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Abstract

In the Big Data era, the adequate management and analysis of data represents one of the
most challenging activities. In the field of data management, a first reason is the constant
growth in volumes, heterogeneity (in formats and quality) and dynamism of data. At the
same time, numerous concerns about data security and privacy, and the traceability of the
related management processes affect this discipline. On top of this practice, data analytics,
conducted mainly through Machine Learning techniques, is instead subject to problems
such as the availability of labeled data for their training, their complex configuration, the
interpretation of their behavior, and their more mature and engineering adoption.

This thesis examines in detail the challenges and opportunities that characterize three hot
topics: 1) data integration, 2) the cooperation between relational technology and Machine
Learning and 3) data exploration.

Data integration is the task that combines multiple heterogeneous datasets in a unified
knowledge representation, and one of its most critical aspects is its evaluation. It is currently
achieved through a time-consuming try and error approach where expensive domain experts
are required to manually evaluate the integration results. To solve this problem, an approach
for its unsupervised evaluation is presented, which is based on the analysis of the word
frequency distributions of the datasets involved in the process.

A second topic analyzed is the integration of ML capabilities within RDBMS for the
implementation of inference tasks of ML pipelines. The main idea is to perform the inference
phase directly in the database where the data resides, rather than extract and upload them
to external and dedicated ML frameworks, with the consequent performance and safety
disadvantages. To cope with this issue, MASQ (Machine Learning As Query) is presented, a
library aiming at translating end-to-end ML pipelines into SQL queries to be used for solving
ML inference tasks directly within relational databases.

Finally, this thesis examines the problem of data exploration and explanation, which
nowadays requires the adoption of user-friendly and interactive tools for searching for
relevant information within large repositories. In this context, an approach for the interactive
generation of compact and informative descriptions of a dataset, able to satisfy task-specific
and multi-faceted user needs, is presented.





Sommario

Nell’era dei Big Data, l’adeguata gestione ed analisi dei dati rappresenta un’attività complessa
e sfidante. Nell’ambito della gestione dei dati, una prima ragione di tale criticità è legata alla
costante crescita dei volumi, dell’eterogeneità (nei formati e nella qualità) e del dinamismo dei
dati. Allo stesso tempo, tale disciplina è affetta da altre problematiche, quali la preservazione
della sicurezza e privacy dei dati e la tracciabilità dei relativi processi di gestione. L’analisi
dei dati, condotta principalmente attraverso tecniche di Machine Learning, è invece soggetta
ad altre criticità, come la disponibilità di dati etichettati per il loro addestramento, la loro
complessa configurazione, l’interpretazione della loro logica di funzionamento e la loro
adozione più matura e ingegneristica.

Questa tesi esamina in dettaglio le sfide e le opportunità che caratterizzano tre temi di
forte interesse per la comunità scientifica: 1) l’integrazione dei dati, 2) la cooperazione tra
tecnologia relazionale e Machine Learning e 3) l’esplorazione dei dati.

L’integrazione dei dati è l’attività che combina molteplici sorgenti dati eterogenee in una
singola rappresentazione unificata della conoscenza, ed uno dei suoi aspetti più critici è la
sua valutazione. Attualmente essa è realizzata attraverso un costoso (sia in termini di tempo
che di denaro) approccio iterivativo nel quale ad esperti del dominio è richiesto di valutare
manualmente l’esito del processo d’integrazione. Per risolvere questo problema, in questa
tesi si esamina un approccio per la sua valutazione senza ricorrere a supervisione umana, che
si basa sull’analisi delle distribuzioni di frequenza delle parole delle sorgenti dati coinvolte
nel processo.

Un secondo argomento analizzato è l’integrazione di funzionalità di Machine Learn-
ing (ML) all’interno di Relational Data Base Management System (RDBMS) per
l’implementazione della fase di inferenza di modelli ML. L’idea principale è quella di
eseguire tale attività direttamente nel database dove risiedono i dati, piuttosto che estrarli e
caricarli in esterni e dedicati framework di Machine Learning, con i conseguenti svantaggi di
performance e sicurezza. In risposta a questa esigenza, in questa tesi viene presentato MASQ
(Machine Learning As Query), una libreria che è stata progettata per convertire pipeline ML
in query SQL da utilizzare per eseguire all’interno del database l’attività di inferenza.
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Infine, questa tesi esamina il problema dell’esplorazione e spiegazione dei dati, che
oggigiorno richiede l’adozione di strumenti sempre più intuitivi ed interattivi per la ricerca di
informazioni rilevanti all’interno di grandi archivi. In questo contesto, viene presentato un
approccio per la generazione interattiva di descrizioni compatte ed informative di un dataset,
in grado di soddisfare le variabili esigenze degli utenti in funzione anche del problema che
intendono risolvere.
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Chapter 1

