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Abstract

The Kolmogorov equation was firstly introduced in 1934 as a fundamental ingredient of a kinetic model
for the study of the density of a system of N particles of gas in the phase space. Kolmogorov pointed
out that, although the dimension of the phase space is 2N and the diffusion term acts on the velocity
variable, whose dimension isN , the differential operator is strongly degenerate. Nevertheless, Kolmogorov
exhibited the explicit expression of the fundamental solution of the operator and pointed out that it is a
smooth function, in fact proving that the operator is hypoelliptic. Throughout this work, we are mainly
concerned with degenerate Kolmogorov equations in divergence form, for which the regularity theory for
classical solutions had widely been developed during the years. Chapter 1 of this work is devoted to a
survey of results on the classical regularity theory for Kolmogorov operators with constant or continuous
coefficients. In Chapter 2 we consider an application of the Kolmogorov equation in finance, where the
Black and Scholes theory is applied to the pricing problem for Asian options. The price of the option
is computed by solving a Cauchy problem, where the initial data represents the payoff of the option
and the associated PDE is a Kolmogorov type equation with local Hölder continuous coefficients. The
existence and uniqueness of the fundamental solution of the associated PDO are proved, alongside with a
uniqueness result for the solution of the Cauchy problem, through a limiting procedure whose convergence
is ensured by Schauder type estimates. Furthermore, in Chapter 3 we consider an application of the
Kolmogorov equation to the kinetic theory. Specifically, we introduce a space inhomogeneous kinetic
model associated to a nonlinear Kolmogorov-Fokker-Planck operator and we investigate the classical
theory for the associated Cauchy problem in Hölder spaces. The second part of my thesis is devoted
to the regularity theory for weak solutions to the Kolmogorov equation with measurable coefficients,
which is nowadays the main focus of the research community. It has been developed during the last
decade, and the most advanced achievement in this framework have been established in the particular
case of the Kolmogorov-Fokker-Planck equation. In Chapter 4 we give proof of a geometric statement for
the Harnack inequality for weak solutions to the Kolmogorov-Fokker-Planck equation proved by Golse,
Imbert, Mouhot and Vasseur in 2017, based on the concepts of Harnack chains and attainable set. As
far as we are concerned with the more general Kolmogorov equation in divergence form, Chapter 5 is
devoted to the extension of the Moser’s iterative procedure (proved by Pascucci and Polidoro in 2004 for
the dilation invariant case) to weak solutions to the Kolmogorov equation under minimal integrability
assumptions for the lower order coefficients in the non-dilation invariant case.
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Sunto

L’equazione di Kolmogorov è stata introdotta nel 1934 come ingrediente fondamentale di un modello
cinetico per lo studio della densità di un sistema di N particelle di gas nello spazio delle fasi. Kolmogorov
osservò che tale operatore è fortemente degenere in quanto la dimensione dello spazio delle fasi è 2N ,
mentre il termine di diffusione agisce sulla variabile velocità di dimensione N . Nonostante ciò, egli
fornì l’espressione esplicita della soluzione fondamentale per tale operatore, una funzione differenziabile
infinite volte, così dimostrando che l’operatore è ipoellittico. Nella mia tesi mi occupo prevalentemente
di equazioni di Kolmogorov degeneri in forma di divergenza, per le quali la teoria della regolarità classica
è stata ampiamente sviluppata nel corso degli anni. Nel Capitolo 1 presento i principali risultati di
tale teoria per operatori di Kolmogorov a coefficienti costanti o continui. Nel Capitolo 2 considero
un’applicazione dell’equazione di Kolmgorov in ambito finanziario, dove la teoria di Black & Scholes
si applica al pricing problem per le opzioni Asiatiche. Il prezzo di un’opzione si calcola risolvendo un
problema di Cauchy, il cui dato iniziale rappresenta il payoff dell’opzione e la EDP associata è un’equazione
di tipo Kolmogorov a coefficienti localmente Hölderiani. Attraverso una procedura di limite, la cui
convergenza è assicurata da stime di tipo Schauder, si dimostrano l’esistenza e l’unicità della soluzione
per l’ODP associato ed un risultato di unicità per la soluzione del problema di Cauchy. Nel Capitolo
3 considero un’ulteriore applicazione dell’equazione di Kolmogorov alla teoria cinetica. In particolare,
introduco un modello cinetico non omogeneo associato ad un operatore non lineare di tipo Kolmogorov-
Fokker-Planck e studio la teoria della regolarità classica per il problema di Cauchy associato in spazi
Hölderiani. La seconda parte della mia tesi è dedicata alla teoria della regolarità per soluzioni deboli
dell’equazione di Kolmogorov a coefficienti misurabili, argomento su cui è prevalentemente concentrata
la comunità scientifica oggigiorno. Gli sviluppi più recenti in questa direzione sono stati ottenuti nel
caso particolare dell’equazione di Kolmogorov-Fokker-Planck. Nel Capitolo 4 dimostro un enunciato di
tipo geometrico per la disuguaglianza di Harnack provata da Golse, Imbert, Mouhot e Vasseur nel 2017
per le soluzioni deboli dell’equazione di Kolmogorov-Fokker-Planck a coefficienti misurabili, basandomi
sul concetto di catene di Harnack e insieme ammissibile. Per quanto riguarda invece l’equazione di
Kolmogorov in forma di divergenza nella sua forma più generale, il Capitolo 5 è dedicato all’estensione
dell’iterazione di Moser (dimostrata da Polidoro e Pascucci nel 2004 nel caso invariante per dilatazioni)
alle soluzioni deboli per l’equazione di Kolmogorov sotto ipotesi minimali di integrabilità per i coefficienti
di ordine inferiore nel caso non invariante per dilatazioni.
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Introduction

Kolmogorov equations appear in the theory of stochastic processes as linear second order parabolic
equations with non-negative characteristic form. Throughout this work, we are mainly concerned with
degenerate Kolmogorov equations. In its simplest form, if (Wt)t≥0 denotes a real Brownian motion, the
density p = p(t, v, y, v0, y0) of the stochastic process (Yt, Vt)t≥0{

Yt = y0 + σWt

Vt = v0 +
´ t
0
Ys ds

(1)

is a solution to a strongly degenerate Kolmogorov equation, that is

1
2σ

2∂2vp+ v∂yp = ∂tp, t ≥ 0, (v, y) ∈ R2. (2)

This equation was firstly introduced by Kolmogorov in 1934, as a fundamental ingredient of a kinetic
model for the study of the density of a system of N particles of gas in the phase space. Kolmogorov
pointed out that, although the dimension of the phase space is 2N and the diffusion term acts on the
velocity variable, whose dimension is N , the differential operator is strongly degenerate. Nevertheless,
Kolmogorov provided us with the explicit expression of the density p = p(t, v, y, v0, y0) of the above
equation (see [78])

p(t, v, y, v0, y0) =
√
3

2πt2 exp
(
− (v−v0)

2

t − 3 (v−v0)(y−y0−tv0)
t2 − 3 (y−y0−ty0)

2

t3

)
t > 0, (3)

and pointed out that it is a smooth function despite the strong degeneracy of the equation (2). As it is
suggested by the smoothness of the density p, the operator K associated to equation (2)

K := 1
2σ

2∂2v + v∂y − ∂t, (4)

is hypoelliptic, in the sense of the following definition, that we state for a general second order differential
operator K acting on an open subset Ω of RN .

Hypoellipticity. The operator K is hypoelliptic if, for every distributional solution u ∈ L1
loc(Ω) to the

equation Ku = f , we have that
f ∈ C∞(Ω) ⇒ u ∈ C∞(Ω). (5)

Hörmander considered the operator K in (4) as a prototype for the family of hypoelliptic operators studied
in his seminal work [64]. Specifically, the operators considered by Hörmander are of the form

K =

m∑
k=1

X2
k + Y, (6)

7
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where Xk are smooth vector fields of the form

Xk =

N+1∑
j=1

bj,k(z) ∂zj , Y =

N+1∑
j=1

bj,m+1(z) ∂zj k = 1, . . . ,m, (7)

with bj,k ∈ C∞(Ω) for every j = 1, . . . , N + 1, k = 1, . . . ,m+ 1 and Ω is any open subset of RN+1. The
main result presented in [64] is a sufficient condition to the hypoellipticity of K. Its statement requires
some notation. Given two vector fields Z1, Z2, the commutator of Z1 and Z2 is the vector field:

[Z1, Z2] = Z1 Z2 − Z2 Z1. (8)

Moreover, we recall that Lie(X1, . . . , Xm, Y ) is the Lie algebra generated by the vector fieldsX1, . . . , Xm, Y
and their commutators.

Hörmander’s Rank Condition. Suppose that

rankLie(X1, . . . , Xm, Y )(z) = N + 1 for every z ∈ Ω. (9)

Then the operator K defined in (6) is hypoelliptic in Ω,

Let us consider again the operator K defined in (4) with σ =
√
2, to simplify the notation. It can be

written in the form (6) if we choose

X = ∂v ∼ (0, 1, 0)T , Y = v∂y + ∂t ∼ (−1, 0, v)T ,

and the Hörmander’s rank condition is satisfied, as

[X,Y ] = XY − Y X = ∂y ∼ (0, 0, 1)T .

As the regularity properties of Hörmander’s operators K are related to a Lie algebra, it became clear that
the natural framework for the regularity theory of Hörmander’s operators is the non-euclidean setting
of Lie groups, as Folland and Stein pointed out in [48]. Later on, Rothschild and Stein developed a
general regularity theory for Hörmander’s operators in [112]. We refer to the more recent monograph by
Bonfiglioli, Lanconelli and Uguzzoni [19] for a comprehensive treatment of the recent achievements of the
theory. As far as we are concerned with the operator K, we show that it is invariant with respect to the
non-commutative translation given by the following composition law

(t, v, y) ◦ (t0, v0, y0) = (t0 + t, v0 + v, y0 + y + tv0), (t, v, y), (t0, v0, y0) ∈ R3.

Indeed, if w(t, v, y) = u(t0 + t, v0 + v, y0 + y + tv0) and g(t, v, y) = f(t0 + t, v0 + v, y0 + y + tv0), then

Ku = f ⇐⇒ Kw = g for every (t0, v0, y0) ∈ R3.

As we will see in the sequel, in several applications the couple (v, y) denotes the velocity and the position
of a particle. For this reason the above operation is also known as Galilean change of variable.

Another remarkable property of the operator K is its dilation invariance. More precisely, the operator
K is invariant with respect to the following family of dilations

δr(t, v, y) := (r2t, rv, r3y), r > 0,

with the following meaning: if we define w(t, v, y) = u(r2t, rv, r3y) and g(t, v, y) = f(r2t, rv, r3y) we have
that

Ku = f ⇐⇒ Kw = r2g for every r > 0.
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As we will see in the sequel, this underlying invariance property plays a fundamental role in the study
of the operator K, even though it does not hold true for every Kolmogorov operator (see Chapter 1,
Proposition 1.1), as it happens in the family of uniformly parabolic operators. Indeed, we usually consider
parabolic dilations δr(x, t) = (rx, r2t) also when considering the parabolic Ornstein-Uhlenbeck operator
K = ∆− ⟨x,∇⟩ − ∂t.

Throughout this work, we are mainly concerned with degenerate Kolmogorov equations in divergence
form, for which the regularity theory for classical solutions had widely been developed during the years,
starting from the work by Lanconelli and Polidoro in [84], and it is referred to the case of the Kolmogorov
operator

K =

m0∑
i,j=1

ai,j(x, t)∂
2
xixj

+

m0∑
j=1

bj(x, t)∂xj + ⟨Bx,D⟩ − ∂t, for (x, t) ∈ RN+1

with either constant or continuous coefficients ai,j ’s and bj ’s, and 1 ≤ m0 < N . As in the parabolic
case, the classical theory for degenerate Kolmogorov operators is developed for suitable spaces of Hölder
continuous functions that we introduce in Definition 1.11. This definition relies on the Lie group G that
we define in (1. 12), a non-Euclidean invariant structure for the constant coefficients operators of the
type K. This non-Euclidean invariant structure was implicitly used for the first time by Garofalo and E.
Lanconelli in [51], and then later on properly written and thoroughly studied by Lanconelli and Polidoro
in [84]. In this framework, we deal with classic solution to the equation Ku = f under minimal regularity
assumptions on u in the following sense.

Classic solution. A function u is a solution to the equation Ku = f in a domain Ω of RN+1 if there
exist the Euclidean derivatives ∂xi

u, ∂xi,xj
u ∈ C(Ω) for i, j = 1, . . . ,m0, the Lie derivative Y u ∈ C(Ω),

and the equation

m0∑
i,j=1

ai,j(z)∂
2
xixj

u(x, t) +

m0∑
j=1

bj(z)∂xj
u(x, t) + Y u(x, t) = f(x, t)

is satisfied at any (x, t) ∈ Ω.

In the following of this work, Chapter 1 is devoted to a survey of results on the classical regularity theory
for Kolmogorov operators, which can nowadays be considered complete, starting from the ideas presented
in the paper [6]. In Chapter 2 we consider an application of the Kolmogorov equation to finance, and in
particular we address the problem of the existence and uniqueness of the fundamental solution for PDEs
with local Hölder continuous coefficients associated to Asian options, that we have presented for the first
time in the paper [5]. Asian options are a family of path-dependent options whose payoff depends on
the average of the underlying stock price over a certain time interval. Indeed, in the Black & Scholes
framework, the price of the underlying Stock St and of the bond Bt are described by the processes

St = S0e
µt+σWt , Bt = B0e

rt, 0 ≤ t ≤ T,

where µ, r, T , and σ are given constants. In particular, in this work we consider continuous Asian Options
and the price (Zt)0≤t≤T of a path dependent option is considered as a function Zt = Z(St, At, t) that
depends on the stock price St, the time to maturity t and of an average At of the stock price

At =

tˆ

0

f(Sτ ) dτ, t ∈ [0, T ].
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The price of the option is computed by solving the Cauchy problem associated to the process (St, Bt, At)t≥0:{
1
2σ

2(S,A, t)S2 ∂2Z
∂S2 + f(S)∂Z∂A + r(S,A, t)

(
S ∂Z

∂S − Z
)
+ ∂Z

∂t = 0 (S,A, t) ∈ R+ × R+×]0, T [,

Z(S,A, T ) = φ(S,A) (S,A) ∈ R+ × R+,
(10)

where the initial data φ represents the payoff of the option, and depending on the choice of the function
f(S) we have a different Kolmogorov type equation with local Hölder continuous coefficients associated
to it. Indeed, when f(S) = logS we recover the case of Geometric Average Asian Options and the
Partial Differential Operator (PDO) associated to (10) is the classical Kolmogorov operator with only
one commutator:

Ku(x, y, t) =
∂

∂x

(
a(x, y, t)

∂u

∂x

)
+ b(x, y, t)

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
(x, y, t) ∈ R2n+1.

On the other hand, by choosing f(S) = S the PDO associated to (10) is a generalization of the constant
coefficients operator (i.e. a = 1 and b = 1) introduced by Yor in his seminal paper [123] for the study of
Arithmetic Average Asian Option:

L u(x, y, t) := x
∂

∂x

(
a(x, y, t)x

∂u

∂x

)
+ b(x, y, t)x

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
(x, y, t) ∈ R2n+1.

In Chapter 2 the existence and uniqueness of the fundamental solution for both the operators K and
L is proved (see Theorem 2.1 and Theorem 2.12), alongside with a uniqueness result for the solution
of the Cauchy problem (10) (see Theorem 2.2 and Theorem 2.13). Our approach is based on a limiting
procedure whose convergence is ensured by Schauder types estimates for the Kolmogorov operator K,
and on the idea that locally the operator L behaves as the classical Kolmogorov operator K.

Furthermore, in Chapter 3 we consider an application of the Kolmogorov equation to the kinetic
theory. The new results we present here are part of a joint project with Yuzhe Zhu from the ENS of
Paris (France), where the author has spent a research period under the supervision of Prof. Cyril Imbert
(CNR). In particular, we are interested in the following nonlinear spatial inhomogeneous drift-diffusion
equation {

(∂t + v · ∇x)u(v, x, t) = ρβu(x, t)L u(v, x, t),

u(v, x, 0) = φ(v, x),
(11)

for an unknown u(v, x, t) ≥ 0 with (v, x, t) ∈ Rn × Tn × R+, where the constant β ∈ [0, 1], and

ρu(x, t) :=

ˆ
Rn

u(v, x, t) dv, with ρφ(x) =

ˆ
Rn

φ(v, x)dv.

Equation (11) arises in various different research fields, such as plasma physics and polymer dynamics,
and it is a fundamental tool for the modeling of the collisional evolution of a system of a large number of
particles. If we denote by L the kinetic Kolmogorov-Fokker-Planck diffusive operator appearing on the
right-hand side of the equation (11)

L u := ∇v · (∇v + v)u,

the nonlinear diffusive collision term ρβuL models the collision of particles in a certain surrounding bath,
where the aggregation of particles induces friction contribution. Moreover, we remark that the linear
operator associated to equation (11), given by L − ∂t + v · ∇x is a particular case of the operator K, in
fact obtained by choosing N = 2n, m0 = n, x = (v, x, t) and

aij(v, x, t) =

{
1 if i = j

0 otherwise
, and bi = 1 for every i = 1, . . . , n.
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Our aim is to investigate well-posedness results for classical solutions to the Cauchy problem (11). In
the framework of Sobolev spaces results of this type have been proved by Imbert and Mouhot in [68],
and by Liao, Wang and Yang in [87]. Our results improve that of [68] and [87] because we consider the
Cauchy problem (11) in Hölder spaces. Indeed, if the initial data is bounded we prove the existence and
uniqueness of a positive weak solution for (11). Moreover, given that the initial data is continuous the
global existence and uniqueness are proved, alongside with C∞ a priori estimates, obtained by adapting
an iterative procedure firstly introduced by Imbert and Silvestre in [69] for the Boltzmann equation.

The second part of this work is devoted to the study of the weak regularity theory for solutions to the
Kolmogorov equation in divergence form, that is nowadays the main focus of the research community.
In particular, we are interested in weak solutions to the Kolmogorov equation Ku = f , with measurable
coefficients aij ’s and bij ’s:

Ku(x, t) :=
m0∑

i,j=1

∂xi

(
aij(x, t)∂xju(x, t)

)
+

N∑
i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)+ (12)

+

m0∑
i=1

bi(x, t)∂iu(x, t)−
m0∑
i=1

∂xj (ai(x, t)u(x, t)) + c(x, t)u(x, t) = f(x, t),

where (x, t) ∈ RN+1 and 1 ≤ m0 < N . The most recent developments in this framework have been
established in the particular case of the kinetic Kolmogorov-Fokker-Planck equation. This equation
belongs to a class of evolution equations arising in the kinetic theory of gases and takes the following
form

n∑
j=1

vj∂xj
u+ ∂tu =

n∑
i,j=1

∂vi(aij ∂vj
u+ biu) +

n∑
i=1

ai∂viu+ au+ f, (v, x, t) ∈ R2n+1 (13)

where u = u(v, x, t) represents in this case the density of particles with velocity v = (v1, . . . , vn) and
position x = (x1, . . . , xn) at time t. We remark that we recover this case from (12) by choosing m0 = n,
N = 2n and bii = 1 for i = n + 1, . . . , 2n and zero everywhere else. The lefthand side of (13) is the
so called total derivative with respect to time in the phase space R2n+1. Whereas, the righthand side
is the collision operator, where aij , ai and a are functions of (v, x, t). Indeed, this latter equation is
the one considered by Golse, Imbert, Mouhot and Vasseur in [58], where the authors prove the Hölder
continuity and a Harnack inequality for weak solutions to the kinetic Kolmogorov-Fokker-Planck equation
in divergence form (13). The Harnack inequality proved in [58] is the only one available in the framework
of weak regularity theory for Kolmogorov equations in divergence form, and it is based on the De Giorgi
method. In Chapter 4 we prove a geometric statement for that Harnack inequality, based on the concepts
of Harnack chains and attainable set. The results we present here appeared for the first time in the paper
[4] by the author, Eleuteri and Polidoro. As far as we are concerned with the more general Kolmogorov
equation (12), Chapter 5 is devoted to the extension of the Moser’s iterative scheme to weak solutions to
Ku = 0 in the sense of the following definition.
Weak solution (in the L2 sense). Let Ω be an open subset of RN+1. A weak solution to Ku = 0 is
a function u such that u, ∂x1u, . . . , ∂xm0

u, Y u ∈ L2
loc(Ω) and

ˆ

Ω

−⟨ADu,Dφ⟩+ Y uφ+ ⟨b,Du⟩φ+ ⟨a,Dφ⟩u+ cuφ = 0, for every φ ∈ C∞
0 (Ω),

where the operator K is written in his compact form, given that

• the matrix A(x, t) = (aij(x, t))1≤i,j≤N has real measurable entries defined as the coefficients aij
appearing in (12) for i, j = 1, . . . ,m0 and aij ≡ 0 whenever i > m0, or j > m0;
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• the vectors a(x, t) = (a1(x, t), . . . , am0(x, t), 0, . . . , 0) and b(x, t) = (b1(x, t), . . . , bm0(x, t), 0, . . . , 0)
are the coefficients appearing in front of the lower order terms; moreover, the drift term is defined
as Y =

∑N
i,j=1 bijxj∂xi

− ∂t.

The main advantage of this definition is that it allows us to directly handle the computations involving
the drift term Y u. In particular, it allows us to extend the previously known results for the Moser’s
iterative scheme proved by Polidoro and Pascucci [104], Cinti, Pascucci and Polidoro [33] and Wang and
Zhang [119] to weak solutions to (12) with lower order measurable coefficients with positive divergence
under minimal integrability assumptions in the non-dilation invariant framework. These results were
firstly presented in the paper [7] by the author, Ragusa and Polidoro in 2019. The main difficulty of this
case lies in the lower order term. Our study has been inspired by the article of Nazarov and Uralt’seva
[99], who prove L∞

loc estimates and Harnack inequalities for uniformly elliptic and parabolic operators
in divergence form that are those with m0 = N according to our notation. As it is known, in order to
prove the Moser’s iterative scheme we need to combine a Caccioppoli inequality and a Sobolev inequality.
Nevertheless, since we are considering degenerate equations, the Caccioppoli inequality gives an a priori
L2 estimates for the derivatives ∂x1

u, . . . , ∂xm0
u of the solution u, that are the derivatives with respect to

the non-degeneracy directions of K. Moreover, the standard Sobolev inequality cannot be used to obtain
an improvement of the integrability of the solution as in the non-degenerate case. For this reason we
rely on a representation formula for the solution u firstly applied in [104] that allows us to represent a
solution u to Ku = 0 in terms of the fundamental solution of its principal part operator.



Chapter 1

Classical regularity theory

This chapter is devoted to the study of the classical regularity theory for Kolmogorov operators of the
form

Ku :=
N∑

i,j=1

aij∂
2
xixj

u+

N∑
i,j=1

bijxi∂xj
u− ∂tu

=Tr(AD2u) + ⟨Bx,Du⟩ − ∂tu, x ∈ RN , t ∈ R,

(1. 1)

where A = (aij)i,j=1,...,N and B = (bij)i,j=1,...,N are matrices with real constant coefficients, A symmetric
and non negative. In the following, we present a survey of results for the classical theory appeared for the
first time in the paper [6] by the author and Polidoro, and we conclude this introductory chapter with
the proof of a Strong Maximum Principle for Kolmogorov operators with continuous coefficients based
on the Harnack inequality stated in Theorem 1.26.

As we have already pointed out in the introduction of this work, the simplest Kolmogorov equation
(2) has appeared for the first time in 1934, when Kolmogorov considered it to describe the probability
density of a system with 2n degrees of freedom in his seminal paper [78]. There the author also proved
the existence of its fundamental solution (3), and wrote it as the density of the solution to the stochastic
differential equation (1). This is also the case when we consider a higher dimension. Specifically, let σ be
a N ×m constant matrix, B as in (1. 1), and let (Wt)t≥0 be a m-dimensional Wiener process. Denote
by (Xt)t≥0 the solution to the following N -dimensional Stochastic Differential Equation (SDE in short){

dXt = −BXt dt+ σ dWt

Xt0 = x0.
(1. 2)

Then the backward Kolmogorov operator Kb of (Xt)t≥0 acts on sufficiently regular functions u as follows

Kbu(y, s) = ∂su(y, s) +

N∑
i,j=1

aij∂
2
yiyj

u(y, s)−
N∑

i,j=1

bijyi∂yju(y, s).

where
A = 1

2σσ
T , (1. 3)

and the forward Kolmogorov operator Kf of (Xt)t≥0 is the adjoint K∗
b of Kb, that is

Kfv(x, t) = −∂tv(x, t) +
N∑

i,j=1

aij∂
2
xixj

v(x, t) +

N∑
i,j=1

bijxi∂xj
v(x, t) + tr(B)v(x, t),

13
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for sufficiently regular functions v. Note that Kf operator agrees with K in (1. 1) up to a multiplication
of the solution by exp(t tr(B)). Also note that, because of (1. 3), it is natural to consider in (1. 1) a
symmetric and non negative matrix A. When the matrix A is strictly positive, the solution (Xt)t≥0 of
the SDE (1. 2) has a density p = p(t− s, x, y) which is a solutions of the equations Kbp = 0 and Kfp = 0
in the following sense. For every (x, t) ∈ RN+1, the function u(y, s) := p(t− s, x, y) is a classical solution
to the equation Kbu = 0 in Rn×]−∞, t[ and, for every (y, s) ∈ RN+1, the function v(x, t) = p(t− s, x, y)
is a classical solution to Kfv = 0 in Rn×]s,+∞[. This is not always the case when A is degenerate. In
the sequel we give necessary and sufficient conditions on A and B for the existence of a density p for
the stochastic process (Xt)t≥0. These conditions are also necessary and sufficient for the hypoellipticity
of K. In order to state the aforementioned conditions, we introduce some further notation. Following
Hörmander (see p. 148 in [64]), we set, for every t ∈ R,

E(t) = exp(−tB), C(t) =

ˆ t

0

E(s)AET (s) ds. (1. 4)

The matrix C(t) is symmetric and non-negative for every t > 0, nevertheless it may occur that it is
strictly positive. If this is the case, then C(t) is invertible and the fundamental solution Γ(x0, t0;x, t) of
K is

Γ(x, t; ξ, τ) = Γ(x− E(t− τ)ξ, t− τ), (1. 5)

where Γ(x, t) = Γ(x, t; 0, 0). Moreover, Γ(x, t) = 0 for every t ≤ 0 and

Γ(x, t) =
(4π)−

N
2√

detC(t)
exp

(
−1

4
⟨C−1(t)x, x⟩ − t tr(B)

)
, t > 0. (1. 6)

The last notation we need to introduce allows us to write the operator K in the form (6). To do that, we
recall that σ = (σjk) j=1,...,N

k=1,...,m
is a matrix with constant coefficients, and we set

Xk :=
1√
2

N∑
j=1

σjk∂xj
, k = 1, . . . ,m, Y :=

N∑
i,j=1

bijxi∂xj
− ∂t. (1. 7)

This allows us to rewrite the operator K as a sum of squares

K =

m∑
j=1

X2
j + Y,

analogous to the form (6) introduced in Chapter , when talking about hypoelliptic operators. The fol-
lowing result holds true.

Proposition 1.1 Consider an operator K of the form (1. 1), and let σ be a N × m constant matrix
such that A writes as in (1. 3). Let X1, . . . , Xm, and Y be the vector fields defined in (1. 7). Then the
following statements are equivalent

C1. (Hörmander’s condition): rankLie(X1, . . . , Xm, Y )(x, t) = N + 1 for every (x, t) ∈ RN+1;

C2. ker(A) does not contain non-trivial subspaces which are invariant for B;

C3. C(t) > 0 for every t > 0, where C(t) is defined in (1. 4);

C4. (Kalman’s rank condition): rank
(
σ,Bσ, . . . , BN−1σ

)
= N ;
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C5. for some basis of RN the matrices A and B take the following block form

A =

(
A O
O O

)
(1. 8)

where A is a symmetric strictly positive m0 ×m0 matrix, with m0 ≤ m, and

B =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

... . . . ...
...

O O . . . Bκ ∗

 =


B0,0 B0,1 . . . B0,κ−1 B0,κ

B1 B1,1 . . . Bκ−1,1 Bκ,1

O B2 . . . Bκ−1,2 Bκ,2

...
... . . . ...

...
O O . . . Bκ Bκ,κ

 (1. 9)

where every block Bj is a mj ×mj−1 matrix of rank mj with j = 1, 2, . . . , κ. Moreover, the mjs
are positive integers such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N (1. 10)

and the entries of the blocks denoted by ∗ are arbitrary.
When the above conditions are satisfied, then K is hypoelliptic, its fundamental solution Γ defined in
(1. 5) and (1. 6), is the density of the solution (Xt)t≥0 to (1. 2), and the problem (1. 11) is controllable.
The equivalence between C1 and C2 is proved by Hörmander in [64]. The equivalence between C1, C2,
C3 and C5 can be found in [84] (see Proposition A.1, and Proposition 2.1). The equivalence between
C3 and C4 was first pointed out by Lunardi in [89].

Remark 1.2 The condition C4 arises in control theory and it is related to the following controllability
problem. For x0, x1 ∈ RN and t0, t1 ∈ R with t0 < t1, find a “control” ω ∈ L1([t0, t1],Rm) such that{

ẋ(t) = −Bx(t) + σω(t),

x(t0) = x0, x(t1) = x1,
(1. 11)

where σ, B are the same matrices appearing in (1. 2). It is known that a solution to the above control
problem exists if, and only if, Kalmann’s rank condition holds true (see [125]).

Remark 1.3 We discuss the meaning of the matrix C(t).
• From the SDEs point of view, 2C(t) is the covariance matrix of the solution (Xt)t≥0 to the SDE

(1. 2). In general, (Xt)t≥0 is a Gaussian process and its density p is defined on RN when its
covariance matrix is positive definite. If this is not the case, the trajectories of (Xt)t≥0 belong to a
proper subspace of RN .

• The matrix C(t) has a meaning also for the optimal control point of view. Indeed, it is known that

⟨C(t− t0)
−1 (x− E(t− t0)x0) , x− E(t− t0)x0⟩ = inf

ˆ t

t0

|ω(s)|2 ds,

where the infimum is taken in the set of all controls for (1. 11) (see [86], Theorem 3, p. 180). In
particular, when (x0, t0) = (0, 0) the optimal cost is ⟨C(t)−1x, x⟩, a quantity that appears in the
expression for the fundamental solution Γ in (1. 6). As we will see in the sequel, this fact will
be used to prove asymptotic bounds for positive solutions to Kolmogorov equations (see (1. 42) in
Theorem 1.15).

In view of the above assertions, the equivalence of C3 and C4 can be interpreted as follows. A control
ω ∈ L1([t0, t1],Rm) for the problem (1. 11) exists if, and only if, the trajectories of the Stocastic Process
(Xt)t≥0 reach every point of RN .
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1.1 Lie Group
In this section we focus on the non-Euclidean invariant structure for Kolmogorov operators of the form
(1. 1). This non commutative structure was first used by Garofalo and Lanconelli in [51], then explicitly
written and thoroughly studied by Lanconelli and Polidoro in [84]. Here and in the sequel we denote
by K, the family of Kolmogorov operators K satisfying the equivalent conditions of Proposition 1.1. We
also assume the basis of RN is such that the constant matrices A and B have the form (1. 8) and (1. 9),
respectively.

We now define a non commutative algebraic structure on RN+1 introduced in [84], that replaces the
Euclidean one in the study of Kolmogorov operators.

Lie group. Consider an operator K in the form (1. 1) and recall the notation (1. 4). Let

G = (RN+1, ◦), (x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ). (1. 12)

Then G is a group with zero element (0, 0), and inverse

(x, t)−1 := (−E(−t)x, −t). (1. 13)

For a given ζ ∈ RN+1, we denote by ℓζ the left traslation defined as

ℓζ : RN+1 → RN+1, ℓζ(z) = ζ ◦ z.

Then the operator K is left invariant with respect to the Lie product ◦, that is

K ◦ ℓζ = ℓζ ◦ K or, equivalently, K (u(ζ ◦ z)) = (Ku) (ζ ◦ z) , (1. 14)

for every u sufficiently smooth.

We omit the details of the proof of the above statements as they are elementary. We remark that,
even though we are interested in hypoelliptic operators K, the definition of the Lie product ◦ is well posed
wether or not we assume the Hörmander’s condition. Also note that

(ξ, τ)−1 ◦ (x, t) = (x− E(t− τ)ξ, t− τ), (x, t), (ξ, τ) ∈ RN+1, (1. 15)

then the meaning of (1. 5) can be interpreted as follows:

Γ(x, t; ξ, τ) = Γ
(
(ξ, τ)−1 ◦ (x, t)

)
. (1. 16)

Among the class of Kolmogorov operators K, the invariant operators with respect to a certain family of
dilations (δr)r>0 play a central role. We say that K ∈ K is invariant with respect to (δr)r>0 if

K (u ◦ δr) = r2δr (Ku) , for every r > 0, (1. 17)

for every function u sufficiently smooth. This property can be read in the expression of the matrix B
(see Proposition 2.2 of [84]).

Proposition 1.4 Let K be an operator of the family K. Then K satisfies (1. 17) if, and only if, the
matrix B as this form

B0 =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

... . . . ...
...

O O . . . Bκ O

 . (1. 18)
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In this case
δr = diag(rIm0

, r3Im1
, . . . , r2κ+1Imκ

, r2) for every r > 0, (1. 19)

where Imj denotes the identity matrix in Rmj . In the sequel we denote by K0 the family of dilation-
invariant operators belonging to K.

It is useful to denote by (δr,0(r))r>0 the family of spatial dilations defined as

δr,0 = diag(rIm0 , r
3Im1 , . . . , r

2κ+1Imκ) for every r > 0. (1. 20)

Homogeneous Lie group. If the matrix B has the form (1. 18), we say that the following structure

G0 =
(
RN+1, ◦, (δr)r>0

)
(1. 21)

is a homogeneous Lie group. In this case, because δr,0E(t) δr,0 = E(r2t) is verified when B has the form
(1. 18), the following distributive property holds

δr(ζ ◦ z) = (δrζ) ◦ (δrz), δr(z
−1) = (δrz)

−1. (1. 22)

Remark 1.5 A measurable function u on G0 will be called homogeneous of degree α ∈ R if

u(δr(z)) = rαu(z) for every z ∈ RN+1.

A differential operator X will be called homogeneous of degree β ∈ R with respect to (δr)r≥0 if

Xu(δr(z)) = rβ (Xu) (δr(z)) for every z ∈ RN+1,

and for every sufficiently smooth function u. Note that, if u is homogeneous of degree α and X is
homogeneous of degree β, then Xu is homogeneous of degree α− β.
As far as we are concerned with the vector fields of the Kolmogorov operators as defined in (1. 7), we have
that X1, . . . , Xm are homogeneous of degree 1 and Y is homogeneous of degree 2 with respect to (δr)r≥0.
In particular, K =

∑m
j=1Xj + Y is is homogeneous of degree 2.

Remark 1.6 The presence of the exponents 1, 3, . . . , 2κ+ 1 in the matrix δ can be explained as follows.
The usual parabolic dilation in the first m0 coordinates of RN and in time is due to the fact that K is non
degenerate with respect to x1, . . . , xm0

. The remaining coordinates appear as we check the Hörmander’s
condition. For instance, consider the Kolmogorov operator

K = ∂2x1
+ x1∂x2

+ x2∂x3
− ∂t = X2

1 + Y.

To satisfy the Hörmander condition we need κ = 2 commutators ∂x2
= [X1, Y ] = X1Y − Y X1 and

∂x3
= [[X1, Y ], Y ]. Because Y needs to be considered as a second order derivative, we have that ∂x2

and ∂x3
are derivatives of order 3 and 5, respectively. On the other hand, the matrices A, B and D0(r)

associated to this operator are

A =

1 0 0
0 0 0
0 0 0

 , B =

0 0 0
1 0 0
0 1 0

 , δr,0(r) =

r 0 0
0 r3 0
0 0 r5

 .

The same argument can be applied to operators that need κ > 2 steps to satisfy Hörmander’s rank
condition.
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The integer numbers
Q := m0 + 3m1 + . . .+ (2κ+ 1)mk, and Q+ 2 (1. 23)

will be named homogeneous dimension of RN with respect to (δr,0)r>0, and homogeneous dimension of
RN+1 with respect to (δr)r>0, because we have that

det δr,0 = rQ and det δr = rQ+2 for every r > 0.

We now introduce a homogeneous semi-norm of degree 1 with respect to the family of dilations (δr)r>0

and a quasi-distance which is invariant with respect to the group operation ◦.

Definition 1.7 For every z = (x, t) ∈ RN+1 we set

∥z∥ = |t| 12 + |x|, |x| =
N∑
j=1

|xj |
1
qj , (1. 24)

where the numbers qj are associated to the dilation group (δr)r>0 as follows

δr = diag
(
rq1 , . . . , rqN , r2

)
.

Remark 1.8 The norm ∥ · ∥ is homogeneous of degree 1 with respect to {δr}r>0, that is

∥ δr(x, t) ∥= r ∥ (x, t) ∥ for every r > 0 and (x, t) ∈ RN+1.

Because every norm is equivalent to any other in RN+1, other definitions have been used in the literature.
For instance in [90] it is chosen the following one. For every z = (x1, . . . , xN , t) ∈ RN+1 \ {0} the norm
of z is the unique positive solution r to the following equation

xq11
r2q1

+
xq22
r2q2

+ . . .+
xqNN
r2qN

+
t2

r4
= 1. (1. 25)

Note that, if we choose (1. 25), the set
{
z ∈ RN+1 : ∥z∥ = r

}
is a smooth manifold for every positive r,

which is note the case for (1. 24).
A further example may be the following norm

∥ (x, t) ∥1= |x1|
1

α1 + . . .+ |xN |
1

αN + |t| 12 ,

where the homogeneity with respect to {δr}r>0 can easily be showed. We prefer the norm of Definition
1.7 to ∥ · ∥1 because its level sets (spheres) are smooth surfaces.

Based on Definition 1.7, in the following we introduce a quasi-distance d : RN+1 × RN+1 → [0,+∞[
(see Definition 1.10 below). This means that:

1. d(z, w) = 0 if and only if z = w for every z, w ∈ RN+1;

2. for every compact subset K of RN+1, there exists a positive constant CK ≥ 1 such that

d(z, w) ≤ CKd(w, z);

d(z, w) ≤ CK (d(z, ζ) + d(ζ, w)) , for every z, w, ζ ∈ K.
(1. 26)

The proof of (1. 26) is given in Lemma 2.1 of [41]. Definition 1.10 is given for general non-homogeneous
Lie groups. This requires the notion of principal part operator discussed in the next section. We point
out that the constant CK doesn’t depend on K in the case of homogeneous groups (see Proposition 2.1
in [90]).
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1.2 Principal part operator
This section is devoted to show that dilation invariant operators are the blow-up limit of the operator
belonging to K. In order to identify the appropriate dilation, we denote by K0 the principal part operator
of K obtained from (1. 1) by substituting the matrix B with B0 as defined in (1. 18), that is

K0 = div(AD) + ⟨B0x,D⟩ − ∂t. (1. 27)

Since K0 is dilation-invariant with respect to (δr)r>0, we define Kr as the scaled operator of K in terms
of (δr)r>0 as follows

Kr := r2 δr ◦ K ◦ δ1/r = Tr(AD2) + ⟨Brx,D⟩ − ∂t, (1. 28)
where Br = δr Bδ1/r is given by

Br =


r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ

B1 r2B1,1 . . . r2κ−2Bκ−1,1 r2κBκ,1

O B2 . . . r2κ−4Bκ−1,2 r2κ−2Bκ,2

...
... . . . ...

...
O O . . . Bκ r2Bκ,κ

 . (1. 29)

Clearly Kr = K for every r > 0 if and only if B = B0, and the principal part K0 of K is obtained as the
limit of (1. 28) as r → 0.

The invariance structures of the operator K also reveal themselves in the expression of the fundamental
solution Γ. In particular, as noticed above, Γ is translation invariant, as it satisfies the identity (1. 16). As
far as we are concerned with the dilation invariance, the fundamental solution Γ0 of K0 is a homogeneous
function of degree −Q with respect to the dilation (δr)r>0, that is

Γ0(δrz) = r−QΓ0(z) for every z ∈ RN+1 \ {0}, r > 0, (1. 30)

where Q is the spatial homogeneous dimension of RN+1 introduced in (5. 19). Moreover, the expression
of Γ0 writes in terms of δr,0(r). Indeed, the matrix C(t) defined in (1. 4) satisfies the following identity

C(t) = δ√t,0 C(1) δ
√
t,0 for every t > 0,

and
Γ0(x, t) =

CN

t
Q
2

exp
(
− 1

4 ⟨C
−1(1) δ1/

√
t,0 x, δ1/

√
t,0 x⟩

)
,

where CN is the positive constant

CN = (4π)−
N
2 (detC(1))− 1

2 .

We refer to [84], [80], [82] for the proof of the above statements. Eventually, Theorem 3.1 in [84] provides
us with a quantitative comparison between Γ and Γ0.

Theorem 1.9 Let K be an operator of the class K and let K0 be its principal part as defined in (1. 27).
Then for every K > 0 there exists a positive constant ε > 0 such that

(1− ε)Γ0(z) ≤ Γ(z) ≤ (1 + ε)Γ0(z) (1. 31)

for every z ∈ RN+1 such that Γ0(z) ≥ K. Moreover, ε = ε(K) → 0 as K → +∞.

Note that the above result does not hold true in the set
{
Γ0 < K

}
(see formula (1.30) in [84]).

We now introduce the quasi-distance d for a generic Lie group G. In the following definition “◦”
denotes the traslation associated to K, and the norm ∥·∥ is the one associated to K0.
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Definition 1.10 For every z, w ∈ RN+1, we define a quasi-distance d(z, w) invariant with respect to the
translation group G0 as follows

d(z, w) = ∥z−1 ◦ w∥, (1. 32)
and we denote by Br(z) the d−ball of center z and radius r.

