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Abstract (english version)

Despite major achievements in the elimination of long—established infections (or even
eradication, as in the very well known case of smallpox), recent decades have seen the
continual emergence or re-emergence of infectious diseases (last but not least COVID-19).
They are not only threats to global health, but direct and indirect costs generated by
human and animal epidemics are responsible for major economic losses worldwide.

Mathematical models of infectious diseases spreading have played a significant role in
infection control. On the one hand, they have given an important contribution to the
biological and epidemiological understanding of disease outbreak patterns; on the other hand,
they have helped to determine how and when to apply control measures in order to quickly
and most effectively contain epidemics. Nonetheless, in order to shape local and global
public health policies, it is essential to gain a better and more comprehensive understanding
of effective actions to control diseases, by finding ways to employ new complexity layers. This
was the main focus of the research I have carried out during my PhD. Here, the products of
this research are collected and connected. However, because out of context, other problems
I interested in have been excluded from this collection: they rely in the fields of autoimmune
diseases and landscape ecology.

We start with an Introduction chapter, which traces the history of epidemiological models,
the rationales and the breathtaking incremental advances. We focus on two critical aspects:
i) the qualitative and quantitative assessment of control strategies specific to the problem
at hand (via e.g. optimal control or threshold policies); ii) the incorporation into the model
of the human behavioral changes in response to disease dynamics. In this framework, our
studies are inserted and contextualized. Hereafter, to each of them a specific chapter is
devoted.

The techniques used include the construction of appropriate deterministic models given
by non-linear ordinary differential equations, their qualitative analysis (via e.g. stability and
bifurcation theory), the parameterization and validation with available data. Numerical tests
are performed with advanced simulation methods of dynamical systems. As far as optimal
control problems are concerned, the formulation follows the classical approach by Pontryagin,
while both direct and indirect optimization methods are adopted for the numerical resolution.

In Chapter 1, within a basic Susceptible-Infected—Removed model framework, we address
the problem of minimizing simultaneously the epidemic size and the elimination time via
optimal vaccination or isolation strategies.

A two—patches metapopulation epidemic model, describing the dynamics of Susceptibles
and Infected in wildlife diseases, is formulated and analyzed in Chapter 2. Here, two types
of localized culling strategies are considered and compared: proactive and reactive.

Chapter 3 concerns a model for vaccine-preventable childhood diseases transmission,
where newborns vaccination follows an imitation game dynamics and is affected by awareness
campaigns by the public health system.



Vaccination is also incorporated in the model of Chapter 4. Here, it addresses
susceptible individuals of any age and depends on the information and rumors about the
disease. Further, the vaccine effectiveness is assumed to be partial and waning over time.

The last Chapter 5 is devoted to the ongoing pandemic of COVID-19. We build an
epidemic model with information-dependent contact and quarantine rates. The model is
applied to the first epidemic wave in Italy and incorporates the progressive lockdown
restrictions.

Each of these contributions has a double aim. The first one is being interesting per
se from the theoretical point of view: the modeling process and the analytical techniques
support this aspect. The second aim is giving directions to shape health policies suited to
the situation: recourse to numerical tools is essential to that end.

I hope this thesis will incite further research in the fields of mathematical and behavioral
epidemiology of infectious diseases.



Abstract (versione italiana)

Nonostante gli ingenti progressi nell’eliminazione di infezioni da lungo in circolazione (o
addirittura nell’eradicazione, come nel celeberrimo caso del vaiolo), gli ultimi decenni hanno
visto la continua comparsa o ricomparsa di malattie infettive (ultimo ma non da meno il
COVID-19). Esse non solo minacciano la salute globale, ma i costi diretti e indiretti generati
da epidemie nell’'uomo e negli animali sono responsabili di considerevoli perdite economiche
a livello mondiale.

I modelli matematici della diffusione di malattie infettive hanno svolto un ruolo
significativo nel controllo delle infezioni. Da un lato, hanno fornito un importante
contributo alla comprensione biologica ed epidemiologica degli andamenti di scoppi
epidemici; d’altro canto, hanno concorso a determinare come e quando applicare le misure
di controllo al fine di contenere rapidamente ed efficacemente le epidemie. Ciononostante,
per dare forma alle politiche di sanita pubblica locali e globali, ¢ essenziale acquisire una
migliore e piu completa comprensione delle azioni efficaci per controllare il diffondersi di
malattie, impiegando nuovi livelli di complessita. Questo e stato 1'obiettivo fondamentale
della ricerca che ho svolto durante il dottorato; in questa tesi i prodotti di questa ricerca
sono raccolti e interconnessi. Tuttavia, poiché fuori contesto, altri problemi a cui mi sono
interessata sono stati qui esclusi: essi riguardano le malattie autoimmuni e 'ecologia del
paesaggio.

Si inizia con un capitolo di Introduzione, che ripercorre la storia dei modelli epidemici,
le motivazioni e gli incredibili progressi. Sono due gli aspetti su cui ci concentriamo: i) la
valutazione qualitativa e quantitativa di strategie di controllo specifiche per il problema in
questione (attraverso, ad esempio, il controllo ottimo o le politiche a soglia); ii)
I'incorporazione nel modello dei cambiamenti nel comportamento umano in risposta alla
dinamica della malattia. In questo quadro si inseriscono e contestualizzano i nostri studi.
Di seguito, a ciascuno di essi e dedicato un capitolo specifico.

Le tecniche matematiche utilizzate includono la costruzione di opportuni modelli
deterministici descritti da equazioni differenziali ordinarie non lineari, la loro analisi
qualitativa (tramite, ad esempio, la teoria della stabilita e delle biforcazioni), la
parametrizzazione e la validazione con i dati disponibili. I test numerici sono eseguiti con
avanzati metodi di simulazione di sistemi dinamici. Per i problemi di controllo ottimo, la
formulazione segue ’approccio classico di Pontryagin, mentre la risoluzione numerica &
svolta mediante metodi di ottimizzazione sia diretta che indiretta.

Nel Capitolo 1, utilizzando come base di partenza un modello Suscettibili-Infetti-
Rimossi, affrontiamo il problema di minimizzare al contempo la portata e il tempo di
eliminazione di un’epidemia tramite strategie di vaccinazione o isolamento.

Un modello epidemico tra due sottopopolazioni, che descrive la dinamica di Suscettibili
e Infetti in malattie della fauna selvatica, ¢ formulato e analizzato nel Capitolo 2. Qui,
vengono considerati e confrontati due tipi di strategie di abbattimento localizzato: proattivo



e reattivo.

Il Capitolo 3 tratta di un modello per la trasmissione di malattie pediatriche prevenibili
con vaccino, dove la vaccinazione dei neonati segue la dinamica di un gioco imitativo ed &
influenzata da campagne di sensibilizzazione da parte del sistema sanitario.

La vaccinazione e anche incorporata nel modello del Capitolo 4. In questo caso e rivolta
a individui suscettibili di ogni eta ed e funzione dell’informazione e delle voci circolanti sulla
malattia. Inoltre, si assume che l'efficacia del vaccino sia parziale ed evanescente col passare
del tempo.

L’ultimo Capitolo 5 e dedicato all’attuale pandemia di COVID-19. Si costruisce un
modello epidemico con tassi di contatto e di quarantena dipendenti dall’informazione
circolante. Il modello ¢ applicato alla prima ondata epidemica in Italia e incorpora le
progressive restrizioni imposte durante il lockdown.

Ciascuno di questi contributi ha un duplice scopo. Il primo ¢ essere interessante di per se
dal punto di vista teorico: il processo di modellizzazione e le tecniche analitiche supportano
questo aspetto. Il secondo e dare indicazioni utili a pianificare politiche sanitarie adatte alla
situazione in esame: il ricorso a strumenti numerici ¢ essenziale a tal fine.

Mi auguro che questa tesi possa stimolare ulteriori ricerche nel campo dell’epidemiologia
matematica e comportamentale delle malattie infettive.
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Chapter I. Introduction

I.1 Epidemics and epidemiological models: a brief
history

The first significant epidemic described by historians was the Plague of Athens, a devastating
infectious disease that struck the city—state of ancient Greece in 430-426 B.C. The most
precise description of that plague was provided by the historian Thucydides (460-400 B.C.)
in his History of the Peloponnesian War, and probably influenced by the Hippocratic medical
writings. In his treatise Epidemics, the physician Hippocrates (459-337 B.C.) delineated the
factors that affected the spread of diseases at that time [176]. Hippocrates is often considered
the father of ‘epidemiology’ (from Greek epi, ‘upon, among’, demos, ‘people’, and logos,
‘study’): the study of the distribution and determinants of health-related states and events
in specified populations. He is the first known person to have examined the relationships
between the occurrence of diseases and environmental influences.

After the plague of Athens, recorded history continuously documents the invasion of
populations by infectious agents, some causing many deaths before disappearing, others
reappearing in invasions some years later in populations that have acquired some degree of
immunity, due to prior exposure to related infectious pathogens. Many of these diseases —
measles, pertussis, influenza, and many others — have been burdening us for centuries,
while new infectious diseases — such as Ebola, Zika virus, and the currently spreading
COVID-19 — continue to emerge from animal populations and make the jump to human
populations, or spreading to new human populations due to climate change or other
anthropogenic disturbances [222].  One of the most well documented epidemics that
devastated Europe was the Black Death. The Black Death spread throughout the
Mediterranean and Europe and is estimated to have killed one—third of the population of
Europe between 1346 and 1350 [8]. The disease reappeared regularly in various regions of
Europe for more than 300 years, a notable outbreak being that of the Great Plague of
London of 1665-1666. It gradually withdrew from Europe afterwards [46].

Although epidemiology itself has a long history, the mathematical study of diseases and
their spread is only about 350 years old. The first statistical study of infectious diseases is
attributed to John Graunt (1620-1674), whose 1663 book Natural and Political Observations
Made upon the Bills of Mortality was concerned with methods of public health statistics.
A century later, Daniel Bernoulli (1700-1782) used mathematical methods to estimate the
impact of inoculation against smallpox. In 1766, he published what is now considered the
first epidemiological model [27] (reviewed in [16,147]). Bernoulli argued that inoculation with
live virus obtained from a mild strain of smallpox would reduce the death rate and thereby
increase the life expectancy, even if the inoculation itself might occasionally be fatal.

In the late 1800s, science could finally explain the mechanism of how one becomes ill: the
concept of passing a bacterial disease through contact between an infected individual and a
healthy one became known. This paved the way for the mathematical modeling of infectious
diseases. Significant strides were made with the work of William Hamer (1862-1936), in
the early twentieth century. He was looking for an explanation of the recurrence of measles.
Hamer was the first to suggest a mass action law for the rate of new infections [153], an
idea that has been basic in compartmental models since that time. But it is Sir Ronald
Ross (1857-1932) who is considered the father of modern mathematical epidemiology. He
did pioneering work on malaria and discovered that it is transmitted between humans and
mosquitoes. For his work on malaria, Ross received the Nobel Prize in 1902. In the second
edition of his book The Prevention of Malaria (1911), he developed mathematical models of

11



Chapter I. Introduction

Figure I.1: Forerunners of mathematical epidemiology: Sir Ronald Ross (left), William
Ogilvy Kermack (centre), Anderson Gray McKendrick (right).

malaria transmission and derived a threshold quantity [260], marking the first introduction
of the concept of the basic reproduction number.

Susceptible—Infected—Removed

Mathematical epidemiology was raised to a new level by the model of the spread of
infectious diseases, published by Kermack (1898-1970) and McKendrick (1876-1943) in
1927. In their joint article A contribution to the mathematical theory of epidemics [185],
Kermack and McKendrick published for the first time a deterministic epidemic model that
included three compartments: susceptible, infected and removed individuals.
Compartments are a convenient way to describe the individual life-course of infection by a
sequence of transitions between a few epidemiological classes, triggered by specific
processes and parameters.

They imported from statistical physics the mass—action law of chemical reaction kinetics
to describe infection transmission as the outcome of the social contact process between
infected and susceptible individuals. They made the counter—factual hypothesis that the
population behaves as a collection of ‘particles’ of different types randomly moving in the
environment, where each encounter (‘collision’) between a particle of susceptible-type and
one of infected—type has a uniform probability that the susceptible-type particle switches
into infected—type.

The original formulation of the Susceptible-Infected—Removed (SIR) epidemic model
given in [185] was

v(t) = —i(t)

z(t) = —x(t) [/0 A(s)v(t — s)ds + A(t)y(0)

t I.1
2(t) = /0 C(s)v(t — s)ds + C(t)y(0) (1)

oo = | B(s)o(t - s)ds + B(£)y(0),

where z(t), y(t), z(t) are the number of susceptible, infected (and infectious) and removed
individuals at time ¢, respectively. Also

B(s) = e Jo 0% A(s) = ¢(s)B(s), C(s) =v(s)B(s),

12



Chapter I. Introduction

where ¢(s) is the infectivity rate when the age of infection is s, 9(s) is the removal rate
at infection age s (that is the sum of the recovery and disease—induced death rates). It is
assumed that there are no disease deaths, so that the total population size remains constant:
xz(t) + y(t) + z(t) = N. If we define S(t) = x(t), I(t) = y(t), R(t) = 2(t) and assume that
the infectivity and removal rates are constant: ¢(s) = 3, ¢¥(s) = v, then the model (I.1) can
be reduced to the system

S =—BSI
I =pBSI—~I (1.2)
R=~l.

For many years, the model (I.2) was known as the Kermack—McKendrick epidemic model,
overlooking the fact that it is a very special case of the actual Kermack—McKendrick model
(I.1). The general model includes dependence on age of infection, that is the time since
becoming infected, and can be used to provide a unified approach to compartmental epidemic
models.

The original STR model does not include natural birth and death rates and, consequently,
models only disease outbreaks. To capture epidemic modeling of diseases that can become
established in a population and persist, Kermack and McKendrick published part. II and
part. III of their Contributions to the mathematical theory of epidemics in 1932 and 1933,
respectively [186, 187].

In the work of Kermack and McKendrick, as in that of Ross, there is a threshold quantity,
a critical level below which the disease would be eliminated. It is now almost universally
denoted by Ry. Neither Ross nor Kermack and McKendrick identified this threshold quantity
or gave it a name. It appears that the first person to name it explicitly was MacDonald in
1957 in his work on malaria [206].

The explicit definition of the basic reproduction number is that it is the expected number
of disease cases produced by a typical infected individual in a wholly susceptible population
over the full course of the infectious period. In an epidemic situation, in which the time
period is short enough to neglect demographic effects and all infected individuals recover
with full immunity against re-infection, the threshold Ry = 1 is the dividing line between
the infection dying out and the onset of an epidemic. In a situation that includes a flow of new
susceptibles, either through demographic effects or recovery without full immunity against
re—infection, the threshold Ro = 1 is the dividing line between approach to a disease—free
equilibrium and approach to an endemic equilibrium, in which the disease is always present.
For the simple Kermack—McKendrick model (I1.2) it is easy to verify that

namely the ratio between the infectivity rate and the removal rate.

What happens next

The momentum impressed by Kermack and McKendrick work yielded, with a certain delay,
an explosion of biomathematical studies, mostly devoted to the investigation of a number of
variants of the key models introduced by the forerunners. Since 1933 there has been a great
deal of work on compartmental disease transmission models, with generalizations in many
directions.

13



Chapter I. Introduction

There is a second major shift however, dating 1975-1980, when another group of
innovators [11, 160] started the systematically use of mathematical models to interpret
epidemiological data and trends aiming to deep the perspectives for infection control. In
this phase, dramatically accelerated first by the HIV/AIDS epidemics in the 1980s, and in
the 2000s by the emergence of influenza pandemic threats, mathematical models of
infectious diseases definitely left the boundary of biomathematics and became a central
supporting tools for public health decisions. They determined the duration of travel
restrictions or of school closure during a pandemic event, or the fraction of newborns to be
immunized for a vaccine—preventable infection, as measles.

Some of the adopted mathematical approaches are presented in the next sections.

I.2 Optimal control

The successful elimination of infectious diseases does not depend only on the availability of
medical infrastructures but also on the ability to understand the transmission dynamics, the
application of control strategies and the implementation of logistic policies. Mathematical
models have been used in planning, evaluating, comparing and optimizing various detection,
prevention, therapy and control programs. To this aim, optimal control theory proved to be
a powerful tool in serving the cause.

A controversial date of birth

The conventional wisdom holds that optimal control theory was born about 60 years ago
in the former Soviet Union with the work on the Pontryagin maximum principle by L. S.
Pontryagin and his group [240]. Some mathematicians believed that this new theory was
no more than a minor addition to classical calculus of variations, essentially involving the
incorporation of inequality constraints. In addition, other factors may have also contributed
to the cold reception: first of all Pontryagin’s personality and, in particular, his notorious
anti-Semitism, and second, the feeling that many held that the result was primarily intended
for military applications [277].

Actually, it is widely recognized that optimal control is significantly richer and broader
than the calculus of variations, from which it differs in some fundamental ways. The calculus
of variations deals mainly with optimization of the following ‘standard’ form:

T
minimize J = / g(x(t), (t),t)dt
0
subject to x(0) = xo, x(T) = 2,
or, equivalently, of the form

T
minimize J — / g(x(t), ult), H)dt
0

subject to x(0) = zg, (T) = a7
and z(t) = u(t) for t € [0,T].

(1.3)

The minimization takes place in the space of ‘all’ curves, so nothing interesting happens
on the level of the set of curves under consideration, and all the nontrivial features of the
problem arise because of the integrand g.

14



Chapter I. Introduction

Figure 1.2: Johann Bernoulli’s solution to the brachystochrone problem: the cycloid (Acta
Eruditorum, 1697).

Optimal control problems, by contrast, involve a minimization over a set C of curves
which is itself determined by some dynamical constraints. For example, C might be the set
of all curves t — x(t) that satisty a differential equation (the state equation)

2(t) = f(x(t),u(t),t) for t € [0,T] (L.4)

for some choice of the control function t — u(t). Even more precisely, since it may happen
that a member of C does not uniquely determine the control u(-) that generates it, it should
be talking about trajectory control pairs (x(-),u(:)). So, in an optimal control problem
there are at least two objectives that give the situation an interesting structure, namely the
dynamics f and the objective functional J to be minimized.

Within this framework, the birth of optimal control should be dated more than 250
years before: in 1697. In that year, in Groningen, a university town in the north of The
Netherlands, Johann Bernoulli (1654-1705), the father of the above-mentioned Daniel and
professor of mathematics at the local university, published his solution of the brachystochrone
problem (from Greek brachistos, ‘shortest’, and chronos, ‘time’). The year before he had
challenged his contemporaries to solve this problem: ‘If in a vertical plane two points A and
B are given, then it is required to specify the orbit AMB of the movable point M, along
which it, starting from A, and under the influence of its own weight, arrives at B in the
shortest possible time’.

Bernoulli’s problem, as posed in the Acta Eruditorum, is a true minimum time problem
of the kind that is studied in optimal control theory. Namely, a problem in which it is desired
to minimize time — i.e. the integral J of (I.3) with ¢ = 1 — among all curves t — x(t) that
satisfy endpoint constraints as in (1.3) and are solutions of suitable differential equations
(L.4) for some control t — u(t). Moreover, the brachystochrone problem is the first one ever
to deal with a dynamical behavior and explicitly ask for the optimal selection of a path.

Bellman vs Pontryagin

The Pontryagin’s principle and the contemporary development of dynamic programming
by Bellman and his colleagues [24] paved the way for the applications of the methods of
optimization in all fields: from physics to economy, from aerospace to medicine.
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In its most common form, an optimal control problem (say, CP) reads:

mmMMeJ:/‘ﬂﬂmmﬁﬁﬁ+h@@D

subject to @ = f(x(t),u(t),t) for ¢t € [s,T] (I.5a)
and z(s) = x4 (L.5b)

with (zs,s) € R™ x [0,7], among all the admissible controls
u € Q = {u(-)| v is a Lebesgue measurable function from [s,T] to U}, (1.6)
where U is a prescribed arbitrary set in R™. The value function is defined as
V(zs,s) =inf{J : u e Q}.
The pair (z*(-),u*(+)) is called optimal if z* is the corresponding solution of (I.5) for u* € 2
and J‘(x* ) = V(zs, s).
The Pontryagin maximum principle (MP) says that, if (z*(-),u*(+)) is optimal for the

problem CP, then it minimizes the so—called Hamiltonian function, namely

@ (00 (1), M(2), 1) = mip H (" (), (), A(0), ) for £ € [s, T,
where H is defined by
H(a:,u,p, t) =p- f(a:,u,t) +g(a:,u,t)

for (z,u,p,t) € R" x U x R™ x [s,T], and A(-) is a function from [s,T] to R" satisfying the
adjoint equation '

At) = =0, H(z"(t),u"(t),\(t),t) for t € [s, T

ANT) = 0zh(x*(T)).
Instead, dynamic programming (DP) asserts that, if the value function V(- -) happens to be
continuously differentiable, then it satisfies the so—called Hamilton—Jacobi—Bellman (HJB)

equation
oV (x,t) + uellf] H(z,u,0,V(x,t),t) =0 for (z,t) € R" x [s,T]

V(z,T) = h(z).

It seems, however, that the DP fails to have a solid ground from its very beginning, since
it requires the value function to be smooth, which is not true even in simple cases. As for
connection between MP and DP, the known result is

A(t) = 9,V (2*(t), ) for t € [s,T],

which also lacks generality, due to the same reason above. This is an important gap, that
was partially bridged by introducing new concept of solutions of nonlinear partial differential
equations, including the HJB equation, e.g. wviscosity solutions [92], minimazx solutions [274].

Controlling infectious diseases spreading

In epidemiological problems control policies usually affect the rates at which population
components are transferred from one compartment (e.g. susceptible) to another (e.g.
immunised). A survey of the works on the optimal or other control of pests and infectious
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diseases published until 1977 was provided by Wickwire [297]. In these first applications
the control function appears linearly in both the state system and the objective functional,
leading to bang—bang or singular optimal control cases. Bang—bang means that the optimal
control takes values only on the boundary of its set of allowable values and switches (with
a bang!) from one extreme to another during the course of operation. Singular control
happens when the optimal control value can be obtained neither by MP nor by DP
approach and other methods must be used.

For example, Wickwire investigated the optimal control of a Kermack—McKendrick model
and determined the isolation strategy that minimizes the total infected burden over an
outbreak plus a cost for using the control [296]. Starting from (I.2), he supposed that control
affects only the rate h(S, I)u at which infected are isolated, where A(-,-) > 0 is measurable
and u = u(t) is a measurable control function with values in [0, 1]. The dynamics is therefore

S =—-BSI
I =BSI—~I—h(SIu
R =~I+h(S,I)u,

and it is desired to choose for given h a measurable control u which minimizes

J— /0 1(8) + ch(S(E), T(0)u(t)] dt.

where ¢ = const. > 0 and T = inf{t : I(t) = 0} is the control-dependent duration of the
epidemic. By means of DP approach, he found that the optimal isolation strategy is to use
either maximal control for the entire epidemic (v = 1) or to use no control at all (u = 0).
The same objective, but via immunization strategy and h(S,I) = 1, had been investigated
by Morton and Wickwire in [224], employing if necessary both MP and DP. They pointed
out that the optimal immunization policy must be of bang-bang type and that at most one
switch from v = 1 to u = 0 may occur under such a policy.

Since then, the theory, the application areas and the corresponding numerical algorithms
have steadily progressed. The technical questions of whether the optimal solution exists and
is uniquely determined have been handled under general assumptions, mainly based on the
Lipschitz properties of the solutions of the involved differential equations [6,127].

Optimal control theory has been applied to the mathematical models of HIV [146,177],
vector—borne diseases [58,225,247], tuberculosis [83,180,258], childhood diseases [28,61, 65]
(including behavioral vaccination models, which we will deal with in Section 1.4), wildlife
and livestock diseases [14,39,179,318] and others [227,249]. Since bang-bang or singular
controls are more difficult to handle or sometimes considered unsuitable for the particular
application, a quadratic dependence on the control in the objective functional was widely
adopted [14,39,58,61,65,83,177,179, 180, 225,227,247, 249, 258, 318].

As far as the numerical methods, we can discriminate two major classes: 1) indirect
methods, that convert the optimal control problem into a boundary—value problem; ii)
direct methods, that transcribe an infinite-dimensional optimization problem to a
finite—dimensional one. For specific details and differences between such methods, see the
surveys [251,257].

Minimum time From the epidemiological point of view, the main indicators generally
used to describe the severity of infection events are: i) the total number of infected individuals
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(humans or animals) during an epidemic, and ii) the duration of the epidemic. The rationale
behind these indicators is based on the evidence that epidemic surveillance and control costs
are directly related to spatial and temporal extension of the epidemic events. Furthermore,
the effect of the epidemic duration is responsible for significant socio—economic costs. This
is due to the sanitary restrictions imposed in infected areas until a disease—free status is
regained, such as travel and trade restrictions.

Optimal control theory has been widely applied to solve the problem of minimizing the
total number of infected individuals (or the total infected burden) by means of different
control policies. However, few attempts have been made to address the problem of
minimizing the epidemic duration from a theoretical point of view (to our knowledge,
just [33,96,317]).

In order to fill this gap, we investigated the problem of minimizing both the epidemic
size and duration through the implementation of emergency prophylactic vaccination plans
or the isolation of infected individuals [32]. Namely, starting from a basic SIR model (1.2),
we searched for the time—profile of these controls that minimizes

J= / " g+ ABS(OI()dt = AT + A, / " as1(tdt,

where Ay, A; are the costs per unit of time of epidemic duration and of a single new
infection, respectively, and T is the control-dependent elimination time (i.e. the first time
that I drops below 1). Furthermore, we expanded the model applicability, by realistically
imposing a possible limitation on the total amount of resources available for the control
during the whole epidemic (e.g. limited vaccine supply or limited isolation places and
funding), yielding a limited resources problem. Detailed motivations, analytical findings
and numerical simulations are given in Chapter 1.

1.3 Threshold policies

In mathematical epidemiology, optimal control constitutes the most traditional approach for
comparing, implementing and evaluating various detection, prevention and control programs
with a view to balance benefits and costs.

However, due to a number of social, economic and political reasons, the optimal
solution (especially if time-continuous) could hardly be implemented in practice for health
organizations and institutions, whose plannings are usually not so flexible. Thus, the real
management of infectious diseases spreading is often performed by fixing quotas, lengths of
control seasons, costs of incentives and subsidies, or similar variables. In other words, the
structure of the controller is fixed and only a few parameters are selected by the control
agency.

In many cases, implementation of intervention measures depends on the current status
of the disease in the community, for example control is active as long as the number of
susceptible individuals exceeds a given threshold or only when the infections number
reaches a critical level. It follows that the compartment sizes are used as an index for the
authorities to implement control strategies. Also, several analyses have suggested that
individuals reactively reduce their contact rates, in response to high levels of mortality or
the presence of many infected individuals, during an epidemic [280,315].

From a mathematical point of view, such kinds of interventions are modeled and
represented by using a piecewise—continuous function which is dependent on the model
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!
/ unstable
sliding

Figure 1.3: (from [174]) Piecewise—smooth vector fields in regions of (i) crossing, (ii) stable
sliding, and (iii) unstable sliding. This formalism is due to Filippov [125] and Utkin [286]
and is said to define a Filippov system.

state variables. This type of control strategies is a so—called threshold policy, also referred
as an on—off control or as a special and simple case of variable structure control in the
control literature [125,286]. The threshold introduces a discontinuity, so that the controlled
system is, in the end, a discontinuous system.

Why discontinuous?

Many dynamical systems that naturally occur in the description of physical phenomena
are discontinuous. That is, their motion is characterized by periods of smooth evolutions
interrupted by instantaneous events. Traditional analysis of dynamical systems restricted
its attention to smooth problems, thus preventing the investigation of non—smooth processes
such as impact, switching, sliding and other discrete state transitions. These phenomena
arise in any application involving processes with switching components or intermittently
constrained systems. Plankton blooms in shallow lakes, recurrent invasions of insect pests
in forests, children epidemics, pulsed chemotherapy, populations with selective switching
between alternative habitats are important examples.

Earlier studies of non—smooth dynamics appeared in the Eastern European literature: for
instance the pioneering work of Andronov et al. on non—-smooth equilibrium bifurcations [12],
Feigin on C-bifurcations [101,123], Peterka and Babitskii on impact oscillators [15,238] and
Filippov on sliding motion [125].

There are various classes of discontinuous systems which have their own special features
and require different methods for their analysis [26]. A first class is that of impact models
originally used in mechanics to describe the dynamics of mechanical systems characterized
by impacts among various masses (see [52] and references therein). Impact models represent
the most naive approach to the description of systems characterized by dynamic phenomena
occurring at very diversified time scales. An apparently similar but substantially different
class of models is that of periodically pulsed systems where the discontinuity in state space
is generated by a periodic exogenous shock on the system.

A third class of discontinuous system, which is the one related to threshold policies in
epidemic models, is that of piecewise—smooth system, often called Filippov system. Filippov
systems are expressible in the form

&= [f(z(t),1),

where z € R" and f is piecewise—smooth, with discontinuities occurring across a hypersurface
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through the phase space, called switching manifold. A local form for such system is

= f(z) = ff(x) ifh(z)>0
1 {fﬂx) if h(z) <0

where h(x) = 0 implicitly defines the switching manifold and each of the vector fields f* and
f~ is smooth and defined for all x. At h = 0, trajectories either cross through the switching
manifold or slide along it (see Fig. 1.3). Sliding trajectories are solutions of & = !, where
f*!'is a convex combination of f* and f:

b=l =1 =Nf"+ A, (1.7)

with
Vh-f*

AT

such that f* is always tangent to the switching manifold.

The analysis of this class of systems is not trivial since the onset of sliding motion can
lead to intricate dynamics [26, 125,174, 286], and often a numerical approach is required
[98,99,239]. There are also distinctive phenomena unique to piecewise-smooth systems,
which can be analyzed mathematically but fall outside the usual methodology for smooth
dynamical systems.

Filippov systems in epidemiology

Although some attempts were made to introduce threshold policies into epidemic models
since the early 2000s [154,280], the first formal example (to the best of our knowledge) of a
Filippov system in epidemiology can be found in [315] where a basic SIR-like model is
extended by including a piecewise—constant transmission rate to represent control or
precautionary measures being triggered once the number of infected individuals exceeds a
threshold level. Starting from (I.2), the following system is considered

S=A—-pB(1—-¢SI—puS
I=801—=¢)ST—~I —pul
R=n~I —uR

with
. 0 ifI—6<0
e fI—-6>0

where A > 0 is the (constant) recruitment rate and p > 0 the natural mortality rate of the
population. 6 is the critical level of infected individuals at which people are sufficiently
aware of the infection to change their behavior and some control measures are
implemented, resulting in the reduction (¢) in transmission. The authors investigated the
long—term dynamic behavior of the model, by studying the stability properties of both
equilibria and pseudo—equilibria (i.e. stationary sliding solutions of (1.7)), and pointed out
that choosing a proper combination of threshold level and control intensities is crucial in
order to preclude the outbreak or to stabilize the infection at a desired level.
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Reactive culling Since the work of Xiao et al. [315], theoretical investigations of sliding
control in epidemiology have been developed and applications for different infections were
provided, such as West Nile Virus [316] and avian influenza [85, 86]. We followed this
approach to investigate the effectiveness of culling strategies to control infectious diseases
in wildlife.

The majority of emerging and re-emerging diseases have originated from or are still
maintained in wildlife hosts [175]. The common intervention strategy to control wildlife
diseases is non—selective culling, i.e. the slaughtering of both infected and healthy
individuals. The appeal of culling relies on two main reasons: i) vaccination and drug
treatments, typically implemented for humans and livestock diseases, are often not
available or unpractical in the case of wildlife diseases; ii) culling is relatively easy to
implement, for instance through game hunting or traps.

As intensive culling rates can be enforced only for a limited amount of time for
economic and logistic reasons, a variety of intermittent culling strategies has been
historically implemented by health authorities in order to fight wildlife diseases. In
particular, intensified hunting campaigns at the onset of the epidemics (the so—called
reactive culling) were performed to control bovine tuberculosis in British badger [108],
rabies in European fox [298] and Canadian raccoon [259], in the effort to drive population
density below the threshold for disease elimination. However, there is an increasing amount
of theoretical [34,35,84] and empirical [107,197,223, 298] evidences that culling may be
ineffective in eliminating pathogens from wild populations, even increase the severity of
epidemics.

Motivated by these counter—intuitive findings, we investigated the effectiveness of
localized culling using the following two—patches metapopulation Susceptible-Infected (SI)
model ]

Si =vS; — BSil; — (u+nN; + ¢;)S; — D(S; — 55)
I; = BSiI; = (u+ o+ nN; + ¢;)Iy — D(I; — )

with NV; = S; + I; and 4,5 € {1,2}, i # j. All the parameters are positive constants: v is
the fertility rate; [ is the transmission rate; p, n and « are the natural, density-dependent
and disease—induced mortality rates, respectively; D is the per—capita dispersal rate from a
patch to the other.

Culling activities (at a rate ¢;) are performed in only one patch (¢ = 0). In the controlled
patch we compared the use of proactive culling, namely constant control

c1 = ¢ = const.
with that of reactive culling, namely the prevalence—dependent threshold policy

o 0 ifl,—-60<0
YTl i —6>0

leading to a Filippov system. In Chapter 2, we faced the problem both analytically and
numerically. Our results confirm that localized culling may be ineffective in controlling
diseases in wild populations, even leading to unexpected increases in the number of infected
individuals in the nearby areas.
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I.4 Behavioral change models

In the last decades, mathematical models of infectious diseases have become more and
more sophisticated tools for assisting public health decisions and policies, and are used in a
growing number of countries worldwide. Despite these advancements, there is an increasing
awareness that this sophisticated modeling neglects a ‘layer’ of complexity, which is critical
to understand the mechanisms underlying infection transmission and control. This missing
layer is human behavior.

For instance, unfounded vaccine scares such as the ongoing measles-mumps-rubella
(MMR) vaccine autism scare which started in 1997, or the oral polio vaccine scare in
northern Nigeria in 2003-2004 which arguably delayed global polio eradication by a
decade, can enable a resurgence of the disease in a population [199]. Similarly, traditional
infection control methods such as isolation, quarantine, and contact tracing require
adequate levels of support from the public. When this is lacking, sometimes due to
mismanagement of the situation by authorities or inadequate response of the international
community, then infection control can fail, as was observed in the early stages of the 2014
West African Ebola outbreaks and in many other situations [100].

We refer to models incorporating behavioral aspects as behavioral change models (BCMs),
which typically complement models for disease transmission in an attempt to mimic real life
dynamics. In essence, a BCM is a model in which individuals are responsive to external
information about the disease and, as a result, decide whether to take one or more preventive
measures to reduce the chance of contracting the infection. The external information to
which individuals respond can be global (equally available and relevant to all individuals) or
local (individual availability and relevance determined by physical or social proximity to the
information source). Furthermore, this information can be specified in terms of actual risks
(‘prevalence-based’) or of perceptions of these risks (‘belief-based’), as well as a mixture of
all the above [130].

A widely used theoretical foundation for the formation and dynamic nature of individuals’
behavior comes from game theory [130,289]. Game theory has a rich history in social
sciences with the Prisoner’s Dilemma [138] being a frequently used illustration®. Game
theory assumes individuals take rational decisions based on a trade—off that embodies the
anticipated rational decisions of all other individuals in society.

Another foundation for behavior change is found in the fields of network science and
individual-based modeling, where there are opportunities to develop more realistic models
by introducing (more) heterogeneity [217,255]. The challenge here is to find a balance
between model complexity and computational boundaries.

The vaccination game

The vaccination policies of a large number of countries are based on voluntary compliance,
and drops in vaccination coverage have led to increased interest in so-called rational
vaccination decisions and their effects on the epidemiology of vaccine—preventable
infectious diseases.

By making a rational choice of whether to vaccinate themselves or their children,
individuals weigh up the costs and risks associated with vaccination with its benefit of

*So called because it was originally explained as a decision process made by two prisoners being
interrogated in separate jail cells who must decide whether to confess their crime, or stick to their story
of being innocent.
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removing or reducing the risk of infection. Game theory provides a tool to study simple
conflicts of individuals choosing between actions of different costs and benefits while acting
perfectly rationally to maximize their own gain.

A powerful approach to modeling behavior by setting ideas from game theory into a
population dynamics framework is the imitation game dynamics [293]. Imitation represents
a main avenue through which the different strategies enacted by players can spread within a
population, through mutual learning between individuals. The first application of imitation
game dynamics to investigate vaccinating behavior and its feedback on infection dynamics
and control was developed in a seminal paper by Bauch [21]. He considered an SIR-like
model describing the dynamics of a vaccine—preventable childhood disease:

S = p(1 = p(t)) = BSI — S
I =BST —~I—ul (1.8)
R = up(t) +~I — pR.

