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Abstract: The field of cyber-physical systems is a growing IT research area that addresses the deep 
integration of computing, communication and process control, possibly with humans in the loop. 
The goal of such area is to define modelling, controlling and programming methodologies for 
designing and managing complex mechatronics systems, also called industrial agents. Our research 
topic mainly focuses on the area of data mining and analysis by means of multi-agent orchestration 
of intelligent sensor nodes using internet protocols, providing also web-based HMI visualizations 
for data interpretability and analysis. Thanks to the rapid spreading of IoT systems, supported by 
modern and efficient telecommunication infrastructures and new decentralized control paradigms, 
the field of service-oriented programming finds new application in wireless sensor networks and 
microservices paradigm: we adopted such paradigm in the implementation of two different 
industrial use cases. Indeed, we expect a concrete and deep use of such technologies with 5G 
spreading. In the article, we describe the common software architectural pattern in IoT applications 
we used for the distributed smart sensors, providing also design and implementation details. In the 
use case section, the prototypes developed as proof of concept and the KPIs used for the system 
validation are described to provide a concrete solution overview.  
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1. Introduction 
The field of cyber-physical systems is an industrial IT and automation research topic 

that addresses the deep integration of computing, communication and process control 
with humans in the loop (Figure 1), with the final goal to define modelling, controlling 
and programming methodologies for managing industrial mechatronics systems [1]. 
Cyber-physical systems are the key technology enabling Industry 4.0 [2] and can be 
applied on different levels in the modern value chain, meaning that it can be used to 
control and design the product for the end consumer, can be the supporting technology 
for process control behind the final product creation, can be the technology supporting 
the smart supply chain or, as recent research demonstrates, can be also a supporting tool 
to manage the end of life of modern products. The last topic needs special attention since 
historically there is a different velocity in technology development and EOF management 
development [3]; the interesting aspect with distributed systems, like cyber-physical 
systems, is that there is no more a monolithic and “time-constant” product, but the 
product definition is the temporary configuration and state of several atomic entities that 
in a certain time cooperate and participate in the definition of a more complex ecosystem 
(also defined holon [4]) perceived as entire/global system. For this reason, it is important 
to structure end-to-end life-cycle management systems with special attention on 
configuration management and centralized monitoring systems to tackle such complexity, 
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focusing on legibility and smart human-machine interfaces. Moreover, such pervasive 
connectivity enables circular economy and smart supply chain systems, simplifying data 
exchange among different companies and systems involved in different tasks of the end-
to-end process. Involved in such context there are operation, like distribution, waste 
management, recycling [5] but it can also be used as a retroaction to improve processes, 
like data analytics from the perspective of service provider (e.g., smart prognostic and 
diagnostic to guarantee continuity and continuous improvement of services for the 
clients). 

Central characteristics of such systems are intelligence, self-awareness, self-
management and self-configuration [6]. Such characteristics are also shared in terms of 
modelling and implementation with multi-agent systems that seems a promising 
approach to manage cyber-physical systems thanks to behaviour driven modelling and 
encapsulation where it is possible to represent different behaviours depending on 
different input triggers due to external technical systems, external virtual systems or 
interaction with human beings, creating in this way a human in the loop ecosystems [7]. 
An important area in this domain is data mining and orchestration of smart nodes. With 
smart nodes we define embedded systems having physical sensors as interface with real 
world and software services capable of implementing business logics and algorithms to 
filter data, expose them to other services for data analytics processes or to increase the 
shared knowledge of the system and apply event detection mechanisms to identify events 
of interest to be notified or managed. It is important that research community focus on 
both aspects enabling on the one hand smart nodes orchestration developing low power 
reliable sensor nodes with focus on sensor technologies and physics research, on the other 
hand developing the software infrastructure to collect filter, aggregate and analyse 
datasets in order to create new value for new application (decision support systems, data 
visualization and HMIs, automatic control systems, VR, AR, etc.) [8]. 

Modern industrial systems are so advanced that companies often struggle to exploit 
their potential, limiting themselves to a more proven use. There is no rigorous and unique 
way to deal with the distributed and deeply interconnected nature of modern industrial 
systems in a structured way, application independent. 

In Section 2, we are going to explore the state of the art in terms of Industry 4.0 key 
technologies, the main obstacles for a wider adoption also in small-medium enterprises 
(SMEs) and main enablers for implementing industrial IoT and cyber-physical systems 
solutions. 

In Section 3 we focus also on software technologies for distributed systems and IoT 
sensor networks, architectural patterns and HMI systems in order to integrate these 
complex systems in cooperative environment with human beings. 

In Section 4 we describe the central role of universities for knowledge transfer and 
practical adoption of I 4.0 technologies in SMEs, describing the process with which we 
analysed stakeholders needs to be address with new enablers and the agile framework 
adopted to create awareness and competences growing. Then, we describe an organic 
approach derived from such experience in order to support companies with lack of 
specialized competences in IoT and SOAs architecture in introducing such new 
technologies in an easy and “plug-and-play oriented” way. To structure the analysis and 
product development flow we rely on a typical systems engineering swimlane, starting 
from functional requirements derived from initial needs identified with interviews, 
developing logical architecture and leveraging on multi-agents systems, IoT technologies, 
distributed software patterns and SOAs to achieve the design of the physical architecture 
[9,10]. Finally the validation process is explained. Currently the approach well 
investigates the way of working and technical implementation in case of wireless sensor 
networks (WSNs) and soft real-time requirements, mainly addressing the needs of easy 
implementation and cheap embedded systems: this represents the area of interest of this 
research and by consequence, the main limitation to be covered with future research. 
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In Section 5, we highlight the future research needs due to current limitations to 
achieve a broader scope (i.e., 5G opportunities, low power devices in the loop, devops for 
IoT), while the concluding remarks are given in Section 6. 

 
Figure 1. Cyber-Physical system key characteristics. 

2. State of the Art Review 
2.1. Industry 4.0—General Concepts and Expectations 

The Industry 4.0 concept was formalized for the first time in an article published in 
November 2011 by the German government; this article was part of an initiative regarding 
high-tech strategy for 2020 [11]. Nowadays the industry is moving to cyber-physical 
systems, and this change is desirable not only because of the new technology available and 
its evolution, but also by governments and their economic politics [12]. The development of 
information and communications technologies (ICT) triggered the fourth industrial 
revolution [13]. 