Introduction

Nowadays, data acquisition and storage processes can be achieved at low cost due to signifi-
cant advances in technology. Consequently, many aspects of everyday life are monitored,
converted into digital form and the resulting raw data are stored for future processing. This
trend has mainly been embraced in the enterprise, where the digitalization of business
processes makes it possible to check their health status and identify their directions for
improvement aimed at increasing business outcomes. However, obtaining these benefits is
bound to the adequate use of data management and data analysis techniques, which represent
the essential building blocks for an effective and profitable use of data. The first guarantees
high levels of consistency, quality, updatability and security of the data, while the latter
enables the extraction of insights to integrate into appropriate actions aimed at increasing the
company business. In the Big Data era, these practices have to face multiple challenges. The
main criticalities of data management concern the integration of multiple, high-dimensional
and heterogeneous data sources, the interactive exploration of data at a glance, the preser-
vation of data security and individual privacy, etc. On top of them, data analytics, mostly
conducted through ML-based techniques, is instead subject to other problems, such as the
availability of labeled data for their training, their complex configuration, the interpretation
of their behavior, and their more mature and engineering adoption.

This thesis specifically analyzes 1) the problem of data integration, with related issues
regarding its evaluation in business contexts, 2) the integration of ML capabilities within
RDBMS, focusing on the inference of ML pipelines, and 3) the interactive exploration and
explanation of datasets guided by task-specific and multi-faceted user needs.

Big Data Integration. Data integration is one of the most important data preprocessing
steps before applying data analysis methods. As evidence of this, consider that its application,
together with other data cleaning practices (missing values imputation, feature extraction,
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etc.), occupies about 70-80 % of the time that data practitioners spend in preparing the
data [47]. Driven by the intuition that data expresses greater value when integrated and linked
together, it combines multiple heterogeneous datasets into a unified knowledge representation.
Although it has been under study for several years, many challenges still afflict this discipline.
First of all, it has to face the constant growth in volumes, heterogeneity and dynamism of
data. Secondly, this task is still characterized by the active involvement of humans, which
makes it an expensive and time-consuming process and limits its use in complex business
scenarios. In this task, human intervention, mostly domain experts with limited technical
skills, consists in verifying the correctness of the integration result, identifying conditions of
systematic errors and proposing indications for improving the integration process. This work
is not limited to isolated events, but is part of an iterative development cycle that generates
an integration result through the application of repeated and progressive changes. This is
motivating the data integration community to invest more and more efforts in drastically
reducing human intervention within this workflow.

The main approaches to overcome such issue are based either on crowdsourcing tech-
niques [153, 152, 151, 37] or on active/online learning methods [12, 17]. In the former case,
many and very cheap users are exploited to quickly annotate large amounts of data but they
are inexpert and pose the challenge of guaranteeing an expected quality. In the latter case,
the effort required to domain experts is optimized by trying to focus it on the fewer cases
that help to discriminate among data integration methods; however, training such learning
methods is not trivial and there is still much room for improvement.

In Chapter 2 this topic is approached from a completely different point of view, looking
for an unsupervised way to evaluate the quality of an integration process. Following this
direction, a novel unsupervised measure, based on the comparison of the word frequency
distributions of the involved datasets, is proposed. The expected advantages deriving from
its adoption are: 1) the greater automation in the realization of effective integration results,
with the consequent reduction of development times, and 2) the reduction of costs deriving
from the use of expensive domain experts. This work is under review, but its preliminary
experimentation is available in [107].

In-DBMS Machine Learning. Databases represent a popular, reliable and highly perform-
ing tool for managing business data. Based on a recent analysis conducted by the well-known
Kaggle platform, 65% of data analysts rely on this technology for representing and managing
their data. The reasons for its pervasive use are related to its proven ability to enable strict
data governance, a requirement nowadays more and more pressing especially in the business
environment. As evidence of this, consider for example the recent provisions on data privacy
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that the European Community has promoted through the GDPR. Parallel to the consolidation
of relational technology, numerous advances have been made in the field of data analytics,
i.e. the set of practices focused on extracting knowledge from data. Mostly characterized by
Machine Learning (ML) techniques, this discipline is transitioning from an R&D phase, for
the exclusive use of specialized laboratories, to a mature phase where it can be adopted in
business applications. However, this maturation process is still far from being completed.
In fact, these practices are still unable to meet the strict data governance requirements of
the industry: 1) most machine learning techniques are not directly interpretable by humans,
limiting their debuggability and the confidence in their adoption, 2) this technology is affected
by high management costs, the so-called technical debt, which make the production phase
and the updating over time of ML models critical, and 3) ML techniques pay no attention to
security and privacy concerns.

