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Abstract

Modern cyber-physical embedded systems integrate several complex functional-
ities that are subject to tight timing constraints. Unfortunately, traditional sequential
task models and uniprocessors solutions cannotbe applied in this context: a more
expressive model becomes necessary. In this scenario, the Directed Acyclic Graph
(DAG) is a suitable model to express the complexity and the parallelism of the tasks
of these kinds of systems.

In recent years, several methods with different settings have been proposed to
solve the schedulability problem for applications featuring DAG tasks. However,
there are still many open problems left.

Besides schedulability, aspects like the freshness of data or reaction to an event
are crucial for the performance of those kinds of systems. For example, a typical
application in the robotics field is composed of sensing the environment, planning,
and actuate consequently to the elaborated data. Predictable end-to-end latency is
then decisive, and it can get very complicated in real scenarios.

This thesis represents an effort in both directions: (i) the schedulability of a DAG
task on a multiprocessor, and (ii) the supervision of end-to-end latency for multi-
rate task sets. For the former problem, a survey of the state-of-the-art of the Di-
rected Acyclic Graph task model is presented, with a focus on scheduling tests that
are more effective, easy to implement, and adopt. Regarding the latter, a novel
method is proposed to convert a multi-rate DAG task set with timing constraints
into a single-rate DAG that optimizes schedulability, age, and reaction latency. Fi-
nally, three real-world use-cases of industry 4.0, smarty city and self-driving car are
detailed to demonstrate how the theoretical contribution of this thesis is intrinsically
linked to modern applications.
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Chapter 1

Introduction

1.1 Keep It Up With Innovation

Is Moore’s law still alive? That is a question that can easily lead to a controversial
outcome: many say yes, others say no, the most say it will be dead soon. In 1964
Gordon Moore, Fairchild Semiconductor’s Director of R&D, predicted that the num-
ber of transistors on a chip would double every year [84, 85]. Almost ten years later,
Moore, working at the time with Intel, revised his statement by saying it was going
to double every two years, rather than every year. This prophecy has been incredibly
accurate for more than 50 years, becoming known as Moore’s Law.

Indeed, the prediction was correct back in 1971, when the Intel 4004 processor
was released, featuring 2300 transistors while Moore’s law forecast 1500 for that
year; and yet it was correct in 2019, when it law was expecting around 40 billion
transistors and AMD released the Epyc Rome processor with 39 billion transistors.

The exponential increase in the number of transistors is made possible by the pro-
gressive reduction in the characteristic dimensions of the integrating process: back
in the 70s hardware producers realized technologies in the order of 10 µm, today we
are in the range of 5− 7nm. The main benefit of reducing dimensions is to allow
a higher clock speed: more gates can fit on a chip with a reduced distance among
them, therefore signals have a lower path to cover, and the transitory time for a state
transition decreases. However, when reducing the distance between gates, a par-
asite effect of leakage current increases, being the reason why the single processor
frequency has a bound of 4GHz, reached in 2002.

This limitation somehow marked the end of the single processor, but not the
end of Moore’s law. On the contrary, this problem was revised as an opportunity,
and that opportunity was the multi-processor, which kept the law alive. In the
years, many experts in the field, including NVIDIA CEO Jensen Huang, declared
that Moore’s Law is dead. Moore himself, in 2005 stated that his law was dead, and
that in 10-20 years we will reach a fundamental limit.

Even if it may be true that this law won’t be valid in 2025, the point is that
Moore’s Law is sustained by innovations: we surely have reached the end of the
road for some approaches, but not all of them.

Today, at the end of 2020, multi-cores have been surpassed by heterogeneous
many-cores, which are now the cutting-edge platforms. This is where the research
is going, where modern applications will run onto, and where also Real-Time com-
munity should investigate.
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1.1.1 Heterogeneous Embdedded Platforms

In 2017 Intel released the i9-7900X processor family, among which also the Intel i9-
7980XE, featuring 18 cores. The following year, AMD released the Ryzen Threadrip-
per series of processors, among which Ryzen Threadripper 2990WX with 36 cores. In
March 2020, Ampere Computing announced Ampere Altra, with the Q80-33 proces-
sor featuring 80 64-bit Arm cores. In September 2020, NVIDIA launched the GeForce
RTX 3000 series of Graphic Processing Units (GPUs), including the RTX 3090, with
10496 cores. Besides these examples, there exist other solutions that are currently
going in the direction of many-core, rather than multi-core, e.g. Field Programmable
Gate Array (FPGAs) or Google Tensor Processing Units (TPUs). Even though most
of the cited architectures are server solutions, this trend can be found also in the em-
bedded world. Indeed, in the latest years, several new embedded boards have been
produced by affirmed manufactured, as Xavier or Pegasus by NVIDIA, Ultrascale+
or Versal by Xilinx, and Snapdragon by Qualcomm, but also from new ones, as Kirin
from Hilisicon (owned by Huawei).

The specifics of the new proposed boards are various and different, however
a bottom main idea can be easily found. All of these new-generation embedded
boards features a multi-core Central Processing Unit (CPU), one or more GPUs and
other additional engines, such as FPGAs or Artificial Intelligence (AI) specific accel-
erators. Heterogeneity has become a new required feature of embedded systems,
along with the well-established goals of delivering high performance while control-
ling power consumption.

1.1.2 Modern Real Applications Are Complex

The reason behind this new computing paradigm can be found in the intrinsic bond
between hardware and applications. At the beginning of the XXI century, the ad-
vent of GPUs made the training and the adoption of neural networks possible. From
that point in time, a terrific investment has been made in the AI field, both from the
research and industry worlds. It became common practice to develop applications
that rely on one or more neural networks. These kinds of applications have a con-
siderable computational demand, generally have a high degree of parallelism, and
work on a massively amount of data, obtained from one or more sensors. Clearly,
there was a need for appropriate new-generation embedded platforms.

However, the decisive push that convinced manufacturers to go towards this
direction came from a specific sector: automotive. Since 2005, when Stanley, the
autonomous car developed by the Stanford team lead by Sebastian Thrun, won the
DARPA Grand Challenge [115] and David Hall proposed the first prototype of 3D
Velodyne LiDAR [57], researchers and companies have been focusing on self-driving
cars. Nowadays hundreds of companies are involved in this self-driving revolution,
among which not only all the major car manufacturer (e.g. General Motors, Ford,
Mercedes Benz, Volkswagen, Audi, Nissan, Toyota, BMW, etc.), but also all major
big tech corporates (e.g. Google, Apple, Huawei, Intel, NVIDIA, Xilinx, etc.).

1.1.3 Real-Time Community Commitment

Self-driving cars are also the perfect example to understand why the Real-Time com-
munity is called to contribute in this direction. Indeed, it is one real relevant applica-
tion, among others, with a terrific complexity, that runs on heterogeneous embedded
platforms and has intrinsic real-time requirements.
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Satisfying those real-time requirements to guarantee predictability for those ap-
plications means finding the solution to two distinct, though synergistic, problems,
one related to software and the other to hardware.

The first is to derive suitable models to fully represent the complexity of real
applications. Liu and Layland task model [73] cannotbe adopted anymore: its ex-
pressiveness is limited and its adoption would lead to simplistic representations of
the applications, too far from reality. More articulated task models are needed, as
well as algorithms to check their feasibility, to compute their end to end latencies,
to estimate their Worst-Case Execution Time (WCET) on this new-generation of em-
bedded boards.

The second is to make these high performance, low power, heterogeneous boards
also predictable. And this is also challenging because they were not built with that
purpose. Multi-core systems are inherently unpredictable, and these new embed-
ded platforms are even worse. Resources are not shared only among different ho-
mogeneous cores, which is still true, but they are also shared among different het-
erogeneous engines. The biggest issue can be found in the bandwidth and, even
more exacerbated, in the several layers of memory. Sharing those resources with-
out any precautions leads for sure to unstable performance, caused by interference
overheads. Mechanisms to partition the memory and allow isolation, such as cache
coloring, are then required, as well as bandwidth reservation systems.

1.2 Contribution and Organization

This thesis makes an effort trying to solve the software-related problem, by focus-
ing on the Directed Acyclic Graph (DAG) task model, both from a theoretical and
practical point of view.

Three main contributions can be found in this work:

i A detailed survey of the literature of the DAG task model, spacing from the
original proposed by Baruah et. al in 2012 [11], to the Heterogeneous Parallel
Conditional DAG task proposed by Zahaf et al. in 2019 [132, 133]. Several poli-
cies have been analyzed, with a focus on the schedulability test of DAG tasks
onto multi-core or heterogeneous-boards. This survey aims to (i) have a clear
overview of the existing literature, (ii) compare global and partitioned schedu-
ling solutions, and (iii) understand which methods are more suitable from an
industrial adoption point of view, considering both the goodness of the meth-
ods in terms of schedulability and their execution time. To accomplish that, an
implementation effort has been carried on, in order to compare the best exist-
ing methods, and it has been made publicly available at https://github.com/
mive93/DAG-scheduling. This is the content of Chapter 3.

ii A new method to convert a real-world application, modeled with a multi-rate
taskest, into a DAG, that was firstly presented in “Latency-Aware Generation of
Single-Rate DAGs from Multi-Rate Task Sets” [122] (RTAS 2020), reported in Chap-
ter 4. The conversion procedure, detailed in the chapter, accepts in input con-
straints related not only to schedulabilty, but also to end-to-end latency, in order
to generate a DAG with bounded data age and reaction time.

iii Three different real-world applications with real-time requirements, that involve
heterogeneous embedded platforms, neural networks and several sensors, mod-
eled as DAGs, that are described in Chapter 5. The first is a defect detection

https://github.com/mive93/DAG-scheduling
https://github.com/mive93/DAG-scheduling
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application, object of investigation in a join collaboration with Tetra Pak, better
detailed in “A Systematic Assessment of Embedded Neural Networks for Object De-
tection” [120] (ETFA 2020), and “Embedded Neural Networks for Object Detection: A
Systematic Assessment” [121]1. The second is a smart city application, developed
in the context of the European project CLASS, to detect and track objects from
pole-mounted cameras. The third one is a new method to perform sensor fusion
of cameras and LiDARs on embedded boards for self-driving cars, originally
proposed in “Real-Time clustering and LiDAR-camera fusion on embedded platforms
for self-driving cars” [123] (IRC 2020).

Chapter 2 offers some background to better understand the matter of this thesis,
while conclusions and open problems are discussed in Chapter 6.

1Journal version, still under review.
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Chapter 2

Background

2.1 Real-Time Scheduling

In the real-time scheduling theory, the workload is generated by a finite collection
of recurrent tasks or processes. Each such recurrent task may model a piece of code
that is embedded within an infinite loop, or that is triggered by the occurrence of
some external event. Each execution of the piece of code is referred to as a job; a
task, therefore, generates a potentially unbounded sequence of jobs.

A recurrent real-time task is usually characterized at least by two parameters:
the period T and the deadline D.

A recurrent task is said to be periodic if successive jobs of the task are required to
be generated a T times units apart. A task is said sporadic if a lower bound, but no
upper bound is specified between the generation of successive jobs (at least T times
unit). Finally, an aperiodic task is one that occurs with no repetitions and which then
does not have a specified T.

The deadline states within how many time units the task needs to be completed.
The relationship between deadline and period can be of three types: (i) in the implicit-
deadline case, the relative deadline of each task is equal to the task’s period; (ii) in the
constrained-deadline case, the relative deadline of each task is no larger than the task’s
period; (ii) in the arbitrary-deadline case, the relative deadline does not have to satisfy
any constraint with regards to the period.

Algorithms A real-time scheduling algorithm is responsible for distributing the
executing jobs of the system on its available processors during the execution inter-
val of the task set. At each time unit within this interval, the scheduling algorithm
chooses particular jobs among the ready ones to execute on the system’s processors
using a particular priority assignment.

This works focuses mainly on multiprocessor work-conserving scheduling, in
which eligible jobs must be executed if there are available cores.

Real-time scheduling algorithms can be divided into (i) fixed task priorities (FTP)
(ii) fixed-job priorities (FJP) and (iii) dynamic priorities algorithms.

Earliest Deadline First (EDF) assigns priorities to jobs based on their absolute
deadlines where jobs with earlier absolute deadlines have higher priorities. Different
jobs of the same task may be assigned different priorities, however, once assigned,
the deadline will not change (FJP algorithm). This algorithm is an optimal schedu-
ling algorithm on uniprocessors, although it loses its optimality for multiprocessors.

Deadline Monotonic (DM) and Rate Monotonic (RM) algorithms are instead fixed
priority algorithms. Priorities are assigned to tasks based on their relative deadline
(in the former) or their period (in the latter).

In dynamic priority algorithms, there are no restrictions in the manner in which
priorities are assigned to jobs.
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Schedulability The concept of schedulability was well defined by Baruah [8] and
takes into account both the scheduling algorithm and the task set properties.

Definition 2.1.1. Let A denote a scheduling algorithm. A task system T is said to be A-
schedulable, if A meets all deadlines when scheduling each of the potentially infinite different
collection of jobs that could be generated by the task system, upon the specified platform.

To check the schedulability of a task set under a chosen scheduling algorithm, a
schedulability test needs to be derived and applied to the task set.

Definition 2.1.2. An A-schedulability test accepts as input the specifications of a task sys-
tem and a multiprocessor platform and determines whether the task system is A-schedulable.

Infinite schedulability tests can be derived. However, a schedulability test is
called exact, only if it identifies all A-schedulable systems. The test is called sufficient
if it identifies some A-schedulable systems.

A schedulability test can be used to compare scheduling algorithms. Indeed, a
scheduling algorithm A dominates scheduling algorithm B if all task sets schedu-
lable by algorithm B are also schedulable by algorithm A, but the opposite is not
correct.

Sustainability The notion of sustainability [10, 28] formalizes the expectation that a
system that is schedulable under its worst-case specifications should remain schedu-
lable when its real behavior is “better” than worst-case.

A scheduling policy and/or a schedulability test for a scheduling policy is sus-
tainable if any system deemed schedulable by the schedulability test remains schedu-
lable when the parameters of one or more individual tasks(s) are changed in any,
some, or all of the following ways: (i) decreased execution requirements; (ii) larger
periods; (iii) smaller jitter; and (iv) larger relative deadlines.

Generally, there is often a trade-off between accuracy and sustainability: exact
schedulability tests are usually not sustainable, but sustainable sufficient schedula-
bility tests can often be designed.

Preemption policy The preemption strategy is a key aspect of real-time schedu-
ling, as it could favor urgent tasks and affects schedulability.

Traditionally there are two opposite approaches: Fully Preemptive (FP) and Fully
Non-Preemptive (FNP) scheduling strategies [8]. In FP scheduling a job can be in-
terrupted at any time if another job with higher priority arrives, and be resumed
to continue only when all higher priority jobs have completed their execution. On
the other hand, in FNP scheduling the execution of a job cannotbe interrupted: as it
starts it executes until completion.

A common misconception is that the former strategy is more effective in terms
of schedulability than the latter one. However, the two are incomparable, there are
task sets schedulable under FP that are not schedulable under FNP and vice versa,
but they both have some disadvantages. In FP scheduling the risk is to produce
many and unnecessary preemptions, whose cost is not negligible, affecting the sche-
dulability of low priority tasks. On the contrary, in FNP scheduling there are no
problems regarding preemption overhead, but it could produce long blocking de-
lays that could still undermine schedulability.

To reduce those problems, preemption and migration-related overheads, while
also constraining the amount of blocking, Limited Preemption (LP) has been pro-
posed in the literature [78, 18, 31]. This model combines and generalizes the other
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two: jobs can be preempted, but only in certain points, otherwise they execute Non-
Preemptive Regions (NPRs). Moreover, given the chosen scenario, there exist two
approaches to define the way a preemption occurs: the eager and the lazy. In the ea-
ger approach a high priority job can preempt the first lower priority job that reaches
a preemption point; in the lazy approach a high priority job has to wait until the
lowest priority job in execution reaches its preemption point to preempt it.

Multiprocessor scheduling strategy When dealing with multiprocessors a strat-
egy on how to map tasks on cores should be chosen.

A global real-time scheduler allows migration of any job in the system between
the processors during their execution. It is known that this policy leads to lower av-
erage response time and automatic load balancing while being easy to implement.
However, it suffers from migration costs, overheads due to inter-core synchroniza-
tion and lack of cache affinity.

The other approach to scheduling multiprocessor real-time systems is partitioned
scheduling, in which each task is assigned statically to one processor. Partitioned
scheduling has the advantages of being supported by the automotive industry (e.g.
AUTOSAR), having isolation among cores, and, moreover, exploit established unipro-
cessor schedulability analysis techniques. The problems of this second method are
the likely possibility to have unbalanced loads of the cores and the non-deterministic
polynomial-time (NP) hardness of the allocation strategies.

Indeed the allocation problem can be reconducted to the bin packing problem,
which is known to be NP-hard [41]. Therefore, heuristics based on a utilization factor
are used, as First Fit, that fits a task into a processor by scanning from the beginning
of available processors to the end, until the first processor that can accommodate it is
found; Best Fit, which fits a task into a processor by looking for the processor whose
left capacity is closer to the utilization of the task; or Worst Fit, that fits a task into a
processor by looking for the processor with the greatest left capacity.

... ...carry-in

τa
x

body

τa+1
x

carry-out

τa+2
x

window of interest

FIGURE 2.1: Carry-in, body and carry-out jobs.

Carry-in, body, carry-out Many schedulability tests rely on the concept of interval
(or window) of interest to compute bounds on the workload (or interfering work-
load) of a task. When computing an upper bound workload over some identified
interval of interest [a, b] of length t, the contributions of jobs to this workload are
typically considered in three separate categories: (i) carry-in, that is the contribution
of at most one job, which has its release time earlier than a and its deadline in [a, b);
(ii) body, that is the contribution of jobs with both release times and deadlines in
[a, b); (iii) carry-out, that is the contribution of at most one job, which has its release
time in [a, b) and its deadline later than b. A graphical representation is depicted in
Figure 2.1.

Note that, when considering constrained-deadline sporadic task systems, there
can be at most one carry-in job and one carry-out job for each task.
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Real-Time Task Models Tasks in a real-time system have specific properties and
are represented via a task model.

In 1973 Liu and Layland [73] introduced the first periodic sequential task model.
In their famous work, a task τ = (C, T) is described only by its worst-case execution
time (WCET) C and period T, having implicit deadlines. Immediate extensions are
the addition of a deadline D and the concept of sporadic tasks.

Several other task models exists [26], as the Multiframe [83], the Generalized
Multiframe [14], the Elastic [32], the Mixed Criticality [124], the Splitted Task [29]
and the Self-Suspending Task [39].

However, all these models assume that there is a single thread of execution
within each task. They are quite simple and do not take into account factors as
intrinsic parallelism or precedence constraints among sub-tasks.

Therefore, parallel models have been introduced, such as the Digraph Real-Time
task model [108] and the DAG task model [11], object of this thesis.

2.2 Graph Theory

This thesis focuses on the concept of Directed Acyclic Graph (DAG), therefore some
basic concepts of graphs [43, 41] are here introduced.

Definition 2.2.1. A graph is a pair G = (V, E) where V is a set of vertices (also called
nodes) and E ⊆ V ×V is a set of edges.

Definition 2.2.2. A directed graph is a graph in which edges have an orientation.

Definition 2.2.3. A graph G = (V, E) is called acyclic if it does not contain any cycles.

Figure 2.2 reports an example of a graph (Figure 2.2a), a directed graph (Fig-
ure 2.2b) and a directed acyclic graph (Figure 2.2c).

(A) Graph. (B) Directed graph. (C) Directed aclyclic graph.

FIGURE 2.2

Two other concepts worth mentioning are the concept of path in a graph and,
sequentially, connected graph.

Definition 2.2.4. A sequence λ = (v0, v1, ..., vk) of nodes vi ∈ V of a directed graph
G = (V, E) is called a path from v0 to vk if (vi, vi+1) ∈ E holds for each i ∈ 0, ..., k− 1.

Definition 2.2.5. A non-empy graph G = (V, E) is called connected if any two of its vertices
are linked by a path.

Several algorithms applied to DAGs can be found in literature[41]. Surely, the
most relevant to this work are the depth-first search and the topological sort.

There are many ways of searching a graph, depending upon the way in which
edges to search are selected. The depth-first search is a very useful and used one.
To perform a depth-first search exploration, When selecting an edge to traverse, the
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outgoing edge from the most recently reached vertex which still has unexplored
edges is the one that has to be chosen.

The depth-first search of a DAG can be computed in linear time in the size of the
DAG O(|V|+ |E|) [113].

Definition 2.2.6. A topological sort of a directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if G contains an edge (vi, vj), then vi appears
before vj in the ordering.

The topological sort of a DAG can be computed in linear time in the size of the
DAG O(|V|+ |E|) [41].

2.3 Modern Embedded Architectures

While uniprocessors and multiprocessors architectures are well known, not every-
one could be familiar with the architecture of heterogeneous embedded platforms.
An embedded system can be defined as a special-purpose computing system whose
main features are reliability, low power consumption, high-performance, and con-
tained costs. Embedded boards are those whose System on a Chip (SoC) is embed-
ded as part of a complete device, often including electrical or electronic hardware
and mechanical parts. Some examples are the Jetson Series by NVIDIA (e.g. Nano
or Xavier AGX), the Ultrascale+ family by Xilinx (e.g. ZCU102 or ZCU 104), the
Snapdragon 820 Automotive from Qualcomm, etc.

Modern embedded platforms feature a very complex SoC. A high-level repre-
sentation of a general architecture is reported in Figure 2.3.

CPU

L1 cache

. . .
CPU

L1 cache

last level cache

processor

cluster

L1 cache

. . .
cluster

L1 cache

last level cache

accelerator

engine

. . .

engine

interconnections

main memory

FIGURE 2.3: High level description of a heterogeneous SoC architec-
ture.

The three main building blocks are (i) processing units, (ii) memory, and (iii)
interconnection. The architecture features two principal components, namely the
processor and the accelerator. The former is a multi-core, the latter a many-core in
which, usually, cores are grouped in clusters. In the SoC there could also be one or
several engines, typically specialized for specific purposes. GP-GPUs and FPGAs
are the most commonly used accelerators. Deep Learning Accelerator (DLA) by
NVIDIA, Neural Processing Unit (NPU) by Hilisicon, or Neural Processing Engine
(NPE) by Qualcomm are examples of Artificial Intelligence (AI) specialized engines.
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Memory and interconnections are shared resources.
The interconnection is shared among the processor, the accelerator, the various

engines, and the memory.
Memory is at least split into two layers, namely caches and main memory. Usu-

ally, there exist also several layers of caches with different sharing policies. In a
general case, as the one reported in Figure 2.3, each core (cluster) of the processor
(accelerator) is assigned a private, small (some KiB) L1 cache. Then there is a slightly
larger (some MiB) cache, called last level cache, that is shared among all the cores
(clusters) of the component. Finally, there is the main memory, which is way wider
(some GiB) and shared among all the processing units of the platform, including the
processors, the accelerator, and the available engines.

When designing an application for these kinds of platforms, it is crucial to know
the sizes and configuration of the memory levels, besides having a proper idea of the
memory usage of the considered application. Accessing data is expensive in terms
of latency, and retrieving data from L1 cache, last level cache, or main memory has
costs that significantly differ. The latency of accessing the main memory can differ
in orders of magnitude with respect to the one of accessing L1.

The problem of interference A paramount important aspect to consider when de-
signing a real-time application that will run onto these platforms is the problem of
interference. The contention for access to shared memory resources is one of the
main predictability bottlenecks of modern multi-core and heterogeneous embedded
systems.

It has been shown that the aforementioned problem on these kinds of SoC, for ex-
ample NVIDIA Tegra K1 and Tegra X1 [36, 67], can lead to terrific degradation in the
task latencies. That should be for sure considered when computing the worst-case
execution time of a task. Moreover, memory-centric models, as the Predictable Exe-
cution Model (PREM) proposed by Pellizoni et al [91], should be better investigated
and adopted.