Compared to past revolutions, Industry 4.0 has some differences. First this industrial 
revolution was predicted, and this fact allowed companies to make some decisions to 
address this new industrial paradigm’s challenges. There is not a clear vision about this 
manufacturing paradigm, regarding its implications and consequences, and the 
challenges are not completely understood from the companies [11]; moreover, there are a 
lot of barriers that decrease the Industry 4.0 implementation [14]. As stated in [15] major 
barriers for the implementation of I 4.0 technologies in SMEs are represented by the 
technical background, the time to learn new methodologies and technologies and the 
costs: for these reasons with our paper we aim to propose both a state of the art review 
and a practical implementation guideline that demonstrate how to implement soft real-
time monitoring systems via IoT, with affordable costs and implementation time. 

As reported by Muller in [16], nowadays one of the principal barriers for full 
adoption of I 4.0 technologies is the lack of competencies, in particular lack of qualification 
in IT-related competencies (e.g., data analysis, streaming and manipulation with 
software); this creates the fear of job losses against the principles of I 4.0 cyber-physical 
cooperative systems. Another reason is the unclear comprehension of the new mansion 
requested in I 4.0 and the new role of the human operator [17]. 

2.2. Smart Technologies of Industry 4.0 
Unlike the previous industrial revolutions, Industry 4.0 puts the individual 

customer’s needs as central objective. To accomplish this target, different areas are 
involved, such as order management, research and development, manufacturing 
commissioning, and delivery up to the utilization and recycling of products [18]. 

To achieve this goal, industries need a vertically and horizontally integrated 
production systems. Internet of things (IoT) and internet of service characterize the fourth 
industrial revolution, and they enable the evolution of smart factories. To manage this kind 
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of systems, a large amount of data is required and collected, and exchange information and 
control processes in production and logistics become essential. The data are stored in a 
decentralized way to promote local decisions, but they are transparent to all the partners. 
To create this kind of environment, a cyber-physical system is required, because all the 
elements that compose it must be able to share information, act and control each other 
autonomously, avoiding failures [12]. Main technologies under the umbrella of Industry 4.0 
are: cyber-physical systems, internet of things, collaborative robotics, virtual and 
augmented reality, cloud computing, industrial integration, enterprise architecture, service-
oriented architectures, also defined industrial multi-agent systems [19]. There are some 
pillars in Industry 4.0 that will allow the transformation of isolated nodes into integrated 
and automated production flow, to optimize not only the singular node but the entire 
system.  

2.3. Industrial Distributed Control Systems 
Cyber-physical systems are intelligent, adaptive and dynamic systems, organized in 

multi-agent networks in order to interact and reach a common objective: the multi-agent 
system goal (also called desired status).  

Monostori in [20] named a cyber-physical system for manufacturing applications a 
cyber-physical production system (CPPS), i.e., a set of intelligent, autonomous, 
collaborative and interconnected subsystems, characterized by intelligence, 
reconfigurability and responsiveness. The field in automation control and distributed 
artificial intelligence that studies autonomous and reconfigurable industrial systems is 
called industrial agent control theory. Wooldridge defines an intelligent software agent as 
“a computer system that is capable of independent (autonomous) action on behalf of its user or 
owner” [21].  

The traditional approach in industrial control systems is represented by centralized 
architectures, where a central control node is capable of orchestrating the information flow 
coming from field devices and dispatching control signals to automation actuation systems 
having full visibility on the overall process and setup of the system. With the growing 
complexity of automation and the needs of customization of products, fast response to 
market requests and reduction of reconfiguration time, this approach is moving to 
decentralized control systems leveraging on service-oriented architectures, aimed to 
address flexibility, reconfigurability and responsiveness to realize adaptive control 
systems [6]. 

Industrial agents are cyber-physical entities since they represent the integration 
between physical world perceived via sensors and controlled via actuators and the virtual 
world represented by the software elaborating sensed data and generating actions on the 
surrounding environment, leveraging on internal control policies [22]. 

Industrial IoT becomes in this way an enabling technology in order to create such 
pervasive and interconnected equipment ecosystem to collect information from the 
machines and to exchange data among different services, both for field control and 
monitoring and process optimization purposes; to tackle such complexity multi-agent 
technology in last years was rediscovered after decades of sidelined [23]. 

The industrial multi-agent technology is mainly used for exchanging data, elaborated 
information and services leveraging on service discovery mechanisms and providing 
high-level signals in relation to online planning and scheduling. These mechanisms for 
communication in such context was formalized by the Foundation for Intelligent Physical 
Agents (FIPA), officially accepted by the IEEE as its eleventh standards committee on 8 
June 2005 [24]. The system is based on the existence of a common peer to peer platform, 
defined as a agent platform that has the aim of providing a common bus infrastructure 
for the deployment, service discovery and message exchange among agents subscribed to 
the MAS. 

2.4. Internet of Things and Fog Computing 
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Industrial IoT systems are a concrete example of multi-agent applications crossing 
the automation domain (since the field devices have real-time constraints and interfaces 
with physical hardware) and the pure software domain for data mining (streaming 
systems and synchronous/asynchronous communication enablers), data cleaning and 
analytics. In the following section we are going to present two use cases of distributed 
system application for Industrial smart nodes, both for static nodes (plant air quality 
monitoring) and dynamic nodes (industrial scooter fleets control) with two different 
architectural patterns, but in both cases implementing distributed sensor networks, for 
data retrieving, filtering, analysis, alarm generation. 

IoT devices communicate using the TCP/IP protocol, as internet standard. Normally 
in this application a wireless communication is required, using technologies as Ethernet, 
Wi-Fi, Bluetooth, ZigBee, radio frequency identification (RFID), or barcodes. Moreover, 
every IoT device need to have a unique identity; it is possible to use an IP address or a 
universal unique identifier (UUID), depending on the technology used [25]. 

Wireless sensor networks (WSNs) are applications with IoT nodes capable of 
exchanging data using internet protocols both in local network or using internet as 
infrastructure. It is possible to have a one-way communication protocol, to allow the 
communication sensor-network, but also a two-way communication protocol [26]. The 
components present in a WSN are a radio transceiver, a microcontroller, an analog circuit 
for signal processing, an embedded operating system and a power source. An advantage 
of this technology is the fact that using these sensors is easy to create an IoT network, 
because different devices can easily be connected. WSNs are used where there are 
spatially distributed autonomous sensors, with the objective to monitor the environment 
and its dynamics in complex system. There are three common way to design a WSN: star, 
cluster-tree and multi-hop mesh [25] (Figure 2). 

 
Figure 2. Star, mesh and cluster-tree architecture schema. 

Nowadays, with the increase of technological devices, as phones and tablets, there 
are a wide range of devices connected to the internet available everywhere that make 
possible mobile computing [27]. These devices have embedded sensors able to collect 
data, such as GPS location, gyroscope data, acceleration, images, etc., and, a result, they 
can be integrated with IoT systems [25]. 