Based on these issues, various studies are being conducted to identify points of intersec-
tion between the strict data governance enabled by relational technology and the pervasive
use of machine learning. Several works have already shown that by increasing the support
of parallel/distributed database systems for recursive and iterative processing (adopted by
gradient-descent-based approaches) and for the optimization of very large computation plans,
it is possible to partially adapt these systems also for solving machine learning and data
analytics tasks [132, 67, 86, 118]. This would provide significant advantages, such as the
removal of expensive ETL cycles, needed for preparing database data for their injection into
dedicated external analytic systems (and vice versa), the enabling of transparent scalable
distributed computations integrated with recovery, traceability and debuggability features. At
the same time, numerous challenges affect this problem, such as 1) understanding the most
advantageous level of detail where to integrate analytics functionalities within a DBMS and
2) adapting the relational execution model, which relies on tuple-based operations, with the
iterative, operator-centric and two-phase-based (i.e., train and test) ML workflows.

These works mostly focus on (1) the training aspect of ML, and (2) on optimizing specific
workloads relying heavily on linear algebra. However, when referring specifically to ML
analytics, there are several aspects of its workflow to consider, such as the implementation
of a broader governance process aimed at monitoring ML effectiveness, performance and
other aspects for its maintenance over time. This recently motivated the community to start
to focus on the ML problems beyond just training. Examples are input data validation and
cleaning [121, 23], model deployment [11] and technical depth remediation [22].

Following this direction, Chapter 3 proposes an approach for integrating ML capabilities
within RDBMS, mainly focusing on the in-DBMS execution of ML pipeline inference tasks.
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It represents a rather unexplored topic in the literature, and it is somehow surprising, in fact,
consider that:

1. ML model deployment and prediction serving are responsible for 45-65 % of all
running costs of an ML workflow [9];

2. models are often trained once and served many times (e.g., rendering of web pages
based on users’ profile, batch prediction of asset prices based on historical data), and
this pattern appears quite amenable for in-DBMS execution;

3. applications where prediction serving will likely be used (e.g., websites, smart BI
dashboards) are often backed by a DBMS;

4. when data already resides in a database, execution of in-DBMS predictions is a natural
choice, whereas a different solution will require to pull the data out of the database.
This not only is a path not always practicable, for instance, if for security reasons data
cannot be moved outside the database, but it also causes performance cost and high
maintenance costs.

These observations are further corroborated by the fact that commercial databases are
starting to surface functionalities for expressing model predictions directly from SQL state-
ments [94, 56, 10, 33]. Pushing the execution of predictions directly into the DBMS by
translating ML pipelines end-to-end into SQL is therefore the natural next step.

To prove whether DBMSs are a good fit for ML inference, Chapter 3 presents MASQ, a
library whereby trained ML pipelines are translated into standard SQL. This work is under
review, but a demo and a technical report are available in [26] and [110] respectively.

Data exploration and explanation. The great availability of raw data poses also serious
challenges in identifying and explaining the most relevant information for the realization of a
certain task or to support business decisions. Consider for example the scenario where an
analyst spends a significant amount of time searching meaningful data sources within the
data lake of her organization or on the Web in order to conduct specific data-driven tasks.
This problem is nowadays further aggravated by the fact that many data enthusiasts might
not always be database-savvy. This has stimulated the creation of easy-to-use and interactive
systems that can satisfy these requirements. A large plethora of approaches facilitates
data management such as data debuggers [38, 72], data explanation systems [127, 159],
exploratory search systems [129], outlier detectors [161], subgroup discovery systems [14,
61, 63] and so on.



5

Chapter 4 focuses on the subgroup discovery problem, a descriptive data mining field
that aims at identifying interesting groups of individuals, where “interestingness is defined
as distributional unusualness with respect to a certain property of interest” [14, 158]. More
specifically, this chapter describes the application of a subgroup discovery technique for
performing data explanation and exploration on structured datasets.

The proposed approach exploits the concept of data description, a compact, readable
and insightful structure formed by predicates, and allows to make a (large) set of data
understandable at a glance by a human user. The main idea behind this approach is to support
task-specific and multi-faceted user needs, such as the summary understanding of the content
of a dataset in data explanation tasks or the more targeted analysis of its specificities in
outlier detection tasks. The proposed approach thus performs both data explanation since it
builds descriptions that provide users with an explanation of the content of a dataset, and data
exploration since it allows users to interactively customize the ways the descriptions are built
supporting different modalities for describing and visualizing the data. This work has been
published in [113], and a Web prototype of the developed approach is available in [111].





Chapter 2

Data integration

Data integration is the task that integrates multiple heterogeneous data sources into a single
clean dataset, and represents one of the most challenging and long-lasting research topics
that the scientific community is confronted with for the last 30 years [55].

There are numerous application contexts for this task, such as the integration of different
product catalogs in e-commerce systems, the combination of company data with information
extracted from social networks for marketing analysis, etc. Testimony of this success is
the generation of a rich and booming market, which produced in 2019 a growth of 6.8%,
reaching nearly $ 3.1 billion [93].

Despite all this research work, data integration is still far from being a solved problem
and it is even less mature when applied in a real production context. Apart from its intrinsic
complexity, one of the barriers to fully empowering data integration is the human effort
needed for evaluating and tuning data integration approaches. Indeed, you need to resort to
controlled datasets, built on top of a manually created ground-truth, in order to compare your
approach against this gold standard and score it accordingly. This is a long and economically
demanding process, it presents serious challenges for scaling it up at the huge amounts of
data needed in a real business scenario, and it is not able to keep pace with the quickly
evolving data sources that you find in a real context and that call for a repeated over time
and/or incremental integration process.