To mitigate the contention in the memory hierarchy and over the bandwidth,
some preliminary solutions have been proposed: software solutions as partitioning
memory for the former, control and reservation systems for the latter. A clean way
to introduce those solutions is through virtualization.
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Chapter 3

DAG survey

This chapter tries to summarize the existing literature of the Directed Acyclic Graph
(DAG) task model applied to real-time scheduling, focusing on the various sche-
dulability tests proposed in the years. The whole literature of DAGs in real-time is
clearly much more extensive. The effort, hereafter reported, aims to deep analyze
the task model and its extensions, cover various scheduling policies, and point out
the ways to check if a task, or task set, is feasible on a given system.

DAGs were firstly introduced in real-time literature in the context of global sche-
duling by Liu and Anderson [75]. The authors investigated the Global Earliest Dead-
line First (G-EDF) scheduling on multiprocessors of a multi-rate task set in which
tasks’ precedence constraints were modeled via a DAG. The following year, the same
authors further investigated the problem for distributed systems [74], considering
clustered scheduling and edges with assigned communication costs.

However in both their works, the task model adopted is the sporadic one, with a
given deadline and period for each task and no notion of internal parallelism.

3.1 The Directed Acyclic Graph Task Model

The Directed Acyclic Graph task model has been introduced for the first time by
Baruah et al. [11]. The sporadic DAG task model is a parallel task model in which
each task τx is specified by a tuple (Gx, Dx, Tx), where Gx = (Vx, Ex) is a vertex-
weighted directed acyclic graph, and Dx and Tx are positive integers that represent,
respectively, (relative) deadline and period of the task. An example of a DAG task is
depicted in Figure 3.1.

1

v0

4

v1

3

v2

2

v3

3

v4

2

v5

FIGURE 3.1: DAG task τx, with period Tx = 16 and deadline Dx = 10
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Each vertex vi ∈ Vx of the DAG corresponds to a sequential job, and is charac-
terized by a worst-case execution time (WCET) Cx. Each directed edge of the DAG
represents a precedence constraint: if (v, w) ∈ Ex then the job corresponding to ver-
tex v must complete its execution before the job corresponding to vertex w can begin.
Groups of jobs that are not constrained by precedence constraints in such a manner
may execute in parallel, if there are processors available for them to do so.

The task τx releases a DAG-job at time-instant t when it becomes available for
execution. When this happens, we assume that all jobs in |Vx| become available for
execution simultaneously, subject only to the precedence constraints. During any
given run the task may release an unbounded sequence of DAG-jobs; all |Vx| jobs
that are released at some time-instant t must complete execution by time-instant
t + Dx. A minimum interval of duration Tx must elapse between successive releases
of DAG-jobs.

Properties Considering the topology of the model, several features can be noticed.
A chain λ in DAG task τx is a sequence of vertices v1, v2, ..., vk ∈ Vx such that

(vi, vi+1) is an edge in Gx. The length of this chain is defined to be the sum of the
WCETs of all the vertices in the chain: ∑k

i=1 Ci. We denote by Lx the length of the
longest chain in the DAG Gx.

The volume of a DAG is the total WCET of each job of τx, namely volx = ∑vi∈Vx
Ci.

The density of a DAG task is defined as δx = Lx
Dx

.
The utilization of a DAG task is defined as Ux = volx

Tx
.

Example 3.1. Let us consider the DAG task in Figure 3.1. For τx the longest chain is
{v0, v2, v4, v5} and Lx = 9. Its volume is volx = 15, its density δx = 9

10 = 0.9, and its
utilization Ux = 15

16 = 0.94.

For each vertex vi ∈ Vx two sets Ancsti and Desci can be defined. Ancsti is the
set of ancestors subtasks vj ∈ Vx of vi such that there exists a path starting from vj
that reaches vi; Desci is the set of descendants subtasks vk ∈ Vx of vi such that there
exists a path starting from vi that reaches vk; .

Task set of DAGs A DAG sporadic task system (or task set) Γ is a collection of n
DAG tasks. For the task set Γ we define (i) its maximum density δmax(Γ) to be the
largest density of any task in Γ : δmax(Γ) = maxτx∈Γ{δx}; (ii) its utilization U(Γ) to
be the sum of the utilizations of all the tasks in τ : U(Γ) = ∑τx∈Γ Ux; and (iii) its
hyper-period HP(Γ) to be the least common multiple of the period parameters of all
the tasks in Γ : HP(Γ) = lcmτx∈Γ{Tx}.

In a DAG task set Γ each task τx is assigned a priority Px based on the schedulabi-
lity algorithm chosen. Given the task set and the priorities four sets can be defined,
namely hp(τx) (hep(τx)) that comprises all the tasks with higher priority (higher or
equal priority ) w.r.t. τx and lp(τx) (lep(τx)) that comprises all the tasks with lower
priority (lower or equal priority ) w.r.t. τx.

Schedulability A DAG task τx is said to be feasible if the subtasks of all of its jobs
respect its deadline, that is when its Worst-Case Response Time (WCRT) Rx is less
than its deadline Rx ≤ Dx.

When considering the scheduling of the DAG, the concept of critical chain should
be introduced. The critical chain λ∗x of a task τx is the chain of vertices of τx that
leads to its WCRT Rx. It is important to remember that the critical chain does not
necessarily correspond to the longest chain.
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The problem of testing the feasibility of a given DAG task system is highly in-
tractable, NP-hard in the strong sense, even when there is a single DAG task. [117].
Therefore in the literature, several sufficient schedulability tests have been intro-
duced.

Table 3.1 reports an overview of all the relevant works hereafter discussed, or-
dered by year, and categorizes them in terms of

• workload, if the method consider a single DAG τ or a task set Γ;

• deadline, implicit (I), constrained (C) or arbitrary (A);

• model, task model used in the work: DAG, Conditional DAG (C-DAG), Het-
erogeneous (or typed) DAG (H-DAG), Heterogeneous Conditional DAG (HC-
DAG);

• scheduling, multiprocessors policy: global (G), partitioned (P) or federated (F);

• preemption,fully preemptive (FP), fully non preemptive (FNP), limited preemp-
tive (LP);

• algorithm, earliest deadline first (EDF), deadline monotonic (DM), fixed task
priority (FTP) or specific ones (Hier EDF, DAG-Fluid);

• complexity, polynomial (Poly), pseudo-polynomial (Ps-Poly).

A summary of the notation used in this thesis is reported in Table 3.2.
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Work Workload Deadline Model Scheduling Preemption Algorithm Complexity
Baruah ’12 [11] τ C DAG G N.A. EDF Ps-Poly
Bonifaci ’13 [25] Γ A DAG G FP EDF, DM Ps-Poly
Li ’13 [70] Γ I DAG G FP EDF -
Qamhieh ’13 [96] Γ C DAG G FP EDF -
Baruah ’14 [4] Γ C DAG G FP EDF Ps-Poly
Saifullah ’14 [102] Γ I DAG G FP, FNP EDF -
Li ’14 [69] Γ I DAG F FP Greedy, EDF -
Fonseca ’15 [51] Γ C C-DAG - - - -
Baruah ’15 [9] Γ C C-DAG G FP EDF Ps-Poly
Melani ’15 [81] Γ C DAG, C-DAG G FP EDF, FTP -
Baruah ’15 [7] Γ C DAG F FP EDF Poly
Baruah ’15 [3] Γ A DAG F FP EDF Poly
Parri ’15 [89] Γ A DAG G FP EDF, DM Poly, Ps-Poly
Fonseca ’16 [50] Γ C DAG P FP FTP -
Serrano ’16 [107] Γ C DAG G LP FTP Ps-Poly
Yang ’16 [129] Γ A DAG G LP FTP Ps-Poly
Pathan ’17 [90] Γ C DAG G FP DM -
Fonseca ’17 [48] Γ C DAG G FP DM -
Serrano ’17 [106] Γ C DAG G LP FTP Ps-Poly
Serrano ’18 [105] τ C H-DAG G - - -
Han ’19 [60] τ C H-DAG G - - Poly
Casini ’18 [35, 34] Γ C DAG P LP FTP -
He ’19 [61] Γ C DAG G FP EDF, FTP -
Fonseca ’19 [49] Γ C, A DAG G FP EDF, FTP -
Jiang ’19 [64] Γ A DAG F FP EDF Poly
Yang ’19 [130] Γ C DAG P FNP Hier EDF -
Nasri ’19 [86] Γ C DAG G LP FTP, EDF -
Guan ’20 [55] Γ I DAG G FP DAG-Fluid Poly
Chang ’20 [38] τ C H-DAG G - - -
Zahaf ’20 [133] Γ C HC-DAG P FP, FNP EDF -
Baruah ’20 [5] τ C DAG P FP EDF Poly
Casini ’20 [33] Γ C DAG P LP FTP -

TABLE 3.1: Summary of the considered works
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task x τx
job a of task x τa

x
vertex i of task x τx,i
relative deadline Dx

period Tx
worst-case response time Rx

number of preemption suffered by τx pnx
priority of τx Px

DAG Gx
edge set Ex

vertices set Vx
vertex (or node, or subtask) i vi

WCET of vi Ci
local offset of vi or EST Oi or ESTi

local deadline of vi or LFT Di or LFTi
Best Case Execution Time (BCET) of vi BCi

immediate predecessors of vi predi
immediate successors of vi succi

ancestors of vi Ancsti
descendants of vi Desci

chain l of τx λx,l
set of chains of τx Πx

length of longest chain in Gx Lx or L(Gx) ∑k
i=1 Ci

critical chain of τx λ∗x
volume of Gx volx or vol(Gx) ∑vi∈Vx

Ci
utilization Ux volx/Tx

density δx Lx/Dx
processor to which vi is assigned to pi

super-period of tasks τx and τy SPx,y lcm{Tx, Ty}
task set Γ

hyper-period of task set Γ HP(Γ) lcmτx∈Γ{Tx}
higher priority tasks w.r.t. τx hp(τx)
lower priority tasks w.r.t. τx lp(τx)

higher-equal priority tasks w.r.t. τx hep(τx)
lower-equal priority tasks w.r.t. τx lep(τx)

TABLE 3.2: Notation used in this thesis. For the sake of clarity, a
standardized set of indexing names is adopted throughout the entire
thesis, i.e., {i, j, k} denote vertices in a DAG, {x, y, z} indicate tasks,

and {a, b, c} are used for jobs in superscription.



16 Chapter 3. DAG survey

3.1.1 Global Policy, Fully Preemptive (G-FP)

Baruah et al. [11] introduced the sporadic DAG task model and focused on the
schedulability of a single DAG task with constrained deadlines, in the context of
G-EDF scheduling, with a fully preemptive (FP) policy.

The authors proved that the sporadic DAG feasibility problem is NP-hard in the
strong sense. Moreover, they have shown that even identifying the worst-case be-
havior is not trivial. In fact, a sporadic DAG task might be infeasible on m processors
even when its synchronous arrival sequence is.

They proposed two sufficient tests: a polynomial test, specific for constrained
deadlines (Theorem 3.1.1), from which it is possible to compute the minimum num-
ber of needed processors, and a pseudo-polynomial test for arbitrary deadlines (The-
orem 3.1.2).

Theorem 3.1.1: Baruah et al. [11]

Any (single) sporadic DAG task τx = (Gx, Dx, Tx) with Dx < Tx satisfying

(m− 1)
Lx

Dx
+ 2

volx

Tx
≤ m (3.1)

is EDF-schedulable on m unit-speed processors.

Theorem 3.1.2: Baruah et al. [11]

Any (single) sporadic DAG task τx = (Gx, Dx, Tx) satisfying the following
properties

1. Lx ≤ 2Dx
5

2. volx ≤ 2mTx
5

is EDF-schedulable on m unit-speed processors.

Bonifaci et al. [25] addressed the same scheduling problem, extending it to a DAG
task set with arbitrary deadlines and considering both fully preemptive G-EDF and
Global Deadline Monotonic (G-DM).

They proposed a polynomial sufficient test for the G-EDF case (Theorem 3.1.3).

Theorem 3.1.3: Bonifaci et al. [25]

Assume a sporadic DAG task system satisfies the following conditions:

1. Lx ≤ Dx
3 , x = 1, 2, . . . , n

2. for each x, x = 1, 2, . . . , n

∑
y:Ty≤Dx

voly

Ty
+ ∑

y:Ty>Dx

voly

Dx
≤

(m + 1
2 )

3
(3.2)

Then the system is EDF-schedulable on m unit-speed processors.



3.1. The Directed Acyclic Graph Task Model 17

Moreover, they proposed two polynomial sufficient tests for G-DM, one for ar-
bitrary deadlines (Theorem 3.1.4) and the other for constrained deadlines (Theo-
rem 3.1.5), with slightly better guarantees.

Theorem 3.1.4: Bonifaci et al. [25]

Assume a sporadic DAG task system satisfies the following conditions:

1. Lx ≤ Dx
5 , x = 1, 2, . . . , n

2. for each x, x = 1, 2, . . . , n

∑
y:Ty≤2Dx

voly

Ty
+ ∑

i:Ty>2Dx

voly

4Dx
≤

(m + 1
4 )

5
(3.3)

Then the system is DM-schedulable on m unit-speed processors.

Theorem 3.1.5: Bonifaci et al. [25]

Assume a sporadic DAG task system satisfies the following conditions:

1. Lx ≤ Dx
4 , x = 1, 2, . . . , n

2. for each x, x = 1, 2, . . . , n

∑
y:Ty≤2Dx

voly

Ty
+ ∑

i:Ty>2Dx

voly

Dx
≤

(m + 1
3 )

4
(3.4)

3. Dx ≤ Tx, x = 1, 2, . . . , n

Then the system is DM-schedulable on m unit-speed processors.

Li et al. [70] focused on the schedulability of a DAG tasket with G-EDF, and they
proposed a sufficient test for tasks with implicit deadlines (Theorem 3.1.6).

Theorem 3.1.6: Li et al. [70]

G-EDF can successfully schedule an implicit deadlines task set Γ of n DAG
tasks, if the following conditions are satisfied:

1. Dx = Tx, x = 1, 2, . . . , n

2. U(Γ) ≤ m
(4− 2

m )

3. Lx ≤ 1
(4− 2

m )
Tx, x = 1, 2, . . . , n

Qamhieh et al. [96] later on, proposed another sufficient schedulability test for G-
EDF of sporadic DAG task sets with constrained deadlines.

The authors analyzed DAG tasks by considering their internal structures and
providing a tighter bound on the workload and interference analysis. Indeed, they
showed that ignoring the structure of the DAGs results in a pessimistic analysis.
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Their approach consists of assigning a local offset and local deadline for each
subtask in the DAG.

Considering a DAG task τx, a local offset Oi of its vertex vi is defined as the earliest
possible release time w.r.t the activation of τx in which vertex vi can be ready, and this
is the length of the longest path from the starting vertex in τx to vi. The calculation
of the local offset of each vertex in the DAG is done assuming that the system has
an infinite number of processors. This local offset is also known in the literature
as Earliest Starting Time (EST). To compute all the local offset, a depth-first search
algorithm, that executes in linear time, can be applied on each DAG task.

On the other hand, a local deadline Di of vertex vi is defined as the latest possible
deadline of vi with Di = Dx − R(vi), where R(vi) is the length of the longest exe-
cution path from a successor of vertex vi to the ending vertex in the DAG (without
including the WCET of vi). The local deadline is also known in the literature as Lat-
est Finishing Time (LFT). If a vertex vi misses its local deadline Di at time t, the DAG
τx will definitely miss its deadline even if t ≤ Dx.

Moreover, for their schedulability test, they better analyzed interference between
different tasks, taking into account the roles of body and carry-in jobs. The derived
test is presented in Theorem 3.1.7.

Theorem 3.1.7: Qamhieh et al. [96]

A DAG task set Γ is G-EDF schedulable on m processors of unit speed if:

∀x ∈ {1, . . . , n}
n

∑
y=1

∑
vi∈Vy

max(0,
(⌊

Dx − Di

Ty

⌋
+ 1
)
× Ci) +

+
n

∑
y=1,y 6=x

∑
vi∈Vy

min(Ci, max(0, Di)) ≤ Dx

(3.5)

Considering the left part of the inequality in Equation (3.5), the first member is
a Demand Bound Function (DBF) [13] and represents the interference of body jobs;
the second denotes the interference of carry-in jobs instead. The test is sustainable
for sporadic DAG w.r.t. decreased execution requirements and later arrival times,
but it is not w.r.t. larger relative deadlines.

Baruah [4] later improved the test for constrained deadline systems introduced by
Bonifaci et al. [25], proposing a test that dominates the previous solution. To do so,
the author exploits the concept of work function, introduced by Bonifaci et al. [25],
and also later explained and generalized by Baruah et al. [8].

Let τx denote a sporadic DAG task, and s any positive real number ≤ 1. Let
J denote any collection of jobs legally generated by the task τx. For an interval I,
let work(J, I, s) denote the amount of execution occurring within the interval I in
the schedule S∞(J, s), of jobs with deadlines that fall within I. For any positive
integer t, let work(J, t, s) denote the maximum value work(J, I, s) can take, over any
interval I of duration equal to t. Then, let work(τx, t, s) denote the maximum value
of work(J, t, s), over all job sequences J that may be generated by the sporadic DAG
task τx . Finally, to extend the definition of the work function from individual tasks
to a DAG task system Γ , let work(Γ, t, s) denote the sum ∑τx inΓ work(τx, t, s).
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Theorem 3.1.8: Baruah [4]

Let σ denote any constant < 1. Sporadic DAG task system Γ is G-EDF schedu-
lable on m unit-speed processors if δmax(Γ) ≤ σ, and

work(Γ, t, σ) ≤ (m− (m− 1)σ)× t (3.6)

for all values of t ≥ 0.

In order to show that a given τ is EDF-schedulable upon m unit-speed proces-
sors it suffices ( according to Theorem 3.1.8), to produce a witness to this fact: a
value for σ such that Equation (3.6) holds for all t ≥ 0. The schedulability test pre-
sented by Bonifaci et al. [25] essentially reduces to determining a specific value of
σ, namely σ = m/(2m− 1). On the contrary, the pseudo-polynomial algorithm de-
rived by Baruah correctly identifies all task systems for which any σ would cause
Equation (3.6) to evaluate t to true for all t ≥ 0. Therefore, this test dominated the
one by Bonifaci et al. [25], which is also proven by the author.

Qamhieh and Midonnet [94] analyzed two DAG scheduling methods used in lit-
erature, i.e. (i) the parallel scheduling method and (ii) the stretching scheduling
method. In the former parallel tasks are scheduled directly using common sche-
duling algorithms [11, 25, 70, 4]; in the latter DAG tasks are transformed into in-
dependent sequential tasks with intermediate offsets and deadlines that execute on
multiprocessor systems [96].

The authors considered both methods and showed that are not comparable re-
garding schedulability in the case of G-DM and G-EDF scheduling algorithms, fo-
cusing on the implicit deadline case. They concluded that (i) no one dominates the
other; (ii) the stretching method is more adapted to fixed task priority assignment
algorithm such as DM; (iii) parallel scheduling method performs better in the case
of preemptive G-EDF scheduling algorithm, which means is more convenient to the
FTP assignment scheduling algorithms.

Melani et al. [81] derived efficient ways to compute an upper-bound on the response-
time of each DAG task using different global scheduling algorithms.

A simple but pessimistic WCRT bound Rx for a DAG task Gx was already pro-
posed by Graham [54] (Theorem 3.1.9).

Theorem 3.1.9: Graham [54]

A safe WCRT bound for a DAG Gx on a multiprocessor can be computed as:

Rx = Lx +
1
m
(volx − Lx) (3.7)

where Lx is the length of the longest path in Gx; volx is the total execution time
of all vertices in GK; and m is the number of cores.

However, Graham bound does not take into account inter-task interference. The
authors focused on finding an upper bound on the inter-task interference, consider-
ing carry-in, body, and carry-out, and used the Graham bound for intra-task inter-
ference.

They derived an upper-bound on the workload of an interfering task τy in a
window of length t:
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Wy(t) =
⌊

t + Ry − voly/m
Ty

⌋
voly + min

(
voly, m ·

((
t + Ry − voly/m

)
mod Ty

))
.

(3.8)
where the first part of the equation represents the upper bound on carry-in and

body jobs, the second the one on carry-out.
Moreover, they derived an upper-bound on the interfering workload of a task τy

on a task τx with G-EDF:

Iy,x =

(⌊
Dx − Dy

Ty

⌋
+ 1
)

voly + min
(
voly, m ·max

(
0, Dx mod Ty − Dy + Ry

))
(3.9)

and again, the first term accounts for carry-in and body, the second for carry-out.
Finally, they derived a schedulability test based on Response Time Analysis (RTA)
both for G-EDF and global Fixed-Priority (G-FTP) algorithms (Theorem 3.1.10).

Theorem 3.1.10: Melani et al. [81]

Given a task set Γ globally scheduled on m cores, an upper-bound Rub
x on the

response-time of a task τx can be derived by the fixed-point iteration of the
following expression, starting with Rub

x = Lx :

Rub
x ← Lx +

1
m

(volx − Lx) +

⌊
1
m ∑
∀y 6=x
X ALG

y

⌋
(3.10)

With global FP:

X ALG
y = X FTP

y =

{
Wy

(
Rub

x
)

, ∀y < x
0, otherwise

(3.11)

When using global EDF:

X ALG
y = X EDF

y = min
{
Wy

(
Rub

x

)
, Iy,x

}
(3.12)

For any work-conserving scheduler

X ALG
y =Wy

(
Rub

x

)
(3.13)

Parri et al. [89] proposed polynomial and pseudo-polynomial time schedulability
tests, based on RTA, for G-EDF and G-DM scheduling of sporadic DAG-tasks with
arbitrary deadlines and arbitrary vertex utilization.

The proposed method dominates the one proposed by Bonifaci [25], however, it
is way more complicated and less trivial to apply.

Pathan et al. [90] were the first to propose a two-level preemptive G-FTP for con-
strained deadlines: a task-level scheduler first determines the highest-priority ready
task and a subtask-level scheduler then selects its highest-priority subtask for exe-
cution.

In the task-level priority assignment phase, the fixed priorities of the tasks are
assigned based on DM priority sorting. The set of tasks having higher fixed priorities
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than that of task Gx is denoted by hp(τx) . In the subtask-level priority assignment
phase, the fixed priorities to the subtasks of Gx are assigned based on a topological
order of the subtasks of Gx .

Then they proposed new techniques to compute both intra- and inter-task in-
terference and derive a new schedulability test which reduces the pessimism of the
analysis by Melani et al. [81].

The total intra-task interfering workload for a subtask vi of τx, denoted byW intra
x,i ,

is due to the subtasks in set Sx,i and is computed as:

W intra
x,i = ∑

vj∈Sx,i

min
{

Cj, max
{

0, Rx,j − max
vk∈Ancstx,i

Rx,k

}}
(3.14)

where Ancstx,i is the set of all the ancestors (or predecessors) of vi and Sx,i com-
prises all the higher-priority subtask of vi that are not its ancestors. This formulation
is possible because the response times are computed in topological order, therefore
all the ancestors will come before their successors.

The inter-task interfering workload Wx,i(t) of all the tasks with higher priority
that τx (hp(τx)), within the problem window t of vi is:

W inter
x,i (t) = ∑

τy∈hp(τx)

(
CRy (tcin) +

⌊Xy(t)
Ty

⌋
·Wy + Wy

)
(3.15)

The first term inside the summation accounts for the carry-in; tcin is the length
of the interval inside the problem window where the carry-in job execute, CRy (tcin)
is the maximum inter-task interfering workload of the carry-in job of τy in tcin. The
second term accounts for the body job, Xy(t) is the length of the interval in which
body jobs interfere; and the last term accounts for the carry-out.