Smart nodes are used in a myriad of fields: buildings, manufacturing, healthcare, 
transport, bringing the number of devices to more than 50 billion [28]. This development 
has shown the limits of the cloud, saturating its potential and limiting the most 
demanding application fields, such as real-time applications. To overcome these 
limitations, an intermediate layer has been developed, located closer to the physical 
devices than the cloud and equipped with computational power that enables near real-
time control systems, reduces latency, allows the management of many nodes over a wide 
geographical area. This intermedial layer is called fog computing. The new architecture 
proposed by the fog computing concept was developed by the OpenFog Consortium. 
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OpenFog is an organization founded by ARM, Cisco, Dell, Intel, Microsoft and the 
Princeton University Edge Computing Laboratory in 2015 with the aim of overcoming the 
limitations of the cloud, improving flexibility, security, performance, bandwidth [29]. In 
this way, requests with stringent timing are managed in the fog, while those with soft 
timing are managed in the cloud. These characteristics are often located on a gateway, as 
illustrated in Figure 3, that collects all the data from the network of devices to which it is 
connected, analyzes them and sends them to the cloud [30]. 

 
Figure 3. Multi-layered IoT infrastructure. 

3. Architectural Patterns for Smart Nodes Design and Orchestration 
3.1. Common Architectures and Software Enablers for Industrial IoT Applications 

With this article we would like to present a general-purpose framework to implement 
an IoT sensor network application in order to answer how to implement Industry 4.0 
distributed systems paradigm. General ideas driving the research are the fact that SMEs 
generally struggle with the complexity of technologies of Industry 4.0 and their costs. For 
these reasons we focus on applications characterized by open hardware and open-source 
software without hard real-time constraints, that we will analyse in dedicated future 
research. 

Distributed software technologies are central since they provide technical tools for 
the implementation of distributed and multi-agent industrial applications that nowadays 
leverages especially on distributed service architectures typical of internet development 
domain (e.g., REST) [31]. 

Today software engineering for distributed systems is focusing on microservices 
technologies, leveraging on peer-to-peer architectures based on broker-based systems bus 
that are very well coherent with the mechanisms of agent communication described by 
FIPA. 

In our research we are focusing on using common patterns both for distributed 
automation (field level) and software distributed services, scaling the same approach on 
different levels of the IoT ecosystem. According to articles and specialized websites on 
embedded systems based on microcontrollers for IoT applications, C language remains 
the most used programming language to develop the software for platforms hosting 
sensors and Wi-Fi modules. Thanks to the rapid spread of single-board computer for low 
power applications (e.g., Raspberry PI, Banana Pi, etc.) high-level and object-oriented 
languages are more and more applied in this field like Go, JavaScript, Python and LUA 
[32,33]. Using HTTP based protocols helps in designing platform independent solutions 
and we leverage on this to interconnect low-level (data sampling and actuation) and high-
level services (business logic, analytics detection). 

For industrial services and software microservices, following the modern approach 
to develop server applications in a decentralized and scalable way, two different 
communication approaches are used in order to implement SOA architectures: 
synchronous and asynchronous protocols enabling respectively the request-response and 
the event-driven patterns [34]: 
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(1) Synchronous communication is a blocking protocol, i.e., the client is blocked until it 
receives a response from the server application (Figure 4). Modern distributed 
applications leverage on the RESTful approach, where APIs are used for inter-
platform communication with, generally, JSON data exchange, leveraging on top of 
HTTP internet protocol [35,36]. 
This is a pattern we decided to use both to manage data exchange among different 
functionalities internally to the web applications (developed to implement the HMI 
and visualization systems), but also to create the IoT platform, connecting the field 
device to the remote server for data transferring, storing, alarm notification. 

(2) Asynchronous communication is a non-blocking protocol and it enables the event-
driven pattern. The relationship between producer service and consumer service can 
be one-to-one or one-to-many. Generally, in multi-service applications, the multiple 
receivers pattern uses architectural styles based on publisher-subscriber and event-
bus systems (Figure 5). Publisher-subscriber architecture is based on asynchronous 
communication of services inter-platform. The orchestration of information exchange 
with an event-bus orchestrator is also defined choreography pattern. We decided to 
use such pattern in the first use case to manage the different services in the internal 
software architecture implemented both in the sensor node tracking the device and 
the datacenter system and in the second use case for the orchestration among the 
different layers of IoT infrastructure (1st layer: edge-fog, 2nd layer: fog-cloud/data 
center). In comparison with other publish and subscribe protocols, Message Queue 
Telemetry Transport (MQTT) is a more lightweight broker-based protocol, a good 
balance between simplicity, great level of abstraction and cyber security; MQTT is 
also an ISO standard protocol (ISO/IEC PRF 20922) [37]. This protocol is applied in a 
wide variety of industries: automotive, logistics, manufacturing, smart home, 
consumer products, transportation [38]. The key concept of this message queuing is 
the message topic that represents the identifier of a message entity. Another 
important aspect of this publish/subscribe broker-based mechanism is that a software 
application can represent at the same time a data provider and a data consumer 
depending on the topic: this exceeds and strengthens the typical client/server 
communication allowing a bidirectional communication, that will be more and more 
important for distributed control signal exchange that is expected in near future 
thanks to high bandwidth and low latency of 5G [39]. 
This choice comes from the lightweight and easy implementation of publisher 
consumer nodes with broker-based patterns with not stringent real-time constraints 
both in terms of latency and bandwidth. Our goal for future research is to scale such 
approach also to more demanding manufacturing applications, implementing DDS 
[40] or RTPS systems, but maintaining the same functional architecture. In this way 
we will be able to manage also configurations requiring continuity of the services 
against failures, thousands of messages per device per second [41]. 

 
Figure 4. REST API synchronous communication schema. 
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Figure 5. Publisher-subscriber architecture based on asynchronous communication of services 
inter-platform. 

3.2. Web-Based Dashboarding for Data Visualization and Analytics 
In the proposed architectural pattern, we include also HMI systems in order to 

provide graphs, alarm interpretation and basic analytics to the users in order to interpret 
the complex distributed system status. Since the overall pattern relies on internet 
protocols, we decided to implement web-based frontend applications. 

To follow the service pattern also in the web app, a clear distinction between front-
end services and back-end services is applied. To test the web application usability, we 
asked to low computer-skilled people to test them, in order to understand and assess the 
usability of the interfaces [42]. Internally to assess the technical implementation usability 
and functional tests were performed using different browsers, as Google Chrome, Apple 
Safari, Microsoft Edge, Mozilla Firefox, according to the analysis of [43]. 