Definition 1.11 Let α be a positive constant, α ≤ 1, and let Ω be an open subset of RN+1. We say a
function f : Ω −→ R is Hölder continuous with exponent α in Ω with respect to the groups G = (RN+1, ◦)
and (δr)r>0 (in short: Hölder continuous with exponent α, f ∈ Cα(Ω)) if there exists a positive constant
k > 0 such that

|f(z)− f(ζ)| ≤ k d(z, ζ)α for every z, ζ ∈ Ω.

To every bounded function f ∈ Cα(Ω) we associate the norm

|f |α,Ω = sup
Ω

|f | + sup
z,ζ∈Ω
z ̸=ζ

|f(z)− f(ζ)|
d(z, ζ)α

.

Moreover, we say a function f is locally Hölder continuous, and we write f ∈ Cα
loc(Ω), if f ∈ Cα(Ω′) for

every compact subset Ω′ of Ω.

Remark 1.12 Let Ω be a bounded subset of RN+1. If f is a Hölder continuous function of exponent α
in the usual Euclidean sense, then f is Hölder continuous of exponent α. Vice versa, if f ∈ Cα(Ω) then
f is a β−Hölder continuous in the Euclidean sense, where β = α

2κ+1 and κ is the constant appearing in
(1. 9).

1.3 Kolmogorov operator with Hölder continuous coefficients
In this section we consider Kolmogorov operator in non-divergence form in RN+1

K =

m0∑
i,j=1

aij(x, t)∂
2
xixj

+

m0∑
j=1

bj(x, t)∂xj
+ ⟨Bx,D⟩ − ∂t, for (x, t) ∈ RN+1 (1. 33)

with continuous coeficients aij ’s and bj ’s. As in the parabolic case, the classical theory for degenerate
Kolmogorov operators is developed for spaces of Hölder continuous functions introduced in Definition
1.11. We remark that this definition relies on the Lie group G in (1. 12), that is an invariant structure
for the constant coefficients operators. Even though the non-constant coefficients operators in (1. 33) are
not invariant with respect to G, we will rely on the Lie group invariance of the model operator

∆m0
+ Y =

m0∑
j=1

∂2xj
+ ⟨Bx,D⟩ − ∂t, (1. 34)

associated to K. Indeed, this is a standard procedure in the study of uniformly parabolic operators. We
next list the standing assumptions of this section:

(H1) B = (bi,j) is a N × N real constant matrix of the type (1. 9), with blocks Bj of rank mj and
∗−blocks arbitrary;

(H2) A = (aij(z))i,j=1,...,m0
is a symmetric matrix of the form (1. 8), i.e. aij(z) = aj,i(z) for i, j =

1, . . . ,m0, with 1 ≤ m0 ≤ N . Moreover, it is positive definite in Rm0 and there exist a positive
constant λ such that

1

λ

m0∑
i=1

|ξi|2 ≤
m0∑

i,j=1

aij(z)ξiξj ≤ λ

m0∑
i=1

|ξi|2

for every (ξ1, . . . , ξm0
) ∈ Rm0 and z ∈ RN+1;
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(H3) there exist 0 < α ≤ 1 and M > 0 such that

|aij(z)− aij(ζ)| ≤M d(z, ζ)α, |bj(z)− bj(ζ)| ≤M d(z, ζ)α,

for every z, ζ ∈ RN+1 and for every i, j = 1, . . . ,m0.

Note that, ifm0 = N , the operator K is uniformly parabolic and B = O. In particular the model operator
(1. 34) is the heat operator and we have d

(
(ξ, τ), (x, t)

)
= |ξ − x|+ |τ − t|1/2, so that we are considering

the parabolic modulus of continuity.
In the sequel we refer to the assumption (H3) by saying that the coefficients aij ’s and bj ’s belong to
the space Cα introduced in Definition 1.11. We next give the definion of classic solution to the equation
Ku = f under minimal regularity assumptions on u. A function u is Lie differentiable with respect to
the vector field Y defined in (1. 7) at the point z = (x, t) if there exists and is finite

Y u(z) := lim
s→0

u(γ(s))− u(γ(0))

s
, γ(s) = (E(−s)x, t− s). (1. 35)

Note that γ is the integral curve of Y from z. Clearly, if u ∈ C1(Ω), with Ω open subset of RN+1, then
Y u(x, t) agrees with ⟨Bx,Du(x, t)⟩ − ∂tu(x, t) considered as a linear combination of the derivatives of u.

Definition 1.13 A function u is a solution to the equation Ku = f in a domain Ω of RN+1 if there
exists the Euclidean derivatives ∂xiu, ∂xixju ∈ C(Ω) for i, j = 1, . . . ,m0, the Lie derivative Y u ∈ C(Ω),
and the equation

m0∑
i,j=1

aij(z)∂
2
xixj

u(z) +

m0∑
j=1

bj(z)∂xj
u(z) + Y u(z) = f(z)

is satisfied at any point z = (x, t) ∈ Ω.

The natural functional setting for the study of classical solutions is the space

C2,α(Ω) =
{
u ∈ Cα(Ω) | ∂xi

u, ∂2xixj
u, Y u ∈ Cα(Ω), for i, j = 1, . . . ,m0

}
, (1. 36)

where Cα(Ω) is given in Definition 1.11. Moreover, if u ∈ C2,α(Ω) then we define the norm

|u|2+α,Ω := |u|α,Ω +

m0∑
i=1

|∂xi
u|α,Ω +

m0∑
i,j=1

|∂2xixj
u|α,Ω + |Y u|α,Ω. (1. 37)

Clearly, the definition of C2,α
loc (Ω) follows straightforwardly from the definition of Cα

loc(Ω). A definition
of the space Ck,α(Ω) for every positive integer k is given and discussed in the work [101] by Pagliarani,
Pascucci and Pignotti, where a proof of the Taylor expansion for Ck,α(Ω) functions is given. It is worth
noting that the authors of [101] require weaker regularity assumptions for the definition of the space C2,α

than the ones considered here in (1. 36).
As in the uniformly elliptic and parabolic case, fundamental results in the classical regularity theory
are the Schauder estimates. We recall that Schauder estimates for the dilation invariant Kolmogorov
operator (i.e. where the matrix B = B0) with Hölder continuous coefficients were proved by Manfredini
in [90] (see Theorem 1.4). Manfredini result was then extended by Di Francesco and Polidoro in [41] to
the non-dilation invariant case.

Theorem 1.14 Let us consider an operator K of the type (1. 33) satisfying assumptions (H1), (H2),
(H3) with α < 1. Let Ω be an open subset of RN+1, f ∈ Cα

loc(Ω) and let u be a classical solution to
Ku = f in Ω. Then for every Ω

′ ⊂⊂ Ω
′′ ⊂⊂ Ω there exists a positive constant C such that

|u|2+α,Ω′ ≤ C
(
supΩ′′ |u| + |f |α,Ω′′

)
.
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A more precise estimate taking into account the distance between the point and the boundary of the set Ω
can be found in [90] (see Theorem 1.4) for the dilation invariant case. We omit here this precise statement
because it requires the introduction of further notation. We also recall that analogous Schauder estimates
have been proved by several authors in the framework of semigroup theory, where they consider solutions
which are not classical in the sense of Definition 2.6. Among others, we refer to Lunardi [89], Lorenzi
[88], Priola [111], Delarue and Menozzi [38].

1.4 Fundamental Solution and Cauchy Problem
The existence of a fundamental solution Γ for the operator K satisfying the assumptions (H1), (H2)
and (H3) has been proved using the Levi’s parametrix method. The first results of this type are due to
M. Weber [121], to Il’In [67] and to Sonin [114] who assumed an Euclidean regularity on the coeficients
aij ’s and bj ’s. Later on, Polidoro applied in [107] the Levi parametrix method for the dilation inviariant
operator K (i.e. under the additional assumption that B has the form (1. 18)), then Di Francesco and
Pascucci removed this last assumption in [40].
The Levi’s parametrix method is a constructive argument to prove existence and bounds of the funda-
mental solution. For every ζ ∈ RN+1, the parametrix Z( · , ζ) is the fundamental solution, with pole at
ζ, of the following operator

Kζ =

m0∑
i,j=1

aij(ζ) ∂
2
xixj

+ ⟨Bx,D⟩ − ∂t. (1. 38)

The method is based on the fact that, if the coeficients aij ’s are continuous and the coefficiens bj ’s are
bounded, then Z is a good approximation of the fundamental solution of K, because

KZ(z, ζ) =
m0∑

i,j=1

(aij(z)− aij(ζ)) ∂
2
xixj

Z(z, ζ) +

m0∑
j=1

bj(z) ∂xjZ(z, ζ),

at least as z is close to the pole ζ. We look for the fundamental solution Γ as a solution of the following
Volterra equation

Γ(x, t, ξ, τ) = Z(x, t, ξ, τ) +

ˆ t

τ

ˆ
RN

Z(x, t, y, s)G(y, s, ξ, τ)dy ds, (1. 39)

where the unknown function G is obtained by a fixed point argument. It turns out that

G(z, ζ) =

+∞∑
k=1

(KZ)k(z, ζ), (1. 40)

where (KZ)1(z, ζ) = KZ(z, ζ) and, for every k ∈ N,

(KZ)k+1(x, t, ξ, τ) =

ˆ t

τ

ˆ
RN

KZ(x, t, y, s)(KZ)k(y, s, ξ, τ)dy ds.

Let’s point out that Z is explicitly known by formulas (1. 5) and (1. 6), then the equations (1. 39)
and (1. 40) give explicit bounds for Γ and for its derivatives (see equations (1. 42) and (1. 53) below).
We summarize here the main results of the articles [107] and [40] on the existence and bounds for the
fundamental solution.

Theorem 1.15 Let K be an operator of the form (1. 33) under the assumptions (H1), (H2), (H3).
Then there exists a fundamental solution Γ(·, ζ) to K with pole at ζ ∈ RN+1 such that:
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1. Γ(·, ζ) ∈ L1
loc(RN+1) ∩ C(RN+1 \ {ζ});

2. for every φ ∈ Cb(RN ) the function

u(x, t) =

ˆ
RN

Γ(x, t; ξ, 0)φ(ξ)dξ,

is a classical solution of the Cauchy problem{
Ku = 0, (x, t) ∈ RN × R+

u(x, 0) = φ(x) (x, t) ∈ RN . (1. 41)

3. For every (x, t), (ξ, τ) ∈ RN+1 such that τ < t we have that
ˆ

RN

Γ(x, t, ξ, τ) dξ = 1;

4. the reproduction property holds for every (y, s) ∈ RN+1 with τ < s < t:

Γ(x, t, ξ, τ) =

ˆ

RN

Γ(x, t, y, s) Γ(y, s, ξ, τ) dy;

5. for every positive T and for every Λ > λ, with λ as in (H1), there exists a positive constant
c+ = c+(Λ, λ, T ) such that

c− Γ−(z, ζ) ≤ Γ(z, ζ) ≤ c+ Γ+(z, ζ) for every z, ζ ∈ RN+1, 0 < t− τ < T, (1. 42)

for every (x, t), (ξ, τ) ∈ RN+1 with 0 < t − τ < T . Here, Γ+ and Γ− are, respectively, the
fundamental solutions of the following operators:

K+ = λ∆m0
+ ⟨Bx,D⟩ − ∂t and K− = λ−1∆m0

+ ⟨Bx,D⟩ − ∂t.

Once the uniqueness of the Cauchy problem is guaranteed, points 3. and 4. of the above theorem will
follow from point 2. The lower bound in (1. 42) is proved by using the Harnack inequality presented in
Theorem 1.26 and following the technique introduced by Aronson and Serrin [11] for the classic parabolic
case. We remark that property 3. of Theorem 1.15 does not hold true unless we require further regularity
assumptions on the coefficients aij ’s and bj ’s needed to define the formal adjoint K∗ of K.

In view of (2. 14), the fundamental solution is the most natural tool to deal with the Cauchy problem
associated to the equation Ku = f . For a given positive T we denote by ST the strip of RN+1 defined as
follows

ST = RN×]0, T [,

and we look for a classical solution to the Cauchy problem{
Ku = f inST ,

u(·, 0) = φ inRN ,
(1. 43)

with f ∈ C(ST ) and φ ∈ C(RN ). Once again in view of (2. 14) it is clear that growth condition on f
and φ are required to ensure existence and uniqueness for the solution to (1. 43). The following result is
due to Di Francesco and Pascucci in [40].
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Theorem 1.16 Let K be an operator of the form (1. 33) under the assumptions (H1), (H2), (H3).
Consider the Cauchy problem (1. 43) with φ ∈ C(RN ) and f ∈ Cα(Ω), in the sense of Definition 1.11.
Let us suppose for some positive constant C

|f(x, t)| ≤ C eC|x|2 |φ(x)| ≤ C eC|x|2 .

for every x ∈ RN and 0 < t < T . Then there exists 0 < T0 ≤ T such that the function

u(x, t) =

ˆ

RN

Γ(x, t, ξ, 0)φ(ξ) dξ −
tˆ

0

ˆ

RN

Γ(x, t, ξ, τ) f(ξ, τ) dξ dτ. (1. 44)

is well defined for every (x, t) ∈ RN×]0, T0[. Moreover, it is a solution to the Cauchy problem (1. 43)
and the initial condition is attained by continuity

lim
(x,t)→(x0,0)

u(x, t) = φ(x0), for every x0 ∈ RN .

Uniqueness results for the Cauchy problem (1. 43) can be found in [108], [40] and [41]. Later on, Cinti
and Polidoro proved in [34] the following result.

Theorem 1.17 Let K be an operator of the form (1. 33) under the assumptions (H1), (H2), (H3). If
u and v are two solutions to the same Cauchy problem (1. 43) satisfying the following estimate

T̂

0

ˆ

RN

(|u(x, t)|+ |v(x, t)|) e−C
(
|x|2+ 1

tβ

)
dx dt < +∞ (1. 45)

with 0 < β < 1, then u ≡ v.

We eventually quote the main uniqueness result of [41], that doesn’t require any growth assumptions on
the solutions u and v.

Theorem 1.18 Let K be an operator of the form (1. 33) under the assumptions (H1), (H2), (H3). If
u and v are two non-negative solutions to the same Cauchy problem (1. 43), with f = 0 and φ ≥ 0, then
u ≡ v.

1.4.1 The Dirichlet problem
In the sequel Ω will denote a bounded domain of RN+1. For every f ∈ C(Ω) and φ ∈ C(∂Ω,R), we
consider the Dirichlet problem for the operator K with Hölder continuous coefficients{

Ku = f in Ω,

u = φ on ∂Ω.
(1. 46)

This problem has been studied by Manfredini in [90] in the framework of the Potential Theory. In
accordance with the usual axiomatic approach, we denote byHΩ

φ the Perron-Wiener-Brelot-Bauer solution
to the Dirichlet problem (1. 46) with f = 0. In order to discuss the boundary condition of the problem
(1. 46) we say that a point z0 ∈ ∂Ω is K−regular for Ω if

lim
z→z0

HΩ
φ (z) for everyφ ∈ C(∂Ω). (1. 47)

The first result for the existence of a solution to the Dirichlet problem (1. 46) for an operator K with
Hölder continuous coefficiens is proved by Manfredini in [90], Theorem 1.4.
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Theorem 1.19 Let K be an operator in the form (1. 33) satisfying conditions (H1), (H2), (H3), and
assume that the matrix B has the form (1. 18). Suppose that f ∈ Cα(Ω) and φ ∈ C(∂Ω). Then there
exixts a unique solution u ∈ C2,α

loc (Ω) to the Dirichlet problem (1. 46). The function u is a classical
solution to Ku = f in Ω, and lim

z→z0
u(z) = φ(z0) for every K−regular point z0 ∈ ∂Ω.

The assumption that the matrix B is of the form (1. 18) has been introduced to simplify the problem
and seems to be unnecessary. Indeed, this condition is removed in [41], where a specific family of open
sets Ω is considered. The uniqueness of the solution follows straightforwardly from the following weak
maximum principle that can be found in the proof of Proposition 4.2 of [90].

Theorem 1.20 Let K be an operator in the form (1. 33) satisfying conditions (H1), (H2), (H3), and
assume that the matrix B has the form (1. 18). Let Ω be a bounded open set of RN+1, and let u be a
continuous function in Ω, such that ∂xj

u, ∂2xixj
u, for i, j = 1, . . . ,m0 and Y u are continuous in Ω. If

moreover {
Ku ≥ 0 in Ω,

u ≤ 0 on ∂Ω,

then u ≤ 0 in Ω.

In order to discuss the boundary regularity of Ω, we recall that the analogous of the Bouligand theorem
for operators K has been proved in [90]. Specifically, a point z0 ∈ ∂Ω is K−regular if there exists a local
barrier at z0, that is there exists a neighborhood V of z0 and a function w ∈ C2,α(V ) such that

w(z0) = 0, w(z) > 0 for z ∈ Ω ∩ V \ {z0} and Kw ≤ 0 in Ω ∩ V.

Let z0 be point belonging to ∂Ω. We say that a vector ν ∈ RN+1 is an outer normal to Ω at z0 if there
exists a positive r such that B(z1, r|ν|) ∩ Ω = {z0}. Here B(z1, r|ν|) is the Euclidean ball centered at
z1 = z0 + rν and radius r|ν|. Note that this definition does not require any regularity on ∂Ω and several
linearly independent vectors are allowed to be outer normal to Ω at the same point z0. The following
result proved in [90] gives a very simple geometric condition for the boundary regularity of Ω and is in
accordance with the Fichera’s classification of ∂Ω.

Theorem 1.21 Let K be an operator in the form (1. 33) satisfying conditions (H1), (H2), (H3).
Consider the Dirichlet problem (1. 46), and let z0 ∈ ∂Ω. Assume that ν is an outer normal to Ω at z0.
Then it holds

• if ⟨A(z0)ν, ν⟩ ̸= 0, then there exists a local barrier at z0;

• if ⟨A(z0)ν, ν⟩ = 0, and ⟨Y (z0), ν⟩ > 0 then there exists a local barrier at z0;

• if ⟨A(z0)ν, ν⟩ = 0, and ⟨Y (z0), ν⟩ < 0 then z0 is non regular.

t

b
Y

ν

b
x1x2

b

(0, 0, 0)

ν
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Fig. 1 - Regular points for ∂2
x1

+ x1∂x2 − ∂t on the set ] − 1, 1[2×] − 1, 0[.

The following more refined condition extends the Zaremba cone criterium. Let Ū be an open set of RN

and let t̄ > 0. We denote by ZŪ,t̄(z0) the following tusk-shaped cone

ZŪ,t̄(z0) :=
{
z0 ◦Dr(x̄,−t̄) | x̄ ∈ Ū , 0 ≤ r ≤ 1

}
.

Theorem 1.22 Let K be an operator in the form (1. 33) satisfying conditions (H1), (H2), (H3), and
assume that the matrix B has the form (1. 18). Consider the Dirichlet problem (1. 46), and let z0 ∈ ∂Ω.
If there exist Ū and t̄ such that ZŪ,t̄(z0) ∩ Ω = {z0}, then there exists a local barrier at z0.

Theorems 1.21 and 1.22 have been first proved in [90] assuming that the matrix B has the form (1. 18),
this assumption has been removed from Theorem 1.21 in [41]. We also recall the work [85] by Lascialfari
and Morbidelli, where a quasilinear problem is considered, and the article [72] by Kogoj for a complete
treatment of the potential theory in the study of the Dirichlet problem for a general class of evolution
hypoelliptic equations.

Recently, Kogoj, Lanconelli and Tralli prove in [75] a characterization of the K−regular boundary
points for constant coefficients operators K of the form (1. 1). Their main result is stated in terms
of a series involving K−potentials of regions contained in RN+1 \ Ω, within different level sets of Γ,
the fundamental solution of K. Specifically, if F is a compact subset of RN+1, then VF denotes the
K−equilibrium potential of F . That is,

VF (z) = lim inf
ζ→z

WF (ζ), z ∈ RN+1, (1. 48)

where if K(RN+1) denotes the family of K−super harmonic functions in RN+1

WF := inf
{
v : v ∈ K(RN+1), v ≥ 0 inRN+1, v ≥ 1 inF

}
. (1. 49)

Moreover, for given µ ∈]0, 1[, z0 ∈ ∂Ω, and for every positive integer k we denote by Ωc
k(z0) the set

Ωc
k(z0) :=

{
z ∈ RN+1 \ Ω |

(
1
µ

)k log k ≤ Γ(z0; z) ≤
(
1
µ

)(k+1) log(k+1)
}
.

We then have (Theorem 1.1, [75]).

Theorem 1.23 Let K be an hypoelliptic operator in the form (1. 1), let Ω be a bounded open subset of
RN+1 and let z0 ∈ ∂Ω. Then z0 is K−regular for ∂Ω if and only if

+∞∑
k=1

VΩc
k(z0)

(z0) = +∞. (1. 50)

We remark that this criterion is sharper than the Zaremba cone condition, moreover it provides us with
a necessary regularity condition. On the other hand, it only applies to constant coefficients operators of
the form (1. 1).

1.5 Mean value formulas, Harnack inequalities and Strong Max-
imum Principle

In the first part of this section we consider divergence form operators acting on functions u = u(x, t) ∈
C2,α(Ω) as follows

Ku =

m0∑
i,j=1

∂xi

(
aij(x, t)∂xj

u
)
+

m0∑
j=1

bj(x, t)∂xj
u + ⟨Bx,Du⟩ − ∂tu, (1. 51)
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under the structural assumptions (H1), (H2), (H3). Moreover, we suppose the following additional
assumption for the first order derivatives holds true:

(H4) for every i, j = 1, . . . ,m0 the derivatives ∂xiaij(x, t) ∂xj bj(x, t) exist and are bounded Hölder
continuous functions of the exponent α in (H3).

The reason to consider classical solutions to divergence form operators is that the adjoint K∗ of K is well
defined and the function Γ∗(x, t, ξ, τ) = Γ(ξ, τ, x, t) built via the parametrix method is the fundamental
solution of K∗.

1.5.1 Mean value formula
The mean value formula we present here is based on the Green’s identity and on the fundamental solution
to K and is derived in the same way as for the classic parabolic case. In order to give the precise statement
we need to introduce some notation. For every r > 0 and for every z0 ∈ RN+1, we denote by Ωr(z0) the
super-level set of the fundamental solution Γ of K defined as

Ωr(z0) :=
{
z ∈ RN+1 | Γ(z0; z) >

1
r

}
. (1. 52)

We remark that Γ is constructed via the parametrix method as the sum of a series of functions (see
(1. 39) and (1. 40)), then the definition of the set Ωr(z0) is implicit. However the parametrix method
provides us with the following local estimate, useful to identify Ωr(z0). For every ε > 0 there exists a
positive K such that

(1− ε)Z(z0, ζ) ≤ Γ(z0, ζ) ≤ (1 + ε)Z(z0, ζ) (1. 53)

for every ζ ∈ RN+1 with Z(z0, ζ) ≥ K, where Z is the fundamental solution associated to the operator Kζ

defined in (1. 38) and its explicit expression is available. Moreover, every super-level set of Z is bounded
whenever B has the form 1. 18. This fact and Theorem 1.9 imply that Ωr(z0) is bounded for every
sufficiently small positive r.
Mean value formulas for constant coefficients operators in the form (1. 1) have been proved by Kuptsov
[80], Garofalo and Lanconelli [51], then by Lanconelli and Polidoro [84]. Later on, Polidoro considers
operators K with Hölder continuous coefficients in [107] and proves mean value formulas for operators K
of this kind under the qualitative assumptions that the coefficients of K are smooth.

Theorem 1.24 Let K be an operator in the form (1. 33) satisfying conditions (H1), (H2), assume the
coefficients aij are smooth and that the matrix B has the form (1. 18). Let u be a solution to Ku = 0 on
Ω. Then, for every z0 ∈ Ω such that Ωr(z0) ⊂ Ω, we have

u(z0) =
1

r

ˆ

Ωr(z0)

M(z0; z)u(z) dz.

Here
M(z0; z) =

⟨A(z)DxΓ(z0; z) , DxΓ(z0; z)⟩
Γ2(z0; z)

. (1. 54)

As in Theorem 1.19, the assumption that the matrix B has the form (1. 18) has been introduced to
simplify the problem and seems to be unnecessary. We finally remark that mean value formulas analogous
to the one stated in Theorem 1.24, where the kernel (1. 54) is replaced by a bounded continuous one,
have been proved in [80], [51], [84] and [107]. Lastly, we recall a recent paper by Cupini and Lanconelli
[36], where the authors give a general proof of Mean Value formulas for solutions to linear second order
PDEs, only based on the local properties of the fundamental solution.
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1.5.2 Harnack inequality
The first proofs of Harnack type inequalities for Kolmogorov operators have been derived using mean value
formulas, and are due to Kuptsov [80] [81]. This result has been improved by Garofalo and Lanconelli (see
Theorem 1.1 in [51]) for some specific constant coefficients operators of the type (1. 1). Their approach
follows the ideas introduced for the heat equation by Pini [106] and Hadamard [61] in their seminal works.
Later on, Lanconelli and Polidoro proved the Harnack inequality for every operator (1. 1). The statement
of this result requires a further notation. For every positive ε we denote

Kr(z0, ε) := Ωr(z0) ∩
{
(x, t) ∈ RN+1 | t ≤ t0 − εr2/Q

}
. (1. 55)

We recall here Theorem 5.1 in [84].

Theorem 1.25 Let K be an operator of the form (1. 1) satisfying the equivalent conditions of Proposition
1.1. Then there exist three positive constants c, r0 > 0 and ε, only dependent on K, such that

sup
z∈Kr(z0,ε)

u(z) ≤ cu(z0), (1. 56)

for every non negative solution u to Ku = 0 in an open subset Ω of RN+1, for every z0 ∈ Ω such that
Ω2r(z0) ⊂ Ω and for every r ∈]0, r0[.

The same result has been proved in [107] for variable coefficients operators (1. 51) satisfying (H1)- (H4),
with B in the form (1. 18). We point out that the geometry of the above Harnack inequality is quite
complicated. The natural analogy between the parabolic case and the Kolmogorov case is restored in
[84], where the Harnack inequality is written in terms of cylinders (see equation (1. 59) below). Here and
in the following, we consider the unit box Q defined as

Q =]− 1, 1[N×]− 1, 0[. (1. 57)

Moreover, for given constants α, β, γ, δ with 0 < α < β < γ < 1 and 0 < η < 1, we set

Q+ = δη,0
(
]− 1, 1[N

)
×]− α, 0[, Q− = δη,0

(
]− 1, 1[N

)
×]− γ,−β[. (1. 58)

t

x1x2

Q

Q+

Q−

Fig. 2 - Harnack inequality.

Based on the translation and on the dilation respectively defined in (1. 12) and (1. 19), we introduce for
every r > 0 the cylinders

Qr := δrQ = {δr(x, t) | (x, t) ∈ Q}
Qr(x0, t0) := (x0, t0) ◦ Qr

= {(x0, t0) ◦ δr(x, t) | (x, t) ∈ Q}
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centered at the origin and at a point (x0, t0) ∈ RN+1, respectively. Analogously, we define

Q+
r (x0, t0) := (x0, t0) ◦ δrQ+, Q−

r (x0, t0) := (x0, t0) ◦ δrQ−.

Given the above notation, we recall that in Theorem 5.1 of [84] is proved a Harnack inequality analogous
to (1. 56), where the sets Ω2r(z0) and Kr(z0, ε) are replaced by cylinders. Specifically, we have

sup
z∈Q−

r (z0)

u(z) ≤ c u(z0), (1. 59)

wheneverQr(z0) ⊂ Ω. We next quote the most general Harnack inequality for operators in non-divergence
form as defined in (1. 33) proved in [41].

Theorem 1.26 Let K be an operator of the form (1. 33) satisfying (H1)-(H3).Then there exist positive
constants c, r0, α, β, γ and δ, only dependent on the parameters of the assumptions (H1)-(H3), such that

sup
z∈Q−

r (z0)

u(z) ≤ c inf
z∈Q+

r (z0)
u(z), (1. 60)

for every non negative solution u to Ku = 0 in an open subset Ω of RN+1, for every z0 ∈ Ω such that
Qr(z0) ⊂ Ω and for every r ∈]0, r0[.

In spite of their local nature, Harnack inequalities are essential tools for the proof of non-local results.
Among them, we find the Liouville theorems proved by Kogoj and Lanconelli in [73, 74] and the ones
proved by Kogoj, Pinchover and Polidoro in [76]. Moreover, they are also used to derive asymptotic
estimates for positive solutions by a repeated application of them. Harnack chains are the tools needed
to prove this kind of estimates.

Harnack chain. We say that a finite sequence (x0, t0), (x1, t1), . . . , (xk, tk) is a Harnack chain if there
exist positive constants r0, r1, . . . , rk−1 such that Qrj (xj , tj) ⊂ Ω and (xj+1, tj+1) ∈ Qθrj (xj , tj) for
j = 0, . . . , k − 1, so that, by the repeated use of the Harnack inequality, we obtain

u(xk, tk) ≤ cu(xk−1, tk−1) ≤ · · · ≤ cku(x0, t0),

for every non-negative solution u to Ku = 0 in Ω.

In particular, a first application of this tool can be found in the proof of Proposition 1.32 in the
following subsection, where Harnack chains are used to prove a geometric version of Theorem 1.26. Further
applications can be found in the papers by Polidoro [105], Di Francesco and Polidoro [41], Boscain and
Polidoro [21] and Cibelli and Polidoro [28] to obtain asymptotic estimates for the fundamental solution.
We also recall the work by Cinti, Nyström and Polidoro [31, 32] where a boundary Harnack inequality is
proved.

1.5.3 Strong Maximum Principle
The most general statement of the strong maximum principle for subsolutions to Kolmogorov equations
is proved by Amano in [3]. It extends the Bony’s maximum propagation principle [20] to a wide family
of possibly degenerate operators with coefficients aij ∈ C1, among which we find the ones in the form
(1. 33). To our knowledge, a proof of the strong maximum principle for operators of the form (1. 33)
with continuous coefficients aij ’s is not available in literature, even though it is expected to be true. For
this reason, in the following we derive from Theorem 1.26 a strong maximum principle for solutions to
Ku = 0, assuming that the coefficients aij ’s are Hölder continuous.
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In order to state the strong maximum principle, we introduce the notion of K-admissible curve and
that of K-admissible set. Recall that to every operator K in the form (1. 33) we associate the model
operator (1. 34), which can be written in the Hörmander form

m0∑
j=1

X2
j + Y, with Xj = ∂xj

for j = 1, . . . ,m0.

Definition 1.27 Let K be an operator of the form (1. 33), satisfying assumptions (H1)-(H3). We say
that a curve γ : [0, T ] → RN+1 is K-admissible if is absolutely continuous and

γ̇(s) =

m0∑
k=1

ωk(s)Xk(γ(s)) + Y (γ(s))

for almost every s ∈ [0, T ] and with ω1, ω2, . . . , ωm0
∈ L1[0, T ].

Definition 1.28 Let Ω be any open subset of RN+1, and let K be an operator of the form (1. 33),
satisfying assumptions (H1)-(H3). For every point (x0, t0) ∈ Ω we denote by A(v0,x0,t0)(Ω) the attainable
set defined as

A(v0,x0,t0)(Ω) =

{
(x, t) ∈ Ω | there exists an K − admissible curve

γ : [0, T ] → Ω such that γ(0) = (x0, t0) and γ(T ) = (x, t)

}
.

Whenever there is no ambiguity on the choice of the set Ω we denote A(v0,x0,t0) = A(v0,x0,t0)(Ω).

We are now in position to state the strong maximum principle.

Theorem 1.29 Let Ω be any open subset of RN+1, and let K be an operator of the form (1. 33),
satisfying assumptions (H1)-(H3). Let u ≥ 0 be a solution to Ku = 0 in Ω. If u(x0, t0) = 0 for some
point (x0, t0) ∈ Ω , then u(x, t) = 0 for every (x, t) ∈ A(v0,x0,t0).

We remark that the attainable set A(v0,x0,t0) strongly depends on the domain Ω. For instance, when Ω
agrees with the unit box Q =]− 1, 1[2×]− 1, 0[ we have

A(0,0,0) =
{
(x1, x2, t) ∈ Q | |x1| ≤ |t|

}
. (1. 61)

t

x2x2x1

Q

b
(0, 0, 0)

Fig. 3 - A(0,0,0)(Q) with Q =] − 1, 1[2×] − 1, 0[.
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For the proof of this fact we refer to [30], Proposition 4.5, p.353. Moreover, the statement of Theorem
1.29 is optimal. Indeed, in Proposition 4.5 of [30] it is also shown that there exists a non-negative solution
u to Ku = 0 in Q such that u(x, t) = 0 for every (x, t) ∈ A(0,0), and u(x, t) > 0 for every (x, t) ∈ Q\A(0,0).

In order to prove Theorem 1.29, we first need to prove the following intermediate result.

Theorem 1.30 Let K be an operator of the form (1. 33) satisfying (H1)-(H3), and let Ω be an open
subset of RN+1. For every z0 ∈ Ω, and for any compact set K ⊆ int

(
A(v0,x0,t0)

)
, there exists a positive

constant CK , only dependent on Ω, z0, K and on the operator K, such that

sup
z∈K

u(z) ≤ CK u(z0),

for every non negative solution u to Ku = 0 in Ω.

We then obtain, as a direct consequence, the proof of the Strong Maximum Principle stated in Theorem
1.29. In order to achieve this program, we introduce a further notation and we recall a lemma, whose
proof can be found in Lemma 2.2 of [21]. Given β, η as in the definition of Q− and for every z ∈ RN+1,
r > 0 we set

Q̃ :=]− 1, 1[N+1 Q̃r(x0, t0) := (x0, t0) ◦ δrQ̃;

K− = δη,0
(
]− 1, 1[N

)
×
{
− β+γ

2

}
K−

r (x0, t0) := (x0, t0) ◦ δrK−.

Lemma 1.31 Let γ : [0, T ] → RN+1 be an K−admissible path and let a, b be two constants s.t. 0 ≤ a <
b ≤ T . Then there exists a positive constant h, only depending on K, such that

ˆ b

a

|ω(τ)|2δτ ≤ h =⇒ γ(b) ∈ K−
r (γ(a)), with r =

√
2
b− a

β + γ
.

Note that K−
r (z) is a subset of Q−

r (z), then Lemma 1.31 implies Q−
r (γ(a)) is an open neighborhood of

γ(b). Our first result of this section is a local version of Theorem 1.26, whose proof only relies on the
Harnack chains and on Lemma 1.31.

Proposition 1.32 Let z0 be a point of Ω, an open subset of RN+1. For every z ∈ int
(
Az0

)
there exist

an open neighborhood Uz of z and a positive constant Cz such that

sup
Uz

u ≤ cz u(z0)

for every non-negative solution u to Ku = 0 in an open subset Ω of RN+1.

Proof. Let z be any point of int
(
Az0

)
. We plan to prove our claim by constructing a finite Harnack

chain connecting z to z0. Because of the very definition of Az0 , there exists a K−admissible curve
γ : [0, T ] → Ω steering z0 to z. Our Harnack chain will be a finite subset of γ([0, T ]). As Q̃r(x0, t0) is an
open neighborhood of (x0, t0), for every s ∈ [0, T ] we can set

r(s) := sup
{
r > 0 : Q̃r(γ(s)) ⊆ Ω

}
.

We remark that the function r(s) is continuous, then it is well defined the positive number

r0 := min
s∈[0,T ]

r(s). (1. 62)

Moreover Qr(γ(s)) ⊂ Q̃r(γ(s)), then

Qr(γ(s)) ⊆ Ω for every s ∈ [0, T ] and r ∈]0, r0]. (1. 63)
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On the other hand, we notice that the following function is (uniformly) continuous in [0, T ]

I(s) :=

ˆ s

0

|ω(τ)|2dt, (1. 64)

then there exists a positive η0 such that η0 ≤ βr0 and that
ˆ b

a

|ω(τ)|2dt ≤ h for every a, b ∈ [0, T ], such that 0 < a− b ≤ η0, (1. 65)

where h is the constant appearing in Lemma 1.31.
We are now ready to construct our Harnack chain. Let k be the unique positive integer such that
(k− 1)η0 < T , and kη0 ≥ T . We define {sj}j∈{0,1,...,k} ∈ [0, T ] as follows: sj = jη0 for j = 0, 1, . . . , k− 1,
and sk = T . As noticed before, the equation (4. 17) allows us to apply Lemma 1.31. We then obtain

γ(sj+1) ∈ Q−
r0(γ(sj)) j = 0, . . . , k − 2, γ(sk) ∈ Q−

r1(γ(sk−1)), (1. 66)

for some r1 ∈]0, r0]. We next show that (γ(sj))j=0,1,...,k is a Harnack chain and we conclude the proof.
We proceed by induction. For every j = 1, . . . , k − 2 we have that γ(sj+1) ∈ Q−

r0(γ(sj)). From (1. 63)
we know that Qr0(γ(sj)) ⊆ Ω, then we apply Theorem 1.26 and we find

u(γ(sj+1)) ≤ sup
Q−

r0
(γ(sj))

u ≤ c inf
Q+

r0
(γ(sj))

u ≤ cu(γ(sj).

As a consequence, we obtain

u(γ(sk−1)) ≤ cu(γ(sk−2)) ≤M2u(γ(sk−3)) ≤ . . . ≤ ck−1u(γ(0)).

We eventually apply Theorem 1.26 to the set Qr1(γ(sk−1)) ⊆ Ω and we obtain

sup
Uz

u ≤ ck u(z0),

where Uz = Q−
r1(γ(sk−1)). As we noticed above, Q−

r1(γ(sk−1)) is an open neighborhood of γ(T ). This
concludes the proof. □
Proof of Theorem 1.30. Let K be any compact subset of int (Az0). For every z ∈ K we consider the
open set Uz appearing in the statement of Proposition 1.32. Clearly we have

K ⊆
∪
z∈K

Uz.

Because of its compactness, there exists a finite covering of K

K ⊆
∪

j=1,...,mK

Uzj ,

and Proposition 1.32 yields
sup
Uzj

u ≤ Czj u(z0) j = 1, . . . ,mK .

This concludes the proof of Theorem 1.30, if we choose

CK = max
j=1,...,mK

Czj .

□
Proof of Theorem 1.29. If u is a non-negative solution to Ku = 0 in Ω and K is a compact subset of
int(Az0), then supK u ≤ CKu(z0). If moreover u(z0) = 0, we have u(z) = 0 for every z ∈ K and, thus,
for every z ∈ Az0 . The conclusion of the proof then follows from the continuity of u. □



Chapter 2

Existence of a Fundamental Solution
of PDEs associated to Asian Options

Asian options belong to the family of path-dependent options whose payoff depends on the average of the
underlying stock price over a certain time interval. In the Black & Scholes framework, the price of the
underlying Stock St and of the bond Bt are described by the processes

St = S0e
µt+σWt , Bt = B0e

rt, 0 ≤ t ≤ T,

where µ, r, T , and σ are given constants. If the price observations are considered as a set of regularly
spaced time points we refer to a discrete Asian Option, otherwise when we consider a continuum of price
observations and its average it is computed by means of an integral we have a continuous Asian Option.
In particular, in this work we consider continuous Asian Options. In the Black & Scholes setting, the
price (Zt)0≤t≤T of a path dependent option is considered as a function Zt = Z(St, At, t) that depends on
the stock price St, the time to maturity t and on an averageAt of the stock price

At =

tˆ

0

f(Sτ ) dτ, t ∈ [0, T ]. (2. 1)

From a financial point of view, Asian Options have several advantages. Indeed, they are less expensive
than Plain Vanilla Options thanks to the averaging mechanism which allows to reduce their volatility as
well. Secondly, they reduce the risk of market manipulation of the underlying instrument at maturity
(see [115]). In this sense, Asian Options are suitable to fulfill some of the needs of corporate treasures.
We refer to the Black & Scholes [17] and to Merton [95] articles for the seminal works of this theory,
and to the books by Björk [16], Hull [65] and Pascucci [102] for a comprehensive treatment of the recent
development of this subject. The most common techniques to price path-dependent derivatives are:

• the Monte Carlo simulations, relying on the Feynman–Kac formula

Z(S,A, t) = EQ
[
e−r(T−t)φ(ST , AT ) | (St, At) = (S,A)

]
, (2. 2)

where Q is a measure such that the process e−rtZt is a martingale under Q, and the fast Fourier
transform (see for example [56], [12], [50]). In [56], the authors derived an analytical expression for
the Laplace transform in maturity for the continuous call option case when the asset price follows
a geometric Brownian motion. However, as pointed out by [49], [44] and [50] the analytical method
of [56] can lead to numerical problems for short maturities or small volatilities. These problems are
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consequences of the slowly decaying oscillatory nature of the integrand for such parameter values
(see [50]).

• The PDE approach, which has the aim to solve numerically the Cauchy problem associated
with the no-arbitrage PDE. Related works following this line are those of [29], [15], [116]. In
[37], the author applies a method on conditioning on the geometric mean price. In this case an
approximation of Arithmetic Asian option prices is available. In [39], the author derives an accurate
approximation formulae for Asian-rate Call options in the Black & Scholes model by a matched
asymptotic expansion. In this work we rely on the results proved in [29], where the authors prove
via probabilistic techniques the existence of the fundamental solution Γ for the operator L with
smooth coefficients a and b. Moreover, we recall the existence and local regularity results proved by
Lanconelli, Pascucci and Polidoro [83], under the assumption that the coefficients a and b belong
to some space of Hölder continuous functions.

The results we present here firstly appeared in the paper [5] and follow an analytical approach based on
PDEs, since it has several advantages compared to the Monte Carlo approach. As it is stressed by [49],
PDE based approaches provide an analytical approximation of the solution in closed-form gives evidence
of the explicit dependency of the results on the underlying parameters. Secondly, they produce better
and faster sensitivities than Monte Carlo methods.