Here the state variables S, I, R are fractions w.r.t. the total (constant) population; y is the
natural birth and mortality rate, 8 the transmission rate and = the recovery rate.

Vaccination is administered at birth alone, hence p(t) represents the ‘propensity to
vaccinate’ among parents. The dynamics of p follows an imitation game dynamics that
could be inferred by employing the concept of pay—offs, even if at its core there is again a
mass—action diffusion process based on statistical physics [293]. The basic idea is that the
population of parents is proportional to the total population and is divided into two
subgroups: ‘pro—vaccine’ (p) and ‘anti-vaccine’ (1 — p). The dynamics of the two involved
groups is ruled by a ‘double contagion’ of ideas yielding

p=kp(1 —p)(0(I) — ), (L9)

where 6(+) is the perceived risk of infection, assumed prevalence-dependent, « is the perceived
risk of vaccine-related side effects (VSEs) and k is a time scale tuning parameter modeling
the imitation speed. The ensuing model predicts the possibility of vaccine uptake oscillations,
that are more likely if individuals imitate others more readily (higher k) or exhibit a stronger
response to increases in prevalence (higher 6'(I)). Oscillations are also more likely when the
perceived risk of VSEs («) is high.

The Bauch model (1.8)—(1.9) was then extended by considering that the perceived risk of
vaccination is not constant, but depending on the available information or rumors on VSEs
(a = a(p)) [111], and accounting for vaccine awareness campaigns (VACs) enacted by the
public health system at a rate u(-) (either constant [112] or time-dependent [57,65]), finally
yielding

p=kp(1 —p)(0(I) — a(p)) + ku(t)(1 - p). (L.10)

Under these assumptions, it was shown that VACs (including information, education,
availability of vaccination infrastructures, etc) have a stabilising role which may eliminate
the disease and, in any case, reduce the strength of imitation—induced
oscillations [57,65,112]. This is a rather realistic scenario: for example, in England and
Wales public campaigns allowed to achieve a large MMR vaccine uptake although under
the elimination threshold (see Fig. 1.4).

Rapid opinion switching In [21, 57, 65, 111, 112] the analytical and numerical
investigation was focused on scenarios where individuals slowly change their opinion
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Figure [.4: England national coverage of MMR first dose (MMR1) at 24 months from birth.
Arrow A: impact on coverage of a since discredited potential link between the MMR vaccine
and autism and Crohn’s disease. Arrow B: subsequent recovery of coverage rates as a result
of national campaigns and local initiatives [229)].

(k » 1 in (1.10)). This assumption, however, in the age of social media is increasingly
questionable.  Nowadays, the opinion formation is based on information and noises
collected and exchanged via Internet-based communication channels. This makes the
opinion of population much more volatile than in the past on many sensitive subjects,
including politics [7] and vaccines [53,215].

From these considerations, it seemed appropriate to us to assume that the time-scale of
imitation speed is nowadays very short: k£ > 1, so allowing to apply a quasi-steady-—state
approximation to the imitation game dynamics equation for p (I1.10), that passes from being
differential to algebraic:

p(1=p)(0(I) — a(p)) + u@)(1 —p) = 0.

In Chapter 3 this problem was thoroughly motivated and faced. In particular, the control
function u(-) was assumed to be ‘optimal’ (in the sense of Section 1.2) and an optimal control
problem was set by searching for the control time—profile that jointly minimizes the disease—
burden, the vaccination costs and the economic burden to enact VACs. Since for the problem
at hand the existence of the optimal solution turned out to be not guaranteed, the recourse
to direct optimization methods was required.

A phenomenological approach

A behavior—implicit or phenomenological approach to mathematically modeling behavior is
represented by information—dependent epidemic models (IDEMs), first introduced in [113]
for vaccine—preventable childhood diseases.

It is known that individuals follow possibly complex behavioral rules when deciding
whether to use or not use a disease—protective tool. The underlying rationale is that these
rules will often translate into simple relationships between the individual probability to
adopt the tool and the gathered information (or rumors) on infection spread. Therefore,
these models postulate relatively simple feedback mechanisms whereby trends of infection
can affect the current protection level, eventually feeding—back on infection dynamics.

According to the idea of IDEMs, the rate of adoption of the protective tool (e.g. the
newborns vaccine uptake p in model (1.8)) is a function of an information index M (t). This
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index is defined in terms of a delay 7, a memory kernel K and a function g which describes
the information that is relevant to the public in determining its final choice to adopt or not
to adopt the protective measure (the message function). Therefore, M(t) is given by the
following distributed delay

t
M(t) :/ g (x1(7),...,z(7)) K(t — 7)dT, (I.11)
where the message function g depends on one or more model state variables, say xq, ...,
xk, k € N (usually on prevalence [113,114], incidence [64] or other relevant quantities like
VSEs [115]). It is usually assumed that g(xy,...,2z) = 0 if t < 0. The delaying kernel K (-)
is a probability density function representing the weight given to past history of the disease.
Besides the relatively simple case K (t) = d(t), the literature has focused on kernels allowing
reduction to ordinary differential equations (ODEs) [55,113-115]. In particular, when an
n—order Erlang memory kernel is used, namely

an

K(0) = Briaa(t) = =4

t"lem t aeR,, neEN, (I1.12)

the so called ‘linear chain trick’ can be applied [207]: it allows to pass from (I.11) to a system
of n ODEs.

IDEMs are described as phenomenological because, although motivated by
psychological factors, the equations only describe the impact of such psychological factors
on the transmission rate without actually modeling specific psychological processes such as
individual cognition or social learning.

Actually the class of imitation—based models and that of the phenomenological models
are strictly linked [111]. For vaccination models, also IDEMs may trigger the onset of
steady oscillations [64,113,114] and other new dynamical phenomena compared with the
corresponding non—behavioral models. Thus, human behavior might be a critical factor in
explaining the presence of oscillations in time—series of some vaccine—preventable infectious
diseases.

Besides the case of newborns vaccination, the method of IDEMs was adopted for modeling
vaccination also to later ages [55,113], social distancing measures [109] and others, and is
currently under development.

Imperfect waning vaccines Below the voluntariness of immunization programs, the
degree of protection against vaccine-preventable diseases is also affected by the
effectiveness of vaccination. Indeed, some vaccines, especially those for new or constantly
evolving viruses, reduce the infection risk, but do not prevent a vaccinated individual from
acquiring and transmitting the disease (the so—called leaky vaccines [152,195]). Further,
the vaccine-acquired immunity may wane over time. For instance, there is evidence that
US influenza vaccine effectiveness declined up to 11% about per month from the 2011-2012
trough 2014-2015 influenza seasons [124]. At the moment, there is a heated debate about
candidate COVID—-19 vaccines, whose efficacy assessment seems very challenging [162,203].

These two critical aspects (behavioral change and partially effective immunity), taken
individually, have been deeply investigated through epidemiological models and, generally
speaking, the relative studies have enlightened the dangerous implications on the public

TDecember 2020.
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health. However, only recently attempts to incorporate both aspects into the same model
are arising [82,110,194].

The interest in further investigating the interplay between human behavior, vaccine
imperfection and disease dynamics led us to develop a new BCM. Specifically, we
considered the following Susceptible-Infected—Susceptible-Vaccinated (SISV) model
describing the dynamic of vaccine—preventable diseases not conferring any long-lasting
immunity

S=p+~I+9V —BST—p(t)S —uS
I =B8SI+oBVI—~I—ul
V=0p(t)S—opfVI-9V —uV.

Here, at variance with (1.8), vaccination is administered at all ages (with time-dependent
rate ¢(t)). Individuals of the vaccinated class (V') may still acquire the disease at the reduced
rate 08 (0 < o < 1) and lose their immunity with rate 9.

Following the idea of IDEMs, we assumed that o(t) is a positive increasing function of
the present and past information concerning the disease: ¢(t) = (M (t)), with M(¢) as in
(L.11) by choosing K = Erly, and a prevalence-dependent message function g = g(I).

As shown in Chapter 4, model qualitative analysis reveals a large spectrum of possible
dynamical patterns, which appears much more diversified compared with that of models
including behavioral aspects but not the imperfect vaccine or vice versa.

The COVID-19 pandemic At time of writing this thesis, the world is facing a
pandemic of a novel coronavirus (SARS-CoV-2), which started as an outbreak of
pneumonia of unknown cause in Wuhan city of China in December 2019 [70,288]. In the
absence of pharmaceutical interventions (such as a safe and effective vaccine and a
COVID-19 anti—viral), efforts aimed at containing the disease spreading have been focused
on the implementation of non—-pharmaceutical interventions, such as social distance, use of
face—masks, quarantine of suspected cases, isolation and hospitalization of confirmed cases,
contact—tracing, mass testing, etc. Each government enacted a series of restrictions,
including recommendation of restricted movements for some or all of their citizens, and
localized or national lockdown with the partial or full closing—off of non-—essential
companies and manufacturing plants [50].

Although most people have followed the rules, there were many reports of people
breaching restrictions or even protest against lockdown [48]. This behavior might be
related to costs that individuals affected by epidemic control measures paid in terms of
both health and economic conditions, including interruption of work activities,
psychological pressure and loss of relationships, resulting in a substantial damage to
population well-being [51].

In order to qualitatively investigate the impact on disease spreading and control of human
behavior responses to social alarm, we adopted the method of IDEMs. In particular, we
considered an epidemic model with seven compartments: susceptible (5), exposed (F), post—
latent (1,), asymptomatic/mildly symptomatic (1,,), severely symptomatic/hospitalized (1),
quarantined (@) and recovered (R) individuals; and assumed that the choice to respect
the lockdown restrictions, specifically the social distance and the quarantine, is partially
determined on voluntary basis and depends on the information index. It follows that the
transmission [resp. quarantine| rate is a positive decreasing [resp. increasing] function w.r.t.
M, with M as in (I.11) by choosing K = Erly, and g = g(I, Q).
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Chapter I. Introduction

Detailed model derivation and numerical investigations are given in Chapter 5. We
focused on the case of the first COVID-19 epidemic wave in Italy during the period that
begins on February 24, 2020, when the first bulletin by the Italian Civil Protection was
reported [171], includes the partial and full lockdown restrictions, and ends on May 18,
2020, when the lockdown restrictions were mostly (but just temporally) removed.
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The total number of infections (epidemic size) and the time needed for the infection to go
extinct (epidemic duration) represent two of the main indicators for the severity of infectious
disease epidemics in humans and livestocks. However, few attempts have been made to
address the problem of minimizing at the same time the epidemic size and duration from a
theoretical point of view by using optimal control theory. In this chapter, we investigate the
multi-objective optimal control problem aiming to minimize, through either vaccination or
isolation, a suitable combination of epidemic size and duration when both maximum control
effort and total amount of resources available during the entire epidemic period are limited.

Application of Pontryagin’s maximum principle to a Susceptible-Infected—Removed
epidemic model, shows that, when the resources are not sufficient to maintain the
maximum control effort for the entire duration of the epidemic, the optimal vaccination
control admits only bang—bang solutions with one or two switches, while the optimal
isolation control admits only bang-bang solutions with one switch. We also find that,
especially when the maximum control effort is low, there may exist a trade—off between the
minimization of the two objectives. Consideration of this conflict among objectives can be
crucial in successfully tackling real-world problems, where different stakeholders with
potentially different objectives are involved.

Finally, the particular case of the minimum time optimal control problem with limited
resources is discussed. The results of this study have been published in [32].

1.1 Background

Direct and indirect costs generated by human and livestock epidemics are responsible for
significant economic losses worldwide [245]. Direct costs of epidemics are strictly related to
the epidemic size, i.e. the total number of infected individuals or farms. In humans, direct
costs are associated to the number of medications and hospitalizations, while, in livestock,
they are associated to the number of vaccinated/slaughtered animals and/or the number
of farms where surveillance and control operations are conducted. Although direct costs of
epidemics are usually not negligible, they are often overtaken by the indirect costs generated
by production losses due to morbidity, mortality, and sanitary restrictions [233,265].

Indirect costs can depend on the epidemic size, such as production losses due to worker
illnesses or animal slaughtering, but also on other factors, such as the epidemic duration (i.e.
the time passed between the first infection and the extinction of the epidemic). The latter
involves the cases of restrictions on travels and trades, which are imposed until a disease—free
status is regained. Some kinds of travel restrictions have been implemented for SARS, HIN1
influenza pandemic, and Ebola, causing severe economic burdens in the countries affected
by these actions [78,157,252]. Similarly, trade restrictions have been enforced in the past
during livestock outbreaks — such as bovine spongiform encephalopathy, foot and mouth
disease (FMD), and avian influenza — resulting in devastating economic losses in countries
with export—focused livestock industries [188,191].

As anticipated in Section 1.2, optimal control models have been widely used to identify
effective strategies for minimizing the economic impacts of infectious diseases through
vaccination, isolation and culling [22,39,155,224,296]. The aim of these models has been to
minimize the costs of the epidemic, which have been usually assumed proportional to the
total number of infected individuals (or the total infected burden). Conversely, the costs
associated to the epidemic duration have been often overlooked in these analyses (but
see [33,96,317]). Although we would expect a large level of correlation between the size of
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epidemics and their duration, simulation models developed to evaluate the effectiveness of
control policies for infections in livestock showed that the recommended interventions may
differ when considering different objectives to pursue, such as minimizing the epidemic size
or duration [246].

Resources available for public health programs are often constrained, limiting the
admissible disease control actions. Limitations on the availability of personnel, material,
and logistical resources can affect the implementation of disease control measures in
different ways. Shortages in workforce generally limit the maximum effort available per
unit time for given activities. For instance, an insufficient number of medical doctors and
other healthcare workers will limit the number of patients that can be examined, treated,
or vaccinated daily. Such shortages in healthcare workers have been experienced during
past epidemic events, as Western Africa Ebola epidemic [144], and are expected in the case
of influenza pandemics [19] or bioterrorist attacks [295]. Similarly, in livestock diseases,
constraints in the availability of veterinaries and other personnel can limit the number of
farms where the activities of surveillance, vaccination, disinfection or slaughtering are
implemented each day. In recent classical swine fever (CSF) and FMD outbreaks, the
operations of disposal of slaughtered animals and decontamination of infected farms
underwent serious delays due to the insufficient number of veterinarians and haulers
involved, with severe consequences on disease spread [41,211,230].

Furthermore, shortages in drugs supply or logistic resources can also affect the total
amount of activities implemented during the outbreak. For instance, limitations in the
vaccine stockpile available impose a bound on the total number of administered vaccinations
during the entire epidemic period. There are different examples of shortages in vaccine
stockpile negatively affecting the control of human — such as yellow fever [226] and seasonal
influenza [71] — as well as livestock epidemics — such as avian influenza [212] and FMD [242].
Analogously, limitations in logistical resources, such as the number of hospital beds in the
case of human diseases or the capacity of burial sites in the case of livestock diseases, bind
the total amount of hospitalized patients [141,279] or slaughtered animals [41,230] during
the entire epidemic period, respectively.

Here, by using the optimal control theory on simple SIR models, we investigate the
problem of minimizing both the epidemic size and duration through isolation or vaccination,
by taking into account limitations in the maximum control effort available per unit time and
in the total amount of resources allocated for the epidemic (limited resources problem, [155]).

The theoretical framework of disease control with limited resources, as the one
proposed here, represents a common scenario faced by decision—makers in real-world
applications. For several highly contagious diseases (in both human and livestock), the
sanitary and economic costs due to the infection are orders of magnitude higher than the
costs of control. Paradigmatic examples of these cases are Ebola and meningococcal
meningitis (in human) and highly—pathogenic avian influenza (HPAI) and FMD (in
livestock). In addition, the response to terrorist attacks committed with biological agents
(e.g. anthrax) could also be included in these scenarios.

For these infections, contingency plans and preparedness programmes are commonly in
place in disease—free countries considered at risk of introduction. These programs can
dictate the amount of vaccine doses stockpiled for emergency vaccination campaigns, the
personnel, equipment, and facilities required to manage emergencies, etc. Then, it follows
that the resources for disease control are already available at the beginning of epidemics,
implying that several costs associated to control implementation have been already borne
before the first infection event occurs. For instance, both the European Union (Council
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Decision 91/666/EEC) and the USA (Agriculture Improvement Act of 2018) have
established, and mandatory funded, the vaccine banks for FMD. Moreover, the World
Organization for Animal Health has established global vaccine banks funded by the
member states for different animal diseases, such as avian influenza, FMD, rabies, and
Peste des Petits Ruminants [313]. In a similar way, global stockpiles have been established
by the World Health Organization for human infections, such as cholera, meningococcal
meningitis, and yellow fever [301]. However, there exist different examples where the
number of stockpiled doses in vaccine banks were insufficient to face large outbreaks.
During the 2015 outbreak of meningococcal meningitis (serogroup C) in Niger, the reserves
of polysaccharide and conjugate vaccines used for emergency vaccinations were quickly
deprived and the additional doses urgently produced by the pharmaceutical industries were
dispatched to Niger only five months after the beginning of the epidemic [302].
Analogously, the emergency vaccination activities implemented during an outbreak of FMD
in South Korea livestock in 2010 depleted the FMD vaccine banks from all around the
world [91]. Thus, in these contexts, the role of the health authorities appointed to epidemic
control consists of allocating in space and time the (limited) resources already available
instead of evaluating the financial costs and benefits associated to different control policies.

The chapter is organized as follows. Firstly, we will present the model equations
(Section 1.2) and will investigate the optimal control problem of minimizing epidemic size
and duration (multi-objective problem) via vaccination or isolation under the constraints
of limited resources (Section 1.3). Then, in the limited resources framework, we will
provide the solutions for the optimal vaccination and isolation problems to minimize the
epidemic duration only, where (conversely to the minimization of the epidemic size,
see [155]) the shape of optimal control solutions has not yet been investigated, to our
knowledge (Section 1.4). In addition to the analytical solutions, we will provide numerical
simulations in order to understand how the profiles of the optimal control solutions change
as functions of: (i) the maximum effort; (ii) the total amount of available resources; and,
(#i) for the multi-objective problem, different assumptions on the weight of the size and
the duration on the epidemic costs. Finally, the presented results are discussed in Section
1.5.

1.2 Model formulation

We consider an infectious disease spreading in a host population (human or animal), whose
time—evolution is ruled by the basic SIR model:

§=h(S.1)=—pSI

' (1.1)
I = fo(S,1) = BST = A1,

where S and I are functions of time denoting the number of susceptible and infected units at
time ¢, respectively. The units of observation in model (1.1) may represent either individuals
(in the case of human diseases) or farms (in the case of livestock diseases). The upper
dot denotes the time—derivative. The parameters are positive constants: [ represents the
transmission rate and v represents the sum of the recovery rate and the disease-induced
mortality rate.

We look for optimal time profiles of two alternative control policies: vaccination of
susceptible units and isolation of infected units. Let us denote by wu(t) the generic
per—capita control rate and assume that u(t) € U = [0, Unas], With Upe: € Ry. The
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assumption of upper boundedness for wu(t) reflects the realistic scenario of practical
limitations on the maximum rate at which the control strategy may be employed. Such a
restriction is due to several factors, including the limited number of health officers, the
time necessary for detecting the target individuals, the reduced capacity of infrastructures
and so on. Specifically, by setting an upper bound on wu(t), we are assuming a limit on the
maximum control effort relative to the target population instead on the overall control
activities performed per unit time (which are represented by u(t)S(t) [resp. u(t)I(t)] in the
case of vaccination [resp. isolation]). While the bound on the overall activities represents
the most suitable assumption in the case of planned operations (such as vaccination for
childhood diseases in developed countries), the bound on the control effort seems more
suitable in the case of emergency operations where the procedures of vaccination and/or
isolation are forerun by surveillance and testing activities aimed at detecting the target
populations. Typical examples in this sense are represented by the test—and—
vaccinate [264], test—and-isolate [250], and test—and—cull [235] control strategies. Our
assumption is consistent with those made in simulation—based models developed for FMD
control in livestock where the resources for control are considered as ‘consumed’ regardless
of whether surveillance visits to farms lead to positive assessment or not [44].

Let us now introduce a further state variable, z. It denotes the total number of units
adopting the control strategy up to time ¢, i.e. the number of vaccinated individuals or farms

Z2=12y = /Otu(T)S(T)dT

or, alternately, the number of isolated units

t
z=z = / w(r)I(7)dT.
0
Then, the general controlled system with limited resources in compact form reads:

&= f(x) +u(t)g(r), (1.2)

where z = (S, I,2)7 is the state-variables vector, f = (f1, f2,0)” with f; and f, defined by
the right-hand side of (1.1) and g depends on the chosen control policy. In detail,

-5

g= gy, = 0 for vaccination control (1.3)
S
0

g=g, =\ —1 for isolation control. (1.4)
I

As in [33,155], we choose the elimination time T as the terminal time of planning (i.e. time
horizon). Formally, let € be a positive constant such that ¢ < 1, then

T =inf{t e R |I(t) = e}. (1.5)

To make the definition (1.5) meaningful, we choose the initial number of infected units 7(0)
strictly greater than €. As a consequence, 7' is the first time at which the state variable
drops to €. Using this approach, we avoid the undesirable possibility of subsequent peaks
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of infection caused by a fractional number of infectives [155]. From a biological point of
view, by setting £ < 1 as the condition to identify the elimination time means assuming the
infection goes extinct when there is less than one infected individual in the population.

As far as the terminal constraints are concerned, we follow the approach developed in
[155]. Namely, we realistically impose a limitation on the total amount of resources available
for the control during the whole epidemic (e.g. limited vaccine supply or limited isolation
places and funding), yielding:

Z(T) S Zma$7 (1.6)
with 2,4, € Ry. In details,
T
2(T) = / uw(7)S(7)dT < Zpa, for vaccination control (1.7)
0
T
z(T) = / uw(7)I(7)dT < Zpma, for isolation control. (1.8)
0

From an epidemiological point of view, we can interpret z,,,,/5(0) as the maximum fraction
of the original population before the introduction of the infection that can be vaccinated or
isolated.

It is important to stress that the assumption of finite control resources is different from
that of upper bound on the control rate u(t). Indeed, the former reflects constraints on the
total number of individuals or farms that can be recruited (for vaccination or isolation),
whereas the latter on the rate at which we can recruit them.

For convenience and clarity, we label as limited those resources not sufficient to maintain
a maximum control rate for the entire duration of the outbreak, i.e. such that z,.,. <
2(T)| .- Otherwise, if 2., 2 2(T)| , then we say that the resources are not
limated.

To model equations (1.2), we associate the following epidemiologically well-posed initial
conditions:

=Umazx

S(0)=S>0, I(0) =1y >¢, 2(0)=0. (1.9)
Note that, by simply adding the equations in (1.2), one gets that the set
D={zeR}|S+1+2<5S+ 1} (1.10)

is positively invariant, i.e. solutions of (1.2) starting in ® remain in © for all ¢ > 0. Therefore,
it is not restrictive to limit our analyses to region ©.

In the following sections we will complete the definition of the optimal control problem,
by specifying two possible different targets. For each policy theoretical results are given and
illustrated by means of numerical simulations.

1.3 Multi—objective control problem

As discussed in the Background section 1.1, in presence of a disease outbreak it may be of
interest for public health authorities to minimize both the elimination time and the total
epidemic size. To this aim, this section is devoted to the study of the control problem
involving two different and coexisting goals, namely minimization of:

e costs due to the time period needed for outbreak elimination:

T
0
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e costs due to the number of individuals or farms that were infected during the whole
outbreak:

T
/ A BSIdt; (1.11)
0

where Ay, A; € RT are the balancing weight factors, representing the costs per unit time of
epidemic duration and the costs of a single new infection, respectively.

Since the particular case Ay = 0 was already studied in [155] and that with A; = 0 will
be investigated in Section 1.4, it is not restrictive to set A = Ag/A; > 0, with A representing
the relative cost per unit time of epidemic duration over the cost of a single new infection.
Then, we consider the following multi-objective optimal control (MOOC) problem, aiming
at minimizing simultaneously epidemic size and duration:

(MOOC)  Find an optimal control function u*(t) that minimizes the objective
functional

T
J :/ (A4 BSI)dt, (1.12)
0
with T given by (1.5), on the admissible set
Q= {u() € L' (0,T) | u(t) € U = [0, umas] } ,

subject to (1.2) with initial conditions (1.9) and terminal constraint (1.6).

The existence of the solution for the MOOC problem is guaranteed since the requirements
of classical existence theorems are satisfied. More precisely, we refer to the formulation
of Filippov theorem and its corresponding corollary given in [6] for proving the following
theorem:

Theorem 1.1. There exists an optimal control solution u*(t) to the MOOC problem.
Proof. We list the requirements of the corollary of Filippov existence theorem in [6]:
1. the control set U = [0, U4z iS compact;
2. the sets Ay(x) = {f(z) +u(t)g(z)|u(t) € U}, x € © (with © as in (1.10)), are convex;
3. there exists a constant C' such that:
(@) + u(h)g(@)] < C1+ [a),
with z € ® and u(t) € U.

Condition 1 is trivial. Since x € ® and u(t) € U the state and the control variables are a
priori bounded and also Condition 3 is verified.

To check that Condition 2 holds, firstly we fix x € ® and prove that the line connecting
two points of Ay (z) entirely lies in Ay (z).

Let us take y1, yo € Ay(z), then there exist uy(t), ua(t) € U such that y; = f(x) +
u;j(t)g(x), j =1,2. One easily gets:

ayr + (1= a)ys = f(z) + (aun(t) + (1 — @) us(t)) ().

Since U is convex, auy(t) + (1 — a)us(t) € U, Ya € [0, 1], and then

ay; + (1 — a)ys € Ay(z), Ya € [0,1].
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As regard the characterization of the optimal control, according to Pontryagin’s maximum
principle [77,240], the problem of finding the time-dependent control variable w*(t) that
minimizes the objective functional (1.12) is equivalent to the problem of minimizing the
Hamiltonian:

H(x,u(t),\) = A+ BST+ X' (f(2) +ut)g(z)), (1.13)

given by the sum of the integrand of (1.12) and the scalar product of A and the right-hand
side of the state system (1.2). Here A = (Ag, A;, A.)" denotes as usual the adjoint variables
vector at time ¢, which is the solution of the adjoint system

A= —0,H(z*,u*(t),\), (1.14)
with the transversality conditions
/\S (T) = 07 /\I (T) free ) /\z (T> > 07

and A, (T) such that
)‘Z (T) (Z(T) - Zmaz) =0. (115)

The notation with superscript * is used to denote the solution to the state system (1.2)
corresponding to the optimal control w*(t).

The above transversality conditions are consequence of the equality terminal constraint
on the state variable I (given by (1.5)) and of the inequality terminal constraint on the state
variable z (given by (1.6)). For analytical details see [77,240,263]. Actually, as H does not
depend on z, we can simplify right now:

X(T) = A\, = const. > 0. (1.16)
Further, H is constantly equal to zero along the optimal solution:
H(z*,u*(t),\) =0.

In sum, the optimal control u*(¢) that solves the control problem is the time-dependent
function that minimizes the Hamiltonian:

H(z*,u*(t), A) = min H(x*, u(t), \),

uelU

with H given by (1.13), where (z*, u*(t), A) must satisfy

&= f(x) +ult)g(x)
(0) = (S0, 10,0)", I(T) =¢, 2(T) < Zmaa
A= —0,H(z,u(t),\)
As (T) =0, X\, >0, \(2(T) = Zmae) =0
0= H(z,u(t),\),
and the control horizon 7T is defined by (1.5).

Since H is linear respect to u(t), the value of u*(t) is determined by the sign of the
so—called switching function:

U(z,\) = 0,H = \g(z).
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In particular,
0 if ¥(z*, A) >
w(0) = {ut) i v(at, )
Umae 1L (2", A) <

0
0 (1.17)
0

with us(t) € U.

If ¢p(z*, \) vanishes on a set of isolated points, the corresponding control function is a
bang—bang control, as well known, and its value at these points is not defined. However,
for convenience of numerical simulations, we consider it equal to ,,,,. The isolated time
instants, internal to [0, 7], in which 1 vanishes are called switching times.

Unless otherwise specified, we restrict the use of the superscript * only to the optimal
control function u*(t), in order to simplify the notation.

Admissible optimal controls and numerical method

The results that we will prove in the next sections can be summarized in the following
theorem.

Theorem 1.2. For each considered control policy, the optimal solution to the MOOC problem
15 a bang—bang control. In the most general form it reads:

0 t e [O,Tl)
u*(t) = Umazx te [7—1;7-2] (118)
0 t e (TQ,T]

with T, € [0,T], and 71 < Ty.

The time instants 7, € [0,7] and 7 € (71,7] are introduced to extend the concept of
switching time. Specifically, 71 [resp. 7o) is the starting [resp. ending| intervention time, i.e.
the first [resp. last] time instant at which the control u*(¢) assumes the value w,q,. The
knowledge of such time instants allows to immediately obtain the control time—profile.

From Theorem 1.2 it follows that for each control policy at most four possible control
profiles are allowed (sketched in Fig. 1.1):

(a) m=0and 5 =T, i.e. u*(t) = Umae (namely, constant control),

(b) 71 > 0 and 7, = T, i.e. 7y is the only switching time and u*(¢) changes its value from
0 t0 Upmaz (0 = Upmas, delayed control),

(¢) m =0and 7 < T, ie. 7y is the only switching time and u*(t) changes its value from
Umaz $0 0 (Umaz — 0, reactive control),

(d) 7, 72 € (0,T) are two switching times and u*(¢) changes its value from 0 to w4, and
again back to 0 (0 — e — 0, two—switches control).

As far as the numerical simulations are concerned, the shape of admissible optimal
controls allows us to adopt a simple ad hoc numerical scheme, which generalizes that one
implemented in Bolzoni et al. [33]. Such a scheme is based on the idea of identifying each
bang-bang solution u*(t) with two real parameters: the starting and ending intervention
times. Therefore, the functional J(u) to be minimized, given by (1.12), can be seen as the
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(a) u*(t) = Umaz (b) u*(t) = 0 = Uz
umﬂfl? umaT
= ORCD =
~ SR %S
t 0 t 0
(c) u*(t) = Umaz — 0 (d) u*(t) =0 — Upee — 0
um(lm umafl:
= = = =
~ ER %S
t 0 t 0

Figure 1.1: Schematisation of the four possible types of admissible controls. Namely, constant
(a), delayed (b), reactive (c), and two—switches (d) controls. The time location of the switches
with respect to the peak of infection is purely indicative.

function J : (71, 72) — T that links the couple of characteristic intervention times to the
elimination time 7" of the MOOC problem. An optimal control «*(¢) will be identified by
the pair (71, 72) such that (7, 75)=argminJ. The numerical solution will be computed by
evaluating the function J(71, 75) over a suitable interval and looking for its minimum value.
For the numerical integrations of the Cauchy problem (1.2)-(1.6)—(1.9) the
Crank—Nicholson scheme with uniform time steps is used. For a detailed discussion of the
implemented numerical method see [33]. Of course, if, for a certain policy, the MOOC
admits only optimal control profiles with 71 = 0 [resp. 7 = T, then J can be seen as a
function of one parameter only, being the starting [resp. ending| intervention time fixed.

Epidemiological parameters and initial conditions

Since the economic effects of epidemic duration (alongside with epidemic size) are larger in
livestock diseases with respect to human ones, we focus on the applications of our study to
livestock diseases and we set the epidemiological parameters and the initial conditions in
the numerical simulations to investigate the between—farm dynamics of a domestic animals
infection. In the simulations, we assume the farm as the unit of observation. We opt for a
farm—based model (instead of an animal-based one) since the spread of infections in livestock
is more suitably described by between—farm than between—animal transmission. In addition,
the disease control measures (which are the main focus of our investigations) are generally
implemented at farm level [246,256]. The initial conditions for model (1.1) variables are set
to a single infected unit (/o = 1) in a totally susceptible population of farms (Sy = 2000).
We set the farm infectious period (corresponding to the average time a farm stays infected
before recovering) to 6 days, which is consistent with the estimates obtained for highly
contagious livestock diseases, such as FMD in cattle, range 2 — 14 days [41, 156, 261, 283],
and HPAI, range 1.5 — 7.4 days [30,266]. To keep our numerical results comparable with
respect to those obtained by Bolzoni et al. [33], which provided numerical solutions of the
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time—optimal control problems without resource limitations, we express our parameters as
monthly rates. Then, the removal rate (7) in model (1.1) is set to v =5 month ™.

The basic reproduction number, Ry, represents the average number of secondary
infections produced by a single infected individual in a completely susceptible population
in the absence of control (see Section 1.1). Following Hethcote [159], we write Ry in model
(1.1) as Ry = BSo/v. In our simulations, we set Ry = 4, which is consistent with the
estimates of between—farm basic reproduction number obtained for FMD
(3 — 4, [41,156,299]) and HPAT (3 — 6.5, [266,270]).

We set our simulations to reproduce control scenarios where the available efforts for
vaccination and isolation are limited. This is especially true in the early stages after the
introduction of a new infection in a farm system. For instance, in the case of FMD in
Australia, the human resource capacity for vaccination, based on the availability of teams
with time to complete vaccination, has been estimated to be initially sufficient to vaccinate
about 10 — 50 farms per day [134,253]. This means that, in a population of about 2000
farms (as set in our simulations), at most 0.15 — 0.75 of the farms can be vaccinated per
unit time (i.e. month). These data are consistent with those estimated in the case of CSF
in Germany, where a maximum of 30 pig farms are expected to be vaccinated per day [54].

Following the argument in Coyne et al. [90], in model (1.2) with vaccination (1.3) the
fraction of farms that can be treated per unit time can be approximated to 1 — exp(—umaz)-
Then, for vaccination, we set ., = 1, meaning that about 1 —exp(—1) = 0.63 of the farms
can be potentially vaccinated in a month, which is consistent with the data available on
the field. Furthermore, Garner et al. [134] showed that in Australia the available effort for
emergency vaccination in the case of FMD outbreaks, both in terms of available teams and
time required to conduct visits on each farm, is similar to that for surveillance and infected
premises operations (such as isolation and slaughtering). Then, in the simulations on the
optimal control through isolation (i.e. model (1.2) given (1.4)), we set also the maximum
isolation effort to e, = 1.

In the numerical simulations, we set € = 0.5 as in [33,155]. However, as pointed out by
Hansen and Day [155], any value smaller than one would work just as well for this purpose.
Then, to test the sensitivity of the optimal solutions to €, we perform numerical simulations
using different parameter conditions (specifically, ¢ = 0.1,0.999). In addition, we test the
sensitivity of the optimal control solutions to different combinations of the other control
parameters z,., and A. Finally, we explore in our simulations the impact of the maximum
available efforts for vaccination and isolation on the shape of the optimal control functions
by assuming less strict resource capacities for control (i.e. larger values of w,,,,), such as
those available in later stages of epidemics [134,253].

Vaccination policy

Let us first consider the problem of minimizing the epidemic size and duration through
vaccination. The main result is that the admissible optimal controls are bang—bang with at
most two switching times (see Fig. 1.1).

Theorem 1.3. The optimal solution u*(t) to the MOOC problem, with g = g, given by (1.3)
and terminal constraint (1.7), is a bang-bang control of the form (1.18) with at most two
switches at 71,73 € [0,T], and 71 < T5.

In particular, if A, = 0, then 1, precedes the time-occurrence of the peak of infection,
To =T and z,(T) < Zpae. Otherwise, if A, >0, then 7o < T and z,(T) = Zpae (namely, the
resources are not limited).
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Furthermore, if Umae > v, then 71 = 0.

Proof. Throughout the proof we omit the superscript * for the optimal quantities, in order
to simplify the notation.
First we compute the Hamiltonian (1.13) along the optimal solution:

H=A+BSI —Xs (BST +u(t)S)+ A\ (BST —~I) + \u(t)S =0, (1.19)
and explicitly write the adjoint system (1.14):
As = (As — Ar — 1) BI + (As — \.) u(t)

A=0Mg =AM —1)BS +~\; (1.20)
A, =0.

Since A\, = const., we denote indifferently with A, both the function and its constant value.
The switching function with its first and second time derivatives read, respectively:

Y=\ —As)S (1.21)
Y=\ +1-\,)BSI (1.22)
= BST (A, — 1)y 4+ (As — \.) BS — (BT +u(t)) A\ +1—X.)). (1.23)
By handling the (1.19) and (1.21), it is possible to rewrite the second equation in (1.20)
as:
A\ = A%“(W. (1.24)

Let us prove that ¢ vanishes only in isolated points. Suppose that ¢ vanishes in an open
interval Z, then also all its time derivatives vanish there. In particular, ¢y =9y =9 =0inZ
yields:

and
H=A>0

in Z, which contradicts the (1.19). As a consequence, u(t) is a bang-bang control, i.e. a
piecewise—continuous function that can assume only the extreme values of U: 0 and 4.
We denote by 7, the generic switching time, namely 75 € (0,7") and ¢ (75) = 0.