Theorem 3.1.11: Pathan et al. [90]

The response time Rx,i of subtask vi of a DAG task τx can be found starting
from R(0)

x,i = Ci and using the fixed-point recurrence:

R(t+1)
x,i ← max

vj∈Ancstx,i
Rx,j +

W intra
x,i +W inter

x,i (R(t)
x,i )

m
+ Ci (3.16)

The first term on the right-hand side or Equation (3.16) is the latest time when
subtask vi becomes ready for execution, the second term represents the interference
on subtask vi within a problem window of size R(t)

x,i and finally, the third term Ci is
the WCET of subtask vi.

Theorem 3.1.12: Pathan et al. [90]

Given the response time Rx,i of each subtask vi of task τx, the response time
Rx of the task can be computed based as

Rx = max
vi∈Vx

{Rx,i} = Rx,sink (3.17)

All the tasks in set Γ = {τ1, τ2, . . . τn} meet their deadlines if Rx ≤ Dx for
x = 1, 2, . . . n.

Finally the authors theoretically proved that the response-time test in Equation (3.16)
dominates the response-time test in Equation (3.10) with X ALG

y = X FTP
y .
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Fonseca et al. [48] also presented an RTA technique based on the concept of prob-
lem window for the G-FTP scheduling of sporadic DAG tasks.

They proposed an algorithm to compute a tighter upper bound on the intra-task
interference, with improved carry-in and carry-out workload computation, from
which they derived a new schedulability test (Theorem 3.1.13).

The analysis is based on the concept of workload distribution, both for carry-
in and carry-out, and takes into account the topology of the DAG task. A tricky
part in the computation of the carry-out workload is the conversion of the DAG
in a Nested Fork-Join (NFJ) DAG and then in a sequential-parallel decomposition
binary tree (SPTree) [118]. Then they derived an algorithm to account for the whole
interfering workloadWy(∆) for a time interval ∆, combining the carry-in and carry-
out contributions.

Theorem 3.1.13: Fonseca et al. [48]

A task τx is schedulable under G-FTP iff Rx ≤ Dx where Rx is the smallest
∆ > 0 to satisfy

∆ = Lx +
1
m

(volx − Lx) +
1
m ∑

τy∈hp(τx)

Wy(∆) (3.18)

The task set is declared schedulable if all tasks are schedulable. This can be
checked by applying Equation (3.18) to each task τx ∈ Γ, starting from the highest
priority task and proceeding in decreasing order of priority.

The authors proved that the proposed test empirically dominates Equation (3.16) [90].

He et al. [61] propose a priority assignment algorithm to assign priorities to ver-
tices, such that the response time bound is reduced as much as possible.

Therefore, the authors proposed prioritized list scheduling, which is work con-
serving and preemptive.

The work is based on the fact that the choice of eligible vertices for execution
affects the actual response time. Intuitively, one should prioritize vertices along the
longest path for execution in order to get a smaller response time. The critical path
depends on how the DAG is actually scheduled, i.e., the critical path of a DAG may
be different in different execution sequences of the DAG.

Theorem 3.1.14: He et al. [61]

The response time Rx of a DAG task τx with constrained deadline scheduled
by prioritized list scheduling on a platform with m cores can be bounded by

Rx ≤ max
λ∈Πx
{∑

vi∈λ

Ci +
∑⋃

vi∈λ I(vi) Ci

m
} (3.19)

where Πx is the set of all complete paths of the DAG Gx and I (vi) is the
interference set of a vertex vi ∈ Vx defined as

I(vi) = {vj ∈ Vx\{vi} | vj /∈ Ancesti ∧ vj /∈ Desci ∧ prio(vj) ≤ prio(vi)}

Equation (3.19) dominates the classic bound in Equation (3.7) [54].
However, the number of paths in a DAG can be exponential in the size of the

DAG. So it is impractical to enumerate all the paths to compute the response time
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bound. Therefore, the authors used dynamic programming to solve the problem,
deriving an algorithm with complexity O(|V|+ |E|).

In the task level, the scheduling algorithm is the same as Melani [81], which
can be any global work-conserving scheduler, such as EDF, RM. In the vertex level,
the vertices inside a task are scheduled by prioritized list scheduling. The authors
proposed an algorithm that first priorities vertices based on the topological order,
and later assign higher priorities to vertices belonging to longer paths.

Theorem 3.1.15: He et al. [61]

For a constrained deadlines DAG task set Γ scheduled by global prioritized
list scheduling on a platform with m cores, a bound Rx on the response time
of a task τx can be derived by the fixed-point iteration of the following expres-
sion, starting with Rx = Lx

Rx ← max
λ∈Πx

{
∑

vi∈λ

Ci +
∑⋃

vi∈λ I(vi) Ci

m

}
+

1
m ∑
∀y 6=x
X ALG

y (3.20)

where X ALG
y is the one from Melani et al. [81] (Theorem 3.1.10).

The authors showed that Theorem 3.1.15 dominates Theorem 3.1.10 [81] both
theoretically and empirically.

Fonseca et al. [49] studied again the RTA problem for DAG task set on multiproces-
sor with global policy, and propose two techniques to derive less pessimistic upper-
bounds on the workload produced by the carry-in and carry-out jobs of the interfer-
ing tasks. They used the same formulation as Theorem 3.1.13 [48] but they proposed
new algorithms to computeWy(∆), both for constrained and arbitrary deadlines.

They compared their solution with Melani [81] and Parri [89] and they empiri-
cally dominated the first method. However, the complexity of the method and the
latency of the tests are not evaluated.

3.1.2 Global Policy, Limited Preemption (G-LP)

Saifullah et al. [102] considered the problem of G-EDF within the limited preemp-
tive policy, which means that nodes are not preemptive, but the DAG task can be
preempted at node boundaries.

They proposed a technique to decompose the DAG task. Upon decomposition,
each node of a DAG becomes an individual sequential task with its own deadline
and offset, and with a WCET equal to the node’s execution requirement.

After the decomposition, they applied literature results both for the fully pre-
emptive [6] and limited preemptive [12] G-EDF for constrained deadline sporadic
sequential task set.

Serrano et al. [107] also focused on limited preemption, combining the results of
Melani [81] and Thekkilakattil [114].

Within the limited preemption context, tasks are not only interfered by higher-
priority tasks, but also by already started lower-priority tasks whose execution has
not reached a preemption point yet, and so cannot be suspended. The higher priority
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interference Ihp
x is computed as in Equation (3.11) [81]. The lower priority interfer-

ence considering G-FTP scheduling with eager preemptions is:

I lp
x = ∆m

x + pnx × ∆m−1
x (3.21)

where pnx is an upper-bound on the number of preemptions suffered by τx, and ∆m
x

and ∆m−1
x are upper-bounds on the lower-priority interference on the first NPR and

the pth NPRs of task τx, respectively. The easiest way of deriving the lower priority
interference is to account for the m and m− 1 largest NPRs among all lower-priority
tasks as:

∆m
x = ∑

m
max

τy∈lp(τx)
(

m
max
∀vi∈Vy

Ci) (3.22)

∆m−1
x = ∑

m−1
max

τy∈lp(τx)
(

m−1
max
∀vi∈Vy

Ci) (3.23)

Theorem 3.1.16: Serrano et al. [107]

Given a task set Γ scheduled on m cores with G-FP and limited preemption, an
upper-bound Rub

x on the response-time of a task τx can be derived in pseudo-
polynomial time by the fixed-point iteration of the following expression, start-
ing with Rub

x = Lx :

Rub
x ← Lx +

1
m
(volx − Lx) +

⌊ 1
m
(I lp

x + Ihp
x )
⌋

(3.24)

Despite its simplicity, this strategy is pessimistic because it considers that the
largest m and m− 1 NPRs can execute in parallel, regardless of the precedence con-
straints defined in the DAG. Therefore, the authors presented also a pseudo polyno-
mial Integer Linear Programming (ILP) method to calculate the blocking impact of
the largest Parallel NPRs which is less pessimistic and dominates the previous one.

Serrano et al. [106] further investigated the results for G-FTP with limited preemp-
tion, analyzing the eager and lazy cases, using the scheduling techniques derived in
their previous work [107].

The authors concluded that LP-eager clearly outperforms LP-lazy, despite a higher
number of priority inversions are considered in the RTA, and a high number of
preemptions are observed at system deployment. Therefore, contrary to what has
been demonstrated when considering sequential task-sets, the LP lazy scheduling
approach has been proven to be a very inefficient scheduling strategy when DAG-
based task-sets are considered, and so not suitable for parallel execution.

Nasri et al. [86] provided a schedulability analysis for global limited-preemptive
earliest-deadline first (G-LP-EDF) or fixed-priority (G-LP-FTP) scheduling.

The analysis constructs a schedule-abstraction graph that abstracts all the possi-
ble orderings of job dispatch times resulting from the underlying scheduling policy,
based on which the authors derived bounds on the best- and worst-case response
time of each job. Because jobs experience release jitter and execution time vari-
ation, exponentially many execution scenarios exist, and the exact finishing time
of each job cannot be known a priori. For this reason, they considered an interval
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[EFTx, LFTx] in which a job τa
x will finish. The authors proposed a new algorithm to

compute EST and LST of the jobs.
The schedule-abstraction graph is built iteratively in two alternating phases: ex-

pansion and merging. The expansion phase expands (one of) the shortest path(s)
λ in the graph by considering all jobs that can possibly be dispatched next in the
job-dispatch sequence represented by λ. The merge phase slows down the growth
of the graph by merging, whenever possible, the terminal vertices of paths that have
the same set of dispatched jobs. The search ends when there is no vertex left to ex-
pand, that is, when all paths represent a valid schedule of all jobs considered, which
implies that all possible schedules have been explored.

In conclusion, the proposed analysis dominates Serrano [107] and many other
methods for sequential tasks. However, it does not scale to highly parallel DAG
tasks or systems with a large number of cores (e.g., more than 64).

The code was made publicly available1.

3.1.3 Federated Scheduling

Li et al. [69] analyzed for first the problem of federated scheduling of DAG tasks
on multiprocessors.

Given a task set Γ, tasks are divided into two disjoint sets: Γhigh contains all
high-utilization tasks (∀τx ∈ Γ|Ux ≥ 1), and Γlow contains all the remaining low-
utilization tasks. Considering a high-utilization task τx, mx dedicated cores are as-
signed to it, mx is

mx =

⌈
volx − Lx

Dx − Lx

⌉
(3.25)

mhigh denotes the total number of cores assigned to high-utilization tasks and
is computed as mhigh = ∑τx∈Γhigh

mx. The remaining cores mlow = m − mhigh are
assigned to all the low-utilization tasks.

Theorem 3.1.17: Li et al. [69]

The federated scheduling algorithm admits the task set Γ, if

1. mlow is non-negative;

2. mlow ≥ 2 ∑τx∈Γlow
Ux.

If the task set is feasible then (i) any work-conserving parallel scheduler can
be used to schedule a high-utilization task τx on its assigned mx cores; (ii) low-
utilization tasks are treated and executed as sequential tasks and any multiprocessor
scheduling algorithm can be used to schedule Γlow on mlow cores.

Baruah [7] introduced a two-phase algorithm for the federated scheduling of any
system of constrained-deadline sporadic DAG tasks.

In the first phase, the author developed an algorithm for each high-density task
(i.e., ∀τx ∈ Γ|δx ≥ 1), in which the number of processors to be devoted to this task
is determined. Then the schedulability is checked with Graham’s list scheduling
algorithm [54].

In the second phase, the remaining low-density tasks are partitioned upon the
remaining processors. Since any intra-task parallelism cannot be exploited upon a

1https://github.com/brandenburg/np-schedulability-analysis

https://github.com/ brandenburg/np-schedulability-analysis
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single processor, the internal structure of the DAG can be ignored and each task
can be represented in the simpler three-parameter sporadic model. An algorithm to
partition the tasks on the cores based on DBF [13] is presented. During run-time,
each shared processor is scheduled using preemptive uniprocessor EDF.

Baruah [3] later on the same year, extended his previous work also for arbitrary
deadline systems. The main difference w.r.t the previous work is an extension of
Graham’s list scheduling algorithm with constraints in order to apply to arbitrary
deadlines.

The method is efficiently implementable in time that is polynomial in the repre-
sentation of the tasks in Γ and the number of processors m.

Jiang et al. [64] studied the analysis of G-EDF scheduling for DAG parallel tasks
with arbitrary deadlines, focusing on the case of D > T.

Theorem 3.1.18: Jiang et al. [64]

Any DAG task τx is schedulable on m processors when Ux ≤ m if at least one
of the following conditions holds.

volxdUxe+ (m− 1)Lx

m
≤ Dx (3.26)

Ux × Lx

m−Ux
+

volx + (m− 1)Lx

m
≤ Dx (3.27)

The schedulability tests in Theorem 3.1.18 can be easily extended to the analysis
of multiple DAG tasks under federated scheduling, where each heavy task (Ux > 1)
is assigned several dedicated processors and exclusively executes on them while
all light tasks (Ux ≤ 1) share the remaining processors together as if they were
sequential tasks.

Then the schedulability test for a DAG task set Γ has two parts: (i) assign dedi-
cated processors to each heavy task according to Theorem 3.1.18 if there are enough
processors, otherwise, return failure, and (ii) test whether all light tasks are schedula-
ble on the remaining processors treating them as arbitrary-deadline sequential tasks
under partitioned EDF (as in the work of Baruah [3]).

3.1.4 Partitioned Scheduling

Fonseca et al. [50] focused on the partitioned scheduling for fixed-priority (P-FP)
scheduling of DAG tasks on multiprocessors, assuming the partitioning to be given,
fully preemptive policy and constrained deadlines. The authors showed that a par-
titioned DAG task can be modeled as a set of self-suspending tasks and propose an
algorithm to traverse a DAG and characterize the worst-case scheduling scenario.

In their setting, each vertex of a DAG task is assigned to a specific core. Then,
different vertices of the DAG can run in parallel over the multiprocessor platform
but they are not allowed to migrate. Therefore, each subtask is characterized not
only by its WCET, but also the core to which it is assigned pi; That is, vi = (Ci, pi).
They denoted by λx,l a path l of task τx and by |Πx| the number of all the possible
different paths λx,l ∈ Πx.
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Theorem 3.1.19: Fonseca et al. [50]

The worst-case response time of a path λx,l of a partitioned DAG task τi is
given by

R(λx,l) = len(λx,l) + Ix(λx,l) + ∑
∀τy∈hp(τx)

Iy(λx,l) (3.28)

where len(λx,l) is the length of the path λx,l ; Ix(λx,l) is the self-interference
and ∑∀τy∈hp(τx) Ij(λx,l) is the inter-task interference.
Consequently, the worst-case response time of a DAG task τx is given by

Rx =
|Πx |
max
l=1

R(λx,l) (3.29)

A DAG task τx is deemed schedulable if Rx ≤ Dx.

A path λ can be modeled as a set of sporadic self-suspending tasks, one for each
core reached by the path, i.e. ∀p ∈ proc(λ). The idea is to treat the subtasks of λ
assigned to the current core under analysis as execution regions and the response
time of all the remaining subtasks as suspension regions. The problem of computing
the response time of λ on a multicore platform becomes then equivalent to the anal-
ysis of |proc(λ)| self-suspending tasks in a uniprocessor system. However, unlike
previous works, the duration of the suspension regions is not known beforehand as
they are in fact computations to be executed on different cores.

The authors proposed an algorithm that recursively divides a path into smaller
ones, creating a tree of subpaths which represent self-suspending tasks. The result-
ing tree reflects the hierarchy of dependencies. When a leaf is reached, the corre-
sponding task has no suspension regions (i.e., it is a sequential task), thus its WCRT
does not depend on anything else other than the interfering workload on that core
and can be computed immediately. The computed values are then backpropagated
to the self-suspending tasks on the upper levels so that their suspension time is no
longer unknown.

The WCRT of a single subtask can then be computed by adding the self-interfering
workload to the traditional equation for fixed-priority sequential tasks in uniproces-
sors.

The authors then showed how three different state-of-the-art response time anal-
yses [23, 88] for sporadic self-suspending tasks can be extended to cope with both
the dependent suspension regions and the self-interfering workload.

Casini et al. [35, 34] focused again on P-FTP, analyzing the non-preemptive sce-
nario, or better, the limited preemptive case for DAG tasks. They proposed both a
new analysis that exploits self-suspending tasks and a partitioning algorithm.

A segmented self-suspending task τss
x is characterized by an ordered sequence of

NS
x execution segments alternated by self-suspensions, both with bounded duration

and represented by the tuple
〈

Cx,1, Sx,1, . . . , Sx,NS
x−1, Cx,NS

x

〉
, where Cx,i denotes the

WCET of the i -th execution segment of τss
x and Sx,i denotes the maximum duration

of the i -th self-suspension of τss
x .

They proposed an algorithm to convert a DAG into a set of segmented self- sus-
pending tasks, based on Fonseca et al. [50]. The algorithm takes as input a path λx,l
that must begin and end with nodes allocated to the same processor pi . It returns
a self-suspending task modeling the execution of λx,l on pi, and an upper bound
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(A) DAG task τx, with period Tx = 16 and
deadline Dx = 10, partitioned on processors

p1 (light blue), p2 (orange) and p3 (yellow).
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(B) Self suspended tasks generated by the path
{v0, v2, v3, v5}.

FIGURE 3.2: Example of conversion of a path in the DAG into self-
suspend tasks

on the total suspension time that the self-suspending task may incur. To better un-
destrand, let us consider Figure 3.2. Figure 3.2a represents a DAG partitioned on
three processors: {v0, v4, v5} are assigned to processor p1 (light blue), {v1, v2} are
assigned to processor p2 (orange), and {v2} is assigned to processor p3 (yellow).
Figure 3.2b shows the analysis of the path {v0, v2, v3, v5}: for processor p2 and p3
two self-suspended task with a single execution segment are derived; for processor
p1 a single self-suspended task is obtain with two execution segments (represented
by v0 and v5) and a single suspension regions that accounts for v2 and v3. To com-
plete the analysis, the self interference and the high priority tasks interference needs
to be accounted; moreover this procedure has to be performed for each path in the
DAG.

The authors then proposed two safe response-time bounds for self-suspending
non-preemptive tasks.

Theorem 3.1.20: Casini et al. [35]

The response-time of a self-suspending task τss
x is bounded by

Rx = R′x + Cx,NS
x

(3.30)

where R′x is given by the least positive fixed point of the following recursive
equation:

R′x =
NS

x−1

∑
i=1

(Cx,i + Sx,i) + ∑
b∈Bx(NS

x ,R′x ,R)

b + Ix
(

R′x
)

(3.31)

that is the sum of (i) the execution of the task, (ii) its maximum blocking time
and (iii) the maximum interference experienced.
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Theorem 3.1.21: Casini et al. [35]

The response-time of the l-th segment of a self-suspending task τss
x is bounded

by

Rx,l =
l

∑
i=1

Cx,i +
l−1

∑
i=1

Sx,i + ∑
b∈Bx(l,rx,l(R),R)

∆x(b, R) (3.32)

where rx,l(R) is the latest release time of the l-th segment of τss
x and ∆x(b, R)

is the maximum time it can be delayed from its release up to the time it starts
executing.

They showed that both Theorem 3.1.20, at self-suspended task level, and Theo-
rem 3.1.21, at segment level, offer safe response-time bounds for each task τss

x and its
execution segments. Therefore the minimum of the two is still a safe response-time
bound. They proposed an algorithm to combine the two to implement a schedulabi-
lity test for segmented non-preemptive self-suspending tasks. The algorithm is then
applied to study the response time of a path, including also the self-interference of a
DAG task.

Finally, the authors presented an algorithm for partitioning parallel tasks upon
the various cores of a multicore platform. The algorithm leverages the analysis pre-
sented in the previous section and is general enough to be combined with several
partitioning heuristics such as First-Fit, Worst-Fit, and Best-Fit, and different order-
ings with which the tasks are selected.

In addition to that, the same authors at the same conference (RTSS 2018) [34] pro-
posed solutions for bounding the worst-case memory space requirement the DAG
task set analyzed running on multicore platforms with scratchpad memories. They
introduced a feasibility test that verifies whether memories are large enough to con-
tain the maximum memory backlog that may be generated by the system. Both
closed-form bounds and more accurate algorithmic techniques are proposed.

Casini et al. [33] further extended their previous works [34], proposing a fine-
grained analysis of the memory contention experienced by parallel tasks running
on a multi-core platform.

The DAG task is then extended to include memory latencies. The edges also
represent producer-consumer communications between nodes. Each edge ei,j =(
mi,j, ξi,j

)
among vertices vi and vj, is associated with a weight mi,j, and a worst-case

memory access time ξi,j. Specifically, mi,j denotes the number of transactions needed
to transfer from global memory the data produced by node vx,i and consumed by
vx,j, while ξi,j denotes the maximum amount of time needed to perform mi,j requests
in isolation, i.e., without contention generated by nodes running on the other cores.
For each communication ei,j ∈ Ex, the corresponding data buffer is allocated to a
single DRAM bank.

The execution of the nodes follows a three-phase scheme. First, a copy-in phase
is performed to load into the local memory all the data corresponding to global com-
munications (stored in the global DRAM). Once the copy-in phase is completed, the
node can execute, only accessing the local memory (i.e., it cannot experience mem-
ory contention). Finally, when the node execution is completed, a copy-out phase is
performed to store in the global DRAM memory all the data related to global com-
munications. A node completes after the termination of its copy-out phase.
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For the sake of completeness, inter-task communication between two nodes vx,i ∈
Vx, vy,j ∈ Vy belonging to different tasks are modeled with dummy nodes and edges.
In particular, if vx,i is producing data for vy,j, a dummy node vx,k is added to Vx, and
a dummy edge e(vx,i, vx,k) is added to Ex to connect vx,i and vx,k. Dummy nodes
have zero execution time and they are never executed. Pre-fetching of instructions
from global memory and communications between successive jobs of the same task
can be similarly handled.

The WCET of each vertex is computed as C∗x,i = RIN
x,i + Cx,i + COUT

x,i , where RIN
x,i

is the upper bound on the response time experienced by the copy-in phase of a
node vx,i, Cx,i it’s its original WCET and COUT

x,i is the contention-free WCET of the
copy-out phase. Once the inflated WCETs are available for each task and node, a
response-time analysis for parallel tasks under non-preemptive scheduling can be
applied [35].

3.1.5 Exact Tests

As already mentioned, testing the feasibility of a DAG task system is NP-hard in
the strong sense, and there exist no methods to solve it in polynomial time. Exact
tests are however valuable, even if they can be applied only on small examples due
to their computational costs, to be compared with sufficient tests for understanding
their goodness. There are not many works on finding exact results for DAG tasks, e
no one for DAG task set. In the following, the most related ones are reported.

Burmyakov et al.[27] proposed an exact schedulability test for sporadic real-time
tasks with constrained deadlines, for G-FP.

The authors employed a set of techniques that cut down the state space of explo-
ration of the analysis. They extended the prior work by Bonifaci et al. [25] and made
their C++ code publicly available2.

The greatest limitation is that the proposed method can evaluate DAG tasks that
have only one path.

Yalcinkaya et al. [128] proposed the first exact schedulability test for LP (and FNP)
self-suspending constrained real-time tasks scheduled upon a uniprocessor or mul-
tiprocessor platform (under a G-FP scheduling policy). The authors mapped the
schedulability problem to the reachability problem in timed automata (TA), using
TA extensions available in UPPAAL3.

The work also provides the first exact baseline against which sufficient schedu-
lability tests for self-suspensions and limited-preemptive models can be compared.

Sun et al. [110] studied the exact scheduling of a single non-recurrent DAG task
executed on a multi-core platform under the list scheduling algorithm in a non-
preemptive manner.

The basic idea of the method is borrowed from the traditional scheduling theory
in the operational research domain, which aims at formulating the RTA problem into
an optimization problem. The authors implemented the analysis by using Satisfac-
tion Modular Techniques (SMT), and formulate the WCRT analysis problem for a
DAG task under the list scheduling algorithm upon the multi-core platform into an
SMT program.