In order to explain our main results, we introduce some notation. From now on, we consider the
stochastic differential equation of the process (St, Bt, At)t≥0

dSt = µ(St, At, t)Stdt + σ(St, At, t)StdWt,

dBt = r(St, At, t)Bt dt

dAt = f(St) dt,

(2. 3)

where t ∈]0, T [, µ, r and σ depend on St, At and t. Then we construct the replicating portfolio (Zt)0≤t≤T

for the option, we consider it as a function Zt = Z(St, At, t) and we apply Itô’s formula. Thus, we obtain
the following Cauchy problem{

1
2σ

2(S,A, t)S2 ∂2Z
∂S2 + f(S)∂Z∂A + r(S,A, t)

(
S ∂Z

∂S − Z
)
+ ∂Z

∂t = 0 (S,A, t) ∈ R+ × R+×]0, T [,

Z(S,A, T ) = φ(S,A) (S,A) ∈ R+ × R+,
(2. 4)

where φ is the payoff of the Asian Option. Depending on the choice of the function f , either equal
to S or to the log(S), we deal with different kinds of options: Arithmetic Average Asian Options and
Geometric Average Asian Options, respectively. As we shall see in the following Section 2.1 and Section
2.2, respectively devoted to Geometric Average Asian Options and Arithmetic Average Asian Options,
we can associate to the pricing problem (2. 4) a second order partial differential operator of Kolmogorov
type. Thus, our aim is to prove the existence and uniqueness of the fundamental solution for those
operators. We improve previous results in that we provide a closed form expression for the solution
of the Cauchy problem (2. 4) under weak regularity assumptions on the coefficients of the associated
differential operator. In Section 2.3 we present our method, which is based on a limiting procedure,
whose convergence relies on some barrier arguments and uniform a priori estimates recently discovered.
Moreover, we emphasize that our approach improves the previously known results in that it allows us to
consider differential operators with locally Hölder continuous coefficients, which is a milder assumption
than the usual ones. We will be more specific in the following, as we introduce the required notation.
Lastly, our approach can be also applied to more general problems than the one described above. For
instance, in a further investigation we will consider the pricing problem for an Option on a basket
containing n assets St = (S1

t , . . . , S
n
t ) whose dynamic is

dSj
t = Sj

t µj(St, At, t) + Sj
t

n∑
k=1

σjk(St, At, t) dW
k
t , j = 1, . . . , n, (2. 5)
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where (W 1
t , ...,W

n
t )t≥0 is a n-dimensional Wiener process and (At)t≥0 is an average of the assets.

2.1 Geometric Average Asian Options
First of all, we address the case of Geometric Average Asian Options, that we recover by choosing
f(S) = log(S) in the formula (2. 1). Through a simple change of variable v(x, y, t) := Z(ex, y, T − t) we
transform the PDE (2. 4), with its final condition, into the following Cauchy problem{

1
2σ

2(x, y, t)
(

∂2v
∂x2 − ∂v

∂x

)
+ x∂v

∂y + r(x, y, t)
(
∂v
∂x − v

)
= ∂v

∂t

v(x, y, 0) = φ̃(x, y),
(2. 6)

where φ̃(x, y) := φ(ex, y). Note that, if we assume that ∂σ
∂x is a continuous function, then the differential

operator in (2. 6) can be written in its divergence form. Precisely, for every sufficiently smooth function
u, we have that the PDE in (2. 6) writes as Ku = 0, with

Ku(x, y, t) =
∂

∂x

(
a(x, y, t)

∂u

∂x

)
+ b(x, y, t)

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
. (2. 7)

Here a(x, y, t) = 1
2σ

2(x, y, t) and b(x, y, t) = r(x, y, t) − 1
2σ

2(x, y, t) − σ(x, y, t)∂σ(x,y,t)∂x . The reason to
write K in this form is that we need apply some results that have been proved only for divergence form
operators. We also introduce its formal adjoint K∗, acting on smooth functions w = w(x, y, t) as

K∗w(x, y, t) =
∂

∂x

(
a(x, y, t)

∂w

∂x

)
− ∂

∂x

(
b(x, y, t)w

)
− x

∂w

∂y
− r(x, y, t)w +

∂w

∂t
. (2. 8)

The operator K belongs to the class of Kolmogorov operators (1. 1) and (1. 33). Thus, here we simply
recall the basic facts necessary for our proof and we refer to Chapter 1 for a survey of results regarding
the classical regularity theory for the operator K.

The Cauchy problem (2. 6) has been studied over the years, and the fundamental solution ΓK asso-
ciated to the operator K provides us with a representation formula for its solution (see Theorem 1.15,
where we summarize the main results on the existence and bounds for the fundamental solution we have
at our disposal). In particular, if φ̃ is a bounded continuous function, then

u(x, y, t) =

ˆ

R+×R

ΓK(x, y, t; ξ, η, 0) φ̃(ξ, η) dξ dη, (2. 9)

is a classical solution to (2. 6). Kolmogorov wrote in [78] the explicit expression of the fundamental
solution ΓK for the operator K with constant coefficients σ and r. In this case the function u(x, y, t) :=
ertv

(
x+

(
1
2σ

2 − r
)
t, y, t

)
is a solution to the Cauchy problem{

Kλu = 0,

u(x, y, 0) = φ̃ (x, y) ,

where λ = 1
2σ

2 and

Kλ := λ
∂2

∂x2
+ x

∂

∂y
− ∂u

∂t
, (2. 10)

Moreover, the fundamental solution ΓK
λ of the operator Kλ is

ΓK
λ(x, y, t, ξ, η, τ) =


√
3

2λπ(t−τ)2 exp

(
−
∣∣x−ξ

∣∣2
4λ(t−τ) − 3

∣∣y−η+(t−τ)
x+ξ
2

∣∣2
λ(t−τ)3

)
t > τ,

0 t ≤ τ.

(2. 11)
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Thus, we obtain a closed form for the price of the Geometric Average Asian Option in the case of constant
volatility σ and interest rate r.

The Levy parametrix method provied us with a fundamental solution for operators in the form K
with Hölder continuous coefficients. This method has been used by several authors [107, 40, 41, 79] and
requires a uniform Hölder continuity of the coefficients of K. The definition of the Hölder space Cα

K is
given in Definition 1.11, nevertheless for the sake of completeness it will be recall in Section 2.1.2. We
will see that a function f belongs to the space Cα

K , with 0 < α ≤ 1, if there exists a positive constant M
such that

|f(x, y, t)− f(ξ, η, τ))| ≤M

(
|x− ξ| +

∣∣∣y − η + (t− τ)x+ξ
2

∣∣∣ 13 + |t− τ |
1
2

)α

, (2. 12)

for every (x, y, t), (ξ, η, τ) ∈ R3. On one hand, the intrinsic Hölder space Cα
K associated to K complies

with the fundamental solution Γλ written in (2. 11). On the other hand, intrinsic Hölder regularity can
be a rather restrictive property, as it has already been pointed out by Pascucci and Pesce in the Example
1.3 of [103]. In particular, Pascucci and Pesce show that, whenever a function f = f(y) only depends on
y and belongs to Cα

K , is necessarily constant. As we will see in the sequel, we only require a local Hölder
regularity of the coefficients of the operator K. This allows us to consider a wider family of continuous
functions. More precisely, we consider the following assumption on the coefficients a and b:

(HK) a, b, r, ∂a
∂x ,

∂b
∂x ∈ Cα

loc(R3). Moreover, there exist two positive constants λ, Λ such that

λ ≤ a(x, y, t) ≤ Λ, |b(x, y, t)|, |r(x, y, t)|,
∣∣ ∂a
∂x (x, y, t)

∣∣ , ∣∣ ∂b∂x (x, y, t)∣∣ ≤ Λ,

for every (x, y, t) ∈ R3.
In the above display, Cα

loc denotes the usual space of Hölder continuous functions. Proposition 2.5 states
that a function f belongs to the space of locally Hölder continuous functions Cα

K,loc if, and only if, it
belongs to the space Cβ

loc for some positive β. We are now in position to state our main results concerning
the operator K.
Theorem 2.1 Let us consider the operator K under the assumption (HK). Then there exists a unique
fundamental solution ΓK of K in the sense of Definition 2.8. Moreover, the following properties hold:

1. Support of ΓK : for every (x, y, t), (ξ, η, τ) ∈ R3 with t ≤ τ

ΓK(x, y, t; ξ, η, τ) = 0;

2. Reproduction property: for every (x, y, t), (x0, y0, t0) ∈ R3 and τ ∈ R with t0 < τ < t

ΓK(x, y, t;x0, y0, t0) =

ˆ

R2

ΓK(x, y, t; ξ, η, τ) ΓK(ξ, η, τ ;x0, y0, t0) dξ dη;

3. Integral of ΓK : the following bound holds true

e−Λ(t−τ) ≤
ˆ

R2

ΓK(x, y, t; ξ, η, τ) dξ dη ≤ eΛ(t−τ);

4. Bounds for ΓK : let I =]T0, T1[ be a bounded interval, then there exist four positive constants λ+,
λ−, C+, C− such that for every (x, y, t), (ξ, η, τ) ∈ R3 with T0 < t < T < T1

C− ΓK
λ−

(x, y, t; ξ, η, τ) ≤ ΓK(x, y, t; ξ, η, τ) ≤ C+ ΓK
λ+

(x, y, t; ξ, η, τ).

The constants λ+, λ−, C+, C− depend only on K and T1 − T0. ΓK
λ−

and ΓK
λ+

respectively denote
the fundamental solution of Kλ− and Kλ+ , defined in (2. 11) and (2. 10) respectively.
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Moreover, the function ΓK
∗(ξ, η, τ ;x, y, t) = ΓK(x, y, t; ξ, η, τ) is the fundamental solution of the adjoint

operator K∗ with pole at (ξ, η, τ) and satisfies all of the previous properties accordingly.

We remark that in the Black & Scholes setting it is natural to consider the Cauchy problem (2. 4)
with an unbounded initial condition φ that grows linearly. After the change of variable v(x, y, t) :=
Z(ex, y, T − t), it corresponds to an exponential growth for the Cauchy data φ̃. As we will see in Remark
2.21, the formula (2. 9) supports initial data satisfying the following condition

|φ̃(x, y)| ≤M exp(C|(x, y)|α), (x, y) ∈ R2, (2. 13)

for some positive constants M,C and α, with α < 2. Note that if we consider α = 2 then the solution
to the Cauchy problem (2. 4) is defined in a suitably small interval of time. Moreover, the following
uniqueness result holds.

Theorem 2.2 Let us consider the operator K under the assumption (HK). Let u1 and u2 be classical
solutions to {

Ku = 0, (x, y, t) ∈ R2×]t0, T ]

u(x0, y0, t0) = φ(x0, y0) (x0, y0) ∈ R2.
(2. 14)

in the sense of Definition 2.6, and

|u1(x, y, t)|+ |u2(x, y, t)| ≤ M exp
(
C(x2 + y2)

)
,

for some positive consants M and C, then u1 = u2 in R2×]t0, T ].

2.1.1 Geometric setting and fundamental solution for K
In this section we recall some basic notions, already introduce and thoroughly presented in Chapter 1,
regarding the geometric setting suitable for the study of the Kolmogorov operator K, and some well
known results concerning its fundamental solution ΓK . Firstly, let us consider the operator K1 defined in
(2. 10) with λ = 1:

K1 :=
∂2

∂x2
+ x

∂

∂y
− ∂u

∂t
. (2. 15)

Even tough it is a strongly degenerate operator, it is hypoelliptic in the following sense. Let u be a
distributional solution of K1u = f in Ω ⊂ R3, then

u ∈ C∞(Ω) whenever f ∈ C∞(Ω). (2. 16)

Hörmander introduced in his seminal paper [64] a simple sufficient condition to check the hypoellipticity
of any second order linear differential operator defined on some open set Ω ⊂ RN+1 that can be written
as a sum of squares of smooth vector fields X0, X1, . . . , Xm, as follows

m∑
i=1

X2
i + X0. (2. 17)

The celebrated hypoellipticity result due to Hörmander reads as follows.
Theorem (Hörmander hypoellipticity condition). Let us consider the operator (2. 17). If
Lie{X0, X1, . . . , Xm}(x, y, t) = RN+1 at every (x, y, t) ∈ Ω, then

m∑
i=1

X2
i + X0 is hypoelliptic.

We recall that the notation Lie{X0, X1, . . . , Xm}(x, t) denotes the vector space generated by the vector
fields {X0, X1, . . . , Xm} and their commutator. The commutator of two vector fields W and Z acting on
u ∈ C∞(Ω) is defined as [W,Z]u :=WZu− ZWu.
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As far as we are concerned with the operator K1 defined in (2. 15), we can write it as follows

K1 = X2 + Y, (2. 18)

where

X =
∂

∂x
∼

1
0
0

 , Y = x
∂

∂y
− ∂

∂t
∼

 0
x
−1

 and [X,Y ] =
∂

∂y
∼

0
1
0

 . (2. 19)

Hence, the vector fields X,Y and [X,Y ] form a basis of R3 at every point (x, y, t) ∈ R3, so that K1

satisfies the Hörmander’s rank condition.
The commutators are strongly related to a non-Euclidean invariant structure for the Kolmogorov

operator, as was firstly pointed out by Garofalo and Lanconelli in [51]. Later on, a non commutative
algebraic structure was introduced by Lanconelli and Polidoro in [84] to replace the Euclidean one in the
study of Kolmogorov operators (2. 15).
Lie group. Consider an operator K1 in the form (2. 15). Then G = (R3, •),

(x0, y0, t0) • (x, y, t) = (x0 + x, y0 + y − tx0, t0 + t). (2. 20)

is a group with zero element (0, 0, 0), and inverse (x, y, t)−1 := (−x,−y − tx,−t).
Indeed, if we set v(x, y, t) = u(x0 + x, y0 + y − tx0, t0 + t), then

K1v = 0 if, and only if, K1u = 0.

Moreover, the operator K1 is invariant with respect to the following family of dilations of R3

δr(x, y, t) = (rx, r3y, r2t) for every r > 0, (2. 21)

in the sense that if we set v(x, y, t) = u(rx, r3y, r2t), then

K1v = 0 if, and only if, K1u = 0.

We now introduce a quasi-distance invariant with respect to the group operation “•”.

Definition 2.3 For every z = (x, y, t), ζ = (ξ, η, τ) ∈ R3, we define a quasi-distance dK(z, ζ) invariant
with respect to the translation group G as follows

dK(z, ζ) =
∣∣∣x− ξ

∣∣∣ + ∣∣∣y − η + (t− τ)x+ξ
2

∣∣∣ 13 +
∣∣∣t− τ

∣∣∣ 12 .
Here we recall the meaning of quasi-distance dK : R3 × R3 → [0,+∞[:

1. dK(z, w) = 0 if and only if z = w for every z, w ∈ R3;

2. dK(z, w) = dK(w, z);

3. for every z, w, ζ ∈ R3 there exists a constant C > 0 such that (see Lemma 2.1 of [40])

dK(z, w) ≤ C (dK(z, ζ) + dK(ζ, w)) .

Moreover, we remark that the quasi-distance dK is homogeneous of degree 1 with respect to the family
of dilations {δr}r>0 in the sense that for every z, ζ ∈ R3

dK (δr(z), δr(ζ)) = r (dK(z, ζ)) for every r > 0.

We are now in position to define the space of Hölder continuous functions Cα
K .
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Definition 2.4 Let α be a positive constant, α ≤ 1, and let Ω be an open subset of R3. We say that a
function f : Ω −→ R is Hölder continuous with exponent α in Ω with respect to the group G = (R3, •, δr)
(in short: Hölder continuous with exponent α, f ∈ Cα

K(Ω)) if there exists a positive constant C > 0 such
that

|f(z)− f(ζ)| ≤ C dK(z, ζ)α for every z, ζ ∈ Ω.

To every bounded function f ∈ Cα
K(Ω) we associate the norm

|f |α,Ω = sup
Ω

|f | + sup
z,ζ∈Ω
z ̸=ζ

|f(z)− f(ζ)|
dK(z, ζ)α

.

Moreover, we say a function f is locally Hölder continuous, and we write f ∈ Cα
K,loc(Ω), if f ∈ Cα

K(Ω′)
for every compact subset Ω′ of Ω.

We recall the following result, due to Manfredini (see p. 833 in [90]), where the space Cα
K is compared

with the usual Euclidean Hölder space Cα.

Proposition 2.5 Let Ω be a bounded subset of R3. If f ∈ Cα(Ω) in the usual Euclidean sense, then
f ∈ Cα

K(Ω) in the sense of Definition 1.11. Vice versa, if f ∈ Cα
K(Ω), then f ∈ Cβ(Ω) in the Euclidean

sense with β = α
3 .

We remark that the local Hölder regularity assumption we assume on the coefficients of the operator
K is less restrictive than the global Hölder regularity, as pointed out by Pascucci and Pesce (see Example
1.3, [103]). Indeed, for every y, η, t, τ ∈ R with t ̸= τ , let us consider the following couple of points in R3

z =

(
η − y

t− τ
, y, t

)
and ζ =

(
η − y

t− τ
, η, τ

)
, (2. 22)

then we have d(z, ζ) = |t− τ |
1
2 . Since y and η are arbitrary real numbers, we see that points in R3 that

are far from each other in the Euclidean sense can be very close with respect to the distance d. It follows
that, if a function f(x, y, t) = f(y) depends only on y and it belongs to Cα

K(R3) for some positive α, then
it must be constant. In fact, for z, ζ as defined in (2. 22), we have

|f(y)− f(η)| = |f(z)− f(ζ)| ≤ C|t− τ |α

for some positive constants C, α and for any y, η ∈ R and t ̸= τ .

2.1.2 Hölder continuous coefficients
The results we present in this chapter regards classical solutions to the equation Ku = f . In this section
we recall the definition of Lie derivative, classical solution for the equation Ku = f and fundamental
solution. We first recall the notion of Lie derivative Y u of a function u with respect to the vector field Y
defined in (2. 19):

Y u(x, y, t) := lim
s→0

u(γ(s))− u(γ(0))

s
, γ(s) = (x, y + sx, t− s). (2. 23)

Note that γ is the integral curve of Y , i.e. γ̇(s) = Y (γ(s)). Clearly, if u ∈ C1(Ω), with Ω open subset
of R3, then Y u(x, y, t) agrees with x∂yu(x, y, t) − ∂tu(x, y, t) considered as a linear combination of the
derivatives of u.
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Definition 2.6 A function u is a solution to the equation Ku = f in a domain Ω of R3 if the derivatives
∂xu, ∂

2
xu and the Lie derivative Y u exist as continuous functions in Ω, and the equation

∂

∂x

(
a(x, y, t)

∂u

∂x

)
+ b(x, y, t)

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
= f(x, y, t)

is satisfied at any point (x, y, t) ∈ Ω. Moreover, we say that u is a classical supersolution to Ku = 0
if f ≤ 0 in Ω, and we write Ku ≤ 0. We say that u is a classical subsolution if −u is a classical
supersolution.

Fundamental tools in the classical regularity theory for Partial Differential Equations are the Schauder
estimates. In particular, we recall the result proved by Manfredini in [90] (see Theorem 1.4) for classical
solutions to Ku = f , where the natural functional setting is

C2+α
K (Ω) =

{
u ∈ Cα

K(Ω) | ∂xu, ∂2xu, Y u ∈ Cα
K(Ω)

}
,

and Cα
K(Ω) is given in Definition 2.4. Moreover, if u ∈ C2+α

K (Ω) then we define the norm

|u|2+α,Ω := |u|α,Ω + |∂xu|α,Ω + |∂2xu|α,Ω + |Y u|α,Ω.

Clearly, the definition of C2+α
K,loc(Ω) follows straightforwardly from the definition of Cα

K,loc(Ω).

Theorem 2.7 Let us consider an operator K of the type (2. 7) satisfying assumptions (HK) with 0 <
α ≤ 1. Let Ω be an open subset of R3, f ∈ Cα

K,loc(Ω) and let u be a classical solution to Ku = f in Ω.
Then for every Ω

′ ⊂⊂ Ω
′′ ⊂⊂ Ω there exists a positive constant C such that

|u|2+α,Ω′ ≤ C
(
supΩ′′ |u| + |f |α,Ω′′

)
.

We refer to the survey paper [6] for a more recent bibliography on this subject, and we recall that for
further information the topic of this section is extensively treated in Chapter 1 of this work. We also
recall the notion of fundamental solution.

Definition 2.8 We say a function ΓK : R3 × R3 → R is a fundamental solution for K if

1. for every (x0, y0, t0) ∈ R3 the function x 7→ ΓK(x, y, t;x0, y0, t0):

(a) belongs to L1
loc(R3);

(b) is a classical solution of Ku = 0 in R3 \ {(x0, y0, t0))} in the sense of Definition 2.6;

2. for every bounded function φ ∈ C(R2), we have that

u(x, y, t) =

ˆ
R2

ΓK(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη,

is a classical solution of the Cauchy problem (2. 14);

3. The function ΓK
∗(x, y, t;x0, y0, t0) := ΓK(x0, y0, t0;x, y, t) satisfies 1. and 2. with K replaced by its

adjoint operator K∗ as defined in (2. 8).

The existence of a fundamental solution ΓK for the operator K has widely been investigated over the
years, and as we have already pointed out in the Introduction of this paper the Levy parametrix method
provides us with a fundamental solution for the operator K under global Hölder regularity assumptions
for the coefficients. Among the first results of this type we recall [121], [67] and [114]. We summarize
here the main results of the articles [107], [40] and [83] on the existence and bounds for the fundamental
solution under the following assumption for the coefficients of the operator K:
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a, ∂a∂x , b, r ∈ Cα
K(R3) and there exist two positive constants λ,Λ such that

λ ≤ a(x, y, t) ≤ Λ
∣∣ ∂a
∂x

∣∣ , |b(x, y, t)|, |r(x, y, t)| ≤ Λ for every (x, y, t) ∈ R3. (2. 24)

For more references on this subject we refer to the survey paper [6].

Theorem 2.9 Let K be an operator of the form (2. 7) under the assumption (2. 24). Then there exists a
fundamental solution ΓK in the sense of Definition 2.8. Moreover, for every (x0, y0, t0) ∈ R3, ΓK belongs
to C2+α

loc (R3 \ {(x0, y0, t0))} and the following properties hold:

1. Support of ΓK : for every (x, y, t), (ξ, η, τ) ∈ R3 with t ≤ τ

ΓK(x, y, t; ξ, η, τ) = 0;

2. Reproduction property: for every (x, y, t), (x0, y0, t0) ∈ R3 and τ ∈ R with t0 < τ < t:

ΓK(x, y, t;x0, y0, t0) =

ˆ

R2

ΓK(x, y, t; ξ, η, τ) ΓK(ξ, η, τ ;x0, y0, t0) dξ dη;

3. Integral of ΓK : the following bound holds true

e−Λ(t−τ) ≤
ˆ

R2

ΓK(x, y, t; ξ, η, τ) dξ dη ≤ eΛ(t−τ); (2. 25)

4. let I =]T0, T1[ be a bounded interval, then there exist four positive constants λ+, λ−, C+, C− such
that for every (x, y, t), (ξ, η, τ) ∈ R3 with T0 < t < τ < T1

C− ΓK
λ−

(x, y, t; ξ, η, τ) ≤ ΓK(x, y, t; ξ, η, τ) ≤ C+ ΓK
λ+

(x, y, t; ξ, η, τ). (2. 26)

The constants λ+, λ−, C+, C− depend only on K and T1 − T0. ΓK
λ−

and ΓK
λ+

respectively denote
the fundamental solution of Kλ− and Kλ+ , defined in (2. 11) and (2. 10) respectively.

Furthermore, for every (x0, y0, t0) ∈ R3 also ΓK
∗ belongs to C2+α

loc (R3 \ {(x0, y0, t0))}.

The properties 1. and 2. of the above statement have been proved in [107] and [40]. The inequalities
(2. 25) follow from the comparison principle for classical solutions, as the functions e−Λ(t−τ) and eΛ(t−τ)

are respectively subsolution and supersolution to the Cauchy problem (2. 14) with inital datum φ(x, y) =
1. We remark that the constants λ+, λ−, C+, C− appearing in the bounds (2. 26) proved in [107, 40]
also depend on the Cα(RN × I) norm of the coefficients a, ∂a∂x , b, r. We rely here on the bounds proved
in [83], where the dependence on the regularity of the coefficients is removed thanks to the Harnack
inequality proved by Golse, Imbert, Mouhot and Vasseur in [58]. We conclude this section with the
following Gaussian bound for ΓK .

Corollary 2.10 Let (x, y, t) ∈ R3, with t > t0. Then there exist two positive constants C, only depending
on the operator K, and R0, also depending on (x, y, t), on t0, such that

ΓK (x, y, t; ξ, η, τ) ≤ Ce−C ξ2+η2

t−τ ,

for every (ξ, η) ∈ R2 such that ∥(ξ, η)∥ ≥ R0 and for every τ ∈ R with t0 < τ < t.

The proof of this result directly follows from the upper bound (2. 26) combined with the explicit expres-
sion of the fundamental solution (2. 11). We refer to the Lemma 3.1 of [108] for the proof, that will be
omitted here.
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2.2 Arithmetic Average Asian Options
Now, we address the case of Arithmetic Average Asian Options, that we recover by choosing f(S) = S.
Through the change of variable v(x, y, T − t) := Z(x, y, t) we transform the Cauchy problem (2. 4) into
the following {

1
2σ

2(x, y, t)x2 ∂2v
∂x2 + r(x, y, t)

(
x ∂v
∂x − v

)
+ x∂v

∂y (x, y, t) = ∂v
∂t

v(x, y, 0) = φ(x, y).

As we did in the previous section for the case of Geometric Average Asian Options, we write the operator
appearing in the above PDE in its divergence form{

x ∂
∂x (a(x, y, t)x

∂v
∂x ) + b(x, y, t)x ∂v

∂x − r(x, y, t)v + x ∂v
∂y = ∂v

∂t ,

v(x, y, 0) = φ(x, y),
(2. 27)

where a(x, y, t) = 1
2σ

2(x, y, t) and b(x, y, t) = r(x, y, t) − 2xa(x, y, t) − x2∂xa(x, y, t). Note that the
coefficient x in front of the derivative ∂

∂x introduces new difficulties. We denote by L the differential
operator in (2. 27), acting on sufficiently smooth functions u = u(x, y, t) as

L u(x, y, t) := x
∂

∂x

(
a(x, y, t)x

∂u

∂x

)
+ b(x, y, t)x

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
, (2. 28)

and its formal adjoint L ∗, acting on differentiable functions w = w(x, y, t) as follows

L ∗w(x, y, t) := x
∂w

∂x

(
a(x, y, t)x

∂w

∂x

)
− ∂

∂x

(
x b(x, y, t)w

)
− x

∂

∂y
w − r(x, y, t)w +

∂

∂t
w. (2. 29)

The simplest form of the operator L is associated to the stochastic process (St, At)t≥0

St = S0e
µt+σWt , At =

ˆ t

0

exp(µs+ σWs)ds, (2. 30)

where Wt is a real valued Brownian motion starting from 0. Indeed, when µ = 0 and σ is a positive
constant we can consider the following model operator

Lλ := λx2∂2x + x∂x + x∂y − ∂t, (2. 31)

where λ = 1
2σ

2. As it is pointed out by Yor in [123], thanks to the scaling invariance properties of the
Brownian motion we can restrict ourselves to the case where σ =

√
2, for which he proves the existence

of the transition density of the associated process (St, At)t≥0, which reads as follows

p(w, y, t) =
e
π2

2t

π
√
2πt

exp

(
−1 + e2w

2y

)
ew

y2
Θ

(
ew

y
, t

)
,

where

Θ(z, t) =

∞̂

0

e−
ξ2

2t e−z cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ.

Thus, the explicit expression of the fundamental solution ΓL
1 associated with the operator

L1 := x2∂2x + x∂x + x∂y − ∂t, (2. 32)
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reads as follows
ΓL
1(x, y, t;x0, y0, t0) =

1

2xx0
p

(
1

2
log
(x0
x

)
,
y − y0
2x

,
t− t0
2

)
. (2. 33)

Thus, the pricing problem for the simplest case of Arithmetic Average Asian Options can be solved by
the argument outlined in the previous subsection when considering (2. 6), but in this case the differential
operator K needs to be replaced by Lλ. As we can see from the explicit expression (2. 33) of the
fundamental solution ΓL

λ of Lλ, and as several authors point out (for instance, see [2, 44, 49, 50, 113]), the
explicit representation of the Asian option prices given by Geman and Yor in [56] is hardly numerically
treatable, in particular when pricing Asian Options with short maturities or small volatilities. We quote
[124, 56] for an exhaustive presentation of the topic, other related works are due to Matsumoto, Geman
and Yor [94, 56, 93], Carr and Schröder [26], Bally and Kohatsu-Higa [13].

As we have already pointed out at the beginning of the Introduction, in this work we consider the
operator L with variable coefficients. This allows one to deal with more general market models, but
the mathematical theory for this kind of operator L is nowadays still incomplete. Indeed, the unique
result available on the existence of a fundamental solution for L has been proved by Cibelli, Polidoro
and Rossi in [29] and requires the C∞ smoothness of the coefficients a and b. Moreover, only the case
r = 0 is considered in [29]. Our research weakens the regularity requirements on the coefficients in that
only the local Hölder continuity is needed to produce classical solutions to the pricing problem. The class
of Hölder continuous functions Cα

L related to the operator L is strongly linked to the definition of the
space Cα

K related to the operator K, as we will see in the sequel of this article. Moreover, in the following
we prove that locally the two definitions coincide (see Proposition 2.16). This allows us to consider a
wider family of continuous functions, since the local Hölder condition is really easy to check and less
restrictive that the global Hölder continuity assumption, required for instance by the parametrix method,
that is an alternative approach to produce a fundamental solution. We are now ready to state the precise
assumption for the coefficients a and b of the operator L .

(HL) a, b, ∂a
∂x ,

∂b
∂x ∈ Cα

loc(R+ × R2). Moreover, there exist two positive constants λ, Λ such that

λ ≤ a(x, y, t) ≤ Λ, |b(x, y, t)|,
∣∣ ∂
∂x (x a(x, y, t))

∣∣ , ∣∣ ∂
∂x (x b(x, y, t))

∣∣ ≤ Λ,

for every (x, y, t) ∈ R+ × R2.

Remark 2.11 As said above, we only consider the operator L without the zero order term r, as we rely
on the results proved in [29], where this condition was assumed. However a simple change of function
allows us to consider any continuous function r = r(t) only depending on t. Indeed, if u is a solution to
L u = 0, where the term r doesn’t appear in L , then the function

v(x, y, t) = eR(t)u(x, y, t), R(t) =

ˆ t

t0

r(s)ds,

solves the equation L v(x, y, t)− r(t)v(x, y, t) = 0.

We are now in position to state our main results regarding the operator L .

Theorem 2.12 Let us consider the operator L under the assumption (HL). Then there exists a unique
fundamental solution ΓL of L in the sense of Definition 2.18. Moreover, the following properties hold:

1. Support of ΓL: for every (x, y, t), (ξ, η, τ) ∈ R+ × R2 with t ≤ τ or y ≥ η

ΓL(x, y, t; ξ, η, τ) = 0;
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2. Reproduction property: for every (x, y, t), (x0, y0, t0) ∈ R+ × R2 and τ ∈ R with t0 < τ < t

ΓL(x, y, t;x0, y0, t0) =

ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) ΓL(ξ, η, τ ;x0, y0, t0) dξ dη;

3. Integral of ΓL: there exists a positive constant C depending on t− τ and such that C → 1 as t→ τ
for which ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) dξ dη = 1,

ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) dx dy = C;

4. Bounds for ΓL: for every ε ∈]0, 1[, and T > 0 there exist two positive constants c−ε , C+
ε depending on

ε, on T and on the operator L , and two positive constants C−, c+, only depending on the operator
L , such that

c−ε
x20(t− t0)2

exp
(
−C−ψ(x, y + x0ε(t− t0), t− ε(t− t0);x0, y0, t0)

)
≤

≤ ΓL(x, y, t;x0, y0, t0) ≤
C+

ε

x20(t− t0)2
exp

(
−c+ψ(x, y − x0ε, t+ ε;x0, y0, t0)

)
for every (x, y, t) ∈ R+×]−∞, y0−x0ε(t−t0)[×]t0, T ], where ψ is the value function for the optimal
control problem (2. 39).

Moreover, the function ΓL
∗(ξ, η, τ ;x, y, t) = ΓL(x, y, t; ξ, η, τ) is the fundamental solution of the adjoint

operator L ∗ with pole at (ξ, η, τ) and satisfies all of the previous properties accordingly.

We note that the upper and lower bounds in the above point 4. can be written in terms of the function
(2. 33) as stated in Corollary 2.20 below. As in the case of Geometric Average Asian Options, we
consider the Cauchy problem (2. 4) with an initial condition φ that grows linearly. However, in the case
of Arithmetic Average Asian Options the change of variable v(x, y, t) = Z(ex, y, T−t) doesn’t simplify the
proof of our results. Therfore we don’t apply it and we keep the linear growth as the natural assumption
on the function φ. We will see in Remark 2.24 that the formula (2. 42) supports initial data satisfying
this condition. As far as we are concerned with the uniqueness of the solution to the Cauchy problem for
operators of the form (2. 28), we have the following result.

Theorem 2.13 Let us consider the operator L under the assumption (HL). Let u1 and u2 be classical
solutions to {

L u = 0, (x, y, t) ∈ R+ × R×]t0, T ]

u(x0, y0, t0) = φ(x0, y0) (x0, y0) ∈ R+ × R.

in the sense of Definition 2.17, and

|u1(x, y, t)|+ |u2(x, y, t)| ≤ M exp
(
C(log(x2 + y2 + 1)− log(x)) + 1

)2
,

for some positive consants M and C, then u1 = u2 in R+ × R×]t0, T ].

2.2.1 The operator L1

In this section we collect known facts on the operator L . Let us consider the operator L1 introduced in
(2. 31) as the prototype operator for the operator L . As we have already pointed out in the Introduction
of this paper, the function ΓL

1 defined in (2. 33) is the fundamental solution ΓL
1 of L1. Its expression

agrees with that of the density of the process (Wt, At)t≥0 in (2. 30), first considered by Yor in [123].
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As far as we are concerned with the invariance properties of L1, Monti and Pascucci observe in [96]
that it is invariant with respect to the group operation on R+ × R2:

(ξ, η, τ) ◦ (x, y, t) = (ξ x, η + ξ y, τ + t). (2. 34)

Indeed, if we set v(x, y, t) = u(ξ x, η + ξ y, τ + t), then L1v = 0 if, and only if, L1u = 0. We also remark
that

L := (R+ × R2, ◦)

is a Lie group, where the identity IG and the inverse of the element (x, y, t) are defined as

IL = (1, 0, 0), (x, y, t)−1 =
(
1
x ,−

y
x ,−t

)
.

Let us notice that the translation defined in (2. 34) reflects the mixed nature of the stochastic process
(St, At)t≥0 defined in (2. 30). Indeed its first component St is log-normal, then is related to a multiplica-
tive group, while the component At is defined as the integral of St, then is related to an additive group.
In particular, the null element of the group is (1, 0, 0), the left-translation (r, 0, 0) ◦ (x, y, t) acts as a
dilation with respect to (x, y), while the left-translation (1, η, t)◦ (x, y, t) acts as an Euclidean translation
with respect to (y, t)

(r, 0, 0) ◦ (x, y, t) = (rx, ry, t), (1, η, t) ◦ (x, y, t) = (x, η + y, τ + t).

As far as we are concerned with the regularizing properties of the operator L1, one can easily prove it
is hypoelliptic in the sense of (2. 16). Indeed, we can write the vector fields associated to L1 as follows

X = x∂x ∼

x0
0

 , Y = x∂y − ∂t ∼

 0
x
−1

 , and [X,Y ] = x∂y ∼

0
x
0

 . (2. 35)

Thus, Lie{X,Y, [X,Y ]}(x, y, t) = R+×R2 for every (x, y, t) ∈ R+×R2, hence L1 satisfies the Hörmander’s
hypoellipticity condition.

2.2.2 The optimal control problem for L1

We now introduce the function ψ appearing in the formula (2. 45). Let us consider the vector fields
X and Y defined in (2. 35) associated to the operator L1. We consider the following optimal control
problem. For any end point (x0, y0, t0) ∈ R+ ×R2 and starting point (x1, y1, t1) ∈ R+ ×R2, with t1 > t0:

ψ(x1, y1, t1;x0, y0, t0) := inf
ω∈L1([0,T ])

T̂

0

ω2(τ) dτ subject to constraint (2. 36)


ẋ(s) = ω(s)x(s)

ẏ(s) = x(s) 0 ≤ s ≤ T

ṫ(s) = −1

(x, y, t)(0) = (x1, y1, t1), (x, y, t)(T ) = (x0, y0, t0).

The constraint ṫ(s) = −1 implies that admissible paths satisfy t(s) = t1 − s, hence T = t1 − t0. For
this reason, in the sequel we drop the time variable, and we set T := t1 − t0. Moreover, as x(s) > 0 for
every s, the second equation yields y1 < y0. The knowledge of the explicit expression of the function ψ is
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particularly important, and we summarize here some quantitative informations about it in terms of the
following function

g(r) =


sinh(

√
r)√

(r)
, r > 0,

1 r = 0,
sinh(

√
−r)√

(−r)
, −π2 < r < 0.

Indeed, for every (x1, y1, t1), (x0, y0, t0) ∈ R+ × R2, with t0 < t1 and y0 > y, we have
ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) +

4(x1+x0)
y0−y1

− 4
√
E + 4x1x0

(y0−y1)2
, if E ≥ − π2

(t1−t0)2
;

ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) +
4(x1+x0)
y0−y1

+ 4
√
E + 4x1x0

(y0−y1)2
,

if − 4π2

(t1−t0)2
< E < − π2

(t1−t0)2
,

(2. 37)

where
E =

4

(t1 − t0)2
g−1

(
y0 − y1

(t1 − t0)
√
x1x0

)
.

For further informations we refer to [29], Section 4, where also the solution of the control problem (2. 36)
is provided. Moreover, we recall that one of the results of [29] are the following bounds for the fundamental
solution ΓL

1 constructed by Geman and Yor in [56]:

c−ε
x20(t− t0)2

exp
(
−C−ψ(x, y + x0ε(t− t0), t− ε(t− t0);x0, y0, t0)

)
≤ (2. 38)

≤ ΓL
1(x, y, t;x0, y0, t0) ≤

C+
ε

x20(t− t0)2
exp

(
−c+ψ(x, y − x0ε, t+ ε;x0, y0, t0)

)
,

where ψ is the cost function of the optimal control problem (2. 39).
As the vector fields X = x∂x and Y = x∂y − ∂t are invariant with respect to the left translation “◦”

in (2. 34), it turns out that also the solution ψ to the optimal control problem (2. 36) is invariant with
respect to L = (R+ × R2, ◦). In particular we have

ψ(x1, y1, t1;x0, y0, t0) = ψ((x0, y0, t0)
−1 ◦ (x1, y1, t1); 1, 0, 0).

Hence, from now on we fix the final condition (x0, y0, t0) = (1, 0, 0) in the optimal control problem (2. 36),
and then use the invariance property to solve it with a general initial condition, and we use the simplified
notation ψ(x, y, t) = ψ(x, y, t; 1, 0, 0). For all of the above reasons, the optimal control problem (2. 36)
now reads as follows for a general starting point (x, y, t) ∈ R+ × R− × R+:

ψ(x, y, t) := inf
ω∈L1([0,t])

tˆ

0

ω2(τ) dτ subject to constraint (2. 39)

{
ẋ(s) = ω(s)x(s), x(0) = x, x(t) = 1,

ẏ(s) = x(s), y(0) = y, y(t) = 0.

2.2.3 The space Cα
L

In order to define the Hölder spaces relevant to the operator L we note that the operators L and K
agree in every compact set of R+ ×R2. We then borrow the regularity theory developed for the opeator
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K, and described in the above subsection, to obtain analogous results for the operator L . This point of
view was adopted in the work [29] to obtain an invariant Harnack inequality for L .

Consider a function f = f(x, y, t) defined in R+ × R2, and let (ξ, η, τ) be a point in R+ × R2. In
accordance with the operation (2. 34), we define the function

f̃(x, y, t) := f(ξ x, η + ξ y, τ + t).

We note that
f(x, y, t) = f̃

(
x
ξ ,

y−η
ξ , t− τ

)
,

and we apply the Definition 1.11 to f̃(x, y, t) in a neighborhood of (1, 0, 0). We find

|f(x, y, t)− f(ξ, η, τ)| =
∣∣∣f̃ (x

ξ ,
y−η
ξ , t− τ

)
− f̃(1, 0, 0)

∣∣∣ ≤
C

(∣∣∣x−ξ
ξ

∣∣∣+ ∣∣∣y−η
ξ + (t− τ)x+ξ

2ξ

∣∣∣1/3 + |t− τ |1/2
)α

.
(2. 40)

Let us remark that the operators L and K are comparable only when the points x and ξ are close each
other. Indeed, if we exchange the role of the points (x, y, t) and (ξ, η, τ), we find the inequality

|f(ξ, η, τ)− f(x, y, t)| ≤ C

(∣∣∣ ξ−x
x

∣∣∣+ ∣∣∣η−y
x + (τ − t) ξ+x

2x

∣∣∣1/3 + |t− τ |1/2
)α

,

which doesn’t agree with (2. 40), unless ξ and x have similar size. For this reason, we give the following
definition of quasi-distance and Hölder continuous function with respect to the operation “◦”, which is
equivalent to (2. 40) when x

ξ is close to 1.

Definition 2.14 For every z = (x, y, t), ζ = (ξ, η, τ) ∈ R+ × R2, we define a symmetric quasi-distance
dL(z, ζ) invariant with respect to the translation group L as follows

dL(z, ζ) =
∣∣∣ x−ξ√

xξ

∣∣∣+ ∣∣∣∣∣y−η+(t−τ)
x+ξ
2√

xξ

∣∣∣∣∣
1/3

+ |t− τ |1/2.