Two cases must be considered (see (1.15)—(1.16)):

e )\, =0 From (1.15) it immediately follows that z,(T) < znaz-
At the elimination time T, ¢(T) = 0 and ¢(T) = (A(T) 4+ 1) BS(T)I(T). The latter

is positive, because:

A+1I(T)
I(T)

as one can easily obtain by substituting the transversality condition Ag(7") = 0 in the

Hamiltonian (1.19). As a consequence,

A(T)+1= >0,

w(T) = Unmaz (1.25)

and, if multiple switching times are admissible, at the last one 9(7,) < 0 (see (1.17)).
Moreover, by setting A\, = 0 in (1.21) and (1.22), we obtain that Ag(75) = 0 and the
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sign of (7,) coincides with that of A;(7;) + 1, namely, analogously to what happens
at the elimination time 7"

sign ((r.)) = sign (—A%f)”) — sign (BS(r) — 7).

Since S is, by construction, a decreasing function and at the last switching time zp
is negative, the presence of two or more switching times must be excluded. Further,
from the above considerations, it easily follows that the switch of u(t) from 0 to .
necessarily occurs before the time of the peak of infection, at which S = ~/p.

e )\, >0 From (1.15) it immediately follows that z,(7T") = zmaz-
Since at the elimination time 7', ¢(T) = A\, S(T") > 0, then w(7) = 0 and, if multiple

switching times are admissible, at the last one 1)(7,) > 0 (see (1.17)). From (1.24) it
follows that ¢ > 0 implies A; > 0. Thus, in virtue of (1.22), between two subsequent
switching times the sign of ¢ is necessarily negative. This definitely excludes the
presence of three or more switching times. In synthesis, the optimal control u(t) can

change its value at most two times, in any case being null at the end.

In addition, we have to check that v = 0 is not optimal for the MOOC problem. In fact,
u = 0 means that none of the available vaccination resources are used, hence A, = 0 (see
(1.15)). This contradicts the (1.25). The first part of the statement is then proved.

To conclude the proof, we consider the particular case where ,,,, > v and verify that
the optimal control u(t) is constantly equal to w,q, or switches from ., to 0.

Suppose that 7, > 0 is a switching time for u(t) from no control to the maximum control
rate; and let 5 be the second time at which ¢ vanishes. From the above considerations, if
A, = 0, then 75 is the elimination time T'; otherwise, if A, > 0, then 75 < T is a switching
time from w4, to 0. Further, taking into account the sign of (1.21) and (1.22), the following
chain of inequalities holds:

/\[(Tl)+1 < )\5(7]) :)\Z:)\5<Tg) </\[<7'2)+1, (126)

with 7 =T [resp. 7o < T, if A, =0 [resp. A, > 0].
Let us prove that '
/\[ >0 in [7‘1,’7‘2]. (127)

From (1.24) one obtains \;(7;) = A/I(7;) > 0 for j = 1,2. Let us suppose that there exists
a time instant ¢ € (11, 72) at which A\; vanishes. Computing the second derivative of A; and
evaluating it at ¢, we obtain:

A0(0) = (D) + 1= A)BS(Dtnae,

whose sign implies that A; vanishes at most one time in (11, 72). Since A is positive at 7,
j = 1,2, then it is necessarily positive in the whole interval (7, 73).

From (1.26) and (1.27), it follows that A\; + 1 intersects Ag from below at least once
in (7,7). Then, there exists a time instant ¢ € (71, 7) such that A\;(f) + 1 = Ag(f) and
Ar(8) > Ag(f). If tpap > 7 the last inequality is equivalent to

s max)\z -
\g(f) < Lmaztz T (1.28)

Umaz — ’Y
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Figure 1.2: Numerical simulations of MOOC problem implementing vaccination strategy.
The colors of each area in the parameter space [A, Zma./So] (in semi-logarithmic scale)
represents the corresponding type of optimal control solution. Color meaning is specified in
the figure legend and refers to the four types of admissible vaccination control sketched in
Fig. 1.1. Fixed parameters: Sy = 2000, Iy = 1, v = 5 month™!, Ry = 3Sy/y = 4, € = 0.5,
Umae = 1 month™!.

where we substituted the equations (1.20). In particular, if %,,., > 7, then the (1.28) reduces
to Ag(t) < A, — V/Umae- Moreover, u(t) = Umq, in (71, 72), hence it must be Ag(#) > A, (see
(1.17) and (1.21)). Since we found a contradiction, it is necessarily u(0) = Upq.. Namely,
the MOOC problem selects for constant or reactive vaccination when w,,q, > 7. O

If we consider the limit case u,,., > v, then the possibilities reduce to two: constant
control (Fig. 1.1a) or reactive control (Fig. 1.1c), as stated by Theorem 1.3.

Moreover, if the optimal vaccination problem selects for reactive or two—switches control
(Fig. 1.1c and Fig. 1.1d, respectively), then all the available resources are used, i.e. z,(T) =
Zmaz- Otherwise, if the optimal vaccination control is constant or delayed (Fig. 1.1a and Fig.
1.1b, respectively), then it is feasible that not all resources are used. This is what happens,
for example, if the available resources are not limited.

The numerical analyses of the optimal vaccination problem aimed at minimizing epidemic
size and duration with limited resources are illustrated in Figs. 1.2 and 1.3. In Fig. 1.2, we
show the results of the simulations performed in the parameter space [A, zma./So], where
Zmaz/So represents the maximum fraction of the original population before the introduction
of the infection that can be vaccinated. The black, white, light gray and dark gray areas
in Fig. 1.2 represent the combinations of parameters [A, Zyq./So] for which the optimal
vaccination problem selects for constant (uq., Fig. 1.1a), delayed (0 — ez, Fig. 1.1b),
reactive (tumar — 0, Fig. 1.1c), and two-switches control (0 — upme, — 0, Fig. 1.1d),
respectively. We notice that, when the amount of available resources is sufficient to maintain
a maximum control effort for the entire duration of the epidemic (large values of z,,4./Sp), the
optimal vaccination problem selects for constant control (when A is small) and for delayed
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Figure 1.3: Numerical simulations of MOOC problem implementing vaccination strategy. (a)
Starting intervention time 7;, ending intervention time 7, and elimination time 7" as functions
of A in semi-logarithmic scale. The dot-dashed curve represents the time instants in which
I(t) = 0. Control region color is gray [resp. white] where u*(t) = tmaq [resp. u*(t) = 0]. (b)
Total number of infected units fOT BSIdt as function of A in semi-logarithmic scale. Fixed
parameters: Sy = 2000, Iy = 1, v = 5 month™', Ry = 8Sy/7y = 4, ¢ = 0.5, Upaz = 1
month™! and 2,,4./Sy = 0.25.

control (when A is larger). This is in agreement with the results obtained by Hansen and
Day [155] and Bolzoni et al. [33] for the unconstrained problems of minimizing epidemic
size and duration, respectively. For smaller values of z,,,./So, the total amount of resources
are not sufficient to maintain a maximum control effort for the entire epidemic (limited
resources), then the constant control is unfeasible and the optimal vaccination problem
always selects for control strategies with at least one switch.

The details on the shape of the optimal control solution when the resources for vaccination
are limited are shown in Fig. 1.3. Fig. 1.3a shows the optimal starting (7;) and ending (72)
intervention times and the final time (7") for the optimal vaccination strategy as functions
of the relative cost per unit time of epidemic duration over the cost of a single new infection
(A). From Fig. 1.3a, we notice that the optimal vaccination strategy is reactive (7 = 0 and
Ty < T') for small values of A, admits two—switches (7, € (0,7")) for intermediate values
of A, and is delayed (1, > 0 and 75 = T') for large values of A. From Fig. 1.3a, we also
notice that for small values of A the control actions end before the peak of infection, while
for larger A the control actions continue far beyond the peak (see dot—dashed line).

Fig. 1.3b displays the number of infected units over the entire epidemic period ( fOT pSIdt)
under the optimal vaccination strategy as a function of A. By comparing the performance
along the two competing objectives of the control displayed in the Fig. 1.3 (i.e. the epidemic
duration, 7', and the epidemic size, fOT BS1dt), we notice that both slightly change for
increasing values of A as long as the optimal control is reactive, while they show a step—like
change with respect to A when the optimal control displays two switches. Finally, when
the control is delayed, the epidemic duration does not show significant changes, while the
epidemic size largely increases with respect to A (see Fig. 1.3b).

42



Chapter 1. Minimizing epidemic size and duration with limited resources

1750 T T

-~
S
1630} ]
0
Q. 1510 _ 1

I(t) <0
I T ]
ﬁ
O 1 1 1 1
10t 10° 10t 102 10° 10* 10° 10°
A
\ e = 0.999 c=05 e=0.1]

Figure 1.4: Numerical simulations of MOOC problem implementing vaccination strategy.
Top panel: total number of infected units fOT BSIdt as function of A in semi-logarithmic
scale. Bottom panel: starting intervention time 7y, ending intervention time 7o and
elimination time 7" as functions of A in semi—logarithmic scale. The dotted curves represent
the time instants in which / (t) = 0. Line color meaning is specified in the figure legend and
refers to three possible choices of parameter € (¢ = I(T)). Fixed parameters: Sy, = 2000,
Ip=1,v=>5month™ Ry = 3Sy/7 =4, tmae = 1 month™ and z,,4./So = 0.25.

The sensitivity analysis performed on the threshold for disease elimination highlights that
the shape of the optimal vaccination control observed in the case of ¢ = 0.5 qualitatively
and quantitatively holds also considering different values of €. Specifically, the values of A
where the optimal vaccination control problem selects for reactive, two-switches, or delayed
control do not significantly depend on the chosen value of € (see Fig. 1.4).

Isolation policy

Let us now consider the problem of minimizing the epidemic size and duration through
isolation. The following theorem prescribes that the optimal control solution is bang—bang
with at most one switching time (constant or delayed control).

Theorem 1.4. The optimal solution u*(t) to the MOOC problem, with g = g; given by (1.4)
and terminal constraint (1.8), is a bang—bang control of the form:

W (E) = {0 telr) (1.29)

with T € [0, 7).

Proof. Throughout the proof we omit the superscript * for the optimal quantities, in order
to simplify the notation.
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Let us start by making the expression of Hamiltonian (1.13) explicit along the optimal
solution:

H = A+ BSI — \sBST + A (BST — (v + u(t)) I) + \u(t)I = 0. (1.30)

where A, is constant and non-negative (see (1.16)).
The switching function and its first time derivative read, respectively:

Y=\ =1 (1.31)

b= (A +1—Ag) BST — Ayl (1.32)

We verify that the optimal control cannot be singular, namely that 1) vanishes only in isolated
points. Suppose that ¢ vanishes in an open interval Z, then also all its time derivatives vanish
there. In particular, ¢ = = 0 in Z yields:

ALY
BS

A=A, Adg=A,+1-—

and
H=A>0

in Z, which contradicts the (1.30). As a consequence, u(t) is a bang—bang control, i.e. a
piecewise—continuous function that can assume only the extreme values of U: 0 and w,q5-

Now we prove that u(t) = U, or there is at most a switching time from no control to
the maximum control rate.

As first step, we check that u = 0 is not optimal for the MOOC problem. In fact, u =0
means that none of the available resources for isolation are used, hence A, = 0 (see (1.15)).
Equation (1.31) would imply that A\; < 0 in [0, 7]. However, at the elimination time 7', A;
assumes a positive value:

A S(I(T
M(T) = — +BS(T)I( )>07
I(T)
as one can easily obtain by substituting the transversality condition Ag(7) = 0 in the

Hamiltonian (1.30).
Let now 7, be a generic switching time, namely ¢ (7,) = 0. Then, A;(7;) = . and, by
substituting in (1.30), one obtains ¥ (75) = —A < 0. From (1.17) the assert follows. O

Then, there are two alternatives for the optimal control function (see Fig. 1.1a and Fig.

1.1b):
(a) 7 =0, ie. u*(t) = Umaz,

(b) 7 € (0,77 is the only switching time and u*(t) changes its value from 0 to Umq. (say,
0 = Umaz)-

Thus, for isolation policy 7 € [0,77] is the starting intervention time (as defined in Section
1.3), whereas the ending intervention time is equal to 7" anyway.

The numerical analyses of the optimal isolation problem aimed at minimizing epidemic
size and duration with limited resources are illustrated in Fig. 1.5. Fig. 1.5a displays the
optimal starting intervention time (dashed curves, 7) and the final time (solid curves, T)
for the optimal isolation strategies as functions of the relative cost per unit time of
epidemic duration over the cost of a single new infection (A) for two levels of total
resources (represented as the maximum fraction of the original population that can be
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Figure 1.5: Numerical simulations of MOOC problem implementing isolation strategy. (a)
Starting intervention time 7 (dotted lines) and elimination time 7" (solid lines) as functions
of A in semi-logarithmic scale, by assuming z,,,4./So = 0.15 and 2,,4./So = 0.175. Control
region color is gray [resp. white] where u*(t) = tqs [resp. u*(t) = 0]. Color meaning for the
two levels of total resources z,,,, is specified in the figure legend. (b) Total number of infected
units fOT pSIdt as function of A in semi-logarithmic scale, by assuming z,,../So = 0.15
(dotted line) and z,,4:/So = 0.175 (solid line). Fixed parameters: Sy = 2000, Iy =1, v =5
month™!, Ry = Sg/7 =4, € = 0.5, Unae = 1 month™!.

isolated zpaz/S0). Specifically, zmaz/So = 0.175 [resp. Zmaz/So = 0.15], which represents an
amount of resources sufficient [resp. not sufficient] to maintain a maximum control effort
for the entire duration of the epidemic (corresponding to © = upe;). From Fig. 1.5a, we
notice that the optimal isolation control is always delayed (7 > 0) for large values of A,
while, for small values of A, the optimal isolation control can be constant when the
resources are not a limiting factor, i.e. larger z,q./So (light gray area), or delayed in any
case where they are a limiting factor, i.e. smaller z,,,,/Sy (dark gray area). Fig. 1.5a
shows that, when the resources are not sufficient to maintain a maximum control effort for
the entire epidemic (as it is for zp,e./Sy = 0.15), the optimal starting intervention time (7)
does not change with respect to A as far as the use of all the available resources remains
optimal (i.e. A ~ 2-10%). Conversely, for larger values of A, Fig. 1.5a shows that the
optimal delayed control does not use all the available resources, i.e. z(T) < Zpae. This
conclusion can be deduced by noticing that, for large A, the optimal controls are the same
for different levels of resources available, z,,,, (see the dashed curves in Fig. 1.5a).

Fig. 1.5b displays the number of infected units over the entire epidemic period ( fOT BSIdt)
under the optimal isolation strategies as a function of A for two levels of z,4./S0. By
comparing the performance along the two competing objectives of the control displayed in
the Fig. 1.5 (i.e. the epidemic duration, 7', and the epidemic size, fOT BS1dt), we notice that
both slightly change for increasing values of A as long as the optimal control is constant,
while they show a step—like change with respect to A when the optimal control is delayed.

The sensitivity analysis performed on the threshold for disease elimination highlights
that the shape of the optimal isolation control observed in the case of ¢ = 0.5 qualitatively
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Figure 1.6: Numerical simulations of MOOC problem implementing isolation strategy. Top
panel: total number of infected units fOT BS1dt as function of A in semi-logarithmic scale.
Bottom panel: starting intervention time 7 and elimination time 7T as functions of A in
semi-logarithmic scale. The dotted curves represent the time instants in which () = 0. Line
color meaning is specified in the figure legend and refers to three possible choices of parameter
e (e = I(T)). Fixed parameters: Sy = 2000, [ = 1, v = 5 month™!, Ry = 3Sy/v = 4,
Umae = 1 month™ and 2,4, /Sy = 0.175.

and quantitatively holds also considering different values of €. Specifically, the values of A
where the optimal isolation control problem selects for constant or delayed control do not
significantly depend on the chosen value of € (see Fig. 1.6).

1.4 Time—optimal control problem

In this section, we investigate the control problem having as unique goal the minimization
of the elimination time of the infection T', given by (1.5). Unlike the problem studied in [33],
here the amount of usable control resources is subject to constraints.

The time optimal control (TOC) problem can be formalized as follows:

(TOC) Find an optimal control function u*(t) that minimizes the objective functional

T
J:/ ldt, (1.33)
0

with T given by (1.5), on the admissible set
Q= {u(-) € L'(0,T)| u(t) € U = [0, Umas] } ,

subject to (1.2) with initial conditions (1.9) and terminal constraint (1.6).
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Figure 1.7: Numerical simulations of TOC problem implementing vaccination strategy.
Starting intervention time 77, ending intervention time 7, and elimination time T as
functions of 2,4, in semi-logarithmic scale. Control region color is gray [resp. white] where
u*(t) = Umae [resp. u*(t) = 0]. (a) Simulations by assuming ., = 1 month™'. (b)
Simulations by assuming ., = 2 month™!; in-box: starting and ending intervention times
associated to reactive controls (dot—dashed black lines, 7; ¢ with j = 1, 2) and to two—switches
optimal controls (dot-dashed gray lines, 7;; with j = 1,2). Fixed parameters: Sy = 2000,
In=1,v=>5month™!, Ry = p3Sy/y=4,e=0.5.

The existence of the optimal solution can be proved with the same arguments employed
for the MOOC problem, as it is independent from the formulation of the objective functional
(see Theorem 1.1).

The characterization differs for the expression of the Hamiltonian function, which now
reads:

H(z,u(t),\) = 1+ A" (f(z) +u(t)g(z)).

Anyway, the TOC problem can be formally accounted for by taking A; = 0in (1.11), that
corresponds to letting A — +o00 in the objective functional (1.12) which defines the MOOC
problem. Hence, the spectrum of admissible optimal control functions is not affected by the
change made in the objective functional with respect to the MOOC problem (see Theorem
1.2).

For numerical simulations we adopt the same numerical scheme and the same parameter
values discussed in Section 1.3.

Vaccination policy

Here, we consider the problem of minimizing the epidemic duration only through vaccination.
Being Theorem 1.3 still valid in the limit case A — 400, the optimal solution u*(t) to the
TOC problem, with ¢ = g, given by (1.3) and terminal constraint (1.7), is a bang—bang
control of the form (1.18) with at most two switches at 7,7 € [0,7], and 71 < 7.

The numerical analyses are illustrated in Fig. 1.7. Such figure displays the optimal
starting (71) and ending (73) intervention times and the final time (7°) for the optimal
vaccination strategy as functions of the total amount of resources available for vaccination
(represented as the maximum fraction of the original population that can be vaccinated,
Zmaz/So) for two values of maximum per—capita control rate (U, ). Specifically, Uyne: = 1
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month™' (Fig. 1.7a) [resp. Uma: = 2 month™! (Fig. 1.7b)], which represents a parameter
setting where delayed [resp. constant] control is selected in the corresponding
unconstrained time-optimal control problem (i.e. with z,,, — +00) [33]. The range of
Zmaz/So values in Fig. 1.7 is restricted to the interval in which the resources act as a
limiting factor with respect to the unconstrained problem [33]. Namely, the last value of
Zmaz /S0 1s close to the optimal value of resources used if they are not limited.

From Fig. 1.7a, we notice that the optimal vaccination strategy displays two switches
(11,72 € (0,7T)) for small values of z4./Sy and is delayed (7, > 0 and 7 = T') for large
values of z,4./50. In addition, conversely to the unconstrained problem, where the starting
intervention time (7;) always occurs before the peak of infection (I(t) > 0), for small values
of Zmasz/So the starting intervention time may occur when I (t) <O0.

Fig. 1.7b shows that, when the resources are limited (i.e. zya./So < 0.9), the vaccination
control displays two switches for small values of z,,4./So and is reactive (1 = 0 and 7, < T))
for large values of z,4./50. In addition, Fig. 1.7b shows that, at the value of z,,4./So
corresponding to the control change from a two—switches function to a one switch function,
the ending intervention time (73) displays a cusp-like shape, with an abrupt change in its
derivative (both in modulus and sign) with respect to 2,4,/ So. This is due to the transition
between two different local minima in the objective function, one associated to reactive
controls (the bold dot-dashed black curves in the in-box in Fig. 1.7b, 7; with j = 1,2) and
one associated to two—switching controls (the bold dot—dashed gray curves in the in—box in
Fig. 1.7b, 71 with j = 1,2).

Isolation policy

Let us finally consider the problem of minimizing the epidemic duration only through
isolation. Theorem 1.4 still holds by letting A — +o00, namely the optimal solution u*(¢) to
the TOC problem, with g = g; given by (1.4) and terminal constraint (1.8), consists either
in a constant control (7 = 0 in (1.29)) or in a delayed control with a single switching time
(1 €(0,7] in (1.29)).

The numerical analyses are illustrated in Fig. 1.8. Such figure shows the optimal starting
intervention time (7) and the final time (7") for the optimal isolation strategy as functions of
the total amount of resources available for isolation (represented as the maximum fraction
of the original population that can be isolated, z,q./Sy) for two values of maximum per—
capita control rate (Upqz). Specifically, Umee = 1 month™ [resp. e = 16 month™!],
which represents a parameter setting where delayed [resp. constant] control is selected in
the corresponding unconstrained time-optimal control problem (i.e. with 2., — +00) [33].
In Fig. 1.8, the values of z,,,, /Sy range in the interval in which the resources act as a limiting
factor with respect to the unconstrained problem when we assume ,,q; = 1 month™* (33].
For . = 16 month™! such interval is much smaller: it ends at the point when 7 and T
have a step change and after which they remain constant.

Fig. 1.8 shows that, when the unconstrained isolation problem selects for delayed
control, the isolation is always delayed in the presence of limited resources (light gray
area). Conversely, when the unconstrained isolation problem selects for a constant control,
by decreasing the available resources, we observe at zz(T)’ = Zmaer an abrupt
transition from constant to delayed control (see the dark gray areas in Fig. 1.8). This
transition is characterized by a discontinuity both in the starting intervention (7) and the
final time (7"), suggesting that small differences in the amount of resources allocated to
isolation may cause dramatic changes in the effectiveness of the implemented optimal

U=Umaz
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Figure 1.8: Numerical simulations of TOC problem implementing isolation strategy. Starting
intervention time 7 (dotted lines) and elimination time 7" (solid lines) as functions of 2,4, /S0
in semi-logarithmic scale, by assuming ., = 1 month™! and t,,,, = 16 month~!. Control
region color is gray [resp. white] where u*(t) = wmq, [resp. u*(t) = 0]. Color meaning for the
two values of maximum control rate u,,q, is specified in the figure legend. Fixed parameters:
So = 2000, Iy = 1, v =5 month™*, Ry = 3Sy/vy =4, ¢ = 0.5.

strategy. In addition, the transition in the optimal control leads to very different
epidemiological dynamics. When in Fig. 1.8 the control is constant, the number of infected
units is always decreasing (i.e. I(0) < 0). Conversely, when in Fig. 1.8 the control is
delayed, the number of infected units follows a classic epidemic dynamics reaching a peak
of infection before starting to decrease (i.e. 1(0) > 0).

1.5 Discussion and conclusions

In this chapter, we investigated the multi-objective optimal control (MOOC) problem aiming
at simultaneously minimizing, through vaccination or isolation policies, epidemic size and
duration when the total amount of resources available for control during the entire epidemic
period is limited.

Working within an optimal control framework [240], we proved that, when the resources
for disease control are limited (i.e. the maximum control effort can not be sustained for the
entire epidemic period), the MOOC problem implementing vaccination admits only bang—
bang solutions with one or two switches. When only one switch is admitted, the MOOC
problem can select both for reactive vaccination (characterized by u*(0) = Upq, and u*(T') =
0, see Fig. 1.1c) and delayed vaccination (characterized by u*(0) = 0 and u*(T) = Umae,
see Fig. 1.1b). When the optimal solution admits two switches, then the MOOC problem
selects for controls where vaccination is implemented within a temporal window between
times 7 and 7» (with 77 < 75 and 7,7 € (0,7)). In addition, when resources are limited,
we proved that, for very large allowed values of the maximum vaccination effort with respect
to the rate of removal of infected units (i.e. Upae > ), the optimal vaccination in the
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MOOC problem is always reactive and uses all the resources available (i.e. z,(T) = Znaa)-
From the last result, together with the results obtained by [155] and in Section 1.4 here, it
follows that, when w,,,; > 7, minimizing the epidemic size is equivalent to minimize the
epidemic duration. However, this conclusion does not hold in general. We found that, when
the maximum rate at which vaccine can be administered in the unit time is relatively low,
it may exist a trade—off between the minimization of the two objectives.

By analyzing the MOOC problem implementing isolation, we proved that, when the
resources for disease control are limited, the optimal solution is bang—bang and admits only
one switch. Specifically, the MOOC problem always selects for delayed isolation control.
In addition, we showed that the optimal delayed isolation strategy may not use all of the
available resources (meaning z;(7") < Zmnas, see Fig. 1.5). Last finding is in contrast with
the results obtained by Hansen and Day [155] on the optimal isolation problem aimed at
minimizing the epidemic size with limited resources. They proved that, when the resources
are limited, the optimal isolation policy is any control that uses all the resources available
[155]. From the two findings, it follows that, in a optimal isolation problem with limited
resources, minimizing the epidemic size is not always equivalent to minimize the epidemic
duration and vice versa.

Our analysis has been performed through linear scalarization of the multi-objective
problem. This means formulating a single—objective optimization such that its solutions
are Pareto—optimal in the corresponding multi-objective problem [117]. Specifically, in our
framework, the different Pareto-optimal solutions (namely, Pareto—front) can be reached
by varying the parameter A, which represents the relative cost per unit time of epidemic
duration over the cost of a single new infection (see Figs. 1.3 and 1.5). While it seems
unrealistic to expect that stakeholders and policy—makers can express their preferences on
specific values of parameter A, the outputs of the optimization problem can identify the
regions in the Pareto—front where the two objectives are more conflicting, thus helping
stakeholders and policy—makers to explicit their preferences on the control goals. Fig. 1.3a
and Fig. 1.3b provide a good example of this tension in the case of vaccination control. For
instance, Fig. 1.3a shows that applying an optimal two-switches control characterized by a
temporal window for vaccine administration across the peak of infection would reduce by
about 10% the epidemic duration, with respect to a reactive optimal control (see changes
in T for 10" < A < 10% in Fig. 1.3a). Conversely, the same change in the optimal policy
would increase by about 5% the epidemic size (see the range 10! < A < 10% in Fig. 1.3b).
In this way, given the constraints on the available resources, policy—makers can knowingly
choose between the different outcomes.

The simple epidemic model proposed here does not provide immediate solutions to real—
world cases of disease control. However, our study serves as a proof—of-principle verification
of the conflicting nature of different control goals, such as epidemic size and duration, in
the presence of constraints on the control actions. These theoretical findings can be used
to inform more complex simulation models developed for specific epidemiological scenarios
where multiple management objectives are involved. (For instance by testing how different
objectives perform under the assumption of a delayed beginning of the control actions.)

The MOOC problem as defined in this study assumes that the costs of the epidemic vary
linearly with both size and duration. The assumption of linearity of the costs of infection has
been widely used both in theoretical optimal control studies [22,39,224,296] as well as in cost—
benefit analyses based on simulation models [31,242]. However, complex feedbacks due to
variations in individual behaviors and market dynamics following human/livestock outbreaks
may add nonlinear components to the epidemic costs (as described in [128,190,200]), that
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are not taken into account in our analysis.

While multi—objective approaches have been frequently used in studies on optimal disease
control, they do not generally account for the effect of epidemic duration on the cost of
infection. A multi-objective approach including the costs associated to the epidemic duration
has been recently implemented by de Pinho et al. [96]. They investigated the multi-objective
problem of minimizing the epidemic duration and the social costs associated to the infection
(defined as a linear combination of the number of infections and the costs of control) through
both vaccination and treatment. Despite the different framework used with respect to our
study (both in the cost function and in the applied policies), analogously to our results,
they found through numerical simulations that there exists a trade—off between minimizing
the epidemic duration and other social costs associated to the disease (which included the
epidemic size) [96].

Hansen and Day [155] thoroughly investigated the optimal control problem of reducing
epidemic size with limited resources. However, similar investigations have not been
performed focusing on the single-objective problem of reducing epidemic duration so far.
In Section 1.4, we provided solutions of the optimal vaccination and isolation controls,
respectively, aiming at minimizing the epidemic duration when the control resources are
limited.

We found that the time optimal control (TOC) implementing vaccination qualitatively
changes with respect to the problem with unlimited resources investigated in Bolzoni et al.
[33]. In the case of unlimited resources, the TOC problem selects for solutions characterized
by constant or delayed controls [33]. Conversely, we proved here that, when the resources
are a limiting factor (i.e. zmar < 2 (T )|Eu ), the TOC vaccination problem selects for
solutions characterized by reactive or two—switches controls. Furthermore, we showed that,
in the TOC problem with limited vaccination resources, two local minima, corresponding
to either reactive or two—switches solutions, can coexist in the objective function (see Fig.
1.7b).

By investigating the TOC isolation problem, we proved that, when the resources are a
limiting factor, the optimal control is always delayed. We also found that there may exist an
abrupt transition in the shape and outcome of the optimal isolation control at the interface
between non-limited and limited resources scenarios (i.e. at zju, = zl(T)} ). We
provided such an example in Fig. 1.8 (for t,,4; = 16 month™!), where a small reduction in
the total amount of resources available leads to a transition of the optimal solution from a
constant to a delayed isolation control, with a corresponding abrupt change in the starting
intervention (7) and elimination (77) times. An analogous jump in the value of the objective
function at the limited /non-limited resources interface was also observed by Hansen and Day
[155] while investigating the optimal control problem of reducing the epidemic size through
isolation. This suggests that, independently on the objective of the control (whether is to
minimize the epidemic size or duration), shortages in the total amount of resources available
for isolation can be more critical for the success of the interventions with respect to shortages
in resources for vaccination (where smoother changes in the objective functions occurred).
This conclusion is in accordance with the results obtained by Roche et al. [256] with a data—
driven stochastic model simulating FMD outbreaks in Australia. They found that, when
the resources available for the control are adequate, a policy implementing the stamping—
out of infected farms (which corresponds to the isolation policy in an SIR framework) can
effectively control the outbreaks. However, when resources become constrained, vaccination
was more likely to achieve disease elimination faster than the stamping-out [256].

The results obtained here on the critical role of available resources on the effectiveness

U=Umazx
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of disease control confirm the conclusions obtained in other works, which observed strongly
nonlinear (and sometimes non—-monotonic) relationships between the effort applied in the
control and the resulting reduction in disease costs (see [35,38,84,209]).
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A two-patches metapopulation mathematical model, describing the dynamics of
Susceptibles and Infected in wildlife diseases, is presented in this chapter. The two patches
are identical in absence of control, and culling activities are performed in only one of them.

Firstly, the dynamics of the system in absence of control is investigated. Then, two types
of localized culling strategies (proactive end reactive) are considered. The proactive control
is modeled by a constant culling effort, and for the ensuing model the disease free equilibrium
is characterized and existence of the endemic equilibrium is discussed in terms of a suitable
control reproduction number. The localized reactive control is modeled by a piecewise—
constant culling effort function, that introduces an extra—mortality when the number of
infected individuals in the patch overcomes a given threshold. The reactive control is then
analytically and numerically investigated in the frame of Filippov systems [125].

We find that localized culling may be ineffective in controlling diseases in wild
populations when the infection affects host fecundity in addition to host mortality, even
leading to unexpected increases in the number of infected individuals in the nearby areas.
The results of this study have been published in [37].

2.1 Background

In the last decades, emerging and re—emerging infectious diseases (ERIDs) have been
responsible for significant economic and social impacts in both developed [106] and
developing countries [193]. Jones et al. [175] showed that zoonotic infections originated in
wildlife have accounted for the majority of ERID events since the 1940s and are
representing a growing threat to global health. As a consequence, actions aiming at
controlling diseases in wild populations can provide benefits on wildlife protection and
conservation as well as on the sustainability of agriculture and public health.

However, disease control through vaccination and drug treatments, which represent
common intervention measures in human and livestock infections, is often not feasible, or
practical, in wildlife because of the lack of resources or the unavailability of suitable
diagnostic tools [87]. In these circumstances, non-selective culling, which consists in the
slaughtering of both infected and healthy individuals, represents the only available disease
control strategy.

The effectiveness of culling relies on the assumption that, under a given threshold of
host density, the population becomes too sparse, then, the number of potentially infectious
contacts between infected and susceptible individuals become too low to allow the disease to
spread and persist in the population [10]. Yet there are empirical evidences suggesting that
culling has been ineffective in reducing disease burden in wildlife populations for different
infections, such as rabies in canids [223,298], facial tumor disease in Tasmanian devil [197],
and bovine tuberculosis in European badger [108].

The main causes for the failure of culling in the elimination of diseases in wild populations
have been ascribed to compensatory mechanisms, such as the density—dependent positive
feedbacks on recruitment and dispersal triggered by the excess of mortality due to culling
[42,285]. Specifically, by reducing the host population abundance, culling can reduce the
density—-dependent constrains on host birth rate, thereby producing a flush in new susceptible
individuals in the population [129,298]. These new susceptibles represent a reservoir for new
infections, which nullifies the expected benefits of disease control campaigns or, in some
cases, even increases the disease burden in the population [35,38,84] or the duration of the
epidemic [32,33].
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Furthermore, different studies showed that culling may disrupt the host social structure
increasing the animal home range and prompting long—distance movement and dispersal
(perturbation hypothesis), thus increasing the probability of potentially infectious contacts
between neighboring groups [67,241,284]. In particular, studies carried in the British Isles on
the effectiveness of localized proactive and reactive culling as measures for bovine tuberculosis
(Mycobacterium bovis) control in European badger showed that culling led to a decrease in
disease burden in the controlled lands, while caused an increase in the infections in the
nearby areas [29,107,291]. As expected from the perturbation hypothesis, the increase of M.
bovis prevalence was associated with expanded home ranges and more frequent migration
events in badger [29].

In this chapter, we will consider a metapopulation epidemic mathematical model,
described by a system of ODEs for Susceptibles and Infected, with two patches which are
identical in absence of control and localized culling control which is performed in only one
of them. We will show by means of qualitative analysis and numerical simulations that,
also in the absence of the density—dependent compensatory effects on recruitment and
dispersal, localized culling may be ineffective in controlling diseases in wild populations
and it may even lead to unexpected increases in the number of infected individuals in the
nearby areas.

Here, we investigate the effectiveness of localized culling using a metapopulation
Susceptible-Infected (SI) model with density—dependent mortality of the host and
disease-induced host sterilization. Disease-induced fecundity reduction (or sterilization) of
the host has been frequently observed in host—pathogen interactions. Mathematical models
describing the dynamics of fecundity-reducing infections have been developed for rabies —
where the fecundity reduction is generated by the severely debilitating nature of the
infection and the frenzied behavior induced — in different mammal species [36], cowpox in
wild rodents [269], and several infections of invertebrate hosts, such as crustaceans and
mollusks [40]. Moreover, we will show that the counter—intuitive effects of culling hold also
relaxing the hypotheses of disease-induced host sterility and density—dependent host
mortality in the infection model.

2.2 The metapopulation mathematical model

We expand a traditional SI epidemic framework developed for host—sterilizing infections in
wild animals to describe the effect of localized proactive and reactive culling on the control
of wildlife diseases in a two—patches metapopulation model (see e.g. [10,35,90]). From an
epidemiological point of view, hosts can be subdivided into compartments with respect to
the infection: the susceptible compartments S;(t) — i.e., healthy individuals that can be
infected by the pathogen — and the infected compartments [;(t) — i.e., diseased individuals
that can infect other individuals; subscript j(= 1,2) defines the patch in the metapopulation
to which the epidemiological compartment belongs.

In order to describe localized culling control in the model we assume that culling activities
can be performed in one of the two patches only (specifically patch 1), while the other one
(patch 2) is uncontrolled. We also assume the two patches are identical in the absence of
control, namely the demographic and epidemiological parameters are the same.

Then, the metapopulation model can be represented by the following set of four ordinary
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differential equations
Sy =rSy —nSiNy — BS1I; — ¢Sy — DSy + DS, (
I =BS\I) — (u+a+c+nN)I, — DI, + DI, (2.1b
Sy = 1Sy —nSyNy — 3S5Is — DSy + DS, (2.1c
Iy = 3SoIy — (i + o +nNy) I, — DI, + DI, (2.1d

where the upper dot is used to denote the time derivative. N; = S; + I; represents the total
host population in patch j. All the parameters are positive constants: r = v — u represents
the intrinsic growth rate, being v the fertility rate and p the natural mortality rate; n
and « represent the density—dependent mortality rate of a disease—free host population and
the additional mortality rate caused by the infection, respectively; and 3 represents the
transmission rate between infected and susceptible individuals. Moreover, we define D to be
the per—capita dispersal rate from a patch to the other; and ¢ to be the culling effort.