The main approaches to overcome such issues are based either on crowdsourcing tech-
niques [153, 152, 151, 37] or on active/online learning methods [12, 17]. In the former case,
many and very cheap users are exploited to quickly annotate large amounts of data but they
are inexpert and pose the challenge of guaranteeing an expected quality. In the latter case,
the effort required to domain experts is optimized by trying to focus it on the fewer cases
that help to discriminate among data integration methods; however, training such learning
methods is not trivial and there is still much room for improvement.
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The expectation is that the data integration community will focus in the coming years
to fill this gap through the creation of new techniques for its (semi-) automatic evaluation,
which would have a positive impact on its more widespread and mature use.

This chapter examines this issue in detail. Section 2.1 provides an introduction on the
implementation and evaluation of a generic data integration pipeline, in Section 2.2 an
analysis of the state of the art is presented and in Section 2.3 a possible approach for the
unsupervised evaluation of a data integration approach is proposed. This work is under
review, but its preliminary experimentation is available in [107].

2.1 Preliminaries

This section provides the preliminary concepts for the implementation and evaluation of
a data integration task, providing the basis for understanding the main critical issues and
identifying promising directions for future contributions.

2.1.1 Data integration pipeline

From a technical perspective, the data integration process is implemented through a pipelined
architecture, which consists of three major steps: schema alignment, entity resolution, and
data fusion [41], and a representation of its workflow is provided in Figure 2.1.

Fig. 2.1 Data integration pipeline.

Schema alignment

The first step aims to create a single and shared schema to represent the information of all the
data sources to be integrated. This is necessary for several reasons: each data source in fact
can 1) adopt different data format (structured, semi-structured, completely denormalized), 2)
model differently the same semantic concepts (e.g. the name of a person can be modeled
through a single "full name" attribute or through two distinct attributes "first name" and "last
name") and 3) use different terminologies (e.g. the name of a product can be indicated both
as "product" and "product name").
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Entity resolution

Once a single representation of the data is provided, an entity resolution task is applied,
which consists in identifying all the information that refers to the same real-world entity. The
same entity can be described by the data sources in multiple variants, which mostly derive
from syntactic variations (e.g. abbreviations, different order of tokens and / or different
languages). It represents a complex task and is typically divided into 3 phases: blocking,
entity matching and clustering (or transitive extension).

Blocking. A naive solution is to examine each pair of entities to verify that they describe
the same real-world entity, however the dimensionality of the datasets makes this type of
approach completely prohibitive in computational terms. The role of the blocking phase is
to limit this search space by comparing the pairs of entities that have a higher probability
of representing a match (i.e. referring to the same real-world entity). Assuming to integrate
data about organizations, a possible blocking technique is to group all companies based in
the same country.

Entity matching. Once the entities have been grouped according to a certain criterion, the
entity matching phase identifies the pairs of entities that refer to the same real-world entity
within each block. Numerous approaches have been proposed: from rule-based methods,
which exploit combinations of similarity functions applied to each pair of attributes, to
machine learning / deep learning models. The latter approach the problem as a binary
classification task, in which a training dataset, consisting of a series of pairs of entities
labeled as "match" or "non-match", is used to train a classifier that will acquire the ability to
identify matching entities.

Clustering. The purpose of the clustering phase is to transitively extend the pairwise knowl-
edge of entity correspondence, in order to group all the entities that refer to the same
real-world entity. It is evident in fact that if an entity A corresponds to an entity B, which
matches a third entity C, then A and C must also describe the same real-world entity. More
formally, entities are assumed to refer to the same real-world entity when the matching
elements form a clique [48]. The most common approach to carry out this operation is to
represent the matching relationships between entities into a graph (where each node corre-
sponds to an entity and the edges express match or non-match relationships) and calculate the
connected components. Each connected component will correspond to a real-world entity.

Data fusion

The final step of the data integration pipeline is the data fusion, whose goal is to generate
a single integrated representation for each real-world entity. In more detail, this operation
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Fig. 2.2 Try and error approach to data integration.

applies some policy that merges the entities contained within the same cluster. In general
terms, there is no standard way to accomplish this task, as it is typically driven by the user or
domain knowledge. Supposing to assign to each data source a measure of reliability, the data
fusion phase could, for example, simply select the entities deriving from the most relevant
source. Other approaches could select the entities with the greatest information coverage,
preferring those with few missing values.

2.1.2 Data integration evaluation

The data integration process is typically addressed via a try and error approach where a
candidate integrated source is created by means of software applications and domain experts
are then required to evaluate its quality and correctness. The evaluation, then, leads to
modifications to the software and to the creation of a new improved release of the integrated
source, that is subject to further evaluation. This process is iterated until the experts are
satisfied with the result obtained, and its representation is provided in Figure 2.2.