4. Industrial Use Cases for the Application of Smart Node Sensor Orchestration 
In this section we aim to present two different use cases developed by our research 

group in the context of a cooperation between the university of engineering and the local 
chamber of commerce finalized to the support of small-medium enterprises with 
difficulties to introduce I4.0 tools, due to lack of competences and ideas of possible 
improvements in their area of business. The local chamber of commerce scouted 17 
different enterprises interested in this pilot and exploration; together with the department 
of engineering the interview phases started in order to discover main (and possibly 
hidden) needs to be addressed with new technologies. The needs collected with the 
interviews were clustered as follows: 12 companies interested in IoT to enable data 
analytics and data exploration, three in collaborative robotics, two in deep learning and 
computer vision applications.  

It is interesting to highlight the fact that the companies requiring IoT and data 
analytics were not only traditional manufacturing industries, but also companies 
operating in the health and monitoring services for SMEs or in dairy processes, viticulture, 
brewery and in general food area. This heterogeneity is a confirmation of what Díaz et al. 
describe in [44]. To reinforce the knowledge transfer to the selected companies, we 
decided to implement the Agile SCRUM framework in order to keep the personnel of the 
SMEs in the loop as main stakeholders, starting every sprint with the requirements 
analysis and refinement phase and inviting them during each system review to collect 
feedback both on the technological and methodological understanding. The approach was 
successful since after some sprints of knowledge sharing, the personnel started 
understanding the potential of IoT and in general I4.0 tools and figuring out new possible 
applications in their business domain [45]. 

In general, all these enterprises were not interested in hard real time data streaming 
technologies due to the fact that they were interested to use these data analytics to better 
understand possible patterns (sometimes known for experience but not confirmed by 
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scientific analysis) in order to reinforce human learning driven by data, as explained in 
[16], and support their decision process, without full automation and automatic control 
closing the loop. Additionally, they were interested in cheap solutions achievable via 
wireless devices in order to use IoT nodes as plug and play systems to improve the 
flexibility without adding wirings in their operative environments. 

Two selected use cases from the first cluster are presented as proof of concept (POC) 
in order to demonstrate the end-to-end design flow; we used this general workflow 
starting from requirements analysis, functional breakdown, functional architecture 
design, and detailed design with a physical architecture. We present these two different 
use cases in order to cover the scalability of the methodology, focusing on applications 
without critical real-time requirements (that we will cover in future research). Open 
software and platforms are used (Raspberry Pi, Arduino libraries, etc.) in order to lower 
the costs, with a wireless communication in order to have plug and play systems easily 
installable. 

4.1. Use Case 1: Industrial Vehicle IoT Monitoring Platform 
4.1.1. Stakeholder Requirements and Business Hypothesis 

The target of this use case is to create a condition monitoring central platform that 
can generate events about the status of a vehicles fleet. A fleet of vehicles is difficult to 
control and maintain, the vehicles are always on the move, distributed in places not 
always close. Monitoring all vehicles in use from a single platform is useful, as it allows 
one to understand how they are used, to perform predictive maintenance based on the 
data collected in the field and to know their position in real-time. 

In this use case, every vehicle in a fleet was endowed with an IoT device equipped 
with computational power, with the purpose of acquiring data, processing and sending 
them to a central server for data saving and visualization. The configuration of the 
acquisition systems must also be centralized, to make the system flexible and to avoid 
repetition of tasks considering vehicles of the same type. 

As mentioned above, one of the main consequences of this use case is the capability 
to facilitate maintenance, in order to avoid downtimes due to breakage of components. 
This application represents an effective tool for both preventive and predictive 
maintenance since it provides a decision support system both with visual representation 
of trends and the capability to manage alarm thresholds. Preventive maintenance is based 
on statistical indices, exceeded which a component is likely to break (e.g., maximum 
number of kilometres, number of braking, maximum temperature, etc.). For each vehicle, 
you need to set thresholds and be warned when a measurement exceeds this value. 
Predictive maintenance, on the other hand, is based on the analysis of data collected by 
vehicles and applying recognition of anomalies. 

Retrieving data coming from the motor controller becomes the first enabler to create 
such distributed infrastructure. A motor controller is a device with the objective to 
coordinate the entire vehicle system and to improve the performance of an electric motor. 

The controller manages all the information about the vehicle and its motor, such as 
the vehicle speed, the engine temperature, the motor current, and others. Those data can 
be collected using the controller area network bus (CAN-bus), that is a vehicle bus 
standard; it was designed to allow the communication between microcontrollers and 
devices without use a host computer. Other data can be derived aggregating the collected 
data; an example could be the electric power absorbed by the motor that could be 
calculated from the current and the voltage of the engine.  

With this system a company can have a clear overview of its vehicle fleet and its use. 
Moreover, with this amount of collected data, if a pattern between some metrics exists, it 
will be found by the data analysts and it will be useful to have a prediction of the vehicle’s 
status. Another important aspect is that knowing how the machine is used will help the 
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designers to optimize what kind of motor and controller is the most suitable for every 
kind of vehicle, representing a feedback for continuous learning. 

All the data collected are available in a web-based dashboard that can show the real-
time series or the historical data. Through the website it is possible to manage all the 
vehicles of a fleet, set alarms and notifications or add new metrics to be collected. 

4.1.2. Functional Architecture 
The functional architecture (Figure 6) shows IoT nodes, that collect data from the 

controller via CANopen protocol, send them to the server after a prefiltering process; the 
server stores the data and the alerts, and it shows them in dedicated dashboards exposed 
via website. The user can see all the collected data (both historical data and real-time 
stream coming from each field node) and alarms from the server, choosing the vehicle to 
analyse. Otherwise, it is possible to see the real-time data of a vehicle by connecting 
directly to the node device using its Wi-Fi hotspot. 

 
Figure 6. Functional architecture. 

In this use case a platform that allows the user to set all the vehicle parameters was 
designed in order to ease the monitoring of the entire system. Alerts, notifications, data to 
collect, vehicle information are set by the user on the server web page. We predefined 
variables that the user can choose, but it is possible to set all the variable available in the CAN 
network. The user has the possibility to set alarms and notifications. To do that he chooses a 
variable and a threshold; every time that the chosen variable exceeds the threshold, an alarm 
is generated on the vehicle and sent to server. If the user wants to receive an email notification 
when the alarm is active, he will set a notification on the alarm directly on the server. 

4.1.3. System architecture and detailed design 
In this project the system architecture (Figure 7) presents two different physical 

subsystem to consider: 
(1) The physical device installed on the machine collects the data since it is connected 

physically with the vehicle. The onboard device is a single-board computer (in this 
use case a Raspberry Pi is used) connected via CANbus to the vehicle-bus to which 
the controller is connected. 