In order to analyze the effects of both localized proactive and reactive culling strategies
in model (2.1), we implement two different control functions. Thus, the localized proactive
culling strategy in model (2.1) is obtained by imposing culling effort ¢ to be a constant
function

c = ¢ = const, (2.2)

and the localized reactive culling strategy by imposing culling effort ¢ to be a piecewise—
constant function as in [98§] B

c= g[l + sgn(l; — 0)], (2.3)
where ¢ represents the maximum effort enforceable, and 6 represents the threshold for the
detection of the infection. Expression (2.3) implies that population Nj in patch 1 undergoes
an extra—mortality ¢ due to culling when the number of infected individuals in the patch is
higher than threshold #, while no culling activities are performed when the infection is under
the threshold of detection. Therefore, threshold 6 introduces a discontinuity, so that model
(2.1) with (2.3) becomes a piecewise-smooth system (also called Filippov system) in which
sliding motions are possible on the manifold separating the region (in state space) where
control is allowed from that where it is not [125]. An introduction to Filippov systems is
given in Section [.3.

More precisely, by introducing the so—called switching manifold

Y= {(Sl,fl, Sg, 12) c R4 : ]1 —0 = 0},

and denoting with ) [resp. f®] the r.h.s. of model (2.1) with ¢ = 0 [resp. ¢ = ], then
sliding occurs on the sliding set

Y, ={(5,11,5,)eX: f2(2) <0< fz(l)}a (2.4)

namely, where the components of two vector fields f¥), i = 1, 2, transversal to ¥ are ‘pushing’
in opposite directions, forcing the state of the system to remain on the switching manifold
and slide on it. X terminates in ¥ when a tangency occurs, i.e. when fQ(I) or f2(2) vanish,
implying that f( or f® are tangent to the switching manifold. Tangencies are strategically
important for bifurcation analysis.

As first pointed out by Filippov, sliding motions obey the ODE system having as r.h.s.

the unique convex combination of f() and f® parallel to ¥, [125], i.e.,

<S17 j17 SQ7 jQ)T - )\f(l) + (1 - A).][‘(2) (25>

s
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with
(VL —6)" - [
(VI =0)" - (f® = o)
Equilibrium points of system (2.5) are called pseudo—equilibria for model (2.1)-(2.3) and
correspond to a stationary sliding solution.

The analysis of planar piecewise—smooth autonomous systems has been widely
developed in recent years, see e.g. [163,196]. However, there is still no obvious classification
of the dynamics of higher dimensional piecewise-smooth systems [143].  Then, the
behaviors exhibited by model (2.1) with localized reactive culling (2.3), which represents a
four-dimension piecewise-smooth system, are too complex to be fully investigated
analytically. As a consequence, we numerically investigate system (2.1)—(2.3) through
simulations performed with the event—driven method developed by Piiroinen and
Kuznetsov [239] for sliding systems to find model attractors. A bifurcation analysis in the
parameter space identified by the reactive control parameters, ¢ and 6, has been also
performed with SLIDECONT [99], which is a software based on the package AUTO [105]
to continue solutions to nonlinear boundary—value problems via orthogonal collocation.

2.3 Results

It can be shown that model (2.1) is consistent, namely its state variables remain positive for
any trajectory starting from positive conditions, as stated by the following theorem:

Theorem 2.1. If we consider positive initial conditions S1(0), 1;(0), S2(0) and I5(0), then
the solutions of the differential system (2.1) are positive at each time t > 0.

Proof. We shall prove the statement by contradiction.

Let us start by considering the state variables S;(¢) and Sy(t) and let t; > 0 be the first
time instant when S1(¢)S2(t) = 0. Since the initial conditions are positive, the variables S
and Sy (and hence their product) are positive in [0, t1).

If we assume that Si(t1) = 0 and Sy(¢;) > 0, then, by denoting with

m =min{r —c— D — BI;(t) —nSi(t)},

[Ovtl}

one yields Sy(t) > mS;(t) for t € [0,t;]. Therefore, Sy(t;) > S1(0)e™ > 0, that contradicts
our assumption. Then, it must be Si(t;) > 0 and Sy(¢;) = 0, which, however, implies
that Sy(t;) > 0, namely Sy(¢) must be negative just before ;. Thus, the existence of #; is
definitely excluded.

With the same arguments one can prove the positivity of the infected state variables I (t)

and I,(t). O

Metapopulation model without control

Before exploring the effects of localized proactive and reactive culling on the infection
dynamics, we analyze the main features of model (2.1), deriving the equilibria in the
absence of control (¢ = 0) and the expression for the basic reproduction number, Ry (see
the epidemiological definition in Section I.1).

In the absence of control (¢ = 0), model (2.1) assumes a symmetric form, which allows
us to prove that:
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Theorem 2.2. If ¢ = 0 in model (2.1), then at any equilibrium point the size of the
susceptible [resp. infected] compartment in patch 1 is equal to the size of the susceptible
[resp. infected] compartment in patch 2.

Proof. Let us consider the algebraic system obtained by setting the r.h.s. of model (2.1),
with ¢ = 0, equal to zero, namely:

rS1 —nS1Ny — S11; — DS;1+ DSy, =0 (2.6a)
pS1 I — (w+a+nNy)[, — DI, + DI, =0 (2.6b)
Sy — NSaNy — 5So1s — DSy, + DS1 =0 (2.6¢)
BSoly — (1w + a+nNy)ls — DIy + DI, = 0. (2.6d)

By contradiction, we assume that there exists a positive solution to system (2.6), say

(51, _71, Sy, 1), such that Sy # S, or I; # I, possibly being both valid. Denote with N; =
S; +1;, 1 =1,2. Then, two cases must be considered:

o I, =1, IfS; >S5, then from (2.6a) and (2.6¢c) it follows that
T’-??Nl—ﬁjl >O>T—T]N2—ﬂj2, (27)
which reduce to N; < N, and a contradiction arises.
A similar argument applies if Sy > ;.

o [, # 1, In order to fix the ideas, let us assume I; > I, (the opposite case follows in
analogous way).

If 517> Sy, then, analogously to what happens if I, = I,, the inequalities (27.7)7redu7ce
to nINy + BI; < nNs + (15, which is in contrast with the assumptions S; > Ss, [; > Is.

Otherwise, if 0 < S; < Sy, then, the inequalities (2.7) must be reversed, namely
r—nNy— I, >0>r—nN, — 1, (2.8)

yielding: B B B B
NNy + 81, < nNy + B1;. (2.9)

Moreover, by handling the (2.6b) and (2.6d), one obtains
(851 = (u+a+nNi))y > 0> (8Sy — (n+ o+ nNa)) Iy, (2.10)
which, for the positivity of the I;, i = 1,2, reduce to
(N1 — Na) < B(S1 — Sa). (2.11)

Being S; < S, the last inequality implies that N; < N,. However, adding the (2.9)
and (2.11) leads to a contradiction: Nj > Ns.

In conclusion, if S; = Sy = 0, then the (2.10) are still valid and reduce to I, < Iy,
which is again in contrast with the initial assumption.

[]
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In other words, in searching model equilibria, it is not restrictive to assume the two
patches are identical. In particular, model (2.1) with ¢ = 0 has always a trivial equilibrium,
Ey = (0,0,0,0), and a disease—free equilibrium, F; = (K, 0, K,0), where

r

K ” (2.12)
represents the carrying capacity for a disease—free host population. It is easy to prove that
Ey is always unstable if » > 0, while E; is asymptotically stable if and only if the basic
reproduction number of model (2.1), Ry, is lower than 1 [11].

The basic reproduction number can be calculated as the spectral radius of the next
generation matrix, Ro = p(FV 1), where I and V are defined as Jacobian matrices of the
new infections appearance and the other rates of transfer, respectively, calculated for infected
compartments at model (2.1) disease—free equilibrium [103,287]. Then, model (2.1) basic
reproduction number can be defined as

BK

Ro=————.
pF+a+r

(2.13)
with K given in (2.12) and coincides with that for the corresponding homogeneous mixing
model. When Ry > 1 in equation (2.13), the disease—free equilibrium is unstable and there

exists a unique asymptotically stable positive endemic equilibrium, called E, = (S, I, S, I),
where

S = ptatnN (2.14a)
s
_ r—gN
e (2.14D)
B
with it
N:__%f_. (2.15)

We notice that expressions (2.14), defining the endemic equilibrium in (2.1) for ¢ = 0,
correspond to the endemic equilibrium for the associated homogeneous mixing model (see
[10], under the assumption of negligible incubation period) and stability properties follow
straightforwardly.

Note also that necessary condition for being I positive is that

B >n,

hence we assume it always fulfilled in the following.

The effect of localized proactive culling

Analyzing metapopulation model (2.1)—(2.2) — i.e., with localized proactive culling strategy
—, we find that there always exists a trivial equilibrium, E§ = (0,0,0,0). Conversely than
the case with ¢ = 0, the trivial equilibrium E§ is not always unstable when r > 0. Indeed,
linearization of system (2.1)—(2.2) around E leads to Ef locally asymptotically stable if and
only if

r(2D —r)

D>randcé>c¢=
D—r '

(2.16)
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as can be proved by Sylvester criterion [164], being the Jacobian matrix of system (2.1)—(2.2)
evaluated at E§ a symmetric matrix.

Expression (2.16) suggests that, for frequent dispersers (i.e., species with D > r, as
defined in [68]), sufficiently high levels of constant culling efforts (¢ > ¢) in one of the
patches can lead to the extinction of the entire population.

When expression (2.16) is not satisfied, the trivial equilibrium is unstable and there exists
a positive disease—free equilibrium, F¢, as stated by the following theorem:

Theorem 2.3. If condition (2.16) is not verified, then model (2.1)-(2.2) admits an unique
positive disease—free equilibrium Ef = (K1,0, K5,0) and 0 < K; < K.

Proof. Denote the generic disease—free equilibrium of model (2.1)-(2.2) by

A ~

Ef = (KI,O, KZ,O), where K1, K, > 0. The components K;, K, are the solutions of the
algebraic system obtained by setting the r.h.s. of equations (2.1a) and (2.1¢), with ¢ = ¢,
equal to zero, namely:

(r—¢—D)K, —nK?+ DK, =0 (2.17)
(’I" — D)KQ - HKQQ -+ Df(l = O,

yielding the admissibility condition:

.~ D—r+nK, 5 - D
i s § AP SR ey (2.18)
D U
Substituting the expression of K; into (2.17), one obtains K, # 0 as solution of
f(Ra) =0, (2.19)
with R R R R
f(KQ) = Qo + CL1K2 + CL2K22 + agKg,

and

ag=D(e(D —r)—r(2D —r))
a; =n(ED + (D —r)(2D —r))
ag = 2n*(D —r)
az = 773 > 0.

Let us differentiate the equation (2.19), yielding:

whose discriminant is A = a2 — 3aja3 = —3¢D — 2D? + Dr +r?. If A < 0, then f is an
increasing function. Otherwise, if A > 0, then (2.3) admits two real solutions:

. 2(r— D)+ VA
KQ:E - 377 )

that are relative minimum/maximum points for f and it is straightforward to check that

~ - D
K2,<r .
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In any case, we have

f(T_D):—D?’SO.
n

Thus, exactly one root of (2.19) satisfies the admissibility condition (2.18). If D > r, it is
not obvious that such a root is positive: one can easily check that ag = f(0) is [resp. is not]
positive if expression (2.16) is [resp. is not] fulfilled. Hence, in summary, system (2.1)—(2.2)
admits an unique disease—free equilibrium EY if condition (2.16) is not satisfied; there are
none if (2.16) is verified.

To conclude the proof, we have to prove that, when the disease—free equilibrium FE¢
exists, Ky < K, or, equivalently, Ky < r/n (from (2.18)). Being f(r/n) = ¢D? > 0, the last
inequality always holds. O]

Thus, in the presence of localized proactive culling the disease—free equilibrium becomes
ES = (R’ 1,0, Kg, 0), where K, and K, can not be easily written explicitly, since they come
from solutions of the third-order equation (2.19).

When proactive culling as in (2.2) is implemented in model (2.1), we can compute
through the next generation matrix method the control reproduction number, Re,
similarly to Rg. The control reproduction number is defined as the average number of
secondary infections produced by a single infected individual in a susceptible population at
its disease—free equilibrium experiencing culling effort ¢. Its expression is given in the
following theorem:

Theorem 2.4. The control reproduction number of model (2.1)-(2.2) is

1 Ky (u+a+D)+ Ky(u+ a+é+ D)+ 20K, Ky + V/Ac
Re =50 - . , (2.20)
(,u+a+6+77K1+D> <u+oz+nK2+D> _D?
with
Ao =KX+ a+ D)+ K2(u+a+c+ D)*+ (2.21)

+ 2K, Ky [2D* — (u+a+é+ D)(u+a+ D).

Proof. Following the procedure and the notations in [103,287], let us consider the r.h.s. of
equations (2.1b) and (2.1d), with ¢ = ¢, and distinguish the new infections appearance from
the other rates of transfer, by defining the vectors

- ﬁSlll and V — (,u—f-oz—l—é—l—an)]l—i—D]l—D]Q
/85’2[2 (u + o+ nNQ)IQ + D[Q - DIl '

The Jacobian matrices of F and V evaluated at model (2.1)-(2.2) diseasefree equilibrium
E¢ = (K;,0, K3,0) read, respectively,

BK, 0 ) (u+a+é+nK1+D -D )
F= n and V = N .
( 0 BK, ) ™ D p+a+nK,+ D

As proved in [103,287], the control reproduction number is given by the spectral radius of
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the next generation matrix FV 1. Simple algebra yields

BK, <u+a+nf(2+D>

(FV™Hn - .
(n+a+c+nki+D) (u+a+nk,+ D) - D2
KD
(FV ™11 = - G -
(u+a+5+nK1+D> <u+a+nK2+D> — D?
K>D
(FV ™)1 = - s .
(+a+c+nki+D) (u+a+nks+D) - D2
" BKo (,u—l—oc—l—é—i—nf(l—i-D)
22

(u+a+é+nf(1+D) <u+a+nf(2+D> — D2
and, being the eigenvalues Ay of FV ! given by

Ky (4 a+ D)+ Ky(pu+a+c+ D) + 20K, Ky = VAg
(u+a+é+nf(1+D> (u+a+nf(2+D) — D2

_1

5P

with A¢ as in (2.21), we get (2.20). O

When it exists, disease—free equilibrium EY is asymptotically stable if and only if the
control reproduction number R¢ in (2.20) is lower than 1; on the contrary, if Rc > 1 the
disease—free equilibrium is unstable [103,287].

As far as the existence and the number of model endemic equilibria, an analytical
investigation is very hard to perform. Therefore, numerical analyses are carried out to
understand the effect of localized proactive culling on the disease dynamics. FExtensive
numerical tests suggest that there are no endemic equilibria when R¢ < 1; otherwise, when
Rc > 1, there exists an unique asymptotically stable endemic equilibrium, say
EQE = (Sl, Il, Sg, 12)

In Fig. 2.1 we show the effect of the host dispersal rate (D) and the localized proactive
culling effort (¢) on the existence and stability of model (2.1)-(2.2) equilibria through
bifurcation analysis [273]. The curve T'Cyy defines a transcritical bifurcation representing
the threshold for host extinction (in (2.16)) that separates the region in which the total
host population goes extinct from the region in which model (2.1)—(2.2) converges toward a
disease—free equilibrium. The curve T'C'; defines a transcritical bifurcation representing the
threshold for infection establishment (Rc = 1) that separates the region in which the
pathogen fails to establish itself (disease—free equilibrium) from the region in which the
pathogen is able to invade the host population and model (2.1)—(2.2) converges toward an
endemic equilibrium.

We investigate the effectiveness of localized proactive culling (2.2) in successfully control
infectious diseases in wildlife by analysing the variation of susceptible and infected individuals
as a function of ¢ at endemic equilibrium E$ in model (2.1)—(2.2). Most of all, we are
interested in understanding whether localized proactive culling, ¢, can reduce the number of
infected individuals both in the culling area (I 1 in patch 1) and in the neighboring areas (_[2
in patch 2). Firstly, we provide analytical results on the variation of S and I (with j =1, 2)
with respect to ¢. In particular, we show that 8CIQ|C:0 can be positive for suitable ecological
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Figure 2.1: The effects of variation in host dispersal rate (D) and localized proactive culling
effort (¢) on model (2.1)—(2.2) behaviors. The curves T'Cy (i.e., ¢ = ¢ in (2.16)) and T'C4
(i.e., Rc = 1), which represent transcritical bifurcations, delimit three different regions in the
parameter space [D, ¢| where system (2.1), in the presence of localized proactive culling (2.2),
converges to host extinction, disease—free equilibrium, or endemic equilibrium. Parameter
values for model (2.1)—(2.2) have been fixed to: r = 0.9; u = 0.2; K = 600; o = 0; Ry = 10
(or rather § = 0.01833, see (2.13)).

and epidemiological conditions (see Theorem 2.5). Secondly, since endemic equilibrium FE$
is too complex to be computed analytically for strictly positive values of ¢, we simulate
numerically the number of infected individuals at endemic equilibrium ES for different values
of localized proactive culling, ¢.

Theorem 2.5. The number of infected individuals in patch 1 (1) at endemic equilibrium
of model (2.1)-(2.2), as function of ¢, is mazximum in ¢ = 0; namely, 1(¢) < I,(0) = I,
Ve > 0.

Proof. By considering equations (2.1) evaluated at equilibrium Ef = (81,14, S5, 1) and at
equilibrium Fy = (S, 1,5,1), as given in (2.14), and subtracting side by side, one obtains:

S(e) 1] (2.22a)

(8+n) (fl(é)—f)+é:—n<§1(é)—5)+D

- 1] (2.22D)

(B+mn) (fQ(E) —1:) =— (Sg(é) —5’) +D

- 1] (2.22¢)

(8 —m) (S‘z(é) - S) =1 (I}(a) - J‘) - D [I}@ - 1] : (2.22d)

By contradiction, we assume that there exists a ¢y > 0 such that I 1(é&) > I. Then, signs
in (2.22b) impose that at least one of the following inequalities holds:
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. [A2<EO>A> f1(50)2 Then, I,(¢) > I and addenda signs in (2.22¢) and (2.22d) impose
that S1(cy) > S2(¢o) > S. However, a contradiction in (2.22a) arises.

° Sl(éo) > S. From sign of equations (2.22a) and (2.22c) one yields Sy(e) > Si(c) > S
and I;(¢g) > I > I5(¢p), respectively. This leads to a contradiction in (2.22d).

Thus, it must be I1(¢) < I, Vé > 0. O

Theorem 2.6. V¢ > 0, the number of infected individuals in patch 1 at endemic equilibrium
B3 of model (2.1)-(2.2) is smaller than the corresponding number of infected individuals in
patch 2 (I,); namely, I,(¢) < I,(¢), Ve > 0.

Proof. By contradiction, we assume that there exists a ¢, > 0 such that I;(¢y) > L ().
Then, from (2.22¢) and (2.22d) and in virtue of Theorem 2.5, one yields S () < S»(Zo) < S.
Moreover, by handling equations (2.1b)-(2.1d) at endemic equilibrium ES° and subtracting
side by side, we obtain

54 Iy I
(B=n)(S1— Sa) — & —n(l; — [2)+D<72—71>: ,
L I

which is in contradiction with addenda signs. Hence, it must be I1(¢) < I,(¢), Ve > 0. [

Theorem 2.7. The derivative of the number of susceptible individuals in patch 2 (Ss) with
respect to ¢, at endemic equilibrium of model (2.1)-(2.2), is always positive when ¢ = 0.
Instead, the derivative of the number of infected individuals in patch 2 is positive when ¢ = 0
if and only if the following condition holds:

2D Rg—2

0.0, >0 = = < ,
2(:* r RO

(2.23)

with Ry defined in (2.13).

Proof. By differentiating with respect to ¢ the r.h.s. of equations (2.1) at endemic equilibrium
ES, we obtain

(e) = =1~ 1810 ~nli(0) + SS9, ~ §1(500) (224a)
B51(0) =1+ nS1(0) + nii(e) — l()) 1) (0) - 1@ Ex(0) (2.241)
BI4(e) = — nS4(e) — nis(e) + A;_:) $1005(0) - $(0)5: ()] (2.240)
354(E) =n50) +113e) ~ S h@ () ~ B L) (224)

When ¢ = 0, 5;(0) = S and I;(0) = I, with S and I defined as in (2.14). Then — by
substituting the expressions for [7(0) and I5(0) (derived in (2.24a) and (2.24c), respectively)
as functions of S7(0) and S5(0) —, we can re-write (2.24b) and (2.24d) as follows:

A(S, 1)81(0) = ? + B(S, 1)3,(0) (2.252)
A(S,1)85(0) = D, B(S,1)5%(0), (2.25D)
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where - o
A(S,I) = p*+ B(S, 1), (2.26)
and 5 H D2

By substituting (2.25a) in (2.25b) and rearranging, we find the equation

A2_p? B B\ D
- 5(0) = 5+ (1 . Z) —.

Being A(S,I) > B(S,I), condition S5(0) > 0 is always satisfied.

In a similar way, we prove the second part of the statement. By substituting the
expressions for §/(0) and S4(0) (derived in (2.24b) and (2.24d), respectively) as functions
of I/(0) and I}(0), we can re-write (2.24a) and (2.24c) as follows:

A(S, DI0) = -5 — % + B(S, 1)I;(0) (2.28a)
A(S, 1) I}(0) = % + B(S,1)I1(0), (2.28D)

where functions A and B are given in (2.26) and (2.27), respectively. By substituting (2.28a)
in (2.28b) and rearranging, we find the equation

A2_p? B B\ D
b)) =55 + (1 - Z) = (2.29)

Hence, condition I,(0) > 0 is fulfilled if and only if the r.h.s. of (2.29) is positive (i.e., if
BD — B(S,1)S > 0). With simple algebraic manipulations — and remembering equalities
(2.13) and (2.14) — then yields to
2D Rog—2
— <
T RO

]

Proposition 2.8. In the limit case D — 0, the derivative of the number of susceptible
individuals in patch 1 (Sy) with respect to ¢, at endemic equilibrium ES of model (2.1)-(2.2),
converges to 1/[3.

Proof. 1t is an immediate consequence of equations (2.24a) and (2.24b). O

From expression (2.23), we notice that necessary conditions for localized proactive culling
to increase (instead of decrease) the number of infected individuals in patch 2 are: 2D < r
(i.e., hosts are very infrequent dispersers) and R > 2 (i.e., in the corresponding uncontrolled
model the first infected individual can, on average, infect more than two individuals).

Remark 2.9. In the case the total host population at endemic equilibrium for ¢ =0 (2.15) is
much lower than the carrying capacity K, the effect of the density—dependent mortality rate
at the endemic equilibrium is negligible, which corresponds to assumen — 0. In this scenario,
it is straightforward to check that condition (2.23) for being I5(0) > 0 reduces to: 2D < r.
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proactive culling rate (¢)

0 0.1 0.2 0.3 0.4

host dispersal rate (D)

Figure 2.2: Curves in the parameter space [D, ¢| separating the regions in which condition
I5(€) > I or condition I,(¢) < I are satisfied for different values of the basic reproduction
number of model (2.1) with ¢ = 0 (R, given by (2.13)). Solid thick curve: Ry = 10;
dashed thick curve: Ry = 5; dot—dashed thick curve: Rg = 2.5. The dynamics of infected
individuals in patch 2 (fg) corresponding to the parameter space along the thin dotted line
(D = 0.1r) is illustrated in Fig. 2.3. Unspecified parameters as in Fig. 2.1.

Instead, if, in addition to setting n — 0, we also relax the hypothesis of disease—induced
sterility (see the next subsection), then such a condition becomes slightly more complex:

2D
(a—r)(1—7>—(/L—i—r)—l’ljj__;;(rgt::—l—QD)>O, (2.30)

where a > 1 (which represents the mecessary condition for the existence of the endemic
equilibrium in the absence of control, see the next subsection). However, once again, formula
(2.30) indicates that having 2D < r is necessary for proactive culling to increase the endemic
value of infected in the uncontrolled patch.

To investigate more deeply the counter-intuitive result obtained in Theorem 2.7, we
numerically compute the parameter conditions for which the number of infected individuals
in patch 2 at the endemic equilibrium is higher in the presence of localized proactive control
than with the do-nothing alternative (i.e., I5(¢) > I). The numerical analyses presented here
are performed by exploring the effects of different values of host dispersal (D), proactive
culling effort (¢), and disease basic reproduction number of model (2.1) with ¢ = 0 (Ry,
given by (2.13)) on control effectiveness and by keeping the host demographic parameters
constant in the simulations. Specifically, we set the host demographic parameters as in [35].

In Fig. 2.2 we show the parametric regions where condition fg(é) > [ is satisfied for
different values of basic reproduction number of the corresponding uncontrolled model (Ry)
in the parameter space [D, ¢|. Fig. 2.2 highlights that for low values of host dispersal rates
(D), localized culling is ineffective in reducing the infection outside the control zone (i.e.,
I,(¢) > I) for a wide range of culling rate values, also when the basic reproduction number
is relatively low.
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Figure 2.3: Relative variation of the number of infected individuals in patch 2 at endemic
equilibrium ES with respect to the number of infected in the absence of control (i.e., oI, =
(I, — I)/I) as a function of the localized proactive culling rate (¢) for a very infrequent
disperser host species (D/r = 0.1). Solid thick curve: Ry = 10; dashed thick curve: Ry = 5;
dot—dashed thick curve: Ry = 2.5. The thin dotted line represents the condition fg =1
Unspecified parameters as in Fig. 2.1.

The dynamics of infected individuals in patch 2 corresponding to the parameter space
along the thin dotted line in Fig. 2.2 is illustrated in Fig. 2.3. In particular, in Fig. 2.3
we show the relative variation of the number of infected individuals in patch 2 at endemic
equilibrium ES with respect to the number of infected in the absence of control (i.e., 61, =
(I,—1)/I) as a function of the localized proactive culling rate (¢) for an infrequent disperser
host (D/r = 0.1) and for different values of Ry.

Ineffectiveness of proactive culling by relaxing some hypotheses

Let us consider the following metapopulation epidemic model

Sy =vN; — BS,I; — (L+¢)Sy — DSy + DS, (2.31a)
I =381, — (n+a+¢)l, — DI, + DI, (2.31b)
Sy = UNy — 3851y — Sy — DSy + DS, (2.31c)
Iy = 3SoIy — (pn + @) I, — DI, + DI, (2.31d)

that differs from model (2.1) in the absence of both pathogen—induced sterility (also infected
individuals reproduce) and density—dependent host mortality (n = 0). Remember that we
called » = v — p the intrinsic growth rate.

Firstly, one can easily check that, in the absence of control (¢ = 0), an endemic
equilibrium (say, FEs) exists only if @ > r and has components equal in pairs [104]:
Ey,=(S,1,8,1), where

§=" ; a (2.32a)
I= ;({;—J:‘;‘; (2.32b)
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For E, stability properties, see [104].

Then, let us denote with ES = (5(¢), I (€), S2(€), I(¢)) the generic endemic equilibrium
of model (2.31) with ¢ = ¢. By differentiating with respect to ¢ the r.h.s. side of equations
(2.31) at ES, we obtain

[1(0) = — 1+ ——[11(e)$1(e) — Si(e)Ti (e D 151080 - 5105 a
pL(e) =—1+ 20 [11(e)51(e) = 51 (@) 11 ()] + S‘f(é)[ 2()51(¢) = 51(€)52(e)]  (2.33a)
B51(c) =1~ jzl()(—;) [55(©)11() — I () o ()] (2.33b)

[5(¢) =——[1}(2) Sa(c) — Sy(e)Ta(e D 151050 - $@si @ c
BL,() “50) [1(€)55(¢) = 55(€)12(¢)] + G20 [91(€)52(¢) = 53(¢) 51 (€)] (2.33¢)
534(0) = — = ATOL(E) — BOLE). (2.334

15(e)

Of course, when ¢ = 0, S;(0) = S and I;(0) = I, as given in (2.32). Then — by substituting
the expressions for S7(0) and S5(0) (derived in (2.33b) and (2.33d), respectively) as functions
of I1(0) and 75(0) —, we can re—write (2.33a) and (2.33c) as follows:

D vl

A(S, DI0) = -5 — T &t B(S,1)I(0) (2.34a)
_ A D _ A
A(S,1)15(0) = 3 + B(S,I)I;(0), (2.34Db)
where o y o
A(S.1) = 8(8—5) +B(S.D,
and 5 D2
— v
B(S.I) =2 + 257
By substituting (2.34a) in (2.34b) and rearranging, we find the equation
A2 B vI\ B B\ D
———1(0) = - <B + ﬁ) S (1 - Z) =3 (2.35)

Since A(S,I) > B(S,I), condition I}(0) > 0 is fulfilled if and only if the r.h.s. of (2.35)
is positive. With simple algebraic manipulations — and remembering equalities (2.32) — one

yields
2D
(a—r)(l——)—y— Y (TV —|—2D>>O.
T nw+o \a—r

The effect of localized reactive culling

Let us consider model (2.1) with the piecewise—constant function (2.3) representing the
culling effort in the localized reactive control strategy. We are interested in investigating the
long term dynamics of model solutions and, in particular, of sliding motions, occurring on
the sliding set (2.4). To this aim, the following results concerning the existence and stability
of stationary sliding solutions (also called pseudo—equilibria) can be proved:
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Theorem 2.10. Necessary condition for the existence of pseudo—equilibria for model (2.1)-
(2.8) is that A )
L <0<, (2.36)

where I, [resp. 1] is the number of infected individuals in patch 1 at endemic equilibrium ES
[resp. Ey] of model (2.1) with ¢ = ¢ [resp. ¢ = 0].

A

Proof. Firstly note that Theorem 2.5 ensures that [, < I.

By definition, a pseudo—equilibrium of model (2.1)—(2.3) is an equilibrium for system
(2.5) belonging to the sliding set X4 (given in (2.4)), i.e. such that I = 6, and Sy, Ss, I,
satisfy

1.
(r+ pu+ a)S; — BS? — 865, — Dgs1 + DS, =0 (2.37a)
TSQ — nSQNQ — /852]2 — DSQ + DSl =0 (237b)
/852_[2 — (,LL + o+ HNQ)IQ — DIQ + DO = O, (237(3)
with
1.
(5—77)S1ZM+04+776+D—D§2 (2.38a)
I
(5—77)51§u+04+779+5+D—Dg2. (2.38b)

By contradiction, we assume that one of the following inequalities holds:

e § <I;. Then - by handling the inequality (2.38b) and equation (2.1b) at equilibrium
ES —, one yields
. . I I
(B=n)(S1—51)—n0—1L)+D (5—?2> <0,
1
implying that two mutually—exclusive conditions must be considered:

-5 < Sl. Then, N1 = 51+ 0 < 5’1 + fl = ]\71 and by substituting the expression
for 4+ o — DI15/6 derived from (2.37a) in (2.38b) and rearranging, we obtain
Sy

7’—69—77]\&—6—D(1——> <0.
S

Subtracting the latter inequality and equation (2.1a) at equilibrium ES side by
side yields

) - Sy S
BO—TL)+nNy—N)+D |2 -2 | >0,
Sl Sl
implying gz/gl > S5/51 and, in particular, Sy > Sy
Let us consider now equations (2.37b)—(2.37¢c) and (2.1¢)—(2.1d) at equilibrium
E$ and subtract side by side, yielding:

(B+mn) <]2 - jz) =-1 (52 - gz) +D (g—; - g—:) (2.39a)
(B—mn) (Sz - SQ) =n (IQ - f2> - D (I% — %) . (2.39b)
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Sign of (2.39a) r.h.s. imposes that I, > I, which, however, is in contrast with
(2.39D).

-5 > :@1, L/0 < f2/f1. Then, I, < I, and sign of (2.39b) r.h.s. implies that
Sy > Sy, which is in contradiction with (2.39a).

e 0> 1. Then - by remembering inequality (2.38a) and equation (2.1b) at equilibrium
FE5 —, one yields

G = I
(5—77)(51—5)—77(9—1)+D(§—1> >0,
hence at least one between the first and the last addendum must be positive; namely,

we consider two alternative cases:

— Sy >S. Then, N; > S+ 1 = N and by substituting the expression for p 4+ a —
D1,/6 derived from (2.37a) in (2.38a) and rearranging, one obtains

1

r—an—D<1—%) > p6.

Being § > I, with I given in (2.14b), then S, > S; > S.
Accounting now for equations (2.37b)—(2.37c) and (2.1¢)—(2.1d) at equilibrium Es
and subtracting side by side, yields:

B+n) (L—T)=—5(S—8)+D (g_ _ 1) (2.400)
B=n)(S2—5S)=n(lo—1)-D (% — 1) . (2.40b)

Addenda signs in (2.40a)—(2.40b) impose that I > I, > 6, which contradicts the
initial assumption.

— 81 <8, I, > 6. Then, sign of (2.40b) r.h.s. implies that S, > S > S;, which,
however, is in contrast with (2.40a).

Since in any case we find a contradiction,  must belong to the interval (2.36). O]

Remark 2.11. Note that when 0 belongs to the interval (2.56), pseudo—equilibria are the
unique possible attractors of model (2.1)-(2.3). Indeed, from (2.3), neither Ey nor ES can
exist.

Theorem 2.12. A pseudo—equilibrium of model (2.1)-(2.3) is locally asymptotically stable
if, and only if,

52
(dy + dy) |d3(dy + dy + d3) + 77D§2 + BSidy | + (2.41)
1

2

+ (82 = 1*)SaLr(do + d3) — %(5 —n)Sily >0,

with

S S 0
2

Sy’ S I,
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Figure 2.4: Bifurcation diagram of epidemic model (2.1)—(2.3) in the parameter space [0, c].
The curves BN1 and BN2 represent boundary—node bifurcations. A stable equilibrium is the
only attractor in regions 1 and 3. A pseudo—equilibrium is the only attractor in region 2.
The shaded area represents the parameter combinations for which model (2.1)—(2.3) displays
129° > 19° = I. The relative variations of the number of infected individuals at model (2.1)-
(2.3) steady-state with respect to the number of infected in the absence of control (5];?’5) as
a function of parameter ¢, corresponding to the dotted lines a and b, are illustrated in Figs.
2.5 and 2.6. Other parameters are: r = 0.9; p = 0.2; K = 600; Ry = 10; « =0, D = 0.1r.

Proof. From (2.37), the Jacobian matrix of system (2.5) at a pseudo—equilibrium reads

D
—d1 D —551
7=1 b —dy  —(B4+n)S2 |-
0 (B—n)l —d3

with dy, dy and d3 given in (2.42). With simple algebraic calculations, we derive the
characteristic polynomial of J (say, P(\)):

P(A) = lo + A+ A2 + NP,

where
2 2 S3 D?
lo =(8" —n")Saladr + ﬁDS— + B851dy | d3 + 7(5 —n)Sil
1
52
l1 =(dy + dy)ds + (52 — T]2)52]2 + 77D§2 + BS1ds
1
l2 :dl + dg + dg.
Being [; > 0, Vi = 0,...,2, the presence of positive real roots for P()\) is excluded in virtue

of Descartes’ rule of sign. According to Routh-Hurwitz theorem, also complex roots with
positive real part are not admissible if, and only if, I3l — [y > 0, which corresponds to
(2.41). O

The analytical condition (2.41) provided in Theorem 2.12 depends in a complicated
manner on unknown pseudo—equilibrium values as well as on crucial parameters, like 3,
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1, D, 6; hence, it is difficult to give easier sufficient conditions for its positivity. However,
in the specific case the hosts are very infrequent dispersers (i.e. D — 0), which corresponds
to the scenario where culling leads to an increase of infected individuals in the uncontrolled
patch, expression (2.41) is always verified. In this case, a pseudo—equilibrium of model
(2.1)-(2.3) is locally asymptotically stable.

Since the analytical results provided in Theorems 2.10 and 2.12 are not exhaustive, we
perform different sets of numerical simulations on a wide range of parameters combinations
for 6 and ¢ (as in Fig. 2.4) and for different initial conditions of model (2.1) variables. For
each pair of parameters ¢ and ¢, we find a unique attractor regardless of the initial conditions
chosen for the simulations. Specifically, we find that the only suitable attractors for model
(2.1)-(2.3) are either stable equilibria or pseudo—equilibria (which represent points of the
sliding set (2.4)).