The correctness of the result of an integration process can be measured by metrics such
as accuracy, or error rate, which are used to evaluate the extent to which the integrated data
source represents the original data sources. Nevertheless, the quality of the integrated source
can only be assessed by an expert who has to perform the time-consuming task of manually
inspecting the results of the integration process. This process becomes particularly heavy in
real business scenarios, where the large amount of data makes checking all tuples infeasible.
Moreover, in the case of evolving sources, where the content of the sources to integrate
changes over time, and the integrated data source has to be kept aligned with them, or in case
of an incremental integration process, where new sources are added over time, the evaluation
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has to be performed over and over. Therefore, it is crucial to support users and domain
experts with effective tools that facilitate and make the evaluation process less demanding.
In Section 2.3 an approach to fill this need will be presented.

2.2 Related Work

Data Integration and Entity Resolution

Although numerous efforts have been carried out in the field of data integration, several
challenges still afflict this discipline, making it a research area that is still growing rapidly.
Among the most recent surveys that address this issue there are [96, 41]. They analyze the
entire data integration pipeline, identifying its main challenges and opportunities. Most of the
other works instead focus on its single constituent building blocks, such as data fusion [122,
40] and entity resolution [52, 103]. The latter in particular is the area in which the greatest
efforts of the last 3+ decades have been concentrated. Several systems capable of scaling on
large datasets and making use of advanced blocking techniques applicable also on schema-
less data have been developed, such as [115, 140]. Several projects have also been financed in
the industrial field, among these Magellan [74] is the main exponent. In parallel, a number of
“integration functions” to discover and match the different structures that represent the same
real-world entity have been proposed [154, 100, 141, 75]. Among these, rule-based [154,
141] and machine learning (ML) techniques are the most common ones. In the machine
learning field, Deep Learning based techniques have recently proved particularly effective in
solving this task. Some examples are DeepER [42], DeepMatcher [100], DITTO [84] and
many others [166, 24]. Regardless of the use of ML or not, ER approaches require either
careful manual configuration by domain experts or a large amount of labeled data [105, 83].
To cope with the first issue, methods have been proposed for the fine-tuning of parameters
such as [109], but all proposals require some human supervision. Regarding to the second
problem, many semi-supervised approaches in the field of active learning [12, 17] and crowd-
sourcing [153, 152, 151, 37] have been introduced. The fundamental idea behind these
techniques is to limit the validation intervention required by domain experts to a minimum
or to resort to crowd-workers. However, these methods suffer from a poor quality control
mechanism: indeed, the former approach focuses on optimizing recall while ensuring a
user-specified precision level [29, 48], while crowd-based solutions are affected by uncertain
labels provided by inexperienced workers [39, 122]. Other similar papers have analyzed this
problem by setting up a more integrated human-machine cooperation [114, 157, 29, 65, 82].
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Evaluating Data Integration and Entity Resolution

The effectiveness of ER and data integration processes is typically measured against ground
truths, although some papers have analyzed its resolution in a completely unsupervised
manner [160, 77]. The availability of labeled data is a problem in real scenarios, where experts
have to manually assess the results obtained. This is also a problem for the evaluation of the
approaches proposed by the research community since most of the techniques are evaluated
against the same small number of sources (typically the benchmark made available by the
Magellan tool1) with few hundreds of labeled data. This makes possible the development
and promotion of approaches overfitting on those sources (which can have features really
different from the ones in sources available in real scenarios). Only recently [87] addressed
this issue, by proposing techniques for providing samples on datasets guaranteeing a fair
evaluation.

2.3 Unsupervised evaluation of data integration processes

This section presents an approach for the unsupervised evaluation of an integration process.
This will provide support to users and domain experts in understanding whether their in-
tegration approach needs to be revisited or tuned to be properly aligned with the targeted
data sources or whether it is still working in a satisfactory way. The concept that will be
used to measure the correctness of an integration result is that of representativeness, which
evaluates how much one data source preserves the informative content of another data source.
Intuitively, the more a dataset can be represented by an integrated source, the less there
is a loss of information when the integrated source is considered in place of the original
one; this is the input representativeness. Conversely, the more an integrated source can be
represented by its datasets, the more it is consistent with them; this represents the output
representativeness.

Besides being an unsupervised measure, which reduces the required human effort and is
suitable also for highly iterative and/or incremental real business scenarios, the presented
approach considers the integration process as a whole and evaluates its quality after the data
fusion step, which is what practitioners and domain experts are confronted with in a real
context. On the contrary, as analyzed in Section 2.2, most of the current literature [100,
141, 75] focuses on evaluating just the entity resolution step and, more specifically, on the
entity matching by using measures like precision or recall. This type of evaluation overlooks
what happens after the entity resolution step, e.g. clustering and data fusion, which can

1https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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(a) D1: the first data source.

entity id authors title venue
freund1995a yoav freund. boosting a weak ... in proceedings ...
haussler1994 haussler, d ... rigorous learning ... in proc. 7th ...
kearns1987 m. kearns, m. li ... on the learnability ... proceedings of ...
kearns1990 michael j. kearns. the computational ...
kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th ...
schapire1996 r. e. schapire ... learning sparse ... j. of computer ...
kearns1994a michael kearns, ... on the learnability ... proc. of the 26th ...
blum1994 avrim blum .... weakly learning ... in proceedings ...
freund1997a yoav freund... a decision-theoretic ... journal of ...