(2) The main server could be hosted in an on-premises data center or in a cloud virtual 
machine. In this server there is an HTTPS Server that manages all the requests coming 
from the fleet and the web server, and an MQTT broker to which the notification and 
the web server are connected to handle, respectively, the notification sending and the 
real-time visualization. Using the website, the user can manage and monitor the 
vehicles fleet, configure the alerts, set the acquisition and the algorithms; this 
information is reported in a configuration file that a vehicle must download. 
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The Physical Device 
We can divide the device into different modules, as represented in Figure 7. 

• Acquisition module 
The CAN protocol has three different levels: physical layer, transfer layer and application 
layer. It does not have a standard application layer, and in this use case the CANopen 
protocol is used as application layer. This protocol has the possibility to have a 
standardized embedded network; very important is the fact that this network has a high 
capability of flexible configuration [46]. The data to collect from the CANbus are available 
in the configuration file for the acquisition module. Data are published with an MQTT 
publisher, that is used for the internal comunication from the different modules.  

• Prefiltering module 
Collected data are read from the prefilter module that discards the data that don’t 
change and updates only the timestamp with the time of the last collected value. All 
the data are collect to form a JSON object. Every 30 seconds the JSON object is written 
on a FIFO queue that links the prefilter module to the sender module. 

• Algorithm module 
The algorithm module, exploiting the configuration file coming from the server, 
reads only the interested data using an MQTT subscriber. The configuration file 
contains all the algorithms that the user configures from the server, and it is 
downloaded from the vehicle everytime it turns on. The outputs of the algorithm 
module are published with an MQTT publisher, and they are read by the prefilter 
module like any other collected data from the vehicle. In this module standard 
algorithms are implemented both to implement algebraic operations to combine 
signals, but also standard analytics (mean, standard deviation). 

• Alert module 
Using the same paradigm of the algorihm module, the alert module reads the 
interested data knowing them from the alarm configuration file coming from the 
server and set by the user. An alarm occures both when it starts and when it ends. 
The alarms are values that exeeds a threshold. When an alarm is detected, it is written 
as fast as possible in the alarm queue. 

• Sender module 
The sender module reads periodically the two FIFO queues and sends the queue 
content to the server as JSON via REST API call. The internet connection is available 
thanks to the 4G modem installed on the Raspberry Pi. If the internet connection is 
not available, data and alerts are saved in a SQLite database (acting like a temporary 
buffer), and when the connection returns available, everything that is present in the 
database is sent to the server. 

• Website module 
The user can access to real-time data directly from the vehicle web page (Figure 8), 
connecting to the local Wi-Fi network hosted by it, or using the web page exposed by 
the server, where the user can see the data of all the vehicles. The website has a MQTT 
subscriber from which it reads the data and the alarms published. 
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Figure 7. System architecture. 
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Figure 8. Vehicle dashboard page. 

The Server 
The main server hosts different processes to fulfill all the requirements of the project. 

These software components are: 
• The HTTPS server that has two main goals: enable the communication with the ve-

hicles fleet and manage the requests of the website. This module communicates via 
REST API. The server can distinguish between different type of message exploiting 
the header of the API request, e.g., headers: storeData and storeAlert are used by the 
vehicles to send data or alarms. When a new request is received, the server has three 
possible actions. The first one is the data saving. The received information is saved 
in a relational database (MySQL) using the CRUD module. The second one is the data 
sending. Every time a vehicle turns on, it requests its own configuration from the 
server. So, the HTTPS server, via CRUD module, sends back the right information. 
The third action is forwarding the message of data and alarms to the MQTT Broker, 
allowing the website subscriber to show them in the dashboard (Figure 9). 

• A CRUD module is used to manage the MySQL operations. Each topic acquired by a 
vehicle has its own table, automatically created. In this way it is easier to query the 
data for the visualization. Also, all the information regarding the alerts, the acquisi-
tions and fleet metadata are saved in MySQL. 

• If an alert is connected to a notification, it is sent via an MQTT publisher. Through 
the MQTT broker the notification is forwarded to the notification server, that warns the 
user with an automatic email. Using the website, it is possible to configure new alerts, set 
thresholds and create notifications linked to a specific alert. It is also possible to see the 
alert history and the active alerts, so alarms that are active in that moment (Figure 10). 

• The website module is very important in this architecture because it links the user to 
the system, and it allows the user to manage each element of the architecture. The 
design phase was realized considering the 16 principles for noise eliminations ex-
plained in [47]. The definition of noise in the context of UX design is everything pre-
venting the right message understanding: in general, the principles address good leg-
ibility, privilege simple structure both of the website framework and of the text. The 
website designed for the use case allows an easy management on the vehicle config-
uration; data, alerts, algorithms, and notifications are managed from the respective 
web pages. The user can add, modify or remove these features, and the vehicle will 
download them when it turns on. A user can see the real-time data published from 
the vehicle thanks to an MQTT broker. He can see in graphs the past data collected, 
because the website interacts with the HTTPS module that queries the database via 
the CRUD module. 
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Figure 9. Server dashboard page. 

 
Figure 10. Alert table in server page. 

To link the physical vehicle with the server, the user has to create a virtual vehicle on 
the server obtaining a unique vehicle ID; the vehicle ID is required when the user installs 
the device for the first time. Every single information of the vehicle is saved on the data-
base with the vehicle ID information. 

To facilitate the management of the system, it is possible for the user to create vehicle 
groups in the server that allows to set alarms, notifications, algorithm to all the vehicles 
of the chosen group. This is implemented to avoid the user having to create more times 
the same features for every node. The structure of the website map (really similar to the 
organization of the website realized also for the second use case) is reported in Figure 11. 

 
Figure 11. Website map of the HMI application. 
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For both the website on the server and the vehicle, we used Node.js for the back-end, 
while for the front-end, we used HTML, JavaScript and Bootstrap, a CSS framework. The 
communication between the front-end and the back-end is implemented using AJAX re-
quests, allowing asynchronous update of the pages. 

4.1.4. Verification and Validation 
In order to verify and validate the application we tested the integration between dif-

ferent modules and then the entire system data flow, applying in this Wireless sensor net-
work the testing pyramid methodology [48] to reduce the risks of software bugs, and in-
capsulating the interaction with physical sensors in libraries that, once debugged, are not 
changed. 