The bifurcation analysis of epidemic model (2.1)—(2.3) in the parameter space [0, ¢,
derived from the continuation of stable equilibria and pseudo—equilibria found in the
numerical simulations, is illustrated in Fig. 2.4.

Fig. 2.4 shows that, for large values of culling threshold (6), model (2.1)—(2.3)
equilibrium is unique, namely a stable equilibrium (independent from the values assumed
by ¢) corresponding to endemic equilibrium (2.14) as defined in continuous model (2.1) in
the absence of control, namely E, (see region 1 in Fig. 2.4). By decreasing threshold 6,
equilibrium FE; found in region 1 wundergoes a boundary-node bifurcation for
0 = 1)° = 1)° = I (line BNI in Fig. 2.4), where [j’é denotes the steady-state value of
infected individuals in patches j for localized reactive control (2.3) with parameters 6, ¢.
By crossing BN1 and entering region 2 the original F, equilibrium disappears and a
pseudo—equilibrium characterized by [ 16 “ = @ appears (see region 2 in Fig. 2.4). Curve BN2
represents a boundary—node bifurcation: by crossing it and entering region 3, the
pseudo—equilibrium characterized by I 19 © = @ disappears and a stable equilibrium
characterized by If “ > @ appears. Boundary node bifurcations BN1 and BN2 correspond
to the vanishing of the vector fields components fg(l) and f2(2), respectively, as defined in
(2.4). The grey area in Fig. 2.4 represents the conditions in the parameter space [0, c]
where Ig’é > 19 = T, ie., where localized reactive culling is ineffective in reducing the
infection burden in both areas.

Specifically, Fig. 2.4 shows that, in the case of low levels of culling threshold 6, sufficiently
high efforts of culling, ¢, are able to reduce the infection burden in both areas, as in the case
of localized proactive culling (see solid line in Fig. 2.3). On the contrary, in the case
of intermediate values of 6, localized reactive culling is ineffective in reducing the infection
burden in both areas regardless of the culling effort applied in disease control. These findings
are highlighted in Figs. 2.5 and 2.6, where the effects of localized reactive control on the
relative variation of the number of infected individuals in patches 1 (panels A) and 2 (panels
B) at model (2.1)—(2.3) steady-state with respect to the number of infected in the absence
of control (5[5’5 = ([JQ’E — I)/I, with j = 1,2) are shown for two different levels of culling
threshold (# = 2.5 in Fig. 2.5, # = 15 in Fig. 2.6).

2.4 Discussion and conclusions
In this chapter, we analyzed the effect of localized proactive and reactive culling on the

disease dynamics in a metapopulation model with two patches (one with control and the
other one without control). Proactive culling is described through a classical ODE continuous
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Figure 2.5: Relative variation of the number of infected individuals in patches 1 (panel A)
and 2 (panel B) at model (2.1)-(2.3) steady-state with respect to the number of infected in
the absence of control (5[5’6, with j = 1,2) as a function of parameter ¢. BN2 represents a
boundary-node bifurcation point as in Fig. 2.4. The dashed line represents the condition
[f’é —= I. Parameter = 2.5, unspecified parameters as in Fig. 2.4.

system, while reactive culling is described through a piecewise—smooth system where the
control activities are implemented when the number of infected individuals exceeds a given
threshold.

Models implementing sliding control have been already developed in recent years for
different infections, such as West Nile Virus [316], avian influenza [85,86], and SARS [315].
Here, we found that localized culling implemented in one of the patches may lead to an
unexpected increase in the number of infected individuals in the other patch. In the case of
continuous model (2.1)—(2.2), we provided the necessary conditions for this counter—intuitive
outcome to occur (see Theorem 2.7). In details, the equilibrium value of infected individuals
I, in presence of proactive culling can increase only if 2D < r (hosts are very infrequent
dispersers) and Ry > 2, namely if the basic reproduction number of the corresponding
uncontrolled model is at least twice the endemicity threshold. In addition, we numerically
found that the number of infected individuals in the uncontrolled patch eventually peaks for
intermediate values of culling and then decreases only for high level of culling effort (see Fig.
2.3). Conversely, in sliding model (2.1)—(2.3), we numerically found that, for intermediate
levels of disease detection, localized reactive culling increases the infection burden in the
uncontrolled patch regardless of the culling effort applied in the disease control (see Figs.
2.4 and 2.6B).

The biological explanation for this unexpected effect relies on the remark that, when the
dispersal rate (D) is low, the introduction of culling induces an increase in the number of
susceptible individuals in both the controlled and uncontrolled patches (see Theorem 2.7
and Proposition 2.8). This leads to a flush of new susceptibles entering the uncontrolled
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Figure 2.6: Relative variation of the number of infected individuals in patches 1 (panel A)
and 2 (panel B) at model (2.1)—-(2.3) steady-state with respect to the number of infected in
the absence of control (6[5’6, with j = 1,2) as a function of parameter ¢. BN2 represents a
boundary—node bifurcation point as in Fig. 2.4. The dashed line represents the condition

If’é — ]. Parameter § = 15, unspecified parameters as in Fig. 2.4.

patch, then providing a bust to the infection transmission. We have proved the generality
of this result by showing that it does not depend on the specific assumptions made in model
(2.1), but it holds also relaxing the hypotheses of disease-induced host sterility and density—
dependent mortality in the infection model (see Remark 2.9).

The epidemiological and economic conditions leading to the ineffectiveness of disease
control through culling have also been investigated in optimal control frameworks. Bolzoni
et al. [39] showed that reactive culling implemented around the peak of infection represents
an optimal control strategy only when the basic reproduction number of the infection is low
and the costs of control are high.

In conclusion, this study shows that also in the absence of the density—dependent
compensatory effects — which were previously associated to disease control failure —,
localized culling may represent an ineffective strategy in limiting infectious diseases in
wildlife.
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In the remaining part of the thesis we focus on infectious diseases in human populations,
and we add to classical epidemic models and relevant control problems a key factor: the
modelling of opinions of individuals and their effects on the propensity to adopt protective
measures.

In modern societies the main sources of information are Internet—based social networks.
Thus, the opinion of citizens on key topics, such as vaccines, is very volatile. In this
chapter, we explore the impact of volatility on the modeling of public response to vaccine
awareness campaigns (VACs) for favouring vaccine uptake. We apply a quasi-steady—state
approximation to the model of the spread and control via VACs of SIR diseases proposed
in [112]. This allows us to infer and analyze a new behavioral epidemiology model that is
nonlinear in the control. Then, we investigate the efficient design of VACs by adopting
optimal control theory.

The resulting problem has important issues: 1) the integrand of its objective functional
is non—convex; 2) the application of forward-backward sweep [201] and gradient descent [13]
algorithms in some key cases does not work; 3) analytical approaches provide continuous
solutions that cannot rigorously be implemented since public health interventions cannot be
fully flexible. Thus, we resort to direct optimization of the objective functional via heuristic
stochastic optimization, in particular via particle swarm optimization [184] and differential
evolution [271] algorithms.

Finally, since the optimization algorithms are stochastic, we provide a statistical
assessment of the obtained solutions.

This study was conceived and carried out during a two months scientific visit in 2019 at
the International Prevention Research Institute in Lyon (France), under the supervision of
Dr. A. d’Onofrio. The results have been published in [97].

3.1 Background

A major challenge for global public health (PH) is the spread of hesitancy and refusal of
vaccines to prevent childhood diseases. This is due to the phenomenon of ‘pseudo-rational’
exemption to vaccination: parents overweight real and imaginary side effects of vaccines and
underweight real risks due to the target infectious diseases. To mitigate the impact of this
challenge, the public health systems (PHSs) may counteract by means of public campaigns
to favor vaccine uptake.

These scenarios make it increasingly important a new approach to modeling the spread
and control of infectious diseases, by including in the modeling the description of human
decision making. In particular, the complex dynamics of vaccine decision has been modeled
as an imitation game [21,111] or, equivalently, as an infection of ideas process [293] (see
also Section 1.4). The approach introduced in [21,111] was suitably modified by d’Onofrio
et al. [112] in order to take into the account the actions enacted by PHS to favor
vaccination. In papers [21, 111, 112] the analytical and numerical investigations were
focused on scenarios where citizens slowly change their opinion. This assumption, however,
in the age of social media is increasingly questionable. Nowadays, the opinion form is based
on information and rumors collected and exchanged on Internet—based social media such as
Facebook, Twitter, Instagram, etc, and, at the micro—scale of small chat groups,
WhatsApp, Snapchat and Facebook Messenger. This impressive exponential growth in
public opinion channels [181] makes the opinion of population much more volatile than in
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the past on many sensitive subjects [7], including politics [7,178] and vaccines [53,231].
Such a radical change of scenario must be taken into the account in the models of
behavioral epidemiology of infectious diseases.

We are here particularly interested in the optimal design of vaccine awareness
campaigns (VACs) in the current context of extremely volatile opinion among the
population targeted by these campaigns by applying optimal control (OC) theory. As
already seen in previous chapters, OC theory [127,240] is a classical tool applied in
mathematical epidemiology of infectious diseases (see Section 1.2). However, the adoption
of an optimal control strategy, given an health economy objective and appropriate
constraints, posits some remarkable problems. The first one is common to a number of
other problems in numerical analysis: the chosen numerical algorithms could lack
convergence due to stiffness of the mathematical model or to complex chaotic behaviors
induced by the recursive nature of the adopted algorithms. Sensitivity to initial conditions
could make impossible to numerically solve a problem. The second one is that the solution
of the optimal control problem via the maximum principle by Pontryagin is a continuous
function of time which requires a continuous adaptation of the PH intervention.
Unfortunately, in most case a PHS is not endowed for practical reasons such a large degree
of flexibility. The third problem is that, once obtained the optimal solution for the control
(say, u(t)), one has no indication of the degree of robustness of this solution. Due to the
above—mentioned low degree of flexibility of the PHS action, it would be desirable to have
an idea of how much a given OC solution is flexible to deviations. The fourth problem is
also extremely relevant: it may happen that for the OC problem in study the requirements
of classical existence theorems are not satisfied. One cannot say to PH officers that the
problem cannot be investigated for lack of appropriate theorems.

The first problem was first faced in behavioral epidemiology by Buonomo et al. [65], whose
solution led to consider, in part, the second one. On the contrary, the other two are specific
to this study. Namely, in [65] the lack of convergence of some well known OC algorithms
aimed at the solution of the Pontryagin differential-algebraic constrained system [240], led
the authors to consider the application of a direct optimization strategy. It was adopted
the oldest algorithm of stochastic heuristic optimization, the simulated annealing [43]. This
led to consider OC strategies that are piecewise—constant. This was needed for numerical
analysis but was at the same time a first contribute to finding realistic OC strategies more
adapt to the reality of not so flexible PH interventions.

We propose here some important novelties with respect to the paper [65]. We adopt
two more recent and robust heuristic optimization algorithms [43]: the particle swarm
optimization [43,184] and the differential evolution [43,244,272]. We select these two great
popular methods not for comparing their efficiency or performances, but just to have a
double check of the results. The direct optimization results allow us to better evaluate the
robustness of the OC solution to temporary perturbations of large amplitude. As far as the
degree of flexibility of the VACs is concerned, we propose a more advanced analysis with
respect to [65]. Indeed, we consider three strategies of intervention: with 3-months
changes, with annual changes and with biennial changes. Concerning the last problem, the
OC problem in study is characterized by an objective functional whose integrand is
non—convex w.r.t. w(t). Moreover, at variance with many studies, in the proposed model
the dependence on the control is nonlinear.
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3.2 Model formulation

The starting framework

Let us consider the SIR-like model describing the dynamics of a vaccine-preventable
childhood disease under voluntary vaccination choices introduced in [111,112]:

S = p(1 = p(t)) = BSI — pS

: (3.1)
I=pBST—(v+wl,

where S and I denote the fraction of susceptible and infected individuals w.r.t. the total
population at time ¢, respectively; the time—dependent variable p models the vaccine uptake
of newborns. The other parameters are positive constants: i) birth and mortality rates are
equal to a value p (implying a stationary population); ii) 8 is the transmission rate; iii) = is
the recovery rate.

To model the impact of human responses to both the spread of the disease and vaccine
adverse events on the dynamics of vaccine propensity p, we follow [21,111,112] and assume
that there exist two interacting vaccine-related strategies among the (interacting)
individuals: ‘pro—vaccine’ and ‘anti-vaccine’. We denote by p and A = 1 — p the fractions
of the two above groups at time t. As anticipated in Section 1.4, the basic idea is that the
dynamics of p and A are ruled by a ‘double contagion’ of ideas between the two involved
groups. This approach yields the following family of models:

p = k0(I)pA — ka(M,.)Ap
A= —kO(DpA + ka(M,.)Ap,

where: i) the ‘force of infection’ concerning the switch from the strategy ‘no—vaccinator’ to
the strategy ‘vaccinator’ is k6(I)p, where 6(1) is an increasing function of prevalence of the
disease; ii) the ‘force of infection’ concerning the switch from the strategy ‘vaccinator’ to the
strategy ‘mo-vaccinator’ is ka(Ms.)A where M. (t) is an information variable on the extent
of vaccine-related side effects (VSEs); iii) the parameter k, although not strictly necessary,
is a time scale tuning parameter. Its role here is similar to the role of the parameter k£ in
the Glauber model of the mean—field kinetic of phase transitions of the Ising model [142]: it
characterizes the time scale of the velocity of opinion switching for the parents population.
The action of the PHS to favor the vaccine uptake is simply modeled as an additional
switch from the strategy ‘no vaccine’ to the strategy ‘vaccine’. This yields the model [293]

p = kO(I)pA — ka(M.)Ap + ku(t)A
A= —kO(I)pA + ka(M,.)Ap — ku(t)A.

The function ku(t) represents the rate of switching from the strategy ‘no vaccine’ to the
strategy ‘vaccine’ induced by the campaigns enacted by the public health system to increase
the vaccine propensity. Taking into the account that A = 1 — p yields the following model:

p = kp(1 =p)(0(I) — «(My.)) + ku(t)(1 - p),

originally proposed in [112] by an economy-oriented game-theoretic approach. In the
following we will focus on the case of linear a(Ms.), with Mg, proportional to the vaccine
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uptake of newborns p, yielding (with slight abuse of notation) «a(M,.) = ap. Hence, the
equation for p reads

p = kp(1 —p)(0(I) — ap) + ku(t)(1 — p). (3-2)
In case of constant u(t) = u = const. studied in [112], it was shown that public intervention
has a stabilising role to reduce the strength of imitation—induced oscillations, and if
u > ap? (with p, given in (3.7)), it allows disease elimination by making the disease—free
equilibrium where everyone is vaccinated globally attractive. The cases of periodic wu(t)
(corresponding to the alternate work—holidays terms) and of periodic contact rate were
investigated, respectively, in [57] and in [56].

The current scenario

To model the current scenario of volatile opinion switching, we assume that the imitation
speed, tuned by the parameter k, is very rapid: k > 1. Thus, a quasi—steady-state
approzimation [202] for p can be used in (3.2), which yields:

p(1 =p)(0(I) — ap) +u(t)(1 - p) = - ~0.
As a consequence, in the limit k& — 400, p is the solution of the following algebraic equation:
0= (1—p)(u(t) +0()p —ap) (3-3)
to be solved under the constraint:
0<p<L (3.4)

Equation (3.3) with condition (3.4) has two solutions: p = 1; and the unique positive solution
of
u(t) +0(I)p — ap® = 0.

Summarizing:
o(1 02(I) + dau(t
p=((I,u(t)) = min (1, N+ 2(a)+ au()>‘ (3.5)
Thus, model (3.1)—(3.2) reduces to the following bidimensional model:
S = p(l = ¢(Lu(t) - BST — pS (3.62)
[ =B3ST—(y+pl, (3.6b)

with ¢ given in (3.5). Model (3.6), from the control theory viewpoint [88,213], is a nonlinear
controlled model
#(t) = F(x(t), u(t))

where x = (5,1) and F nonlinearly depends on the enacted control:

F(a,u(t)) # a(z)u(t) + b(z),

for given a(-), b(+), i.e. F(x,u(t)) is not a linear—affine function of u(t). Note that the original
system proposed in [56,57,112,293] was, instead, linearly dependent on u(t).

More precisely, we may say that in this section we will deal with open—loop control of
(3.6). Later on we will focus on one of the most important, especially for the health economy
viewpoint, form of feedback control, i.e. optimal control [240].
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In the important case of constant control u(t) = u = const., model (3.6) belongs to the
class of models proposed and investigated in [113], where the equation for S reads as follows

S =pu(l—po—pi(1)) — BSI — pS.

Here, the baseline vaccination rate pg, which is independent on the information received
concerning the disease and the side effects of the vaccine, has a fundamental role. Indeed,
in [113] it was shown that, by denoting with Ry = /(7 + u) the SIR basic reproduction
number (see Section I.1), if
Do >pc=1—7%0, (3.7)

then the disease elimination is possible; if py < p., instead, the disease—free equilibrium is
unstable and an endemic equilibrium onsets. Note that p. is the May Anderson elimination
threshold in presence of mandatory vaccination (see [47,214]). It is clear that in absence of
a PH intervention a typical target population is unlikely to be characterized by a py larger
than the elimination threshold in presence of mandatory vaccine.

Here the baseline behavior-independent vaccination rate py introduced in [113] is better
explained. Indeed, it is equal to

Po = C(07 u)7

i.e. po = po(u) is an increasing function of u. Thus, an appropriately intense VACs might
induce the disease elimination provided that

1
po(u) >1— —

Ro’
1.e.
u > py(pe)- (3.8)

From the control theory viewpoint, we may say that if (3.8) holds, then the open-loop
constant control globally stabilizes the disease—free equilibrium (DFE).

In the case where the open—loop control u(t) is not constant, but wm,m, < u(t) < Umae,
With Upin < Umaee < +00, we get straightforwardly that: i) if

umln Y
max < R 7

then the DFE is unstable.

An interesting special case is when u(t) is periodic, which mimics the alternance of the
work and holidays terms in the PH interventions. Namely, it is easy to show that, denoting
as Y, (t) the periodic solution of

V= p(1=¢(0,u(t) = Y),

it holds that if

1

T
— [ vo(dt <1,
Rogs [ Valt)it <
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o SC = R, (1 _ %/OTC(O,u(t))dt) <1, (3.9)

then the disease—free solution is globally attractive, whereas if SC' > 1, with SC given in
(3.9), then it is unstable.
Let us consider the case where u(t) assumes periodically only two values in [0, T'):

u(t) = .
U 1fT1<t§T

This scenario mimics in the most schematic case a lower pressure of PHS during, for example,
a single period of holidays. In such a case the elimination condition becomes

C(O,ul)% + (0, u) (1 _ %) . Rio (3.10)

It is easy to show that constraint (3.10) holds also in case of a more complex pattern of
alternance between the two values u; and us, for example due to multiple holidays terms.

3.3 The optimal control problem

In the previous sections, we illustrated as the proposed ODEs model (3.6) can be seen,
in its general case, as an ‘open—loop’ controlled system. As it is well known, whenever
possible, it is preferable to control a system by means of feedback-based strategy [88,213].
In health economy, probably the most important form of feedback—based control is optimal
control, which is aimed at minimizing the economic and human burden of some health related
phenomena [137].

As a consequence, in this section we start investigating which are the implications of the
current age of fast opinion switching on the determination of the optimal time profile for
the VACs, summarized in the control variable u(t), so that the overall costs are minimized.
These costs include the following three components [61,65]: 1) the costs due to the disease

T
Jg = Kd/ NpSIdt;
0
ii) the costs due to the vaccination and its (although rare) side effects

T
Jy = Kv/ NMC([au(t))dt,
0

and iii) the costs of enacting VACs, J,,.
As far as the last cost is concerned, reminding that the flux of subjects switching from
the strategy ‘no vaccine’ to the strategy ‘vaccine’ is ku(t)A, we may express it as

Jy = /0 %p(u(t),A)ku(t)Adt.

Here the critical assumption is that, since the opinion switching rate is very fast, then the
cost to make a person switches from ‘NO’ to ‘YES’ is accordingly low and of order 1/k. The
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inverse proportionality w.r.t. k£ implies that the population—wide global cost is neither null
nor infinite. Finally, as in [65], we assume p = u(t)/A leading to

T
J, = / Cu(t)dt.
0

It is of interest to stress that the quadratic dependence of this cost component w.r.t. the
control u(t) is not decided a priori, i.e. based on mathematical convenience, but based on
reasoning on the phenomenon in study.

In sum, we are looking for the optimal control function v*(¢) that minimizes the objective
functional

T
7 (u(t)) = / (CaST + CoC(L ult) + Cud(2) dt, (3.11)
0
where Cy = K48N, C, = K,uN, on the admissible set for the control u(t)
Q={u(t) € L' (0,T), tmin < u(t) < Unas} -

Candidate optimal controls

According to Pontryagin maximum principle (MP), if an optimal solution exists, then the
optimal control v*(¢) minimizes the Hamiltonian function pointwise w.r.t. the control [240].
Here, the Hamiltonian H reads:

H = CyST+ C,((I,u(t)) + Cuu?(t)+
A1 [p (1= ¢, u(t) — pS — BST] + (3.12)
+A2 [BST - (M+’Y) 1]

where A = (A1, A2) is the solution vector of the adjoint system
M o= —Cql 4+ (A — M)BI + pu
5, — —CaS+ (A = M)BS+ A (u+7)+ W if f(1,u(l)) <
2T =CuS A+ (A = A)BS + Aa (1 +7) if f(I,u(t)) > 1

with
_ Aip =Gy 0(1)
W = —on =070 (I )( \/02 T doult ))7

and transversality conditions

AT) = 0.

The existence of the solution for our OC problem is not provided by classical existence
theorems [6,127,189,201,262], whose requirements are not satisfied here. In particular, it is
not guaranteed that the velocity sets

F,(S, 1) ={F(S,1,u(t))|u(t) € [Unin, Umaz] },

where F' is the r.h.s. of (3.6), are convex for every (S,7). Hence, there is no analytical
evidence (to the best of our knowledge) that the derivation of the constrained minimum
point of H at each time instant ¢ can provide us the ‘true’ minimizing control. Nonetheless,
the u(t) obtained by applying the interpolation procedure can be considered at least a useful
starting point for numerical computations. In other words, we can call it a candidate optimal
control.

In order to derive the minimum point of H at each time instant ¢, we must distinguish
the following three cases:
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o If (1) > a, then f(I,u(t)) > 1 and H is increasing w.r.t. u(t). Hence,

uw*(t) = Upin.- (3.13)

o If (/) < aand C, — Ayt > 0, then

1 .
oL 2C,u(t) + (Cy — Aipr) NEOETITIO if u(t) <a—0(I) (3.14)

2C,u(t) if u(t) > a—0(1)

namely, H is increasing w.r.t. u(¢) and also for such instants the (3.13) holds.

e If0(I) < aand C,— At < 0, then from (3.14) it follows that H is an increasing function
of u(t) in the time interval when u(t) > a —60(I). Otherwise, if u(t) < a —6(I), H can
still be increasing or have a minimum point, that is the unique solution of:

2C,u(t)\/02(I) + dau(t) = \p — C, (3.15)

namely, the intersection point of an increasing function of u(t) (the Lh.s. of (3.15))
and a constant function (the r.h.s. of (3.15)). Note that the (3.15) is equivalent to the
cubic equation:

Mp—C\°

4 3 2 T 2 o 1 v —0.
au’(t) + 6=(I)u(t) (—20” 0
Denote with @(t) the solution of (3.15), then

e ::{mﬂmnmx@%m“aa»,umw) if a(t) < a —6(I)
min (max (Upin, @ — 0(1)) , Umae)  if a(t) > o — 0(1)

Summarizing, we may say that the above procedure provides us with the following candidate
optimal control:

u'(t) =
Unnin if 0(I) > aor (0(I) < aand C, — A\ > 0)

= § min (max (Umin, U(t)) , Umaz) if 0(I) < aand C, — A\ < 0 and a(t) < a—6(1)
min (max (Umin, @ — (1)), Umar) if 0(1) < a and C, — \yp < 0 and a(t) > o — 0(1)

For convenience of notation, in the following we will omit the use of superscript * for the
optimal control function.

3.4 Parameterization and simulation scenarios

In order to make comparisons with the ‘slower’ imitation speed model, studied in [65], we
choose the same parameter values, that are listed and described in Table 3.1, and assume

O(I) = 0y + 0,1,

with 6y and #; non—negative constants. In particular, we consider five possible simulation
scenarios that differ for the combination of the rate of perceived risk of infection 6, and the
maximum intervention level u,,., and should capture all the relevant situations:
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Parameter Description Baseline value
1 Natural birth/death rate 1/50 years™!
y Recovery rate 1/10 days—!

Ro Basic reproduction number 10

B Transmission rate Ro(y + 1)

Pe Critical immunization threshold 1-1/Ro

€ Emigration /immigration flux 2.86 - 1078 days~!

«a Rate of perceived risk of vaccine side effects 1 days—!

Ao Minimum perceived risk of infection 0 days—!

01 Rate of perceived risk of infection 450-4000 days~*

N Total population 6- 107

T Length of the planning horizon 10 years
Upnin Minimum rate of efforts into awareness campaigns 0 days™!
Umaz Maximum rate of efforts into awareness campaigns 0.504pz — 0.7ap§
Ky Average unit cost per infected case 307 USD

K, Average unit cost of vaccination 21.08 USD

Cy Total cost of infection K 8N

Cy Total cost for vaccination KyuN

c? Cost for implementation of awareness campaigns NukK,/(a?p?)

Table 3.1: Epidemiological, behavioral and control-related parameters values.

C1 (01, Umaz) = (2000 days™, 0.7ap?), corresponding to a large perceived relative risk of
infection and a high level of intervention;

C2 (01, Umae) = (450 days™, 0.5ap?), corresponding to intermediate perceived relative
risk of infection and level of intervention;

C3 (01, Umaz) = (450 days™, 0.7ap?), corresponding to an intermediate perceived relative
risk of infection and a high level of intervention;

C4 (01, Umaz) = (4000 days™', 0.5ap?), corresponding to a very large perceived relative
risk of infection and an intermediate level of intervention;

C5 (01, Umaz) = (4000 days™', 0.7ap?), corresponding to a very large perceived relative
risk of infection and a high level of intervention.

Remind that in the ‘slower’ imitation speed model with u(t) = u = const. the threshold
u = ap? would ensure elimination [65].

As in [21,61,65], we also include a small immigration/emigration constant flux € to take
into account the immigration of infected individuals during inter—epidemic periods. Precisely,
a positive influx +¢ is added to the equation (3.6b), balanced by a negative term —¢ in the
equation (3.6a). Clearly, this constant influx term must be taken into account also in (3.12).

As far as the optimal control is concerned, the most specific parameter is C,,, because it
defines the weight of the communication strategy cost w.r.t. the other costs. We will use
two values: a baseline value C,, = C’I(LO) and a larger value C, = 5Cf,(f’). The latter is a test
case which is employed to assess how the control changes in the case of substantially larger
costs for the public health campaigns aimed at increasing the propensity to vaccinate.
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Figure 3.1: OC solutions by FBS method for the simulation scenarios C1 (top row) and C5
(bottom row). Left panels: I; central panels: p; right panels: uppgg(t). Initial data as in [65],
that is: S(0) = 0.0999972, I1(0) = 2.3878 - 10~* for the case C1; the endemic equilibrium of
model (3.6) with u(t) = 0 for the case C5. Other parameter values are listed in Table 3.1.

3.5 Numerical results

Optimal solutions by indirect methods

In mathematical biology, the two most adopted numerical algorithms for the numerical OC
solution are the forward-backward sweep (FBS) method [201] and the gradient descent or
steepest descent (Grad) method [13] (which can also be employed for the OC of spatio—
temporal models [173]). Their interest lies on the fact that: i) both of them are based on the
Pontryagin’s Hamiltonian, and — as such — they aim to numerically solve the Pontryagin’s
differential-algebraic boundary value problems [240]; ii) they are recursive algorithms, thus
they are easy to be implemented and do not require the use of special type libraries, at
variance with numerical methods to solve boundary value problems such as the multiple
shooting method [232]. Note that the point (i) implies that both the FBS and the Grad
methods fully take advantage of the analytical results of OC theory, which is very appreciable.

As mentioned above, for our control problem one has no guarantee that Pontryagin
necessary conditions of optimality are also sufficient. However, the above algorithms can be
used as well. Thus, we numerically investigate our OC problem ‘as if” the optimality sufficient
conditions would hold. As far as the OC problem is concerned, we employ the public domain
routines for the FBS and for the gradient method provided, respectively, by [201] and by [13]
for the MATLAB environment [216]. As far as the numerical resolution of the differential
equations are concerned, we employ the fourth-order Runge-Kutta method with constant
step size, as in [201].

We observe that for C, = CY) = NukK,/(a2p?) both the above-mentioned algorithms
converge to numerical solutions whose difference is very small. This suggests that — in the
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Figure 3.2: Jyert/Jrps as function of A and 7 for the simulation scenario C4. Initial data:
endemic equilibrium of model (3.6) for u(t) = 0. Other parameter values are listed in Table
3.1.

numerical cases we analyze — the ‘candidate’ optimal control is in reality the optimal control.
On the contrary, for C), = 50 both algorithms are not able to converge in all the scenarios
we considered.

The case C, = o) is numerically summarized in Table 3.2, where FBS method is used
as reference and the corresponding quantities are labelled with subscript pgps. Moreover,
panels in Fig. 3.1 show the OC solutions, obtained by means of the FBS algorithm [201], for
different combinations of #; and 4., which correspond to the cases C1 (top panels) and C5
(bottom panels) (for the other cases see [97]). The results are quite similar to those of [65],
but here the optimal control has an initial increasing behavior, especially in case C5.

Robustness to periodic perturbations As it is well known, the MP does not ensure
that the control function obtained by applying it is an actual global minimum. Thus, in
order to validate the global optimality of the candidate solution yielded by the Pontryagin
principle, we first consider a very simple heuristic approach. The approach consists in
assessing the robustness of the candidate optimal control uppg(t) (numerically obtained by
the FBS method) to sinusoidal perturbations of various amplitudes and periods:

Upers(t) = min <max <umn urps(t) (1 + Asin (277%) >> umz> : (3.16)

with A € [-1/2,1/2] and 7 € [0,10] years. Numerical results are displayed in Fig. 3.2 for
the case C4 and in [97] for the other cases. We report the values of

Jpert = J (tper(+))

normalized w.r.t. Jpgs = J(urps(+)), as function of the amplitude A and the period 7. As
one can notice, in all cases it is

J(upert(+)) > J(urps(t)),
suggesting that the algorithm might have found a global optimum.

Optimal solutions by direct methods

As we mentioned in the previous section, in the cases where C,, = 5C{” both FBS and Grad
algorithms incur in problems of convergence. The FBS and the gradient descent method

86



Chapter 3. Optimal vaccine awareness campaigns in presence of volatile opinions

0.6 L. _
0.48 J\
~0.36

S 0247
0.12 1

061
0.48 1
=036
S 0247
0.12 1

A

061

0.48 f 7
<036 = \ 7 \

S 0247

L L L L L L L L L L L L L L L L L \

t (years) t (years)

Figure 3.3: Case C, = C\”: OC function u(t) by FBS method (red lines) and one iteration
of PSO (green lines) and DE (black lines) algorithms. Left panels, from the top to bottom:
cases C1, C3 and C5, respectively. Right panels, from the top to bottom: cases C2 and C4,
respectively. Initial data as in [65], that is: S(0) = 0.0999972, I(0) = 2.3878 - 10~* for the
case Cl; the endemic equilibrium of model (3.6) with u(t) = 0 for the other cases. Other
parameter values are listed in Table 3.1.

belong, similarly to the single and multiple shooting methods [232], to the class of indirect
methods. In other words, they are based on the Pontryagin Hamiltonian, i.e. they take
advantage of the available variational solution of the OC problem expressed as a boundary
value problem for a differential-algebraic system.

In OC theory and applications, however, many deterministic algorithms based on the
direct optimization of the OC problem are available [119, 145,292]. Note that often a
relationship  between direct methods and the solution of the Pontryagin
differential-algebraic system can be shown, as in [133]. However, similarly to FBS and the
Grad algorithms, the deterministic direct optimization approach does not guarantee that
the found solution actually corresponds to a genuine global minimum.

Thus, in order to solve our OC problem in the cases where C,, = 50&0), we recur to direct
optimization by applying two stochastic heuristic optimization algorithms (HOAs). These
algorithms are conceived to directly solve general optimization problems and, as such, they
are not limited to OC applications.

A major difference between the heuristic optimization algorithms and the OC algorithms
is that the first ones are aimed to finite-dimensional problem, the second ones to infinite—
dimensional problems. However, the latter any case operate a discretization of the OC
problems, i.e. the reduction to a finite dimensional space, although of ‘large’ dimension
due to the small time step usually adopted. Another difference w.r.t. both the FBS and the
Grad methods as well as other direct optimization algorithms used in OC is that the heuristic
optimization algorithms we have chosen are stochastic. It is the stochasticity that allows to
significantly increase the probability that the minimum they find is a global minimum and
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not a local one. We will return later on some important implications of the stochasticity
of these algorithms. Thus, even for C, = 50), we apply the HOAs to further validate the
results obtained by applying the FBS and the Grad.

When using heuristic approaches one has to transform the initial infinite-dimensional
approach in a finite dimensional problem. This, however, is not a heavy constraint for the OC
problem to be solved. Indeed: i) even the OC-specific algorithms operate a discretization,
i.e. also they are finite dimensional; ii) in the light of the lack of flexibility of PH intervention,
this assumption provides OC solutions that are more realistic. In other words, ‘real world’
campaigns cannot be updated continuously in time, thus a piecewise—constant u(t) is more
realistic than a continuous control. Namely, we assume that the communication campaigns
enacted by the PHS are updated every three months, i.e. at each new season. This implies,
40 discretization points for the whole control horizon [0, 10] years, and, of course, that the
u(t) is a piecewise—constant function.

As far as the global optimization algorithms are concerned, we employ the following two
widely diffused algorithms:

e Particle swarm optimization (PSO). This algorithm was originally described in
Kennedy and Eberhart [184]. Recent versions include subsequent modifications
suggested in [219,236]. We use the particleswarm solver included in the Global
Optimization Toolbox of MATLAB [216]. We employ the default option values,
except for the termination tolerance on the function value (FunctionTolerance) and
the maximum number of iterations allowed (MaxIterations), that we set to 107°
and 200, respectively. The PSO algorithm is based on the concept of swarm
intelligence, i.e. the emergent ‘pseudo-intelligent’ behavior emerging at the collective
level in swarms of individuals that follow simple laws of interactions between them
and the surrounding environment [184,219,236].

e Differential evolution (DE). It was first proposed in [271] and subsequently improved
in [272]. We use the algorithm described in [244] and implement the MATLAB code
provided by the authors of that book [243]. We employ the default algorithm options,
except for the number of population members (I_.NP) and the maximum number of
generations until optimization stops (l_itermax), that are set to 50 and 800, respectively.

For a description of the above algorithms and further details, please refer to [43]. Our aim
here is not to compare their performances, but comparative studies are given in [81,94,290].
The choice of PSO and DE algorithms is motivated by their great popularity within the
domain of machine intelligence and cybernetic. Both algorithms do not need any gradient
information of the function to be optimized, are conceptually very simple and they require
minimal parameter tuning [43,94].