Definition 2.15 Let α be a positive constant, α ≤ 1, and let Ω be an open subset of R+ ×R2. We say a
function f : Ω −→ R is Hölder continuous with exponent α in Ω with respect to the group L = (R+×R2, ◦)
(in short: Hölder continuous with exponent α, f ∈ Cα

L(Ω)) if there exists a positive constant C > 0 such
that

|f(x, y, t)− f(ξ, η, τ)| ≤ CdL(z, ζ)
α, (2. 41)

for every (x, y, t), (ξ, η, τ) ∈ Ω. Moreover, we say a function f is locally Hölder continuous, and we write
f ∈ Cα

L,loc(Ω), if f ∈ Cα
L(Ω

′) for every compact subset Ω′ of Ω.

As the definitions Cα
L(Ω

′) and Cα
K(Ω′) agree in every compact subset Ω′ of R+ × R2, the following

statement is an immediate consequence of Proposition 2.5. For this reason, we omit its proof, which is
immediate.

Proposition 2.16 Let Ω′ be a compact subset of R+ × R2. If f ∈ Cα(Ω) in the usual Euclidean sense,
then f ∈ Cα

L(Ω
′) in the sense of Definition 2.15. Vice versa, if f ∈ Cα

L(Ω
′), then f ∈ Cβ(Ω′) in the

Euclidean sense with β = α
3 .
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Definition 2.17 A function u is a solution to the equation L u = f in a domain Ω of R+ × R2 if the
derivatives x∂xu, x2∂2xu, and the Lie derivative Y u exist as continuous functions in Ω, and the equation

x
∂u

∂x

(
a(x, y, t)x

∂u

∂x

)
+ b(x, y, t)x

∂u

∂x
+ x

∂u

∂y
− r(x, y, t)u− ∂u

∂t
,= f(x, y, t)

is satisfied at any point (x, y, t) ∈ Ω.

Moreover, we define the natural functional setting for L u = f as follows

C2+α
L (Ω) =

{
u ∈ Cα

L(Ω) | x∂xu, x2∂2xu, Y u ∈ Cα
L(Ω)

}
,

where Cα
L(Ω) is given in Definition 2.15. Clearly, the definition of C2+α

L,loc(Ω) follows straightforwardly
from the definition of Cα

L,loc(Ω).

2.2.4 The fundamental solution ΓL

We now focus on the fundamental solution ΓL for the operator L .

Definition 2.18 A function ΓL :
(
R+ × R2

)
×
(
R+ × R2

)
→ R is a fundamental solution for L if

1. for every (x0, y0, t0) ∈ R+ × R2 the function x 7→ ΓL(x, y, t;x0, y0, t0):

(a) belongs to L1
loc(R+ × R2) ∩ C∞(R+ × R2 \ {(x0, y0, t0))};

(b) is a classical solution of L u = 0 in R+ × R2 \ {(x0, y0, t0))} in the sense of Definition 2.17;

2. for every bounded function φ ∈ C(R2), we have that

u(x, y, t) =

ˆ
R2

ΓL(x, y, t; ξ, η, 0)φ(ξ, η) dξ dη, (2. 42)

is a classical solution of the Cauchy problem{
L u = 0, (x, y, t) ∈ R+ × R× R+

u(x, y, 0) = φ(x, y) (x, y) ∈ R2.
(2. 43)

3. The function ΓL
∗(x, y, t;x0, y0, t0) := ΓL(x0, y0, t0;x, y, t) satisfies 1. and 2. with L replaced by its

adjoint operator L ∗ as defined in (2. 29).

Under the following assumption (2. 44), which is stronger than (HL), Cibelli, Polidoro and Rossi prove
the existence of the fundamental solution ΓL for L and bounds analogous to (2. 38) by applying methods
coming from the stochastic theory (see Proposition 3.7 and Theorem 1.3 of [29], respectively). We
summarize here the main results of the paper [29], under the following assumption for the coefficients a
and b:

a,b ∈ C∞(R+ × R2). Moreover, there exist two positive constants λ, Λ such that

λ ≤ a(x, y, t) ≤ Λ,
∣∣ ∂
∂x (x a(x, y, t))

∣∣ , ∣∣ ∂
∂x (x a(x, y, t))

∣∣ ≤ Λ, (2. 44)

for every (x, y, t) ∈ R+ × R2.

Theorem 2.19 Let L be an operator of the form (2. 28) under the assumption (2. 44). Then there
exists a fundamental solution ΓL in the sense of Definition 2.18. Moreover, the following properties hold:
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1. Support of ΓL: for every (x, y, t), (ξ, η, τ) ∈ R+ × R×]0, T ] with t ≤ τ and y ≥ η

ΓL(x, y, t; ξ, η, τ) = 0;

2. Reproduction property: for every (x, y, t), (x0, y0, t0), (ξ, η, τ) ∈ R+ × R×]0, T ] with T ≤ t > τ >
t0 > 0

ΓL(x, y, t;x0, y0, t0) =

ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) ΓL(ξ, η, τ ;x0, y0, t0) dξ dη;

3. Integral of ΓL: there exists a positive constant C depending on t− τ and such that C → 1 as t→ τ
for which ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) dξ dη = 1,

ˆ

R+×R

ΓL(x, y, t; ξ, η, τ) dx dy = C;

4. Bounds for ΓL: for every ε ∈]0, 1[, and T > 0 there exist two positive constants c−ε , C+
ε depending on

ε, on T and on the operator L , and two positive constants C−, c+, only depending on the operator
L , such that

c−ε
x20(t− t0)2

exp
(
−C−ψ(x, y + x0ε(t− t0), t− ε(t− t0);x0, y0, t0)

)
≤ (2. 45)

≤ ΓL(x, y, t;x0, y0, t0) ≤
C+

ε

x20(t− t0)2
exp

(
−c+ψ(x, y − x0ε, t+ ε;x0, y0, t0)

)
for every (x, y, t) ∈ R+×]−∞, y0−x0ε(t−t0)[×]t0, T ], where ψ is the value function for the optimal
control problem (2. 39).

We remark that the bounds obtained in (2. 45) for the operator L by [29] are analogous to the bounds
(2. 26) obtained for the fundamental solution of the Kolmogorov operator K. Let us consider the funda-
mental solutions ΓL± of the operators

L ±u = λ±x2
∂2u

∂x2
+ x

∂u

∂x
+ x

∂u

∂y
− ∂u

∂t
, (x, y, t) ∈ R+ × R× R+. (2. 46)

By applying the bounds (2. 45) to ΓL and to ΓL
±, we obtain the following corollary to the previous

Theorem 2.19 (see Proposition 1.5 of [29]).

Corollary 2.20 For every ε ∈]0, 1[, there exist the fundamental solutions Γ± of the operators (2. 46),
and positive constants k± such that

k−ΓL
−(x, y + x0ε(t− t0 + 1), t− ε(t− t0 + 1);x0, y0, t0) ≤

≤ ΓL(x,y, t;x0, y0, t0) ≤

≤ k+ΓL
+

(
x, y − x0

ε

1− ε
(t− t0 + 1), t+

ε

1− ε
(t− t0 + 1);x0, y0, t0

)
for every (x, y, t), (x0, y0, t0) ∈ R+ × R×]0, T ], with y + x0ε(t− t0 + 1) < y0 and t > t0 + ε/(1− ε).
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2.3 Existence and uniqueness of the fundamental solution ΓK

This section is devoted to the proof of our main results on the existence of the fundamental solution for
the operator K. Our approach relies on the local regularity properties of the solutions and on the bounds
for the fundamental solution. Let us consider first the operator K. We build a sequence of operators
(Kn)n∈N satisfying the hypotheses of Theorem 2.9, then a fundamental solution ΓK

n exists for every n ∈ N.
Moreover, the sequence (ΓK

n)n∈N is equibounded by (2. 26), and locally equicontinuous, thanks to the
Schauder estimates of Theorem 2.7. The existence of ΓK then follows from the Ascoli-Arzelà’s theorem
and a diagonal argument. The proof of the existence of a fundamental solution ΓL for L is analogous,
relies on Theorem 2.19, and it is presented in Section 2.4.

Existence of ΓK

Proof of Theorem 2.1 (Existence of the fundamental solution). We construct a sequence of operators
(Kn)n∈N satisfying the hypotheses of Theorem 2.9. In particular, we need the coefficients an, bn, rn to
be uniformly Hölder continuous and satisfying the assumption (2. 24). For this reason, we introduce a
cut-off function χn ∈ C∞

0 (R3) such that 0 ≤ χn(x, y, t) ≤ 1, and

χn(x, y, t) = 1 for x2 + y2 ≤ n2, χn(x, y, t) = 0 for x2 + y2 ≥ (n+ 1)2.

For every n ∈ N we set

an(x, y, t) := χn(x, y, t)a(x, y, t) + (1− χn(x, y, t))λ,

bn(x, y, t) := χn(x, y, t)b(x, y, t), rn(x, y, t) := χn(x, y, t)r(x, y, t).

Then we apply Theorem 2.9 to the operator Kn for every n ∈ N. Thus, there exists a sequence of
equibounded fundamental solutions (ΓKn)n∈N, in the sense that each of them satisfies (2. 26).

We define a sequence of open subsets (Ωp)p∈N of R6 such that Ωp ⊂⊂ Ωp+1 for every p ∈ N and∪+∞
p=1 Ωp =

{
(x, y, t; ξ, η, τ) ∈ R6 | (x, y, t) ̸= (ξ, η, τ)

}
:

Ωp :=

{
(x, y, t; ξ, η, τ) ∈ R6 | x2 + y2 + t2 < p2, ξ2 + η2 + τ2 < p2,

(x− ξ)2 + (y − η)2 + (t− τ)2 >
(

1
p

)2 }
.

We note that the sequence (ΓK
n)n≥2 is equicontinuous in Ω1 thanks to Theorem 3. 41. Moreover, by

Theorem 2.9 and Theorem 3. 41, we also have that(
∂ΓK

n

∂x

)
n≥2

,
(

∂ΓK
n

∂ξ

)
n≥2

,
(

∂2ΓK
n

∂x2

)
n≥2

,
(

∂2ΓK
n

∂ξ2

)
n≥2

, (Y ΓK
n)n≥2 , and

(
Y ∗
(ξ,η,τ)ΓK

n
)
n≥2

are bounded sequences in Cα(Ω1). Here Y is the Lie derivative defined in (2. 23) and Y ∗
(ξ,η,τ) is its

adjoint, computed with respect to the variable (ξ, η, τ). Thus, there exists a subsequence (ΓK1,m)m∈N that
converges uniformly to some function Γ1 that satisfies (2. 26). Moreover, Γ1 ∈ C2+α(Ω1) and, for every
(x0, y0, t0) ∈ R3 such that x20 + y20 + t20 < 1 the function u(x, y, t) := Γ1(x, y, t;x0, y0, t0) is a classical
solution to Ku = 0 in the set

{
(x, y, t) ∈ R3 | (x, y, t;x0, y0, t0) ∈ Ω1

}
, and the function v(ξ, η, τ) :=

Γ1(x0, y0, t0; ξ, η, τ) is a classical solution to K∗v = 0 in the set
{
(ξ, η, τ) ∈ R3 | (x0, y0, t0; ξ, η, τ) ∈ Ω1

}
.

We next apply the same argument to the sequence (ΓK1,m)m∈N on the set Ω2, and obtain a subsequence
(ΓK

2,m)m∈N that converges in C2+α(Ω2) to some function Γ2, that belongs to C2+α(Ω2) and satisfies the
bounds (2. 26), and the following condition. For every (x0, y0, t0) ∈ R3 such that x20 + y20 + t20 < 4
the function u(x, y, t) := Γ2(x, y, t;x0, y0, t0) is a classical solution to Ku = 0 in the set

{
(x, y, t) ∈

R3 | (x, y, t;x0, y0, t0) ∈ Ω2

}
, and the function v(ξ, η, τ) := Γ2(x0, y0, t0; ξ, η, τ) is a classical solution to
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K∗v = 0 in the set
{
(ξ, η, τ) ∈ R3 | (x0, y0, t0; ξ, η, τ) ∈ Ω2

}
. We remark that, since Γ2 is the limit of a

subsequence of (ΓK1,m)m∈N, it must coincide with Γ1 in Ω1.
We next proceed by induction. Let us assume that the sequence (ΓKq−1,m)m∈N on the set Ωq has been

defined for some q ∈ N. We extract from it a subsequence (ΓK
q,m)m∈N converging in C2+α(Ωq) to some

function Γq, satisfying (2. 26). Moreover, (x, y, t) 7→ Γq(x, y, t;x0, y0, t0) is a classical solution to Ku = 0
and (ξ, η, τ) 7→ Γq(x0, y0, t0; ξ, η, τ) is a classical solution to K∗v = 0. Moreover, it agrees with Γq−1 on
the set Ωq−1.

Next, we define a function ΓK in the following way: for every (x, y, t), (ξ, η, τ) ∈ R3 with (x, y, t) ̸=
(ξ, η, τ) we choose q ∈ N such that (x, y, t; ξ, η, τ) ∈ Ωq and we set ΓK(x, y, t; ξ, η, τ) := Γq(x, y, t; ξ, η, τ).
This definition is well-posed, since if (x, y, t) ∈ Ωp, then Γp(x, y, t; ξ, η, τ) = Γq(x, y, t; ξ, η, τ).

We next check that ΓK has the properties listed in the statement of the Theorem 2.1. As every
ΓK

n(x, y, t;x0, y0, t0) = 0 whenever t ≤ t0, also ΓK(x, y, t;x0, y0, t0) = 0 for every t ≤ t0. For the
same reason, it satisfies (2. 26). Moreover, for every (x0, y0, t0) ∈ R3, (x, y, t) 7→ ΓK(x, y, t;x0, y0, t0) ∈
L1

loc(R3) ∩ C2+α
loc (R3 \ {(x0, y0, t0)}), and is a classical solution to Ku = 0 in R3 \ {(x0, y0, t0)}. Analo-

gously, (ξ, η, τ) 7→ ΓK(x0, y0, t0; ξ, η, τ) ∈ L1
loc(R3)∩C2+α

loc (R3 \ {(x0, y0, t0)}) and is a classical solution to
K∗v = 0 in R3 \ {(x0, y0, t0)}. This proves the point 1. of the Definition 2.8 and the point 1. of Theorem
2.1. We remark that points 3. and 4. of Theorem 2.1 follow immediately from the construction of the
fundamental solution ΓK and the pointwise convergence.

As far as we are concerned with the reproduction property 2. of Theorem 2.1, we use the upper bound
in (2. 26), which yields

ΓK
n(x, y, t; ξ, η, τ)ΓK

n(ξ, η, τ ;x0, y0, t0) ≤ C+ ΓK
λ+

(x, y, t; ξ, η, τ)C+ ΓK
λ+

(ξ, η, τ ;x0, y0, t0),

and the reproduction propertyˆ
R2

ΓK
λ+

(x, y, t; ξ, η, τ)ΓK
λ+

(ξ, η, τ ;x0, y0, t0)dξ dη dτ = ΓK
λ+

(x, y, t;x0, y0, t0) < +∞,

which allows us to use the Lebesgue convergence theorem. Thus the property 2. of Theorem 2.1 holds
true.

To proceed with the proof of Theorem 2.1 we have to verify that, for every φ ∈ Cb(R2), the function

u(x, y, t) =

ˆ

R2

ΓK(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη (2. 47)

is a classical solution to the Cauchy problem{
Ku = 0, (x, y, t) ∈ R2×]t0,∞[;

u(x, y, t0) = φ(x, y) (x, y) ∈ R2.
(2. 48)

By the usual standard argument, we differentiate under the integral sign

Ku(x, y, t) =

ˆ

R2

KΓK(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη = 0.

Thus, we are left with the proof that u(x, y, t) → φ(x0, y0) as (x, y, t) → (x0, y0, t0). We first note that

u(x, y, t)− φ(x0, y0) =

ˆ

R2

ΓK(x, y, t; ξ, η, t0) (φ(ξ, η)− φ(x0, y0)) dξ dη

A

+

+ φ(x0, y0)

(ˆ
R2

ΓK(x, y, t; ξ, η, t0)dξ dη − 1

)
.

B
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The term B plainly vanishes, as t goes to t0, because of the bound (2. 25). The integral A can be handled
considering that (2. 26) holds true, and that the expression of ΓKλ

+

is (2. 11). Specifically, we apply the
change of variable

x = 1

2
√

λ+(t−t0)
(x− ξ) y =

√
3√

λ+(t−t0)
3

(
y − η + (t− t0)

x+ξ
2

)
,

and we obtain the following bound

|A| ≤ 1

π

ˆ

R2

e−(x
2+y2)|φ̃ (x, y)− φ(x0, y0)| dx dy, (2. 49)

where
φ̃ (x, y) := φ

(
x− 2

√
λ+ (t− t0)x, y −

√
λ+(t−t0)

3

3 y + (t− t0)
x−

√
λ+(t−t0) x√

3

)
.

Note that, for every fixed (x, y), the above expression converges to φ(x0, y0) as (x, y, t) → (x0, y0, t0).
Moreover φ̃ − φ(x0, y0) is bounded as a function of (x, y), then the Lebesgue theorem implies that A
vanishes as (x, y, t) → (x0, y0, t0). Thus u(x, y, t) → φ(x0, y0) as (x, y, t) → (x0, y0, t0), and the proof of
the point 1. of Definition 2.8 accomplilshed.
The proof that ΓK∗(ξ, η, τ ;x, y, t) = ΓK(x, y, t; ξ, η, τ) is the fundamental solution of the adjoint operator
K∗ and satisfies the properties of Theorem 2.1 follows accordingly. □

Remark 2.21 The growth condition (2. 13) can be used instead of the boundedness assumption on the
initial data φ. Indeed, it ensures, alongside with the upper bound (2. 26) for the fundamental solution ΓK ,
that the integral (2. 47) is convergent for every (x, y, t) ∈ R2×]t0,+∞[, that it can be differentiated twice
with respect to x and once in the direction of the vector field x∂y − ∂t, so that u a solution to L u = 0.
Moreover, the condition (2. 13) and the inequality (2. 49) yield that the expression |A| vanishes, as
(x, y, t) → (x0, y0, t0).

Uniqueness and comparison principle for the operator K
Now, we recall a technical result, an a priori estimate for the derivatives of the fundamental solution
ΓK(x, y, t; ξ, η, τ) necessary to conclude the proof of Proposition 2.23. In order to state our result, we
introduce for every R > 1 the set

Q̃R :=
{
R ≤

√
ξ2 + η2 ≤ R+ 1

}
⊂ R2. (2. 50)

Lemma 2.22 Let (HK) hold, and let ΓK be the fundamental solution for the operator K in the sense of
Definition 2.8. Let QR be the cylinder defined in (5) , there exists a constant C such that

λ

2

tˆ

t0

ˆ
Q̃R

∣∣∣∣∣∂ΓK∂ξ (x, y, t; ξ, η, τ)

∣∣∣∣∣
2

dξdηdτ ≤

≤ C3

tˆ

t0

ˆ
Q̃R

ΓK(x, y, t; ξ, η, τ)2dξdηdτ +
1

2

ˆ
Q̃R

ΓK(x, y, t; ξ, η, t0)
2dξdη.

where C3 is a positive constant only depending on λ, Λ, C0 and C1.
The proof of this a priori estimate, also known as Caccioppoli inequality, is presented at the end of this
section and is based on the representation formula for solutions to the equation Ku = 0. For further
applications of this technique see for instance [104], [33] and [7].

As a first step in the proof of our uniqueness result, we state and prove a comparison principle for the
operator K.
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Proposition 2.23 Let us consider the operator K under the assumption (HK). Let u be a classical
solution to {

Ku ≥ 0, (x, y, t) ∈ R2×]t0, T ];

u(x, y, t0) ≤ 0 (x, y) ∈ R2.
(2. 51)

in the sense of Definition 2.6. If moreover

|u(x, y, t)| ≤ MeC(x2+y2),

for some positive consants M and C, then u ≤ 0 in R2×]t0, T ].
Proof. We fix a positive constant t such that t ≤ 1, and we prove that, if we choose t small enough, we
have u = 0 in R2×]t0, t0 + t ]. We then iterate our argument on the strip R2×]t0 + t, t0 + 2t ], then on
R2×]t0 + 2t, t0 + 3t ]. As the choice of t only depends on the operator K and on the constant C in our
assumption |u(x, y, t)| ≤ MeC(x2+y2), after a finite number of steps we cover the whole set R2×]t0, T ].

Fix (x, y, s) ∈ R2×]t0, t0+t ] and, denote by |(x, y)| the Euclidean norm of (x, y). For everyR > |(x, y)|,
we let hR be a C∞(R2) smooth function, such that 0 ≤ hR ≤ 1, hR(ξ, η) = 1 whenever |(ξ, η)| ≤ R, and
hR(ξ, η) = 0 for every (ξ, η) ∈ R2 with |(ξ, η)| ≥ R + 1. We also assume that its first and second order
derivatives are bounded uniformly with respect to R.

We next recall the Green identity

vKu− uK∗v = ∂
∂x

(
va∂u

∂x − ua ∂v
∂x + buv

)
+ x ∂

∂y (uv)− ∂
∂t (uv) .

We then choose a constant δ ∈]0, s − t0[ and we apply the divergence theorem with vR(ξ, η, τ) =
hR(ξ, η)ΓK(x, y, s; ξ, η, τ), to the cylinder

QR,δ :=
{
(ξ, η, τ) ∈ R2×]t0, t0 + t ] | |(ξ, η)| ≤ R+ 2, τ ≤ s− δ

}
.

As vR, ∂vR

∂x , and ∂vR

∂y vanish at the lateral part of the boundary of QR,δ, we find
ˆ
QR,δ

(vRKu− uK∗vR) (ξ, η, τ)dξ dη dτ = −
ˆ
R2

(uvR) (ξ, η, s− δ)dξ dη+

ˆ
R2

(uvR) (ξ, η, 0)dξ dη. (2. 52)

Because of the properties of the fundamental solution we have

u(x, y, s) = lim
δ→0

ˆ
R2

ΓK(x, y, s, ξ, η, s− δ)hR(ξ, η)u(ξ, η, s− δ)dξ dη.

Moreover, by our assumption, we have vRKu ≥ 0 in R2×]t0, t1[, and (uvR)(·, ·, 0) ≤ 0. Hence (2. 52)
gives

u(x, y, s) =

ˆ
R2

(uvR) (ξ, η, 0)dξ dη −
ˆ
R2×]t0,s[

(vRKu− uK∗vR) (ξ, η, τ)dξ dη dτ

≤
ˆ
R2×]t0,s[

u(ξ, η, τ)K∗vR(ξ, η, τ)dξ dη dτ.

We are left with the proof that the right hand side of the above inequality vanishes as R → +∞.
From now on, we only sketch the proof since it suffices to proceed as in the proof of Theorem 1.6 of [40].
Since K∗ΓK(x, y, s; ξ, η, τ) = 0, we deduce

u(x, y, s) ≤2Λ

sˆ

t0

(ˆ
Q̃R

|u(ξ, η, τ)|
∣∣∣∣∂ΓK∂ξ (x, y, s; ξ, η, τ)

∣∣∣∣ ∣∣∣∣∂hR∂ξ (ξ, η, τ)

∣∣∣∣ dξ dη)dτ+
+

sˆ

t0

(ˆ
Q̃R

|u(ξ, η, τ)| |ΓK(x, y, s; ξ, η, τ)| |K∗hR(ξ, η, τ)|dξ dη
)
dτ,
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where Q̃R is defined in (2. 50). We recall that first and second order derivatives of the function hR are
bounded because of its definition, more precisely we have that

|Y (hR(x, y, t)| ≤ C0R,

∣∣∣∣∂hR(x, y, t)∂x

∣∣∣∣ ≤ C1, and (2. 53)

|K∗hR(x, y, t)| ≤ Λ (2 + C1) + C0R =: C2(1 +R),

where C0, C1 and C2 are positive constants. Thus, by applying the Hölder inequality and the estimates
(2. 53), we get the following inequality

u(x, y, s) ≤ 2ΛC1

( sˆ

t0

ˆ
Q̃R

|u(ξ, η, τ)|2dξdηdτ
) 1

2
( sˆ

t0

ˆ
Q̃R

∣∣∣∣∂ΓK∂ξ (x, y, s; ξ, η, τ)

∣∣∣∣2 dξdηdτ) 1
2

+

C2(1 +R)

( sˆ

t0

ˆ
Q̃R

|u(ξ, η, τ)|2dξdηdτ
) 1

2
( sˆ

t0

ˆ
Q̃R

ΓK(x, y, s; ξ, η, τ)2dξdηdτ

) 1
2

.

Then, Lemma 2.22 yields

u(x, y, s) ≤ (2ΛC1C3 + C2(1 +R))

( sˆ

t0

ˆ
Q̃R

|u(ξ, η, τ)|2dξdηdτ
) 1

2

·

( sˆ

t0

ˆ
Q̃R

ΓK(x, y, s; ξ, η, τ)2dξdηdτ +

ˆ
Q̃R

ΓK(x, y, s; ξ, η, t0)
2dξdη

) 1
2

.

By our assumption |u(ξ, η, τ)| ≤ MeC(ξ2+η2), we have that

( sˆ

t0

ˆ
Q̃R

|u(ξ, η, τ)|2dξdηdτ
) 1

2

≤ 2
√
πtRMeC(R+1)2 .

Moreover, the Corollary 5.8 gives

( sˆ

t0

ˆ
Q̃R

ΓK(x, y, s; ξ, η, τ)2dξdηdτ +

ˆ
Q̃R

ΓK(x, y, s; ξ, η, t0)
2dξdη

) 1
2

≤ 2
√
π(1 + t)RCe−C

(R−1)2

t ,

provided that R − 1 is greater than the constant R0 appearing in its statement. Finally, recalling that
0 < t ≤ 1, we conclude that

u(x, y, s) ≤C4(1 +R)2eC(R+1)2e−C
(R−1)2

t ,

where C4 is a positive constant depending on the operator K. In order to conclude our proof, it sufficies
to choose t < C

C . The concludion the follows by letting R→ +∞. Hence u(x, y, s) ≤ 0. The thesis follows
by repeating the previous argument finitely many times, as the choice of t does not depend on (x, y, s).
□

Proof of Theorem 2.2. This uniqueness result plainly follows from Proposition 2.23 firstly applied to
u = u1 − u2, and then to u = u2 − u1. □
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Proof of Theorem 2.1 (Uniqueness of the fundamental solution). Suppose that Γ1 and Γ2 are two
fundamental solutions for the operator K. For every φ ∈ C∞

b (R2) we define

u1(x, y, t) =

ˆ

R2

Γ1(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη, u2(x, y, t) =

ˆ

R2

Γ2(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη

and we note that are bounded classical solutions to the same Cauchy problem (2. 51). Then u1 = u2 by
Theorem 2.2. Since φ is arbitrarily chosen we have that Γ1 = Γ2. □

Proof of Lemma 2.22. For every R > 0, let us consider the following cylinder

QR :=
{
(ξ, η, τ) ∈ R2×]t0, t ] | |(ξ, η)| ≤ R+ 2, τ ≤ t

}
, (2. 54)

which is a slight modification of the cylinder QR,δ previously introduced in the proof of Proposition 2.23.
Let us consider the fundamental solution ΓK associated with the operator K. By definition, ΓK satisfies
the equation Ku = 0. Thus, by multiplying the equation by a certain test function φ(x, y, t) ∈ C∞

0 (R3),
integrating on the cylinder QR and then proceeding by parts, we get the following equality

0 = −
ˆ
QR

⟨
a
∂ΓK
∂ξ

(x, y, t; ξ, η, τ),
∂φ

∂ξ

⟩
dξ dη dτ +

ˆ
QR

b
∂ΓK
∂ξ

(x, y, t; ξ, η, τ)φdξ dη dτ +

+

ˆ
QR

Y ΓK(x, y, t; ξ, η, τ)φdξ dη dτ −
ˆ
QR

rΓK(x, y, t; ξ, η, τ)φdξ dη dτ.

This equality is also known as weak formulation of the equation Ku = 0, and for the sake of clarity
from now on we set ΓK = ΓK(x, y, t; ξ, η, τ). In particular, as a test function we can consider φ(ξ, η, τ) :=
[hR+1(ξ, η)− hR−1(ξ, η)]

2
ΓK , where hR is the same smooth function introduced in the proof of Proposition

2.23, we get

0 ≤ φ ≤ 1, φ =



0 for |(ξ, η)| ≤ R− 1,

(1− hR−1)
2 ΓK for R− 1 < |(ξ, η)| ≤ R

ΓK for R < |(ξ, η)| ≤ R+ 1

h2R+1 ΓK for R+ 1 < |(ξ, η)| < R+ 2

0 for |(ξ, η)| ≥ R+ 2.

Since ∂ξφ = (hR+1 − hR) ∂ξΓK + 2 (hR+1 − hR) ΓK∂ξ (hR+1 − hR), assumption (HK) holds true and the
first and second order derivatives of the function hR are bounded as in (2. 53), we get the following
inequality

λ

tˆ

t0

ˆ

Q̃R

∣∣∣∣∂ΓK∂ξ
∣∣∣∣2 ≤ 2λ

ˆ
QR

∣∣∣∣ΓK (hR+1 − hR−1)
∂ΓK
∂ξ

∂

∂ξ
(hR+1 − hR−1)

∣∣∣∣
A

+ (2. 55)

+
1

2

ˆ
QR

Y
(
ΓK

2
)
(hR+1(ξ, η)− hR−1(ξ, η))

2

B

+ Λ

ˆ
QR

∣∣∣∣ΓK ∂ΓK
∂ξ

(hR+1 − hR−1)
2

∣∣∣∣
C

+ Λ

ˆ
QR

ΓK
2 (hR+1 − hR−1)

2
,

where the set Q̃R has previously been defined in (2. 50). Now, we can estimate terms A and C by Young’s
inequality. As far as we are concerned with term B, we begin considering the following identity:

(hR+1 − hR)
2
Y (ΓK

2) = Y
(
ΓK

2 (hR+1 − hR)
2
)
− ΓK

2 Y
(
(hR+1 − hR)

2
)
.
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Thus, we can rewrite term B as the sum of two terms, and by applying the divergence theorem to B1

(ΓK2 (hR+1 − hR)
2 is null on the lateral boundary of Q̃R), we get

1

2

ˆ
QR

Y
(
ΓK

2
)
(hR+1(ξ, η)− hR(ξ, η))

2

B

≤

≤ 1

2

ˆ
QR

Y
(
ΓK

2 (hR+1 − hR)
2
)

B1

+

ˆ
QR

ΓK
2 Y

(
(hR+1 − hR)

2
)

B2

≤ 1

2

ˆ
Q̃R

ΓK(x, y, t; ξ, η, t0)
2dξdη + 2C0

tˆ

t0

ˆ
Q̃R

ΓK
2dξdηdτ.

By choosing ε = λ
2(4λC1−Λ) we get

λ

2

tˆ

t0

ˆ
Q̃R

∣∣∣∣∣∂ΓK∂ξ
∣∣∣∣∣
2

dξdηdτ ≤ C3

tˆ

t0

ˆ
Q̃R

ΓK
2dξdηdτ +

1

2

ˆ
Q̃R

ΓK
2(x, y, t; ξ, η, t0)dξdη,

where C3 = C3(λ,Λ, C0, C1) is a positive constant. □

2.4 Existence and uniqueness of the fundamental solution ΓL

This section is devoted to the proof of our main results concerning the existence of the fundamental
solution ΓL for the operator L . The proof relies on Theorem 2.19, and is analogous to the proof of the
existence of the fundamental solution ΓK for the operator K presented in Section 2.3.

Existence of ΓL

Proof of Theorem 2.12 (Existence of the fundamental solution). The proof of this theorem is analogous
to the proof of Theorem 2.1. In this case, we construct a sequence of operators (Ln)n∈N satisfying the
assumptions of Theorem 2.19. In particular, we need the coefficients an, bn to be smooth and satisfying
a suitable version of the condition (2. 44). For this reason, we introduce a non-negative function ρ ∈
C∞

0 (R3) such that
ˆ
R3

ρ = 1, B0 := supp ρ ⊂
{
(x, y, t) ∈ R3 | x2 + y2 + t2 < 1

4

}
,

and then proceed with a standard mollifying procedure. In order to take into consideration the fact that
the domain of the coefficients a and b is R+×R2, for every (x, y, t) ∈ R+×R2 and for every n ∈ N we set

an(x, y, t) :=

ˆ

B0

a
(
x− xξ

n , y −
η
n , t−

τ
n

)
ρ(ξ, η, τ) dξ dη dτ,

bn(x, y, t) :=

ˆ

B0

b
(
x− xξ

n , y −
η
n , t−

τ
n

)
ρ(ξ, η, τ) dξ dη dτ.

Note that
(
x− xξ

n , y −
η
n , t−

τ
n

)
∈ B(x, y, t) for every (ξ, η, τ) ∈ B0 and for every n ∈ N, where

B(x, y, t) :=
[
1
2x,

3
2x
]
×
[
y − 1

2 , y +
1
2

]
×
[
t− 1

2 , t+
1
2

]
.
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Then for every n ∈ N the coefficients an are smooth and satisfy the following version of (HL)

|an(x, y, t)| ≤ sup
B(x,y,t)

|a| ≤ Λ,
∣∣∣∂an

∂x (x, y, t)
∣∣∣ ≤ sup

B(x,y,t)

∣∣∣ ∂a∂x ∣∣∣ ≤ 2Λ
x , an(x, y, t) ≥ inf

B(x,y,t)
a ≥ λ.

The same statement holds true for the coefficients bn, with n ∈ N. Then we apply Theorem 2.19 to
the operator Ln for every n ∈ N. Thus, there exists a sequence of equibounded fundamental solutions
(ΓL

n)n∈N, in the sense that each of them satisfies (2. 45).
Then we apply the same diagonal argument as in the proof of Theorem 2.1, but with a different choice

for the open sets (Ωp)p∈N of (R+ × R2)2. Indeed, we define

Ωp :=

{
(x, y, t; ξ, η, τ) ∈ (R+ × R2)2 | x2 + y2 + t2 ≤ p2, ξ2 + η2 + τ2 ≤ p2

(x− ξ)2 + (y − η)2 + (t− τ)2 ≥ 1
2p , x > 1

p , ξ > 1
p

}
,

such that
∪+∞

p=1 Ωp =
{
(x, y, t; ξ, η, τ) ∈ (R+×R2)2 | (x, y, t) ̸= (ξ, η, τ)

}
and Ωp ⊂⊂ Ωp+1 for every p ∈ N.

Thus, we define a function ΓL in the following way: for every (x, y, t), (ξ, η, τ) ∈ R+ × R2 with (x, y, t) ̸=
(ξ, η, τ) we choose q ∈ N such that (x, y, t; ξ, η, τ) ∈ Ωq and we set ΓL(x, y, t; ξ, η, τ) := Γq(x, y, t; ξ, η, τ).
This definition is well-posed, since if (x, y, t) ∈ Ωp, then Γp(x, y, t; ξ, η, τ) = Γq(x, y, t; ξ, η, τ).

We next check that ΓL has the properties listed in the statement of the Theorem 2.12. As every
ΓL
n(x, y, t;x0, y0, t0) = 0 whenever t ≤ t0 or y ≥ y0, also ΓL(x, y, t;x0, y0, t0) = 0 whenever t ≤ t0 or
y ≥ y0. For the same reason, it satisfies (2. 45). Moreover, for every (x0, y0, t0) ∈ R+ × R2, (x, y, t) 7→
ΓL(x, y, t;x0, y0, t0) ∈ L1

loc(R+×R2)∩C2+α
loc (R+×R2 \{(x0, y0, t0)}), and is a classical solution to L u = 0

in R+ × R2 \ {(x0, y0, t0)}. Analogously, (ξ, η, τ) 7→ ΓL(x0, y0, t0; ξ, η, τ) ∈ L1
loc(R+ × R2) ∩ C2+α

loc (R3 \
{(x0, y0, t0)}) and is a classical solution to L ∗v = 0 in R+×R2 \{(x0, y0, t0)}. This proves the point 1. of
the Definition 2.18 and the point 1. of Theorem 2.12. We remark that points 3. and 4. of Theorem 2.12
follow immediately from the construction of the fundamental solution ΓL and the pointwise convergence.
As far as we are concerned with the reproduction property 2. of Theorem 2.12, we proceed as in the
proof of Theorem 2.1 thanks to Corollary 2.20.

To proceed with the proof of Theorem 2.12 we have to verify that for every φ ∈ Cb(R2) the function

u(x, y, t) =

ˆ

R2

ΓL(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη

is a classical solution to the Cauchy problem{
L u(x, y, t) = 0, (x, y, t) ∈ R+ × R× R+;

u(x, y, t0) = φ(x, y) (x, y) ∈ R+ × R.

By a very standard argument we differentiate under the integral sign and we find

L u(x, y, t) =

ˆ

R+×R

L ΓL(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη = 0.

Thus, to conclude the proof we have to verify that for any (x0, y0) ∈ R+ × R we have

lim
(x,y,t)→(x0,y0,0)

u(x, y, t) = φ(x0, y0). (2. 56)

The proof of this fact is based on the use of “barriers”, and on Theorems 6.1 and 6.3 of [90]. The
following argument relies on the fact that the operator L behaves as the operator K in every compact
set of R+ × R× R. Let us consider the sequence of functions

un(x, y, t) =

ˆ

R2

ΓL
n(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη
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and note that u(x, y, t) = lim
n→∞

un(x, y, t). Since ΓL
n is the fundamental solution of Ln, we have that

lim
(x,y,t)→(x0,y0,0)

un(x, y, t) = φ(x0, y0) for everyn ∈ N. (2. 57)

Let us introduce the cylinder

Q :=
]
1
2x0,

3
2x0
[
× ]y0 − 1, y0 + 1[×]0, T [

centered at (x0, y0, 0). As the sequence {un}n∈N is uniformly bounded, it is possible to construct two
barrier functions u+ and u−, a super and a sub solution respectively, such that

u−(x, y, t) ≤ un(x, y, t) ≤ u+(x, y, t) for every (x, y, t) ∈ Q

and for every n ∈ N, and such that

lim
(x,y,t)→(x0,y0,0)

u−(x, y, t) = φ(x0, y0), lim
(x,y,t)→(x0,y0,0)

u+(x, y, t) = φ(x0, y0).

The claim (2. 56) directly follows. □

Remark 2.24 The linear growth of the initial condition in the Cauchy problem (2. 4) is allowed in the
formula (2. 42). Indeed, the Corollary 2.20 holds for the operator L satisfying the assumption (HL),
and it is known that the Geman-Yor process (2. 30) has finite first order moments.

Uniqueness and comparison principle for the operator L

Following the steps of the proof of Theorem 2.2 for the uniqueness of the solution for the Cauchy problem
associated to the operator K, we need to prove an intermediate result for the operator L , also known as
comparison principle. In particular, we can apply the general result due to Aronson and Besala proved
in [10], that in the case of the operator L reads as follows.

Theorem B (Aronson - Besala). Let us consider for T > 0 the open set Ω = R+ × R×]0, T ] and let L
be the differential operator defined in (2. 28) under the assumption (HL). If u is a classical solution of
L u ≤ 0 in Ω such that

u(x, y, 0) ≥ 0, for (x, y) ∈ R+ × R and u(0, y, t) ≥ 0 for (y, t) ∈ R×]0, T ]

and for some positive constant M and k

u(x, y, t) ≥ −M exp
{
k log

(
x2 + y2 + 1

)
+ 1
}2

in Ω, then u(x, y, t) ≥ 0 in Ω.

We remark that the above results would be enough to ensure the uniqueness of the solution for the
Cauchy problem associated to the operator L in the form (2. 28). Nevertheless, when considering the
operator L with locally Hölder continuous coefficients and satisfying the assumption (HL) as in our
case, we can improve the previous result by requiring the solution u to have a positive sign only on the
boundary related to the initial data

u(x, y, 0) ≥ 0, for (x, y) ∈ R+ × R,

and getting rid of the sign assumption on the part of the boundary {0} × R×]0, T ].
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Theorem 2.25 Let us consider for T > 0 the open set Ω = R+ ×R×]0, T ] and let L be the differential
operator defined in (2. 28) under the assumption (HL). If u is a classical solution of L u ≤ 0 in Ω such
that

u(x, y, 0) ≥ 0, for (x, y) ∈ R+ × R, (2. 58)
and for some positive constant M and k

u(x, y, t) ≥ −M exp
(
C(log(x2 + y2 + 1)− log(x)) + 1

)2
, (2. 59)

for every (x, y, t) ∈ R+ × R×]0, T ]. Then u ≥ 0 in R+ × R× [0, T ].

Proof Let us consider, for a given β > 0, the auxiliary function

v(x, y, t) = exp
(
2eβt C(log(x2 + y2 + 1)− log(x)) + 1

)2
.

It is easily verified that if t ∈]0, 1/β] we have

L v(x, y, t) ≤ eβtv
(
C(log(x2 + y2 + 1)− log(x)) + 1

)2
(E − 2β) ,

where E is a positive constant only depending on the constants C and λ,Λ appearing in (HL). Thus, if
we set β = E it follows that L v < 0 in R+ × R×]0, 1/β].

In the following, we let ψ̃(x, y) := log(x2 + y2 + 1) − log(x) and we note that, for every K > log(2),
we have {

(x, y) ∈ R+ × R | ψ̃(x, y) < K
}
=
{
(x, y) ∈ R2 | (x− xK)2 + y2 < r2K

}
,

where xK := eK

2 and rK =
√
x2K − 1. If β > 0 is as above, we consider, for arbitrary K > log(2) and

M > 0, the function

w(x, y, t) = u(x, y, t) +Me−(CK+1)2v(x, y, t),

It is clear that Lw < 0 in R+ × R×]0, 1/β], and that w(x, y, 0) ≥ 0 for (x, y) ∈ R× R+, by (2. 58).
Moreover, because of (3.14), we have that

w(x, y, t) ≥ 0 for (x, y, t) ∈
{
R+ × R× [0, T ] | ψ̃(x, y) = K

}
.

From the weak minimum principle it follows that w(x, y, t) ≥ 0 for every (x, y, t) ∈ R+×R× [0, 1/β] such
that ψ̃(x, y) ≤ K.