(b) D2: the second data source.

entity id authors title venue
freund1995a freund, y. boosting a weak ... in ’proceedings ...
haussler1994 haussler ... rigorous learning ... in proceedings ...
kearns1987 m. kearns ... on the learn-ability ... in proc. 19th stoc,
kearns1990 michael ... the computational ...
kearns1993b m. kearns. efficient noise-tolerant ... in proceedings ...
haussler1994a d. haussler, ... bounds on the sample ... machine learning,
kearns1988b michael kearns. thoughts on ... (unpublished),
schapire1997 schapire, r.e ... w.s.: boosting ... proceedings of ...
rivest1989 r. l. rivest ... inference of ... in acm symposium ...

Table 2.1 Source datasets created from the “Cora Citation Matching” data.

dramatically change the final integration performance and is what they actually care about in
a business context.

2.3.1 Motivating example

To better justify the need to use automatic techniques for evaluating a data integration process,
an example of how this process works in practice is proposed below.

In this example the popular “Cora Citation Matching” data2 is used to create two datasets
of publications – D1 and D2 shown in Table 2.1 – where each publication is described by a
unique identifier, authors, title, and venue. Table 2.2 shows some possible results from their
integration. In particular, Table 2.2a shows IP, the perfect integration according to the Cora
ground truth. On the other hand, Table 2.2b shows IC, a low-quality integration, obtained by
just concatenating entities for the two sources. As a result, some merges are missing from
it, i.e. some items from D1 and D2 are not recognized as referring to the same entity; for
example, publication haussler1994 is mapped to two separate entities – respectively, the
second and the last entity– instead of the same one. Finally, Table 2.2c shows IM, another

2https://people.cs.umass.edu/~mccallum/data.html

https://people.cs.umass.edu/~mccallum/data.html
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(a) IP: the Perfect integrated dataset from D1 and D2, according to Cora.

id entity id authors title venue
1 freund1995a yoav freund. boosting a weak ... in proceedings of the ...
2 haussler1994 haussler, d. ... rigorous learning ... in proc. 7th annu. ...
3 kearns1987 m. kearns, ... on the learnability ... proceedings of the ...
4 kearns1990 michael j. ... the computational ...
5 kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th ...
6 schapire1996 r. e. schapire ... learning sparse ... j. of computer ...
7 schapire1997 schapire, r.e., ... w.s.: boosting the ... proceedings of ...
8 blum1994 avrim blum, ... weakly learning dnf ... in proceedings ...
9 freund1997a yoav freund ... a decision-theoretic ... journal of ...
10 haussler1994a d. haussler, .... bounds on the sample ... machine learning,
11 kearns1988b michael kearns. thoughts on ... (unpublished),
12 kearns1994a michael kearns, ... on the learnability ... proc. of the 26th ...
13 rivest1989 r. l. rivest and ... inference of ... in acm symposium ...

(b) IC: low quality integrated dataset, obtained by just Concatenating entities from D1
and D2.

id entity id authors title venue
1 freund1995a yoav freund. boosting a weak ... in proceedings of the ...
2 haussler1994 haussler, d. ... rigorous learning ... in proc. 7th annu. ...
3 kearns1987 m. kearns, ... on the learnability ... proceedings of the ...
4 kearns1990 michael j. kearns. the computational ...
5 kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th acm ...
6 schapire1996 r. e. schapire ... learning sparse ... j. of computer ...
7 schapire1997 schapire, r.e., ... w.s.: boosting the ... proceedings of ...
8 blum1994 avrim blum, ... weakly learning ... in proceedings ...
9 freund1997a yoav freund and ... a decision-theoretic ... journal of computer ...
10 haussler1994a d. haussler, m. ... bounds on the ... machine learning,
11 kearns1988b michael kearns. thoughts on ... (unpublished),
12 kearns1994a michael kearns, ... on the learnability ... proc. of the 26th ...
13 rivest1989 r. l. rivest and ... inference of ... in acm symposium ...
14 kearns1987 m. kearns, ... on the learn-ability ... in proc. 19th stoc,
15 kearns1990 michael kearns. the computational ...
16 kearns1993b m. kearns. efficient noise-tolerant ... in proceedings of ...
17 freund1995a freund, y. boosting a weak ... in ’proceedings ...
18 haussler1994 haussler ... rigorous learning ... in proceedings ...