As far as the case C,, = C’éo) is concerned, for each combination of #; and wu,,,, considered,
we compare both qualitatively (Fig. 3.3) and quantitatively (Table 3.2) the outputs of the
PSO and of the DE algorithms w.r.t. the output of the FBS method. Both DE and PSO
algorithms provide optimal controls that are on the whole very close to the ones provided by
the FBS method (in turn very close to the ones obtained by the Grad method). However,
the output of DE algorithm has sometime large local deviations. This suggests that some
degree of flexibility in the implementation of the control does not dramatically change the
results. Graphics and data values suggest that, for the specific problem at hand, the PSO
algorithm performs slightly better than the DE algorithm.
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Case | Method [[u(t) — urss (@)1 J (USD) J—JrBs J, (USD) Ju — Ju,FrBs
u
|lurBs(t)||1 . JrBs - Ju,FBS

FBS 0 6.51 -10 0 1.03 10 0

o1 Grad 4.28 1073 6.51 -108 | 2.27-10* | 1.03 -108 -1.71 1073
PSO 7.36 -1073 6.51 -108 | 6.16 -10~* | 1.04 -108 3.28 -1073
DE 3.17 -1072 6.55 -10% | 6.19 -10~3 | 1.06 -108 2.06 1072
FBS 0 1.12 -10° 0 5.53 -107 0

09 Grad 1.75 -10~7 1.12 -10° | - 2.59 -10~7 | 5.53 -107 3.07 -10~7
PSO 3.51 1073 1.12 -10° | 1.04 -107%* | 5.55 -107 3.11 1073
DE 3.51 1073 1.12 -10° | 1.04 -10~% | 5.55 -107 3.11 -1073
FBS 0 7.84 -10°8 0 1.04 -108 0

o3 Grad 1.49 -10~4 7.84 108 | 2.24 1077 | 1.04 -108 -1.19 1074
PSO 6.37 -1073 7.85-10% | 3.15-107* | 1.04 -108 2.31-1073
DE 6.37 -1073 7.85-108 | 3.15-107* | 1.04 -108 2.34 1073
FBS 0 7.00 -108 0 5.43 -107 0

o4 Grad 3.69 -10~4 7.00 -108 | 8.76 -107% | 5.44 -107 4.11 -1074
PSO 7.97 1073 7.00 -10% | 4.76 -10~* | 5.43 -107 - 6.44 1074
DE 3.76 -1072 7.16 <108 | 2.31 1072 | 5.25 -107 -3.40 -1072
FBS 0 5.67 -108 0 1.01 -108 0

o5 Grad 1.60 -1073 5.67 -108 | 7.47 -10~° | 1.01 -108 -4.20 -1074
PSO 9.04 -1073 5.67 -108 | 1.16 -10=3 | 1.01 -108 3.71 1073
DE 2.09 1072 5.69 -108 | 3.33-1073 | 1.04 -108 2.89 -10~2

Table 3.2: Case C, = cl quantities measuring the differences between the OC solutions
by deterministic methods (FBS and Grad) and by one iteration of heuristic algorithms (PSO
and DE). Outputs by FBS method are used as reference. Parameter values and initial data
as in Fig. 3.3.

As far as the representative case C, = 50 is concerned, we obtain a radically different
OC solutions compared with the simulations where C, = ff’), as shown in Fig. 3.4 (left
panels). Indeed, in all cases the obtained control is strongly non—monotone. For both cases
C, = %) and Cy = 50&0), PSO performs slightly better and converges in shorter times than
DE.

Let us now compare Fig. 3.4 (left panels) with Table 3.3. On the one hand, in Table
3.3 the relative difference of the optimal total costs J obtained with the two algorithms is
in all cases very small. On the other hand, in Fig. 3.4 the optimal control obtained by
the DE algorithms seems affected by large ‘noise’ w.r.t. the optimal u(¢) obtained by PSO
algorithm. On the whole, these results suggest that the system is robust with respect to even
large local deviations from the theoretical optimal solution. In other words, the irregular
additional oscillations in the optimal control obtained by DE algorithm suggest that a large
degree of flexibility is possible when implementing the optimal control.

Alternative schedules of awareness campaigns As we said in the previous sections,
actual VACs are not continuous, but they vary in a piecewise—constant fashion. We have
seen that, assuming a three months—based update, we obtain, under PSO, a discretized u(t)
that is sufficiently close to a continuous control. By adopting DE, we obtain a more noisy
solution.

Here, we want to explore the impact of even less flexible policies of intervention to favor
vaccination. Namely, we will consider two additional scenarios:
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Figure 3.4: Case C, = 50 optimization by one iteration of PSO (green lines) and DE
(black lines) algorithms. OC function u(t) with 3 months (left panels), 1 year (central panels)
and 2 years (right panels) programming. Rows, from the top to bottom: cases C1, C2, C3,
C4 and C5, respectively. Parameter values and initial data as in Fig. 3.3.

3 months 1 year 2 years
Case | Method programming programming programming

J (USD) | J,, (USD) | J (USD) | J, (USD) | J (USD) | J, (USD)

o1 PSO 1.01-10° | 3.56 -10% | 1.02 -10° | 3.65 -10% | 1.03 -10° | 3.73 -10°
DE 1.07 -10° | 2.68 -10% | 1.02 -10° | 3.65 -10® | 1.03 -10° | 3.74 -108

09 PSO 1.33 -10Y | 2.57 -10°% | 1.34 -10° | 2.58 -10% | 1.35 -10° | 2.85 -10%
DE 1.33 -10° | 2.61 -10% | 1.34 -10° | 2.58 -10% | 1.35-10° | 2.85 -108

o3 PSO 1.17 -10° | 4.25-10% | 1.17 -10° | 4.28 -10% | 1.19 -10° | 4.20 -10®
DE 1.18 -10° | 4.29 -10% | 1.17 -10° | 4.28 -10® | 1.19 -10° | 4.20 -108

4 PSO 8.77 -108 | 1.58 -10° | 8.83-10% | 1.60 -10° | 9.04 -10% | 1.31 -10°
DE 8.84 -10% | 1.50 -10% | 8.83 -10% | 1.61 -10% | 9.04 -10% | 1.31 -108

o5 PSO 8.76 -10% | 1.67 -10% | 8.83 -10% | 1.67 -10% | 9.05 -10% | 2.48 -10%
DE 8.90 -108 | 1.60 -10® | 8.83 -10% | 1.66 -10® | 9.04 -10% | 1.31 -10%

Table 3.3: Case C, = 508 optimization by one iteration of PSO and DE algorithms. Costs
J and J, for three different temporal control-updates (3 months, 1 year, 2 years). Parameter
values and initial data as in Fig. 3.3.

e Yearly programming. We suppose that the PH interventions are updated once per year,
for logistic and administrative reasons. For example the PH policies could depend on
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the budget law, which is changed on yearly basis;

e Biennial programming. This must not seem an extreme academic case. For example,
in Soviet Union, during the leadership of Stalin, key policies actions were regulated by
‘quinquennial plans’.

We only simulate the case C, = 507([)) , where the three-months discretized optimal u(t)
obtained by heuristic methods is oscillating. We obtain that, if the three-months optimal
solutions are oscillating (i.e. scenarios C1, C3, C4 and C5), the same holds for the one—year
and two—years scheduling. Of course, the degree of oscillation is smaller for the one—year
w.r.t. the three-months scheduling, and smaller for the two-years w.r.t. the one-year
scheduling. In the scenario C2, where the optimal control is not oscillating for the three—
months scheduling, we get that the two—years scheduling optimal control is predicted to be
constant.

As far as the use of PSO versus DE is concerned, we note that, in scenario C5 for the
two—years scheduling, the optimal control obtained by the DE method corresponds to a cost
that is much smaller than the one found by applying PSO. Moreover, the two controls in such
a scenario are very dissimilar. This suggests that PSO does not converge to the actual global
minimum, but to a local minimum. This is a rare event but not impossible and confirms
that our choice to adopt two different algorithms is appropriate. In all other scenarios the
outputs of PSO are very similar to the one obtained by applying DE.

Coming back to FBS and Grad methods

As we have seen, for C, = 50 the FBS and the Grad methods, both deterministic OC—
oriented algorithms, have problems of convergence. Thus, we resort to two stochastic general
purpose algorithms, PSO and DE. As a natural further step, we then employ the piecewise—
constant OC solutions obtained by applying these two HOAs as an initial step for both the
FBS and Grad methods. Namely, we set as hint values for the OC to be determined the
following ones

u(o) (t) = UPgo(t)
or

u(o)(t) = ’LLDE(t),

where upso and upg are the optimal solutions by one iteration of PSO and DE, respectively,
as given in Fig. 3.4. The rationale in adopting these initial values for the control is that the
HOAs find a piecewise—constant OC that ought to be, roughly speaking, quite close (in some
suitable normed functional space) to the continuous optimum derived by the Pontryagin
theory.

We obtain that, both setting u(®)(t) = upso(t) and u®(t) = upg(t), the FBS and
Grad algorithms incur in convergence problems. This makes the use of heuristic stochastic
optimization methods (the ones we employ or others, such as the simulated annealing) very
attractive in all cases where FBS or the Grad or other deterministic algorithms fail to
converge. Moreover, even when the deterministic computations converge, the global nature
of the resulting optimum can be validated by means of the PSO and DE methods.
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Figure 3.5: Statistical assessment for the case C, = C') and simulation scenario C1. Data
obtained by applying K = 100 times the PSO algorithm. Left top panel: w,,;,(t) (green
line), Umea(t) (red line) and wm,qe.(t) (black line). Left central panel: wu/. (t) (green line),
u? 4 (t) (ved line) and w, . (¢) (black line). Left bottom panel: u(*, (¢) (green line), ut ,(t)

(red line) and wug:,.(t) (black line). Right panels: distribution of €; (top panel) and of ¢,

(bottom panel). Parameter values and initial data as in Fig. 3.3.

3.6 Statistical assessment

Since heuristic and evolutionary algorithms are stochastic processes, they produce different
outputs at each run. This has interesting implications. Indeed, each output is in principle
an estimation of the true minimum, which comes from an unknown multivariate probability
distribution. As a consequence, it is important to empirically infer statistical features of this
distribution by repeated stochastic optimizations.

The problem is that, since the vectors to be estimated have a dimension that is quite large
(40 in the case of three-months scheduling), a fully satisfactory statistical assessment would
require very large samples. This would imply computation resources that, unfortunately,
are out of our possibilities. Thus, we only propose preliminary statistical assessments made
with a relatively small sample, which, however, are of some interest. Namely, for each set
of parameters and initial conditions, we perform K > 1 stochastic optimizations to solve
our OC problem (K = 100 in the case of three-months scheduling and K = 200 in the
cases of annual and biennial scheduling). Due to its relatively shorter computational times,
we employ the PSO algorithm. Precisely, we perform the following descriptive statistical
assessments:
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Figure 3.6: Statistical assessment for the case C, = C'?) and simulation scenario C5. Data
obtained by applying K = 100 times the PSO algorithm. Left top panel: w,,;,(t) (green
line), Umea(t) (red line) and wm,qe.(t) (black line). Left central panel: wu/. (t) (green line),
u? 4 (t) (ved line) and w, . (¢) (black line). Left bottom panel: u(*, (¢) (green line), ut ,(t)

(red line) and wug:,.(t) (black line). Right panels: distribution of €; (top panel) and of ¢,

(bottom panel). Parameter values and initial data as in Fig. 3.3.

e Time-wise assessment: basic statistical features of u(t). For each ¢ we compute the
median u(t) and the total range over the results obtained in the K optimizations.
In other words, let T = (uy(t),...,ux(t))” be the matrix having as row—vectors the
obtained optimal functions at time ¢, and let us define I'**"* = Sort(T") the sort of I by
columns. Then w (t) = I3, wmea(t) = (L5 +155,1)/2 and e, (t) = TR, where
st denotes the i-th row of I'*"*. Note that these three ‘pseudo’ control functions
by construction cannot intersect in isolated points (they can coincide on intervals or
in the whole temporal horizon). Of course, since, due to the discretization, u(t) is
piecewise—constant, even U, (t), Umeq(t) and .. (t) are piecewise—constant.

e Global assessment: basic statistical features of J. Namely, let Jin, Jmea and Joaz
be, respectively, the minimum, median and maximum value of J obtained in the K
stochastic minimizations, we plot the corresponding three controls (actually, due to the
discretization, vectors) wu(t), which we denote as u’, (t), u’ _,(t) and u’ . (t). Note
that, at variance with the previous case, these three control functions can intersect.

e For the case C, = C’l(to), where the comparison with the results obtained by FBS method
is possible, we perform the following assessments: i) we sort the optimal controls
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Figure 3.7: Statistical assessment for the case C, = 50 with 3 months programming and
simulation scenario C1. Data obtained by applying K = 100 times the PSO algorithm. Left
top panel: Uy, (t) (green line), t,eq(t) (red line) and w4, (t) (black line). Left bottom panel:
ul . (t) (green line), u _,(t) (red line) and u/ . (¢) (black line). Right panel: distribution of
J. Parameter values and initial data as in Fig. 3.3.

obtained by PSO algorithm by their relative L' distance from urps(-):

 lult) — urps®)l
CT T sl

and we plot the w(¢) with the minimal (u% . (¢)), median (u* ,(¢)) and maximal
(use..(t)) value of €,; ii) we plot the related histogram of the ¢,; iii) we plot the
histogram of the relative error of the costs:

o J — Jrps
Jg= "1
JrBs
e For the case C, = 50150), where no comparison is possible with FBS method due to
its lack of convergence, we plot the histogram of the distribution of J over the K
stochastic optimizations.

The above described statistical inferences have also another meaning, i.e. to assess how
much robust is the numerically inferred optimal control. This is a fundamental information
for the practical implementation of the results of the optimal control. Indeed, since in the
reality one could appreciably deviate from the theoretical results, it follows that a global
optimum that has a large range is far more implementable than another with identical mean
and a very small range.

As far as the case C, = o) is concerned, numerical results in the most interestin
scenarios are displayed in Figs. 3.5-3.6 (for the others see [97]). As far as the case C,, = 5CL
is concerned, numerical results in the most interesting scenarios are displayed in Figs. 3.7-3.9
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Figure 3.8: Statistical assessment for the case C, = 50 with 3 months programming and
simulation scenario C3. Data obtained by applying K = 100 times the PSO algorithm. Left
top panel: Uy, (t) (green line), t,eq(t) (red line) and w4, (t) (black line). Left bottom panel:
ul . (t) (green line), u _,(t) (red line) and u/ . (¢) (black line). Right panel: distribution of
J. Parameter values and initial data as in Fig. 3.3.

(again, for the others see [97]). Overall, the variance of the distributions both of the errors
and of the time courses is very small. In particular, all the found optimal controls are very
close to each other in time. At some time points, there are exceptionally outliers. In sum,
although the sample is limited because of the above mentioned computational restrictions,
the statistical assessment suggests that the PSO algorithm converges to the actual global
minimum.

3.7 Discussion and conclusions

In modern society dominated by information and noises coming from Internet, especially
through social networks such as Facebook, Twitter, Instagram, etc, the citizens’ opinions
are extremely volatile. This makes it appropriate to assume that the time-scales of
imitation speed [21, 111, 112] are nowadays very short. Hence, we applied a
quasi-steady—state approximation (QSSA) to the imitation game dynamics equation
modeling the vaccine propensity of the target population. On the one hand, of course, the
QSSA implies the loss of some information on the dynamics, but, on the other hand, it
allows to better understand the mechanisms underlying the nonlinear system to which it is
applied, of course in the scenarios it can be applied.

The application of the QSSA showed that the dynamics of the system is ruled by a
particular case of ‘open—loop’ control, where the control, i.e. wu(t), impacts in a nonlinear
fashion on the controlled system, i.e. the epidemic system. This in turn allowed us to
determine the conditions for disease elimination through VACs. Note that in case of low and
medium imitation speed, corresponding to classical societies with far less volatile opinion,
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Figure 3.9: Statistical assessment for the case C, = 50 with 1 year programming and
simulation scenario C5. Data obtained by applying K = 200 times the PSO algorithm. Left
top panel: Uy, (t) (green line), t,eq(t) (red line) and w4, (t) (black line). Left bottom panel:
ul . (t) (green line), u _,(t) (red line) and u/ . (¢) (black line). Right panel: distribution of
J. Parameter values and initial data as in Fig. 3.3.

where the QSSA cannot be applied, the elimination condition and the general behavior of the
system are far more complex and less conclusive [57]. The QSSA also allowed us to better
explain the classical behavioral SIR model with voluntary vaccination introduced in [113].
In particular, the nonzero baseline vaccination rate is related through an increasing function
to the actions enacted by the PHS to favor the vaccine uptake.

We then investigated one of most important forms of feedback—based control, of the great
relevance in health economy, the optimal control. The resulting optimal control problem
presented, w.r.t. the nonlinear ‘open—loop’ case above commented, a further intriguing
feature: the requirements of classical existence theorems are not satisfied. This implies that
one has no guarantee that the control u(t) obtained with the Pontryagin procedure is a real
minimum. We can only suspect that it is a real minimum. As such it required a double
checking.

The two most widespread recursive numerical algorithms to solve the Pontryagin
boundary value problem are the FBS and the Grad methods. We applied them to
numerically find the optimal control proceeding ‘as if’ the optimality sufficient conditions
hold. The second checking consisted in validating the result by applying a direct global
optimization by heuristic optimization algorithms: PSO and DE. Furthermore, the use of
HOAs was also and mainly needed since for large values of the specific cost of PHS
information campaigns (C,), the FBS and the Grad algorithms had convergence problems,
both by adopting various generic initial hints and by adopting as initial hint the outputs of
the HOAs.

We obtained optimal intervention profiles that are strongly oscillating in the scenario
where C, = 50V , being CQ(LO) the baseline value. The obtained optimal controls are
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qualitatively similar to those obtained in the case of slow imitation speed and reported
in [65]. However, in the fast system the solutions found by the PSO algorithm are more
smooth and quantitatively different. We also considered alternative schedules with less
frequent update of the strategy: namely we investigated the cases where the strategy is
only yearly updated and the extreme case where it is biennially updated. In both cases the
non-monotone nature of the control is maintained. In all cases we considered, the solutions
obtained by the DE algorithm, which are (roughly speaking) ‘quite noisy’, showed that the
system is robust to multiple local deviations from the theoretical optimum: this robustness
is of interest since in real world maintaining a strict scheduling can be difficult.

PSO and DE are stochastic algorithms, i.e. they transform the initial time—continuous
dynamical system in a discrete-time stochastic dynamical system. On the one hand,
stochasticity is fundamental to find the global optimum and not to be stuck in a local
minimum, on the other hand this implies that the output of a single run of an HOA is an
instance from a probabilistic distribution, which in our case is multivariate in a large
dimension space. For this reason, we proposed in this study to couple the use of HOAs in
OC problems with a double statistical assessment: i) of the time profile of the control u(t);
ii) of the value of the objective functional J. This will provide the system designers (in our
case the PHS officers) an interesting tool to assess the robustness of the optimal control
strategy. Namely, in our case, although the sample size was relatively small due to
constraints on the available computational resources, the statistical assessment suggested
that the PSO algorithm for the problem in study finds the actual global minimum.

Apart the very basic nature of the SIR model, the major limit of our results is that
the system to be controlled is deterministic and that the control is purely deterministic as
well. However, we note that the heuristic procedures we illustrated here can be applied
to stochastic versions of our OC problem. Namely, we plan to investigate a stochastic
OC problem based on our model where the following stochastic fluctuations are included:
1) stochastic demographic and epidemic fluctuations modeled by the so called chemical
Langevin equation approach [139]; 2) stochastic fluctuations of the contact rate. Another
line of research we will soon approach remains, instead, in the deterministic path: application
of the investigation we proposed here to the Bauch behavioral epidemic model [21], which
has a number of features that makes it quite distinct from the problem we faced here.
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In this chapter, we go on in the line of including behavioral human factors in the modeling
of epidemic dynamics, and we investigate a behavioral epidemic model including a partially
effective vaccination at all ages. The vaccination is information—dependent, in the sense
that the vaccination rate of susceptibles depends on the current and the past information
available of the disease prevalence in the population. The weight given to the past history
is described by an exponential kernel.

The proposed model presents both the possibility of backward bifurcation and that of
oscillations triggered by behavioral memory. Furthermore, a forward hysteresis scenario may
take place where multiple endemic states are possible when the basic reproduction number P,
is greater than one. Finally, a stable endemic state may destabilize via Hopf bifurcation not
only when Py > 1 but also when Py < 1, depending on the interplay between some relevant
information-related parameters. The results of this study have been published in [59].

4.1 Background

Immunization plays a driving role among the health interventions against the spread of
infectious diseases thanks to its safety and cost—effectiveness [300]. High vaccine uptake
levels resulted in drastic declines of many vaccine—preventable diseases or even eradication,
as in the very well known case of smallpox. Nonetheless, a critical aspect of vaccination is its
degree of protection in terms of effectiveness in preventing the illness as well as the duration
of the induced immunity. Some vaccines reduce the infection risk, but do not prevent a
vaccinated individual from acquiring and transmitting the disease: they are called leaky
vaccines. Their use has been much debated, especially for malaria [152,208] (the term leaky
comes from the literature on malaria vaccines), and for some animal infections, including
chickens Marek’s disease [195].

In the mathematical epidemiology literature, a large amount of epidemic models including
imperfect vaccination can be found (see, just to mention a few papers, [45,110,150,192,268]).
A specific outcome often emerging from the analysis of imperfect vaccination models is the
coexistence of two stable equilibria as consequence of a backward bifurcation occurring when
the basic reproduction number (say, BRN, denoted by Py here) is equal to unity. To be more
specific, it happens that a stable disease—free equilibrium (DFE) coexists with two endemic
equilibria (one unstable and the other one locally asymptotically stable) for values of Py in
a certain interval (P* 1), with P* € (0,1), whereas, for Py > 1, the DFE is unstable and
only the stable endemic equilibrium exists (see Figure 4.1). This kind of bifurcation differs
from the forward bifurcation, which is typical of monostable systems, where for Py < 1 the
DFE is the unique equilibrium and it is asymptotically stable (possibly globally) and for
Po > 1 the DFE is unstable and only one asymptotically stable (possibly globally) endemic
equilibrium exists.

From the public health viewpoint, the occurrence of a backward bifurcation has negative
implications on infection elimination. Indeed, from one hand the BRN must be reduced
below a smaller threshold (compared with that of monostable systems) in order to avoid
endemic states. From the other hand, since the stable endemic equilibrium remains strictly
positive when Py passes through unity, the disease burden might undergo a sudden and
dramatic jump by switching from zero (if, for Py < 1, system is at the DFE) to a positive
and relatively high value.

The epidemiological consequences of backward bifurcation have been widely discussed
in the literature (see e.g. [150,234] and references therein). Generally speaking, this type of
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Figure 4.1: Qualitative bifurcation diagram representing a backward bifurcation. The values
of the infected fraction at equilibrium I, are plotted vs the basic reproduction number Py.
The solid lines (—) denote stability; the dashed lines (- -) denote instability.

phenomenon may arise due to epidemiological mechanisms, such as the exogenous
re—infection in tuberculosis transmission models and the host disease-induced mortality in
models of vector-borne diseases spread. The ‘practical’ aspects of this particular
dynamical phenomenon have been also discussed, for the case of tuberculosis, in [136].

In some specific epidemic models (e.g. [1,132,267]) the backward bifurcation can be
‘removed’ by adopting a mass action incidence (i.e. where the incidence is directly
proportional to the product of the susceptibles and infectious compartment sizes) instead
of a standard incidence function (which is the mass action incidence normalized by the
total population size).

However, even when vaccines confer an adequate protection, the success of mass
immunization programs relies on the ‘human element’, i.e. the degree of social acceptance
and adherence [210,293].

Especially in modern societies, where vaccines are most often voluntary, the propensity
to vaccinate may reduce when the prevalence of disease is low, since in this case the
perceived risk of vaccine side—effects becomes very large when compared to the perceived
current risk of getting infected [64,113,114,293]. This behavior is myopic because it is the
vaccination success themselves to encourage people to the exemption, neglecting future
resurgence of infection due to coverage decline. As a consequence, a trend towards the
decrease of the adherence to immunization campaigns for some vaccines (e.g. seasonal flu
and MMR vaccines) has been frequently observed in many countries [303].

The need of introducing the ‘human factor’ into epidemic models has led since the early
2000s to the development of the behavioral epidemiology of infectious diseases, a new
branch of mathematical epidemiology [210, 293]. As discussed in Section 1.4, several
different approaches in modeling vaccinating behavior have been developed, based e.g. on
game—theoretic analysis [21,56,61,217] or by means of an information indexr mostly based
on the publicly available information concerning the status of the disease in the
community [62,109,110,113,114].

In this last case there is evidence that, compared with the corresponding non—behavioral
models, new dynamical phenomena may arise, as the onset of steady oscillations. For SIR—
like vaccination models, oscillations may arise when the information function involves the
past history of the disease [109, 113, 114], whereas for SEIR-like models oscillations may
arise also when the vaccinating behavior depends on current information [64]. Thus, human
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behavior might be a critical factor in explaining the presence of oscillations in time—series of
some vaccine—preventable infectious diseases.

In the large corpus of scientific research in behavioral vaccination modeling, to the best of
our knowledge, the interplay between vaccine imperfection and individuals choices has been
investigated only in two recent papers [110,194]. In [110], an SISV model with partially
effective and waning pediatric vaccination has been considered where the parents propensity
to vaccinate or not vaccinate their children is modeled by assuming that vaccine uptake of
newborns is an increasing function of current infection prevalence. The SIRV model [194]
incorporates both information—-dependent imperfect vaccination at all ages and saturated
treatment; vaccination rate is modeled as a saturating function of the information about
the present and the past history of disease prevalence. Both models [110,194] predict the
possibility of backward bifurcation and the coexistence of multiple endemic steady states
when the basic reproduction number is greater than one. This last scenario is often referred
as forward hysteresis [149,165,294]. Furthermore, in Kumar et al. [194], the saturation in
medical resources (vaccination and treatment) may cause the occurrence of Hopf bifurcations.

As it is well known, imperfect vaccines may be addressed not only to infants, since they
are mainly linked to emergent or re—emergent diseases (like dengue [305], malaria [304],
HIV [306], TB [307]), including constantly evolving viruses (like those of influenza [74]).
For example: Dengvaxia®), the first dengue vaccine to be licensed, registered a mean
effectiveness of 59.2% [305]; RTS,S/ASO1 reduces malaria not more than 39% [304]; flu
vaccine effectiveness widely ranges from season to season, but in general does not exceed
the 60 — 70% about [25,74]. Whereas, most of the ‘routine’ childhood vaccines are able to
confer higher rates of protection: 97% for measles and rubella [73], 88% for mumps [73],
88% to 98% for varicella [72]. The two currently used poliovirus vaccines produce
immunity in more than 95% of recipients [75].

It is worth to point out again that the dynamics of vaccine-preventable infectious
diseases under voluntary vaccination is a complex physical phenomena. As stressed
in [293], such a dynamics straight depends on human decisions which, in turn, are based on
the balance between the perceived risks of getting infected and the perceived risks of being
affected by vaccine-related side effects. The intrinsic difficulty of quantitatively
representing human behavior makes the modeling phase complex and the resulting
mean—field models show dynamics radically different from those of the basic models with
mandatory vaccination. Therefore, the physical phenomenon described here is very
different from the impact of media on the disease spread explored in many classical and
recent papers (see e.g. [3,93,220,221,280]). Here, in general, the disease awareness results
in a reduced rate of infection transmission due to the avoidance of risky
contacts [79,93,275,280] or is treated as an additional media variable that represents the
cumulative density of awareness in the population and weights the transfer of aware
susceptibles in a different class [3,220,221].

In this chapter, mainly motivated by the work done in [45, 110, 192], we consider an
SISV model with imperfect vaccination at all ages and assume that vaccine uptake levels
depend on the current and past information on the disease by following the idea developed
in [109,113,114]. We perform a qualitative analysis based on stability theory and bifurcation
theory. The analysis shows that the behavioral model reveals a much more complex dynamics
compared to the basic classical model, including the possibility of multi-endemicity and
information—induced oscillations via Hopf bifurcations, phenomena that can arise both above
and under the threshold Py = 1. We present also some numerical simulations to support the
analytic findings.
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The chapter is organized as follows: in Section 4.2 we introduce the model and give some
basic properties. Section 4.3 is devoted to equilibria and local stability. In Section 4.4 the
bifurcation curve is derived. Central manifold analysis is performed in Section 4.5 to obtain
sufficient conditions for backward or forward bifurcation at Py = 1. In Section 4.6 numerical
simulations are provided for two different formulations of the vaccination coverage function.
Concluding remarks are given in Section 4.7.

4.2 The model and its basic properties

In [45] the basic Susceptible-Infected-Susceptible (SIS) model for the transmission of a
generic vaccine—preventable infectious disease is enhanced by the inclusion of a partial
effective  vaccine providing waning immunity. Following the idea of the
information—dependent epidemic models in behavioral epidemiology [210, 293|, here we
assume that the vaccination is fully voluntary and the choice to get vaccinated or not
depends on the available information and rumors concerning the spread of the disease in
the community. The model is given by the following system of differential equations:

S=pu(1—28)—=BSI—p(M)S+~I+9IV
I=8ST+oBVI—(y+pu)l (4.1)
V=9¢(M)S—oBVI—(+pV.

The state variables S(t), I(t) and V(t) denote the fractions of susceptible, infected (and
infectious) and vaccinated individuals at time ¢, respectively. All the parameters are positive
constants: p is the birth rate, which is assumed to be identical to the natural death rate; g is
the disease transmission rate, o8 (0 < o < 1) is the reduced transmission rate for vaccinated
subjects, «v is the rate of recovery from the infection and ¢ is the vaccine waning rate.

In (4.1) vaccination is assumed to be voluntary and information-dependent. The
information on the status of the disease in the community is described by means of the
information index M(t) [109,110,113,114]. The vaccination rate is therefore modeled by
the information—dependent function:

0 (M) =g+ o1 (M), 0<py <1, (4.2)

where the constant (g represents the fraction of the population that chooses to get vaccinate
regardless of rumors and information about the status of the disease in the population, while
1 (M (t)) represents the fraction of the population whose vaccination choice is influenced
by the information. We require that ¢;(0) = 0 and ¢; is a continuous, differentiable and
increasing function.

Generally speaking, the transmission of information is often preceded by articulated
routine procedures (clinical tests, notification of cases, reporting delays to public health
authorities, etc) and the consequent awareness of disease presence to the population takes
time. Moreover, some people may have memory of past epidemics (especially the most recent
ones) or may have acquired it from family history. Therefore, as anticipated in Section 1.4,
the information index M is described by the distributed delay

M(t) = / §(S(), I(r), V(7)) K(t — 7)dr, (4.3)

—0o0
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where the function g describes the information that individuals consider to be relevant for
making their choice to vaccinate or not to vaccinate. It is often assumed that the index M (t)
summarizes the current and the past history of the disease prevalence [109,113,114], so that

g depends only on prevalence:
. 0 ift<O0
g =

g(I) ift>0

where ¢ is a continuous, differentiable, increasing function such that g(0) = 0. In this sense
the choice to vaccinate is influenced by the social alarm caused by the disease, according to
the idea of (pseudo) rational exemption to vaccination [56,113,114,293].

The delay kernel K (¢) in (4.3) represents the weight given to past history of the disease.
In the following, we will assume that K is given by the first element Erly ,(t) of the Erlang
family, called weak kernel or exponentially fading memory (see (1.12) with n = 1). With this
kernel the maximum weight is assigned to the current information and the delay is centered
at the average 1/a. Therefore, the parameter a takes the meaning of inverse of the average
time delay of the collected information on the disease.

With this choice, the dynamics of M is ruled by the equation:

M =a(g(I)—M). (4.4)

Denoting N (t) the total population and taking N(0) = 1, we may replace S=1—1—V in
(4.1). Taking into account (4.4), we get the following system:

[=[p(1—1) = (u+7)—(1-0)BV]I
V=pM)Q-1-V)=@+p+oBl)V (4.5)
M =a(g(I)— M).

It is not difficult to check that set D = {(I,VVM) e R} : I+ V <1, M < g(1)} is positively
invariant for model (4.5).
Now, let us introduce the quantity

=1—-— 4.6
C=1- 7, (4.6)
where
Ro = L (4.7)
Yt
The first equation of system (4.5) can be written:
[=B[C—1-(1-o)V]I<BI—1], (4.8)

i.e. it asymptotically holds I(t) € [0, ]. Therefore, we shall limit the analysis of model (4.5)
in the region
D={(I,V.M)eR : I<( I+V <1 M<gQ} (4.9)

Remark 4.1. If we denote by p the fraction of vaccinated newborns, the inequality p > C,
where € is given in (4.6), is the well known threshold condition for the disease elimination in
SIR-like models of diseases with mandatory and fully effective vaccination of newborns (i.e.
the Herd immunity condition, see [47,214]).
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4.3 Equilibria and stability properties
Denote the generic equilibrium of (4.5) by
Ee = (]euvveyMe)‘ (41())

The components will be the solutions of the algebraic system obtained by setting the r.h.s.
of (4.5) equal to zero. It immediately follows that model (4.5) admits the disease—free

equilibrium
%0
Eqg=(0,———,0). 4.11
’ ( o+ 0+ p ) @1
Let us introduce
Py = Ro/p, (4.12)
where Ry is given in (4.7) and
_ btV tp (4.13)
oo+ +p '

It is easy to verify that the local stability properties of Ej are not affected by the function
@1 (M (t)). Therefore the same results obtained in the case of constant vaccination rate and
no information dependence may be established [45]:

Proposition 4.2. If Py < 1 the disease—free equilibrium Ey is locally asymptotically stable.
If Py > 1, then Ey is unstable.

Remark 4.3. It is possible to show (see [45]) that if Ry < 1 (i.e. ( <0), than Ey is also
globally asymptotically stable. This property is a consequence of the differential inequality
(4-8).
Denote the generic endemic equilibrium (EE) of (4.5) by (4.10), where now I, > 0. From
the equation in (4.8) and the third equation of (4.5) it follows:
C — Ie

Vv, = = (4.14)

and
M. = g(L). (4.15)

Furthermore, E, € D~ {Ey} implies 0 < [, < ( and 0 < I, + V., < 1, with ¢ given in
(4.6). Therefore it must be:
Iinf S Ie S Ca (416)
where

1

Ling = 0,1-——-1, 4.17
= (0,1~ ) (4.17

and I, # 0.
Substituting (4.14) and (4.15) into the second equation of (4.5) we obtain /. as solutions
of

x(I) = (1), (4.18)
where

nnzwwu»(——aa—n) (4.19)
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and
Y(I) =0+ p+oBl)((—1). (4.20)

The next theorem (Theorem 4.5) states that model (4.5) can admit both multiple super—
critical (i.e. above the threshold Py = 1) and sub—critical (i.e. below the threshold Py = 1)
endemic equilibria.

Remark 4.4. In Theorem 4.5 we will estimate the number of endemic equilibria for model
(4.5) in the case that they refer to simple solutions of (4.18), i.e. all common points
between x and ) are intersection points. However, two or more equilibria may collide in a
unique equilibrium, which will refer to a solution of (4.18) with multiplicity greater than
one. Generally speaking, it is reasonable to expect that this only happens in a finite number
of points (bifurcation points), as commonly in literature (e.g. [45, 110, 150, 192, 237, 268]).
In the following, we assume that this is the rule, i.e. @ and g are such that for almost all
values of Py all roots of (4.18) are simple. Therefore, when we will refer to the number of
endemic equilibria, we often will omit to specify that it s determined ‘except at a
bifurcation point’.

Let us introduce the quantities:

B
P e ) 2
and
py= 12700 (4.22)

ploB+ 0+ )
We have the following result:

Theorem 4.5. For o8 — (U + p) < 0, model (4.5) admits no endemic equilibria if Py < 1,
and a unique endemic equilibrium if Py > 1.

For o — (94 p) > 0, model (4.5) admits a non-negative even number of endemic
equilibria if Py < 1, and an odd number of endemic equilibria if Py > 1. In particular, there
could be:

(a) sub—critical endemic equilibria if Py < Po < 1, with Py > 0 given by (4.21);

(b) multiple super—critical endemic equilibria if 1 < Py < 1/(po) and Py > Py, or
1/ (po) < Py < Pa, with Py given by (4.22).

Proof. In view of Remark 4.3, we look for EE only in case Ry > 1.

The endemic infected states I, are positive solutions of (4.18), where x(I) and ¥ (1) are
given by (4.19) and (4.20), respectively. In view of (4.16), we can limit ourselves to seek
equilibria in the interval [I;,f, (], with I;,f and ¢ given in (4.17) and (4.6).

Observe that:

(i) both x(I) and ¢(I) are non-negative in [/;,, (J;
(i

(iii

)
) x(I) is increasing in [L;y, C];

) ¥(I) is a concave quadratic function;
) ¥

(€) =0, and x (¢) = (1 = 0)/Ro > 0;

(iv
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(v) ¢'(I) = al + b, where
a=—-208<0, b=0pC— (0 +p);

(vi) in view of (4.12),

OV — _ 98
W(0) = 0B — (0 +10)~ 75
hence
0 — (94 1) < 0= ¢/ (Lny) < ¥'(0) <0, (4.23)

namely, if 05 — (9 + p) <0, 9 is strictly decreasing in [Z;,f, C].
The two following cases have to be distinguished:
e Case I Py < 1/(op) (ie. 1 =1/ (0Rp) <0)
In this case, from (4.17), it follows I;,y = 0, and
¥(0) s x(0) = Pos L. (4.24)

Properties (i)—(vi) and (4.24) imply that, when o8 — (¢ + p) < 0, x(I) and (1) will
intersect no time if Py < 1, and exactly one time if Py > 1.