We create fake data after testing the physical acquisition via CANbus. In the future 
a new development could include some sensors to collect new data; these sensors, as ac-
celerometer, GPS, gyroscope, magnetometer, etc., could increase the data to collect and 
the information about the vehicle. With this architecture it is easy to link some sensors to 
the Raspberry Pi. After the technical verification, we verified some qualitative KPIs: 
• Simplicity in the configuration process; in this POC one of the key elements is the 

flexibility of the system, that allows to define the data to collect, the algorithm to 
calculate, the alert to trigger and the notification to send, directly from the server. To 
test this part, we asked to three non-expert users (done by three alpha testers not 
involved in the prototype development), to use the configuration page in the server, 
explaining only the feature of the website but without providing advices. 

• Availability of the system on a week time range; during a real test monitoring an 
industrial vehicle available in in the ArsControl Laboratory (UNIMORE) no down-
times of the application was identified having a 24 h availability of the monitoring 
system. The vehicle used for the test is an industrial scooter.  

• Simplicity in the website dashboard understanding; we asked to the same three non-
expert users to watch the two dashboards, one onboard the vehicle and one on the 
server, and to interact with these; this experiment shows that the dashboard was clear 
and intuitive. 

4.2. Use Case 2: Plant Air Quality Monitoring via Wireless Sensor Network (WSN) 
4.2.1. Stakeholder Requirements and Business Hypothesis 

With this second use case we decided to improve our previous architecture in order 
to be able to have a system that can generate feedback signals for IoT field nodes to act on 
detected issues: to reach this goal the signals regarding alerts and alarms are not directly 
handled by automatic alert systems as in the previous use case, but are published in the 
System Bus that we are going to discuss in details in order to be consumed by field nodes 
subscribed to manage these specific events.  

One of the pillars of Industry 4.0 and cyber-physical systems is how to keep human 
operators in the loop, creating a collaborative environment to support the operations of 
human beings. Supporting practical activities and tasks is not the only way to reach this 
goal: also the maintenance and guarantee of the psychophysical well-being of the staff is 
certainly one way in which an intelligent system can support human activities. For this 
reason, this use case aims to create a deep and distributed sensorization of industrial 
plants in order to monitor indoor air quality parameters that are relevant for the health 
status of personnel working in the shopfloor. 

A collaborative system in this field is not only capable of collecting data for visuali-
zation and reporting in dashboards but is also capable of identifying in real-time anoma-
lies in the environment parameters in order to alert human operators or to create triggers 
for other intelligent system delegated to recover the target and desired status. 

The scope of this use case was the creation of a scalable distributed network of smart 
sensors interfaced with room gateways, capable to group and store semantically the signal 
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data of sensors present in the same area and to communicate such data (filtered and with 
analytics applied) to a central server located in cloud or on-prem with a building infor-
mation modelling (BIM) representation of the plant, in order to centralize and visualize 
the full status of the system both in terms of sensor localization and data transmitted. 

The BIM basically is a CAD 3d with an object-oriented approach, where it is possible 
to model both the visual representation of an object but also connect a dataset not neces-
sarily related to infrastructural aspects. In these terms BIM have the characteristic to rep-
resent the digital twin of an industrial plant if it is enriched with live data coming from 
distributed nodes or equipment and it is an effective tool for visualization and root-cause 
detection. Web-based dashboards for the real-time series and simple analytics were also 
developed, easily reachable with QR codes encoding the URL of the local website for the 
room exposed by the web server hosted on the hub gateway. 

4.2.2. Functional Architecture 
The functional architecture (Figure 12) is composed by different IoT nodes, capable 

of collecting data from the field via physical sensors, sending it to the room gateway that 
acts like a fog node to analyse, store and displaying it in the form of visual dashboards 
describing a website. The IoT nodes collect data on trigger via a request of the room gate-
way, hosting their databases. 

 
Figure 12. Functional architecture. 

The fog nodes are capable of redirecting the information collected and filtered to the 
main server where the BIM model is stored. This server can be hosted on-prem or on a 
cloud environment. Only the last updated values are stored in the BIM server for each 
sensor in order not to overload the model, since it represents the single possible failure 
point of the architecture. In the BIM model is also stored the URL to reach the website 
exposed by the web server hosted on the room gateway to consume and visualize also 
historical information. 

The BIM model, as new data are sent by the fog nodes is updated with a software 
that interfaces with the room gateways. In the room gateway configuration file, it is pos-
sible to define the rules and the thresholds of acceptable range for each air quality param-
eter: the mechanism implemented is capable of triggering an alarm to send an automatic 
alert to human operators in charge of repairing and restoring the standard air quality and 
eventually usable from automatic actuators capable of acting on the environment to im-
prove the status. 
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4.2.3. System Architecture and Detailed Design 
The system architecture (Figure 13) is mainly composed of three different physical 

subsystems: 
(1) The IoT field node, the edge device in charge to interface with the environment in order 

to collect data about air quality parameters (in our proof-of-concept temperature [°C], 
humidity [%], pressure [hPa], VOC [ppb], eCO2 [ppm], H2, EtOH) or to notify and act 
on environment when an anomaly is detected by the room gateway with an alert 
signal notified on the room system bus. 

(2) The room gateway, a fog node with the responsibility of collecting data from the field 
node, filtering the data, storing the data on a SQL database (in our application we 
used a MySQL database). In the filtering module there is also a service that, given the 
thresholds of the alarms inside the configuration file, is capable to generate an alarm 
on the system bus handled by specific services (email sender service deployed on the 
fog node and alarm handler on the IoT field node). 

(3) The BIM updater service hosted or in an on-premises data center or in a cloud virtual 
machine. In this server there is another MQTT system bus where each room gateway 
is subscribed and publishes new notices. 

 
Figure 13. System architecture. 

The entire architecture relies on a common ontology designed to associate the air 
quality signals to the right source to be referenced in the BIM model: this ontology is spec-
ified by the room identifier, the parameter of interest and a number (in case in the same 
room we have multiple nodes to perceive some measurements).  
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This ontology based on the topics exposed on the MQTT broker guarantees a flexible 
system and an easy scalability of the number of field devices, since there are no direct 
client-server connections among the nodes of the system. 

On each gateway there are different topics exposed both to create data requests and 
to read new samples available from the field devices publishing parameters of interest, 
but there is no direct knowledge about the sensor that will provide the information. This 
simplify the commissioning of the system, since it is sufficient to specify in the configura-
tion file of each node what are the parameters it is going to provide to the infrastructure 
(derived from the BIM model) and what are the Wi-Fi access point and the MQTT server 
info and credentials to establish the communication.  

This paradigm, really oriented towards the multi-agent service discovery mecha-
nisms, also guarantees the decoupling of the system on software level increasing the over-
all reliability and the blocking of the propagation of anomalies: the failure of a field node 
only causes the loss of data without downtimes of the system. 