(c) IM: low quality integrated dataset, obtained by applying some Merging strategy to
D1 and D2.

id entity id authors title venue
1 freund1995a yoav freund. boosting a weak ... in proceedings of the ...
2 haussler1994 haussler, d. ... rigorous learning ... in proc. 7th annu. ...
3 kearns1987 m. kearns, ... on the learnability ... proceedings of the ...
4 kearns1990 michael j. ... the computational ...
5 kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th ...

6
schapire1996,
schapire1997 r. e. schapire ... learning sparse ... j. of computer ...

7
blum1994,
rivest1989 avrim blum, ... weakly learning dnf ... in proceedings ...

8
haussler1994a,
freund1997a d. haussler, .... bounds on the sample ... machine learning,

9
kearns1988b,
kearns1994a michael kearns. thoughts on ... (unpublished),

Table 2.2 Three possible integrated datasets from sources D1 and D2 in Table 2.1.

low-quality integration, obtained merging each entity in D1 with an entity in D2. Five entities
in IM are the result of a correct integration process, since they are also in IP. The remaining
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(a) Errors in IM

Id Errors Duplications Wrong Merges
2 0 0 0
4 0 0 0
6 1 0 1
8 1 0 1
9 1 0 1
... ... ... ...

44% 0% 44%

(b) Errors in IC
Id Errors Duplications Wrong Merges
6 0 0 0
7 0 0 0
9 0 0 0
15 1 1 0
5 1 1 0
... ... ... ...

55% 55% 0%

Table 2.3 Error analysis conducted by a domain expert on the integrated datasets in Table 2.2.

4 entities (which were not merged in IP) are here randomly integrated. For example, the
last entity, that refers to the publication kearns1988b, contains also information from the
pubblication kearns1994a, which is therefore not recognized as a distinct entity.

Let now see how a domain expert would manually assess the quality of IC, and IM. She/he
would: 1) randomly sample (or based on “sentinel” elements defined a priori) a sufficient
number of entities to check; 2) verify their correctness; and, 3) categorize erroneous outputs
in a summary table, like Table 2.3, distinguishing between duplications (third column) – i.e.
entities that are not merged even if they refer to the same real world entity – and wrong
merges (fourth column) – i.e. entities merged even if they refer to different real world entities.

Let us start from the integrated dataset IM in Table 2.2c whose error analysis is shown in
Table 2.3a. For example, an expert may discover that the second entity has been correctly
created while the sixth one contains an error since it merges two items referring to different
real world entities, i.e. schapire1996 in D1 and schapire1997 in D2. Assuming the analysis is
carried out for the whole dataset, the domain expert may conclude that IM is mainly affected
by incorrect matches: 44% of the entities present this type of error. Table 2.3b shows the
result of a similar analysis performed on IC. For example, IC contains two separate entries for
the entity kearns1990 which actually refer to the same entity and therefore are a duplication.
Extending the analysis to the whole dataset, the expert may discover that 55% of the entities
are duplicated.

The effort required for performing the error analysis is very huge due to the large size
of the datasets typically involved and the need for manually inspecting them. An accurate
evaluation requires scanning the entire integrated dataset searching for duplicated and/or
wrongly merged entities and a comparison with the input datasets to verify that every real-
world entity has been included in the final result. Moreover, since the integrated dataset is
obtained after several try and error iterations, the error analysis has to be repeated multiple
times. Therefore, an automatic tool for analyzing the quality of an integration process would
largely reduce the effort required for performing an integration task.
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2.3.2 The approach

Motivated by this need, an approach for the automatic evaluation of a data integration process
is presented below. The main idea behind this approach is the use of an unsupervised measure
which quantifies the extent to which a source “represents" the content of another source. In
more detail, the correspondence between the input data sources with respect to the result
of the integration process (and viceversa) is considered. The proposed metric implements
this intuition by considering the frequency distribution of the words in the sources and by
quantifying how much a source is represented in another source in terms of how much their
frequency distributions overlap.

The model

A dataset (or source) D is a collection of entities D= {e1, . . . ,eN}whose attributes are defined
over a common schema R = {A1, . . . ,AM}; each attribute represents a specific property of an
entity. The integration of datasets is performed by means of an entity integration function,
defined below.

Definition 1 (Entity Integration (EI) process) EI is a process that creates an integrated
dataset of entities I = EI(D) from a collection of datasets D = {D1, . . . ,Dk}, which share a
common schema R. The EI operator defines the logic for matching and merging the entities
in the input dataset collection D .

The integration approaches are usually evaluated with controlled datasets, against a
pre-existing ground truth. Accuracy, and, more frequently, due to the unbalanced datasets,
recall, precision, and F-measure are the metrics used to measure the quality of the integration
result.

In business environments, the absence of a ground truth imposes to define a different
procedure for the evaluation. In these scenarios, the quality of the integration can be assessed
through a verification and validation process. The verification process aims to check the
formal correctness of the integrated dataset.