Now, if (x, y, t) is any point in R+ × R×]0, 1/β], we choose K such that ψ̃(x, y) ≤ K, and by the
above argument it follows that w(x, y, t) ≥ 0. The case t > 1/β straightly follows by repeating the above
argument. □

Proof of Theorem 2.13. This uniqueness result plainly follows from Proposition 2.25 firstly applied
to u = u1 − u2, and then to u = u2 − u1. □

Proof of Theorem 2.12 (Uniqueness of the fundamental solution). Suppose that Γ1 and Γ2 are two
fundamental solutions for the operator L . For every φ ∈ C∞

b (R2) we define

u1(x, y, t) =

ˆ

R2

Γ1(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη, u2(x, y, t) =

ˆ

R2

Γ2(x, y, t; ξ, η, t0)φ(ξ, η) dξ dη

and we note that are bounded classical solutions to the same Cauchy problem. Then u1 = u2 by Theorem
2.13. Since φ is arbitrarily chosen we have that Γ1 = Γ2. □



Chapter 3

On a nonlinear kinetic
Kolmogorov-Fokker-Planck model:
well-posedness results in Hölder
spaces and diffusion asymptotics

This chapter is devoted to the study of an application of the Kolmogorov equation to the kinetic theory.
The new results we present here are part of a joint project with Yuzhe Zhu from the ENS of Paris
(France), where the author has spent a research period under the supervision of Prof. Cyril Imbert
(CNR). In particular, we are interested in proving well-posedness results and diffusion asymptotics in
Hölder spaces for positive solutions u = u(v, x, t) ≥ 0 to the following Cauchy problem{

(∂t + v · ∇x)u(v, x, t) = ρβu(x, t)∇v · (∇v + v)u(v, x, t), (v, x, t) ∈ Rn × Tn × (0, T ]

u(v, x, 0) = φ(v, x) (v, x) ∈ Rn × Tn,
(3. 1)

where T is a positive constant, β ∈ [0, 1] and the nonlinear term ρu is defined as follows

ρu(x, t) :=

ˆ

Rn

u(v, x, t) dv, with ρφ(x) =

ˆ

Rn

φ(v, x) dv. (3. 2)

From now on, we denote by L the stationary kinetic Kolmogorov-Fokker-Planck diffusive operator

L u(v, x, t) := ∇v · (∇v + v)u(v, x, t) = ∇v · (∇vu(v, x, t) + vu(v, x, t)) (3. 3)

appearing on the right-hand side of equation (3. 1). This operator only acts on the velocity variable and
ceases to be dissipative on its unique steady state µ, that is the following global Maxwellian

µ(v) := (2π)−
n
2 e−

|v|2
2 v ∈ Rn. (3. 4)

For this reason is natural to assume Gaussian bounds for the initial data φ of this type

φ(v, x) ≤ Λµ(v) or λµ(v) ≤ φ(v, x) ≤ Λµ(v) for (v, x) ∈ Rn × Tn.

The nonlinear drift-diffusion equation appearing in (3. 1) arises in various different research fields, such
as plasma physics and polymer dynamics, and it is a fundamental tool for the modeling of the collisional

60
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evolution of a system of a large number of particles. From the perspective of a stochastic process
{(Xt, Vt) : t ≥ 0}  dXt = Vtdt,

dVt = Vt dt+

√
2ρβu(Xt, t) dWt,

driven by a Brownian motion {Wt}t≥0, the function µ−1u is the evolving density of the law of the
process {(Xt, Vt) : t ≥ 0}, where u is a solution to the equation in (3. 1) and µ is the global Maxwellian
introduced in (3. 4). For further information we refer to the following works [27] and [117], respectively
by Chado and Villani. Moreover, if we recall the definition of the stationary kinetic Kolmogorov-Fokker-
Planck diffusive operator L introduced in (3. 3), the nonlinear diffusive collision term ρβuL models the
collision of particles in a certain surrounding bath, where the aggregation of particles induces friction
contribution. Specifically, on one hand the diffusion coefficient ρβu describes that the friction effect in the
collision interaction is positively correlated to the mass of particles occupying the position x at time t.
On the other hand, the drift-diffusion operator L , that only acts on the velocity variable and ceases to be
dissipative on its unique steady state µ, ensures that its null space is spanned by the global Maxwellian
µ and the local conservation law of mass is satisfied.

As far as we are concerned with well-posedness results for the Cauchy problem (3. 1), in the framework
of Sobolev spaces results of this type have been proved by Imbert and Mouhot in [68], where the authors
also prove higher order Schauder estimates for solutions to the equation (3. 1), and by Liao, Wang and
Yang in [87]. Our results improve that of [68] and [87] because we study the Cauchy problem (3. 1)
in Hölder spaces Cα (see Definition 3.7). Indeed, given that the initial data φ is bounded from above
φ ≤ Λµ by the global Maxwellian introduced in (3. 4) and for every T > 0 there exists a unique positive
solution to (3. 1) that is smooth for every t > 0.

Theorem 3.1 Let us consider the Cauchy problem (3. 1), with β ∈ [0, 1]. Let φ ∈ C (Rn × Tn) and let
0 < λ ≤ Λ be two positive constants such that the following bounds for the initial data φ and the nonlinear
term ρu defined in (3. 2) hold true:

0 ≤ φ(v, x) ≤ Λµ(v) in Rn × Tn and ρφ(x) ≥ λ in Tn. (3. 5)

If φ is continuous in Rn × Tn, for every T > 0 there exists a unique positive solution u to (3. 1) in
Rn × Tn × [0, T ] such that for any k ∈ N and τ ∈ (0, T ), we have

∥u∥Wk,∞(Rn×Tn×[τ,T )) ≤ Ck,τ , (3. 6)

for some constant Ck,τ > 0 only depending on α, β, λ, Λ, n, τ , T and k.

On one hand, the proof of the well-posedness result is presented in Section 3.3, see Proposition 3.19 and
Proposition 3.20. In particular, the proof of Proposition 3.19 relies on the Schauder-Fixed point theorem,
as well as a mass-spreading result based on the Harnack inequality (3. 17) and a barrier function method
inspired by the works [62] and [63] for the Landau equation and the Boltzmann equation (see Proposition
3.14, Lemma 3.15 and Lemma 3.16).

On the other hand, the C∞ a priori estimates (3. 6) are obtained through an iterative procedure that
was firstly introduced by Imbert and Silvestre in [69] for the Boltzmann equation that we adapt here to
the Cauchy problem (3. 1) in Section 3.4.

Lastly, since the spatial inhomogeneous nonlinear equation (3. 1) locally behaves as the classical
Kolmogorov equation Ku = f , where the linear operator K is defined as

(∂t + v · ∇x)u(v, x, t) = Tr
(
AD2

vu(v, x, t)
)
+ b · ∇vu(v, x, t) + cu(v, x, t), (3. 7)

in Section 3.1 we recall some basic facts regarding this equation and the associated Cauchy problem in the
more general domain Rn×Rn×[0, T ]. Moreover, we recall the statement of the Harnack inequality proved
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by Golse, Imbert, Mouhot and Vasseur in [58] for the linear equation (3. 7), that is the fundamental tool
for the construction of the Harnack chain argument. Finally, in Theorem 3.12 we prove Global Schauder
estimates for solutions to (3. 18). We remark that all of these results can be restricted to the domain
Tn × Rn × [0, T ] when required.

In the future, our aim is to study, with the help of the estimate (3. 6), the exponential stability of
the global equilibria for the equation (3. 1) following the entropic hypocoercivity method developed by
Villani in [118] to study the spacial inhomogeneous kinetic equation in a H1-framework and through a
macro-micro scheme decomposition (see [46], [43] and [66]). Moreover, we plan to study the asymptotic
stability as ε→ 0 of the following scaled equations{

(ε∂t + v · ∇x)uε(v, x, t) =
1
ερ

β
uε
(x, t)L uε(v, x, t),

uε(v, x, 0) = φε(v, x),
(3. 8)

obtained by applying the parabolic scaling t 7→ ε2t, x 7→ εx to (3. 1) and where ε ∈ (0, 1) denotes the
ratio of the mean free path (microscopic scale) to the typical macroscopic length. In particular, our aim is
to prove that the scaled equations (3. 8) lead to the fast porous medium flow equation under the diffusive
limit.

3.1 The classical Kolmogorov equation
This section contains a survey of results regarding the Kolmogorov equation (3. 7), that is the linear
counterpart of the nonlinear spacial inhomogeneous equation (3. 1), and the associated Cauchy problem
in the more general domain Rn×Rn×(0, T ). Moreover, we recall the statement of the Harnack inequality
proved by Golse, Imbert, Mouhot and Vasseur in [58] for the linear equation (3. 7), that is the fundamental
tool for the construction of the Harnack chain argument appearing in the proof of Theorem 3.1. Finally,
in Theorem 3.12 we prove Global Schauder estimates for solutions to (3. 18). We remark that all of
these results can be restricted to the domain Tn ×Rn × (0, T ) when required. Let us consider the partial
differential operator associated to the Kolmogorov equation (3. 7):

Ku(v, x, t) := ∂tu(v, x, t) + v · ∇xu(v, x, t)− Tr
(
AD2

vu(v, x, t)
)
− b · ∇vu(v, x, t)− cu(v, x, t). (3. 9)

Indeed, it is a classical Kolmogorov operator of the type (1. 33) in R2n+1 and can be recovered from
(1. 33) by choosing b = 0, c = 0,

A =

(
−A On

On On

)
, and B =

(
On On

In On

)
.

Since the Kolmogorov operator K is the linear counterpart of the nonlinear operator introduced in (3. 1)
and the two of them locally agree in every compact subset of R2n+1, we then borrow the geometrical
setting and the regularity theory developed for the Kolmogorov operator (3. 7) to study the nonlinear
spacial inhomogeneous operator introduced in (3. 1). Thus, in this section we recall some notation and
known results concerning the geometrical structure underlying the operator (3. 7). For a comprehensive
treatment of this subject we refer to Chapter 1. First of all, equations of the form (3. 7) are left translation
invariant with respect to the Lie product “◦” introduced in (1. 12), that in dimension R2n+1 reads as
follows

(v1, x1, t1) ◦ (v2, x2, t2) = (v1 + v2, x1 + x2 + t2v1, t1 + t2), (3. 10)
where (v1, x1, t1), (v2, x2, t2) ∈ Rn×Rn×R. Since the couple (v, x) denotes the position and the velocity
of a particle, the above group operation is also known as Galilean transformation. One can also define
the inverse element z−1 for a certain z = (v, x, t) ∈ R2n+1 as follows

z−1 := (−v,−x+ tv,−t).
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Since the matrix B is of the form (1. 18), by Proposition 1.4 we have that equation (3. 7) is left translation
invariant with respect to the following family of dilations

δr(v, x, t) := (rv, r3x, r2t), for every r > 0. (3. 11)

As already noticed in Chapter 1, the scaling {δr}r>0 and the Galilean traslation “◦” naturally require a
new definition for cylinders. Given z0 ∈ Rn ×Rn ×R and r > 0, we respectively define the unit cylinder
and the scaled unit cylinder as follows

Q1 := Q1(0) = [−1, 1]n × [−1, 1]n × (−1, 0] and Qr := Qr(0) = δr(Q1). (3. 12)

Finally, we define the cylinder Qr(z0) := {z0 ◦ z : z ∈ Qr} with radius r and center at z0. In particular,
we have that

Qr(z0) =
{
(v, x, t) ∈ Rn × Rn × R : |v − v0| < r, |x− x0 − (t− t0)v0| < r3, t0 − r3 < t ≤ t0

}
.

Therefore, it may also be convenient to work with a notion of distance, Hölder norm, kinetic degree
and kinetic differential homogeneous operator with respect to the scaling {δr}r>0 and left-invariant with
respect to the translation “◦”.

Definition 3.2 Given z1 = (v1, x1, t1), z2 = (v2, x2, t2) in R2n+1, we introduce the following distance

dl(z1, z2) := min
w∈Rn

{
max

(
|v1 − w|, |v2 − w|, |x1 − x2 − (t1 − t2)w|

1
3 , |t1 − t2|

1
2

)}
.

It may also be convenient to introduce the notion of length of a vector z = (v, x, t) ∈ R2n+1 as

∥z∥ := min
w∈Rn

{
max

(
|v − w|, |w|, |x− tw|

1
3 , |t|

1
2

)}
.

Remark 3.3 The distance dl is left invariant with respect to the Lie group action in the sense that
dl(z ◦ z1, z ◦ z2) = dl(z1, z2) for any z, z1, z2 ∈ R2n+1. Moreover, it is homogeneous of degree 1 with
respect to {δr}r>0. Indeed, dl(δr(z1), δr(z2)) = rdl(z1, z2).

Remark 3.4 As it is pointed out in Proposition 2.2 in [70] (we consider here s = 1), dl is indeed a
distance in the sense that it satisfies the triangle inequality. Nevertheless, there are other equivalent
formulations for the distance dl, such as the one considered in Definition 1.10 of Chapter 1. We remark
that this latter formulation is not a proper distance, in the sense that the triangle inequality fails, but
instead holds true the quasi-trangle inequality (1. 26). Nevertheless Definition 1.10, and other alternative
formulations such as the one of Remark 1.8, give us a good estimate of the distance dl. For this reason,
they are used whenever it is convenient.

Remark 3.5 Technically, ∥ · ∥ is a homogeneous semi-norm of degree 1 with respect to the family of
dilations {δr}r>0 defined in (3. 11) and, as we point out in Definition 1.7 and Remark 1.8, there are
several convenient equivalent expressions for it. Moreover, it does satisfy the traingle inequality with
respect to the group action “◦”:

∥z1 ◦ z2∥ ≤ ∥z1∥+ ∥z2∥. (3. 13)

It may be convenient to define a modified notion of degree for a polynomial p in R[v, x, t] that matches
the scaling of the equation. For this reason, it is called kinetic degree.
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Definition 3.6 Given a monomial m of the form

m(v, x, t) = cv
αn+1

1 . . . vα2n
n xα1

1 . . . xαn
n tα0 with c ̸= 0,

we define its kinetic degree as

degkm = 2a0 + 3

n∑
j=1

αj +

2n∑
j=n+1

αj .

A polynomial p in R[v, x, t] is always a finite sum of monomials. In general, we define the kinetic degree
of p =

∑
mj, and we write degkp, as the maximum of degkmj for all its monomial terms mj.

This definition of kinetic degree is justified by the fact that our notion of degree needs to be consistent
with the family of dilations {δr}r>0. Let us consider a monomial m. Its degree is computed counting 2
times the exponent for the variable t, 3 times the exponent for the variables xi and 1 time the exponent
for the variables vi. With this definition in mind, one can easily check that

m(rv, r3x, r2t) = rdegkmm(v, x, t).

We remark that the kinetic degree of the zero polynomial is not properly defined in the definition above.
It is appropriate to make it equal to −∞, or −1. The fact that the kinetic degree of the zero polynomial
is negative is relevant for the definition of the C0

l norm given in (3. 14).
In the same spirit, we need to introduce a properly scaled version of Hölder spaces. There are various

proper definitions of Hölder spaces that may be feasible for our case. The one we consider here is due to
Imbert and Silvestre and it was firstly introduced in [70]. We remark that when α ∈ (0, 1) the folllwing
definition is equivalent to the one considered by Manfredini in [90] and in Definition 1.11.

Definition 3.7 Let Ω be an open subset of R2n+1. For any α ∈ (0,+∞), a function u : Ω −→ R is
α-Hölder continuous at a point z0 ∈ R2n+1 if there exists a polynomial p ∈ R[v, x, t] such that degkp < α
and for any z ∈ Ω

|u(z)− p(z)| ≤ C dl(z, z0)
α for every z, ζ ∈ Ω.

When this property holds at every point z0 in the domain Ω, with a uniform constant C, we say u ∈ Cα
l (Ω).

The semi-norm [u]Cα
l (Ω) is the smallest value of the constant C such that the above inequality holds for

every z, z0 ∈ Ω. With this definition in mind, we have

[u]C0
l (Ω) = ∥u∥C0

l (Ω) = ∥u∥L∞(Ω). (3. 14)

Thus, we can define the Cα
l -norm of a function u to be

∥u∥Cα
l (Ω) = ∥u∥L∞(Ω) + [u]Cα

l (Ω). (3. 15)

Remark 3.8 When α ∈ (0, 1) this definition coincides with Definition 1.11. Moreover, in Section 2.4
of [68] the authors prove that when β = (2 + α) ∈ (2, 3) the polynomial p realizing the infimum in the
Cβ

l −seminorm is the Taylor expansion of kinetic degree 2 defined as:

Tz0 [u](v, x, t) := u(z0) + (t− t0)[∂t + v0 · ∇x]u(z0) (3. 16)
+ (v − v0) · ∇vu(z0) +

1
2 (v − v0)

T ·D2
vu(z0) · (v − v0),

where the linear part in x does not appear since it is of kinetic degree 3. We also recall the work
by Pagliarani, Pascucci and Pignotti [101], where the authors prove the Taylor expansion for Ck,α(Ω)
functions. It is worth noticing that the authors require in [101] a weaker regularity assumption for the
definition of the space C2+α than the one considered in [70], [68] and [90].
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The usual interpolation estimates for Hölder spaces hold (see Proposition 2.10, [70]).

Proposition 3.9 Given 0 ≤ α1 < α2 < α3 so that α2 = θα1 + (1 − θ)α3, we have for all function
u ∈ Cα3

l (Qr(z0))

[u]Cα2
l (Qr(z0))

≤ C
(
[u]θ

C
α1
l (Qr(z0))

[u]1−θ
C

α3
l (Qr(z0))

+ rα1−α2 [u]Cα1
l (Qr(z0))

)
,

for some constant C depending on α1, α3 and on dimension only.

Lastly, it may be convenient to define the kinetic degree of a differential operator. We say that the
kinetic degree of ∂t+v ·∇x is 2, the kinetic degree of ∂xi

is 3 and the kinetic degree of ∂vi is 1. Eventually,
we recall the following lemma proved by Imbert and Silvestre in [70] (see Lemma 2.7), that relates the
definition of Hölder spaces Cα

l with the operators lastly introduced.

Proposition 3.10 Let D = ∂t + v · ∇x, D = ∂xi
or D = ∂vi . Let u be a Cα

l function in a cilinder Q
and let degkD = κ, with κ < α. Then Df ∈ Cα−κ

l and

[Du]Cα−κ
l (Q) ≤ C[u]Cα

l (Q).

3.1.1 Harnack inequality and Global Schauder estimates
Let us consider the Kolmogorov-Fokker-Planck equation (3. 7) under the following structural assumption
for the matrix A and the vector b.

(H) b = (bi(v, x, t))
n
i=1 is a vector and A = (aij(v, x, t))i,j=1,...,n is a positive definite symmetric matrix

in Rn and there exist two positive constants λ, Λ such that

λ

n∑
i=1

|ξi|2 ≤
n∑

i,j=1

aij(z)ξiξj ≤ Λ

n∑
i=1

|ξi|2

for every ξ ∈ Rn and z ∈ R2n+1.

The study of the regularity theory for this linear equation has widely been developed during the last
decade and in particular, Golse, Imbert, Mouhot and Vasseur proved the following Harnack inequality
for weak solutions (in the sense introduced in (4. 4) of Section 4) to the equation (3. 7).

Harnack inequality (Theorem 2 [58]). There exist three constants M > 1, R > 0,∆ > 0, with
0 < R2 < ∆ < ∆+R2 < 1, such that

sup
Q−

u ≤M(inf
Q+

u+ ∥f∥L∞(Q1))
)

for every non-negative weak solution u to the equation (3. 7) on Q1, with f ∈ L∞(Q1) and Q1 is the
unit box introduced in (3. 12). The constants M,R and ∆ only depend on the dimension n and on the
ellipticity constants λ and Λ. Moreover Q+, Q− are defined as follows

Q+ = QR with 0 < R2 < ∆ < ∆+R2 < 1, Q− = QR(0, 0,−∆).

As Golse, Imbert, Mouhot and Vasseur notice in Remark 4 in [58], “using the transformation (3. 10),
we get a Harnack inequality for cylinders centered at an arbitrary point (v0, x0, t0)”. We hereby recall
the precise meaning of this assertion and we improve it by also using the dilation (3. 11). We refer to
Theorem 4.6 of Chapter 4 for the proof of this statement.
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Invariant Harnack inequality. Let (v0, x0, t0) be any point of R2n+1 and let r be a positive number.
There exist three constants M > 1, R > 0,∆ > 0, with 0 < R2 < ∆ < ∆+R2 < 1, such that

sup
Q−

r (v0,x0,t0)

u ≤M( inf
Q+

r (v0,x0,t0)
u+ ∥f∥L∞(Qr(v0,x0,t0)

) (3. 17)

for every non-negative weak solution u to the equation (3. 7) on Qr(v0, x0, t0), with f ∈ L∞(Qr(v0, x0, t0)).
The constants M,R and ∆ only depend on the dimension n and on the ellipticity constant λ. Moreover
Q+

r (v0, x0, t0),
−Qr(v0, x0, t0) are defined as follows

Q+
r (v0, x0, t0) = (v0, x0, t0) ◦ drQ+, Q−

r (v0, x0, t0) = (v0, x0, t0) ◦ drQ−.

Let us consider the Cauchy problem associated to the linear Kolmogorov-Fokker-Planck equation
(3. 7) under the structural assumption (H):

(∂t + v · ∇x)u = Tr
(
AD2

vu
)
+ b · ∇vu+ cu+ f in Rn × Rn × (0, T ),

u(v, x, 0) = φ(v, x) in Rn × Rn,

lim
|(v,x,t)|→∞

u(v, x, t) = 0.
(3. 18)

There exists a vast literature on the existence and uniqueness of the solution to (3. 18) related to the
more general class of ultraparabolic equations (1. 33), for which the kinetic Fokker-Planck operator K
introduced in (3. 9) is a particular case. In particular, Theorem 1.15, Theorem 1.16 and Theorem 1.17 of
Chapter 1 are the most complete results we have at our disposal in this field. For the sake of completeness,
we hereby recall the following well-posedness result for the Cauchy problem (3. 18), that can be seen as
a particular case of the more general Theorem 1.15. Moreover, for the proof of an analogous statement
we refer to Chapter 2, Theorem 2.1 and Theorem 2.2.

Proposition 3.11 Let T > 0, α ∈ (0, 1) and aij , bi, c ∈ Cα
(
R2n × [0, T )

)
with 1 ≤ i, j ≤ n. Then for

any f ∈ Cα
(
R2n × [0, T )

)
and φ ∈ C

(
R2n

)
such that

|f(v, x, t)| ≤ C eC|(v,x)|2 |φ(v, x)| ≤ C eC|(v,x)|2 for every (v, x) ∈ R2n and 0 < t < T,

there exists a unique solution u to (3. 18). In particular, if φ ∈ C2+α
l

(
R2n

)
, then u ∈ C2+α

l

(
R2n × [0, T )

)
.

As far as we are concerned with Schauder estimates for the Cauchy problem (3. 18), optimal results
have been obtained by many authors in the framework of semigroup theory. In Theorem 1.2 and Theorem
8.2 of [89], Lunardi proves an optimal Hölder regularity result for the solution u for the Cauchy problem
(3. 18), under the assumption that the initial data φ has Hölder continuous derivatives ∂xi

φ and ∂xixj
φ,

i, j = 1, . . . ,m0. It is also assumed that the matrix {aij}i,j is elliptic and that the coefficients aij are
Hölder continuous function of the space variable x that converges as |x| goes to +∞. Lorenzi improves
in [88] the results by Lunardi in that the coefficients aij are not assumed to be bounded functions. In
the other hand, in [88] the coefficients aij have Hölder continuous derivatives up to third order and the
Lie algebra related to the constant coefficient operator has step 2. Priola in [111] considers operators
with unbounded coefficients ai, i = 1, . . . ,m0. We also recall the work [100] by Nyström, Pascucci
and Polidoro, where the authors prove Schauder estimates for the obstacle problem associated to (3. 7).
Moreover, Manfredini proves in [90] global Schauder estimates for the Dirichlet problem associated to
(3. 7) in the dilation invariant case. Later on, Di Francesco and Polidoro [40] extend these results to
the non dilation invariant case. For further information see Chapter 1, Theorem 3. 41. However in all
of these works, either the choice of the Hölder spaces was different from the ones introduced here in
Definition 3.7, or the assumptions on the coefficients were stronger. For this reason, for interior Schauder
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estimates we refer to the paper [68] by Imbert and Mouhot, where the authors prove Schauder estimates
and localized Schauder estimates for classical solutions to Ku = f .

Scahuder estimates (Theorem 1.1 [68]) Let us consider Ku = f under the structural assumption
(H). Given α ∈ (0, 1), aij , bi, c ∈ Cα

l

(
R2n × R

)
with 1 ≤ i, j ≤ n and a function f ∈ Cα

l

(
R2n × R

)
, any

classical solution u in the sense of Definition 2.6 to Ku = f satisfies

∥u∥C2+α(Rn×Rn×R) ≤ C
(
[f ]Cα(Rn×Rn×R) + ∥u∥L∞(Rn×Rn×R)

)
(3. 19)

where the constant C depends on the dimension n, the ellipticity constants λ,Λ, the exponent α, the
∥ · ∥Cα norm of the coefficients aij , bi for i = 1, . . . , n and c.

Local Scahuder estimates (Theorem 3.9 [68]) Let us consider Ku = f under the structural
assumption (H). Given α ∈ (0, 1), aij , bi, c ∈ Cα

l

(
R2n × R

)
with 1 ≤ i, j ≤ n and a function f ∈

Cα
l

(
R2n × R

)
, any classical solution u ∈ C2+α

l

(
R2n × R

)
in the sense of Definition 2.6 to Ku = f

satisfies for every z0 ∈ R2n × R

∥u∥C2+α(Q1(z0)) ≤ C
(
[f ]Cα(Q2(z0)) + ∥u∥L∞(Q2(z0))

)
(3. 20)

where the constant C depends on the dimension n, the ellipticity constants λ,Λ, the exponent α, the
∥ · ∥Cα norm of the coefficients aij , bi for i = 1, . . . , n and c.

Our aim is to prove global Schauder estimates for the Cauchy problem (3. 18) starting from these
interior results and taking into account the estimate of the Cα

l norm of the solution around the initial
time. For this reason, for 0 ≤ k ≤ 2 and α ∈ (0, 1) we introduce the following weighted norms

∥u∥(ω)
k+α :=

∑
0≤j≤k

[u]
(ω)
j + [Dku](ω)

α (3. 21)

for a certain weight ω ∈ R, where the semi-norms appearing on the right-hand side are defined as follows:

[u]
(ω)
j := sup

(v,x,t)∈R2n×(0,T )

t
j
2+ω

∣∣Dju(v, x, t)
∣∣ , (3. 22)

[u]
(ω)
j+α := sup

(v1,x1,t1),(v2,x2,t2)

∈R2n×(0,T )

t
j+α
2 +ω

∣∣Djf(t1, x1, v1)−Djf(t2, x2, v2)
∣∣

dl ((t1, x1, v1), (t2, x2, v2))
α ,

where D0 = 1, D1 = ∂v and D2 is taken over ∂t + v · ∂x and ∇2
v. We are now in position to state our

result regarding global Schauder estimates for classical solution to the Cauchy problem (3. 18).

Theorem 3.12 Let T ∈ (0,∞], α, ω ∈ (0, 1) and aij, bi, f ∈ Cα
(
R2n × [0, T )

)
with 1 ≤ i, j ≤ n. If u

is a positive classical solution of the Cauchy problem (3. 18) (in the sense of Definition 2.6) with initial
data φ = 0, then

[u]
(ω)
2+α ≤ C[f ](1−ω)

α . (3. 23)

Moreover, provided that φ ∈ C2+α
l

(
R2n

)
the following estimate holds true

∥u∥C2+α
l (R2n×[0,T )) ≤ C

(
∥u∥L∞(R2n×[0,T )) + ∥φ∥C2+α

l (R2n) + ∥f∥Cα(R2n×[0,T ))

)
. (3. 24)

In both cases, the constant C depends on the dimension n, the ellipticity constants λ,Λ, the exponent α,
the ∥ · ∥Cα norm of the coefficients aij , bi for i = 1, . . . , n and c.
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Before going through the proof of Theorem 3.12 we need to introduce an intermediate result, that is a
maximum principle on R2n × [0, T ] for subsolutions to Ku = 0. The proof of this result is inspired by
the proof Lemma A.2 of [25]. We remark that the classical case of a bounded domain can be found in
Theorem 1.29 and Theorem 4.2 of this work.

Lemma 3.13 Let us consider the Kolmogorov equation Ku = 0 under the structural assumption (H)
on the parabolic cylinder ΩT := Ω × (0, T ], where Ω is a general unbounded domain of R2n. Let aij,
bi, c ∈ C0 (ΩT ) with 1 ≤ i, j ≤ n and

∣∣∣ n∑
i=1

biξi

∣∣∣ ≤ Λ
(
1 + |v|2

) 1
2 |ξ| for every ξ ∈ Rn, (v, x, t) ∈ ΩT and |c| ≤ Λ,

where Λ is the ellipticity constant appearing in (H). Let u be a bounded positive subsolution, that is
Ku ≤ 0 in ΩT , then

sup
ΩT

u ≤ sup
∂KΩT

u

where the hypoelliptic boundary is defined as ∂KΩT :=
(
[0, T ]× Ω

)
\ ((0, T ]× Ω).

Proof. As we have already pointed out, when the domain Ω is bounded the proof of this result can
be found in Theorem 1.29 and Theorem 4.2 and also in Proposition A.1 of [25] since we are considering
the particular case of the kinetic Kolmogorov-Fokker-Planck equation. For this reason, let us consider
a general unbounded domain Ω. Given two positive constant C1 and C2 we introduce two auxiliary
functions

ψ1(v, t) := eC1t
(
1 + |v|2

)
and ψ2(t, x) := eC2t

(
1 + |x|2

)
.

Since u is bounded, for every ε1, ε2 > 0 there exist R(ε1), R(ε2) > 0 independent of C1 and C2 such that

u(v, x, t)− ε1ψ1(v, t)− ε2ψ2(x, t) ≤ sup
(v,x,t)∈∂KΩT

u(v, x, t) in ΩT ∩ {|v| ≥ R(ε1) or |x| ≥ R(ε2)}.

By applying the operator K defined in (3. 9) to the function ψ1 and by choosing C1 = 4Λ we obtain:

Kψ1(v, t) = eC1t
(
(C1 − c)(1 + |v|2)− Tr

(
AD2

v(1 + |v|2)
)
− 2b · v

)
≥ (C1 − 4Λ) (1 + |v|2) = 0 in ΩT .

Moreover, for any R1 > R(ε1) we can choose the constant C2 in such a way that

Kψ2(x, t) = eC2t
(
(C2 − c)(1 + |x|2) + 2v · x

)
≥ (C2 − Λ− 1)(1 + |x|2)− |v|2 ≥ 0 in ΩT ∩ {|v| < R1}.

Therefore, for any R2 > R(ε2) the function

u(v, x, t)− ε1ψ1(v, t)− ε2ψ2(x, t)

is a subsolution to the general Kolmogorov equation Ku = f in the bounded domain

(0, T ]× (Ω ∩ (BR1 ×BR2)),

with data f smaller than sup∂KΩT
u on the boundary portion contained in the set {|v| = R1, or |x| = R2}.

Then, the maximum principle for bounded domains yields

u− ε1φ1 − ε2φ2 ≤ sup
∂KΩT

u in (0, T ]× (Ω ∩ (BR1 ×BR2)).

Sending R2 → ∞ and ε2 → 0, then taking R1 → ∞, ε1 → 0 we get the conclusion. □
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Proof of Theorem 3.12. In view of the interior Schauder estimate (3. 19), it suffices to deal with the
estimates around the initial time. Without loss of generality, we assume T ≤ 1. Let z0 = (t0, x0, v0) ∈
R2n × (0, T ). We define the radius r as

r =
1

2
t
1
2
0 .

By applying the local interior Schauder estimates (3. 20), we get by rescaling the following inequality on
the cylinder Qr(z0):

t
2+α
2

0 [u]C2+α
l (Qr(z0))

≤ C
(
∥u∥L∞(Q2r(z0)) + t

2+α
2

0 [f ]Cα
l (Q2r(z0))

)
.

Since z0 is arbitrary and taking into consideration the definition of weighted norm introduced in (3. 22),
for any ω ∈ (0, 1) such that [u](−ω)

0 <∞ the previous inequality leads to the following one:

[u]
(ω)
2+α ≤ C

(
[u]

(−ω)
0 + [f ](1−ω)

α

)
, (3. 25)

where C is the constant appearing in (3. 20). Now, let us consider the function

u1 :=
1

ω
[f ]

(1−ω)
0 tω − u

For every ω ∈ (0, 1), let us consider the operator K applied to ũ:

Ku1 = K
(
1

ω
[f ]

(1−ω)
0 tω

)
−Ku = tω−1[f ]

(1−ω)
0 − f ≥ 0

by definition of weighted norm (3. 22). Moreover, we have that

u1 =
1

ω
[f ]

(1−ω)
0 tω − u = 0 on {t = 0}.

Thus, we can apply Lemma 3.13 to ũ. The same reasoning applies when considering

u2 :=
1

ω
[f ]

(1−ω)
0 t−ω + u.

Combining the results we obtain for both u1 and u2 we obtain the following estimate

[u]
(−ω)
0 ≤ C[f ]

(1−ω)
0 ,

where C is a universal constant. By combining this last inequality with (3. 25) we conclude the proof of
(3. 23). As far as we are concerned with the proof of (3. 24), it is obtained through a direct application
of Lemma 3.13. □
We remark that all of these statements can be restricted to the domain Rn×Tn×R, where the periodicity
assumption on the x variable is introduced.

3.2 Self-generating lower mass bound
For convenience, let us rewrite the nonlinear equation appearing in the Cauchy problem (3. 1) in terms
of the function h := µ−1u so that

(∂t + v · ∇x)h = ρβµh (∇v − v) · ∇vh in Rn × Tn × [0, T ]. (3. 26)
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Without any loss of generality (see Lemma 3.17), throughout this subsection we assume that the solution
h is valued in [0,Λ], and thus it is a bounded positive solution. We remark that under our assumptions
the nonlinear term on the righthand side of (3. 26) is bounded:

ρµh(x, t) =

ˆ

Rn

µ(v)h(v, x, t)dv ≤ Λ

ˆ

Rn

µ(v)dv ≤ CΛ.

Now, our aim is to prove the following lower mass bound spreading result for solutions h to the nonlinear
equation (3. 26).

Proposition 3.14 Let h be a classical solution of (3. 26) in Rn × Tn × [0, T ] valued in [0,Λ] such that
for some (v0, x0) ∈ Rn × Tn, θ > 0 and r > 0 we have

h(v, x, 0) ≥ θ when |v − v0| < r and |x− x0| < r.

Then for every fixed T ∈ (0, T ) there exists a (large) constant C∗ > 0 depending on T , T , θ, r and v0
such that for any (v, x, t) ∈ Rn × Tn × [T , T ],

h(v, x, t) ≥ C−1
∗ e−C∗|v|2 . (3. 27)

The proof of this proposition is made of two lemmas and relies on the mixing structure of the maximum
principle and the transport operator, but not on the structure of the local mass conservation. In particular,
Lemma 3.15 allows us to extend the lower bound from a neighborhood of a given point in Rn×Tn further
on in time and to prove it we use a barrier function argument in the same spirit as [63]. Lemma 3.16
allows us to spread the lower bound to all velocities. Essentially, it can be seen as the lower bound
estimate of the fundamental solution and its proof is based on the ideas of [62]. The spreading of the
lower bound in space is given by selecting a proper velocity to transport the mass, which is guaranteed
by Lemma 3.15. By applying these two lemmas repeatedly, we are able to spread the lower mass bound
of the solution at any finite time.

We are now in position to state Lemma 3.15, that is responsible for the propagation of the lower
bounds forward in time. Indeed, it is used both to preserve a mass core near (v0, x0) for short times
(which corresponds to the choice of τ = 1 in the statement of the lemma), and to push lower bounds to
different locations in x via free transport.

Lemma 3.15 Let h be a classical solution of (3. 26) in Rn × Tn × [0, T ] valued in [0,Λ] such that for
some (v0, x0) ∈ Rn × Tn and τ, θ, r > 0

h(v, x, 0) ≥ θ when |v − v0| <
r

τ
and |x− x0| < r.

Then there exist a constant C0 > 0 depending on n, Λ and β such that

h(v,x, t) ≥ θ

8
when |v − v0| <

r

2τ
, |x− x0 − tv| < r

2
and (3. 28)

t ≤ min

{
T, τ, C0

(
1 +

∣∣∣ τr ∣∣∣2)−1 (
1 + |v0|2

)−1

}
. (3. 29)

Proof. For a constants C > 0 to be determined, let us consider the following barrier function

h(v, x, t) := −Ct+ θ

2

(
1− |x− x0 − tv|2

r2
− τ2|v − v0|2

r2

)
.
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For any t ∈ [0,min{T, τ}] such that τ2|v − v0|2 + |x− x0 − tv|2 < r2

2 a direct computation yields

|ρβµh (∇v − v) · ∇vh| ≤ CΛβ (|∆vh|+ |v · ∇vh|) ≤ CΛβθ

(
1 +

∣∣∣τ
r

∣∣∣2)(1 + |v0|2
)
,

where C is a universal constant depending on n. We want to show that h is a subsolution to (3. 26), at
least in the set where it is positive, that is:

Ωh = {(v, x, t) ∈ Rn × Tn × [0,min{T, τ}] : h(v, x, t) > 0}.

Indeed, given the construction of the function h we have that

∂th+ v · ∇xh ≤ −C.

Thus, we obtain that h is indeed subsolution to (3. 26):

∂th+ v · ∇xh− ρβµh (∇v − v) · ∇vh ≤ −C + CΛβθ

(
1 +

∣∣∣τ
r

∣∣∣2)(1 + |v0|2
)
< 0 (3. 30)

where the rightmost inequality is ensured by a proper choice of the constant C, that needs to be

C > CΛβθ

(
1 +

∣∣∣τ
r

∣∣∣2)(1 + |v0|2
)
.

Now it suffices to establish that h > h in the set Ωh. We remark that for t = 0 we have

h(v, x, 0) =
θ

2

(
1− |x− x0|2

r2
− τ2|v − v0|2

r2

)
≤ θ

2
< θ ≤ h(v, x, 0)

where the rightmost inequality holds true given the definition of the function h and the assumption of
the lemma. In particular, there exists a (small) universal constant C0, that incorporates CΛβ and thus
depends on n, Λ and β, such that

C =
1

8C0
θ

(
1 +

∣∣∣τ
r

∣∣∣2)(1 + |v0|2
)

and h(v, x, t) ≥ θ
8 in the set{
t ≤ C0

(
1 +

∣∣∣τ
r

∣∣∣2)−1 (
1 + |v0|2

)−1
, |x− x0 − tv|2 + τ2|v − v0|2 <

r2

2

}
.

We conclude the proof by applying Lemma 3.13 to the function g = h− h in the region Ωh. □
The spreading of the lower bound to all velocities relies on the construction of a Harnack chain through

the iterative application of (3. 17) at the cost of shrinking the x-domain where the lower bound hols.
This is possible because locally the nonlinear equation appearing in (3. 1) coincides with the linear kinetic
Kolmogorov-Fokker-Planck equation appearing in (3. 18) for which the Harnack inequality (3. 17) was
proved by Golse, Imbert, Mouhot and Vasseur in [58].
Lemma 3.16 Let h be a classical solution of (3. 26) in Rn × Tn × [0, T ] valued in [0,Λ]. Let θ > 0,
R ∈ (0, 1] and T0 ∈ (0,min{1, T}] such that for every t ∈ [0, T0]

h(t, x, v) ≥ θ when |x− x0 − tv0| < R and |v − v0| < R. (3. 31)

for some (v0, x0) ∈ Tn ×Rn. Then for every fixed t ∈ (0, T0) there exist a constant C1 > 0 depending on
T0, θ, R and v0 such that

h(v, x, t) ≥ C−1
1 e−C1|v|4 when |x− x0 − tv0| <

R

2
, and t ∈ [t, T0]. (3. 32)
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Proof. Let us consider a point (v0, x0) ∈ Rn × Tn such that (3. 31) holds true for every t ∈ [0, T0]. Let
us fix a certain t ∈ (0, T0). Our aim is to construct a sequence {zi := (ti, xi, vi)}i of N +1 points to reach
a certain point (v, x, t) in the set{

(v, x, t) ∈ Rn × Tn × [0, T0] : v ∈ Rn, |x− x0 − tv0| < R
2 , t ∈ [t, T0]

}
starting from a certain point z1 = (v1, x1, t1) belonging to the region where h is positive by the assumption
(3. 31), that is

Ω+ := {(v, x, t) ∈ Rn × Tn × [0, T0] : |v − v0| < R, |x− x0 − tv0| < R, t ≤ t} ,

where (v0, x0) ∈ Tn×Rn and given that v1 = v0. In particular, x does not exit this region and we remark
that the nonlocal nature of the nonlinear term ρf = ρµh, alongside with the assumption (3. 31) implies
the non degeneracy of the diffusion in velocity, so that the positivity of the solution h is propagated over
v ∈ Rn in a localized space region. To be more specific, we define a sequence of points zi := (vi, xi, ti)
for i ∈ {1, 2, ..., N + 1}, with N ∈ N, such that

zN+1 = (v, x, t), and zi = zi+1 ◦ δr
(
−τ2

v − v0
|v − v0|

, 0,−τ1
)
. (3. 33)

Thus, our aim is now to determine the coordinates of the starting point z1 = (v1, x1, t1) ∈ Ω+ given that
v1 = v0, alongside with the constants N, r, τ1, τ2 > 0 in such a way that zN+1 = (v, x, t).

Let us consider a certain point z̃ := (ṽ, x̃, t̃) ∈ Q1, where Q1 is the unit box defined in (3. 12) and let
us consider the point:

zi+1 ◦ δr(z̃) =
(
vi+1 + rṽ, xi+1 + r3x̃+ r2t̃vi+1, ti+1 + r2t̃

)
for i = 1, . . . , N.