Whereas, when o5 — (¢ + p) > 0, the inequality

U(0)s0
reads:
of
(0f — (0 + p))
and from properties (i)—(v) and (4.24) it follows that:

- P

Pos
p

— for Py < 1, in [0, (], x starts above or in correspondence of ¢ and ends above it.
Therefore, there should be no endemic equilibria, if Py < P;; and a non—negative
even number of endemic equilibria, except at a bifurcation point, if Py > P (see
Figure 4.2, left panel);

— for Py > 1, in [0, ], x starts out below and ends up above 1. Therefore, there
should be a unique endemic equilibrium, if Py < P;; and an odd number of
endemic equilibria, except at a bifurcation point, if Py > P; (see Figure 4.2, right
panel).

e Case II: Py > 1/(op) (ie. 1 —1/(0Ro) > 0)
In this case Iy = 1—1/ (0Ro) and x (Lins) = 0 < ¢ (Ling), namely, in [L,y, (], x starts

out below and ends up above 1. Further

1 28—o0p
")) S0 = Ppz————— =Py
¥ llins) "SpoB+ W)
From the last equivalence and from properties (i)—(v), we obtain that: if Py > Py
there is a unique endemic equilibrium; if Py < Ps, there should be an odd number of

endemic equilibria, except at a bifurcation point.

Again, property (vi) excludes the possibility of multiple super—critical endemic
equilibria when the inequality o3 — (¢ 4+ ) < 0 holds.
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Figure 4.2: Some possible configurations of functions x(I) and ¢(I), given in (4.19) and
(4.20), for o — (¥ 4 ) > 0. Left panel: if Py < 1, there should be a non-negative even
number of EE (in figure zero or two). Right panel: if Py > 1, there should be an odd number
of EE (in figure one or three).

]

In the most general setting, Theorem 4.5 provides only partial information about the
existence and the number of endemic equilibria. Some extra assumptions allow us to obtain
more specific results. For example, we have:

Proposition 4.6. Let (M) and g(I) be the functions introduced in Section 4.2.

If the function ¢(g(I)) is convex (not necessarily strictly convex) in [Linyr, (], with Iy
and ¢ given by (4.17) and (4.6), then: if Py < 1, model (4.5) admits no more than two
endemic equilibria; if Po > 1, model (4.5) admits a unique endemic equilibrium.

Proof. Tt follows from the assumptions on ¢ and g that the composite function ¢(g(1)) is
positive and increasing in Ry. If ¢(g(/)) is convex in [I;,r, (], then also the function x (1),
given by (4.19), will be convex in [I;,f, ¢] (as product of non—negative, increasing and convex
functions).

In view of (4.16) and (4.18), the number of EE is the number of positive intersection
points in [/, f, (] of the convex function x(I) with the strictly concave function ¢ (I), given
by (4.20). Thus, it cannot exceed two. The assert follows from Theorem 4.5.

[

Remark 4.7. Proposition 4.6 applies to the following noteworthy cases: (a): if o(M) and

g(I) are convex functions; (b): if there is no information dependence, namely when (M) =
wo in model (4.5). The latter result coincides with that obtained in [45].
Let us now perform the local stability analysis of endemic equilibria.

Again, let us denote the generic EE of (4.5) by (4.10) and introduce the quantities:

Go=051-¢—0o(l-1))g (L) (g()) ] >0 (4.25)

@ =B +p—oBC+op(g(le)) +2081) I (4.26)

@=01+0)l.+9+pu+p(g(l)) >0. (4.27)
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Then, the following result can be established:

Theorem 4.8. Let E, be an endemic equilibrium of model (4.5).
If at least one of the inequalities aga + ¢1 < 0, a(q1 + qo) < 0 holds, then E,. is unstable.
If age + ¢1 > 0 and a(q1 + qo) > 0, then the local stability of E. depends on the further
mutually exclusive conditions:

(7’) q < 07

(i) ¢ >0 and q3 — qo + 2¢2/q1 < 0,

where qo, q1 and gy are given in (4.25), (4.26), (4.27), respectively.

Precisely, if neither (i) nor (ii) is verified, then E, is locally asymptotically stable (LAS).
Otherwise, if (i) or (ii) holds, then there exist two values a, ay, with 0 < @ < ag, such that
E. is unstable for a € (a,as), whereas it is LAS for a & (a,as). Hopf bifurcations occur at
a, when a >0, and at as.

Proof. The Jacobian matrix of system (4.5) is:

B¢ =2 —-(1—0)V) —(1—0)pI 0
J = —sO(M)(—)UBV —o(M) = (p+9) =Bl H(M)(L-1-=V) |, (4.28)
ag' (1 0 —a

which evaluated at E. becomes
J(E,) =

_BI, —(1—0)BL. 0

c— 1 , 1—0Ry(1-1I)
—(g(L.)) ;Ia)ﬁ(l —0) —¢(g9(L)) — (: +9) —ofle i(g(le)) < Ro(1—0) ) ’
ag (e ¢

leading to the characteristic polynomial

p(A) = X 4+ dy(a)\? + dy(a)\ + ds(a),

with
d1<a) =a-+qs >0
(

ds(a) = age + ¢4
ds(a) = a (g1 + qo),

where qo, q1, g2 are given in (4.25), (4.26), (4.27), respectively.

We choose the inverse of the average information delay, a, as bifurcation parameter
because it affects the stability but not the existence of endemic equilibria.

By Descartes’ rule it follows that the equilibrium E, is unstable if ds(a) < 0 and/or
ds(a) < 0. We exclude the case ds(a) = 0 because it corresponds to a bifurcation point. In
Section 4.4, we will observe that the pattern of the bifurcation curve suggests that ds(a) is
negative in correspondence of sub—critical endemic equilibria with odd index, in increasing
order of infected fraction, and of super—critical endemic equilibria with even index.

Otherwise, if d;(a) > 0 for all i, then E. is stable, but can loss stability via Hopf
bifurcations. More precisely, according to Routh—Hurwitz theorem, E, will be LAS if and
only if dy(a)ds(a) — ds(a) is positive, equivalently written as

fla) = @a® + (63 — q)a + q1ge. (4.29)
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Thus, if ¢35 — g0 > 0 and ¢; > 0, then E, is LAS independently of the delay, otherwise
instability is possible.

Stability continues to prevail if the discriminant A of f(a) is negative or null.

Whereas, if A > 0, there are two distinct solutions a; < as for the equation f(a) = 0. It
is easy to prove that at least one between a; and as is positive, i.e. there exist one or two
meaningful bifurcation values for the delay parameter a. This circumstance happens if:

e ¢; < 0, and in this case only as is positive,
or

e ¢1 >0, and
B — @ < —2023/11, (4.30)
because

A= (g3 —q0—2¢2v/@1) (45 — 90 + 202/ ) -

In this case 0 < a1 < as.

Finally, at a; and ay the test for non-zero speed is fulfilled [148]
F(@)]y_y, = VA 0.
O

Remark 4.9. It appears interesting to note that a priori the occurrence of Hopf bifurcations
1s feasible also below the threshold Py = 1 in presence of sub—critical endemic equilibria.
Such possibility will be confirmed by the numerical simulations provided in Section 4.6.

4.4 Bifurcation curve

In deriving the expression of the bifurcation curve (the graph of I, as a function of Py),
we consider 3 as variable with all the other parameters fixed. As P, is a constant multiple
of B, we can think of 8 as the independent variable in the bifurcation equation. Implicit
differentiation of the equilibrium condition (4.18) with respect to 3 gives

(v + ) (0 + p+ o+ sol(g(fe)))[

(QI + CIO) aBIe = O'B<1 - ]e)[e2 + B e

with ¢o and ¢, given by (4.25) and (4.26), respectively.

This implies that the bifurcation curve has positive slopes at equilibrium values with
q1 + qo > 0 and negative slopes at equilibrium values with ¢; + gy < 0.

Now, observe that

41+ qo = ﬁle (X/<Ie> - ¢/<Ie>> )

hence
@ +q >0 = (L) < x'(l)

and vice versa, where the functions y and v are given in (4.19) and (4.20), respectively.
According to Theorem 4.5, there could exist an interval preceding the threshold Py =1

in which there is a positive even number of EE: E, ..., Es,, n € N, with E; = (1;,V}, M;).
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Figure 4.3:  Examples of bifurcation curves for model (4.5)—(4.34)—(4.36) in presence of
forward hysteresis (three super—critical endemic equilibria). Left panel: absence of sub—
critical endemic equilibria. Right panel: presence of two sub—critical endemic equilibria.
The parameters values are chosen to illustrate the theoretical results and do not refer to
specific diseases.

If we order them in increasing size of infected fraction, i.e. [; < I;;; forall j =1,...,2n—1,
on the basis of the considerations made in Section 4.3, it is straightforward to realize that
V' (Iaj-1) > X'(I2j-1) and ¢'(Iz;) < X'(Iy;), for j =1,....,n

Thus, the bifurcation curve has a negative slope at sub—critical EE with odd index, and
a positive slope at those with even index. Instead, for super—critical EE (in increasing order
of infected fraction) the situation is reversed: the bifurcation curve has a positive slope at
equilibria with odd index (see Figure 4.3, dark lines), and a negative slope at those with
even index (see Figure 4.3, gray lines).

4.5 Central manifold analysis

To derive a sufficient condition for the occurrence of a backward or forward bifurcation
at Pp = 1, we can use a bifurcation theory approach. We adopt the approach developed
n [69, 116, 287], which is based on the general center manifold theory [148]. In short, it
establishes that the normal form representing the dynamics of the system on the central
manifold is given by:

0 = byu® + byBu,

where ) . ,
=2 Ly B = %k 1vkw,wj%£’;jwo,/3c> (4.31)
and ) . . ,
by =10 - 8(1(;& Ey, Be)w kzzlvkw@aa J(;kﬁ Ey, ). (4.32)

Note that in (4.31) and (4.32) 3 has been chosen as bifurcation parameter, g, is the critical
value of 5, f the right-hand side of system (4.5), z = (I,V, M) the state variables vector,
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Ey the DFE, and v and w denote, respectively, the left and right eigenvectors corresponding
to the null eigenvalue of the Jacobian matrix evaluated at critically (at Ey and = 5.).
Observe that Py = 1 is equivalent to:

B=fo=(utny) LtV tE

0wy + 9+ M
so that the disease—free equilibrium is locally stable if § < (., and it is unstable when 8 > £..
The direction of the bifurcation occurring at § = (. can be derived from the sign of
coefficients (4.31) and (4.32). More precisely, if by > 0 [resp. by < 0] and by > 0, then at
f = f. there is a backward [resp. forward] bifurcation.
For our model, we have the following:

Theorem 4.10. System (4.5) exhibits a backward [resp. forward] bifurcation at Ey and
Po=11if

o+ (04 1) (wo — g'(0)¢'(0)) + woop(y + 1)

1—(1—-o0) 0 CEYESE < 0[resp. > 0]. (4.33)
Proof. The Jacobian matrix (4.28) evaluated at Ey for § = (. becomes:
0 0 0
apo(p+7) J+p
J(Eo,Be) = —pg— ————— —g— (u+19) & (0)———
ag'(0) 0 —a

Its spectrum is: A = {0, —(po + p+1), —a}. As expected, it admits a simple zero eigenvalue
and the other eigenvalues are real and negative. Hence, when § = . (or, equivalently, when
Py = 1), the disease—free equilibrium Ejy is a nonhyperbolic equilibrium.

It can be easily checked that a left and a right eigenvector associated with the zero
eigenvalue so that v-w =1 are:

v =(9'(0),0,0) :

o+ (0 + 1) (po = 9'(0)¢'(0) + woop(y + 1)

9'(0) (0 + 11+ o) 2
The coefficients b; and by may be now explicitly computed. Considering only the nonzero
components of the eigenvectors and computing the corresponding second derivative of f, it
follows that:

with

Wy = —

1 K, O f 0% fi
by = Juiw 8[21 (Eo, Be) + v1w1wzamv( Ey, Be) =
1
= §U1w1(_2ﬁc> + vywiwa (=B (1 —0)) = —=f. (w1 + wy (1 —0))
and
o2 2
. 0°f1 0% f1 _ %o 1
by = UlwlalaB(EOaﬁc) +U1M28V85(E0’66) (1 ‘7) 20 ‘H9+M = P > 0.

Then the local dynamics of the system (4.5) around the equilibrium point Ej is totally
determined by the sign of b;:
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1. if by > 0 then, when § < B, with |8 — .| < 1, Ejy is locally asymptotically stable,
and there exists a positive unstable equilibrium; when 5 > 3, with § — 5, < 1, Ej is
unstable and there exists a negative and locally asymptotically stable equilibrium.

2. if by < 0 then, when 8 — (. changes from negative to positive, Fy changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

More explicitly, system (4.5) exhibits backward [resp. forward] bifurcation at Ey and Py = 1
if
wy + wy (1 — o) < 0[resp. > 0],

which is equivalent to (4.33).

4.6 Numerical simulations

In this section we show through numerical simulations that, for suitable values of P
smaller than one, model (4.5) may switch from a multistability scenario to long term
periodic oscillating dynamics when the bifurcation parameter a varies.

We assume that g depends on prevalence in a linear way:

g(I) = kI, (4.34)

where k is the information coverage. This parameter may be seen as a ‘summary’ of two
opposite phenomena, the disease under-reporting and the level of media coverage of the
status of the disease, which tends to amplify the social alarm. The range of variability of
k may be restricted to the interval (0,1) and we take k = 0.9. For a detailed discussion on
this assumption see [62].

As far as function ¢ (M) is concerned, we adopt two different formulations: a saturating
Michaelis—Menten function and a linear function.

As regards epidemiological parameter values, we consider a set of parameter values that
appear consistent with those of a realistic vaccine—preventable infectious disease. The data
are mostly taken from a seasonal influenza scenario [9,25,204,218]. Therefore, it is a purely
illustrative choice since model (4.5) may admit, of course, endemic infection and not just
single outbreaks as is the case of seasonal influenza.

We take:

B =10.999p (u+ ) days™, p=1/50 years™', oy = 0.04 days™", L35
v € [1/5,1/4] days™, ¥ = 1 years™". (4:35)
We also take 0 = 0.15, namely vaccine administration reduces the transmission rate by
85%. This choice will emphasize one of our main results: a highly (but not totally) effective
vaccination is not sufficient by itself to avoid multiple sub—critical endemic equilibria.
In order to investigate the relevant case where the model exhibits a backward bifurcation
at Fy and Py = 1 and since in all the ensuing simulations the threshold (let us call it P*)
above which there are sub—critical EE is smaller than 0.999, we finally set 5 as in (4.35) and
hence Py = 0.999.
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Information dependent vaccination coverage with saturating
response

Let 1 (M) be
CM
M)= ———
21 =5
with 0 < C' < D. Asin [113], we set C' = D (1 — g — €), where £ > 0. This parameterization
means an asymptotic overall coverage of 1 — e. Here we take ¢ = 0.01 potentially implying
a ceiling of 99% in vaccine uptakes under circumstances of high perceived risk. The ensuing
vaccination coverage function is:
DM

©1(M) = (1—900—5)m-

By making these choices, equation (4.18) becomes cubic in I and its solutions can be explicitly
computed by standard formulas for third—degree equations.

Without going into details, we note that, when a backward bifurcation occurs at
Py = 1, there are exactly two sub-—critical endemic equilibria. As far as super—critical
endemic equilibria, the possibility of three EE is not excluded by deriving necessary
conditions. Indeed, equation (4.18) can be rewritten as

(4.36)

ag + (11[ + CL2[2 + a3]3 = O,
with

1
ag = (V + p+ o) (770—1>

a1 =0+ p+ oy + (DE(I + pn) + Bo) (%0_1)+Dk(1_5) (Rio—a)

ay = Bo + Dk (0 + p+o(l —¢))+ DkBo (%—1)
0

as = D/{BO' > 0.

By Descartes’ rule of signs it follows that necessary conditions for the existence of three real
positive roots are:

ap <0 <= Py >1
a1 >0 <= p(Dk(@+p+o(l—¢e))+po— 0+ pu+0opy)Po<Dk(W+p+1—c¢)+ fo
as <0 <= p(Dkfo — o — Dk (0 + pu+o(l —¢)))Py > Dkfo,

and they are satisfiable for appropriate values of Py.

Two examples of bifurcation curves in the case of forward hysteresis (multiple super—
critical endemic equilibria) are depicted in Figure 4.3.

As mentioned above, our main purpose is to numerically derive the dynamics of the
disease transmission below the critical threshold Py = 1. In particular, we focus on the
onset of information-induced oscillations via Hopf bifurcations of an endemic state when
system exhibits a backward bifurcation at Ey and Py = 1.

For numerical tests we use the parameters baseline values listed in (4.35), among which
we fix v = 1/4 days™'. In order to choose an appropriate value for D, we rewrite the
backward condition (4.33) as:

Do WA te@rpto@tpteo—(ytmpd-0)) _p

(0 +p)(1 =)k (1 —po—¢)
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Figure 4.4: Left panel: intersection points of functions x(7) and ¢ (I), given in (4.19) and
(4.20), assuming (4.34) and (4.36). Right panel: the local stability properties of the endemic
equilibrium FEs of model (4.5)-(4.34)—(4.36) in the plane [ag, k|, where as is the positive
solution of f(a) =0, with f(a) given in (4.29); Hopf bifurcations occur at the points of the
plotted curve. Numerical values for the parameters are indicated in (4.35) or in the text.

We obtain that D. ~ 2.870 and hence finally set D = 2.5.

Left panel of Figure 4.4 depicts functions x(/) and ¢ (7), given in (4.19) and (4.20), whose
two intersection points are the two sub—critical endemic infected states: I; < Is.

As analytically predicted, the endemic equilibrium E; (corresponding to I;) is unstable.
Whereas, stability of endemic equilibrium FEs (corresponding to I3) depends on the sign of
f(a), with f(a) given in (4.29). Precisely, f(a) < 0 for a € (0, ay), with ay ~ 2.896 x 1072
days™!, namely a Hopf bifurcation occurs at a = as, so that F, changes its stability from
stable to unstable when a drops below as. Right panel of Figure 4.4 illustrates the shape
of bifurcation locus [asg, k], where ay is the positive solution of f(a) = 0. If the circulating
information is not sufficiently ‘honest’ (k < k. ~ 0.505) the delay in communication does
not affect the stability of the endemic state. Conversely, when k& > k., as decreases until
it is null by decreasing k, namely the shorter the time delay 1/a the higher the chances of
avoiding destabilization.

Now, let use denote with E = (1: , ‘7) the stable endemic equilibrium of the system:

[=[B(1=1) = (u+7y) - (1-0)BV]I
V=0s(1—-T—-V)—(+pu+oBI)V.

This system has been studied in [45] and can be obtained from the first two equations of (4.5)
when (M) = ¢q in (4.2) (that is, the public is not influenced by information). By using
the same parameter values of Figure 4.4, system (4.37) too exhibits a backward bifurcation.

In Figure 4.5 it is shown the oscillatory dynamics as predicted by the behavioral model
(4.5)—(4.34)—(4.36) for a € (0,az). Two relevant initial conditions are employed: the first
one (pictures on the top row) is set on the limit cycle and the second one (see bottom row) is
on the plane M = 0 and corresponds to E. In the latter case, the limit cycle is approached
from outside, after a long transient period. The long term dynamics of infected individuals
is given by oscillations between 6.8% and 8% of the total population with a period of about
1.5 years.

(4.37)
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Figure 4.5: Dynamics of the fraction of infected individuals (left panels) and phase portrait
(right panels) as predicted by model (4.5)—(4.34)—(4.36), assuming v = 1/4 days™!, D = 2.5,
and a = 0.994a,. Top row: dynamics with initial conditions at a point of the limit cycle.
Bottom row: dynamics with initial conditions at the stable endemic equilibrium E of model
(4.37) on the plane M = 0. The other parameter values are indicated in (4.35) or in the
text.

Further attention requires the disease dynamics illustrated in the bottom row of Figure
4.5. Assume that the disease dynamics is following an orbit of system (4.37) approachlng
the stable endemic equilibrium E. At a given time ¢, that for simplicity we assume ¢ = 0,
the vaccination rate switches from constant value ¢ = g to the function ¢ = ¢ + @1 (M ),
where M is given by (4.3). The ensuing dynamics will be totally different, both qualitatively
(oscillatory vs steady) and quantitatively (I ~ (0.068,0.080) vs I = 0.746 about). Namely,
due to the higher propensity to vaccinate, much lower prevalence level will be observed, and
oscillations will take place.

Information dependent vaccination coverage with linear response

Let 1 (M) be
p1(M) = qM, (4.38)

with 0 < ¢ < (1 —g)/(k(), ensuring that (M) <1 (see (4.9)).

Despite less realistic than the previous one (4.36), such a formulation could be a local
approximation to more general coverage functions. Further, it allows us to apply
Proposition 4.6 (see also Remark 4.7), which ensures that, if a backward bifurcation occurs
at Ey and Py = 1, there are exactly two sub-critical endemic equilibria, coincident at
Py = P*. Whereas, for Py > 1, there is a unique EE.

In performing numerical simulations, we set ¢ = (0.99 — ¢g)/(k¢), implying a maximum
vaccination coverage of 99% at [ = (, and the other parameter values as listed in (4.35).
Among the latter, we fix v = 1/5 days™!
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Figure 4.6: Dynamics of the fraction of infected individuals (left panels) and phase portrait
(right panels) as predicted by model (4.5)—(4.34)—(4.38), assuming v = 1/5 days™! and
a = 0.994a,. Top row: dynamics with initial conditions at a point of the limit cycle. Bottom
row: dynamics with initial conditions at the stable endemic equilibrium E of model (4.37)
on the plane M = 0. The other parameter values are indicated in (4.35) or in the text.

As shown in Figure 4.6, the ensuing results are qualitatively similar to those obtained
in the previous subsection. Namely, the system admits two sub—critical EE, the greater (in
terms of the infected compartment) of them destabilizes via Hopf bifurcation when a
significantly decreases (drops below as ~ 1.856 x 1072 days™!), giving rise to stable
oscillations.

4.7 Discussion and conclusions

The aim of this study is to explore the qualitative dynamics of a vaccine—preventable disease,
when the healthy individuals in a given community are subject to two coexisting threats: the
imperfection of the vaccine and the voluntary (non-)adherence to immunization programs.

In the literature, these two aspects, taken individually, have been widely studied
through mathematical models and, generally speaking, the relative studies have
enlightened the dangerous implications on the public health: vaccine-induced imperfect
and waning immunity is positively associated to the onset of bistability through backward
bifurcations [45, 150,192, 268]. Whereas, individual behavioral vaccinating responses may
trigger complicate dynamic patterns, including oscillations [63,113,114]. However, only
recently attempts to incorporate both the aspects into the same model are
arising [110,194].

In this study, we faced the issue by using a behavioral epidemic model including a partially
effective vaccination at all ages. The vaccination rate of susceptibles depends on the current
and the past history of the disease prevalence in the population and the weight given to the
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past history is described by an exponential kernel.

The model dynamics presents both the possibility of backward bifurcation at Py = 1,
where Py denotes the basic reproduction number, and that of oscillations triggered by
behavioral memory. However, two noteworthy aspects arose:

i) multiple but odd endemic states are possible for Py > 1 (see Theorem 4.5). This
hysteresis scenario is consistent with the dynamics observed for the SISV model of imperfect
and prevalence-dependent newborns vaccination studied in [110];

ii) a stable endemic state may destabilize via Hopf bifurcations (see Theorem 4.8). The
Hopf bifurcation may occur not only when Py > 1 but also when Py < 1, depending on
the interplay between the inverse of the average information delay a and the information
coverage k.

Thus, the spectrum of possible dynamical patterns appears much more diversified
compared with that of models including the imperfect vaccine but not behavioral
aspects [45] or vice versa [63]. From the empirical point of view, it means new and
threatening risks, otherwise neglected: namely, until (and whether) the elimination
threshold is ultimately reached, disease prevalence may not only undergo sudden and
dramatic jumps due to multistability, but also fall in a cyclic regime, which reflects the
realistic alternation of ‘races to vaccination’, in epochs of social alarm, and of abstention,
otherwise.

As a further support to our findings, it must say that they appear in line with those
arising by different approaches. More precisely, in [237] an SISV model with imperfect
vaccination is formulated on an adaptive network framework. In such a case human
response is modeled through a mechanism of rewiring of susceptible nodes to avoid
contacts with the infected ones. The ensuing analysis and simulations reveal a bifurcation
structure very similar to that of our model, including regions of bistability and of periodic
oscillations. Periodicity arising from Hopf bifurcations, but not multiple endemic states, is
instead predicted by the time—delayed epidemic model with awareness [3], including waning
vaccine-induced immunity. Here, unaware susceptibles become aware thanks to global
information campaigns, contacts with aware individuals and reported cases of infection.
Destabilization of the unique endemic equilibrium is triggered by the time lag between
individuals awareness and consequent responses.

We acknowledge that this is just a further step in shaping the complex problem of the
interaction of vaccine effectiveness and human choices. For example, in this direction, real
data on vaccinating attitudes could be useful in designing behavior—-dependent vaccination
uptake functions.
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The COVID-19 pandemic that started in China in December 2019 has not only
threatened world public health, but severely impacted almost every facet of life, including
behavioral and psychological aspects.

In this chapter, we focus on the role played by the ‘human element’ and propose a
detailed mathematical model specific to investigate the effects on the COVID-19 epidemic
of social behavioral changes in response to lockdowns. We consider an Susceptible-Exposed—
Infected—Recovered—-like epidemic model where the contact and quarantine rates depend on
the available information and rumors about the disease status in the community.

The model is applied to the case of the first COVID-19 epidemic wave in Italy. We
consider the period that stretches between February 24, 2020, when the first bulletin by the
Italian Civil Protection was reported and May 18, 2020, when the lockdown restrictions were
mostly removed. The role played by the information-related parameters is determined by
evaluating how they affect suitable outbreak-severity indicators. We estimate that citizen
compliance with mitigation measures played a decisive role in curbing the epidemic curve by
preventing a duplication of deaths and about 46% more infections. The results of this study
have been published in [60].

5.1 Background

In December 2019, the Municipal Health Commission of Wuhan, China, reported to the
World Health Organization a cluster of viral pneumonia of unknown aetiology in Wuhan
City, Hubei province. On January 9, 2020, the China CDC reported that the respiratory
disease, later named COVID-19, was caused by the novel coronavirus SARS-CoV-2 [288].
The outbreak of COVID-19 rapidly expanded from Hubei province to the rest of China and
then to other countries. Finally, it developed in a devastating pandemic affecting almost all
the countries of the world [70]. As of November 28, 2020 a total of more than 62 million
cases of COVID-19 and 1,453,128 related deaths were reported worldwide [70].

In the absence of a treatment or a vaccine, the mitigation strategies enforced by many
countries during the COVID-19 pandemic were based on social distancing. Each government
enacted a series of restrictions affecting billions of people, including recommendation of
restricted movements for some or all of their citizens, and localized or national lockdown
with the partial or full closing—off of non—essential companies and manufacturing plants [50].

Italy was the first European country affected by COVID-19. It was strongly hit by the
epidemic which triggered strict restrictions aimed at minimizing the spread of the
coronavirus. The actions enacted by the Italian government began at the end of February
2020 with reducing social interactions through quarantine and isolation and rapidly
culminated in a full lockdown [5,168]. On May 4, 2020, the phase two began, marking a
gradual reopening of the economy and limitations easing for residents. This breathing
space ended towards the second half of August 2020, when the virus regained strength and
progressively grew its prevalence. This marked the arrival of the ongoing® second epidemic
wave, characterized by the introduction of both nationwide and community—based
restrictive measures [4].

During the period that stretches between January 22, 2020 and November 28, 2020, Italy
suffered 1,564,532 official COVID—-19 cases and 54,363 deaths [171].

The scientific community promptly reacted to the COVID-19 pandemic. Since the early
stage of the pandemic a number of mathematical models and methods was used. Among

*December 2020.
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the main concerns were: predicting the evolution of the COVID-19 pandemic worldwide
or in specific countries [102, 126, 140]; predicting epidemic peaks and intensive care unit
(ICU) accesses [276]; assessing the effects of containment measures [23, 102, 126, 135, 140]
and, more generally, assessing the impact on populations in terms of economics, societal
needs, employment, health care, death toll, etc [118,183].

Among the mathematical approaches used, many authors relied on deterministic
compartmental models. This approach was successful for reproducing epidemic curves in
the past SARS-CoV outbreak in 2002-2003 [151]. Specific studies were focused on the case
of the COVID-19 epidemic in Italy: Gatto et al. [135] studied the transmission between a
network of 107 Italian provinces by using an SEPIA model as a core model. Their SEPIA
model discriminates between infectious individuals depending on presence and severity of
their symptoms. They examined the effects of the intervention measures in terms of the
number of averted cases and hospitalizations in the period February 22 — March 25, 2020.
Giordano et al. [140] proposed a very detailed model, named SIDARTHE, in which the
distinction between diagnosed and non-diagnosed individuals plays an important role.
They predicted the course of the epidemic and showed the need to use testing and contact
tracing combined with social distancing measures.

The mitigation measures for COVID-19 like social distancing, quarantine and
self-isolation were encouraged or mandated [126]. Although the vast majority of people
have followed the rules, even in this last case there were many reports of people breaching
restrictions [49, 281]. Local authorities needed to continuously verifying compliance with
mitigation measures through monitoring by health officials and police actions (checkpoints,
use of drones, fine or jail threats, etc). This behavior might be related to costs that
individuals affected by epidemic control measures paid in terms of health, including loss of
social relationships, psychological pressure, increasing stress and health hazards resulting
in a substantial damage to population well-being [51,118].

Modeling the interplay between human behavior and the spread of infectious diseases
is a topic of increasing interest [130,289] and includes recent models focusing on COVID-
19. For example, Acunia—Zegarra et al. [2] assumed that sanitary emergency measures are
implemented at a given time, after which the population splits in two distinct subpopulations
depending on whether they adhere or do not adhere to the measures. Inspired by the
behavioral economic model by Chen et al. [80], an Susceptible-Exposed-Infectious—-Removed
(SEIR) model was proposed by Suwanprasert [278] where individuals are allowed to optimally
choose their public avoidance actions in response to COVID-19 risk.

In this study, the change in social behavior is described by employing the method of
information-dependent models [210,293] which is based on the introduction of a suitable
information index (see Section 1.4). This method has been applied to vaccine—preventable
childhood diseases [113,293] and is increasingly being used (see [59, 319] for very recent
contributions).

The main goal here is to assess the effects on the COVID-19 epidemic of human behavioral
changes during the lockdowns. To this aim we build an information-dependent SEIR-
like model which is based on the key assumption that the choice to respect the lockdown
restrictions, specifically the social distance and the quarantine, is partially determined on a
fully voluntary basis and depends on the available rumors and information concerning the
spread of the COVID-19 disease in the community.

A second goal of this study is to provide an application of the information index to a
specific field—case, where the model is parameterized and the solutions are compared with
official data.
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We focus on the case of the first COVID-19 epidemic wave in Italy during the period
that begins on February 24, 2020, when the first bulletin by the Italian Civil Protection was
reported [171], includes the partial and full lockdown restrictions, and ends on May 18, 2020,
when the lockdown restrictions were mostly (but just temporally) removed. We stress the
role played by circulating information by evaluating the absolute and relative variations of
disease—severity indicators as functions of the information-related parameters.

5.2 Model formulation

State variables and balance equations

We assume that the total population N is divided into seven disjoint compartments:
susceptible S, exposed E, post-latent I,, asymptomatic/mildly symptomatic I,,, severely
symptomatic  (hospitalized) I, quarantined ¢ and recovered R (therefore
N=S+E+I,+1,+1,+Q+R).

The model is given by the following system of nonlinear ordinary differential equations,
where each balance equation rules the rate of change of a state variable.

: S
S:A—B<M)N—_Q(Eplp+€mlm+€sls)—IMS (51&)
: S
I, = pE —nl, — ul, (5.1c)
I, = (1= p)nly+ Ol + 04Q — 7l — ol — (5.1¢)
Q = xX(M)I, — 04Q — 7@ — pQ (5.1f)
R= ’Vm[m + 7513 + ’YqQ - MR- (5.1g)

The state variables and the processes included in the model are illustrated in the flow chart
in Fig. 5.1. In Tables 5.1 and 5.2, we provide a description for each parameter.
The model formulation is described in detail in the next subsections.

The role of information

We assume that the final choice to adhere or not to adhere to lockdown restrictions is partially
determined on a fully voluntary basis and depends on the available information concerning
the spread of the disease in the community.

The information is mathematically represented by an information index M (t) (see Section
[.4 for the general definition), which summarizes the information about the current and past
values of the disease [59,109,113] and is given by the following distributed delay

M(t) = / k(Q(T) + I5(1)) Erly o(t — T)dT.

This formulation may be interpreted as follows: the first order Erlang distribution Erl; ,
represents an exponentially fading memory' (see (I1.12) with n = 1), where the parameter

"Note that the same kernel was adopted in the model of Chapter 4 (Section 4.2).
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Figure 5.1: Flow chart for the COVID-19 model (5.1)(5.2). The population N(¢) is divided
into seven disjoint compartments of individuals: susceptible S(t), exposed E(t), post—
latent I,(t), asymptomatic/mildly symptomatic I,,,(t), severely symptomatic (hospitalized)
I(t), quarantined () and recovered R(t). Blue color indicates the information-dependent
processes in model (see (5.4)—(5.5)—(5.6), with M (¢) ruled by (5.2)).

a is the inverse of the average time delay T, of the collected information, so T, = a™ .

We assume that people react in response to information and rumors regarding the daily
number of quarantined and hospitalized individuals. The information coverage k is assumed
to be positive and k£ < 1, which mimics the evidence that COVID-19 official data could be
under-reported in many cases [126,198].

With this choice, by applying the linear chain trick [207], we obtain the differential
equation ruling the dynamics of M:

M=a(k(Q+1I,)—M). (5.2)

Formulation of the balance equations

Here we derive in details each balance equation of model (5.1).

FEquation (5.1a): Susceptible individuals, S(t)

Susceptibles are the individuals who are healthy but can contract the disease. The susceptible
population increases by the net inflow A, incorporating both new births and immigration,
and decreases by natural death — with natural death rate p — and following infection.

It is believed that COVID—-19 is primarily transmitted from symptomatic people (mildly
or severely symptomatic). In particular, although severely symptomatic individuals are
isolated from the general population by hospitalization, they are still able to infect hospitals
and medical personnel [18,131] and, in turn, give rise to transmission from hospital to
the community. The pre-symptomatic transmission (i.e. the transmission from infected
people before they develop significant symptoms) is also relevant: specific studies revealed
an estimate of 44% of secondary cases during the pre-symptomatic stage from index cases
[158]. The importance of the asymptomatic transmission (i.e. the contagion from a person
infected with COVID-19 who does not develop symptoms) is a controversial matter [17,308].
However, available evidence suggests that asymptomatic individuals are much less likely to
transmit the virus [312]. We also assume that quarantined individuals are fully isolated and
therefore unable to transmit the disease.

In summary, the compartments of individuals capable to transmit the disease are I, I
and I,,,, which contains not only asymptomatic but also mildly symptomatic individuals.
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Figure 5.2: Representative shapes of the transmission rate (panel A) and the quarantine rate
(panel B) as functions of the information index M.

The routes of transmission from COVID-19 patients as described above are included in
the Force of Infection (Fol) function, i.e. the per capita rate at which susceptibles contract
the infection. Quarantine at home during the lockdown led to the substantial separation
of quarantined individuals from the general population. For this reason, we consider the
quarantine-adjusted Fol [161], given by:

eplp + Emdm + €515
N—-Q ’

The transmission coefficients for I,, I,,, and I, are given by €,8(M), €,8(M) and e;5(M),
respectively, with 0 < ¢, e, €5 < 1.
The function S(M), which models how the information affects the transmission rate, is

defined as a piecewise—continuous, differentiable and decreasing function of the information
index M, with f(max(M)) > 0. We assume that

Fol = 3(M)

B(M) =7 (¢, — co — c1 (M), (5.3)

where 7 is the probability of getting infected during a person—to—person contact and ¢, is
the baseline contact rate. In (5.3) we represent the reduction in social contacts through
the sum of two social distancing contact rates: the constant rate ¢y, which represents the
choice of social distancing due to the restrictive measures imposed by the government, and
an information-dependent voluntary rate ¢, (M), with ¢;(-) increasing with M and ¢;(0) = 0.
In order to guarantee the positiveness, we assume ¢, > ¢y + max(cq(M)). Following [109],
we finally set
By —0o

M) = 1+6M’

namely mc, = [, (baseline transmission rate), mcy = [y (mandatory social distancing
transmission rate) and wey (M) = M (B, — Po)/(1 + M), where § is a positive constant
tuning the reactivity factor of voluntary change in contact patterns. For illustrative
purposes, see Fig. 5.2.