2www.cister.isep.ipp.pt/docs/CISTER-TR-150503
3https://www.uppaal.com/

www.cister.isep.ipp.pt/docs/CISTER-TR-150503
https://www.uppaal.com/
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The number of constraints involved in the SMT model is bounded by O(|V||E|).
The authors provedthat their SMT, using the proposed constraints, can precisely
solve the WCRT of DAGs under the list scheduling upon m cores.

Baruah [5] made an effort at obtaining an exact algorithm for scheduling a DAG
on multiprocessors when processor assignment is specified. The processors are as-
sumed to be preemptive and each processor is considered separately.

The author derived an algorithm for representing the scheduling problem as an
ILP, which can then be solved using standard ILP-solvers. He showed that solving
even this simple problem turned out to be surprisingly challenging: it required the
author to draw upon, and integrate, disparate ideas from Operations Research and
real-time scheduling theory (i.e. DBF) to synthesize the ILP, and then fall back on
results from real-time scheduling theory - the optimality of preemptive uniprocessor
EDF - to synthesize the actual schedule using the individual jobs’ start-times and
completion times as determined by the solution to the ILP.

The proposed ILP has a computational complexity of O(n3), which means that
the ILP is of size polynomial in the number of jobs.

3.1.6 Other Approaches

Finally, not-standard approaches are here described. These methods propose their
schedulability algorithms and therefore cannot be fairly compared with the rest of
the literature. They pertain though to this thesis because they try to solve the prob-
lem in unconventional ways, offering new points of view.

Qamhieh et al. [95] studied the global scheduling of n synchronous periodic par-
allel real-time graphs with implicit deadlines on m identical processor system. The
schedulability is studied on the hyper-period of each task set.

Least Laxity First job priority assignment is adopted to schedule each subtask in
the graph according to their laxity while considering the global deadline and period
without the need to assign them local ones.

Guo et al. [56] studied for first the energy-aware real-time scheduling of a set of
sporadic DAG tasks with implicit deadlines. While meeting all real-time constraints,
they tried to identify the best task allocation and execution pattern such that the
average power consumption of the whole platform is minimized. The authors first
adapted the decomposition-based framework for federated scheduling and propose
an energy-sub-optimal scheduler. Then they derived an approximation algorithm
to identify processors to be merged together for further improvements in energy
efficiency.

Yang et al. [130] focused on the scheduling of a DAG task set under partitioned
EDF scheduling. They proposed a new method that adopts a hierarchical scheduling
approach which divides the overall scheduling problem into two parts: (i) schedu-
ling DAG tasks onto virtual processors, (ii) scheduling virtual processors on physical
processors. More specifically, each DAG task is assigned with several dedicated vir-
tual processors (and at runtime executes on them exclusively). With proper charac-
terization of the resource provided by virtual processors, each DAG can be analyzed
independently as in federated scheduling. On the other hand, virtual processors
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are scheduled onto the physical processors at runtime which effectively enables the
processor sharing among different DAG tasks.

The rationale behind this work is that the hierarchical scheduling approach in-
herits the strengths of both federated scheduling and global scheduling, and thus
achieves better schedulability.

Guan et al. [55] proposed DAG-Fluid, a real-time scheduling algorithm for DAG
task sets. DAG-Fluid is a combination of a task decomposition method and the cor-
responding scheduling algorithm based on fluid scheduling.

For a task τx , DAG-Fluid performs differently according to the value of Ux .
If Ux ≤ 1 the task is said light, and DAG-Fluid transforms τx into a non-parallel
task where all of its subtasks are forced to execute sequentially with a constant ex-
ecution rate. If Ux > 1 , DAG-Fluid first decomposes the heavy task into several
consecutive segments and then assigns an execution rate to each segment individu-
ally. Once rates have been assigned both to light and heavy tasks the scheduling is
trivial: whenever the task (or subtask) is ready, it starts executing immediately at the
assigned constant execution rate.

The offline part of the algorithm has polynomial computational complexity, and
the online part has linear computational complexity.
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3.2 Conditional DAG Tasks

Conditional DAGs are the first proposed extension to the DAG task. The task model
is enriched with new types of vertices, namely conditional vertices, that represent
conditions in the execution of the task. In this way, constructs as if-then-else or
switches can be represented. The model becomes more expressive but also more
complex.

Fonseca et al. [51] analyzed for first the problem of conditional branches within
the DAG model, for scheduling of constrained-deadlines task set. They presented
a multi-DAG model where each task is characterized by a set of execution flows,
each of which represents a different execution path throughout the task code and is
modeled as a DAG of sub-tasks.

The authors proposed a two-step solution that computes a single synchronous
DAG of servers for a task modeled by a multi-DAG and show that these servers can
supply every execution flow of that task with the required CPU-budget so that the
task can execute entirely, irrespective of the execution flow taken at run-time while
satisfying its precedence constraints.

In the multi-DAG model each task τx is characterized by a 3-tuple (Fx, Tx, Dx).
Due to the control structures within τx ’s code (e.g., the “if-then-else” statements),
two different jobs of τx may execute two different parts of the code, called execution
flows, represented by Fx. Fx is the set of execution flows, namely a collection of
DAGs.

For each execution flow Fl,m of every task τx , a synchronous DAG of servers re-
ferred to as synchronous server graph (SSG) and denoted by FSGG

l,m is derived. Then
an algorithm to merge all the SSGs FSGG

l,m created for a task τx , into a single syn-
chronous DAG of servers, called “global synchronous server graph” (GSSG) and
denoted by FGSSG

x is introduced.
If a valid GSSG FGSSG

x is deemed schedulable by a schedulability test of a sche-
duling algorithm A, so does the task τx from which it was derived. Therefore, the
previous results for the DAG task model can be applied, once FGSSG

x is computed.

Baruah et al. [9] formally introduced the conditional sporadic DAG task model,
which from here will be called C-DAG, as an extension to the sporadic DAG task
model [11] that is capable of modeling certain conditional control-flow constructs.

As with the traditional sporadic tasks, each conditional sporadic DAG task τx is
specified as a 3-tuple (Gx, Dx, Tx), where Gx = (Vx, Ex) is a DAG that, apart from
regular vertices, has also conditional ones. Conditional vertices are special vertices
in Vx that are defined in pairs. Let (c1, c2) be such a pair in the DAG Gx = (Vx, Ex).
Vertex c1 represents a point in the code where a conditional expression is evaluated
and, depending upon the outcome of this evaluation, control will subsequently flow
along exactly one of several different possible paths in the code. It is required that
all these different paths meet again at a common point in the code, represented by
the vertex c2 .

Edges (v1, v2) between pairs of vertices, neither of which are conditional vertices,
represent precedence constraints exactly as in traditional sporadic DAG tasks, while
edges involving conditional vertices represent conditional execution of code. More
specifically, let (c1, c2) denote a defined pair of conditional vertices. After the vertex
c1 completes execution, exactly one of its successors becomes eligible to execute; it
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is not known beforehand which successor may execute. Vertex c2 begins to execute
upon the completion of exactly one of its predecessors.

For each pair (c1, c2) of conditional vertices in Gx , we refer to the subgraph of Gx
beginning at c1 and ending at c2 as a conditional construct in Gx . It is permitted for
conditional constructs to be nested: a conditional construct may contain additional
conditional constructs within it.

Let Jx denote all possible complete collections of jobs that comprise a C-DAG τx
. Each J ∈ Jx denotes a collection of jobs obtained by completely executing through
the DAG Gx once, taking into account the conditional branches within it. For each
J ∈ Jx , all the jobs have a common release time and a common deadline. Note that
|Jx|may be exponential in the number of vertices in Gx.
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0
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FIGURE 3.3: C-DAG τx, with period Tx = 16 and deadline Dx = 10.
(v5, v8) is a pair of conditional vertices (diamonds), where v5 is the
entry point and v8 is the exit point. The whole conditional construct

(v5, v6, v7, v8) is depicted in red.

An example of C-DAG is depicted in Figure 3.3.
Besides the introduction of this new model, the authors also analyzed the sche-

dulability of C-DAG task sets with constrained-deadline on multiprocessors.
Firstly, the authors proposed a method to compute the work for this new task

model, in order to apply the results of Baruah [4] (Theorem 3.1.8).
Although its correctness, the method suffers from the same problem as the multi-

DAG model of Fonseca et al. [51]: the number of distinct possible flows of control
may be exponential in the size of the DAG; the overall algorithm would therefore
take exponential time.

For this reason, the authors developed a novel transformation strategy that con-
verts each conditional sporadic DAG task to a non-conditional one in polynomial
time, and tests the system of transformed tasks for G-EDF schedulability using the
pseudo-polynomial test provided by Bonifaci et al. [25].

Melani et al. [81] at the same time (ECRTS 2015) derived efficient ways to com-
pute an upper-bound on the response-time of each C-DAG using different global
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scheduling algorithms.
The method introduced in Section 3.1.1, was actually developed for C-DAGs.

The analysis is exactly the same, except for the computation of: (i) the longest path Lk
and (ii) the volume volk (called workload Wk for C-DAG) of the DAG. Indeed, when
handling C-DAG, those two factors depend on the choices made on the conditional
branches. The authors proposed algorithms to efficiently compute those values.

Experiments among randomly generated C-DAG workloads show that the pro-
posed approach improves over previously proposed solutions. The code for the
analysis of the proposed method and other several ones has been made public4.

Pathan et al. [90] analyzed G-FP scheduling of DAG (as already introduced in Sec-
tion 3.1.1) and their analysis can also be applied to C-DAGs. Their method reduces
the pessimism of the analysis of Melani [81] also in the case of conditional DAG
tasks.

Sun et al. [109] considered the problem of G-FP scheduling of C-DAG OpenMP
tasks on multiprocessors. The innovative part of their model is that they studied the
problem of how to bound their WCRT when non-well-nested branching structures
are in the C-DAG.

A C-DAG contains a non-well-nested branching structure when there exists an
edge between a regular vertex of one of the conditional construct and a vertex that
does not belong to that conditional construct. For example, inserting e(v6, v4) in the
C-DAG taux of Figure 3.3 would create a non-well-nested branching structure. This
possibility was not taken into account in the previous works.

Starting from the Graham bound [54] (Theorem 3.1.9), they proposed a method
to compute the volume and the length of C-DAGs with non-well-nested branching
structures.

4https://retis.sssup.it/~d.casini/resources/DAG_Generator/cptasks.zip

https://retis.sssup.it/~d.casini/resources/DAG_Generator/cptasks.zip
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3.3 Heterogeneous DAG Tasks

Heterogeneous, or typed, DAGs are another extension of the DAG task model. The
additional feature of this extended DAG task is a new property of the vertices. To
take into account the fact that sub-tasks can execute on different types of cores or
different engines, each vertex is further described by means of a tag that specify the
kind of computational unit on which it will run onto.

Yang et al. [129] considered for the first time an RTA for DAG-based real-time task
systems implemented on heterogeneous multicore platforms.

The compute engines (CE) are clustered in pools, so that all the same kind of
CE are grouped in the same pool. The authors focused on non-preemptive G-EDF
scheduling algorithm within each CE pool. They introduced the offset-based inde-
pendent task (obi-task) model and an algorithm to convert DAG tasks to obi-tasks.

Serrano and Quiñones [105] proposed a novel RTA for verifying the schedulability
of a single DAG task supporting heterogeneous computing. The authors considered
a parallel heterogeneous architecture composed of a host processor with m identical
cores and a single accelerator device (e.g. a FPGA, GPU, etc.). Moreover, they con-
sidered a host-centric acceleration model in which the host offloads code and data
to the accelerator device and collects results.

The task model is the same ad the DAG task model, but in the set of vertices V,
besides traditional vertices that execute on the host, there is also a single node vO f f
that represents the workload executed in the accelerator device, named offloaded
node, with its WCET CO f f .

The proposed algorithm (i) identifies the sub-DAG that may potentially execute
in parallel with vO f f , named GPar = (VPar, EPar), and (ii) adds a synchronization
point to guarantee that GPar and vO f f actually execute in parallel. However, this
strategy may impact the average performance of the tasks because: (i) the critical
path can potentially enlarge, and (ii) the potential parallelism is reduced due to the
synchronization point. An example of the model is depicted in Figure 3.4.
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(A) Heterogeneous DAG
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(B) Transformed heterogeneous DAG after the in-
sertion of the synchronization point.

FIGURE 3.4: Example of the heterogeneous-DAG task proposed; be-
fore (Figure 3.4a) and after (Figure 3.4b) the insertion of a synchro-
nization point (black square). Regular nodes that execute on the host
are filled in light blue; the single node that executes on the accelerator

is filled in green.
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For the schedulaiblity test, they first computed the WCRT on the homogeneous
cores Rhom(τ) using the Graham bound eq. (3.7) (Theorem 3.1.9). Then they derived
a new RTA supporting heterogeneous computing:

Theorem 3.3.1: Serrano and Quiñones [105]

Consider an heterogeneous DAG task τ′. Depending on the execution sce-
nario, its response time upper bound is computed as follows:

1. vO f f does not belong to the longest path.

Rhet (τ′) = len
(
G′
)
+

1
m
(
vol
(
G′
)
− len

(
G′
)
− CO f f

)
(3.33)

2. vO f f belongs to the longest path and CO f f ≥ Rhom (GPar)
Rhet (τ′) = len

(
G′
)
+

1
m

(
vol
(
G′
)
− len

(
G′
)
− vol

(
GPar

))
(3.34)

3. vO f f belongs to the critical path and CO f f ≤ Rhom (GPar)
Rhet (τ′) =len

(
G′
)
− CO f f + len

(
GPar

)
+

1
m

(
vol
(
G′
)
− len

(
G′
)
− len

(
GPar

)) (3.35)

Han et al. [60] studied the WCRT analysis of typed scheduling of a single parallel
DAG task on heterogeneous multi-cores, where the workload of each vertex in the
DAG is only allowed to execute on a particular type of cores.

The authors proposed two new WCRT bounds, considering and formally de-
scribing the typed DAG task model. A typed DAG is a DAG task in which each
vertex has a type, that is the type of core on which the vertex should be executed. S
is the set of core types, and for each s ∈ S there are Ms cores of this type (Ms ≥ 1).
The type function γ : V × S defines the type of each vertex, i.e., γ(v) = s , where
s ∈ S , represents vertex v must be executed on cores of type s.

Then, they introduced the concept of scaled graph: the scaled graph Ĝ of G has
the same topology (V and E) and type function γ as G, but vertices have different
WCET

∀vi ∈ V : Ĉi = Ci ×
(

1− 1
Mγ(vi)

)
(3.36)

Therefore they derived a schedulability test with overall time complexity of O(|V|+
|E|).
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Theorem 3.3.2: Han et al. [60]

The worst-case response time of single parallel typed DAG task τ = (G, T, D)
with implicit deadlines on heterogeneous multi-cores is bounded by

R(G) ≤ L(Ĝ) + ∑
s∈S

vols(G)

Ms
(3.37)

where Ĝ is the scaled graph of G and vols(G) is the volume of the DAG G
computed on the core s.

The second bound the authors introduced, explores task graph structure infor-
mation to improve the precision, but is computationally more expensive. The au-
thors proved that the problem of computing the second bound is strongly NP-hard
if the number of types in the system is a variable, and develop an efficient algorithm
that has polynomial time complexity if the number of types is a constant.

Chang et al. [38] proposed a novel scheduling algorithm for the single typed DAG
task on heterogeneous multi-cores, based on a criticality allocation strategy.

The criticality allocation strategy assigns each vertex vj a varying criticality Critj
that depends on the remaining workload of the vertex. The vertex with higher crit-
icality is more urgent to execute. Eventually, the order in which vertices are sched-
uled is determined by their criticality. Through this scheduling algorithm, the set
of vertices that will block the vertices on each path can be more accurately deter-
mined. On this basis, a new scheduling algorithm is proposed to reduce the range
of possible parallel execution vertices with the same type and different paths block-
ing each other. Secondly, based on this scheduling algorithm, a new RTA method is
established to eliminate unnecessary blocking time.

Theorem 3.3.3: Chang et al. [38]

The worst-case response time of single parallel typed DAG task τ = (G, T, D)
with constrained deadlines on heterogeneous multi-cores is bounded by

R(G) ≤ L(G) +
n

∑
k=1

max
s∈∆(Critk)

inf (Critk, s) (3.38)

where s is the core type, n = L(G)− Csrc − Csink, ∆(Critk) is the set of types of
nodes in criticality set Critk and inf (Critk, s) represents the time that nodes of
type s block each other in Critk.

Experimental results show that the response time upper bound is significantly
better than the bound proposed by Serrano et al [105] and Han et al [60] that are
limited and pessimistic.
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3.4 Heterogeneous Conditional DAG Task

Finally, the most expressive extension of the DAG task model is the one that com-
bines the two previous ones: the Heterogeneous Conditional DAG (HC-DAG) task
model. Even though this is the model that best describes the complexity of mod-
ern real applications, the literature in this context is very scarce and requires more
attention.

Zahaf et al. [132, 133] proposed a novel real-time application model, called Hetero-
geneous Parallel Condition Directed Acyclic Graph Model (HPC-DAG), specifically
conceived for heterogeneous platforms.

An HPC-DAG allows the system designer to specify alternative implementations
of a software component for different processing engines, as well as conditional
branches to model if-then-else statements.

The authors modeled a heterogeneous architecture as a set of execution engines,
characterized by (i) its execution capabilities, and (ii) its scheduling policy (e.g. FTP
or EDF), which can be preemptive or non-preemptive. Each engine has its own
scheduler and a separate ready-queue. Given the importance of communication of
real-time tasks on heterogeneous architectures, copy engines are treated as process-
ing units, in which schedule communication tasks are scheduled.

Even though the model is generic, the focus is this work is on sporadic task
model with constrained deadlines under P-FP-EDF scheduling.

In the proposed model two kind of tasks need to be clarified: (i) the specification
task τx and (ii) the concrete task τ̄x. The specification task τx is an extension of the
C-DAG (introduced in Section 3.2). In addition, each vertex vi of the task τx has a tag
that represents the engines where it is eligible to execute onto. Besides regular and
conditional nodes, in the specification task there exist also alternative nodes, which
represent alternative implementations of parts of the graph/task. A concrete task
τ̄x is an instance of a specification task where all alternatives have been removed by
making implementation choices. Informally, we could say that the specification task
represents the HPC-DAG model, while the concrete task is a C-DAG with tags for
specific engines. An example is given in Figure 3.5.

Given a specification task, one of the possible concrete tasks needs to be selected
before proceeding to the allocation and scheduling of the sub-tasks on the comput-
ing engines. Since the number of combinations can be very large, the authors pro-
posed a heuristic algorithm based on a greedy strategy. Moreover, to reduce the
complexity of dealing with precedence constraints directly, they imposed interme-
diate offsets and deadlines on each sub-task.

The proposed algorithm tries to allocate one single task specification at a time:
it generates all concrete tasks and, for each one of them, it assigns the intermediate
deadlines and offsets accounting for the slack distributions. The algorithm gives
priority to single-engine allocations to reduce preemption costs. Moreover, it can be
customized with four parameters:

• Sorting order of the concrete task sets: (i) sorting according to concrete tasks
total execution time (ii) sorting according to less allocation on scarce resources.

• Distribution of the slack when assigning intermediate deadlines and offsets:
(i) fair distribution, that assigns slack as the ratio of the original slack by the
number of sub-tasks in the path, (ii) proportional distribution: assigns slack
according to the contribution of the sub-task WCET in the path.
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FIGURE 3.5: Example of HPC-DAG task. The alternative nodes in the
specification task in Figure 3.5a are depicted with a rectangle, while
tags (in this case CPU and GPU) are represented with filling colors
(resp. light blue and green). The task shown in Figure 3.5b is one of

the possible concrete tasks for the given specification task.

• Allocation strategy: (i) best-fit, (ii) worst-fit.

• Elimination strategy of sub-tasks (when needed): (i) random selection, (ii) par-
allel selection, selecting a subtask that is parallel to the critical path.

The authors showed that the HPC-DAG dominates the corresponding results for
the C-DAG [81].
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3.5 Methods evaluation

Besides the survey part, this chapter offers also a contribution to the community
with the implementation of some of the introduced works. Several methods have
been implemented in C++ and the code has been made publicly available at https:
//github.com/mive93/DAG-scheduling, so that other researchers can use it as a li-
brary, improve it, extend it or simply reproduce the experiments.

Task set generation In the literature different ways to randomly generate DAG
task set for multiprocessors have been adopted:

• Erdös-Rényi. method [45], which generates graphs.

• Uunifast-Discard [42] , that efficiently generates task utilization values for task
sets with a chosen number of tasks and total utilization.

• method proposed by Melani et al. [81] to generate DAG and C-DAG.

• YARTISS, an open-source simulation tool written in Java [37].

For our implementation, we selected the method proposed by Melani et al. [81],
because it allows one to create not only DAG but also conditional DAGs, and it has
been extended to generate Heterogeneous DAG also.

To improve usability with user-defined DAGs, the implemented library can also
read and write DAGs in DOT (graph description language). An example is shown
in Figure 3.6.

digraph Task {
i [shape=box, label="D=20 T=20"]; 
0 [label="1(0)"];
1 [label="8(1)"];
2 [label="4(2)"];
3 [label="4(3)"];
4 [label="4(4)"];
5 [label="4(5)"];
6 [label="4(6)"];
7 [label="2(7)"];
0 -> 1;
0 -> 3;
0 -> 4;
0 -> 5;
1 -> 2;
2 -> 7;
3 -> 7;
4 -> 6;
4 -> 2;
5 -> 6;
6 -> 7;
}

(A) DAG written in DOT format.

D=20 T=20 1(0)

8(1)

4(3)

4(4) 4(5)

4(2)

2(7)

4(6)

(B) Graphic conversion of the DOT.

FIGURE 3.6: Example of DAG in DOT format.

Selected Methods The selected methods are:

• G-FP: Graham1969 [54], Baruah2012 [11], Bonifaci2013 [25], Li2013 [70], Qamhieh2013
[96], Melani2015 [81], Pathan2017 [90], Fonseca2017 [48], He2019 [61], Fon-
seca2019 [49], Han2019 [60].

• G-LP: Serrano2016 [107], Nasri2019 [86].

• P-FP: Fonseca2016 [50].

https://github.com/mive93/DAG-scheduling
https://github.com/mive93/DAG-scheduling
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• P-LP: Casini2018 [34].

All the methods have been implemented from zero except from Melani2015 [81]
and Nasri2019 [86] whose code was available and has been integrated into the de-
veloped library.

3.5.1 Comparison

In the following, three different kinds of test have been reported: (i) schedulability
test varying the total utilization of a task set with multiple tasks, (ii) schedulability
test varying the number of processors assigned to a task set with multiple tasks,
and (iii) schedulability test varying the total utilization of a single task. For the
generation of the tasks, the parameters have been set in the same way as the original
implementation by Melani [81]. Moreover, the computational time of every single
test has been measured in microseconds.

All the experiments have been performed on an Intel i7-7700HQ CPU @ 2.80GHz.

Varying U for a task set (task) In this test, the utilization of the task set (task) is
varied from U = 0 to U = 8, with an increasing step of 0.25. For each step, 500
different task set (task) are generated and tested, for a total of 16k tests. The number
of cores is always fixed to m = 8.

Varying m for a task set (task) In this test, the number of cores assigned to the task
set (task) is varied from m = 2 to m = 30, with an increasing step of 1. For each step,
500 different task set (task) are generated and tested, for a total of 14k tests. The total
utilization is always fixed to U = 2.

Allocation strategy in partitioned scheduling For the partitioned scenario, cores
are assigned to nodes with the Worst-Fit strategy, ordering all the vertices by de-
creasing utilization first and decreasing density second. The First-Fit and Best-Fit
strategies have also been considered, but the Worst-Fit was the one leading to be
best results, reason why it has been selected.

