binary di↵usion coe�cient) (22)

D
0 =

DT

⇢c1c2 T
(thermal di↵usion/Dufour coe�cient) (23)

resulting in the following alternative expressions for the Soret Coe�cient ST

ST =
D

0

D(dm)
=

DT

c1 µ
c

11 T D(td)
(24)

Note finally that, following de Groot-Mazur [12], for the case J1 = 0 the more com-
monly used expression for ST can be derived from Eq. (18)

ST = � 1

c1c2

rc1

rT
= � 1

x1x2

rx1

rT
. (25)

where the right end side, in terms of molar fractions, is the actual expression we used
when discussing our results in Section 4 and follows immediately by means of the
equality rc1/c1c2 = rx1/x1x2.
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