If for every z̃ ∈ Q1 the point zi+1 ◦ δr(z̃) satisfies the following estimates

Nrτ2 ≤ |v − v0|,
∣∣xi+1 + r3x̃+ r2t̃vi+1 − x0 −

(
ti+1 + r2t̃

)
v0
∣∣ < R, ti+1 + r2t̃ ∈ [0, T0], (3. 34)

then for every 1 ≤ i ≤ N the function

hi+1(z̃) := h (zi+1 ◦ δr(z̃))

verifies the equation

(∂t̃ + ṽ · ∇x̃)hi+1 = ρβµhi+1
∇ṽ · (∇ṽ − r(vi+1 + rṽ) · ∇ṽ)hi+1 in Q1,

where the coefficients satisfy the following bounds

cθβRnβ ≤ ρβµhi+1
≤ CΛ and |r(vi + rṽ)| ≤ r(1 + |v0|+ |v − v0|) ≤ 1,

where c and C are universal constant and provided that

r ≤ (1 + |v0|+ |v − v0|)−1.

Applying the Harnack inequality (3. 17) to the function hi+1 we get that there exist constants c0, τ1, τ ∈
(0, 1), depending only on the constants θ and R stated in the assumptions of the lemma, such that for
any τ2 ∈ [0, τ ] and 1 ≤ i ≤ N we have:

h(vi+1, xi+1, ti+1) = hi+1(0, 0, 0) ≥ c0hi+1

(
−τ2

v − v0
|v − v0|

, 0, −τ1
)

= c0h(vi, xi, ti). (3. 35)
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Now we have to determine the coordinates of the starting point z1 := (v1, x1, t1) of the Harnack chain
and the constants N, r, τ2, since τ1 is determined by the application of the Harnack inequality to obtain
(3. 35). For a certain constant M > 0, we set

t1 := max

{
t

2
, t− R

8
(1 + |v0|+ |v − v0|)−1

}
and r :=

R

M
(1 + |v0|+ |v − v0|)−2.

Recalling that T,R ∈ (0, 1], by choosing M ≥ 2
t +

τ1
τ

(
8 + 2

t

)
, we have

r2 ≤ t

2
and τ2 :=

rτ1|v − v0|
t− t1

≤ τ

This also ensures the first condition of (3. 34). To determine the parameter M > 0, we point out that
there exists some constant C depending only on universal constants, t, θ, R and v0, such that M ≤ C.
Moreover, since v1 = v0 by assumption we have that in order to satisfy the third condition of (3. 34) we
choose:

N :=
t− t1
r2τ1

∈ N+.

From the iterative definition of a certain point zi, with 1 ≤ i ≤ N + 1, it follows that

ti = t1 + (i− 1)r2τ1, vi = v0 + (i− 1)rτ2
v − v0
|v − v0|

, xi = x− r2τ1

N∑
j=i

vj+1. (3. 36)

Therefore, given our definition of the parameters r and N , τ2 we have that

|xi+1 − x1 − (ti+1 − t1)v0| =
i(i+ 1)

2
rτ2 ≤ N2r3τ1τ2 = (t− t1)|v − v0| ≤

R

8
.

Thus, for any x ∈ BR
2
(x0 + tv0) there exists some x1 ∈ B 5R

8
(x0 + t1v0) such that xN+1 = x. In this

setting, for any 1 ≤ i ≤ N , we also have∣∣∣xi+1 + r3x̃+ r2t̃vi+1 − x0 −
(
ti+1 + r2t̃

)
v0

∣∣∣
≤ |xi+1 − x1 − (ti+1 − t1)v0|+ |x1 − x0 − t1v0|+ r2|rx̃+ t̃vi+1 − t̃v0|

≤ R

8
+

5R

8
+ r2(1 + |v − v0|) <

3R

4
+

R2

M2
< R.

Thus, the condition (3. 34) ensuring inequality (3. 35) is satisfied for 1 ≤ i ≤ N , which yields

h(t, x, v) ≥ cN0 h(v0, x1, t1) ≥ θe−N log 1
c0 .

Recalling that c0 ∈ (0, 1) appears in (3. 35) and

N ≤ TC
2
(1 + |v0|+ |v − v0|)4

τ1R2
,

for a positive universal constant C we obtain the desired result. □
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Proof of Proposition 3.14 The proof is split into four steps, and it is inspired by the proof of Theorem
1.2 of the paper [63] by Henderson, Snelson and Tarfulea for the Boltzmann equation.
Step 1: sustaining mass for a small time.
By assumption we have that for a given (v0, x0) ∈ Rn × Tn, θ, r > 0 we have

h(v, x, 0) ≥ θ1{|v−v0|<r, |x−x0|<r}.

Thus, it is always possible to apply Lemma 3.15 with τ = 1 on the smaller neighborhood of radius r/2.
Then there exists a universal constant C0 > 0 such that, for every

0 ≤ t ≤ t∗ := min

{
1

2
, T, C0

(
1 +

∣∣ τ
r

∣∣2)−1 (
1 + |v0|2

)−1
}

we have that
h(v, x, t) ≥ θ

8
1{|v−v0|< r

4 , |x−x0−tv|< r
4}.

We remark that for the choice of t∗ we have deliberately chosen to restrict ourselves at t ≤ 1
2 , even if

Lemma 3.15 would have allowed us to consider values up to τ = 1. In particular,

t ≤ 1
2 implies |x− x0 − tv| < 3

8r if |x− x0 − tv0| <
r

4
.

Step 2: spreading mass to all v (localized in x) for small times.
Let us apply Lemma 3.16 by considering T0 = t∗, θ = θ/8 and R = r/4. Thus,

h(v, x, t) ≥ C−1
1 e−C1|v|41{|x−x0−tv0|<

r
8}

for 0 < t ≤ t∗, v ∈ Rn (3. 37)

where C1 depends on the choice of the radius r, θ and |v0|. We remark that, in order to spread the mass
to all v we shrink the domain in the x direction.
Step 3: spreading mass in x for small times.
Let us fix x1 ∈ Tn and a time t1 such that

0 < t1 ≤ min

{
t∗,

r

32|v0|

}
.

We observe that the triangle inequality implies that at time t1/2 the estimate (3. 37) holds for |x−x0| <
r/32, and thus there exist a certain parameter θ0 > 0 (it always exists given our construction) and a
certain point

v1 =
2(x1 − x0)

t1

such that, if r0 = r/32,

h

(
v, x,

t1
2

)
≥ θ01{

|v−v1|< 2r0
t1

, |x−x0|<r0
}

Our aim is now to apply Lemma 3.15 with v0 = v1, R = r0 and τ = t1/2 applied to h(v, x, t1/2 + t) to
propagate this lower bound along trajectories of the type x ∼ x0 + tv1 up to t = t1/2. For this reason we
also require t1 to satisfy the assumption (3. 28) on the time, that is

t1

(
1 +

∣∣ t1
2r0

∣∣2) < C01

(
1 + |v0|2

)−1
. (3. 38)

If t1 satisfies this inequality, then Lemma 3.15 implies

h(v, x, t) ≥ θ0
8
1{|v−v1|< r0

2 ,|x−x0−tv1|< r0
2 } for t1

2
< t < t1.
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Now, we are in position to apply Lemma 3.16 with T0 = t1, T = t1/2, R = r0/2 and v0 = v1

h(v, x1, t1) ≥ C−1
11 e

−C11|v|41{|x−x0−t1v1|< r0
4 }, (3. 39)

where C11 > 0 depends on constants θ, r, |v0| and |x1 − x0|.

Step 4: extending the lower bound for moderate times.
We observe that Step 3 holds true if and only if the time t1 satisfies assumption (3. 38). If this is not the
case, we chose t̃1 sufficiently small depending on r and |x1−x0| in such a way that the inequality (3. 38)
is satisfied. Proceeding as above, with t̃1 replacing t1, through Lemma 3.16 we obtain a lower bound at
t = t̃1, x near x1 and v close to zero

h(v, x1, t̃1) ≥ θ11{|x−x1|< r0
4 ,|v|< r0

4 },

for some constant θ1 > 0 with the same dependence as C1. Next, we propagate this estimate forward in
time by applying Lemma 3.15 with v0 = 0, r = r0/4 and τ = 1 to h(·, ·, t0 + ·) (with τ = 1, v0 = 0), we
see that, for any t ∈

[
t0,min

{
T0, t0 + T1

}]
with T1 := c0

(
r0
16

)2,
h(v, x, t) ≥ θ1

8
1{|v|< r0

8 ,|x−x|< r0
8 } t̃1 ≤ t ≤ min

{
t̃1 + T ∗, T

}
where T ∗ is given by the time condition (3. 28) appearing in Lemma 3.15, that is

T ∗ = C02
r0
16
.

As long as t1 ≤ min{t̃1+T ∗, T} this lower bound extends up to the time t1 and by applying Lemma 3.16
to h(v, x, t̃1 + t) we obtain the following lower bound

h(v, x1, t1) ≥ C−1
12 e

−C12|v|4 ,

with C1 depending on θ, r, v0, t1 and |x−x0|. Since T0 and T ∗ depend only on universal constants, r and
v0, by applying the above arguments finitely many times we obtain the desired result.
Step 4: improving the exponential tail.
Up to now we have proved there exists a constant c > 0 depending only on universal constants T0, T , θ,
r and |v0| such that

h(v, x, t) ≥ c = C−1
13 e

−C13|v|4 for (v, x, t) ∈ Rn × Tn × [T , T ],

where T ∈ (0, T ]. Let us now consider the following barrier function

h(v, x, t) := ce−C(t−T )−1|v|2 in B1(0)
c × Tn × [T , T ],

where the constant C > 1 is to be determined. A direct computation yields

(∂t + v · ∇x)h− ρβµh (∇v − v) · ∇vh ≤ −C0

(t− T )2

(
4C − 1− 4nC(t− T )

)
h in B1(0)

c × Tn × (T , T ].

In particular, we have that
(∂t + v · ∇x)h− ρβµh(∇v − v) · ∇vh ≤ 0 in B1(0)

c × Tn × (T , T ],

given C sufficiently large (depending only on n and T ). Besides, by definition we have that
h ≥ h in .

on the boundary of the set B1(0)
c × Tn × [T , T ], that is wherever t = T or |v| = 1 Thus, Lemma 3.13

implies that
h ≥ h in B1(0)

c × Tn × [,T ].

This allows us to obtain the Gaussian lower bound (3. 27) for any (v, x, t) ∈ Rn × Tn × [T , T ]. □
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3.3 Existence and uniqueness of the solution
This section is devoted to the proof of the existence and uniqueness of the solution for the Cauchy problem
(3. 1). In order to do this, let us rewrite it in terms of the unknown function g := µ− 1

2u with gin := µ− 1
2φ

as follows, {
(∂t + v · ∇x) g = R[g]U [g],
g(v, x, 0) = gin(v, x),

(3. 40)

where the terms on the righthand side are defined as follows:

R[g] :=

(ˆ
Rd

gµ
1
2 dv

)β

and U [g] := µ− 1
2∇v

(
µ∇v

(
µ− 1

2 g
))

= ∆vg +

(
d

2
− |v|2

4

)
g.

By such substitution, in contrast with the original equation, we get rid of the first-order term in v and the
operator U becomes self-adjoint in L2

x,v. Although the coefficient of zero order term is still unbounded,
as firstly proposed by Imbert and Mouhot in [68] we can overcome this difficulty by considering it as a
bounded source term, since the Gaussian bounds for the function g propagate in times as it is stated by
the following lemma proved by Imbert and Mouhot in [68].

Lemma 3.17 Let us consider a classical solution g to the Cauchy problem (3. 40) in L∞([0, T ],H2(Rn×
Tn)) such that

C1
√
µ ≤ g(v, x, 0) ≤ C2

√
µ in Rn × Tn,

then for almost every t ∈ [0, T ] we have

C1

√
µ(v) ≤ g(v, x, t) ≤ C2

√
µ(v) for every (v, x) ∈ Rn × Tn,

We remark that the starting points of this kind of spatially inhomogeneous kinetic equations with a
quasilinear diffusive structure in velocity are the works [58] and [4], where the authors develop the
kinetic counterpart of the De Giorgi-Nash-Moser theory for classical elliptic equations, and [68], where
the Schauder theory is analyzed. We summarize here some basic apriori estimates for the solution g to
the Cauchy problem (3. 40) that firstly appeared in Proposition 4.4 of [68] and Corollary 4.6 of [126]
respectively. Moreover, we remark that throughout this subsection we set

Ω := Rn × Tn × (0, T ] with T ∈ R+.

Lemma 3.18 Let g be a solution to (3. 40) in Ω satisfying

0 ≤ g ≤ Λµ
1
2 in Ω and R[g] ≥ λ in [0, T ]× Td.

Then, the following two statements hold.

(i) Let T ∈ (0, T ) and θ ∈
(
0, 12

)
. There exists some universal constant α ∈ (0, 1) and a positive constant

C = C(T , θ, n, α, λ,Λ) such that for any Q2r(z0) ⊂ Rn × Tn × [T , T ] and for

∥g∥C2+α
l (Qr(z0))

≤ Cµθ(v0). (3. 41)

(ii) Let θ ∈
(
0, 12

)
and gin ∈ Cα0

l (Rn × Tn) with (universal) α0 ∈ (0, 1). There exists a universal constant
α ∈ (0, 1) and a positive constant C = C(θ, n, α, λ,Λ) such that for any v0 ∈ Rn, we have

∥g∥Cα
l (B1(v0)×Tn×[0,T ]) ≤ C

(
1 + ∥gin∥Cα0

l (Rn×Tn)

)
µθ(v0).
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We remark that the boundedness assumption λµ
1
2 ≤ γin ≤ Λµ

1
2 for the initial data ψ of the Cauchy

problem (3. 40) reflects on the assumptions of Theorem 3.1 for the initial data φ, in the sense that, given
the definition of gin = φµ− 1

2 , it becomes

ρφ ≥ λ in Tn and φ ≤ Λµ in Rn × Tn,

where µ = (2π)−
n
2 e−|v|2/2 is the global Maxwellian introduced in (3. 4). Moreover, we also remark that

Proposition 3.14 holds true (up to a universal constant) also for solutions g to the Cauchy problem (3. 40),
since h = µ

1
2 g. We are now in position to proceed with the proof of Theorem 3.1. In fact, the proof of

the existence of the solution for the Cauchy problem (3. 1) is given by Proposition 3.19 for the Cauchy
problem (3. 40) and in the same way the proof of the uniqueness of the solution is given by Proposition
3.20.

Proposition 3.19 Let 0 ≤ gin ≤ Λµ
1
2 in Rn×Tn. Then, there exists a positive weak solution g ∈ C2(Ω)

to (3. 40) in the sense that, for any ψ ∈ C∞
c (Rn × Tn × [0, T )),

ˆ
Rn×Tn

gin ψ
∣∣
t=0

dv dx =

ˆ
Ω

{
−g (∂t + v · ∇x)ψ +R[g]∇vg · ∇vφ−R[g]

(
n

2
− |v|2

4

)
gψ

}
dv dx dt.

(3. 42)
Furthermore, if gin is continuous in Rn × Tn, then g is a classical solution to (3. 40).

Proof. We may assume that gin is not identically zero, i.e. for some point (v0, x0) ∈ Rn ×Tn and some
constants θ, r > 0 we have

gin ≥ θ1{|v−v0|<r, |x−x0|<r}.

By Proposition 3.14, for any solution g to (3. 40) and for any T ∈ (0, T ), there exists a C∗ > 0 depending
only on universal constants, T , T , θ, r and v0 such that

R[g](x, t) ≥ C∗ in Tn × [T , T ]. (3. 43)

Step 1. We first approximate the initial data gin by

gεin := gin ∗ ϱε + εµ
1
2 ,

where ϱ1 ∈ C∞
c (B1 ×B1) is a nonnegative bump function such that for ε ∈ (0, 1]

ˆ
R2n

ϱ1 = 1 and ϱε(v, x) :=
1

ε2n
ϱ1

(v
ε
,
x

ε

)
with (v, x) ∈ Rn × Tn.

Then, we have
εµ

1
2 ≤ gεin ≤ (1 + Λ)µ

1
2 in Rn × Tn. (3. 44)

Let us fix ε ∈ (0, 1]. In order to establish the existence of classical solution to (3. 40) associated with
the initial data gεin, we are going to find a fixed point of the mapping F : w 7→ g defined by solving the
following Cauchy problem {

(∂t + v · ∇x) g = R[w]U [g] in Ω,

g(0, ·, ·) = gεin in Rn × Tn,
(3. 45)

on the closed convex subset K of the Banach space Cγ(Ω),

K :=
{
w ∈ Cγ

l (Ω) : ∥w∥Cγ
l (Ω) ≤ N , εµ

1
2 ≤ w ≤ (1 + Λ)µ

1
2 in Ω

}
,
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where the constants γ ∈ (0, 1) and N > 0 are to be determined. We remark that since R [w] ≥ ε and
(3. 44) hold true, by Lemma 3.17 we have that

εµ
1
2 ≤ g ≤ (1 + Λ)µ

1
2 in Ω. (3. 46)

In particular, the following estimate for the lower order term holds true∣∣∣∣∣R [w]
(n
2
− |v|2

4

)
g

∣∣∣∣∣ ≤ C for any w ∈ K (3. 47)

where C is a universal constant depending on n, α, λ,Λ. Thus, the global Hölder estimate Lemma 3.12
(ii) implies that there exist some constants γ ∈ (0, 1) and N > 0 depending only on universal constants
and ε such that ∥g∥C2γ

l (Ω) ≤ N . It then follows from Proposition 3.11 and interior Schauder estimates
(3. 41) that the mapping

F : K → K ∩ C2γ
l (Ω) ∩ C2+2γ

l (Ω)

is well-defined. Besides, by Arzelà–Ascoli theorem we know that F (K) is precompact in Cγ
l (Ω).

As far as the continuity of F is concerned, we take a sequence {wn} converging to w∞ in Cγ
l (Ω).

Since {F (wn)} is precompact in Cγ
l (Ω), there exists a converging subsequence whose limit is g∞ ∈ Cγ

l (Ω)
which satisfies

g∞(v, x, 0) = gεin(v, x) (v, x) ∈ Rn × Tn.

In view of the interior Schauder estimate (3. 41), {F (wn)} is precompact in C2(K) for any compact
subset K ⊂ Ω and g∞ ∈ C2(Ω) ∩ C0(Ω). Let us consider again the Cauchy problem (3. 45) with the
couple (w, g) substituted from (wn, F (wn)). Thus, sending n → ∞ we see that the equation (3. 45)
also holds for the couple of limits (w, g) = (w∞, g∞). Then, by applying Lemma 3.13 (the maximum
principle) to (∂t + v · ∇x)

(
µ− 1

2 (g∞ − F (w∞))
)
= R[w∞] (∇v − v) · ∇v

(
µ− 1

2 (g∞ − F (w∞))
)

in Ω,

(g∞ − F (w∞))(0, ·, ·) = 0 in Rn × Tn,

we obtain g∞ = F (w∞). Then for every ε ∈ (0, 1] we are allowed to apply the Schauder fixed point
theorem (see for instance Corollary 11.2 of [57]) to get gε ∈ C2(Ω) ∩ C0(Ω) such that F (gε) = gε, which
is a classical solution to (3. 40) associated to the initial data gεin.

Step 2. Passage to the limit.
Recalling the lower bound (3. 43) on the coefficient and the interior Schauder estimate (3. 41), we point
out that for any T ∈ (0, T ), {gε} is uniformly bounded in C2+α∗

l (Rn × Tn × [T , T ]), for some constant
α∗ ∈ (0, 1) with the same dependence as C∗. Hence, gε converges uniformly to g in C2

l (Rn × Tn × [T , T ]),
up to a subsequence. Let us consider the equation satisfied by gε in the weak formulation, that is for
every ψ ∈ C∞

c (Ω)

ˆ

Rn

ˆ

Tn

[gε(v, x, T )ψ(v, x, T )− gεin(v, x)ψ(v, x, 0)] dv dx

=

ˆ

Ω

{
gε (∂t + v · ∇x)ψ −R[gε]∇vg

ε · ∇vψ +R[gε]

(
n

2
− |v|2

4

)
gεψ

}
dv dx dt.

(3. 48)

Now, we derive from (3. 48) a Caccioppoli type inequality, also known as energy estimate, by choosing
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as a test function ψ = gε and applying Young’s inequality we get:
ˆ

Ω

R [gε] |∇vg
ε|2 dv dx dt

≤
ˆ

Ω

R [gε]

(
n

2
− |v|2

4

)
|gε|2 dv dx dt +

ˆ

Rn

ˆ

Tn

|gεin(v, x)|2 dv dx−
ˆ

Rn

ˆ

Tn

|gε|2 dv dx

≤
ˆ

Ω

R [gε]

(
n

2
− |v|2

4

)
|gε|2 dv dx dt

A

+

ˆ

Rn

ˆ

Tn

|gεin(v, x)|2 dv dx+

ˆ

Rn

ˆ

Tn

|gε|2 dv dx

B

As far as we are concerned with term A, the estimate directly follows from the estimate (3. 47) alongside
with the Gaussian bounds (3. 46):

ˆ

Ω

R [gε]

(
n

2
− |v|2

4

)
|gε|2 dv dx dt ≤ C

ˆ

Ω

|gε| dv dx dt ≤ C

ˆ

Ω

µ
1
2 (1 + Λ) dv dx dt ≤ C(1 + Λ),

where C is a universal constant depending on n, Λ, λ. Finally, term B is made of two integrals, each
of which is bounded from above by the Gaussian upper bound (3. 46). For instance, let us consider the
first term ˆ

Rn

ˆ

Tn

|gεin(v, x)|2 dv dx ≤
ˆ

Rn

ˆ

Tn

(1 + Λ)2µdv dx ≤ C(1 + Λ)2,

where C is a positive constant only depending on n. The estimate of the other two terms follow analo-
gously. Thus, the following estimate holds true:

ˆ

Ω

R [gε] |∇vg
ε|2 ≤ C(1 + Λ)2,

where C is a universal constants depending on n, α, λ,Λ. Therefore, R[gε]∇vg
ε converges weakly in L2(Ω)

to R[g]∇vg (up to a subsequence). Besides, since {µ− 1
2 gε} is uniformly bounded thanks to (3. 46), we

have that the sequences

gε and R[gε]

(
n

2
− |v|2

4

)
gε

weakly converge in L2(Ω) to the functions

g and R[g]

(
n

2
− |v|2

4

)
g,

respectively (up to a subsequence). Then, for any ψ ∈ C∞
c (Rn × Tn × [0, T )), sending ε → 0 in (3. 48)

gives (3. 42). This completes the proof. □

Proposition 3.20 Let the constants α, λ,Λ, T > 0 and g1, g2 be two distinct positive solutions to (3. 40)
in Rn × Tn × [0, T ] with the same initial data gin ∈ Cα (Tn × Rn) such that

R[gin] ≥ λ in Tn in Tn × Rn and 0 ≤ gin ≤ Λµ
1
2 .

Then, the uniqueness holds: g1 = g2.
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Proof. Let g1 and g2 be two different solutions to the Cauchy problem (3. 40). The difference of g1−g2
satisfies the following Cauchy problem:{

(∂t + v · ∇x) (g1 − g2) = (R[g1]−R[g2])U [g1] +R[g2]U [g1 − g2] in [0, T )× Rn × Tn

g1(v, x, 0)− g2(v, x, 0) = 0 in Rn × Tn.

By integrating the above equation against (g1 − g2) in Rn × Tn, and applying integration by parts we
obtain

1

2

d

dt
∥g1 − g2∥2L2(Rn×Tn)

=

ˆ

Rn×Tn

(R[g1]−R[g2])U [g1](g1 − g2) dx dv −
ˆ

Rn×Tn

R[g2]

(
∇v

(
g1 − g2√

µ

))2

µdx dv.

Applying Lemma 3.18 (ii), the elementary inequality |aβ − 1| ≤ |a− 1| (a ∈ R+) and Hölder’s inequality
we obtain the following estimate

d

dt
∥g1 − g2∥2L2(Rn×Tn) ≲ ∥µ−θU [g1]∥L∞(Tn×Rn)∥g1 − g2∥2L2(Rn×Tn)

≲
(
1 + ∥µ−θ∆vg1∥L∞(Rn×Tn)

)
∥g1 − g2∥2L2(Rn×Tn), (3. 49)

where θ ∈ (0, 14 ] is arbitrarily chosen. We point out that, from now on a ≲ b is the shorthand notation
for a ≤ Cb, where C is a certain positive constant only depending on n, λ, Λ and α.

Fix z0 = (v0, x0, t0) ∈ Rn × Tn × (0, 1) and 2r = t
1
2
0 . Then we apply interior Schauder estimates

(3. 41) in Q2 and then rescale back to Q2r(z0). Moreover, by observing that

(∂t + v · ∇x) (g1 − g1(z0)) = R[g1]∆v (g1 − g1(z0)) +R[g1]

(
n

2
− |v|2

4

)
g1 in Q2r(z0),

since r ∈ (0, 1) and t ≥ t0
2 we have

∥∇2
vg1∥L∞(Qr(z0)) ≲ r−2∥g1 − g1(z0)∥L∞(Q2r(z0)) + rα

[
R[g1]

(
n

2
− |v|2

4

)
g1

]
Cα(Q2r(z0))

≲ r−2+α[g1]Cα(Q2r(z0))

≲ |t|−1+α
2 [g1]

1
2

Cα(Q2r(z0))
∥g1∥

1
2

L∞(Q2r(z0))
.

By pointing out that (v0, x0) ∈ Rn × Tn is arbitrarily chosen and applying point (i) of Lemma 3.18, it
follows that for any t ∈ (0, 1),

∥µ−θ∇2
vg1(t)∥L∞(Rn×Tn) ≲ |t|−1+α

2 ,

with any fixed θ ∈ (0, 18 ]. By applying this estimate and Grönwall’s inequality to (3. 49), we get

∥(g1 − g2)(t)∥2L2(Rn×Tn) ≲ ∥(g1 − g2)(0)∥2L2(Rn×Tn) exp

(ˆ t

0

(
1 + |s|−1+α

2

)
ds

)
= 0

for any t ∈ (0, 1). As for t ≥ 1, the uniqueness follows directly from (3. 49), point (ii) of Lemma 3.18
and Grönwall’s inequality. □
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3.4 C∞ a priori estimates
This section is devoted to the proof C∞ a priori estimates of Theorem 3.1. Since we want to bootstrap
the regularity estimates starting from Lemma 3.18 (ii), we are going to apply Schauder estimates (3. 41)
to derivatives and increments of the solution g for the equation (3. 40) iteratively. Before proceeding
with the proof, we need to adapt some technical lemmas about increments and Hölder norms presented
for the first time by Imbert and Silvestre in [69] for the Boltzmann equation. First of all let us write, for
some small increment y ∈ Rn

∆yg(z) = g(z ◦ (0, y, 0))− g(z).

Roughly speaking, we can say that the Schauder estimate presented in Lemma 3.18 (ii) allows us to get
only 2

3 derivatives in x at the first application. In order to get a full derivative, we apply this estimate to
increments ∆yg as defined above. The following two lemmas allow us to transfer a regularity estimate for
an incremental quotient into a higher order differentiation and it is inspired by Lemma 8.1 and Lemma
8.4 proved in [69] by Imbert and Silvestre. In spite of the apparent simplicity of its statement, its proof is
rather involved and the first step of the proof is inspired by Lemma 5.6 in [24]. From now on we employ
the short hand notation Q = QR(z0) with R ∈ (0, 1) and Qint = QR

2
(z0).

Lemma 3.21 Let α > 0. Given a cylinder Q = QR(z0) with R ∈ (0, 1) and a bounded continuous function
g defined in Q, we consider for any y ∈ BR3/2 the following function defined in Qint = QR/2(z0):

∆yg(z) = g(z ◦ (0, y, 0)− g(z).

We assume there exists a N > 0 such that for every y ∈ BR3/2

∥∆yg∥C0(Qint) ≤ N, [∆yg]C2+α(Qint) ≤ N∥(0, y, 0)∥2. (3. 50)

Then for some η = η(α) > 0 we have

∥∆yg∥Cη(Qint) ≤ N∥(0, y, 0)∥3. (3. 51)

Proof. Let pz denote the polynomial expansion of g at z of kinetic degree strictly smaller than 2 + α.
The assumptions stated in (3. 50) translate into the following: for every z ∈ Q and ξ such that (z◦ξ) ∈ Q

|∆yg(z ◦ ξ)− δypz(ξ)| ≲ N∥(0, y, 0)∥2∥ξ∥2+α, (3. 52)

where δypz is the polynomial expansion of ∆yg at the point z and δypz = δ(0,y,0)pz. Since α ∈ (0, 1), we
aim at proving that for every z ∈ Qint, z ∈ QR/2 and ξ such that (z ◦ ξ) ∈ Qint

|∆yg(z ◦ ξ)− δypz(ξ)| ≲ N∥(0, y, 0)∥3∥ξ∥η, for some η = η(α). (3. 53)

step 1. We claim that for every z ∈ Qint and for every k ∈ N such that (z ◦ (2k(0, y, 0))) ∈ Q, we have

|∆yg(z)− 2−k∆2k(0,y,0)g(z)| ≲ N∥(0, y, 0)∥4+α2
k
(
1+α
3

)
. (3. 54)

In order to get such an estimate, let us recall that

∆2yg(z) = g(z ◦ (0, 2y, 0))− g(z) = ∆yg(z) + ∆yg(z ◦ (0, y, 0)).

and by applying estimate (3. 52), we get

|∆2yg(z)− 2∆yg(z)| = |∆yg(z) + ∆yg(z ◦ (0, y, 0))− 2∆yg(z)| (3. 55)
= |∆yg(z ◦ (0, y, 0))− δypz(0, y, 0) + δypz(0, y, 0)−∆yg(z)|
≲ N∥(0, y, 0)∥4+α + |δypz(0, y, 0)−∆yg(z)|
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Since the polynomial pz is of degree strictly less than 2 + α, we have for ξ = (ξv, ξx, ξt) ∈ R2n+1 that

δypz(ξ) = ∆yg(z) + (∂t + v · ∇x)∆yg(z)ξt +Dv∆yg(z) · ξv + 1
2D

2
v∆yg(z)ξv · ξv. (3. 56)

In particular, we remark that when evaluating the previous expression at the point ξ = (0, y, 0) we get
the following

δypz(ξ) = ∆yg(z).

Thus, we can conclude from (3. 55)

|∆2yg(z)− 2∆yg(z)| ≲ N∥(0, y, 0)∥4+α + |δypz(0, y, 0)−∆yg(z)|,

or equivalently

|∆yg(z)− 2−1∆2yg(z)| ≲ 2−1N∥(0, y, 0)∥4+α. (3. 57)

Then we proceed by induction on k. The initial step k = 0 is given by (3. 57). Let us suppose (3. 54)
holds true for k − 1 and we prove it’s true for k:

|∆yg(z)− 2−k∆2kyg(z)| ≲ N

k∑
j=1

2−j∥2j−1(0, y, 0)∥4+α

≲ N∥(0, y, 0)∥4+α
k∑

j=1

2−j+(j−1)
4+α
3

≲ N∥(0, y, 0)∥4+α2k
4+α
3 −1.

This achieves the proof of the claim (3. 54).
step 2. We claim that for every z ∈ Qint and for every (0, y, 0) ∈ QR/2, we have

|∆yg(z)| ≲ N∥(0, y, 0)∥3. (3. 58)

Indeed, taking into consideration (3. 54) we can write

|∆yg(z)| ≲ 2−k|∆2k(0,y,0)g(z)|+N∥(0, y, 0)∥4+α2
k
(
1+α
3

)

≲ ∥∆2k(0,y,0)g∥C0∥(0, y, 0)∥3 +N∥(0, y, 0)∥32k
(
1+α
3

)
.

□

Lemma 3.22 Given y ∈ BR3/2 with R ≤ 1 and α ∈]0, 1] and some cylinder Q = QR(z0), let g ∈
C2+α(Q). Then ∆yg lies in Cα

l (Qint) with Qint = QR/2(z0) and

∥∆yg∥Cα
l (Qint) ≤ C[g]C2+α

l (Q)∥(0, y, 0)∥
2

for some constant C only depending on the dimension.

Proof. We remark that the assumption of this lemma implies that the assumptions of Lemma 3.22 hold
true with N = 2∥g∥Cα

l (Q). Applying Lemma 3.22 yields the desired result. □
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Proof of Theorem 3.1 (C∞ a priori estimates). This argument was firstly introduced by Imbert and
Silvestre in [69] for the inhomogeneous Boltzmann equation without cut-off and we adapt it here to our
nonlinear case (3. 40). From now on, a differential operator D = ∂kv

v ∂kx
x ∂kt

t with k = (kv, kx, kt) ∈ N2n+1

is intended in the the classical way

D = ∂
k1
v

v1 . . . ∂
kn
v

vn ∂
k1
x

x1 . . . ∂
kn
x

xn∂
kt
t

if kv = (k1v, . . . , k
n
v ) and kx = (k1x, . . . , k

n
x ). Moreover, we recall that the order of the multi- index

k ∈ N2n+1 is |k| = k1v + . . .+ knv + k1x + . . .+ knx + kt. In this section, when we refer to the order of D, we
literally refer to the classical order of differentiation.

By an iterative process, we will establish the following family of inequalities. For every differential
operator D = ∂kt

t ∂
kx
x ∂kv

v with k = (kv, kx, kt) ∈ N2n+1, there exists some constant αk ∈ (0, 1) so that for
every τ > 0 depending on |k| such that for any Q = QR(z0) ⊂ Rn × Tn × [τ,∞)

∥Df∥
C

2+αk
l (Qint)

≤ Ckµ
ν(v0). (3. 59)

where τ > 0, z0 = (t0, v0, x0) and the constant Ck depends on kv, kx, kt, τ . The value of αk we obtain
in the iteration depends also on k and tends to be smaller as the order of differentiation increases. A
posteriori, we obtain a C∞ estimate for g, so the particular values of α after each iteration doesn’t matter.
For simplicity, we will omit the domain in estimates below, since the estimates can be always localized
around the center z0.
Step 0. This is a preliminary step where we consider the case where Dg = g, corresponding to the choice
of parameters kt = 0, |kx| = 0 and |kv| = 0. With this choice of parameters, inequality (3. 59) follows
straightforwardly from the application of Lemma 3.18.
Step 1. In this step, we prove inequality (3. 59) for differential operators of the type Dk = Dkx

x , which
corresponds to the choice of parameters k = (0, kx, 0). We proceed by induction on d = |kx|. First of
all, we remark that it is not possible to apply directly Proposition 3.10 in order to get inequality (3. 59)
for this case, because the kinetic degree of ∂xi is equal to 3. For this reason, it is convenient to make
the inductive statement in terms of increments. We are going to prove by induction on d ∈ N, d ≥ 1
that there exists αd ∈ (0, 1) such that for any τ > 0 there exists a constant Cd > 0 such that for every
kx ∈ Nn with |kx| = d, ν ∈ (0, 12 ) and y ∈ BR3

4

,

∥∆y∂
kx
x g∥

C
2+αd
l

≤ Cd|y|µν(v0). (3. 60)

Passing to the limit as y → 0 completes the step.
The case d = 0 is provided by step 0. Moreover, note that inequality (3. 60) holds trivially for d = 0,

since there is no |kx| ≤ −1. In order to proceed by induction, we suppose that (3. 60) holds for any
kx ∈ Nn with |kx| ≤ d− 1. Let |kx| = d and h = ∆yD

kx
x g. By the inductive hypothesis (3. 60) combined

with Lemma 3.22, we have that

∥h∥
C

αd−1
l

≤ C[Dkx
x g]

C
2+αd−1
l

∥(0, y, 0)∥2 = Cd|y|
2
3µν(v0). (3. 61)

Our aim is to enhance the exponent 2
3 on the right hand side all the way to one. In order to get this

result, we adapt Lemma 9.1 proved in [69] to our nonlinear case (for the proof see the end of this section).

Lemma 3.23 Let h = ∆yD
kx
x g (as above), and assume that (3. 60) holds true with |kx| ≤ d−1. If there

exists α ∈]0,min(α0, αd−1)] such that

∥∆y∂
kx
x g∥Cα

l (Q) ≤ C[Dkx
x g]

C
2+αd
l (Q)

∥(0, y, 0)∥2 = Cd|y|
2
3µν(v0).
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when |kx| = d, then with α′ = 2
3α we have

∥h∥
C2+α′

l (Q′)
≤ Cd∥(0, y, 0)∥2µν′

(v0) = Cd|y|
2
3µν′

(v0).

where Q′ ⊂ Q ∩ (Rn × Tn × [2τ,∞)).

Thus, by recalling (3. 61) and applying Lemma 3.23 to the function h = ∆yD
kx
x g with |kx| = d we get

∥h∥
C

2+αd
l (Q′)

≤ Cd∥(0, y, 0)∥2µν′
(v0), (3. 62)

where αd = 2
3αd−1. Note that the time shift τ was updated to 2τ . This is because the application

of Lemma 3.18 in the proof of Lemma 3.23 requires a gap in time. Because we obtain estimates for
every value of τ > 0 (with a constant depending on τ), the difference between τ and 2τ is not relevant
for the final estimates. In view of this observation, we will omit from now on the domain dependence
in the estimates below as a way of decluttering the expressions and focusing on the Hölder exponents.
Combining (3. 62) with Lemma 3.21 we finish the proof of (3. 60) for |kx| = d.
Step 2. In this step, we prove inequality (3. 59) for differential operators of the type Dk = ∂kt

t D
kx
x ,

which correspond to the choice of parameters k = (0, kx, kt). Thus, our aim is to control the norm
∥∂kt

t D
kx
x g∥C2+α

l
for some small α > 0. We proceed through a bi-dimensional induction on (m, d) =

(kt, |kx|) such that for any τ > 0 and for any ν ∈ (0, 12 ) there exists a constant Cm,d such that

∥∂kt
t D

kx
x g∥

C
2+αm,d
l

≤ Cm,d µ
ν(v0) (3. 63)

Equivalently it can be thought as induction in m and d, where kt = m and |kx| = d, where the inductive
step in m is proved by induction in d. The case m = 0 is treated in step 1. Let m, d ∈ N, m > 0 and let
us assume (3. 63) holds true whenever kt ≤ m − 1 and |kx| ≤ d + 1, and also for kt = m and |kx| < d.
Our aim is to prove by induction that (3. 63) also holds for kt = m and |kx| = d.

Let kx ∈ Nn be any multi-index with |kx| = d. Using the inductive hypothesis (3. 63) with with
kt = m− 1 we get

∥∂m−1
t Dkx

x g∥
C

2+αm−1,d
l

≤ Cm−1,d µ
ν(v0). (3. 64)

Since the kinetic degree of the operator ∂t + v · ∇x is 2, by combining (3. 64) with Lemma 3.10 we get
the following bound

∥(∂t + v · ∇x)∂
m−1
t Dkx

x g∥
C

αm−1,d
l

,≤ Cm,d µ
ν(v0). (3. 65)

Applying again the inductive assumption (3. 63) with kt = m− 1 and k̃x = d+ 1 we get the following

∥(v · ∇x)∂
m−1
t Dk̃x

x g∥
C

2+αm1,d+1
l

≤ C∥∂m−1
t ∇xD

k̃x
x g∥

C
2+αm−1,d+1
l

≤ Cm−1,d+1 µ
ν′
(v0) (3. 66)

where ν′ ∈ (0, 12 ). Therefore, combining (3. 65) and (3. 66) we get the following inequality for some
α > 0 and some constant C depending both on m and d

∥∂nt Dkx
x g∥Cα

l
≤ C µν′′

(v0), (3. 67)

where ν′′ = min{ν, ν′}. Our next objective is to turn estimate (3. 67) into

∥∂mt Dkx
x g∥

C
2+αm,d
l

≤ Cµν(v0). (3. 68)

In order to do that, we differentiate equation (3. 40) and compute the following equation for h := ∂mt D
kx
x g

(∂t + v · ∇x)h = R[h]U [g] +R[g]U [h] +
∑

i≤(m,kx,0)
i̸=(m,kx,0)

R[D̂ig]U [Dig],
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where ∂nt Dkx
x = D̂i◦Di and i ∈ N2n+1 is a multi-index as in the proof of Lemma 3.23 below. The first two

terms R[g]U [h] and R[h]U [g] are bounded by the definition of the function g, the intermediate estimate
(3. 67) and Lemma 3.18. By induction assumption (3. 63) and Lemma 3.18 each term in the reminder
(the summation on the right hand side) can be controlled in Cα.

Step 3. In the third and last step, we establish inequality (3. 59) for every differential operator Dk =
∂kt
t D

kx
x Dkv

v , which correspond to the choice of parameters k = (kv, kx, kt) with k ∈ N2n+1, and for every
τ > 0. More explicitly we will prove, via a bidimensional induction argument similar to the one in step
2 where kv = m and kt + |kx| = d, that for any τ > 0 there exists a Cm,d such that for any ν ∈ (0, 12 )

∥∂kt
t D

kx
x Dkv

v g∥
C

2+αm,d
l

≤ Cm,d µ(v0)
ν . (3. 69)

The case m = 0 is treated in step 2. Let m, d ∈ N, m > 0 and let us assume (3. 69) holds true whenever
kv ≤ m − 1 and kt + |kx| ≤ d. Let m ≥ 1 and k ∈ N2n+1 be any multi-index with |kv| = m − 1 and
kt + |kx| = d. Applying the inductive hypothesis (3. 69) with these parameters we get

∥∂kt
t D

kx
x Dn−1

v g∥
C

2+αm−1,d
l

≤ Cm−1,d µ(v0)
ν . (3. 70)

Since the kinetic degree of ∇v is 1, we can apply Lemma 3.10 and get the following bound

∥∇v∂
kt
t D

kx
x Dn−1

v g∥Cα
l
≤ Cm,d µ(v0)

ν , (3. 71)

where α = 1 + αm−1,d. Thus, we can compute an equation for h = ∇v∂
kt
t D

kx
x Dn−1

v g and proceed like in
step2. This concludes the proof. □

Proof of Lemma 3.23. The key element to the proof of this lemma is to differentiate (3. 40) with
respect to ∆yD

kx
x . Then we apply Lemma 3.18 together with the estimates we have for each incremental

quotient given by the inductive assumption (3. 60). Indeed, by a direct computation we can show
h = ∆yD

kx
x g verifies the following equation

(∂t + v · ∇x)h =R[g]U [h] +R[h]U [g] +R[∆yg]U [Dkx
x g] +R[Dkx

x g]U [∆yg]+ (3. 72)

+
∑
|i|<d
i≤kx

{
R[∆yD̂ig]U [Dig] +R[D̂ig]U [∆yDig]

}
,

where i ∈ Nn is a multi-index such that i ≤ kx (i.e. every component of i is lower or equal than the
correspondent component of kx) and Dkx

x = D̂i ◦ Di. The first two terms R[g]U [h] and R[h]U [g] are
bounded by the definition of the function g and Lemma 3.18. Since the index i runs over |i| < d, the
inductive hypothesis (3. 60) tells us that ∆yg, Dkx

x g, Dig, D̂ig, ∆yDig and ∆yD̂ig are bounded in C2+αd

l

by Cd|y|µν(v0) except for the two extremal cases:

∆yD
ig for i = kx and ∆yD̂

ig for i = (0, 0, 0).