G-FP for DAG, FTP and implicit deadlines Figure 3.8 reports the results for the
comparison among the G-FP-FTP scheduling for DAGs with implicit deadlines. From
these charts, we can notice that the best methods in terms of schedulability are Fon-
seca2017 and Fonseca2019, which dominate all the other approaches when consid-
ering multiple tasks. The algorithms are very similar, and we can notice that the
improvements introduced in the version of 2019 are almost negligible. The execu-
tion time of these algorithms is also comparable and it takes up to ∼ 4ms. These
methods are also the most complex one among all the considered. To compute the
carry-out workload, they require two conversions of the DAG: first, the DAG needs
to be converted into an NFJ DAG and then this needs to be decomposed in an SPTree.

Figure 3.7 reports the DAG of Figure 3.6b converted, first in a NFJ DAG (Fig-
ure 3.7a) and then decomposed in a SPTree (Figure 3.7b).

When considering a single DAG, the performance of Fonseca2019, Fonseca2017,
and Melani2015 are the same, because the methods differ only in the computation
of high-priorities tasks interference, which is obviously missing in the single task
experiments.

He2019 has similar results with respect to Melani2015, even though it dominates
it in every test, both for multiple and single tasks. This method is the one with more



3.5. Methods evaluation 43

D=20 T=20 1(0)

8(1)

4(3)

4(4) 4(5)

4(2)

2(7)

4(6)

(A) Conversion from the DAG of Figure 3.6b to a
NFJ DAG.

S

0 S

P 7

P S

3 S

1 2

P 6

5 4

(B) Conversion from the NFJ DAG of Figure 3.7a to
a SPTree.

FIGURE 3.7: Decomposition needed for Fonseca2017 and Fon-
seca2019.

variability in the execution times, reaching even more than 20 seconds for some runs
(as can be seen in Figure 3.8d).

Pathan2017 was supposed to always dominate Melani2015. For the single task
test, this is true, and the method slightly dominates He2019. However, when con-
sidering multiple tasks, Pathan2017 performance is poor and is greatly dominated
by both He2019 and Melani2015. The problem can be found in Equation (3.15): in
this test the authors account for the whole workload of a task τy for every subtask
of τx which is very pessimistic. Melani also accounted for the whole workload of a
task τy in Equation (3.9), but only once for task.

G-FP for DAG, EDF and implicit deadlines Figure 3.9 reports the results for the
comparison among the G-FP-EDF scheduling for DAGs with implicit deadlines. It
is here reported the implicit case and not the constrained because the former is
more comprehensive, including also Li2013 which is thought for implicit DAGs only.
From these charts, we can notice that Melani2015 dominates all the other methods,
both for multiple and single DAGs. This method is also the one with the highest
computational time, reaching in some cases ∼ 14ms.

G-FP for DAG, FTP and arbitrary deadlines Figure 3.10 reports the results for the
comparison among the G-FP-FTP scheduling for DAGs with arbitrary deadlines.
Fonseca2019 dominates both Bonifaci2013 and Graham1969 when considering mul-
tiple tasks; while it has the same performance as Graham1969 for a single task. The
method in some cases reaches a computational time of ∼ 40ms.
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FIGURE 3.8: Methods comparison for DAGs with FTP scheduling and
implicit deadlines under G-FP scheduling.

G-FP for C-DAG, FTP and constrained deadlines Figure 3.11 reports the results
for the comparison among the G-FP-FTP scheduling for conditional DAGs with con-
strained deadlines. Similar results with respect to the DAG case can be seen in the
plots. Again, Pathan2017 dominates Melani2015 only when a single task is consid-
ered, but it is definitely dominated in the multiple tasks tests.

G-LP for DAG, FTP and constrained deadlines In the context of global sche-
duling, two methods have been developed for limited preemption, namely Ser-
rano2016 and Narsi2019. The result of their comparison can be found in Figure 3.12.
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FIGURE 3.9: Methods comparison for DAGs with EDF scheduling
and implicit deadlines under G-FP scheduling.

In these charts it is clear that Nasri2019 dominates Serrano2016, having significantly
better results in each performed test. However, given the greatest complexity of the
Nasri2019 method, its computational time is also the highest, reaching 500ms for a
single test.

P for DAG, FTP and implicit deadlines Regarding partitioned scheduling, few
works can be found in the literature. Indeed, the most relevant ones are Fonseca2016,
for fully preemptive policy, and Casini2018 for the limited preemptive policy. Fig-
ure 3.13 shows the comparison of these methods, where it can be noticed that Casini2018
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FIGURE 3.10: Methods comparison for DAGs with FTP scheduling
and arbitrary deadlines under G-FP scheduling.

dominates the other method in each test. However, Casini2018 is also the method
with the highest computational time, reaching even ∼ 800ms for a single run.

State-Of-The-Art methods for DAG, FTP and constrained deadlines Finally, the
best methods in terms of schedulability have been considered all together. Fig-
ure 3.14 reports the comparison among Casini2018 (P-LP), Fonseca2016 (P-FP), Fon-
seca2019 (G-FP), Melani2015 (G-FP), Nasri2019 (G-LP). Nasri2019 dominates each
other method for every performed test, while the poorest performance is given by
Fonseca2016, which is dominated by all the others. For these tests it can be also
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FIGURE 3.11: Methods comparison for Conditional DAGs with FTP
scheduling and constrained deadlines under G-FP scheduling.

noticed that Nasri2019 and Casini2018 are the ones with the highest computational
time, reaching more than 500 and 200 ms respectively. Again, for single task test,
Fonseca2019 and Melani2015 have the same exact resutls.

3.6 Conclusions

Global scheduling When considering global scheduling for a task set of DAG
tasks the three SOTA methods are Nasri2019, Fonseca2019, and Melani2015. Nasri2019
outperforms every method analyzed and it is for sure the best method for G-LP.
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FIGURE 3.12: Methods comparison for DAGs with FTP scheduling
and constrained deadlines under G-LP.

However, it is also the method with the highest computational time, due to the ex-
pensive exploration in the possibilities space. Indeed, it can not be used for online
purposes, to handle a dynamic task set, but only for offline static ones. Moreover,
the actual performance could be even worse: for the performed tests the number
of nodes in the random generated DAGs was limited, varying from 4 to 37 nodes;
in the original paper [86] the authors state that execution times for tests become in-
tractable for DAGs with more than 64 nodes, making the method not suitable for
those cases. Fonseca2019 is the method to adopt when using the DAG task model
with G-FP-FTP scheduling, being the one that dominates all the other G-FP solutions
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FIGURE 3.13: Methods comparison for DAGs with FTP scheduling
and implicit deadlines under partitioned scheduling.

both for constrained and arbitrary deadlines, especially when considering multiple
tasks. Melani2015 is the best solution for multiple and single tasks for the DAG
task model when using EDF. When considering G-FP for C-DAGs, it is still the
best solution for EDF (single and multiple tasks) and for multiple tasks when us-
ing FTP. However, When using G-FP-FTP for a single task, Melani is dominated by
Pathan2017.

Partitioned scheduling When considering partitioned scheduling the two SOTA
methods are Fonseca2016 (P-FP) and Casini2018 (P-LP). Casini2018 is the best method
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FIGURE 3.14: SOTA methods comparison for DAGs with FTP sche-
duling and constrained deadlines.

among the partitioned, but it has a higher computational time. Nonetheless, we have
still to remember that both those methods become too expensive in terms of execu-
tion time when the DAG has several nodes: indeed the analyses are based on the
complete exploration of all the possible paths in a graph, which is known to be of
exponential complexity.

Global vs Partitioned In conclusion, what is better when scheduling DAGs, par-
titioned or global scheduling? The results of these tests show that Nasri2019 is the
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best method available, and it is a global scheduling algorithm. However, a clear an-
swer is missing. Schedulability tests are not sufficient to answer this delicate and
important question: one should also compare actual response times, end-to-end la-
tencies and account for migration overheads. Moreover, additional tests varying all
the DAG generator parameters should be performed to have a clearer overview.

However, we can notice that the method with the best trade-off among computa-
tional time, schedulability, and easy-adoption is Melani2015. It has medium schedu-
lability ratio performance, however, it has several advantages: (i) it has a very small
computational time (∼ 4ms in the worst case among all the performed tests) which
make it possible to use it as an online method; (ii) it can be applied both for EDF,
FTP and any work-conserving scheduling algorithms; (iii) it can be easily extended
for G-LP (i.e. Serrano2016); (iv) it is also valid for C-DAGs; (v) it can handle DAGs
with hundreds of nodes in feasible time (e.g. the worst-case computational time for
task sets having among 5 to 30 tasks with 50 to 300 nodes is ∼ 700ms); (vi) it is easy
to implement.

Research directions Finally, this work led to a list of open questions for the real-
time community that are hereafter summarized.

As already mentioned, understanding whether partitioned or global scheduling
is more suitable for DAGs would greatly help to improve real-time systems.

To get there, there are sub-problems to tackle first: (i) it would be interesting
to see how a method like Nasri2019 would perform in a partitioned scenario; (ii)
it is crucial to find a good allocation strategy for partitioned methods, better than
Worst-Fit, given that the performance of partitioned approaches highly depends on
that initial step; (iii) a deeper investigation on the scheduling algorithms should be
carried on. Regarding the last point, many works under analysis focused on FTP,
however, it is not clear whether it is better or worse than EFP, not mentioning other
strategies like hierarchical scheduling.

All these open problems are left to future investigations.
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Chapter 4

Latency Aware DAGs

This chapter does not focus anymore on the schedulability of the DAG task model,
but rather on the computation of end-to-end latencies such as data age and reaction
time on chains of DAGs. When dealing with industrial or robotics application, once
the task set schedulability has been checked, the interest is moved to the actual end-
to-end latency, usually, from sensors to actuators.

A method to convert a general multi-rate task set into a DAG in which schedu-
ling and end-to-end latency constraints are met is introduced, as well as methods
to compute data age and reaction time on DAGs. The results hereafter reported were
originally presented in “Latency-Aware Generation of Single-Rate DAGs from Multi-Rate
Task Sets” [122] (RTAS 2020).

4.1 End-to-End Latency and DAGs

Modern automotive and avionics real-time embedded systems are composed of ap-
plications including sensors, control algorithms and actuators to regulate the state
of a system in its environment within given timing constraints. Task chains are
commonly adopted to model a sequence of steps performed along the control path.
Complex data dependencies may exist between task chains with different activation
rates, making it very hard to find reliable upper bounds on the end-to-end latency
of critical effect chains [58].

This problem is exacerbated by the adoption of even more complex task mod-
els based on DAG to capture the parallel activation of multiple jobs executing on
heterogeneous multi-core platforms. A recent example in the automotive domain
is given in the WATERS industrial challenge [59], focusing on the minimization of
the end-to-end latency of critical effect chains of an autonomous driving system in-
volving several sensors. The application is modeled in Figure 4.1, with three sensors
providing input to multiple task chains. Nodes represent tasks with different acti-
vation periods, while edges represent the exchange of data between tasks, forming
effect chains. Reaction to input stimuli and freshness of data are key factors to con-
sider when deploying the application on a selected computing platform. Data age
quantifies for how long an input data affects an output of a task chain, i.e., it is the
maximum delay between a valid sensor input until the last output related to that in-
put in the chain. Data age constraints are commonly found in control systems, where
the age of the data can directly influence the quality of the control. In the considered
application, key effect chains to optimize for data age are connected to the processing
of camera frames and LiDAR point clouds: the older the input, the less precise is the
localization of the ego vehicle and the detection of obstacles.
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FIGURE 4.1: An example of high-utilization automotive application
with tasks at different periods.

Another key metric to optimize is the reaction latency, a parameter that measures
the reactivity of the system to a change in the input. It is defined as the maximum de-
lay between a valid sensor input until the first output of the event chain that reflects
such an input. It measures how much time it takes for a new event to propagate
through a chain. In the considered autonomous driving example, key reaction times
to optimize are the detection of an obstacle in the driving path, and the related actu-
ation on the steering and breaking system to safely avoid it in due time.

This chapter aims to consider such systems composed of DAG tasks having mul-
tiple rates with given constraints on age and reaction latencies. Starting from a high-
level representation, a method is presented to create a single-rate DAG that fulfills
the given restrictions, optimizing schedulability and end-to-end delays. To do so,
a set of DAG candidates is generated and evaluated by a constrained cost function
designed to pick the best DAG meeting the given requirements.

4.1.1 Previous Works

End-to-end latency A task chain is a sequence of communicating tasks in which
every task receives data from its predecessor. In literature, two types of task chains
can be found: periodic chains and event-driven chains [125]. In the former, each
task is activated independently at a given rate, and it communicates with its succes-
sor by means of shared variables; in the latter, task executions are triggered by an
event issued from a preceding task. The propagation delays of a task chain affect the
responsiveness, performance and stability of an application.

We hereafter focus on the periodic model, which is the most common in the au-
tomotive domain [58]. Di Natale et al. [87] proposed a method to evaluate the worst-
case latency of mixed chains of real-time tasks and Controller Area Network (CAN)
messages. Zeng et al. [135, 134] computed the probability distribution, via statistical
analysis, of end-to-end latencies for CAN message chains.

Feiertag et al. [47] were the first to define data age and reaction time and to pro-
pose a framework to calculate end-to-end latencies in automotive systems, where
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each task operates according to the read-execute-write semantic, also known as the
implicit communication model of AUTOSAR [2].

Becker et al. [17, 15] presented a method to compute worst- and best-case data
age for periodic tasks with implicit deadlines using implicit, explicit and Logical Ex-
ecution Time (LET) communication models. The analysis is based on Read Interval
(RI) and Data Interval (DI), which respectively are the interval in which a task can
possibly read its input data in order to complete its execution before the deadline,
and the interval for which the output data of a task can be available to the successor
task in the chain. Multiple Data Propagation Trees are constructed in order to com-
pute the data age. A method is also described to constrain the maximum latency by
inserting job-level dependencies. A tool, called MECHAniSer [16], is presented to
compute latency values for a given task set.

Regarding the LET model, Biondi et al. [22] and Martinez et al. [79, 80] addressed
the problem of computing end-to-end latency bounds on multi-cores, improving the
results of Becker et al. [15]. Our paper does not focus on the LET model, but it aims
at deriving better latency bounds for the implicit model.

There exist other works that aim at selecting the best periods or deadlines to
minimize data age in simpler task models. Xiong et al. [126], do this on a single core
platform, without considering task chains. Golomb et al. [53] propose a method to
find the best period to bound data freshness of task chains, assuming the task set
given in input be already schedulable. Adapting these solutions to our setting is not
trivial, because we assume periods and deadline to be given.

Multi-rate DAG Saito et al. [103] present a framework developed for the Robot
Operating System (ROS) to handle automotive applications with multi-rate tasks.
The model assumes an event-driven data-flow system in which a node starts when
the predecessor nodes are completed. In order to handle multi-rate tasks, a synchro-
nization system is adopted consisting of two kinds of additional nodes: synch driver
nodes and synch nodes. The synch driver node is used to adjust the publishing pe-
riod of the sensors, buffering the data of the highest rate one, in order to have a node
with a unique rate for all the sensors. Synch nodes are then inserted before the tasks
to handle buffered data. In this way, a single-rate DAG is obtained and scheduled
using a fixed-priority algorithm based on the HLBS scheduler [111].

Forget et al. [52] faced the same problem for autopilot applications, considering
periodic tasks modeled as nodes in a DAG with two kinds of edges: simple and
extended. Simple edges are precedence constraints between tasks having the same
rate, while extended edges are data dependencies between tasks having different
rates. To handle extended edges, a method is proposed to generate multiple con-
versions from extended edges through simple precedence constraints between jobs,
selecting a permutation that guarantees EDF schedulability.

Another conversion method from a multi-rate DAG to a single-rate one has been
proposed by Saidi et al. [101] for a similar DAG model. The output DAG has a pe-
riod equal to the hyper-period of the input task set. The nodes are the job instances
activated in a hyper-period for each task. Edges are precedence constraints between
jobs, which are inserted based on the ratio between the periods of the communicat-
ing tasks. A multi-core heuristic is proposed to schedule the DAG, while minimizing
a cost function related to task schedulability.

Converting the original task set to a DAG is a very convenient approach that
allows seamlessly inserting explicit precedence constraints to control end-to-end la-
tency. To our knowledge, most of the other methods in the literature perform similar
conversions to impose such precedence constraints for limiting latency. While the
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work of Becker [17] may appear different, as it does not explicitly consider DAGs,
it ends up implementing a similar approach by inserting precedence constraints be-
tween different jobs. In Section 4.6, we will highlight the differences between the
presented methods and our approach.

4.2 System Model

This section shows how to convert a Multi-Rate Task set with Constraints into a Single-
Rate Directed Acyclic Graph (DAG), in order to analyze schedulability and end-to-end
latency of task-chains.

Multi-Rate Task set with Constraints The input to the proposed method is a task
set Γ, modeling an application like the one in Figure 4.1, composed of N periodic
tasks τx arriving at time t = 0. Each task τx is described by the tuple (Cx, BCx, Tx, Dx),
where: Cx ∈ R is the WCET of the task; BCx ∈ R is the Best Case Execution Time
(BCET); Tx ∈N is the period; Dx ∈ R represents the relative deadline.

The exchange of data between two tasks is modeled with as data edge, a directed
(dashed) edge between the producer and the consumer of the data. Moreover, prece-
dence constraints may be specified between two tasks (τx, τy), stating that a job τy,b
cannot start until all the jobs of τx released in τy’s period completed their execution.
For this reason, precedence constraints can be inserted only between tasks having
the same period, corresponding to job level precedence constraints.

To constrain the latency of data propagation in task-chains, upper bounds on data
age and on reaction time can be given.

Our approach is based on a global non-preemptive list scheduling approach.
Such a policy allows different instances of the same task to run on different cores,
while preventing a job to be migrated during its execution, mitigating the preemp-
tion overhead.

Directed Acyclic Graph The output of the proposed method is a single-rate Directed
Acyclic Graph (DAG). Such a model is based on the parallel DAG model proposed by
Baruah et al. [11]. In this work, we use a similar model with a semantic difference,
i.e., a DAG represents a full application, with each vertex representing a task in-
stance, which we call a job. In detail, the DAG is specified by a 3-tuple (V, E, HP)
where: V represents the set of nodes, namely the jobs of the tasks of Γ, and n = |V|;
E is the set of edges describing job-level precedence constraints; HP is the period of
the DAG, namely the hyper-period of the tasks involved: HP = lcm∀τx∈Γ{Tx}.

In this model, the communication between jobs utilizes buffers in shared mem-
ory, which can be accessed by all the cores. The time to write/read a shared buffer
is included in the execution time of each task. We adopt the implicit communica-
tion model defined in AUTOSAR [2], solving mutual exclusion via double-buffering.
Each task complies with a read-execute-write semantic, i.e., it reads a private copy
before the execution, and it writes a private copy at the end of the execution [58].
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4.3 DAG Matrices Operations

A DAG ca be represented as an adjacency matrix T ∈ Bn×n, in which Ti,j = 1 iff
there exists an edge e(vj, vi)

1. Given this Boolean formulation of the DAG, Boolean
algebra can be applied. Therefore, the Boolean matrix product is defined as:

C = AB, A ∈ Bn×m, B ∈ Bm×n, C ∈ Bn×n (4.1)

for which the cells of C evaluate to

ci,j =
m−1∨
k=0

ai,k ∧ bk,j (4.2)

Cell-wise Boolean operations are denoted as ∧ and ∨ for and and or, respectively.
Additionally, a maximum matrix multiplication is used in this work to combine
Boolean matrices with real matrices. It is defined as

C = maxProduct(A, B), (4.3)
A ∈ Bn×m, B ∈ Rm×n, C ∈ Rn×n

where the cells of C are calculated as

ci,j = max
k∈{0,...,m−1}

{ai,kbk,j}. (4.4)

Transitive Closure The proposed scheduling method and the related end-to-end
latency computation make use of the mathematical principles of graph theory [20].
One principle is the transitive closure [93] of a DAG, defined as

D =
n∨

k=1

Tk (4.5)

where the exponentiation of a Boolean matrix is calculated through the Boolean ma-
trix product defined in Equation (4.1). The transitive closure of a DAG describes the
set of descendants of each node, where di,j = 1 if there exists a path from vj to vi, i.e.,
vi is a descendant of vj. Consequently, vj is an ascendant of vi. The transpose of the
descendants matrix, DT, therefore represents the ascendants matrix.

Computing the power of k of an adjacency matrix of a graph means calculating
the nodes reachable through any k-step walk from every node vi, which is a general
result in graph theory (Lemma 2.5 in Biggs [20]). Instead of computing the descen-
dants matrix via Equation (4.5), we can adopt a simpler formulation. By introduc-
ing a self-loop to every node, the power of k of the adjacency matrix calculates not
only the reachable nodes of any k-step walk, but it also includes the reachable nodes
through all shorter walks. Therefore,

D = (T ∨ I)n ∧ ¬I (4.6)

1We chose the column-row approach over the commonly used row-column approach to perform
state and value propagation, described later in this section, by left-multiplying the transition matrix to
a column state vector.
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where I ∈ Bn×n is the identity matrix, and ¬I is the Boolean complement of I. Given
that T is an acyclic transition matrix, Tk has no element on the main diagonal ∀k ∈
N>0. Therefore, the elements introduced on the main diagonal are set back to zero.

State and Value Propagation To use the DAG matrix T for the analysis of a DAG,
two propagation methods are useful. The first is a Boolean state propagation and
the second is a maximum value propagation. Let xk ∈ Bn×1 denote a state describ-
ing which node of the DAG is visited at iteration k. Then, the state of the DAG in
iteration k + 1 can be calculated using the Boolean matrix multiplication as:

xk+1 = Txk (4.7)

In this way xk+1 will contain 1 for the nodes that are reached with one step-walk
from the ones in state xk, 0 for the others.

Similarly, a value can be propagated through the DAG. Let vk ∈ Rn×1 denote a
value for each node of the DAG at iteration k. This value can be propagated through
the paths of the DAG by using

vk+1 = maxProduct(T, vk), (4.8)

where the vector vk+1 describes the value vk in the next iteration.
In this work, we are interested in propagating execution times along the DAG.

Given that in a DAG more paths can converge to the same node, we will propagate
the maximum value among converging paths. In the case of propagating execution
times through the DAG, we can define a value function v as

v = maxProduct(T, v + c), (4.9)

with c being the execution time of each node (C or BC). In this equation, the value of
a node is equal to the maximum of its predecessors’ values plus its execution time.
The fixed-point v∗ solving Equation (4.9) can be found by iterating

vk+1 = maxProduct(T, vk + c) (4.10)

until it converges to v∗ when vk+1 = vk. Convergence is guaranteed to happen
after at most n iterations, because the graph is acyclic and, therefore, all its paths are
composed of n or fewer nodes.

4.4 DAG Generation

In this section, we explain how to convert a task set of periodic tasks with constraints
to a set of potential single-rate DAGs. The explanation and mathematical derivations
are augmented with an example to illustrate the conversion.

Example 4.1. We consider an application modeled as a Multi-Rate task set Γ = {τ0 =
(7, 5, 10, 10), τ1 = (13, 10, 30, 30), τ2 = (10, 8, 30, 30)}, with a constraint on the maximum
data age of chain {τ0, τ1, τ2} to be smaller than 50. The Multi-Rate task set is represented in
Figure 4.2.

A set of DAGs is generated using a 4-Stage DAG Generation. The set is subse-
quently pruned to accelerate the analysis in the next sections.
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FIGURE 4.2: The simple task set defined in Example 4.1.

4.4.1 4-Stage DAG Generation
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FIGURE 4.3: The 4-Stage DAG generation depicted.

We aim at generating a set of DAGs that have the potential to meet all the con-
straints. The DAG generation can be split into four stages:

1. The respective jobs of the tasks are created.

2. The jobs are synchronized to meet their respective deadlines.

3. The job-level precedence edges are added to address the data edges.

4. The DAGs are simplified by removing redundant edges.

The four steps for the example are depicted in Figure 4.3. We hereafter detail each
step.