(5.4)
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Equation (5.1b): Ezposed individuals, E(t)

Exposed (or latent) individuals are COVID-19 infected but are not yet infectious, i.e.
capable of transmitting the disease to others. Such individuals arise as the result of new
infections of susceptible individuals. The population is diminished by development at the
infectious stage (at rate p) and natural death.

Equation (5.1c): Post-latent individuals, 1,(t)

We assume that after the end of the latency period, the individuals enter in a phase where
they are infectious and asymptomatic. We call this phase post-latency [66] (other authors call
it pre-symptomatic phase [135] or prodromic phase [102]). Post-latent individuals belong to
two groups: a truly asymptomatic group p,I, (people that have no symptoms throughout the
course of the disease) and a pre—-symptomatic group (1—p,)I, (people who develop symptoms
at the end of such a phase). The latter, in turn, splits into two subgroups: p,(1 — pa)1,
will develop mild symptoms, and (1 — p,,)(1 — p,)I, will develop severe symptoms. In our
model, we take p = p, + pm(1 — p,). Post—latent individuals diminish due to natural death
or because they enter the compartment of asymptomatic/mildly symptomatic individuals
I, (at a rate pn) or that of severely symptomatic individuals I; (at a rate (1 — p)n).

FEquation (5.1d): Asymptomatic/mildly symptomatic individuals, I,,(t)

This compartment includes both the asymptomatic individuals, that is infected
individuals who do not develop symptoms, and mildly symptomatic individuals [135].
Mildly symptomatic individuals are the only symptomatic individuals that move freely (as
far as they can). There is no clear evidence of the relevance of asymptomatic individuals in
the COVID-19 transmission. However, asymptomatic individuals test positive in
screenings (pharyngeal swabs) and therefore are a part of the count of official diagnoses.
Members of this class come from the post—latent stage and get out due to quarantine (at
an information—-dependent rate x(M)), worsening symptoms (at rate o,,), recovery (at rate
Ym) and natural death.

Equation (5.1¢): Severely symptomatic individuals (Hospitalized), I4(t)

Severely symptomatic individuals are isolated from the general population by
hospitalization. They arise: i) as consequence of the development of severe symptoms by
mild illness (the infectious of the class I, or the quarantined Q); ii) directly from the
fraction 1 — p of post—latent individuals that rapidly develop severe illness. This class
diminishes by recovery (at rate 7,), natural death and disease—induced death (at rate «).

Equation (5.1f): Quarantined individuals, Q(t)

Quarantined individuals () are those who are separated from the general population.

The basic idea is to characterize the quarantined compartment in a way that its
temporal evolution can be compared with official data. Therefore we assume that
quarantined individuals are asymptomatic/mildly symptomatic individuals. As a matter of
fact, the Italian government daily released the number of detected COVID-19 positive
cases, which was approximately given by quarantined at home and hospitalized individuals.
Self-isolation of susceptible and post-latent individuals is implicitly incorporated in the
social distancing term. As for exposed individuals, the permanence in that class is shorter
than the infectious classes, hence the potential self-isolation effect of this population on the
model dynamics is considered negligible here. We point out that other compartments, like
the susceptible or the exposed compartments, could be also split into quarantined and
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non—quarantined individuals (see e.g. [228]).

Quarantined individuals diminish by natural death, aggravation of symptoms (at rate o,
so that they move to I5) and recovery (at a rate 7,).

Quarantine may arise in two different ways. On one hand, individuals may be detected
by health authorities and daily checked. Such health active surveillance ensures also that
the quarantine is, in some extent, respected. On the other hand, a fraction of quarantined
individuals chooses self-isolation since they are confident in the government handling of the
crisis or just believe the public health messaging and act in accordance [20].

We assume that the final choice to respect or not respect the self-quarantine depends on
the awareness about the status of the disease in the community. Therefore, we define the
information—dependent quarantine rate as follows:

X(M) = xo + x1(M), (5.5)

where the rate yo mimics the fraction of the asymptomatic/mildly symptomatic individuals
I,,, that has been detected through screening tests and is ‘forced’ to home isolation. The rate
X1(M) represents the undetected fraction of individuals that adopt quarantine by voluntary
choice as result of the influence of the circulating information M. The function x;(-) is
required to be a piecewise—continuous, differentiable and increasing function w.r.t. M, with
x1(0) = 0. As in [59,113], we set

DM

14+ DM’ (5.6)

x1(M) = (1= xo =)
where D is a positive constant tuning the reactivity factor of voluntary quarantine, and ( is
a constant such that 0 < ( <1 — xq. The quantity 1 — yo — ( is the value of the quarantine
rate by voluntary choices x; (M) that can be reached in the case of a high level of circulating
information (i.e. a high level of social alarm, ideally represented by M — +0c0). This means
that the total quarantine rate x(M) = xo + x1(M) reaches a ceiling value of 1 — ¢ under
circumstances of very high perceived risk. A representative trend of y (M) is displayed in
Fig. 5.2.

Equation (5.1g): Recovered individuals, R(t)

After the infectious period, individuals from the compartments I,,, I, and () recover
at rates 7, v, and 7y,, respectively. Natural death is also considered. We assume that
recovered individuals acquire long lasting immunity against COVID-19, although this is a
currently debated question (as of May 22, 2020) and there is still no evidence that COVID-19
antibodies protect from re-infection [311].

5.3 The reproduction numbers

A frequently used indicator for measuring the potential spread of an infectious disease in a
community is the basic reproduction number, Ry (see Section 1.1 for the general definition).
If the system incorporates control strategies, then the corresponding quantity is named
the control reproduction number and is usually denoted by R¢ (obviously, Re < Rp). In
this specific case, if B(M) = £, and x(M) = 0 in (5.1)-(5.2), namely when containment
interventions are not enacted, we obtain the expression of Ry; otherwise, the corresponding
R can be computed.
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Following the procedure and the notations adopted by Diekmann et al. [103] and Van
den Driessche and Watmough [287], we derive the control reproduction number, R¢. Let us
consider the r.h.s. of equations (5.1b)—(5.1¢)—(5.1d)—(5.1e)—(5.1f) (the balance equations for
the infected compartments), and distinguish the new infections appearance from the other
rates of transfer, by defining the vectors

6(M) (gp]p +5m]m +Esls>

0

N-Q
0
0
0

and
(p+u1E
—pE+(n+ ),
V= —pﬁfp+(X(M) +0m+'7m+u)]m
—(L=p)nly — ol — 04Q + (Vs + a4 p)1s
—X(M) I + (04 + 74 + 1)Q

The Jacobian matrices of F and V evaluated at model (5.1)—(5.2) disease—free equilibrium

DFE = (Ao,o,o,o,o,o,o)
W

read, respectively,

0 (B —Bo)ep (Bo—Po)em (Bo— Po)es 0O
0 0 0 0 0
F=120 0 0 0 0
0 0 0 0 0
0 0 0 0 0
and
p+u 0 0 0 0
—p N+ pu 0 0 0
V= 0 —Pn Xot+ OmtYmtH 0 0
0 —(1-phn —Om Vs + a4 p —0yq
0 0 Yo 0 Oy + Vg + 11

The control reproduction number is given by the spectral radius of the next generation matrix
FV~1[103,287]. Tt is easy to check that F'V~! has positive elements on the first row, being
the other ones null. Thus, Rc = (FV ')}, yielding

£ empn (1 —p)n EsPN0m, EsPNX004
R = — P 5.7
c =B =Fo)p {3132 T BiBB, T BiBaBs | BiBaBiBe | BiBaBiBoBg| )

with Bl =p+pu, B2 =1+ W, B4:X0+0m+’7m+,u7 BS :O—q+7q+,u7 BG =7 o+ pu.
Similarly one can prove that the basic reproduction number is given by

+

5.8
BBy ' BiBaBs ' B1ByBs B BsB3Bs (58)

€ Em es(1 — EsPNOm,
Rozﬁbp{ - pn_ &l =p)y, s ]
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Parameter Description Baseline value
to Initial simulation time February 24, 2020
T Final simulation time May 18, 2020

S(to) Initial number of susceptible individuals 60.357 - 106
E(to) Initial number of exposed individuals 1.695 - 103
I, (to) Initial number of post-latent individuals 308.8
I, (to) Initial number of asymptomatic/mildly symptomatic individuals 462.4
I (to) Initial number of severely symptomatic (hospitalized) individuals 127.4
Q(to) Initial number of quarantined individuals 93.7
R(to) Initial number of recovered individuals 311.1
M(tp) Initial value of the information index 101.9
A Net inflow of susceptibles 1.762 - 103 days™!
1 Natural death rate 1.07 -1072 years ™!
Ro Basic reproduction number 3.49
Bp Baseline transmission rate 2.25 days—!
Bo Mandatory social distancing transmission rate 0—0.745
E€p Modification factor w.r.t. transmission from I, 1
Em Modification factor w.r.t. transmission from I,, 0.033
s Modification factor w.r.t. transmission from I 0.034
p Latency rate 1/5.25 days~*
n Post-latency rate 1/1.25 days™*
P Fraction of post-latent individuals developing no/mild symptoms 0.92
X0 Mandatory quarantine rate 0.057 days~!
Om Rate at which members of I, class hospitalize 0.044 days~!
04 Rate at which quarantined individuals hospitalize 0.001 days~!
a Disease-induced death rate 0.022 days—!
Ym Recovery rate for asymptomatic/mildly symptomatic individuals 0.145 days—!
Vs Recovery rate for severely symptomatic (hospitalized) individuals 0.048 days~!
Yq Recovery rate for quarantined individuals 0.035 days~!

Table 5.1: Temporal horizon, initial conditions and epidemiological parameters values for
model (5.1)—(5.2).

with By = 0., + Ym + t = By — xo. The first two terms in the r.h.s. of (5.7) describe the
contributions of post-latent infectious and asymptomatic/mildly symptomatic infectious,
respectively, to the production of new infections close to the disease—free equilibrium. The
third, the fourth and the fifth term in (5.7) represent the contribution of infectious with
severe symptoms. The severe symptoms can onset soon after the post—latent phase (third
term) or after a mildly symptomatic phase (fourth term). In case of quarantine, severe
symptoms can onset also during such a stage (fifth term). Note that the last term is missing
in the basic reproduction number (5.8), where the possibility for people to be quarantined
is excluded. Note also that R¢c = R when 5y = xo = 0.

5.4 Parameterization

Numerical simulations are performed in MATLAB [216]. We use the ode45 solver for
integrating the system and the platform—integrated functions for getting the plots.

The epidemiological parameters of the model as well as their baseline values are reported
in Table 5.1. In the same table, simulation time frame and initial conditions are given. A
detailed derivation of such quantities is reported in the next subsections.
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Epidemiological parameters

As done by Gumel et al. [151], we adopt an SEIR-like model with demography and constant
net inflow of susceptibles A. Including a net inflow of susceptible individuals into the model
allows to consider not only new births (which can be assumed to be approximately constant
due to the short time span of our analysis), but also immigration, which played a role during
the lockdown in Italy. Therefore, the net inflow of susceptibles is given by

A =0bN + Ao. (5.9)

In (5.9), the parameter Ag is the inflow term due to immigration and bN is the inflow term
due to births, where b is the birth rate and N denotes the total population at the beginning
of the epidemic.

The most recent data by the Italian National Institute of Statistics [166] refer to January
1, 2019 and provide a country-level birth rate b = 7.2/1,000 years™! and a natural death
rate u = 10.7/1,000 years™!, as well as a resident population of about

N ~ 60.360 - 10° (5.10)

inhabitants. Fluctuations in a time window of just over a year are considered negligible.
Since global travel restrictions were implemented during the COVID-19 epidemic outbreak
[314], we assume that the immigration inflow term A accounts only of repatriation of citizens
to their countries of origin (Italy in that case) due to the COVID-19 pandemic [121]. In
all airports, train stations, ports and land borders travellers’ health conditions have been
tested via thermal scanners. Although the effectiveness of such screening method is largely
debated [248], for the sake of simplicity, we assume that the inflow enters only the susceptible
compartment. On the basis of data communicated by the Italian Ministry of Foreign Affairs
and International Cooperation [169], a reasonable value for Ay seems to be Ay = 4,000/7
days™!, namely the average number of repatriated citizens was 4,000 per week. Being A =
bN + Ay, we finally obtain A ~ 1.762 - 10% days™'.

Epidemiological data are based on the current estimates disseminated by national and
international health organizations [120, 126, 167, 172, 309, 310] or inferred by modeling
studies [102,135,182]. More precisely, the median incubation period is estimated to be from
5 — 6 days, with a range from 1 — 14 days, and identification of the virus in respiratory
tract specimens occurs 1 — 2 days before the onset of symptoms [120,309]. Hence, we set
the latency (p) and post-latency (n) rates to 1/5.25 days™ and 1/1.25 days™!, respectively.
From [135], the specific baseline transmission rates for the post-latent (g,5),
asymptomatic/mildly symptomatic (e,,5,) and severely symptomatic (e5/3,) cases are such
that ¢,,/e, = 0.033 and €,/¢,,, = 1.03. They are in accordance with the observation of high
viral load close to symptoms onset (suggesting that SARS-CoV-2 can be easily
transmissible at an early stage of infection), and with the absence of reported significant
difference in viral load in asymptomatic and symptomatic patients [120]. We set 5, = 2.25
days~!, which, together with the other parameters, leads to the basic reproduction number
Ro =~ 3.49, a value falling within the ranges estimated in several sources [120,126, 135, 309].

As made by Kantner and Koprucki [182], we consider that just 8% of infectious
individuals shows serious symptoms immediately after the incubation phase, yielding
p = 0.92. Nonetheless, people with initial mild symptoms may become seriously ill and
develop breathing difficulties, requiring hospitalization. It is estimated that about 1 in 5
people with COVID-19 shows a worsening of symptoms [172] within 4 — 5 days from
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onset [167], giving o, = 0.2/4.5 ~ 0.044 days™'. Instead, the possibility that the
aggravation happens during the quarantine period is assumed to be more rare: o, = 0.001
days™1.

Governmental efforts in identifying and quarantining positive cases have been
implemented since the early stage of epidemics (at February 24, 2020, 94 quarantined
people were already registered [171]), hence we consider the daily mandatory quarantine
rate of asymptomatic/mildly symptomatic individuals (yxo) positive for the whole time
horizon. From current available data, it seems hard to catch an uniform value for xg
because it largely depends on the sampling effort, namely the number of specimen
collections (swabs) from persons under investigation, that varied considerably across Italian
regions and in the different phases of the outbreak [167,171]. Since our model does not
account for such territorial peculiarities and in order to reduce the number of parameters
to be estimated, we assume that yo = 1.30,, namely it is 30% higher than the daily rate at
which members of the I,,, class hospitalize, yielding o ~ 0.057 days~!.

Following the approach adopted by Gumel et al. [151] for a SARS-CoV epidemic model,
based on the formula given by Day [95], we estimate the disease-induced death rate as

X
@ = (1 - M@)gu

where X is the case fatality and © is the expected time from hospitalization until death.
From [167], we approximate X = 13% and © = 6 days (it is 9 days for patients that were
transferred to intensive care and 5 days for those were not), yielding a ~ 0.022 days™!.
Similarly, the recovery rates v; with j € {m, ¢, s} are estimated as

1-X
e, ’

v = (1 — pOy)

where ©; is the expected time wuntil recovery or expected time in
quarantine/hospitalization. Preliminary data indicate that the virus can persist for up to
eight days from the first detection in moderate cases and for longer periods in more severe
cases [120], suggesting ©,, = 6 days is an appropriate value. As far as the time spent in
hospitalization or quarantine is concerned, in the lack of exact data we assume ©, < O,
because hospitalized individuals are likely to receive a partly effective, experimental
treatment: mainly antibiotics, antivirals and corticosteroids [167]. Moreover, shortages in
hospital beds and ICUs led to as prompt as possible discharge [122]. In particular, we set
O, = 18 and ©, = 25 days, by accounting also for prolonged quarantine time due to delays
in test response (if any) and for WHO recommendations of an additional two weeks in
home isolation even after symptoms resolve [310].

Crucially, we also estimate the initial exponential rate of case increase (say, go), by
computing the dominant eigenvalue of the system’s Jacobian matrix, evaluated at the
disease—free equilibrium. It provides gy ~ 0.247 days—!, in accordance to that given by
Gatto et al. [135].

The effects of the lockdown on transmission

We explicitly reproduce in our simulations the effects of the restrictions posed to human
mobility and human—to—human contacts in Italy during the first epidemic wave. Their
detailed sequence is summarized as follows.
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Figure 5.3: Contour plot of the control reproduction number (5.7) versus mandatory
quarantine and social distancing transmission rates. Intersection between dotted black and
red [resp. blue] lines indicates the value after the first [resp. second] step reduction. Other
parameters values are given in Table 5.1.

After the first officially confirmed case (the so—called ‘patient one’) on February 21, 2020
in the Lodi province, several suspected cases emerged in the south and southwest of the
Lombardy region. A ‘red zone’ encompassing 11 municipalities was instituted on February 22
and put on lockdown to contain the emerging threat. On March 8, the red zone was extended
to the entire Lombardy region and 14 more northern Italian provinces, while the rest of Italy
implemented social distancing measures. A leak of a draft of this decree prompted a panic
reaction with massive movement of people towards Italian regions, especially from the north
to the south [282]. The next day, a decree evocatively entitled ‘I'm staying at home’ was
signed: the lockdown was declared for the whole country with severe limitations to mobility
and other progressively stricter restrictions.

Soon after, on March 11, 2020, the lockdown was enforced with all commercial and
retail businesses — except those providing essential services — closed down [168]. Finally, on
March 22, 2020, the phase one of restrictions was completed when a full lockdown was
imposed by closing all non—essential companies and industrial plants [5]. On May 4, Italy
entered the phase two, representing the starting point of a gradual relaxation of the
restriction measures. One week later, shops also reopened and the restrictions on mobility
were essentially eliminated, with the only obligation in many regions to use protective
maskst [170].

Because data early in an epidemic are inevitably incomplete and inaccurate, our approach
has been to try to focus on what we believe to be the essentials in formulating a simple
model. Keeping this in mind, we assume that the disease transmission rate incurs in just
two step reductions (modeled by the mandatory social distancing transmission rate [y in
(5.4)), corresponding to

e March 12 (day 17), i.e. after the first rapid succession of lockdown decrees, which
cumulatively resulted in a sharp decrease of SARS—-CoV-2 transmission;

iThis until the emerging of the second epidemic wave.
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e March 23 (day 28), that is the starting date of the full lockdown that definitely
impacted the disease incidence.

In the wake of [126, 140], we account for a first step reduction by 64% (that is
By — Bolyg<ieas = 0.368), which drops the control reproduction number (5.7) close to 1
(see Fig. 5.3, dotted black and red lines). It is then strengthened by about an additional
28%, resulting in a global reduction by 74% (B, — fol,~0s = 0.263,) that definitely brings
Re below 1 (see Fig. 5.3, dotted black and blue lines).

Information—dependent parameters

The information-related parameter values are reported in Table 5.2 together with their
baseline values.

Following [59,113], we set ¢ = 0.01 days™! potentially implying an asymptotic quarantine
rate of 0.99 days™! if we could let M go to +oo. As mentioned in Section 5.2, the positive
constants 6 and D tune the information-dependent reactivity. In particular, ¢ is the
reactivity factor of voluntary changes in contact pattern by susceptible and infectious
individuals; D is the reactivity factor of voluntary quarantine by individuals with no or
mild symptoms. Since the variability of contact rate is strongly affected by limitations
imposed by government decrees, we assume that the reactivity in choosing self-isolation in
response to information is greater than the reactivity in reducing contacts, that is D > ¢.

The range of values for the information coverage k and the average time delay of
information 7, = a~! are mainly assumed or taken from papers where the information
index M is used [55,59,109,113]. The information coverage k may be seen as a ‘summary’
of two opposite phenomena: the disease under-reporting, and the level of media coverage
of the status of the disease, which tends to amplify the social alarm. It is assumed to range
from a minimum of 0.2 (i.e. the public awareness is 20%) to 1. The average time delay of
information T, ranges from the case of prompt communication (say, 7, = 1 days) to the
case of large delay (say, T, = 60 days).

The baseline values of the parameters 6, D, k and a are obtained by comparing the

model solutions with the official data regarding the number of hospitalized individuals (I;),
the number of quarantined individuals (()) and the cumulative deaths as released every
day since February 24, 2020 by the Italian Civil Protection Department and archived on
GitHub [171].
We get § =6-10"7" and D = 9-1075. With this choice, numerical simulations not displayed
here show that the maximum order of magnitude reached by the information index M in the
time span considered is equal to 10°. Moreover, we obtain & = 0.8 and T, = 3 days, meaning a
level of awareness about the daily number of quarantined and hospitalized individuals of 80%,
resulting from the balance between underestimates and media amplification and inevitably
affected by rumors and misinformation spreading on the web (the so—called ‘infodemic’ [254]).
Such awareness is not immediate, but information takes on average 3 days to be publicly
disseminated, the communication being slowed by a series of articulated procedures: timing
for swab tests results, notification of cases, reporting delays between surveillance and public
health authorities, and so on.

Of course, parameters setting is influenced by the choice of curves to fit. Available
data seem to provide an idea about the number of identified infectious people who have
developed mild/moderate symptoms (the fraction that mandatorily stays in () or more
severe symptoms (the hospitalized, I5) and the number of deaths, but much less about those
asymptomatic or with very mild symptoms who are not always subjected to a screening test.
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Parameter Description Baseline value
1) Reactivity factor of voluntary change in contact patterns 6-1077
D Reactivity factor of voluntary quarantine 9.106
¢ 1 — ¢ is the ceiling of overall quarantine rate 0.01 days~*
a Inverse of the average information delay Tj, 1/3 days~!
k Information coverage 0.8

Table 5.2: Information—dependent parameters values for model (5.1)—(5.2).

Initial conditions

In order to provide appropriate initial conditions, we consider the official national data at
February 24, 2020 archived on [171]. In particular, we take the number of mandatorily
quarantined individuals (at that time, they coincide with @) being the voluntary component
negligible) and the hospitalized people (I5). Then, we use system (5.1)—(5.2) to simulate the
temporal evolution of the epidemics prior to February 24, by imposing an initial condition
of one exposed case Aty days before in a population of N individuals, with N given in
(5.10). We assume [, = 0 and xo as in Table 5.1 (no social distance restrictions were
initially implemented, but quarantine efforts were active since then) and disregard the effect
of information on the human social behaviors in this phase (6 = D =0 in (5.1)—(5.2)). The
length of temporal interval Aty is tuned in order to reproduce the official values released for
@ and I, at February 24 and provide estimations for the other state variables, as reported
in Table 5.1. We obtain Aty = 31.9, indicating that the virus circulated since the end of
January, as predicted also by Gatto et al. [135] and Giordano et al. [76].

5.5 Numerical results

Let us consider the time frame [to, t], where to <t <T. We consider two relevant quantities,
the cumulative incidence CI(t), i.e. the total number of new cases in [ty, ], and the cumulative
deaths CD(t), i.e. the disease-induced deaths in [to, t].

For model (5.1)—(5.2) we have, respectively:

CI(t) = /t 5<M(T))% (e)1(7) + e (7) + . 11(7)) dr,

where 3(M) is given in (5.4), and

CD(t) = / 'l (r)dr

In Fig. 5.4 the time evolution in [ty, T'] of CI(¢) and CD(¢) is shown (panels A and D), along
with that of quarantined individuals Q(¢) (panel B) and hospitalized individuals I4(¢) (panel
C). The role played by information on the public compliance with mitigation measures is
stressed by the comparison of the baseline scenario with the unresponsive case (6 = D =0 in
(5.1)-(5.2)), that is the case when circulating information does not affect disease dynamics.
Corresponding dynamics are labelled by black solid and red dashed lines, respectively.

In the unresponsive case, the cumulative incidence is much less impacted by the lockdown
restrictions in comparison with the baseline scenario (11.45 - 10° vs 7.85 - 10° on May 18).
Furthermore, in this case the quarantined individuals given by the model are only those
that choose self-isolation when ‘forced” by public health authorities after detection. That
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Figure 5.4:  Epidemic evolution predicted by model (5.1)—(5.2): Cumulative incidence
(panel A), quarantined individuals (panel B), hospitalized individuals (panel C) and
cumulative deaths (panel D). The predicted evolution (black solid lines) is compared with
the unresponsive case § = D = 0 (red dashed lines) and with official data (blue dots).
Parameter values are given in Tables 5.1 and 5.2.
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Figure 5.5: Contour plots of relevant quantities versus information coverage k and average
delay T, = a~'. Panel A: cumulative incidence CI(T) evaluated at the last day of the
considered time frame, i.e. T = 85, corresponding to May 18, 2020. Panel B: peak of
quarantined individuals max(Q). Panel C: peak of hospitalized individuals max(/). Panel
D: final cumulative deaths CD(7'). The intersection between dotted white lines indicates the
values corresponding to the baseline scenario k = 0.8, T, = 3 days. Other parameter values
are given in Tables 5.1 and 5.2.

is to say, the quarantined individuals predicted by the model reduce to those ones officially
detected (i.e. what is counted in the official data). As a consequence, the peak of hospitalized
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Figure 5.6: Contour plots of the percentage relative change w.r.t the unresponsive case
§ = D = 0 versus information coverage k and average delay T, = a~!. Panel A: cumulative
incidence CI(T") evaluated at the last day of the considered time frame, ie. T = 85,
corresponding to May 18, 2020. Panel B: peak of quarantined individuals max(Q). Panel
C: peak of hospitalized individuals max(/;). Panel D: final cumulative deaths CD(T"). The
intersection between dotted white lines indicates the values corresponding to the baseline
scenario k = 0.8, T, = 3 days. Other parameter values are given in Tables 5.1 and 5.2.

patients is about 77% higher and 10 days time-delayed, with a corresponding increase in
cumulative death of more than 100%. For all reported dynamics, the deviation between the
baseline and the unresponsive case starts to be clearly distinguishable after the first step
reduction of 64% in transmission rate (on March 12).

Trends are also compared with officially disseminated data [171] (Fig. 5.4, blue dots), which
seem to conform accordingly for most of the time horizon, except for CI, which suffers from
an inevitable and probably high underestimation [126, 135,140, 198]. As of May 18, 2020,
we estimate about 785,000 infections, whereas the official count of confirmed infections is
225,886 [171].

We now investigate how the information parameters k£ and a may affect the epidemic
course. More precisely, we assess how changing these parameters affects some relevant
quantities: the peak of quarantined individuals max(Q) (i.e., the maximum value reached
by the quarantined curve in [tg,T]), the peak of hospitalized individuals max([s), the
cumulative incidence CI(T') evaluated at the last day of the considered time frame, i.e.
T = 85 (corresponding to May 18, 2020), and the final cumulative deaths CD(T').

The results are shown in the contour plots in Fig. 5.5. As expected, CI(T"), max(/;) and
CD(T) decrease proportionally to the information coverage k and inversely to the information
delay T,: they reach the minimum for £ = 1 and 7, = 1 days. Differently, the quantity
max (@) may not monotonically depend on k and T, as it happens for £ > 0.6 and T, < 15
days (see Fig. 5.5B, lower right corner). In such parameter region, for a given value of k
[resp. a] there are two different values of a [resp. k] which correspond to the same value of
max(®). The absolute maximum (max, r,j(max(Q))) is obtained for k = 1 and T, ~ 7 days.
Note that the pair of values k = 1, T, = 1 days corresponds to the less severe outbreak, but
not with the highest peak of quarantined individuals.
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Case CI(T) RCI(T) | max(Q) | Rmax(Q) | max(ly) | Rmax(l;) | CD(T) | RCD(T)
5=D=0 | 11.45-10° 0 0.82-10° 0 6.09 - 104 0 7.00 - 104 0
zlf::%'i 7.85-10° -0.31 | 2.08-10° 1.53 3.45 - 104 -0.43 3.48 - 104 -0.50
Tk_=11d 7.27-10° -0.37 | 2.05-10° 1.49 3.10 - 10% -0.49 3.12-104 -0.55
Tk - 262(1 10.83-10° | -0.05 | 1.30-10° 0.58 5.70 - 10% -0.06 6.91- 10 o011

Table 5.3: Exact and relative values of final cumulative incidence CI(T'), the peak of
quarantined individuals max(Q), the peak of hospitalized individuals max(/s), and final
cumulative deaths CD(T'), for three combinations of information parameters k and T, (second
to fourth row), in comparison with the unresponsive case: 6 = D = 0 in (5.1)—(5.2) (first
row). Other parameters values are given in Tables 5.1 and 5.2.

In what follows, we compare the relative changes for these quantities w.r.t the
unresponsive case. In other words, we introduce the index

Y — Y
RY = ——.

which measures the percentage relative change of Y € {CI(T), max(Q), max(/;), CD(T)}
w.r.t the corresponding quantity Y predicted by model (5.1)—(5.2) with § = D = 0.

All the possible values arising in the parameter ranges k € [0.2,1] and T, € [1,60] days
are shown in Fig. 5.6. However, we report in Table 5.3 the results corresponding to the
unresponsive case and to three example responsive cases, the baseline and two extremal
ones:

(i) the baseline scenario k = 0.8, T,, = 3 days, which is close to the best possible fitting
with official data, given the model and the considered parameter ranges;

(ii) the case of highest information coverage and lowest information delay, k = 1, T, = 1
days;

(iii) the case of lowest information coverage and highest information delay, k = 0.2, T,, = 60
days.

Compared with the baseline scenario, a more accurate and faster communication (case
(ii)) would drive to a significant reduction of CI(7"), max (/) and CD(T') (more precisely,
by 37%, 49% and 55%, respectively, see Table 5.3, third row). Moreover, even the worst
possible information—based scenario (case (iii)) is significantly better than the unresponsive
case (compare first and fourth rows in Table 5.3).

As mentioned above, information and rumors regarding the status of the disease in the
community affect the transmission rate 5(M) (as given in (5.4)) and the quarantine rate
X(M) (as given in (5.5)).

In our last simulation we want to emphasize the role of the information coverage on
the quarantine and transmission rates. In Fig. 5.7 a comparison with the case of low
information coverage, k = 0.2, is given assuming a fixed information delay 7, = 3 days (blue
dotted lines). It can be seen that more informed people react and quarantine: an increasing
of the maximum quarantine rate from 0.32 to 0.69 days™! (which is also reached a week
earlier) can be observed when increasing the value of k to k = 1 (Fig. 5.7B).
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Figure 5.7: Time evolution of the transmission rate (panel A) and the quarantine rate (panel
B) of model (5.1)—(5.2), by fixing T, = 3 days. Color meaning is specified in the figure legend
and refers to five values of the information coverage k. Other parameter values are given in
Tables 5.1 and 5.2.

The effect of social behavioral changes is less evident in the transmission rate where increasing
the information coverage produces a slight reduction of the transmission rate mainly during
the full lockdown phase (Fig. 5.7A). This reflects the circumstance that the citizens choice
of social distancing is not enhanced by the information—induced behavioral changes during
the first stages of the epidemic.

5.6 Discussion and conclusions

In this chapter, we have proposed a mathematical approach to investigate the effects on the
COVID-19 epidemic of social behavioral changes in response to lockdowns.

Starting from an SEIR-like model, we assumed that the transmission and quarantine
rates are partially determined on a voluntary basis and depend on the circulating information
and rumors about the disease, modeled by a suitable time-dependent information index. We
focused on the case of the first COVID-19 epidemic wave in Italy and explicitly incorporated
the progressively stricter restrictions enacted by the Italian government, by considering two
step reductions in the contact rate (the partial and full lockdowns).

The main results are as follows:

e we estimated two fundamental information—related parameters: the information
coverage regarding the daily number of quarantined and hospitalized individuals (i.e.
the parameter k) and the information delay (the quantity T, = a='). The estimate
was performed by comparing the model’s solutions with official data. We find
k = 0.8, which means that the public was aware of 80% of real data and T, = 3 days,
the time lag that was necessary for information to reach the public;

e social behavioral changes in response to lockdowns played a decisive role in curbing
the epidemic curve: the combined action of voluntary compliance with social distance
and quarantine resulted in preventing a duplication of deaths and about 46% more
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infections (i.e. approximately 360,000 more infections and 35,000 more deaths
compared with the unresponsive case, as of May 18, 2020);

e even under circumstances of low information coverage and high information delay (k =
0.2, T, = 60 days), there would have been a beneficial impact of social behavioral
response on disease containment: as of May 18, cumulative incidence would be reduced
by about 5% and deaths by about 11%.

Shaping the complex interaction between circulating information, human behavior and
epidemic disease is challenging. In this study we have given a contribution in this direction.
We provided an application of the information index to a specific field—case, the COVID-
19 epidemic in Italy, where the information—-dependent model was parameterized and the
solutions were compared with official data.

Our study presents limitations that leave the possibility of future developments. In
particular: i) the model captures the epidemics at a country level but it does not account for
regional or local differences and for internal human mobility (the latter having been crucial
in Italy at the early stage of the COVID-19 epidemic); ii) the model does not explicitly
account for ICU admissions. The limited number of ICU beds constituted a main issue
during the COVID-19 pandemics [122]. This study did not focus on this aspect but ICU
admissions could be certainly included in the model; iii) the model could be extended to
include age structure. Age was particularly relevant for COVID-19 lethality rate (in Italy
the lethality rate for people aged 80 or over was more than double the average value for the
whole population [167]).

Further developments may also concern the investigation of optimal intervention
strategies during the COVID-19 epidemics and, to this regard, the assessment of the
impact of vaccine arrival. In this case, the approach of information—dependent vaccination
could be employed [55,59,293].
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Concluding remarks and perspectives

In this thesis, we formulated and analyzed some control problems relying in the fields of
mathematical and behavioral epidemiology of infectious diseases. As the title says, these
problems are ‘challenging’ because they try to formalize real phenomena that are
inevitably affected by multiple and complex factors. Despite the simplifications adopted,
we obtained interesting and sometimes counter—intuitive results that throw more light on
the key mechanisms underlying infectious diseases spread and control. Disparate analytical
and numerical techniques (ranging from classical Pontryagin maximum principle to
heuristic stochastic optimization algorithms) have been used according to the problem at
hand, which acquires also a theoretical value per se.

In this context, the planning phase of control activities plays a crucial role. We found
that: i) disparate objectives to purse could be conflicting and require qualitatively different
control shapes (such as the minimization of epidemic duration and that of epidemic size
discussed in Chapter 1); ii) more or less flexible time scheduling should be adopted on the
basis of a cost—benefit comparison (as seen for vaccine awareness campaigns in the behavioral
change model of Chapter 3); in some cases, the best strategy is to ‘do nothing’ because the
control could even have negative and self-defeating effects (like localized culling activities
during wildlife infections investigated in Chapter 2).

Further — when it comes to infections in human populations — the ‘perfect plan’ should
also account for the individuals’ (increasingly rapid) response to information about the
disease that determines whether or not they will adopt protective tools. The inclusion of
behavioral aspects in the model allows, on the one hand, to interpret the trend of past
epidemics (such as the first COVID-19 wave in Italy addressed in Chapter 5) and, on the
other hand, to alert about the possible risks (like information-induced oscillations of
disease prevalence in the model of Chapter 4).

Given the extent and the relevance of the topic, research in these fields is constantly
evolving and ever new challenges are launched from the real world (just think of the ongoing
COVID-19 pandemic). Also our research is taking further steps. Specifically, in the context
of optimal and time-optimal control of SIR model, we intend to make the model more
realistic, by assuming that the chance of an individual recovering depends on the time since
infection. This can be achieved by adopting the method of stages [89], namely assigning to
the random variable describing the infectious period an Erlang distribution (rather than an
exponential distribution as in the basic SIR).

In view of a COVID-19 vaccine arrival [162,203], we are also designing and investigating
suitable behavioral change models that incorporate the vaccination choice. A first model is
the natural modification of the information—dependent epidemic model of Chapter 5, where
a (potentially imperfect) vaccine substitute non—pharmaceutical interventions. We intend to
compare this approach with that of vaccination models following imitation game dynamics
(see Section I.4). To this aim, in the latter the vaccine must address susceptible individuals
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at all ages (and not just newborns as assumed so far), thereby not only parents, but all
people are subject to the game—theoretic mechanisms between pro and anti—vaccine forces.

Finally, a new line of research we are now undertaking connects mathematical
epidemiology with kinetic theory. In particular, on the basis of the non—conservative
Boltzmann—type kinetic framework introduced in [205], we want to derive epidemiological
compartmental models from a kinetic (mesoscopic) description, in which the microscopic
state that characterizes each agent is his/her viral load.
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