In the following sections a clear description of the software structure of the three 
components is provided: 

IoT Field Node Software Architecture 
An embedded platform to host the air quality sensors and the IoT field node software 

architecture is structured with the following sections: 
Configuration file with: 
• Wi-Fi access point info (WLAN_SSID, WLAN_PASSWORD) 
• MQTT Server info (MQTT_SERVER, MQTT_PORT, MQTT_USERNAME, 

MQTT_PASSWORD) 
Method for Wi-Fi client and MQTT client with topic subscription for publishing 

(Gateway requests) and consuming (Gateway data sending). 
Setup method with: 
• Connection to Wi-Fi access point 
• Loop repeated until successful connection. 
• Setup of MQTT topic subscription (parameter requests and alarm request) 
• Pin mode definition and Setup method provided as libraries by the producer of the 

sensors. 

Loop Method 
• MQTT_connect method call, in order to establish and maintain the connectivity to 

the System Bus on the Fog gateway. In case of issues, it automatically tries a new 
connection in order to reestablish the distributed network. In this method it is possi-
ble to specify the maximum number of times to try a new connection with the broker 
and the time distance between the different attempts. 

• State machine to manage the different requests received by the room gateway: since 
in this application there are no hard real-time constraints due to the slow dynamics 
of the parameters, we decided not to implement a temporized loop inside the field 
device, but rather to start the request on the fog device that can be eventually changed 
in the configuration file accessible and modifiable via the web-server. Leveraging the 
topic request ontology, the sensor understands what sample is required by the gate-
way and calls a specific method to retrieve a new measurement of the parameter 
specified in the topic (since the nodes generally have multiple sensors connected to 
the input pins of the microcontroller board). 
In our proof-of-concept we used as embedded system hardware a NodeMCU board 

with a ESP8266 microcontroller, a BME680 sensor by Bosch (IAQ, temperature, humidity, 
pressure) and a SPG30 by Sensirion (VOC, eCO2, H2, EtOH). 
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IoT Room Gateway Software Architecture 
The room gateway is implemented using one single-board computer (in our applica-

tion a Raspberry Pi 4) hosting the MQTT Server (Apache Mosquitto), the Apache web-
server hosting the dashboarding system, the MySQL database server for the fog node and 
finally the services and software modules described in the following: 
• Configuration file: defining connection string and authorization credentials to the 

MySQL database for the field devices, MQTT server info, Wi-Fi access point infor-
mation and credentials, air quality parameter thresholds for sensitivity and accepta-
ble ranges (applicable for all the devices exposing the specific measure), sender and 
receiver email addresses for the automatic notifications in case of anomalies. 

• Setup method to define the callback functions that are used when MQTT broker 
events happen (e.g., connection to the system bus server or data published on a sub-
scribed topic of the broker). 

• MQTT message handler capable of: 
o Classifying the source of information leveraging on the topic analysis with the 

explained ontology in place [room identifier; air quality parameter; source num-
ber]. Not recognized messages arriving on the System Bus topics and violating 
the ontology are filtered out and not handled. 

o Calling an air quality parameter analyzer (data storage function). 
• Class to manage CRUD operations on the MySQL database, in order to dynamically 

create during the initialization a database on the server with the identifier of the room 
specified in the configuration file, to generate specific tables only if a first message 
about an MQTT topic is received (if topics for a certain topic present on the system 
bus and following the ontology are not used missing the field nodes, tables are not 
created).  

• Methods for data storage, embedding a business logic to consider the total amount 
of data of the circular buffer implemented on the fog node, the decision between new 
insertion in DB (delta in two consecutive sample values greater than the sensitivity 
threshold in configuration file) or update of the last sample timestamp in DB (delta 
in two consecutive sample values lower than the sensitivity threshold in configura-
tion file). 

• Alarm notifier module to detect a rising edge in terms of violation of acceptable value 
range of the air quality parameter of interest (information stored in the configuration 
file and associated to the sample via the topic-based ontology). Only rising edge out-
side a “silent time period” generated for a specific air quality monitoring after the 
rising edge detection is capable to generate an alarm trigger. 

• Email sender service triggered by the alarm notifier to send an email to addresses 
specified in the configuration file of the module to notify which room and which pa-
rameter was outside the acceptable range and reporting also the detected deviation 
and the timestamp. 
All these functionalities are called by the main application that basically in the ini-

tialization creates the MQTT connection both as data publisher (request generation for 
each parameter represented by a topic of the system bus) and data consumer (to read data 
published by the field devices subscribed to the MQTT broker) and the parallel threads 
(with frequency defined in the configuration) to manage the measures to be handled. To 
create the MQTT client the Apache Paho library was used. Then a loop, so that the sched-
uling task keeps on running all time.  

The exit condition from the loop status can be represented by: 
(1) Scheduled task in pending to run (that will trigger data requests for air quality pa-

rameters) 
(2) New message event notified by the broker and to be handled as explained before. 
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Also in this use case we implemented a website hosted in an Apache web server in-
stalled on each room gateway. The website offers the possibility to choose the air quality 
parameter to be analyzed, both with an historical perspective or with a real-time update 
mechanism [Figure 14], based on asynchronous AJAX callbacks between client and server. 

The URL of the website is reachable via a QR code printed on the field nodes present 
in each room (in this case pre-selecting the parameter in the main page) or via the BIM 
visualizer: one parameter of the model is the web-site URL. In the graph, shown after the 
selection, the time series of the parameter of interest and the statistical values are reported 
(and updated in the case where real-time analysis is selected). 

 
Figure 14. Website main page. 

BIM Updater Service Software Architecture 
The BIM updater is a software agent hosted on the BIM server: similarly to the soft-

ware services present on the room gateways, it is capable of subscribing to the topics re-
lated to the different rooms (exposed via the room i-th MQTT publisher hosted on each 
fog node). The scope of this service is very simple: to update the IFC document (repre-
senting the dataset of the BIM model, with object structure [ISO 16739-1: 2018]) present on 
the BIM server as new data are available from room gateways.  

The BIM updater identifies the parameters of interest of each BIM model components 
and updates the IFC file, storing the updated value, the mean and standard deviation on 
last N samples (defined in the configuration file of the room gateway) and the URL to 
access the room gateway website. 