Replication Each task has to execute a number of jobs within one hyper-period.
For a task τx, the number of jobs is HP

Tx
. Since jobs are just instances of the same

task, they should always run sequentially, therefore job-level precedence edges are
added between successive jobs τa

x and τa+1
x where a ∈ {0, . . . , HP

Tx
− 1}. Additionally,
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the start node of the DAG is connected to each first job of each task, and each last
job is connected to the end node. The resulting DAG for the example is shown in
Figure 4.3a. To synchronize the jobs in the following step, each job gets an offset and
deadline. For τa

x , the offset is aTx and the deadline is aTx + Dx.

Synchronization To be sure that tasks’ instances maintain their original period and
deadlines in the DAG, a synchronization mechanism has to be applied. In this way,
we can enforce a job to start after its offset and to finish before its deadline. To accom-
plish this, we add additional nodes for synchronization purposes, as in Figure 4.3b.
Firstly, we add a synchronization node σt, with C = BC = 0, for each unique value t
in the list of offsets and deadlines of all jobs. Secondly, we add dummy nodes δ be-
tween each two consecutive synchronization nodes σt and σt′ , with C = BC = t′ − t,
i.e., the difference in the timestamps of the corresponding synchronization nodes.
The source and sink of the DAG are synchronization nodes too, with a timestamp of
0 and HP, respectively.

To enforce the jobs to execute in a time-window within its offset and deadline,
an edge to the job is added from the synchronization node of the corresponding
offset, and another one from the job to the synchronization node corresponding to
its deadline.

0 3 6 9 12 15

0 5 10 15

τ0
i τ1

i τ2
i τ4

i τ5
i

τ0
j τ1

j τ2
j

FIGURE 4.4: Example of jobs of non-harmonic tasks limited to their
super-period. Doubled arches indicate possible interaction between

jobs.

Permutation The various instances of tasks with different periods may be sched-
uled in multiple ways. We would like to enforce a suitable execution order between
such instances, in order to minimize the latency of a given set of task chains. Thus,
we convert the original multi-rate task set into several single-rate DAGs, each rep-
resenting a possible activation pattern of the considered tasks. To do so, we include
additional precedence edges to the DAG obtained at the previous step.

Consider two tasks τx and τy with periods Tx and Ty, assuming Ty ≥ Tx without
loss of generality. Let SPx,y be the super-period of tasks τx and τy, defined as the least
common multiple of their periods, i.e., SPx,y = lcm(Tx, Ty). Note there are HP

SPx,y
− 1

super-periods in the hyper-period HP of the whole task set.
There exist multiple ways to insert precedence edges between jobs of τx and τy

in each super-period of length SPx,y. Each possible edge assignment that complies
with the multi-rate task specification is called “job arrangement”.

To find all the possible permutations, two cases must be considered: harmonic
and non-harmonic periods. In the former case, there exists q ∈ N for which q =
Ty
Tx

and SPx,y = Ty. Therefore, finding all the permutations between one job of τy
and q of τx allows finding all the job arrangements in their super-period. The non-
harmonic case is slightly more complicated. For two non-harmonic tasks, q ∈N can
be computed as q = d Ty

Tx
e, but SPx,y 6= Ty. In this case, one job of τy can be arranged
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with q or q + 1 jobs of τx, because of the non-harmonicity. To better understand the
problem, let us consider an example in which Tx = 3 and Ty = 5, as in Figure 4.4.

When periods are harmonic, a job of τx always interact with exactly one job of τy
(and respectively, τy interacts with exactly q jobs of τy) . However, for non-harmonic
periods, a job of τx can interact with 1 or 2 (at most) jobs of τy, as shown in Figure 4.4.
For this reason, in the non-harmonic scenario some jobs of τy will interact with q (in
the example d 5

3e = 2, as for τy,0 and τy,2 ) jobs of τx, while others with q + 1 (in this
case 3, as for τy,1).

In general, a job τa
y can interact with all the jobs between τb

x and τc
x , where b and

c can be obtained as:

b ∈N | O(τb
x ) ≤ O(τa

y ) ∧O(τb
x ) + Tx > O(τa

y ) (4.11)

c ∈N | O(τc
x) < O(τa

y ) + Ty ∧O(τc
x) + Tx ≥ O(τa

y ) + Ty (4.12)

where O(τb
x ) stands for the offset of the job τb

x .
Once the interacting job of τx and τy have been associated, this case can be traced

back to the harmonic one.
Now, let us consider a job τs

y and all the possible arrangements with Q jobs of τx
(which is either q or q + 1), denoted as Ax,y(s) = (pres, posts, ψs) in the super-period
SPx,y. In this tuple, pres (resp. posts) denotes the number of jobs of τx executing
before (resp. after) each job of τy. ψs denotes the number of jobs of τx that can execute
in parallel to the job of τy. This parameter is critical for the data update variability,
that is defined as the difference between the maximum and minimum number of
data updates. Since pres, posts, and ψs comprise all the jobs of τx interacting with τs

y ,
it follows that

pres + posts + ψs = Q. (4.13)
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FIGURE 4.5: Arrangement permutations with one parallel job of τx;
there are three permutations because Q = 3 and ψ0 = 1, therefore
Q + 1− ψ = 3. The permutation (b) corresponds to the example in

Figure 4.3c.

Three example arrangements for two tasks, τ0 with T0 = 10 and τ1 with T1 = 30,
are shown in Figure 4.5. In all three arrangements, the job of τ1 is parallel to one job
of τ0 (ψ0 = 1). The number of permutations of arrangements with each τs

y can be
calculated as:

perm(Ax,y(s)) = ∑
ψ={0...Q}

(Q + 1− ψ), (4.14)
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while the permutations can be found combining all the possible edges between the
jobs of the two tasks.

For the harmonic case, this value is also the total number of permutations of a
super-period:

permSPx,y = perm(Ax,y(s)). (4.15)

On the other hand, for the non-harmonic case, the number of permutations for the
super-period is obtained as:

permSPx,y = ∏
∀τs

y∈{0...
SPx,y

Ty }

perm(Ax,y(s)). (4.16)

Finally, considering all the super-periods contained in a hyper-period, the total
number of permutations can be given by:

permtotal = ∏
∀x,y

perm
HP

SPx,y
SPx,y

, (4.17)

where x 6= y and τx and τy are consecutive tasks in a given task chain. Each com-
bination of arrangement permutations generates a new DAG that can be analyzed.
Therefore, it is critical to keep the number of possible permutations as small as pos-
sible. A reduction of the exploration space is discussed in Section 4.4.2.

Figure 4.3c shows one of the obtained DAG, whose simplified2 adjacency matrix
T and transitive closure matrix D (obtained with Equation (4.6)) are the following:

T =

S
τ0

0
τ1

0
τ2

0
τ0

1
τ0

2
E



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
1 1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 1 1 1 0

 D =

S
τ0

0
τ1

0
τ2

0
τ0

1
τ0

2
E



0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 0 0
1 1 0 0 1 0 0
1 1 1 1 1 1 0


Reduction While constructing the DAGs, it is possible to end up generating redun-
dant edges. There is a redundant edge between two nodes when there exist both a
direct edge and a non-direct path. Redundant edges can be removed using a tech-
nique called transitive reduction, firstly proposed by Aho et al. [1]. The transitive
reduction of a DAG uniquely describes the sub-graph of this DAG with the fewest
possible edges, while maintaining the same reachability relation.

The transitive reduction of a DAG can be calculated in different ways. Since in
this work we need the transitive reduction as well as the transitive closure of the
DAG, we compute the transitive reduction using

Tr = T ∧ ¬(T ·D), (4.18)

where (T ·D) has 1 in (j, i) if the node j can reach the node i in more than one step, 0
otherwise. Applying Equation (4.18) means removing direct edges e(vj, vi) in T that
are redundant because a non-direct path already exists between node j and node i.

2Without synchronization and dummy nodes, removed for a clearer representation, but used in the
actual algorithm.
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In Figure 4.3d, the obtained DAG with reduced edges is presented. For that
example, the matrix T ·D and Tr (obtained with Equation (4.18)) are the following3:

T ·D =

S
τ0

0
τ1

0
τ2

0
τ0

1
τ0

2
E



0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 1 0 0

 Tr =

S
τ0

0
τ1

0
τ2

0
τ0

1
τ0

2
E



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 1 0


The interaction of the different data edges during the Permutation stage can re-

sult in DAGs that are inherently not schedulable. These DAGs can be removed to
speed up the analysis. Then, two factors are further inspected: potential cycles in
the generated DAG, and length of the longest chain.

DAGs containing cycles need to be removed, as they are inconsistent with the
task semantics and they could not be feasibly scheduled. Finding cycles in a graph
is a common problem which can be solved with several approaches. In this work,
we use state propagation, described in Section 4.3. We adopt a state vector x, whose
elements indicate whether a path exists (1) or not (0). Initially, x0 = 1 to consider
the potential paths from all the nodes. Then, we apply state propagation in Equa-
tion (4.7), multiplying the state vector with the adjacency matrix T. This means
stepping from a node to its successor: if it has any, the resulting vector will have a
1 in the corresponding position, otherwise it will have a 0. Repeating this operation
means going through all the possible paths. Since the graph is acyclic and it has n
nodes, there should be no path with a length greater than n. In other words, the
resulting vector should have all 0’s after at most n steps, indicating that all the paths
have ended, i.e., there are no more nodes to step into. If this is not the case, it means
the DAG contains cycles, and it can be discarded.

Finally, the longest chain in the DAG corresponds to the chain with the longest
execution time. This chain can be explicitly found by calculating the fixed-point of
Equation (4.9) with c = C, the WCET of each node. If any value in v∗ + C is bigger
than the hyper-period HP, it means that there exists a path whose sum of WCETs
exceeds the hyper-period, which makes the DAG not schedulable. Also these DAGs
are discarded.

In the example, the vectors of C and v∗ are the following:

C =



0
7
7
7

10
13
0

 v∗ =



0
7
14
24
17
30
30


3Given the previously mentioned simplification, consecutive jobs of the same task have precedence

constraints between them, rather than having edges to and from synchronization nodes. In the exam-
ple, there is an edge from τ0

0 to τ1
0 and one from τ1

0 to τ2
0 .
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4.4.2 Permutation Space Reduction

The worst-case number of permutations, and thus the total number of DAGs created,
is given in Equation (4.17), i.e., it is scaling exponentially with the size of the task set.
Therefore, a reduction of the permutation space is essential to keep the approach
computationally tractable for larger task sets. To reduce the permutation space, we
inspect the inter-super-period-arrangement.
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(A) Heterogeneous arrangement example with Ax,y(s) = (0, 2, 1) and Ax,y(s + 1) = (2, 1, 0)
SPs SPs+1

τ0
i τ1

i τ2
i

τ0
j

τ0
i τ1

i τ2
i

τ0
j

(B) Homogeneous arrangement example with Ax,y(s) = Ax,y(s + 1) = (0, 2, 1)

FIGURE 4.6: Examples showing heterogeneous and homogeneous ar-
rangements.

Given the previously adopted tasks τ0 and τ1, Figure 4.6 shows two possible
arrangements, omitting synchronization nodes for simplicity.

Let us consider a couple of harmonic tasks τx, a τy in their super-period SPx,y.
For a given parallelism ψs, relative to job τs

y , the execution order of the parallel jobs
is not defined. Therefore, a bounded number of jobs of τx, denoted as prePars ∈
{0, . . . , ψs}, can execute before τs

y . Consequently ψs − prePars jobs of τx will execute
after τs

y . The probability distribution of prePars is not relevant since the only values
that affect the latency variability are, by definition, the extremes, i.e.,

max(prePars) = ψs and min(prePars) = 0 (4.19)

Based on these definitions, the number of jobs of τx between two consecutive jobs τs
y

and τs+1
y (in the following super-period) is given by

ns,s+1 = posts + (ψs − prePars) + pres+1 + prePars+1 (4.20)

The upper and lower bound of this value are given by

max(ns,s+1) = posts + ψs + pres+1 + ψs+1 (4.21)
min(ns,s+1) = posts + pres+1 (4.22)

The variability of the data updates, i.e., the difference between the maximum and
the minimum data updates in between, can be formalized as:

Varx,y = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}, (4.23)
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using t in the minimum to highlight that the maximum and minimum do not need
to consider the same job of τy, and thus the same arrangement. However, in a homo-
geneous arrangement, Ax,y(s) = Ax,y(s + 1) = (pre, post, ψ) and s = t. Therefore,

Varx,y,hom = 2ψs (4.24)

Comparing to heterogeneous arrangements, in which Ax,y(s) 6= Ax,y(s + 1), ∀s, two
observations can be made. On the one hand, a higher value of ψs for a job τs

y increases
schedulability of the related super-period, since it allows for more parallelism and
shortens the longest path. Given that the schedulability of all the super-periods
determines the schedulability of the hyper-period, the value of ψs is crucial. On the
other hand, from an application side, the data update variability should be as low as
possible to constrain end-to-end latency.

To reduce the permutation space while investigating all the permutations that optimize
latency, we chose to sacrifice optimality w.r.t. schedulability. Homogeneous arrange-
ments are better at this compromise. To show it, we prove that

Varx,y,het > Varx,y,hom (4.25)

Proposition: Given two tasks τx and τy with periods gTx = Ty, hTy = HP, g, h ∈
N+, a heterogeneous arrangement results in a strictly higher variability than a homo-
geneous arrangement.

Proof: In a heterogeneous arrangement,Ax,y(s) 6= Ax,y(s+ 1), which means that
(pres, posts, ψs) 6= (pres+1, posts+1, ψs+1). Let us define αs ∈ Z (resp. βs ∈ Z) as the
difference between the jobs of τx that execute before (resp. after) τs+1

y and the jobs of
τx that execute before (resp. after) τs

y
4

αs = pres+1 − pres (4.26)
βs = posts+1 − posts (4.27)

Consequently, considering that pres + posts + ψs = pres+1 + posts+1 + ψs+1 = Q, we
derive

ψs+1 = ψs − αs − βs (4.28)

With this definition, Equation (4.20) provides

ns,s+1 = posts + (ψs − prePars) + pres+1 + prePars+1

ns,s+1 = posts + (ψs − prePars) + pres + αs + prePars+1

= Q + αs − prePars + prePars+1.

Then,

max(ns,s+1) = Q + αs + ψs+1

= Q + ψs − βs

min(ns,s+1) = Q + αs − ψs

4Remember that there is only one job of τs
y in each super-period SPx,y. Therefore, τs+1

y refers to the
next super-period.
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The variability in Equation (4.23) can then be simplified to

Varx,y,het = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}

= max
s
{ψs − βs} −min

t
{αt − ψt}

= max
s
{ψs − βs}+ max

t
{ψt − αt}

= 2ψs + max
s
{−βs}+ max

t
{−αt}.

As the full arrangement is the same in each hyper-period, the super-period ar-
rangement is cyclic. Since αs and βs denote the change of the arrangement, the cyclic-
ity of A requires

∑
s∈{0,..., HP

Ty }
αs = ∑

s∈{0,..., HP
Ty }

βs = 0. (4.29)

Therefore, ∃αs < 0 and ∃βs < 0 such that

Varx,y,het > 2ψs (4.30)

Since Varx,y,het > 2ψs, it then follows Varx,y,het > Varx,y,hom, proving the proposi-
tion.

We can therefore omit heterogeneous arrangements without affecting the result-
ing end-to-end latency, since no such arrangement can provide a better compromise
with respect to variability. By discarding the heterogeneous arrangements in the per-
mutations, the value of permtotal in Equation (4.17) can be reduced to

permtotal = ∏
∀x,y

permSPx,y , (4.31)

where x 6= y and τx and τy are consecutive tasks in a given task chain, and the full
hyper-period arrangement is defined by a unique super-period arrangement. This
is valid both for harmonic and non-harmonic tasks.

4.4.3 Computational Complexity

The computational cost of the overall method can be summarized as O(permψ ×
permA× n4). The first term permψ represents all the permutations for all the possible
ψ values. From Equation (4.31), it can be expressed as

permψ = ∏
(ex ,ey)∈E

max(Tx, Ty)

min(Tx, Ty)
. (4.32)

The second term permA represents all the arrangement permutations for a fixed ψ.
From Equation (4.14), it can be expressed as

permA = ∏
(ex ,ey)∈E

(max(Tx, Ty)

min(Tx, Ty)
− ψ + 1

)
. (4.33)

Lastly,O(n4) is the maximum cost of all the math operations applied on the obtained
DAGs, which are matrix-vector multiplication O(n2), matrix multiplication O(n3)
and matrix exponentiation O(n4). Let us define R as the maximum ratio between
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periods of the task set, i.e., R = max(Tx)
min(Ty)

∀x, y ∈ {0 . . . N − 1}. The computational cost
of the method can then be expressed as:

O(R|E|R|E|(RN)4) = O(R2|E|(RN)4). (4.34)

The complexity is thus exponential in the number of edges |E|. Such a high cost is
mainly determined by the need to take into account all the permutations at once.
However, this is also the reason why the proposed conversion method allows better
controlling end-to-end latencies, jointly optimizing data and reaction times of all the
task chains given in input. This is achieved by picking up the best configuration out
of all the permutations generated by means of a cost function.

4.5 End-to-End Latency and Schedulability

In this section, a method to calculate an upper bound on data age and reaction time is
proposed. As explained in the introduction, data age defines the maximum time a
data produced by the first task of the chain can influence the last one. Reaction time
is the maximum interval between the acquisition of a stimulus in the first task of a
chain and the moment the first instance of the last task in the chain reacts to it.

We first define a set of additional timing attributes, that will be used to compute
the end-to-end latency. The schedulability of the DAG is verified by deriving a static
schedule. If more than one generated DAG meets the latency and schedulability
constraints, we select the DAG that maximizes a weighted sum of the end-to-end
latencies, taking into account all the tasks chains in input.

For each job, we define the following timing attributes: Earliest Finishing Time
(EFT), Latest Finishing Time (LFT), Earliest Starting Time (EST) and Latest Starting
Time (LST). The earliest a node can start is the maximum of all its predecessors’
earliest finishing times. Similarly, the latest a node can finish is the minimum of its
successors’ latest starting times. These values can be iteratively calculated using the
operators defined in Section 4.3, initializing ESTj = 0 and EFTj = HP for all nodes
j:

ESTi = max
∀j

{
(ESTj + BCj)Tj,i

}
LFTi = min

∀j

{
(LFTj − Cj)Ti,j

}
EFTi = ESTi + BCi

LSTi = LFTi − Ci.

Table 4.1 reports the timing attributes computed for Example 4.1.

job EST LST EFT LFT
τ0

0 0 0 5 7
τ1

0 10 13 15 20
τ2

0 20 23 25 30
τ0

1 5 7 15 20
τ0

2 15 20 23 30

TABLE 4.1: Timing attribute for the for Example 4.1.
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4.5.1 Task Chain Propagation

In a DAG G, a node j is defined to react to node i if there exists a direct or indirect
edge from node i to node j. A node k reacting to node j also reacts to node i. Further,
a node k reacts to the chain (i, j) if node j reacts to node i and node k reacts to node j.

Extending this definition to tasks and jobs:

• τb
y reacts to τa

y , ∀b > a;

• Consequently, if τa
y reacts to τc

x , it follows that τb
y reacts to τc

x .

Given a task chain (τx, . . . , τz), the reactions of jobs of task τz to each job of τx can be
found. Consider a job τa

x of the first task in the chain. The first (resp. last) reaction to
τa

x is defined as the first (resp. last) job of the last task τz that reacts to τa
x . The reaction

time (resp. data age) is then defined as the maximum interval between a stimulus in a
job τa

x and the finishing time of the first (resp. last) reaction, taken over all instances
τa

x , for all a ∈ [0, HP
Tx

]. Since the structure of the DAG repeats after each hyper-period,
it is sufficient to consider only the first hyper-period.

Algorithm 1: findReactions
Input: C = {τstart, ..., τend}
Output: 1streactions, lastreactions

1 forall a ∈ {0, . . . , HP
Tstart

+ 1} do
2 f r_job = τa

start;
3 lr_job = null;
4 forall τx ∈ C \ τstart do
5 b = 0;
6 while τb

x does not react to f r_job do
7 b++;

8 f r_job = τb
x ;

9 if b > 0 then
10 lr_job = τb−1

x ;

11 if a ≤ HP
Tstart

then
12 1streactions.insert(τa

start, f r_job);

13 if (b 6= null) and (a > 0) and (1streactions(τa−1
start) 6= f r_job) then

14 lastreactions.insert(τa−1
start, lr_job);

15 return 1streactions, lastreactions;

A method to compute the first and last reactions is shown in Algorithm 1. The
algorithm considers every job of the starting task of the chain in one hyper-period,
plus an additional job (to cover the last reactions). The first reacting job ( f r_job) is
set to τa

start. Then, for each task in the chain, we find the first job τb
x that reacts to

f r_job, and we use it to update f r_job. This can happen either in the same hyper-
period of f r_job, or in the next one. The preceding job τb−1

x is instead used to update
lr_job, which keeps track of the last reaction to τa−1

start. Once the whole chain has been
considered, 1streactions and lastreactions are updated. The latter is updated only if b
is not null and if the first reaction to τa

start is different from the first reaction to τa−1
start.

Reaction time and data age can then be simply derived as

RT = max
τa

x∈1streactions
{LFT1streactions − ESTτa

x } (4.35)
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DA = max
τa

x∈lastreactions
{LFTlastreaction − ESTτa

x }, (4.36)

i.e., reaction time (resp. data age) is the difference between the first (resp. last)
moment some data is used by a job of the last task in the chain (LFT) and the first
moment the same data is read from the job of the first task in the chain (EST). Since
the schedule repeats identically after each hyper-period, it is sufficient to consider
all the jobs of the first task in the first hyper-period.

We hereafter prove that Algorithm 1 correctly finds the first and last reactions.
The algorithm considers all the jobs of the starting task in the chain (line 1). For each
of the starting jobs, it iterates over all the other tasks in the chain, always looking for
the first and last reacting job (lines 4-14). Let us consider two consecutive tasks in
the chain τx and τy and only one job a of τx.

• To find the maximum reaction time, the jobs of τy that are said to react to τa
x are

those that are definitely executing after τa
x , i.e., they belong to τa

x ’s descendants,
or their EST is greater than the LFT of τa

x . Since the DAG is schedulable, a
reacting job can always be found (and the loop at line 6 is not infinite) either in
the same hyper-period of τa

x , or in the next one. Once a job τb
x is found to react

to τa
x , it becomes the starting job to find the first reaction between τy and the

next task in the chain.

• The maximum data age of τa
x is strictly related to the first reaction to τa+1

x .
Indeed, the first reaction to τa+1

x assures that the data from τa
x are no longer

used: the last time they were used was by the job preceding the one that surely
reacts to τa+1

x . Thus, when finding the first reaction τa+1
x , the last reaction of τa

x
can be found (line 14).

In the example DAG in Figure 4.3d, data age is 30, while reaction time is 50. The
chains leading to these values are {τ0

0 , τ0
1 , τ0

2 } for data age and {τ1
0 , τ0′

1 , τ0′
2 } for reaction

time, where a prime indicates that the job is in the next hyper-period. However, in
this case it can be noticed that the data age is smaller than the reaction time, which
is counterintuitive. This happens because the reaction time is computed for each job
of the first task of the chain, even if the data produced by that job could be later
overwritten by a more recent one, before other tasks in the chain can actually react
to it. This occurs when the data age is smaller, as in the example. Therefore when
the data age is smaller than the reaction time, the actual reaction time will be always
bounded by the data age value.

4.5.2 Schedulability

To build a feasible schedule for a given number of cores, we apply a list-scheduling
heuristic for non-preemptive DAG, very similar to the Heterogeneous Earliest Fin-
ishing Time (HEFT) algorithm presented by Topcuoglu et al. [116]. We decided to use
a (node-level) limited preemptive scheduling for (i) avoiding job-level migrations,
(ii) reducing cache-related preemption delays, and (iii) minimizing the input-output
delay and jitter [30].