These cases covered by the assumptions of this lemma and Lemma 3.18 (i). □



Chapter 4

The weak regularity theory

The second part of my thesis is devoted to the regularity theory for weak solutions to the Kolmogorov
equation with measurable coefficients, which is nowadays the main focus of the research community. The
weak regularity theory has been developed during the last decade, and it is still evolving. Here, we briefly
recall some of the main results on this subject for different kinds of Kolmogorov operators:

• Kolmogorov operator with measurable coefficients in divergence form: the Moser’s iter-
ative scheme was firstly proved by Polidoro and Pascucci for the dilation invariant case [104], then
later on extended by Cinti, Pascucci and Polidoro [33], and Wand and Zang [119]. As far as we are
concerned with Hölder regularity for weak solutions, Wang and Zang prove it alongside with a weak
Poincaré inequality in [120] and [119], respectively for the dilation invariant and the non-dilation
invariant case. We remark that all of this results consider the definition of weak solution introduce
by Pascucci and Polidoro in [104], that we report here in Definition 5.1.

• Kolmogorov operator with measurable coefficients in non-divergence form: the only
result available is due to Abedin and Tralli [1], who proved a Harnack inequality for this type of
operators with additional Cordes-Landis assumption on the coefficients aij .

• Kolmogorov operator with VMO coefficients aij: these operators have been studied in [22] by
Bramanti, Cerutti and Manfredini, [91] by Manfredini and Polidoro, and in [109], [110] by Polidoro
and Ragusa.

• Nonlocal Kolmogorov type operators (K)s: this kind of nonlocal operators and their station-
ary counterparts have been introduced in the recent paper [52] by Garofalo and Tralli. In particular,
Hardy-Littlewood- Sobolev inequalities, Poincaré-type inequalities, and nonlocal isoperimetric in-
equalities are proved in [54], [53], and [55] respectively.

The aim of this work is to contribute to the study of weak regularity theory for Kolmogorov equations
with measurable coefficients in divergence form. The most recent developments in this framework have
been established in the particular case of the kinetic Kolmogorov-Fokker-Planck equation:

∂tu(v, x, t) + v · ∇xu(v, x, t) = divv(A(v, x, t)∇vu(v, x, t)) + b(v, x, t) · ∇vu(v, x, t) + f(v, x, t), (4. 1)

where (v, x, t) ∈ R2n+1. This equation belongs to a class of evolution equations arising in the kinetic
theory of gases and u = u(v, x, t) represents in this case the density of particles with velocity v =
(v1, . . . , vn) and position x = (x1, . . . , xn) at time t. Indeed, this latter equation is the one considered by
Golse, Imbert, Mouhot and Vasseur in [58], where the authors prove the Hölder continuity and a Harnack
inequality for weak solutions to the equation (4. 1) with measurable coefficients in divergence form. The
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Harnack inequality proved in [58] is the only one available in the framework of weak regularity theory
for Kolmogorov equations in divergence form, and it is based on the De Giorgi method. This chapter
is devoted to the proof of a geometric statement for this Harnack inequality, based on the concepts of
Harnack chains and attainable set.

As far as we are concerned with the more general Kolmogorov equation in divergence form

Ku(x, t) :=
m0∑

i,j=1

∂xi

(
aij(x, t)∂xju(x, t)

)
+

N∑
i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)+ (4. 2)

+

m0∑
i=1

bi(x, t)∂iu(x, t)−
m0∑
i=1

∂xj
(ai(x, t)u(x, t)) + c(x, t)u(x, t) = 0

where (x, t) ∈ RN+1 and 1 ≤ m0 ≤ N , Chapter 5 is devoted to the extension of the Moser’s iterative
procedure for weak solutions to the equation Ku = 0 under minimal assumptions on the integrability of
the lower order coefficients a1, . . . , am0

, b1, . . . , bm0
, c, where we consider the definition of weak solution

proposed by Pascucci and Polidoro in [104] (see Definition 5.1). As we shall see in the forthcoming section,
the main advantage of this definition is that it allows us to directly handle the computations involving
the drift term. The first result we have at our disposal in this setting is the proof of the Moser’s iterative
scheme for the dilation invariant Kolmogorov equation in divergence form with measurable coefficients
and bounded lower order terms (see [104]). This results was firstly extended to the non dilation invariant
case by Cinti, Pascucci and Polidoro in [33]. Then later on, Wang and Zang consider in [119] non dilation
invariant Kolmogorov operators with lower order coefficients belonging to some Lq space, with q > Q+2
(where Q is the homogeneous dimension defined in (5. 19)). The results we present here improve these
previously known results extending them to the non-dilation invariant case with lower order measurable
coefficients with positive divergence, a result that was firstly presented in the paper [7] in 2019 and that
has been inspired by the article of Nazarov and Uralt’seva [99], who prove L∞

loc estimates and Harnack
inequalities for uniformly elliptic and parabolic operators in divergence form.

4.1 A geometric statement of the Harnack inequality
In this chapter we prove a geometric version of the Harnack inequality proved in [58] for weak solutions
to the equation (4. 1), whose statement is recalled in Theorem 4.5 below. As a corollary, we obtain
a strong maximum principle. More precisely, we consider second order partial differential equations of
Kolmogorov-Fokker-Planck type of the form

∂tu(v, x, t) +

n∑
j=1

vj∂xj
u(v, x, t) =

n∑
j,k=1

∂vj (ajk(v, x, t)∂vku(v, x, t))

+

n∑
j=1

bj(v, x, t)∂vju(v, x, t) + f(v, x, t), (v, x, t) ∈ Ω,

(4. 3)

where Ω is an open subset of R2n+1, f ∈ L∞(Ω), b = (b1, . . . , bn) is a vector of Rn with bounded
measurable coefficients and A = (ajk)j,k=1,...,n is a symmetric matrix with real measurable entries.
Moreover, there exist two positive constants λ,Λ such that

λ|ξ|2 ≤ ⟨A(v, x, t)ξ, ξ⟩ ≤ Λ|ξ|2, ∀(v, x, t) ∈ Ω, ∀ξ ∈ Rn.

As the coefficients of the matrix A and of the vector b are measurable, we need to consider weak solutions
to the equation (4. 3) in the following sense.
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Weak solution. Consider any open subset Ω of R2n+1. A weak solution to (4. 3) is a function
u ∈ L2

loc(Ω) such that ∂v1u, . . . , ∂vnu and the directional derivative ∂tu+ ⟨v,∇xu⟩ belong to L2
loc(Ω), and

moreoverˆ
Ω

(∂tu+ ⟨v,∇xu⟩ − ⟨b,∇vu⟩)φdv dx dt+
ˆ
Ω

⟨A∇vu,∇vφ⟩dv dx dt =
ˆ
Ω

fφdv dx dt, (4. 4)

for every test function φ ∈ C∞
0 (Ω).

From now on, equation (4. 3) will be understood in the weak sense and will be written in the short form
Ku = f , where K is the operator associated to (4. 3) and defined as follows

Ku =: ∂tu+ ⟨v,∇xu⟩ − divv(A∇vu)− ⟨b,∇vu⟩, (v, x, t) ∈ Ω. (4. 5)

Let us consider the unit box of R2n+1:

Q = ]− 1, 1[n×]− 1, 1[n×]− 1, 0[, (4. 6)

there the Harnack inequality proved in [58] reads as the usual parabolic Harnack inequality: there exist
two small boxes Q+ and Q− contained in Q  (see Fig. 1), with Q+ located above Q− with respect to the
time variable, and a positive constant M , such that

sup
Q−

u ≤M

(
inf
Q+

u+ ∥f∥L∞(Q)

)
for every non-negative weak solution u of Ku = f in Q, with f ∈ L∞(Q).

t

vx

Q

Q+

Q−

Fig. 1 - Harnack inequality.

We recall that, in the classical statement of the Harnack inequality for uniformly parabolic operators
with measurable coefficients, the size of the boxes Q+ and Q−, and the gap between the lower basis of
Q+ and upper basis of Q− can be arbitrarily chosen (see Theorem 1, p. 102 of [97]). On the contrary, in
the statement of the Harnack inequality for the operator K given in [58], neither the size of the boxes Q+

and Q−, nor their position in Q is characterized. Actually, as we shall see in the sequel, it is known that
the Harnack inequality does not hold for any choice of the boxes Q+ and Q−. This fact was previously
noticed by Cinti, Nyström and Polidoro in [30], where classical solutions of

K0u = ∂tu+ ⟨v,∇xu⟩ −
1

2
divv (∇vu) = 0 (4. 7)
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are considered, and by Kogoj and Polidoro in [77]. We give here a sufficient condition for the validity of
the Harnack inequality. For its precise statement we refer to the notion of attainable set A(v0,x0,t0) given
in Definition 4.4 below. In the sequel int

(
A(v0,x0,t0)

)
denotes the interior of A(v0,x0,t0).

Theorem 4.1 Let Ω be an open subset of R2n+1 and let f ∈ L∞(Ω). For every (v0, x0, t0) ∈ Ω, and
for any compact set K ⊆ int

(
A(v0,x0,t0)

)
, there exists a positive constant CK , only dependent on Ω,

(v0, x0, t0), K and on the operator K, such that

sup
K
u ≤ CK

(
u(v0, x0, t0) + ∥f∥L∞(Ω)

)
,

for every non-negative weak solution to Ku = f .

We note that any weak solution u of Ku = f is Hölder continuous (see [120, 119] for the equation
Ku = 0, and Theorem 2 in [58] for Ku = f with f ∈ L∞), then u(v0, x0, t0) is well defined. As we shall
see in Definition 4.4, the attainable set A(v0,x0,t0) depends on the geometry of Ω and it can be easily
described. For instance, when it agrees with the unit box Q in (4. 6) we have that

A(0,0,0) =
{
(v, x, t) ∈ Q | |xj | ≤ |t|, j = 1, . . . , n

}
. (4. 8)

The proof of this fact can be seen in [30], Proposition 4.5, p.353 (see Fig. 2).

t

vxx

Q

b
(0, 0, 0)

Fig. 2 - A(0,0,0)(Q).

A direct consequence of our main result inequality is the following strong maximum principle.

Theorem 4.2 Let Ω be an open subset of R2n+1, and let u be a non-negative solution to Ku = 0. If
u(v0, x0, t0) = 0 for some (v0, x0, t0) ∈ Ω, then u(v, x, t) = 0 for every (v, x, t) ∈ A(v0,x0,t0).

Concerning A(v0,x0,t0), we remark that the closure has to be intended with respect to the topology of Ω.
Note that the Theorem 4.2 extends to weak solution to Ku = 0 the well known Bony’s strong maximum
principle [20] for classical solutions of degenerate hypoelliptic PDEs with smooth coefficients. We also
recall the work of Amano [3], where differential operators with continuous coefficients are considered.
Moreover, Theorem 4.2 is somehow optimal. Indeed, in Proposition 4.5 of [30] it is shown that there
exists a non-negative solution u to K0u = 0 in Q such that u(v, x, t) = 0 for every (v, x, t) ∈ A(0,0,0), and
u(v, x, t) > 0 for every (v, x, t) ∈ Q\A(0,0,0).
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We remark that our method also applies to the operators considered in the paper [1] “Harnack in-
equality for a class of Kolmogorov–Fokker–Planck equations in non-divergence form”. Thus our Theorems
4.1 and 4.2 hold true also for Kolmogorov operators in non-divergence form with continuous coefficients.

This chapter is organized as follows. Section 4.2 contains some preliminary results and known facts
about the regularity properties of the operator K0, a short discussion on the controllability problem
related to K0 and the definition of Attainable set. In Section 4.3 we recall the Harnack inequality given
in [58] and we prove a dilation-invariant version of it. In Section 4.4 we prove our main results.

4.2 Controllability problem for K0. Definition of attainable set.
In this section, we recall some known facts on the equation (4. 5) and on its prototype (4. 7), that will
play an important role in our study. First of all, we recall that the operator K introduced in (4. 7) belongs
to the more general class of constant coefficient operators (1. 1) considered in Chapter 1. In particular,
according to the notation of Chapter 1, the operator K0 can be written as follows:

K0u :=

2n∑
i,j=1

ãi,j∂
2
yiyj

u+

2n∑
i,j=1

b̃i,j yj∂yi
u+ ∂tu, (y, t) ∈ R2n+1, (4. 9)

where y = (v, x), Ã = (ãi,j(y, t))i,j=1,...,N is a symmetric non-negative matrix with real measurable entries
and B̃ = (̃bi,j)i,j=1,...,N is a constant matrix. We can choose, as it is not restrictive, a basis of R2n such
that Ã and B̃ take the following form (see Proposition 1.1):

Ã =

(
In On

On On

)
, and B̃ =

(
On On

In On

)
.

Clearly, as m0 = n < 2n the operator K0 is strongly degenerate, and thus by Proposition 1.1 its regularity
properties depend on its first order part

Y = ⟨B̃y,D⟩+ ∂t ∼ (0, . . . , 0, v1, . . . , vn, 1)
T (4. 10)

where D = (∂y1
, . . . ∂y2n

) denotes the full gradient of R2n. Moreover, it is known that every opera-
tor K0 is invariant with respect to the non-Euclidean translation introduced in (1. 12), that for every
(v0, x0, t0), (v, x, t) ∈ R2n+1 reads as follows:

(v0, x0, t0) ◦ (v, x, t) := (v0 + v, x0 + x+ tv0, t0 + t). (4. 11)

If u is a solution of the equation K0u = f in some open set Ω ⊂ R2n+1, then the function w(v, x, t) :=
u ((v0, x0, t0) ◦ (v, x, t)) is solution to K0w = g, where g(v, x, t) := f ((v0, x0, t0) ◦ (v, x, t)) in the set{
(v, x, t) ∈ R2n+1 | (v0, x0, t0) ◦ (v, x, t) ∈ Ω

}
. It is known that R2n+1 with the operation “◦” is a non

commutative group, with identity (0, 0, 0). The inverse of the element (v, x, t) is

(v, x, t)−1 := (−v,−x+ tv,−t). (4. 12)

Moreover, by Proposition 1.4 the operator K0 is homogeneous of degree two with respect to the family
of the following dilatations:

δr(v, x, t) := (rv, r3x, r2t), for every r > 0. (4. 13)

In this case the following distributive property of the dilation holds(
dr(v0, x0, t0)

)
◦
(
dr(v, x, t)

)
= dr

(
(v0, x0, t0) ◦ (v, x, t)

)
,
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for every (v0, x0, t0), (v, x, t) ∈ R2n+1 and for every r > 0. We refer to Chapter 1 and the reference therein
for further information on the subject.

We now introduce some basic notions of Control Theory in order to describe the set where the Harnack
inequality holds for non-negative solutions of Ku = f . As noticed above, the link between the Regularity
Theory for linear PDEs and the Control Theory is not surprising, as the hypoellipticity of K is equivalent
to the Kalman’s controllability condition by Proposition 1.1. The first concept we need to introduce is
the notion of K-admissible curve, the second one is that of attainable set. For the precise statement
of these definitions, we first consider the operator K0 introduced in (4. 7) and we recall that it can be
written in the following sum of squares form:

K0 =

m0∑
j=1

X2
j + Y,

where Y is defined in (4. 10) and

Xj = ∂vj ∼ ej = (0, . . . , 0, 1, 0, . . . , 0)
T

for j = 1, . . . , n. (4. 14)

K0-admissible curve and attainable set. We say that a curve γ : [0, T ] → R2n is K-admissible if:

• it is absolutely continuous;

• γ̇(s) =
n∑

j=1

ωj(s)Xj(γ(s)) + Y (γ(s)) a.e. in [0, T ], with ω1, . . . , ωn ∈ L1[0, T ].

Moreover we say that γ steers (v0, x0, t0) to (v, x, t), for t0 > t, if γ(0) = (v0, x0, t0) and γ(T ) = (v, x, t).
Note that t(s) = t0 − s, then T = t0 − t and t0 > t. We denote by A(v0,x0,t0)(Ω) the following set:

A(v0,x0,t0)(Ω) =

{
(y, t) ∈ Ω | there exists a K0 − admissible curve γ : [0, T ] → Ω

such that γ(0) = (v0, x0, t0) and γ(T ) = (v, x, t).

}
.

We will refer to A(v0,x0,t0)(Ω) as attainable set.
In particular, if we recall the definitions (4. 10) and (4. 14) for the vector fields Y andXj , respectively,

and denote the curve
γ(s) = (v(s), x(s), t(s)), s ∈ [0, T ],

the K0-admissible curves can be easily described. Indeed, the controllability problem

γ̇(s) =

n∑
j=1

ωj(s)Xj(γ(s)) + Y (γ(s)), γ(0) = (v, x, t), γ(T ) = (η, ξ, τ),

becomes
v̇(s) = ω(s), ẋ(s) = v(s), ṫ(s) = −1, (4. 15)

and its solution is

v(s) = v0 +

ˆ s

0

ω(τ)d τ, x(s) = x0 +

ˆ s

0

v(τ)d τ, t(s) = t0 − s.

We remark that by Proposition 1.1 our assumption on the matrix B̃ is equivalent to the Kalman’s
controllability condition C4. Thus, it is guaranteed that for every (v, x, t) ∈ R2n+1, with t < t0,
there is at least a control ω = (ω1, ω2, . . . , ωn) ∈ (L1[0, T ])n such that the solution to (4. 15) satisfies
(v(T ), x(T ), t(T )) = (v, x, t).



The weak regularity theory 92

t

vx

γ(T ) = (v, x, t)

γ(0) = (v0, x0, t0)

X = ∂v
−X

γ̇(s)

Y = v∂x − ∂t

Fig. 3 - A K−admissible curve steering (v0, x0, t0) to (v, x, t).

In the sequel we will use the following notation.

Definition 4.3 A curve γ = (v, x, t) : [0, T ] → R2n+1 is said to be K-admissible if it is absolutely
continuous, and solves the equation (4. 15) for almost every s ∈ [0, T ], with ω1, ω2, . . . , ωn ∈ L1[0, T ].
Moreover we say that γ steers (v0, x0, t0) to (v, x, t), with t0 > t, if γ(0) = (v0, x0, t0) and γ(T ) = (v, x, t).

Definition 4.4 Let Ω be any open subset of R2n+1, and let (v0, x0, t0) ∈ Ω. We denote by A(v0,x0,t0)(Ω)
the following set:

A(v0,x0,t0)(Ω) =

{
(v, x, t) ∈ Ω | there exists a K − admissible curve γ : [0, T ] → Ω

such that γ(0) = (v0, x0, t0) and γ(T ) = (v, x, t).

}
.

We will refer to A(v0,x0,t0)(Ω) as attainable set. We shall use the notation A(v0,x0,t0) = A(v0,x0,t0)(Ω)
whenever there is no ambiguity on the choice of the set Ω .

4.3 Harnack inequalities
This Section is devoted to Harnack inequalities for the equation Ku = f introduced in (4. 3). In partic-
ular, we recall the Harnack inequality proved by Golse, Imbert, Mouhot and Vasseur (see Theorem 4 in
[58]) and then we prove some preliminary results useful for the proof of our Theorem 4.1. In particular,
let us introduce some preliminary notation. Let Q =] − 1, 1[2n×] − 1, 0[ be the unit box introduced in
(4. 6). Based on the dilation (4. 11) and on the Galilean translation (4. 13), for every positive r and for
every (v0, x0, t0) we define the sets

Qr := drQ =
{
dr(v, x, t) | (v, x, t) ∈ Q

}
,

Qr(v0, x0, t0) := (v0, x0, t0) ◦ drQ =
{
(v0, x0, t0) ◦ dr(v, x, t) | (v, x, t) ∈ Q

}
.

A direct computation shows that

Qr =]− r, r[n×]− r3, r3[n×]− r2, 0[,

Qr(v0, x0, t0) ={(v, x, t) ∈ R2n+1 | |(v − v0)j | < r,

|(x− x0 − (t− t0)v0)j | < r3, j = 1, . . . , n, t0 − r2 < t < t0}.

With the above notation, the following result holds.
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Theorem 4.5 (Theorem 4 in [58]) There exist three constants M > 1, R > 0,∆ > 0, with 0 < R2 < ∆ <
∆+R2 < 1, such that

sup
Q−

u ≤M

(
inf
Q+

u+ ∥f∥L∞(Q)

)
for every non-negative weak solution u to the equation Ku = f on Q, with f ∈ L∞(Q). The constants
M,R and ∆ only depend on the dimension n and on the ellipticity constants λ and Λ. Moreover Q+, Q−

are defined as follows

Q+ = QR with 0 < R2 < ∆ < ∆+R2 < 1, Q− = QR(0, 0,−∆).

As the authors notice in Remark 4 of [58], “using the transformation (4. 11), we get a Harnack inequality
for cylinders centered at an arbitrary point (v0, x0, t0)”. We next give a precise meaning to this assertion
and we improve it by also considering the dilation (4. 13).

Theorem 4.6 Let (v0, x0, t0) be any point of R2n+1 and let r be a positive number. There exist three
constants M > 1, R > 0,∆ > 0, with 0 < R2 < ∆ < ∆+R2 < 1, such that

sup
Q−

r (v0,x0,t0)

u ≤M

(
inf

Q+
r (v0,x0,t0)

u+ ∥f∥L∞(Qr(v0,x0,t0)

)

for every non-negative weak solution u to the equation Ku = f on Qr(v0, x0, t0), with f ∈ L∞(Qr(v0, x0, t0)).
The constants M,R and ∆ only depend on the dimension n and on the ellipticity constants λ and Λ.
Moreover Q+

r (v0, x0, t0), Q
−
r (v0, x0, t0) are defined as follows

Q+
r (v0, x0, t0) = (v0, x0, t0) ◦ drQ+, Q−

r (v0, x0, t0) = (v0, x0, t0) ◦ drQ−.

Proof. We rely on the invariance of the operator K0 with respect to the group (4. 13). If u is a
non-negative solution to Ku = f in Qr(v0, x0, t0), then the function

ũ(v, x, t) := u
(
d1/r

(
(v0, x0, t0)

−1 ◦ (v, x, t)
))

is a solution in the unit box Q to the following equation

K̃ũ =: ∂tũ+ ⟨v,∇xũ⟩ − divv(Ã∇vũ)− ⟨̃b,∇vũ⟩ = f̃ ,

where the inverse (v0, x0, t0)
−1 is defined in (4. 12) and

Ã(v, x, t) := A
(
d1/r

(
(v0, x0, t0)

−1 ◦ (v, x, t)
))
, b̃(v, x, t) := b

(
d1/r

(
(v0, x0, t0)

−1 ◦ (v, x, t)
))

f̃(v, x, t) :=f
(
d1/r

(
(v0, x0, t0)

−1 ◦ (v, x, t)
))
.

Even though K̃ does not agree with K, it satisfies the assumptions of Theorem 4.5 with the same structural
constants n, λ and Λ. We then apply Theorem 4.5 to the function ũ and we plainly obtain our claim for
the function u. □

A useful tool in the proof of our main theorem is the following lemma (Lemma 2.2 in [21]). To give
here its statement we introduce a further notation. We choose any S ∈]0, R[ and we set

K− = [−S, S]n ×
[
−S3, S3

]n ×
{
−
(
∆+

R2

2

)}
.

Moreover, for every (v, x, t) ∈ R2n+1 and r > 0 we let

K−
r (v, x, t) = (v, x, t) ◦ dr(K−).
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Lemma 4.7 Let γ : [0, T ] → R2n+1 be an K−admissible path and let a, b be two constants s.t. 0 ≤ a <
b ≤ T . Then there exists a positive constant h, only depending on K, such that

ˆ b

a

|ω(τ)|2δτ ≤ h =⇒ γ(b) ∈ K−
r (γ(a)), with r =

√
b− a

(∆ + 1/2)
.

Remark 4.8 Note that K−
r (v, x, t) is a compact subset of Q−

r (v, x, t) for every (v, x, t) ∈ R2n+1 and for
any r > 0. As a consequence of Lemma 4.7, K−

r (γ(a)) is an open neighborhood of γ(b).

4.4 Proof of the main results
A useful notion in the proof of our main result is that of Harnack chain.

Definition 4.9 We say that {z0, . . . , zk} ⊆ Ω is a Harnack chain connecting z0 to zk if there exist k
positive constants C1, . . . , Ck such that

u(zj) ≤ Cju(zj−1)) j = 1, . . . , k

for every non-negative solution u of Ku = f in Ω.

Our first result of this section is a local version of Theorem 4.1.

Proposition 4.10 For every (v, x, t) ∈ int
(
A(v0,x0,t0)

)
, there exist an open neighborhood U(v,x,t) of

(v, x, t) and a positive constant C(v,x,t) such that

sup
U(v,x,t)

u ≤ C(v,x,t)

(
u(v0, x0, t0) + ∥f∥L∞(Ω)

)
,

for every non-negative solution to Ku = f , with f ∈ L∞(Ω).

Proof. Let (v, x, t) be any point of int
(
A(v0,x0,t0)

)
. We plan to prove our claim by constructing a finite

Harnack chain connecting (v, x, t) to (v0, x0, t0). Because of the very definition of A(v0,x0,t0), there exists
a K−admissible curve γ : [0, T ] → Ω steering (v0, x0, t0) to (v, x, t). Our Harnack chain will be a finite
subset of γ([0, T ]).

In order to construct our Harnack chain, we introduce a further notation. Let Q̃ :=]− 1, 1[2n+1 and
note that it is an open neighborhood of the origin of R2n+1. Because of the continuity of the Galilean
change of variable “◦” and of the dilation (dr)r>0, for every (v′, x′, t′) ∈ R2n+1, the family(

Q̃r(v
′, x′, t′)

)
r>0

, Q̃r(v
′, x′, t′) := (v′, x′, t′) ◦ drQ̃,

is a neighborhood basis of the point (v′, x′, t′). Then, again because of the continuity of “◦” and (dr)r>0,
for every s ∈ [0, T ] there exists a positive r such that Q̃r(γ(s)) ⊆ Ω. Thus we can define

r(s) := sup
{
r > 0 : Q̃r(γ(s)) ⊆ Ω

}
.

Note that the function r(s) is continuous, then it is well defined the positive number

r0 := min
s∈[0,T ]

r(s).

As Qr(γ(s)) ⊂ Q̃r(γ(s)), we conclude that

Qr(γ(s)) ⊆ Ω for every s ∈ [0, T ] and r ∈]0, r0]. (4. 16)
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On the other hand, we notice that the function

I(s) :=

ˆ s

0

|ω(τ)|2dt,

is (uniformly) continuous in [0, T ], then there exists a positive δ0 such that δ0 ≤ (∆ +R2/2)r0 and that
ˆ b

a

|ω(τ)|2dt ≤ h for every a, b ∈ [0, T ], such that 0 < a− b ≤ δ0, (4. 17)

where h is constant appearing in Lemma 4.7.
We are now ready to construct our Harnack chain. Let k be the unique positive integer such that

(k− 1)δ0 < T , and kδ0 ≥ T . We define {sj}j∈{0,1,...,k} ∈ [0, T ] as follows: sj = jδ0 for j = 0, 1, . . . , k− 1,
and sk = T . As noticed before, the equation (4. 17) allows us to apply Lemma 4.7. We then obtain

γ(sj+1) ∈ Q−
r0(γ(sj)) j = 0, . . . , k − 2, γ(sk) ∈ Q−

r1(γ(sk−1)), (4. 18)

for some r1 ∈]0, r0]. We next show that (γ(sj))j=0,1,...,k is a Harnack chain and we conclude the proof.
We proceed by induction. For every j = 1, . . . , k − 2 we have that γ(sj+1) ∈ Q−

r0(γ(sj)). From (4. 16)
we know that Qr0(γ(sj)) ⊆ Ω, then we apply Theorem 4.5 and we find

u(γ(sj+1)) ≤ sup
Q−

r0
(γ(sj))

u ≤ M
(

inf
Q+

r0
(γ(sj))

u+ ∥f∥L∞(Q(γ(sj)))

)
≤M

(
u(γ(sj)) + ∥f∥L∞(Ω)

)
.

Here we rely on the fact that u is a continuous function. As a consequence we obtain

u(γ(sk−1)) ≤M(u(γ(sk−2)) + ∥f∥L∞(Ω))

≤M(M(u(γ(sk−3)) + ∥f∥L∞(Ω)) + ∥f∥L∞(Ω))

...

≤Mk−1u(γ(0)) + ∥f∥L∞(Ω)

k−1∑
i=1

M i.

We eventually apply Theorem 4.5 to the set Qr1(γ(sk−1)) ⊆ Ω and we obtain

sup
U(v,x,t)

u ≤ C(v,x,t)

(
u(v0, x0, t0) + ∥f∥L∞(Ω)

)
,

where C(v,x,t) =
∑k

i=1M
i and U(v,x,t) = Q−

r1(γ(sk−1)). As we noticed in Remark 4.8, Q−
r1(γ(sk−1)) is an

open neighborhood of γ(T ). This concludes the Proof of Proposition 4.10. □
Proof of Theorem 4.1. Let K be any compact subset of int

(
A(v0,x0,t0)

)
. For every (v, x, t) ∈ K we

consider the open set U(v,x,t). Clearly we have

K ⊆
∪

(v,x,t)∈K

U(v,x,t).

Because of its compactness, there exists a finite covering of K

K ⊆
∪

j=1,...,mK

U(vj ,xj ,tj),
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and Proposition 4.10 yields we

sup
U(vj,xj,tj)

u ≤ C(vj ,xj ,tj)

(
u(v0, x0, t0) + ∥f∥L∞(Ω)

)
j = 1, . . . ,mK .

This concludes the proof of Theorem 4.1, if we choose

CK = max
j=1,...,mK

C(vj ,xj ,tj).

□
Proof of Theorem 4.2. If u is a non-negative solution to Ku = 0 in Ω and K is a compact subset of A ,
then supK u ≤ CKu(v0, x0, t0). If moreover u(v0, x0, t0) = 0, we have u(v, x, t) = 0 for every (v, x, t) ∈ K
and, thus, u(v, x, t) = 0 for every (v, x, t) ∈ A(v0,x0,t0). The conclusion of the proof then follows from the
continuity of u. □



Chapter 5

The Moser’s iterative method for
weak solutions

This chapter is devoted to the extension of the Moser’s iterative scheme to positive weak solutions to the
degenerate second order partial differential equation of Kolmogorov type

Ku(x, t) :=
m0∑

i,j=1

∂xi

(
aij(x, t)∂xj

u(x, t)
)
+

N∑
i,j=1

bijxj∂xi
u(x, t)− ∂tu(x, t)+ (5. 1)

+

m0∑
i=1

bi(x, t)∂iu(x, t)−
m0∑
i=1

∂xj
(ai(x, t)u(x, t)) + c(x, t)u(x, t) = 0

where (x, t) ∈ RN+1 and 1 ≤ m0 ≤ N , with measurable coefficients under minimal assumptions on the
integrability of the lower order coefficients a1, . . . , am0

, b1, . . . , bm0
, c. First of all, we need to introduce

some further notation in order to state our main assumptions throughout this chapter. Here and in the
sequel we denote by

D = (∂x1
, . . . , ∂xN

), ⟨·, ·⟩, div (5. 2)
the gradient, the inner product, and and the divergence in RN , respectively. As the operator K introduced
in (5. 1) is non degenerate with respect to the first m0 components of x, we also introduce the notation

Dm0
= (∂x1

, . . . , ∂xm0
), (5. 3)

to denote the gradient in Rm0 . In particular, we introduce the N ×N matrix

A(x, t) = (aij(x, t))1≤i,j≤N =

(
A O
O O

)
, (5. 4)

where aij is the coefficient appearing in (5. 1) for i, j = 1, . . . ,m0, while aij ≡ 0 whenever i > m0, or
j > m0. Eventually, we define

a(x, t) = (a1(x, t), . . . , am0
(x, t),0, . . . , 0), b(x, t) = (b1(x, t), . . . , bm0

(x, t), 0, . . . , 0) (5. 5)

Y =

N∑
i,j=1

bijxj∂xi − ∂t

Then the operator K of (5. 1) takes the following compact form

Ku = div(ADu) + Y u+ ⟨b,Du⟩ − div(au) + cu. (5. 6)

We assume the following structural condition on K.

97
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(H1) The matrix (aij(x, t))i,j=1,...,m0
is symmetric with real measurable entries. Moreover, aij(x, t) =

aji(x, t), 1 ≤ i, j ≤ m0, and there exists a positive constant λ such that

λ−1|ξ|2 ≤
m0∑

i,j=1

aij(x, t)ξiξj ≤ λ|ξ|2,

for every (x, t) ∈ RN+1 and ξ ∈ Rm0 . The matrix B = (bij)i,j=1,...,N is constant.

Note that the operator K is uniformly parabolic when m0 = N . Here, we are mainly interested in the case
m0 < N , that is the strongly degenerate one. It is known that the first order part of K may provide it
with strong regularity properties. To be more specific, let us consider the operator K0 defined as follows:

K0u(x, t) :=

m0∑
i,j=1

∂2xi
u(x, t) +

N∑
i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t) (5. 7)

It is known that if the matrix B satisfies a suitable assumption, then K0 is hypoelliptic (as it is recalled
by Proposition 1.1). This means that if u is a distributional solution to K0u = f in some open set Ω of
RN+1 and f ∈ C∞(Ω), then u ∈ C∞(Ω) and it is a classic solution to the equation. The hypoellipticity
of K0 can be tested via the rank condition (9) (recall in the Introduction of this work) introduced by
Hörmander in [64]:

rankLie(∂x1 , . . . , ∂xm0
, Y )(x, t) = N + 1, for every (x, t) ∈ RN+1,

where Lie(∂x1
, . . . , ∂xm0

, Y )(x, t) denotes the Lie algebra generated by the first order differential operators
(vector fields) (∂x1 , . . . , ∂xm0

, Y ), computed at (x, t). We refer to Chapter 1, and the references therein,
for a characterization of the hypoellipticity of K0 in terms of the matrix B.

(H2) The principal part K0 of K is hypoelliptic.

We remark that if K is an uniformly parabolic operator (i.e. m0 = N and B ≡ 0), then (H2) is
clearly satisfied. Indeed, the principal part of K simply is the heat operator, which is hypoelliptic and
homogeneous with respect to the parabolic dilations δλ(x, t) = (λx, λ2t). In the degenerate setting, K0

plays the same role that the heat operator plays in the family of parabolic operators. For this reason, K0

will be referred to as principal part of K.
This chapter is devoted to the proof of L∞

loc estimates for positive weak solutions to the degenerate
second order partial differential equation of Kolmogorov type (5. 1) with measurable coefficients under
minimal assumptions on the integrability of the lower order coefficients a1, . . . , am0

, b1, . . . , bm0
, c. Our

study has been inspired by the article of Nazarov and Uralt’seva [99], who prove L∞
loc estimates and

Harnack inequalities for uniformly elliptic and parabolic operators in divergence form that are those with
m0 = N according to our notation. The authors consider uniformly parabolic equations in RN+1

L u = div(ADu) + ⟨b,Du⟩ − ∂tu = 0,

with b1, . . . , bN ∈ Lq(RN+1). They prove that the Moser’s iteration can be accomplished provided that
N+2
2 < q ≤ N + 2 relying on the condition divb ≥ 0 to relax the integrability assumption on b1, . . . , bm0

.
Here and in the sequel, the quantity divb will be understood in the distributional sense

ˆ
Ω

φ(x, t)divb(x, t)dx dt = −
ˆ
Ω

⟨b(x, t),∇φ(x, t)⟩dx dt,

for every φ ∈ C∞
0 (Ω). Of course, also the quantity diva will be understood in the distributional sense.

When considering degenerate operators, a suitable dilation group (δr)r>0 in RN+1 replaces the usual
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parabolic dilation δr(x, t) = (rx, r2t), and the parabolic dimension N +2 of RN+1 is replaced by a bigger
integer Q+2, which is called homogeneous dimension of RN+1 with respect to (δr)r>0 and it is defined in
(5. 19). Our main result will be declared in terms of this quantity, that will be introduced in Section 5.1.
As far as it concerns degenerate operators, Wang and Zhang obtain in [119] the local boundedness and the
Hölder continuity for weak solutions to Ku = 0 by assuming the condition b1, . . . , bm0

∈ Lq(RN+1), with
q = Q + 2. Our assumption on the integrability of the lower order coefficients ai, bi, with i = 1, . . . ,m0

and c is stated as follows:
(H3) ai, bi, c ∈ Lq

loc (Ω), with i = 1, . . . ,m0, for some q > 3
4 (Q+ 2). Moreover,

diva,divb ≥ 0 in Ω.

In general, solutions to Ku = 0 will be understood in the following weak sense.
Definition 5.1 Let Ω be an open subset of RN+1. A weak solution to Ku = 0 is a function u such that
u,Dm0

u, Y u ∈ L2
loc(Ω) andˆ

Ω

−⟨ADu,Dφ⟩+ φY u+ ⟨b,Du⟩φ+ ⟨a,Dφ⟩u+ cuφ = 0, ∀φ ∈ C∞
0 (Ω).

In the sequel, we will also consider weak sub-solutions to Ku = 0, namely functions u such that
u,Dm0u, Y u ∈ L2

loc(Ω) andˆ
Ω

−⟨ADu,Dφ⟩+ φY u+ ⟨b,Du⟩φ+ ⟨a,Dφ⟩u+ cuφ ≥ 0, ∀φ ∈ C∞
0 (Ω), φ ≥ 0.

A function u is a super-solution of Ku = 0 if −u is a sub-solution.
We note that if u is both a sub-solution and a super-solution of Ku = 0 then it is a solution, i.e. Ku = 0
holds. Indeed, for every given φ ∈ C∞

0 (Ω), we may consider ψ ∈ C∞
0 (Ω) such that ψ ≥ 0 and ψ − φ ≥ 0

in Ω. Therefore Ku = 0 follows by applying (5.1) to ±u.
A comparison of our result with that of Nazarov and Uralt’seva is in order. It would be natural to

expect that the optimal lower bound for the exponent q is Q+2
2 . Indeed, the difficulty in considering

degenerate equations lies in the fact that a Caccioppoli inequality gives an a priori L2 estimate for the
derivatives ∂x1u, . . . , ∂xm0

u of the solution u, that are the derivative with respect to the non-degeneracy
directions of K. Moreover, the standard Sobolev inequality cannot be used to obtain an improvement of
the integrability of the solution as in the non-degenerate case. For this reason we rely on a representation
formula for the solution u first used in [104]. Specifically, we represent a solution u to Ku = 0 in terms
of the fundamental solution of K0. Indeed, if u is a solution to Ku = 0 in Ω, then we have

u(x, t) =

ˆ
Ω

Γ0(x, t, ξ, τ)K0u(ξ, τ)dξ dτ, (5. 8)

where Γ0 is the fundamental solution to K0 (see (1. 5) and (1. 6) in Chapter 1), and

K0u = (K0 −K)u = div ((A0 −A)Du)− ⟨b,Du⟩+ div(au)− cu, (5. 9)

where we denote
A0 =

(
Im0

O
O O

)
, (5. 10)

where Im0 is the identity matrix in Rm0 , and O are zero matrices. This representation formula provides
us with a Sobolev type inequality only for weak solutions to the equation Ku = 0. Specifically, we find
that, for every Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω, there exist a positive constant c1

(
∥ b ∥Lq(Ω),Ω1,Ω2

)
such that

∥ u ∥L2α(Ω1)≤ c1
(
∥ a ∥Lq(Ω), ∥ b ∥Lq(Ω), ∥ c ∥Lq(Ω),Ω1,Ω2

)
∥ Dm0u ∥L2(Ω2),
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and, by considering u as a test function, we obtain the following Caccioppoli inequality

∥ Dm0
u ∥L2((Ω2)≤ c2

(
∥ a ∥Lq(Ω), ∥ b ∥Lq(Ω), ∥ c ∥Lq(Ω),Ω2,Ω3

)
∥ u ∥L2β(Ω3),

where Dm0
is the gradient defined in (5. 3), and

α :=
q(Q+ 2)

q(Q− 2) + 2(Q+ 2)
, β :=

q

q − 1
. (5. 11)

As far as it concerns the Moser’s iteration, the above inequalities are applied to a sequence of functions
uk := upk , with pk → +∞, in order to obtain an L∞

loc bound for the solution u. We note that, the Sobolev
inequality is useful to the iteration whenever α > 1, and this is true if, and only if q > Q+2

2 . Moreover,
the condition q > Q+2

2 is required by Nazarov and Uralt’seva in the proof of the Caccioppoli inequality
for non-degenerate operators. Since in our work both Sobolev and Caccioppoli inequalities depend on
the Lq norm of a1, . . . , am0 , b1, . . . , bm0 , c, we require a more restrictive condition on q to improve the
integrability of u. Specifically, if we combine the Sobolev and the Caccioppoli inequalities, we need to
have α > β, and this is true if, and only if q > 3

4 (Q+ 2), as we require in assumption (H3).