In the IFC file the properties related to a BIM objects are represented with “IFC prop-
erty single value” parameters. To guarantee the right association between topics exposed 
on the system BUS for the BIM updater and the object present in the BIM model, we used 
the same ontology in the definition of IFC property single values (Figure 15): 
Topic ontology: 
Room_number/Parameter/number (number used to distinguish sensor nodes in the same 
room sampling the same parameter). 
BIM IFC ontology: 
IFCPROPERTYSINGLEVALUE (‘{Room_number}_{Parameter}_{number}_LASTVALUE’, 
$, IFCREAL(value), $); 
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Figure 15. Debugging phase of BIM updater: data retrieved from System BUS, saved into IFC file 
and then visualized into the BIM model visualizer. 

4.2.4. Verification and Validation 
To validate the proof of concept, we used the same paradigm that we used in the 

previous use case. Once debugged the physical interface with the real sensors we realized 
fake sensors via software data injectors, capable to trigger alarms. We used these fake 
injectors to close the verification loop: it was possible to compare the trends in Matlab and 
in the real dashboards and to verify that the expected violating sample was generating the 
Alarm notices on the MQTT broker. 

After the technical verification, we verified some qualitative KPIs: 
• Simplicity to define and apply the configuration parameters of new fog node and 

new field node with sensors. With the current POC a manual change of configuration 
file is necessary, but it is an easy task since there are no configuration parameters 
hardcoded in the source code. In future development we would like to create an in-
terface between web application and configuration file in the fog node, with the pos-
sibility to change also field node configurations via a dedicated topic on the MQTT 
broker. 

• Availability of the system on a week time range: during a real test of air quality mon-
itoring in the ArsControl Laboratory (UNIMORE) no downtimes of the application 
was identified having a 24h availability of the monitoring system.  

• Robustness of the system against field nodes failures: we tested the robustness of the 
architecture against possible failure of field nodes. This test proved that a local failure 
does not propagate thanks to the indirect data retrieval via service-oriented ex-
change. In future research we would like to investigate a multi-agent reorganization 
of room gateway assuming possible power failure or downtimes in the fog node, 
with temporary storage of external field nodes and a subsequent data transferring 
from temporary gateway to main room gateway. 

• Simplicity of the website for non-expert users (done by three alpha testers not in-
volved in the prototype development). To test the user experience, we performed 
alpha test session with three different users, explaining only the feature of the web-
site but without providing advices. The experiment highlighted the high intuitive-
ness of the dashboards and of the website map, since each user was independent 
navigating on the different web pages available. 
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5. Future Research 
The term 5th Generation (5G) denotes the set of mobile and cellular phone technolo-

gies; this standard defines the fifth generation of mobile phones and compared to 4G/IMT-
Advanced technology there is a significant evolution. 

In this new network, all the 5G devices that are present in a cell transmit using the 
radio signal to the local antenna. Mobile devices moving from one cell to another are au-
tomatically and transparently taken over by the new cell without loss of connection. Only 
devices that were specially designed for 5G can use this network; on the contrary, 5G de-
vices can use 4G LTE network. 5G enables a wireless technology with a wide bandwidth 
rate, more speed, capacity, and less cost per bit than the previous one. The network will 
have multiple access according IoT architecture. 

For a hard-real time IoT implementation massive connectivity is requested, with 
complete coverage, high reliability and low latency. Even high privacy and a high level of 
security is required. 5G technology will increase the data-rates with a better coverage than 
the previous one, making possible those new business models. [49] 

Leveraging on recent papers on the theme [50], we expect that IoT networks will be 
adopted more and more and, for this reason, it is important to propose and test standard 
procedure to design, control, manage the lifecycle and the configuration management of 
such applications with a systems engineering methodology. 

For this reason, our future research will focus on a standard approach starting from 
requirements management to lifecycle management of complex distributed systems, in 
order to define systems engineering guidelines. In particular we will focus on: 
(1) Defining what type of automatic control is implementable via 5G technology with a 

particular attention to equipment cooperation and IoT control signals exchange, in 
order to cover the area of remote real-time control with the goal to understand what 
functionalities and control actions needs to be implemented on the edge and which 
ones can be delocalized on the cloud or on fog nodes. 

(2) Investigating how to scale the approach to wireless sensor networks not based on 
internet protocols in order to design with the same approach networks with low 
power sensor nodes.  

(3) Studying continuous integration and testing methodology also including field-level 
devices, since DevOps methodology is more and more used by companies in soft-
ware development, in particular in pervasive computing systems and SOAs where 
the boundaries between automation software and web software becomes less rigid 
and new releases have shorter time to market with high quality requirements in 
terms of reliable integration. 

(4) Studying new legibility UI systems for human interpretability and acceptance of dis-
tributed AI systems, in particular where multi-agent actuation nodes are present. 
This fact could really improve the acceptance of AI systems in a social environment, 
where generally personnel with low skills in modern IT domain has difficulties in 
trusting systems supposed to substitute the human jobs and where the complexity 
creates issues in understanding the choices of agents that are, on the contrary, 
thought to support in cooperative way human daily work. 

6. Conclusions 
Industry 4.0 provides several technologies with potential, but nowadays companies 

clearly don’t know how to implement them and how these technologies can improve their 
business. To answer to this gap, this research article as the objective to propose a general 
purpose and flexible framework to implement an IoT WSN, following multi-agent and 
cyber-physical system design principles. The output achieved is in the context of a 
knowledge transfer project realized by the university to introduce I 4.0 technologies in 
SMEs that struggle in the adoption of such advanced IT solutions. Such knowledge shar-
ing was organized using Agile SCRUM framework in order to have in the loop company 
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personnel as main stakeholders for methodology and technology learning. The presented 
use cases have the possibility to be scalable and implemented in different applications (to 
reinforce this idea, we demonstrated how to apply the concepts in two really different 
industrial use cases). 

The first use case describes a central platform for a condition monitoring system with 
event generation. In the first system a synchronous communication with REST API is 
used; this is the main limit that we found in this application, because with this technology 
a bidirectional communication is complex to implement and this does not allow the sys-
tem to act autonomously. This communication is correct if only a condition monitoring 
system is required. The second use case differs from the first one because it also has the 
possibility to provide feedback to each node in order to manage issues and restore the 
target set point. In the second use case, to allow a bidirectional communication, we use an 
asynchronous architecture scaling the orchestration model from high-level software com-
ponents to low-level field nodes. 

Finally, verification and validation methodologies and main KPIs, used as success 
criteria, are described. Such a framework is mainly for addressing IoT solutions based on 
cheap embedded systems, where there are no critical real-time constraints, limiting the 
adoption in critical process control applications. This is one of the future research topics 
that we will cover both with different protocols (e.g., DDS, OPC UA, RTPS) and exploring 
the potential of 5G. Another topic to address with additional research is the scalability of 
the approach towards low power devices that generally leverages on different protocols 
like ZigBee, Bluetooth, etc. 
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