The list-scheduling algorithm is summarized in Algorithm 2. Jobs are sorted in
increasing LFT order (line 3). Given p homogeneous processors, a job is scheduled
at time t only if it is ready and a processor is available. A job enters the ready queue
(line 8) at time t only if (i) its EST is greater than or equal than t, (ii) all its predeces-
sors in the DAG have been executed, and (iii) its LFT is the smallest between all the
remaining jobs’ LFT. The ready queue is sorted in increasing LFT order (line 9). A
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ready job is scheduled if a processor is available and if its execution time, starting
from the current t, does not exceed its LFT (lines 13,16,17). If this last condition is
not met, the algorithm declares the DAG not schedulable (lines 13,14). An example
of the schedule obtained for Example 4.1 is shown in Figure 4.7.

P0 τ0
0

0

τ0
1

7

τ2
0

20 30

P1

0

τ1
0

10 17

τ0
2

20 30

FIGURE 4.7: Schedule produced for the DAG in Figure 4.3d with 2
cores

Algorithm 2: isDAGSchedulable
Input: V, pred, p, EST, LFT, C
Output: true if the DAG is schedulable on p processors, false otherwise
Data: Ready queue of jobs rq = {}, procExec vector

1 pqi = {}, ∀i = 1, . . . , p;
2 nodes = {v0, . . . , vn−1}, n = |V|;
3 sort(nodes) sort by ascending value of LFT
4 for t = 0, 1, . . . , HP do
5 forall node ∈ nodes do
6 if EST[node] > t and all pred[node] have finished and LFT[node] ≤ all

other nodes LFTs then
7 nodes = nodes \ node;
8 rq.push(node);

9 sort(rq) sort by ascending value of LFT
10 for i = 1, ..., p do
11 if rq 6= {} and procExeci == 0 then
12 readyJob = rq.pop();
13 if t + C[readyJob] > LFT[readyJob] then
14 return false;

15 else
16 procExeci = C[readyJob];
17 pqi.push(readyjob);

18 if procExeci > 0 then
19 procExeci = procExeci − 1 ;

20 return true;

4.6 Evaluation

To evaluate our approach, we first use simulation to validate end-to-end latency
bounds as well as schedulability and then compare the proposed method with the
state-of-the-art using a realistic automotive benchmark.
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4.6.1 Evaluation via Simulation

To validate that the DAGs generated with the method presented in this paper com-
ply with the constraints, we developed a simulation tool. The tool uses the DAG to
schedule the individual tasks, which tracks the data propagation through the task
chains under analysis. The execution time of each task is identically and indepen-
dently sampled from the BC to C interval. The schedule is generated according to
EDF, and the deadline is set equal to LFT.

We simulated the best DAG, in terms of schedulability and end-to-end latency,
produced for the application introduced in Figure 4.1. The task set specification
and constraint are detailed in Table 4.2. The latency computed for the given chains
is reported in Table 4.3. The best DAG resulting from the conversion is the one
depicted in Figure 4.8.

Using the simulation tool, the DAG is simulated for 109 ms, which leads to the
following results. Two distributions of reaction time and data age of two task chains
are shown in Figure 4.9 and Figure 4.10. In Figure 4.9 the reaction time plot is show-
ing only one distributions, bounded by the data age. In the DAG, the camera jobs
are serialized to the detection job, leading to only one distribution for the data age,
because the detection job always receives the freshest camera frame. A similar dis-
tribution for the reaction time can be seen for the task chain in Figure 4.10, as the task
chain, is extended with the planner and control task. The data age, however, shows
several distributions. This is due to the higher rate of the planner and control task
with respect to the fusion task. Nevertheless, the data age of the data corresponding
to each control output is always based on the freshest camera frame, which can be
seen by comparing the distribution shapes. The simulation showed that all the cal-
culated upper bounds for data age and reaction time for the four task chains are not
exceeded.

Task set Γ
τi = (Ci, BCi, Pi, Di) Task

τ0 = (7, 5, 50, 50) GPS
τ1 = (12, 10, 50, 50) Lidar
τ2 = (28, 22, 50, 50) Localization
τ3 = (28, 25, 50, 50) Detection
τ4 = (25, 18.9, 50, 50) Fusion
τ5 = (2, 1.8, 25, 25) Camera
τ6 = (6.5, 3, 10, 10) EKF
τ7 = (5, 3.2, 10, 10) Planner
τ8 = (4.5, 1.8, 10, 10) Control

Task chains
chain {τstart, . . . , τend} (Age, Reaction)

{τ5, τ3, τ4} (120, 120)
{τ0, τ2, τ6, τ7, τ8} (120, 150)
{τ1, τ2, τ6, τ7, τ8} (120, 150)
{τ5, τ3, τ4, τ7, τ8} (150, 150)

Scheduling constraints
6 processors

TABLE 4.2: Periodic task set and constraints used for the simulation,
referring to the application of Figure 4.1.
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chain {τx, . . . , τy} (Age, Reaction)
{τ5, τ3, τ4} (75, 98.2)
{τ0, τ2, τ6, τ7, τ8} (105, 65)
{τ1, τ2, τ6, τ7, τ8} (105, 65)
{τ5, τ3, τ4, τ7, τ8} (125, 108.2)

TABLE 4.3: Maximum data age and reaction time for task chains of the
best DAG produced for the task set described by Table 4.2

4.6.2 Evaluation via Benchmark

To further analyze the performance of the proposed method the detailed automotive
benchmark proposed by BOSCH for the WATERS challenge in 2015 [68] has been
adopted. Multi-rate periodic task sets and cause-effect chains are randomly gen-
erated while conforming with the characterization. Task periods are selected with
given distribution, out of the periods found in automotive applications [1, 5, 10, 20,
50, 100, 200, 1000]ms. Cause-effect chains are generated to include tasks of either 1, 2,
or 3 different period wherein tasks of the same period can appear 2 to 5 times. To
obtain a higher utilization, the individual task execution times are generated based
on UUniFast [21]. For the experiments 1000 task set composed of 5 tasks and 15
chains have been taken into account, with a utilization equal to 1.5, considering 2
cores available.

permutation admissible (%) schedulable (%)
min 0.00 0.00 0.00
avg 1.830.48 62.10 61.60
max 18.148.00 100.00 100.00

TABLE 4.4: Statistics about DAG permutations, admissible and
schedulable DAGs on 1000 different task set.

Table 4.4 reports some statistics about the DAG obtained from the 1000 multi-rate
periodic task sets. From the initially generated permutations the 40% is on average
removed due to cycles or a non-schedulable longest chain. However, between the
admissible generated DAGs5, almost the totality is also schedulable on 2 cores.

4.6.3 Comparison with state-of-the-art

Qualitative Saidi et al. [101] present a method to convert a parallel multi-rate task
set with precedence and data edges into a single-rate DAG. However, the end-to-
end latency is not considered, and only one possible DAG is generated. Therefore,
no guarantee is given on reaction time or data age. Moreover, there are no synchro-
nization methods to force task instances to execute within their periods, potentially
leading to a wrong implementation of the system.

Foget et al. [52] present another conversion method, producing different DAGs.
However, neither this work takes into account latency. Different solutions are cre-
ated just for schedulability reasons, picking the version that makes the DAG schedu-
lable with EDF.

5DAGs that have a correct structure (i.e., no cycles and no path greater than the hyper-period) but
that may still be unschedulable.
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FIGURE 4.8: The DAG generated for the task set and constraint defi-
nitions in Table 4.2.

Focusing on data latency, the most related approach is the one introduced by
Becker et al. [17], where the focus is on the computation of data age. In their work,
they can compute data age for a given chain of periodic tasks, given a communica-
tion model (i.e. implicit, explicit or LET). The method allows generating job-level
dependencies to meet latency requirements. However, data age is the only parameter
under their analysis. Moreover, they can optimize end-to-end latency for only a sin-
gle chain. Once job-level dependencies are inserted, all the other chains are affected.
Finally, their work assumes the input task set is already schedulable. Our work has
several improvements over their approach, i.e., (i) the model is more general and
can jointly optimize the latency of multiple chains, (ii) we consider not only data age,
but also reaction time, and (iii) our task allocation and scheduling algorithms also
consider the schedulability of the system.

Quantitative To show that our method dominates the state-of-the-art, we imple-
mented the solutions proposed by Saidi et al. [101], Forget et al. [52], Becker et

6Since no method is proposed by Becker et al [17] to check schedulability, we applied our method
to derive the schedulable task sets.
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FIGURE 4.9: Reaction time and data age of the chain {Camera, Detec-
tion, Fusion}, or {τ5, τ3, τ4}, evaluated in simulation with the red lines

showing the calculated maximum.

Forget [52] Saidi [101] Becker [17] Verucchi [122]
schedulable task set(%) 46.9 21.8 90.56 90.5
1st lowest data age (%) 45.89 17.85 77.81 96.82
2nd lowest data age (%) 2.79 0.09 13.55 3.15
3rd lowest data age (%) 3.03 1.46 6.38 0.03
4th lowest data age (%) 0.00 4.58 2.25 0.00

TABLE 4.5: Schedulability and data age results on 1000 task set com-
pliant to Kramer et al. [68] of 5 tasks and 15 chains, with utilization

equals to 1.5.

al. [17], and tested them on the previously presented automotive benchmark by
BOSCH. Table 4.5 shows the results for the 1000 task sets considered, and all the
15000 task chains, while Table 4.6 offers a comparison of the running times of the
considered methods for larger task sets, i.e., composed of 10 tasks with 15 task
chains.

The proposed method not only dominates the others in term of schedulability,
but also in terms of data age. Given that Forget et al. [52] and Saidi et al. [101] do
not propose a method to compute end-to-end latency, we adopted our algorithm
for this scope. Considering data age, our method produces a DAG that leads to the
lowest end-to-end latency bound in 96.82% of cases. There are some cases in which
Becker et al. [17] method obtains a tighter latency, since it optimizes a single chain.
However, the limitation of that approach is that it is not able to optimize all the
given chains for a task set, while our method optimizes them all. Therefore, we are
willing to sacrifice the latency of some chains for a more balanced improvement of
all chains.

On the other hand, when optimizing a single chain, our method allows finding a
better solution than with the method presented in Becker et al [17]. As an example,
consider the task chain in Example 1. Using the method by Becker et al., a minimum
data age of 40 can be achieved, inserting a precedence constraint between τ0

1 and τ0
2 .
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FIGURE 4.10: Reaction time and data age of the chain {Camera, De-
tection, Fusion, Planner, Control}, or {τ5, τ3, τ4, τ7, τ8}, evaluated in

simulation with the red lines showing the calculated maximum.

Forget [52] Saidi [101] Becker [17] Verucchi [122]
min [ms] 0.002 0.002 0.078 0.002
avg [ms] 0.571 0.022 3.001 21.410
max [ms] 4.422 0.116 16.614 433.033

TABLE 4.6: Execution times in milliseconds on an Intel i7-7700HQ
CPU @2.80GHz.

Instead, our method allows achieving a data age of 30, picking a DAG with additional
precedence constraints.

As can be expected, the improved performance of the proposed algorithm is ob-
tained by paying a somewhat higher computational cost. Table 4.6 shows that our
method is on average about 7 times slower than Becker et al. [17]. We believe such a
slow-down is acceptable for an offline analysis performed at system design time, as
it allows obtaining the best solution for even complex task systems within a reason-
able time.
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Chapter 5

Real-World Real-Time
Applications

With respect to the previous ones, this chapter is more application-oriented. In the
following, three real-world applications of industry 4.0, smart city, and self-driving
cars are described.

This chapter offers the missing link between the theory and the modern real-
time applications. Indeed, the three presented applications are compliant with the
definition of modern real applications given in Chapter 1: they have a considerable
computational demand and high parallelism, due to the exploitation of neural net-
works; they work on many data, obtained from one or more sensors; they run onto
heterogeneous embedded boards and they are subject to real-time constraints.

Working on those applications made it possible to derive the content of Chapter 4
and made us clear that the DAG task model needs extension such as the concepts
of conditionality and heterogeneity. As a contribution to the real-time community,
those three use cases are hereafter detailed and modeled as DAGs, and the code is
made available so that can it be used as a reference for other researchers.

5.1 Industry 4.0: Defect Detection

Visual detection is a pervasively-used technique that consists of finding instances
of semantic objects of some predefined categories within digital images or video
streams. The problem, better known as Object Detection (OD), has indeed the ob-
jective to develop computational models and methods that provide to the computer
the answer to a basic and needed question: “What objects are where?”. In practice,
it is the composition of two separate subtasks: (i) a classification problem and (ii) a
regression problem. Given a user-defined set of categories C and a frame, for each
object in the frame a probability of belonging to one of the C classes should be pre-
dicted; as well as the location of that object in the frame, in terms of bounding box
(BB).

Autonomous driving and Smart IoT (Internet of Things) systems for transporta-
tion and urban surveillance are typically required to detect road users, such as other
cars, bicycles, and pedestrians [19, 112]; and there are many other application do-
mains, ranging from robotics [92], to avionics [65], where different vision tasks are
required upon object detection, such as segmentation, image captioning, or object
tracking.

In the context of industrial automation applications, object detection may be ap-
plied to detect items to be manipulated, or defects to be signalled [71]. The latter
case was the subject of an investigation carried out in a project in collaboration with
Tetra Pak. The goal of the project was not only to identify the best method to detect
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defects in their products but also to point out the most appropriate board to adopt
for that task.

5.1.1 Object Detection Deep Neural Networks

Since 2012, Deep Neural Networks (DNNs) have surpassed the accuracy of classical
methods, becoming the state-of-the-art technology for vision task [137]. Nowadays,
there exists plenty of DNNs that tackle the problem of object detection, and more
and more are proposed every new month.

Conflicting Goals Selecting the best solution out of all the existing ones is surely
a nontrivial task. Not only this field is evolving fast and methods become quickly
deprecated, but one should be also aware of conflicting goals when designing a so-
lution:

i Performance - A good object detector is characterized by two main performance
figures: latency, i.e. the time needed for a single frame to be processed, and
accuracy, i.e. the quality of the output given the input. These represent a well-
known bi-dimensional trade-off: improving one often worsens the other.

ii Power - When targeting embedded platforms, one-stage detectors (which per-
forms classification and localization together) are preferable to two-stage ones
(which split the classification and localization tasks) because of their faster per-
formance, which leaves room for further functionalities on the limited resources
of the computing platform. Some of these constraints, like the platform’s physi-
cal characteristics or price, are independent from performance indicators like the
ones above. The power absorption, instead, directly correlates with the attainable
precision and latency, hence compelling the system design to a third trade-off
dimension.

Strategies to Optimise Inference Regarding fast inference on-device computation,
three major axes have been identified [40] to maximize performances or contain
power consumption.

i Network model design - Reducing the number of parameters in the DNN model is a
very common approach to reduce memory and execution latency while aiming
at preserving high accuracy. Some examples include MobileNets [62], Single-
Shot Detectors (SSD) [77], Yolo [98], and SqueezeNet [63], with a rapidly evolv-
ing state of the art.

ii Model Compression - DNN models can also be compressed, sacrificing accuracy
compared with the original model, to achieve faster performance. There are sev-
eral popular model compression methods, like parameter quantization, parame-
ter pruning, and knowledge distillation. In our work, we adopted quantization,
such as half floating-point precision (FP16) or INT8 inference, as it is a popular
compression method supported on many modern embedded platforms.

iii Platforms - Classic x86 CPU architectures have long been dominating the high-
end segment of the industrial automation domain for central control systems, as
they offer the best sequential performances (throughput and response time) and
easiest programmability. General-Purpose computing on Graphics Processing
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Units (GPGPUs) provide order-of-magnitude improvements in parallel through-
put and in power usage, at a reasonable programming cost. FPGA platforms
share a similar ambition, requiring a higher programming cost, but providing a
more flexible communication paradigm with simpler computational units.

Contributions We propose a platform-optimized setup for hosting
OD-DNN workload for 3 hardware families and 6 platforms: an industrial PC (In-
tel i7-7700), NVIDIA (TX2, Xavier AGX, and Nano), and Xilinx (Zynq Ultrascale+
ZCU102 and ZCU104), with frameworks ONNX Runtime [82], tkDNN with Ten-
sorRT1 and DNNDK v3.02 framework and the Vitis-AI3 respectively. Details on the
boards and relative frameworks can be found in Table 5.1.

TABLE 5.1: Details of the considered boards. N.U. stands for Not
Used for the implementation.

Xilinx XCZU7EV Xilinx XCZU9EG
CPU Arm Cortex-A53 (v8) 4 cores @1.2GHz Arm Cortex-A53 (v8) 4 cores @1.2GHz
GPU Mali-400 [N.U] Mali-400 [N.U]

Memory 2 GiB DDR4 64-bit SODIMM w/ ECC 4 GiB DDR4 64-bit SODIMM w/ ECC
Power ≈25 W ≈30 W
Board Zynq UltraScale+ ZCU104 Zynq UltraScale+ ZCU102

DNN Accelerators 2× DPUv1.4@250MHz 3× DPUv1.4@330MHz
Data types INT8 INT8

Operating system Debian Buster 10.0 Debian Buster 10.0
Framework used DNNDK v3.0 DNNDK v3.0

Module price ≈$1,000 ≈$900
Release year 2014 2014

Intel i7-7700 Nvidia Jetson Nano
CPU Intel i7-7700 4 cores @3.60GHz 128-core Maxwell @ 921 MHz
GPU – Mali-400 [N.U]

Memory 16 GiB RAM 4 GiB LPDDR4, 25.6 GiB/s
Power 65 W 5W / 10W
Board Industrial PC Jetson Nano

DNN Accelerators – –
Data types FP32 FP32, FP16

Operating system Windows 10 Enterprise LTSC 1809 Ubuntu 18.04.4 LTS, Jetpack 4.4
Framework used ONNX Runtime tkDNN with TensorRT

Module price ≈$500 ≈$150
Release year 2017 2019

Nvidia Jetson TX2 Nvidia Jetson Xavier AGX

CPU 4-core Arm Cortex-A57 @ 2 GHz,
2-core Denver2 @ 2 GHz 8-core Arm Carmel v.8.2 @ 2.26 GHz

GPU 256-core Pascal @ 1.3 GHz 512-core Volta @ 1.37 GHz
Memory 8 GiB 128-bit LPDDR4, 58.3 GiB/s 16 GiB 256-bit LPDDR4, 137 GiB/s

Tensor cores – 64
Power 7.5W / 15W 10W / 15W / 30W
Board Jetson TX2 Jetson Xavier AGX

DNN Accelerators – 2× Deep Learning Accelerators [N.U.]
Data Types FP32, FP16 FP32, FP16, INT8

Operating system Ubuntu 18.04.2 LTS, Jetpack 4.4 Ubuntu 18.04.3 LTS, Jetpack 4.3
Framework used tkDNN with TensorRT tkDNN with TensorRT

Module price ≈$400 ≈$1,000
Release year 2017 2018

1https://developer.nvidia.com/tensorrt
2https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#

dnndk
3https://github.com/Xilinx/Vitis-AI

https://developer.nvidia.com/tensorrt
https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#dnndk
https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#dnndk
https://github.com/Xilinx/Vitis-AI
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In our work, we have considered the embedded networks that, at the time of
writing, are the best-performing ones along with the considered metrics, i.e., YOLOv3
and YOLOv3-tiny [97], YOLOv4 and YOLOv4-tiny [24], Mobilenetv2-SSDLite [104],
Centernet-Resnet101 and Centernet-DLA34 [136]. We have re-implemented the OD-
DNNs to perform at best on the chosen hardware, with free and open-source access
to the code for NVIDIA4 and Xilinx platforms5.

We have delivered a systematic and fair comparison of the 7 OD-DNNs, in terms
of mean Average Precision (mAP), latency, throughput, power consumption and
cost on the 6 embedded boards. The setup is uniform on input size, training dataset,
threshold for bounding boxes’ (BBs) confidence, while the platform setup and OD-
DNN implementation are designed to be the best available.

5.1.2 Lessons Learned

The complete results of this project can be found in the paper [121]. Hereafter, some
insights and lessons learned relevant to this thesis are reported.

A fair comparison requires effort To properly compare ODCNNs performances,
network configurations must be as uniform as possible. It would be unfair to com-
pare, e.g., the latency if input sizes are different, or the accuracy when input image
resolution used for training is different. Hence, we decided to choose one of the
most widely used datasets in object detection, i.e. COCO [72]. Input size and train-
ing set were chosen after the newer networks (CenterNet, YOLOv4), using COCO
2017 with input size 512x512. This input size allows discriminating more clearly the
differences between the latencies, while achieving good accuracy.

For CenterNet and YOLOv4 networks, we used the weights from the SOTA, al-
ready fitting our requirements. On the other hand, we trained YOLOv3, YOLOv3-
tiny and MobileNetV2-SSDLite, performing a single, full-precision training per net-
work, and then exporting the obtained weights for the different frameworks.

End-to-end latency is not inference latency For each of the considered OD-DNNs,
the execution time can be divided in: (i) pre-processing to convert the image in the
NN input, (ii) NN inference, (iii) post-processing to convert the output of a NN into
BBs. The end-to-end (e2e) latency is the time elapsed between feeding an image to
the detector, and obtaining the BBs.

In each board, the pre-processing and the post-processing is performed in full-
precision (FP32), while the inference can be quantized (FP16 or INT8). Pre-/post-
processing are performed on the CPU, except for NVIDIA boards, where pre-processing
of every network and post-processing of CNet(D34) and CNet(R101) have been opti-
mized on GPU, implementing a CUDA version of the corresponding (slower) OpenCV
functions.

We performed the tests on 5k images, and we computed maximum, minimum
and average e2e latency over those 5k latency records.

Pre-processing, inference, and post-processing latency are separated in Figure 5.1
using the worst-case. On Intel and NVIDIA platforms, the longest phase is clearly
the inference. For the Xilinx boards, instead, pre- and post-processing are longer.
This can be firstly ascribed to the A53 being the slowest performing CPU of the
considered platforms. Furthermore, the load of the post-processing phase has been

4https://github.com/ceccocats/tkDNN
5https://git.hipert.unimore.it/gbrilli/dpunn

https://github.com/ceccocats/tkDNN
https://git.hipert.unimore.it/gbrilli/dpunn
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FIGURE 5.1: Worst-case execution time divided in pre-processing
(normal), inference (dark) and post-processing (darker) w.r.t. the e2e

latency. ∗ stands for INT8, † for FP32.

augmented so to include the final normalization steps of the NN, which could not be
executed on the DPU because of missing API (i.e. sigmoid for Yolo3 and Yolo3tiny)
or unacceptably slow implementation (i.e. softmax for Mv2(SSD).

There is not a single winner All the tests have been performed on the COCO 2017
validation tests, counting 5K images. For each test the following common metrics
have been considered: (i) mAP 0.5:0.95, being the “de facto” metric for object detec-
tion [100] [76], which tells how good a method is; (ii) best-, average- and worst-case
latency of the processing of a frame, in ms; (ii) efficiency as Frame Per Seconds (FPS)
over the power consumption (W). The power usage has been sampled at 40 Hz on
the NVIDIA and Xilinx boards using powerapp tool6, at 1Hz on the i7-7700 using
Open Hardware Monitor 0.9.2.

For the NVIDIA platforms, all supported data types were considered: FP32,
FP16 for TX2, Xavier AGX and Nano, INT8 for Xavier AGX only. XCZU9EG and
XCZU7EV supported only INT8, and only FP32 is supported by the i7-7700. The
INT8 quantizations have been obtained on 1000 images of the COCO2017 training
set, both on Xilinx and NVIDIA boards.

The collected results of the analysis have been reported in Fig. 5.2, having the
trade-off between mAP-latency above and mAP-efficiency below, where grey, dashed
lines suggests Pareto-optimality curves for each board. For the former trade-off, the
best performance can be found on the top-left corner (i.e. high mAP and low la-
tency); for the latter the best can be found in the top-right (i.e. high mAP and high
efficiency).