We next state our main result. As we have already pointed out in Chapter 1, the natural geometry
underlying the operator K is determined by a suitable homogeneous Lie group structure on RN+1. Our
main results reflect this non-Euclidean background. Let “◦” denote the Lie product on RN+1 defined in
(1. 12) and {δr}r>0 the family of dilations defined in (1. 19). Let us consider the cylinder:

Q1 :=
{
(x, t) ∈ RN × R : |x| < 1, |t| < 1

}
.

For every z0 ∈ RN+1 and r > 0, we set

Qr(z0) := z0 ◦ (δr(Q1)) =
{
z ∈ RN+1 : z = z0 ◦ δr(ζ), ζ ∈ Q1

}
.

Theorem 5.2 Let u be a non-negative weak solution to Ku = 0 in Ω. Let z0 ∈ Ω and r, ρ, 12 ≤ ρ < r ≤ 1,
be such that Qr(z0) ⊆ Ω. Then there exist positive constants C = C(p, λ) and γ = γ(p, q) such that for
every p ̸= 0, it holds

sup
Qρ(z0)

up ≤
C
(
1+ ∥ a ∥2Lq(Qr(z0))

+ ∥ b ∥2Lq(Qr(z0))
+ ∥ c ∥Lq(Qr(z0))

)γ
(r − ρ)9(Q+2)

ˆ
Qr(z0)

up, (5. 12)

where γ = 2α2β
α−1 , with α and β defined as in (5. 11).

Remark 5.3 Estimate (5. 12) is meaningful whenever the integral appearing in its right-hand side is
finite. Note that (5. 12) is an estimate of the infimum of u when p < 0. More precisely, we have that

sup
Qρ(z0)

u ≤
C

1
p

(
1+ ∥ a ∥2Lq(Qr(z0))

+ ∥ b ∥2Lq(Qr(z0))
+ ∥ c ∥Lq(Qr(z0))

) γ
p

(r − ρ)
9(Q+2)

p

(ˆ
Qr(z0)

up

) 1
p

, ∀p > 0,

(5. 13)

inf
Qρ(z0)

u ≥
C

1
p

(
1+ ∥ a ∥2Lq(Qr(z0))

+ ∥ b ∥2Lq(Qr(z0))
+ ∥ c ∥Lq(Qr(z0))

) γ
p

(r − ρ)
9(Q+2)

p

(ˆ
Qr(z0)

1

u|p|

) 1
p

, ∀p < 0,

(5. 14)
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Corollary 5.4 Let u be a weak solution to L u = 0 in Ω. Then for every p ≥ 1 we have

sup
Qρ(z0)

|u|p ≤
C
(
1+ ∥ a ∥2Lq(Qr(z0))

+ ∥ b ∥2Lq(Qr(z0))
+ ∥ c ∥Lq(Qr(z0))

)γ
(r − ρ)9(Q+2)

ˆ
Qr(z0)

|u|p. (5. 15)

Proposition 5.5 Sub and super-solutions also verify estimate (5. 12) for suitable values of p. More
precisely, (5. 12) holds for

1. p > 1
2 or p < 0, if u is a non-negative weak sub-solution of (5. 1);

2. p ∈]0, 12 [, if u is a non-negative weak super-solution of (5. 1).

This chapter is organized as follows. Section 5.1 is devoted to a survey of results on potential estimates
for the fundamental solution of the principal part operator K0. In Section 5.2 we prove Theorem 5.10
and Proposition 5.11 for weak solutions to Ku = 0, which is an intermediate result (Caccioppoli type
inequality for weak solutions to Ku = 0) needed for the bootstrap argument. Finally, in Section 5.3 we
deal with the Moser’s iterative method. The results we present here appeared for the first time in the
paper [7] by the author, Polidoro and Ragusa.

5.1 Potential estimates for the fundamental solution Γ

In this section we briefly recall some notation and preliminary results regarding the non-Euclidean ge-
ometry underlying the operators K and K0. We refer to Chapter 1 and the references therein for a
comprehensive treatment of this subject. By its definition in (5. 7), the operator K0 is a constant coef-
ficients Kolmogorov operator invariant with respect to the Lie product “◦” defined in (1. 12) on RN+1.
Thus, if we denote by ℓζ , ζ ∈ RN+1 the left translation ℓζ(z) = ζ ◦ z in the group law we have

K0 ◦ ℓζ = ℓζ ◦ K0.

This means that, if v(x, t) = u
(
(ξ, τ) ◦ (x, t)

)
and g(x, t) = f

(
(ξ, τ) ◦ (x, t)

)
, we have

K0u = f ⇐⇒ K0v = g.

Moreover, by Proposition 1.1 assumption (H2) is equivalent to assume that for some basis on RN the
matrix B has the canonical form

B =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

... . . . ...
...

O O . . . Bκ ∗

 (5. 16)

where every Bk is a mk ×mk−1 matrix of rank mj , j = 1, 2, . . . , κ with

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1 and
κ∑

j=0

mj = N,

and the blocks denoted by “*” are arbitrary. In the sequel, we assume B has the canonical form (5. 16).
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As we have already pointed out in Section 1.2, among the operators K0 where the matrix B is of the
form (5. 16) the ones for which the ∗−blocks are equal to zero play a central role (see (1. 27)). Indeed,
let us consider the principal part operator K0 associated to K0

K0 = ∆m0
+ Y 0, (5. 17)

obtained from(5. 7) by substituting Y with the drift term Y 0 = ⟨B0x,D⟩ − ∂t, where the matrix B0 is
obtained from (5. 16) by choosing the *-blocks equal to zero:

B0 =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

... . . . ...
...

O O . . . Bκ O

 (5. 18)

By Proposition 1.4, the operator K0 is invariant with respect to the family of dilations

δr = diag(rIm0 , r
3Im1 , . . . , r

2κ+1Imκ , r
2), r > 0,

that we have already introduced in (1. 19). In order to explain the importance of this invariance property
we introduce for every positive r the scaled operator

Kr = r2
(
δr ◦ K0 ◦ δ 1

r

)
.

In order to explicitly write Kr we note that, if

B =


B0,0 B0,1 . . . B0,κ−1 B0,κ

B1 B1,1 . . . Bκ−1,1 Bκ,1

O B2 . . . Bκ−1,2 Bκ,2

...
... . . . ...

...
O O . . . Bκ Bκ,κ

 ,

where Bi,j are the mi ×mj blocks denoted by “∗” in (5. 16), then we can rewrite Kr as follows

Kr = ∆m0
+ Y r,

where Y r := ⟨Br x,D⟩ − ∂t and Br := r2Dr BD 1
r
, i.e.

Br =


r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ

B1 r2B1,1 . . . r2κ−2Bκ−1,1 r2κBκ,1

O B2 . . . r2κ−4Bκ−1,2 r2κ−2Bκ,2

...
... . . . ...

...
O O . . . Bκ r2Bκ,κ

 .

Note that
Br = B for every r > 0

if, and only if Bj,k = O with j ≤ k. In this case, if v(x, t) = u
(
δr(x, t)

)
and g(x, t) = f

(
δr(x, t)

)
, then

K0u = f ⇐⇒ K0v = r2g.
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Since K0 is the blow-up limit of Kr, the dilation group {δr}r>0 plays a central role also for non-dilation
invariant operators, as the case of the operator K defined in (5. 1). For further discussions on the rela-
tionship between dilation invariant and non-dilation invariant Kolmogorov operators we refer to Chapter
1, Section 1.2.

In the following, we consider the homogeneous norm ∥ · ∥ of degree 1 with respect to the family
of dilations {δr}r>0 defined in Definition 1.7, and the corresponding invariant quasi-distance d(z, ζ)
introduced in Definition 1.10 for the case of ∗−blocks equal to zero. As it is pointed out in Remark
1.8, every norm is equivalent to any other in RN+1. For this reason, in this chapter we consider the
equivalent definition of norm (1. 25), that we report here for the sake of completeness. For every z =
(x1, . . . , xN , t) ∈ RN+1 \ {0} the norm of z is the unique positive solution r to the following equation

xq11
r2q1

+
xq22
r2q2

+ . . .+
xqNN
r2qN

+
t2

r4
= 1.

The main advantage of this definition lies in the fact that the set
{
z ∈ RN+1 : ∥z∥ = r

}
is a smooth

manifold for every positive r, which is not the case for (1. 24).

Remark 5.6 The Lebesgue measure is invariant with respect to the translation group associated to K,
since detE(t) = et trace B = 1, where E(t) is the exponential matrix of equation (1. 4). Moreover, since
det δr = rQ+2, we also have

meas (Qr(z0)) = rQ+2meas (Q1(z0)) , ∀ r > 0, z0 ∈ RN+1,

where
Q = m0 + 3m1 + . . .+ (2κ+ 1)mκ. (5. 19)

The natural number Q+2 is usually called the homogeneous dimension of RN+1 with respect to {δr}r>0.

Let us consider again the principal part operator K0 associated to the operator K. Indeed, it is
a constant coefficient operator by definition, and thus it admits a fundamental solution Γ0(·, ζ) whose
explicit expression is given in (1. 6). We remark that

Γ(z, ζ) = Γ(ζ−1 ◦ z, 0), for every z, ζ ∈ RN+1, z ̸= ζ.

Now, let us consider the principal part operator K0 associated to K0 and defined in (5. 17). Indeed it
is a constant coefficient Kolmogorov operator that, by (5. 18) and Proposition 1.4, is dilation invariant
with respect to the family of dilations {δr}r>0. It is clear that it admits a fundamental solution Γ0 of
the form (1. 6) and also that Γ0 is a homogeneous function of degree −Q (see Remark 1.5 and Section
1.2), namely

Γ0 (D(r)(z), 0) = r−Q Γ0 (z, 0) , for every z ∈ RN+1 \ {0}, r > 0.

This property implies an Lp estimate for Newtonian potential (c. f. for instance [47]).

Proposition 5.7 Let α ∈]0, Q+ 2[ and let G ∈ C(RN+1 \ {0}) be a δλ−homogeneous function of degree
α−Q− 2. If f ∈ Lp(RN+1) for some p ∈]1,+∞[, then the function

Gf (z) :=

ˆ
RN+1

G(ζ−1 ◦ z)f(ζ)dζ,

is defined almost everywhere and there exists a constant c = c(Q, p) such that

∥ Gf ∥Lq(RN+1≤ c max
∥z∥=1

|G(z)| ∥ f ∥Lp(RN+1),

where q is defined by
1

q
=

1

p
− α

Q+ 2
.
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As we have already pointed out at the beginning of this section, homogeneous operators provide a
good approximation of the non-homogeneous ones. Let us consider the homogeneous operator K0 defined
in (5. 17) and the non-homogeneous operator K0 defined in (5. 7), alongside with their fundamental
solutions Γ0 and Γ0, respectively. Then, for every M > 0, there exists a positive constant c such that

1

c
Γ0 ≤ Γ0(z) ≤ cΓ0(z) (5. 20)

for every z ∈ RN+1 such that Γ0(z) ≥ M (see [84], Theorem 3.1). We define the Γ0−potential of the
function f ∈ L1(RN+1) as follows

Γ0(f)(z) =

ˆ
RN+1

Γ0(z, ζ)f(ζ)dζ, z ∈ RN+1. (5. 21)

We also remark that the potential Γ0(Dm0f) : RN+1 −→ Rm0 is well-defined for any f ∈ Lp(RN+1), at
least in the distributional sense, that is

Γ0(Dm0
f)(z) := −

ˆ
RN+1

D(ξ)
m0

Γ0(z, ξ) f(ξ) dξ, (5. 22)

where D(ξ)
m0Γ0(x, t, ξ, τ) is the gradient with respect to ξ1, . . . , ξm0

. Based on (5. 20), in [33] are proved
potential estimates for non-dilation invariant operators.
Theorem 5.8 Let f ∈ Lp(Qr). There exists a positive constant c = c(T,B) such that

∥ Γ0(f) ∥Lp∗∗(Qr) ≤ c ∥ f ∥Lp(Qr), (5. 23)
∥ Γ0(Dm0f) ∥Lp∗(Qr) ≤ c ∥ f ∥Lp(Qr), (5. 24)

where 1
p∗ = 1

p − 1
Q+2 and 1

p∗∗ = 1
p − 2

Q+2 .
We can use the fundamental solution Γ0 as a test function in the definition of sub and super-solution.

The following result extends Lemma 2.5 in [104] and Lemma 3 in [33].
Lemma 5.9 Let v be a non-negative weak sub-solution to Ku = 0 in Ω. For every φ ∈ C∞

0 (Ω), φ ≥ 0,
and for almost every z ∈ RN+1, we haveˆ

Ω

−⟨ADv,D(Γ0(z, ·)φ)⟩+ Γ0(z, ·)φY v+

− ⟨a,D(Γ0(z, ·)φ)⟩v − ⟨b,D(Γ0(z, ·)φ)⟩v + cuΓ0(z, ·)φ ≥ 0.

An analogous result holds for weak super-solutions to Ku = 0.
Proof. We define the cut-off function χρ,r ∈ C∞(R+)

χρ,r(s) =

{
0 if s ≥ r,

1 if 0 ≤ s < ρ,
|χ′

r,ρ| ≤
2

r − ρ
(5. 25)

with 1
2 ≤ ρ < r ≤ 1. Moreover, for every ε < 0 we define

ψε(x, t) = 1− χε,2ε(∥ (x, t) ∥).

Because v is a weak sub-solution, then by (5.1) for every ε > 0 and z ∈ RN+1 we have

0 ≤
ˆ
Ω

− [⟨ ADv,D(Γ0(z, ·)φ(ζ)ψε(z, ·)) ⟩ + Γ0(z, ·)φ(ζ)ψε(z, ·)Y v] dζ

+

ˆ
Ω

[⟨b,Dv⟩Γ0(z, ·)φ(ζ)ψε(z, ·) + ⟨a,D(Γ0(z, ·)φ(ζ)ψε(z, ·))⟩v + cuΓ0(z, ·)φ(ζ)ψε(z, ·)] dζ

= − I1,ε(z) + I2,ε(z) − I3,ε(z) + I4,ε(z) + I5,ε(z)
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where

I1,ε(z) =

ˆ
Ω

⟨ ADv,DΓ0(z, ·) ⟩φ(ζ)ψε(z, ζ) dζ

I2,ε(z) =

ˆ
Ω

Γ0(z, ·)φ(ζ)ψε(z, ζ) ( −⟨ ADv,Dφ(ζ) ⟩+ φ(ζ)Y v ) dζ

I3,ε(z) =

ˆ
Ω

⟨ ADv,Dψε(z, ·) ⟩φ(ζ)Γ0(z, ·) dζ

I4,ε(z) =

ˆ
Ω

⟨b,Dv⟩Γ0(z, ·)φ(ζ)ψε(z, ·) dζ +
ˆ
Ω

⟨a,D(Γ0(z, ·)φ)⟩v dζ

I5,ε(z) =

ˆ
Ω

cuΓ0(z, ·)φ(ζ)ψε(z, ·) dζ

Keeping in mind Theorem 5.8, it is clear that the integral which defines Ii,ε(z), i = 1, 2, 3 is a potential
and it is convergent for almost every z ∈ RN+1. Thus, by a similar argument to the one used in [104] to
prove Lemma 2.5 (pg. 403− 404), we get that for almost every z ∈ RN+1

lim
ε→0+

I1,ε(z) =

ˆ
Ω

⟨ADv,D(Γ0(z, ·))⟩φ(ζ) dζ

lim
ε→0+

I2,ε(z) =

ˆ
Ω

Γ0(z, ·) (− ⟨ADv,Dφ(ζ)⟩+ φ(ζ)Y v) dζ

lim
ε→0+

I3,ε(z) = 0.

Let us consider the term I4,ε. We integrate by parts and we consider assumption (H3):

I4,ε =−
ˆ
Ω

divbΓ0(z, ·)φ(ζ)χε(z, ·)v dζ −
ˆ
Ω

⟨ b,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v dζ

−
ˆ
Ω

divaΓ0(z, ·)φ(ζ)χε(z, ·)v dζ −
ˆ
Ω

⟨ a,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v dζ

≤−
ˆ
Ω

⟨ b,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v dζ −
ˆ
Ω

⟨ a,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v dζ

We are left with the estimate of a potential and in order to do so we would like to use Theorem 5.8.
Because ai, bi ∈ Lq

loc(Ω), with i = 1, . . . ,m0 and v ∈ L2
loc(Ω), we have that

|a| |Γ0(z, ·)| |φ| |Dm0
v| , |b| |Γ0(z, ·)| |φ| |Dm0

v| ∈ L2α
loc(Ω)

where α is defined as in (5. 11). This yields, for every ε > 0

|⟨ a,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v| ≤ |⟨ a,D (Γ0(z, ·)φ(ζ)) ⟩ v| ∈ L1
loc(Ω),

|⟨ b,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v| ≤ |⟨ b,D (Γ0(z, ·)φ(ζ)) ⟩ v| ∈ L1
loc(Ω).

Thus, by the Lebesgue convergence theorem, we get for a.e. z ∈ RN+1

lim
ε→0+

[ˆ
Ω

−⟨ b,D (Γ0(z, ·)φ(ζ)χε(z, ζ)) ⟩ v dζ −
ˆ
Ω

⟨ a,D (Γ0(z, ·)φ(ζ)χε(z, ·)) ⟩ v
]
dζ =

= −
ˆ
Ω

⟨ b,D (Γ0(z, ·)φ(ζ)) ⟩ v −
ˆ
Ω

⟨ a,D (Γ0(z, ·)φ(ζ)) ⟩ v dζ.

Now, we are left with an estimate of the term I5,ε, which is a Γ0−potential such that

|c| |Γ0(z, ·)| |φ| |v| ∈ L2α
loc(Ω).
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Thus, we have that

|cuΓ0(z, ·)φ(ζ)ψε(z, ·)| ≤ |cuΓ0(z, ·)φ(ζ)| ∈ L1
loc(Ω).

Then we can apply the Lebesgue convergence theorem and we get for a. e. z ∈ RN+1

lim
ε→0+

ˆ
Ω

cvΓ0(z, ·)φ(ζ)χε(z, ζ) dζ =

ˆ
Ω

cvΓ0(z, ·)φ(ζ) dζ.

□

5.2 Sobolev and Caccioppoli Inequalities
In this section we give proof of a Sobolev inequality and a Caccioppoli inequality for weak solutions to
Ku = 0. We start considering the Sobolev inequality and we remark that it holds true for every q > Q+2

2 .

Theorem 5.10 (Sobolev Type Inequality for sub-solutions) Let assumptions (H1) and (H2) hold.
Let a1, . . . , am0 , b1, . . . , bm0 , c ∈ Lq

loc(Ω), for some q > (Q + 2)/2, and diva,divb ≥ 0 in Ω. Let v be a
non-negative weak sub-solution of Ku = 0 in Q1. Then there exists a constant C = C(Q,λ) > 0 such
that v ∈ L2α

loc(Q1), and the following statement holds

∥ v ∥L2α(Qρ(z0))≤C ·
(
∥ a ∥Lq(Qr(z0)) + ∥ b ∥Lq(Qr(z0)) +1 +

1

r − ρ

)
∥ Dm0

v ∥L2(Qr(z0)) +

+ C ·
(
∥ c ∥Lq(Qr(z0)) +

ρ+ 1

ρ(r − ρ)

)
∥ v ∥L2(Qr(z0))

for every ρ, r with 1
2 ≤ ρ < r ≤ 1 and for every z0 ∈ Ω, where α = α(q) is defined in (5. 11).

Proof. Let v be a non-negative weak sub-solution to Ku = 0. We represent v in terms of the fundamental
solution Γ0. To this end, we consider the cut-off function χρ,r defined in (5. 25) for 1

2 ≤ ρ < r ≤ 1. Then
we consider the following test function

ψ(x, t) = χρ,r(∥ (x, t) ∥) (5. 26)

and the following estimates hold true

|Y ψ| ≤ c0
ρ(r − ρ)

, |∂xj
ψ| ≤ c1

r − ρ
for j = 1, . . . ,m0 (5. 27)

where c0, c1 are dimensional constants. For every z ∈ Qρ, we have

v(z) = vψ(z) (5. 28)

=

ˆ
Qr

[⟨A0D(vψ), DΓ0(z, ·)⟩ − Γ0(z, ·)Y (vψ)] (ζ)d(ζ)

= I0(z) + I1(z) + I2(z) + I3(z)
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where

I0(z) = −
ˆ
Qr

[⟨a,D(ψΓ0(z, ·))⟩v] (ζ)dζ −
ˆ
Qr

[⟨b,D(ψΓ0(z, ·))⟩v] (ζ)dζ +

ˆ
Qr

[cvΓ0(z, ·)ψ] (ζ)dζ

I1(z) =

ˆ
Qr

[⟨A0Dψ,DΓ0(z, ·)⟩v] (ζ)dζ −
ˆ
Qr

[Γ0(z, ·)vY ψ] (ζ)dζ = I
′

1 + I
′′

1 ,

I2(z) =

ˆ
Qr

[⟨(A0 −A)Dv,DΓ0(z, ·)⟩ψ] (ζ)dζ −
ˆ
Qr

[Γ0(z, ·)⟨ADv,Dψ⟩] (ζ)dζ

I3(z) =

ˆ
Qr

[⟨ADv,D(Γ0(z, ·)ψ)⟩] (ζ)dζ −
ˆ
Qr

[(Γ0(z, ·)ψ)Y v] (ζ)dζ +

+

ˆ
Qr

[⟨a,D(Γ0(z, ·)ψ)⟩v] (ζ)dζ +

ˆ
Qr

[⟨b,D(Γ0(z, ·)ψ)⟩v] (ζ)dζ −
ˆ
Qr

[cvΓ0(z, ·)ψ] (ζ)dζ

Since v is a non-negative weak sub-solution to Ku = 0, it follows from Lemma 5.9 that I3 ≤ 0, then

0 ≤ v(z) ≤ I0(z) + I1(z) + I2(z) for a.e. z ∈ Qρ.

To prove our claim is sufficient to estimate v by a sum of Γ0−potentials. We start by estimating I0. In
order to do so, we recall that

⟨a,Dv⟩, ⟨b,Dv⟩, cv ∈ L2 q
q+2 for b ∈ Lq, q >

Q+ 2

2
and Dm0v ∈ L2.

Thus by Theorem 5.8 we get

Γ0 ∗ ⟨a,Dv⟩,Γ0 ∗ ⟨b,Dv⟩,Γ0 ∗ (cv) ∈ L2α,

where α = α(q) is defined in (5. 11). When q ≤ (Q + 2) we have that α ≤ 2∗∗. Moreover, thanks to
estimate (5. 23), we have

∥ I0(ζ) ∥L2α(Qρ) ≤ meas(Qρ)
2/Q ∥ I0(ζ) ∥L2∗∗ (Qρ)

= meas(Qρ)
2/Q ∥ Γ0 ∗ (⟨a,Dv⟩ψ) + Γ0 ∗ (⟨b,Dv⟩ψ) + Γ0 ∗ (cvψ) ∥L2∗∗ (Qρ)

≤ C ·
(
∥ a ∥Lq(Qρ) + ∥ b ∥Lq(Qρ)

)
∥ Dm0v ∥L2(Qρ) +C· ∥ c ∥Lq(Qρ)∥ v ∥L2(Qρ) .

We prove an estimate for the term I1. I ′1 can be estimated by (5. 24) of Theorem 5.8 as follows

∥ I ′1 ∥L2α(Qρ)≤ C ∥ I ′1 ∥L2∗ (Qρ)≤ C ∥ vDm0
ψ ∥L2(RN+1)≤

C

r − ρ
∥ v ∥L2(Qρ),

where the last inequality follows from (5. 27). To estimate I ′′1 we use (5. 23)

∥ I ′′1 ∥L2α(Qρ) ≤ C ∥ I ′′1 ∥L2∗ (Qρ)≤ meas(Qρ)
2/Q ∥ I ′′1 ∥L2∗∗ (Qρ)

≤ C ∥ vY ψ ∥L2(RN+1)≤
C

ρ(r − ρ)
∥ v ∥L2(Qρ) .

We can use the same technique to prove that

∥ I2 ∥L2α(Qρ)≤ C

(
1 +

1

r − ρ

)
∥ Dm0

v ∥L2(Qρ),

for some constant C = C(Q,λ).
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A similar argument proves the thesis when v is a super-solution to Ku = 0. In this case we introduce
the following auxiliary operator

K̃ = div(A0D) + Ỹ , Ỹ ≡ −⟨x,BD⟩ − ∂t . (5. 29)

Then we proceed analogously as in [104], Section 3, proof of Theorem 3.3. □

Finally, we give proof of a Caccioppoli inequality for weak solutions to Ku = 0.

Proposition 5.11 Let (H1)-(H3) hold. Let u be a non-negative weak solution of Ku = 0 in Q1. Let
p ∈ R, p ̸= 0, p ̸= 1/2 and let r, ρ be such that 1

2 ≤ ρ < r ≤ 1. Then there exists a constant C such that

1

λ
∥ Dm0v ∥2L2(Qρ)

≤

≤
[
C p

2λ

1

(r − ρ)2
+

C

r − ρ

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

)
+
p

2
∥ c ∥Lq(Qr)

]
∥ v ∥2L2β(Qr)

,

where β = β(q) is defined in (5. 11).

Proof. We consider the case p < 1, p ̸= 0, p ̸= 1/2. First of all, we consider an uniformly positive weak
solution u to Ku = 0, that is u ≥ u0 for some constant u0 > 0. For every ψ ∈ C∞

0 (Qr) we consider the
function φ = u2p−1ψ2. Note that φ,Dm0

φ ∈ L2(Qr), then we can use φ as a test function in (5.1):

0 =

ˆ
Qr

(
−⟨ADu,D(u2p−1ψ2)⟩+ u2p−1ψ2Y u+ ⟨a,D(u2p−1ψ2)⟩u+ ⟨b,Du⟩u2p−1ψ2 + cu2pψ2

)
Let v = up. Since u is a weak solution to Ku = 0 and u ≥ u0, then v,Dm0v, Y v ∈ L2(Qr):

0 =−
ˆ
Qr

(
1− 1

2p

)
⟨ADv,Dv⟩ψ2 −

ˆ
Qr

⟨ADv,Dψ⟩vψ +
1

4

ˆ
Qr

Y (v2)ψ2

−
ˆ
Qr

diva v2ψ2 − 1

4

ˆ
Qr

⟨a,D(v2)⟩ψ2 +
1

4

ˆ
Qr

⟨b,D(v2)⟩ψ2 +
p

2

ˆ
Qr

cv2ψ2.

Because of assumption (H1) and by definition (5. 26) of the cut-off function ψ, we get the following
inequality

1

λ

(
2p− 1

2p
+ ε

)ˆ
Qρ

|Dm0
v|2 ≤ (5. 30)

≤ 1

4ελ

C

(r − ρ)2

ˆ
Qr

|v|2 −
ˆ
Qr

diva v2ψ2 − 1

4

ˆ
Qr

⟨a,D(v2)⟩ψ2

A

+

+
1

4

ˆ
Qr

⟨b,D(v2)⟩ψ2

B

+
p

2

ˆ
Qr

cv2ψ2

C

+
1

4

ˆ
Qr

Y (v2)ψ2

D

where ε is a positive constant coming from the application of the Young’s inequality. In the following we
are going to consider exponents α = α(q) and β = β(q) defined in (5. 11). Now we need to estimate the
boxed terms. Let us consider the term A. By Assumption (H3) and a classic Hölder estimate we have
that

−
ˆ
Qr

diva v2ψ2 − 1

4

ˆ
Qr

⟨a,D(v2)⟩ψ2

A

≤ −3

4

ˆ
Qr

diva v2ψ2 +
1

2

ˆ
Qr

|⟨a,Dψ⟩| |ψ| v2

≤ C

r − ρ
∥ a ∥Lq(Qr)∥ v ∥2L2β(Qr)

.
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Let us consider the term B. Thus, by Assumption (H3) and a classic Hölder estimate we have that

1

4

ˆ
Qr

ψ2⟨b,D(v2)⟩
B

≤ − 1

4

ˆ
Qr

v2ψ2divb +
1

2

ˆ
Qr

|⟨b,Dψ⟩||ψ|v2

≤ C

r − ρ
∥ b ∥Lq(Qr) ∥ v ∥2L2β(Qr)

.

Let us consider the linear term C. We estimate it via a classical Hölder estimate:

p

2

ˆ
Qr

cv2ψ2

C

≤ p

2
∥ c ∥Lq(Qr) ∥ v ∥2L2β(Qr)

.

As far as it concerns the term D, we begin considering the following equality:

ψ2Y (v2) = Y (ψ2v2)− 2v2ψY ψ.

Since by the divergence theorem D1 = 0 (v2ψ2 is null on the boundary of Qr), we get

1

4

ˆ
Qr

Y (v2)ψ2

D

= D1 + D2 =

ˆ
Qr

1

4
Y (v2ψ2) +

ˆ
Qr

v2ψ

2
Y ψ ≤ C

ρ(r − ρ)
∥ v ∥2L2(Qr)

.

Thus we have

1

λ

(
2p− 1

2p
+ ε

)
∥ Dm0

v ∥2L2(Qρ)
≤
(

c

4ελ

1

(r − ρ)2
+

C

ρ(r − ρ)

)
∥ v ∥2L2(Qr)

+

+
C

r − ρ

(
∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

)
∥ v ∥2L2β(Qr)

+
p

2
∥ c ∥Lq(Qr)∥ v ∥2L2β(Qr)

.

By choosing ε = 1
2p and considering that β > 2 we have that

1

λ
∥ Dm0

v ∥2L2(Qρ)
≤ (5. 31)

≤
[
C p

2λ

1

(r − ρ)2
+

C

r − ρ

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

)
+
p

2
∥ c ∥Lq(Qr)

]
∥ v ∥2L2β(Qr)

.

The previous argument can be adapted to the case of a non-negative weak solution to Ku = 0. Indeed,
we may consider the estimate (5. 31) for the solution u+ 1

n , n ∈ N,

1

λ

ˆ
Qρ

∣∣∣∣Dm0

(
u+

1

n

)p∣∣∣∣2 ≤

≤
[
C p

2λ

1

(r − ρ)2
+

C

r − ρ

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

)
+
p

2
∥ c ∥Lq(Qr)

](ˆ
Qr

(
u+

1

n

)2β
) 1

β

.

We let n go to infinity. The passage to the limit in the first integral is allowed because∣∣∣∣Dm0

(
u+

1

n

)p∣∣∣∣ = p

(
u+

1

n

)p−1

|Dm0u| ↗ |Dm0u
p| , ∀p < 1, n→ ∞.

For the second integral we rely on the assumptions up ∈ L2(Qr) and up ∈ L2 q
q−1 (Qr).
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Next, we consider the case p ≥ 1. For any n ∈ N, we define the function gn,p on ]0,+∞[ as follows

gn,p(s) =

{
sp, if 0 < s ≤ n,

np + pnp−1(s− n), if s > n,

then we let
vn,p = gn,p(u).

Note that
gn,p ∈ C1(R+), g

′

n,p ∈ L∞(R+).

Thus since u is a weak solution to Ku = 0, we have

vn,p ∈ L2
loc, Dvn,p ∈ L2

loc, Y vn,p ∈ L2
loc.

We also note that the function

g
′′

n,p(s) =

{
p(p− 1)sp−2, if 0 < s < n

0, if s ≥ n,

is the weak derivative of g′

n,p, then Dg
′

n,p(u) = g
′′

n,p(u)D(u) (for the detailed proof of this assertion, we
refer to [57], Theorem 7.8). Hence, by considering

φ = gn,p(u) g
′

n,p(u) ψ
2, ψ ∈ C∞

0 (Qr)

as a test function in Definition 5.1, we find

0 =

ˆ

Q1

−⟨ADu,Dφ⟩+ φY u− diva uφ− ⟨a,Du⟩φ+ ⟨b,Du⟩φ+ cuφ

=

ˆ

Q1

−
(
g

′

n,p(u)
)2
ψ2⟨ADu,Du⟩ − g

′′

n,p(u) gn,p(u)ψ
2⟨ADu,Du⟩ − 2ψ⟨ADu,Dψ⟩gn,p(u) g

′

n,p(u)+

+

ˆ

Q1

gn,p(u) g
′

n,p(u)ψ
2 Y u− diva u gn,p(u) g

′

n,p(u)ψ
2 − ⟨a,Du⟩ψ2gn,p(u) g

′

n,p(u)+

+

ˆ

Q1

⟨b,Du⟩ψ2gn,p(u) g
′

n,p(u) + cugn,p(u) g
′

n,p(u)ψ
2.

Since v = gn,p(u) we have that the following equality holds:

0 =

ˆ

Qr

−ψ2⟨ADvn,p, Dvn,p⟩ − g
′′

n,p(u) gn,p(u)ψ
2⟨ADu,Du⟩

A
− 2ψ⟨ADvn,p, Dψ⟩vn,p+

+

ˆ

Qr

1

2
ψ2 Y (v2n,p) + diva

(
1

2
v2n,pψ

2 − u gn,p(u) g
′

n,p(u)ψ
2

)
− divb v2n,pψ2

B

+

ˆ

Qr

1

2
⟨a,D(ψ2)⟩v2n,p − ⟨b,D(ψ2)⟩v2n,p + cugn,p(u) g

′

n,p(u)ψ
2.
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Since g′′

n,p(u) ≥ 0 we have that the boxed term A is non-negative. Moreover, by Assumption (H3) the
boxed term B is non-positive. Thus, by considering Assumption (H1) and by choosing ε = 1

2p we have
that

1

λ

ˆ

Qr

|Dm0vn,p|2 ≤ C p

2λ

1

(r − ρ)2

ˆ

Qr

|vn,p|2 +
1

2
⟨a,D(ψ2)⟩v2n,p − ⟨b,D(ψ2)⟩v2n,p + cugn,p(u) g

′

n,p(u)ψ
2

Since 0 < vn,p ≤ up and
|Dm0

vn,p| ↑ |Dm0
up|, asn→ ∞,

we get from the above inequality
1

λ

ˆ

Qr

|Dm0u
p|2 ≤ C p

2λ

1

(r − ρ)2

ˆ

Qr

|up|2 + 1

2
⟨a,D(ψ2)⟩u2p − ⟨b,D(ψ2)⟩u2p + cu2pψ2

and we conclude the proof as in the previous case. □

5.3 The Moser’s Iteration
In this section we use the classical Moser’s iteration scheme to prove Theorem 5.2. We begin with some
preliminary remarks. First of all, we recall the following lemma, whose proof can be found in [33], Lemma
6.
Lemma 5.12 There exists a positive constant c ∈]0, 1[ such that

z ◦ Qcr(r−ρ) ⊆ Qr, (5. 32)

for every 0 < ρ < r ≤ 1 and z ∈ Qρ.

We are now in position to prove Theorem 5.2.
Proof of Theorem 5.2. It suffices to give proof in the case z0 = 0, r ∈]0, 1] and 0 < ρ < r. Combining
Theorems 5.10 and Proposition 5.11, we obtain the following estimate: if s, δ > 0 verify the condition

|s− 1/2| ≥ δ,

then, for every ρ, r such that 1
2 ≤ ρ < r ≤ 1, there exists a positive constant C̃ such that

∥ us ∥L2α(Qρ) ≤ C̃
(
s, λ, ∥ a ∥Lq(Qr), ∥ b ∥Lq(Qr), ∥ c ∥Lq(Qr)

)
∥ us ∥L2β(Qr) (5. 33)

where

C̃
(
s, λ, ∥ a ∥Lq(Qr), ∥ b ∥Lq(Qr), ∥ c ∥Lq(Qr)

)
= C(s, λ)

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

)
∥ c ∥

1
2

Lq(Qr)
+

+
C(λ)

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

) 3
2

(r − ρ)
1
2

+
C

(r − ρ)
3
2

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr)

) 1
2 +

+
C(s)

r − ρ

(
1+ ∥ a ∥Lq(Qr) + ∥ b ∥Lq(Qr) +λ

1
2 ∥ c ∥

1
2

Lq(Qr)

)
+

C(s)

(r − ρ)2
.

We remark that the previous constant C̃ can be estimated as follows

C̃(s, λ, ∥ a ∥Lq(Qr), ∥ b ∥Lq(Qr), ∥ c ∥Lq(Qr)) ≤ (5. 34)

≤
K(λ, s)

(
1+ ∥ a ∥2Lq(Qr)

+ ∥ b ∥2Lq(Qr)
+ ∥ c ∥Lq(Qr)

)
(ρn − ρn+1)

2 .
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Fixed a suitable δ > 0, we shall specify later on, and p > 0 we iterate inequality (5. 33) by choosing

ρn = ρ+
1

2n
(r − ρ) , pn = αn p

2β
, n ∈ N ∪ {0}.

Then we set v = u
p

2 β . If p > 0 is such that

|pαn − β| ≥ 2βδ, ∀n ∈ N ∪ {0}, (5. 35)

by (5. 33) and estimate (5. 34) we obtain the following inequality for every n ∈ N ∪ {0}

∥ vα
n

∥L2α(Qρn+1)
≤

K(λ, p)
(
1+ ∥ a ∥2Lq(Qr)

+ ∥ b ∥2Lq(Qr)
+ ∥ c ∥Lq(Qr)

)
(ρn − ρn+1)

2 ∥ vα
n

∥L2β(Qρn ) . (5. 36)

Since
∥ vα

n

∥L2α=
(
∥ v ∥L2αn+1

)αn

and ∥ vα
n

∥L2β= (∥ v ∥L2αn )
αn

we can rewrite equation (5. 36) in the following form for every n ∈ N ∪ {0}

∥ v ∥L2αn+1 (Qρn+1)
≤

K(λ, p)
(
1+ ∥ a ∥2Lq(Qr)

+ ∥ b ∥2Lq(Qr)
+ ∥ c ∥Lq(Qr)

)
(ρn − ρn+1)

2


1

αn

∥ v ∥L2β αn (Qρn ) .

Iterating this inequality, we obtain

∥ v ∥L2αn+1 (Qρn+1)
≤

n∏
j=0

(
22(j+1)

(r − ρ)2

) 1

αj

·

·
(
K(λ, p)

(
1+ ∥ a ∥2Lq(Qr)

+ ∥ b ∥2Lq(Qr)
+ ∥ c ∥Lq(Qr)

)) 1

αj

∥ v ∥L2β(Qr),

and letting n go to infinity, we get

sup
Qρ

v ≤ K̃

(r − ρ)µ
∥ v ∥L2β(Qr),

where µ = 2α
α−1 and

K̃ =

n∏
j=0

(
K(λ, p)

(
1+ ∥ a ∥2Lq(Qr)

+ ∥ b ∥2Lq(Qr)
+ ∥ c ∥Lq(Qr)

)) 1

αj

is a finite constant dependent on δ. Thus, we have proved that

sup
Qρ

up ≤

(
K̃

(r − ρ)µ

)2β ˆ
Qr

up, (5. 37)

for every p which verifies condition (5. 35). Because

(Q+ 2) ≤ 2βµ < 9(Q+ 2)

we get estimate (5. 12). We now make a suitable choice of δ > 0, only dependent on the homogeneous
dimension Q, in order to show that (5. 35) holds for every positive p. We remark that, if p is a number
of the form

pm =
αm(α+ 1)

2β
, m ∈ Z,
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then (5. 35) is satisfied with

δ =
|q − (Q+2)

2 |
(Q+ 2)2

, ∀m ∈ Z.

Therefore (5. 37) holds for such a choice of p, with K̃ only dependent on Q,λ and ∥ a ∥Lq(Qr), ∥ b ∥Lq(Qr),
∥ c ∥Lq(Qr). On the other hand, if p is an arbitrary positive number, we consider m ∈ Z such that

pm ≤ p < pm+1. (5. 38)

Hence, by (5. 37) we have

sup
Qρ

u ≤

(
K̃

(r − ρ)µ

) 2β
pm (ˆ

Qr

upm

) 1
pm

≤

(
K̃

(r − ρ)µ

) 2β
pm (ˆ

Qr

up
) 1

p

so that, by (5. 38), we obtain

sup
Qρ

up ≤

(
K̃

(r − ρ)µ

)2αβ ˆ
Qr

up

This concludes the proof of (5. 12) for p > 0. We next consider p < 0. In this case, assuming that u ≥ u0
for some positive constant u0, estimate (5. 12) can be proved as in the case p > 0 or even more easealy
since condition (5. 35) is satisfied for every p < 0. On the other hand, if u is a non-negative solution, it
suffices to apply (5. 12) to u+ 1

n , n ∈ N, and let n go to infinity, by the monotone convergence theorem.
□

As far as we are concerned with the proof of Corollary 5.4, it can be straightforwardly accomplished
proceeding as in [104, Corollary 1.4]. Moreover, Proposition 5.5 can be obtained by the same argument
used in the proof of Theorem 5.2. For this reason, we do not give here the proof of these two results.

We close this Section recalling that Theorem 5.2 also holds true in the sets

Q−
r ((x0, t0)) := Qr((x0, t0)) ∩ {t < t0}, (5. 39)

in the case of non-negative exponents p. This result is analogous to [97], Theorem 3 (see also inequality
(6−) of Lemma 1 in [98]) and states that, in some sense, every point of Q−

ρ (z0) can be considered as an
interior point of Q−

r (z0), when ρ < r, even though it belongs to its topological boundary.

Proposition 5.13 Let u be a non-negative weak sub-solution to Ku = 0 in Ω. Let z0 ∈ Ω and r, ρ, 12 ≤
ρ < r ≤ 1, such that Q−

ρ (z0) ⊆ Ω and p < 0. Then there exist positive constants C = C(p, λ) and
γ = γ(p, q) such that

sup
Q−

ρ (z0)

up ≤
C
(
1+ ∥ a ∥2Lq(Qr(z0))

+ ∥ b ∥2Lq(Qr(z0))
+ ∥ c ∥Lq(Qr(z0))

)γ
(r − ρ)9(Q+2)

ˆ
Q−

r (z0)

up, (5. 40)

where γ = 2α2β
α−1 , with α and β defined in (5. 11), provided that the integral is convergent.

The proof of the above Proposition can be straightforwardly accomplished proceeding as in Proposition
5.1 in [104], and therefore is omitted.
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