Some clear conclusions can be made. Regarding networks, YOLOv4 is the one
achieving the highest accuracy, while YOLOv3-tiny is the best network in terms
of latency and power consumption, but also the one achieving the smallest mAP.
YOLOv3 is dominated by other models and it is the most power greedy. About plat-
forms, Xavier AGX is the clear winner in almost all considered aspects, achieving
the best power efficiency, as well as the highest mAP. Among the NVIDIA boards,
the AGX Xavier dominates the TX2, which dominates the Jetson Nano. The Xil-
inx platforms have a very stable power consumption for all considered networks,
and dominate the i7-7700 in terms of efficiency and inference latency. The i7-7700
is the least efficient board, but it is also the one with better sequential performance,

6https://git.hipert.unimore.it/tetra-pak/dl-arch/powerapp

https://git.hipert.unimore.it/tetra-pak/dl-arch/powerapp
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FIGURE 5.2: Comparison of the different networks on the selected
platforms considering average-case latency and power.

leading to a smaller post-processing latency variance. Moreover, it has comparable
performance w.r.t the Jetson Nano.

However, there is not a single winner among the models, nor among the plat-
forms. It all depends on the requirements and constraints of the applications: the
budget for the platform, the throughput required, the maximum power consump-
tion allowed and so on. The terrific complexity from numerous degrees of freedom
should be therefore guided from the requirements of the final application.

5.1.3 Defect Detection as a DAG

Once a model is chosen an application for defect detection can be developed. The
DNN should be trained on the specific sets of defects to be detected, but this should
be made just once.

The application takes as input a video stream, of a camera, and the detection
task is applied frame by frame. The heterogeneous conditional DAG of the task is
depicted in Figure 5.3.

S Eload img pre infere post

show

throw

FIGURE 5.3: Defect detection task modeled as a HC-DAG

At first, the frame is loaded by subtask load img, then object detection pre-processing
is applied by pre. The data is then offloaded onto the GPU and the inference is com-
puted (infere). The results of the inference are then copied back to the CPU and
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post-processed by post. Finally, there are two conditional constructs: if the product
presents defects, then a message is sent to throw away the current item (throw); if the
visualization is enabled, the task also shows on screen the detected BBs (show).
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5.2 Smart City: CLASS

In the context of smart cities, the use of combined data-in-motion and data-at-rest
analysis provides efficient methods to exploit the massive amount of data generated
from heterogeneous and geographically distributed sources including pedestrians,
traffic, (autonomous) connected vehicles, city infrastructures, buildings, IoT devices,
etc. Certainly, exposing city information to a dynamic, distributed, powerful, scal-
able, and user-friendly big data system is expected to enable the implementation of
a wide range of new services and opportunities provided by analytics tools. How-
ever, there exist several challenges, not only related to size and heterogeneity of data
but also from its geographical dispersion, making it difficult to be properly and effi-
ciently combined, analyzed, and consumed by a single system.

The CLASS project [44], funded by the European Union’s Horizon 2020 Pro-
gramme, faces these challenges and proposes a novel software platform that aims to
facilitate the design of advanced big-data analytics workflows, incorporating data-
in-motion and data-at-rest analytics methods, and efficiently collect, store and pro-
cess vast amounts of geographically-distributed data sources.

The CLASS software stack covers the whole compute continuum, from edge to
cloud, and relies on a well-organized distributed infrastructure. The final goal is not
only to develop a smart city framework, but also to implement four smart city appli-
cations, i.e. (i) digital traffic sign, (ii) smart parking, (iii) air pollution estimation, and
(iv) obstacle detection and tracking, with a real use-case in the Modena Automotive
Smart Area (MASA). MASA is a 1 Km2 area in the city of Modena (Italy), equipped
with a sensing, communication, and computation infrastructure.

The University of Modena and Reggio Emilia is one of the partners of the class
CLASS consortium, in charge of the edge software stack, with edges being both pole-
mounted cameras and smart (or connected) vehicles. Hereafter, the focus will be on
the application that runs on the camera streams to compute obstacle detection and
tracking.

5.2.1 Obstacle Detection and Tracking

From cameras located in the streets, objects can be detected, classified, and tracked.
All the cameras belonging to the infrastructure are supposed to perform those tasks
in real-time and send the extrapolated information to a data aggregator. This ag-
gregator will then de-duplicate repeated information and send messages to the con-
nected cars, which will receive only objects that are relevant to their surroundings.

Geo-localization To perform the above operations, it is necessary to know the real-
world position of each object detected from the cameras. To do so, an extrinsic cali-
bration of each camera in the MASA has been performed, in order to have a mapping
for each pixel in the camera frame to its GPS position on a geo-referenced map.

Real-time requirements Data is constantly being produced and processed and it is
extremely important to guarantee that the results are meaningful by the time they
are computed. This is especially relevant for the Obstacle Detection and Tracking use
case since alerts must raise within a time interval that is useful for the driver to react.
A reasonable metric, considered in the scope of the CLASS project, is to get updated
results at a rate between 10 and 100 milliseconds. Assuming that the maximum
speed of a vehicle within the city is 60 km/h, vehicles will advance between 0.17
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and 1.7 meters. This level of granularity is enough to implement the proposed use-
cases.

(A) Original frame. (B) Undistorted frame.

(C) Object detection. (D) Object tracking.

FIGURE 5.4: Results on various steps of the application.

The flow of the application We have implemented an application called class-edge
and we have released the code open source7.

class-edge takes in input N_streams streams and for each of them perform four
main steps:

• First, frames are retrieved via the Real-Time Streaming Protocol (RTSP). Given
that the image is taken from a camera, it is very likely that it is affected by
distortion. To correct that, undistortion, based on the intrinsic calibration of
the camera, is applied. Figure 5.4a shows an original frame while Figure 5.4b
shows the output of undistortion.

• Object detection is then performed on the undistorted image. For this projects
we picked the tkDNN implementation of Yolov4 [24] (already introduced in
Section 5.1). As already mentioned, this task is divided into three parts, i.e.
pre-processing, inference, and post-processing. An example is given by Fig-
ure 5.4c.

• The detection gives in output a list of bounding boxes (BBs). For each of them,
a single point is picked to represent the whole object, namely the center of the
bottom side of the BB. This pixel is converted first, into a GPS position, and
then in meters. This is the format required from the next step: the tracker.
Indeed, to track and predict the position of the detected objects an Extended
Kalman Filter (EKF) [66] on the real-world position of the object has been ap-
plied. Objects between frames are matched together only if the class corre-
sponds and their distance is under a user-defined threshold. Tracking is not

7https://github.com/mive93/class-edge

https://github.com/mive93/class-edge
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only used to have a more robust detection, but also to have a history of the
objects. The idea of history is given by the lines in Figure 5.4d.

• Finally the information can be sent both to the data aggregator, in an anonymized
form, and to the optional viewer.

5.2.2 class-edge as a DAG

Let us now pick N_streams = 2. The heterogeneous conditional DAG of the task is
depicted in Figure 5.5, and its implicit deadline is D = 100ms.

S E

str1

str2

und1 pre1 inf1 pos1 tck1 msg1

und2 pre2 inf2 pos2 tck2 msg2

show

FIGURE 5.5: class-edge represented as a HC-DAG.

The process is actually composed of 5 threads: 2 threads, one for stream, that
retrieve the stream ad store the image (str1|2); 2 threads that execute the flow of
undistortion (und1|2), detection (pre1|2, inf1|2, pos1|2), tracking (tck1|2) and mes-
sage sending (msg1|2); and an optional thread for visualization purposes (show).

The reason behind this split is to control the end-to-end latency of the applica-
tion. Having all the steps in sequential order would cause the missing of the 100
ms deadline while having high data age and reaction time latencies. Indeed, the
first bottleneck of this application is to retrieve and read the frame from the stream,
especially because the minimum resolution of the considered stream in our infras-
tructure is HD (1920x1080). The second bottleneck is the complete undistort-detect-
track-send flow. Having these two operations in sequence leads to always working
on old data, while separating them improves the performance of the system.

To better understand the problem, some experimental results are reported. The
experiments have been carried on an Intel i9-9900KF (@3.60GHz) coupled with an
NVIDIA RTX 2080Ti. Two streams were considered: (i) stream [1] with an image
resolution of 1920x1080 and rate of 25 FPS, (ii) stream [2] with image resolution
3072x1728 and rate of 30 FPS. A better idea of the timing and the data exchange
of the application is depicted in Figure 5.6.



5.2. Smart City: CLASS 87

stream2
T0 = 40ms

stream1
T0 = 33ms

elaborate
T1 = 100ms

visualize
T2 = 33ms

frame

frame

frame w BBs

FIGURE 5.6: class-edge timing and data exchange details.

Figure 5.7 reports the minimum, average and maximum latencies of subtask
str1|2 (Figure 5.5) over 5k frames, split in three further phases: (i)frame acquisi-
tion, form the RTSP stream, (ii) frame resize to a smaller resolution (i.e. 960x540)
and frame copy to a shared buffer. From the chart, two main observations can be
made. The first is that the most expensive part is the capture of the stream, which
is affected by the original resolution and it’s higher for stream [2]. The second is
that, even if in average str1|2 take between 15 and 20 milliseconds to execute, the
same operation can take up to 160 milliseconds. Given these results, we decided to
set 1920x1080 as an upper bound resolution for the RTSP stream, changing the set-
ting directly on the cameras, so that the maximum execution is always less than 100
milliseconds.

A similar chart for the undistort-detect-track-send flow is reported in Figure 5.8.
Additionally to the already described phases, the copy of the frame from the shared
buffer and the optional viewer feeding have been profiled. From this chart, we can
evince that still there are some differences in the streams, not related to the resolu-
tion but on the scene itself instead. Stream [1] comes from a camera that points on
a roundabout: it’s a dynamic scenario and even though there are many objects, the
trackers don’t last long. On the other hand, stream [2] comes from a camera that
points to a parking lot: it’s a static view, there are many objects and their trackers
are always alive, keeping their information (with a limited history). For this rea-
son, differences in terms of latency can be found in the tracking and viewer phases,
which are proportional to the stored trajectories, while the other phases have similar
duration. In any case, the total time of the flow is always less than 100 milliseconds.
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FIGURE 5.7: Minimum, average and maximum latencies of subtask
str1|2 of Figure 5.5, split in three further phases: frame acquisition,

frame resize and frame copy.
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detect-track-send flow.
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5.3 Automotive: Sensor Fusion

3D object detection and classification are crucial tasks for perception in Autonomous
Driving (AD). To promptly and correctly react to environmental changes and avoid
hazards, it is of paramount importance to perform those operations with high ac-
curacy and in real-time. One of the most widely adopted strategies to improve de-
tection precision is to fuse information from different sensors, like e.g. cameras and
LiDAR. However, sensor fusion is a computationally intensive task, that may be
difficult to execute in real-time on embedded platforms.

Currently, cameras and laser scanners (LiDARs) are the most used sensors for de-
tection. Cameras are used to obtain textures and colors of targets, which are valuable
features for classification of e.g. traffic lights and traffic signs. However, cameras
have difficulties in obtaining depth information and are greatly affected by lighting
conditions. On the other hand, LiDARs can more easily acquire distance and three-
dimensional information, even at long range. They are robust and not affected by
illumination conditions, but they lack color information, complicating the classifi-
cation task. Therefore, fusing data from the two mentioned sensors has become a
trend in the AD field, being a good compromise to obtain good classification and 3D
detection. The main problem of this approach is its high computational cost, which
prevents its adoption in real-time sensitive scenarios.

5.3.1 Online Clustering and LiDAR-Camera Fusion

We present a new approach for LiDAR and camera fusion, that can be suitable to
execute within the tight timing requirements of an autonomous driving system. The
proposed method is based on a new clustering algorithm developed for the LiDAR
point cloud, a new technique for the alignment of the sensors, and an optimization
of the YOLO-v3[97] neural network. Missing details can be found in the paper [123].

(A) Top view. (B) Side view.

FIGURE 5.9: Support for cameras and LiDAR.

Application settings The self-driving prototype used for this work mounts a Velo-
dyne ULTRA Puck VLP-32C LiDAR and 4 Sekonix cameras SF332X-10X with 120◦

FOV mounted on the support shown in Fig. 5.9. The LiDAR is located in the center
of the support, surrounded by the four synchronized cameras covering 360◦. The
support is then placed on the roof of the car.
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The adopted computing platform is an NVIDIA AGX Xavier, whose specifics can
be found in Table 5.1.

LiDAR LiDARs produce a 3D point cloud, which is processed to place 3D bound-
ing boxes (BBs) around the objects via clustering methods. Several types of clus-
tering techniques exist[127, 99]: centroid-based, distribution-based, hierarchical and
density-based clustering. This latter category is the most suitable for processing Li-
DAR point clouds. The most widely adopted algorithm in this class is DBSCAN
(Density-Based Spatial Clustering of Applications with Noise)[46].

To improve existing LiDAR clustering methods for achieving real-time perfor-
mance on the considered embedded computing platforms, three expedients have
been adopted: (i) light cloud preprocessing; (ii)parallelization; and (iii) limited neigh-
bor exploration.

The preprocessing task aims at removing from the sampled LiDAR point cloud
all points corresponding to the ground or higher than the expected height of the
objects to be detected. This allows significantly decreasing the computational com-
plexity of later clustering steps. Additionally, the height dimension is dropped and
the clustering algorithm is performed only on two dimensions, i.e. latitude and
longitude. This choice follows by assuming objects are never placed one on top of
another.

The search of the neighboring points is then parallelized on a GPU, creating a
thread for each point. Moreover, the exploration is bounded to a user-defined thresh-
old, checking at most 2W points for each object in the cloud. This is a reasonable
choice for a LiDAR sensor because of the nature of the output data, where cloud
points are semi-ordered by horizontal angle. Exploiting this feature, the search for
neighboring points can be limited to adjacent angles. The proposed Window-Based
Lidar Clustering (WBLC) receives a 2D point cloud as input, and produces the iden-
tified clusters as output. The algorithm is divided into two parts: the searching for
neighbors and the merging of clusters.

Cameras From camera frames, objects are detected and classified with tkDNN ver-
sion YOLO-v3[97] (already introduced in Section 5.1)). Moreover, training from
scratch has been performed on the BDD100K Berkeley Dataset[131] (with 10 classes)
to better recognize road objects.

Camera frames Object detection

LiDAR cloud Clustering

Cylindrical 
Projection

IoU Similiarity

FIGURE 5.10: Fusion scheme.

Fusion To perform sensor fusion a new method to align cameras and LiDAR has
been proposed. The alignment of the sensor is an offline procedure that has to be
executed once, following the initial intrinsic calibration of the camera. It is inspired
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by the method proposed by Velas et al.[119], which adopts a green flat panel with
four holes, however, instead of projecting the LiDAR cloud on the camera’s plane,
it projects the cameras in the LiDAR cylindrical representation. It consists of five
phases (i) feature extraction from both sensors, (ii) cylindrical projection of cameras
(iii) cylinders alignment (iv) evaluation, and (v) correction. Once this procedure is
concluded, a calibration file is produced.

Camera frame BBs and clusters given by WBLC are projected thanks to the pre-
computed calibration file and sequentially merged. The Intersection over Union
(IoU) metric is adopted to check if a BB and a cluster match the same object. If the
IoU is greater than a user-defined threshold, they are deemed to represent the same
object. In this case, clusters are labeled using the corresponding BDD100K class (e.g.,
pedestrian, car, bus, traffic light, etc). Clusters that do not match any BB (e.g., trees,
bins, etc.) are labeled with the “unknown” class.

A complete overview of the fusion approach is depicted in Figure 5.10, while
Table 5.2 reports the results of the tested application on the AGX Xavier in terms of
minimum, average and maximum execution time over 5k frames.

Clustering Detection Fusion
min (ms) 1,98 26,07 0,18
avg (ms) 2,96 28,86 0,57
max (ms) 7,44 38,50 1,20

TABLE 5.2: Execution times on the AGX Xavier, statistics computed
over 5K frames.

5.3.2 Sensor Fusion as a DAG

S E

LiDAR preL WBCL

fusion

inferepreC postC project

cam1

cam2

cam3

cam4

show

FIGURE 5.11: Sensor fusion represented as a HC-DAG.
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This application can be seen as a sporadic DAG task with T = 100ms, and it is
depicted as so in Figure 5.11. The DAG task is both heterogeneous, because multi-
processor CPU and GPU are used, and conditional, given that the visualization is
optional. To better understand the flow:

• the subtask LiDAR retrieves the point cloud from the sensor, that is then pre-
processed by subtask preL and then offloaded onto the GPU to permorm the
WBCL subtask.

• there are four subtask (cam1 to cam4) that collect the frame from the four differ-
ent cameras. Then the subtask preC pre-process them to obtain the format re-
quired by YOLO-v3. The pre-processed frames are offloaded onto the GPU and
the inference is computed. Finally the subtask postC applies the post-processing
and project projects the 2D BBs into the cylindrical representation.

• the subtask fusion fuses the output of the clustering and the detection, once the
previous subtasks have completed.

• the subtask show is in charge of the visualization and it is optional.

LiDAR
T0 = 100ms

clustering

T2 = 100ms

cameras
T1 = 33ms

detection
T3 = 33

fusion
T4 = 100ms

visualize
T5 = 33ms

cloud

frames

clusters

BBs

3D BBs

FIGURE 5.12: Sensor fusion timing and data exchange details.

Application as a Multi-Rate Task set This same application could also be modeled
as a multi-rate task set, which is depicted in Figure 5.12. The periods of the sensors
are given, T0 = 100ms for the LiDAR and T1 = 33ms for the cameras; while the
period of the visualization is bounded to T5 = 33ms. The task clustering and detection
inherit the period from the LiDAR and cameras respectively, but the fusion period
needs to be T4 = 100ms in order to have the data from the LiDAR.
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Chapter 6

Conclusions and Open Problems

6.1 Conclusions

As introduced in Chapter 1, in the context of real-time system on new-generation
heterogeneous embedded boards, an effort was necessary towards proper models
for modern real-time applications. This was the focus of this thesis, carried out in the
three central chapters, that represent separate but synergistic efforts in that direction.

Chapter 3 reported a well-organized survey of the real-time DAG literature, an-
alyzing different DAG models (i.e. DAG, C-DAG, H-DAG, HC-DAG), for global,
partitioned and federated scheduling, considering different scheduling algorithms
(e.g. EDF, FTP), preemption policies (i.e. FP, LP, FNP) and deadlines types (i.e. con-
strained, implicit and arbitrary). Besides the survey, a library comprehensive of all
the SOTA methods has been implemented which made a fair evaluation of the dif-
ferent methods possible.

Two goals have been accomplished. First, it emerged that the most suitable
model for new-generation real-time system is the Heterogeneous Conditional-DAG,
which comprises the concepts of parallelism, conditionality, and heterogeneity in a
single model. Second, a collection point for a clear and fair comparison among meth-
ods related to the DAG task model and its extensions has been achieved, thanks to
the joint efforts of translating each method into a common convention and imple-
menting them in a single library.

The hope is that the real-time community will use this thesis as a point of refer-
ence, to start working on this subject and improve the state-of-the-art.

Chapter 4 focused instead on the problem of end-to-end latency of applications
that contemplates input sensors (as most of all the robotics applications), multi-rate
tasks, and data exchanges among them. To constrain both latencies and schedula-
bility, a novel method has been proposed to convert these multi-rate task sets into a
DAG that respects the given restrictions.

The introduced solution was proved to dominate the existing approaches, cor-
rectly compute data age and reaction time and it is right now the state-of-the-art to
compute latencies on DAGs.

This method, and more in general the aspects evaluated in this chapter, should be
carefully analyzed when designing real-time applications that involve sensors and
actuators, in order to deploy predictable and safe software.

Chapter 5 introduced three real-world examples of real-time applications spacing
from industry 4.0, to smart cities and self-driving cars. The detailed applications run
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on new-generation embedded boards, make use of neural networks, and have been
modeled via HC-DAGs.

The application point-of-view was needed to highlight the importance of both
the HC-DAG task model and the end-to-end latency problem. This is what compa-
nies are looking for, what modern applications require, and what makes the contri-
butions of the previous chapters worthy.

All the examples presented are correlated with the corresponding code, so that
they can be exploited also by other researchers as real use-cases.

Open Code In the real-time community, unlike other communities, it is not com-
mon use to share the implementation of the proposed solutions and make the code
available. In Chapter 3 more than 40 methods have been deeply analyzed. Among
those, only three of them [81, 27, 86] have the code publicly available, and one [48]
was privately shared1. Indeed, many papers compare their results with them, rather
than the state of the art at the time of their writing, which could also be seen as un-
fair. The problem is that implementing solutions proposed by others is not trivial.
The algorithms can be very complex and if some little, but important, details are
missing it is easy to develop a method that is not exactly the same thought by the
authors.

It is then of paramount importance for the research to have available implemen-
tations of the proposed and published solutions. Not only to be able to reproduce
the results and compare to them but also to let other researchers start from there,
improve what exists, and also find errors.

The aim of the researcher is to go towards innovation, together, and we, as a
community, should facilitate others to start from our work and make it better. This
is also the reason why in this thesis, every application was presented along with its
corresponding code.

6.2 Open Problems

Working on the assessment of Chapter 3 and being involved in several projects like
the ones presented in Chapter 5 made it clear that in the context of the real-time
models, there are still many open problems. To correctly and fully address modern
real-time applications, many further steps need to be done.

Exact tests An input requested from the real-time community is the development
of exact tests for DAG task models. As shown in Section 3.1.5, the existing tests for
DAGs are only a few. Moreover, there are no solutions for DAG task sets, conditional
or heterogeneous DAGs.

It is known that the problem of schedulability of even one single DAG is NP-
hard in the strong sense, therefore there is no way that polynomial algorithms will
be produced (unless eventually it will be shown that P=NP).

However, having exact solutions even for small examples would be very impor-
tant to understand the goodness of every sufficient test. Indeed, we can now com-
pare methods and see if one dominates the other, but we are missing a ground-truth
saying how far we are from the exact solution.

1to Casini et al. [35].
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The Heterogeneous Conditional DAG As shown in Chapter 5, modern applica-
tions cannot be represented by the DAG task model only. The use of accelerators,
additional engines, and the optional parts in the code of the tasks are aspects more
and more frequent in real-world tasks. The DAG model is not expressive enough to
represent their entirety.

The most suitable model is therefore the conditional heterogeneous DAG. How-
ever, as shown in the survey chapter, there is only one work [133] that focuses on
that. Here again, the real-time community is called to contribute.

Memory, Energy, I/O and Bandwidth One of the major drawbacks of this thesis
is that it does not contemplates crucial aspects as memory, energy consumption, in-
put/output (I/O), and bandwidth. In modern embedded real-time systems those
aspects can’t be ignored anymore. Memory and bandwidth are shared among sev-
eral heterogeneous computing engines, not on one but on many levels. Applications
require high performance, high computation, and MiB (and even GiB) of data are
moved from sensors, among engines, and to actuators. The models used to repre-
sent tasks and applications need then to be aware of those aspects.

However, in the literature very few works take into account, for example, mem-
ory [33, 34] or energy [56]. In hard real-time systems, especially, this can lead to
serious problems. The interference caused by the competition on those shared re-
sources has already been proven to be heavy and to seriously affect predictability.

Regarding memory, a solution to mitigate contention and control accesses was
proposed by Pellizzoni et al [91] with a Predictable Execution Model (PREM) (also
knows as the three-phase model). Each task in PREM is divided into three phases:
(i) read, (ii) execute, and (iii) write. Thanks to that, the computation and the data
fetching can be separately treated and memory accesses can be scheduled as well. A
natural union with the DAG model, as already suggested [35, 133] or considered [33]
in other works, would be to have the three phases for each node in the DAG. This ex-
tension would clearly complicate the schedulability analysis but would start solving
the problem of memory contention.

Naturally, this solution introduces another huge problem which is not only the
modeling of memory accesses but also the handling of the memory for real-time sys-
tems. Indeed, to enhance these new-generation embedded board with predictability,
techniques such as cache partitioning need to be adopted and implemented. This is
another decisive issue to be addressed in our community, as many researchers and
start-ups like Minerva2 are starting to do, exploiting the power of virtualization.

2http://minervasys.tech/

http://minervasys.tech/
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