Definition 2 (Verified Entity Integrated Dataset) The Entity Integrated Dataset I =

EI(D), where EI is an entity integration function applied to a collection of datasets
D = {D1, . . . ,Dk}, should be:

• total: each entity of every input dataset should be represented in I, i.e., ∀ei ∈Dk,∃ e j ∈
I,s.t. e j and ei refer to the same real-world entity;
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• minimal: I should not contain duplicated entities, i.e., ∀ei,e j ∈ I,ei and e j refer to
different real-world entities.

In the validation process, domain experts assess the correspondence of the informative
content of the integrated dataset with the one of the input sources.

In the following, a black box technique for evaluating an EI process is considered. The
evaluation is based on a representativeness function that scores how much a dataset D1 can
be represented by a second dataset D2 by computing the loss of information in using D2

instead of D1.
The adopted representativeness function quantify the "similarity" of the datasets by

analyzing their word frequency distributions.

Definition 3 (Word frequency distribution in datasets) Given a dataset D, let V be its
vocabulary of terms. The word frequency distribution f reqD(w) : V → N0 of the dataset D is
a function which associates each term w ∈V with its frequency in D.

The vocabulary of terms V for a dataset is generated by applying a tokenization algorithm
to the concatenation of all the tuples in D. Token splitting can be considered as a solved
problem [142] and a large number of techniques are available in NLP code libraries. The
notion of “representativeness” between two datasets is introduced below.

Definition 4 (Dataset representativeness score) Given two datasets D1 and D2, the
dataset representativeness rD1→D2 quantifies the extent to which dataset D1 represents D2 by
measuring how much the word frequency distribution f reqD1 approximates f reqD2 .

In the next section, a way to measure the approximation between two word frequency
distributions in the context of a data integration process is proposed.

The representativeness score should provide users with an assessment of how much
datasets are represented by integrated sources by showing if there is any loss of information;
vice-versa, it should quantify how much integrated sources are represented by the original
datasets by showing if there is any redundancy or irrelevant content.

Scoring representativeness

When assessing the quality of the integration process, it is needed to consider the two sides
of the coin, i.e. how well a source D is represented by the integration I and, vice-versa, how
well the integration I is represented by a source D.

In the former case, i.e. how well a source D is represented by the integration I, if the
integration process is perfect, the content of D should be completely “covered” by the content
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of I. This means that the vocabulary used in D should be included in the vocabulary used in I,
and the word frequency distribution of words in D should be less than or equal to the one in
I. The measure of the coverage of these word frequency distributions can provide a measure
of the representativity of an integration source for a dataset. This measure, identified as rD→I

(input representativeness), is defined it in equation (2.1).

Definition 5 (Input representativeness) Given two datasets D and I, where I is the inte-
gration of D according to some EI function, let VD be the vocabulary of D and f reqX(w) be
the word frequency distribution of either D or I. We define the following representativeness
score:

rD→I = 1− 1
|VD| ∑

w∈VD

f reqD(w)−min( f reqD(w), f reqI(w))
max( f reqD(w), f reqI(w))

(2.1)

In the latter case, i.e. how well the integration I is represented by a source D, an integrated
dataset should contain more entities than an input dataset, due to the contribution of other
datasets. Nevertheless, excluding stop words and other very generic words, it is possible
to suppose that the distribution of frequencies of words belonging to the intersection of the
vocabularies of I and D is close. By measuring this closeness, it is possible to evaluate how
much the dataset can represent its integration for the shared words. This measure, identified
as rI→D (output representativeness), is defined in equation (2.2).

Definition 6 (Output representativeness) Given two datasets D and I, where I is the inte-
gration of D according to some EI function, let VD be the vocabulary of D and f reqX(w) be
the word frequency distribution of either D or I. We define the following representativeness
score:

rI→D = 1− 1
|VD| ∑

w∈VD

f reqI(w)−min( f reqD(w), f reqI(w))
max( f reqD(w), f reqI(w))

(2.2)

Note that rI→D is defined over the vocabulary VD of the dataset D and not also on the
vocabulary of the integration I. Indeed, there is an intrinsic asymmetry in the integration
process and it is needed to keep the focus on the dataset D, either considering how much it is
represented by the integration I, i.e. rD→I , or how much it represents the integration I, i.e.
rI→D, but without skewing the scores by including all the terms of VI . Indeed, considering
the whole vocabulary VI , and not just its overlap with VD, would just bring in all the other
sources than D, whose vocabulary may differ a lot from VD, and, as a result, these additional
(and possibly unrelated) terms would mask how much D and I represent each other.
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Fig. 2.3 Example of word distributions.

Example 1 Figure 2.3 shows a simplified word frequency distribution for a dataset D1 and
its integration I. The x-axis represents the words found in the data sources and the y-axis
their respective distribution. Note that, for sake of simplicity, the heights of the frequency
histograms are approximated to three possible values and the actual words are not reported
on the x-axis. The areas A,B,C,D,E represent the word frequency distribution for D1 and
the areas B,C,E,F,G the one of I. A and G represent words belonging only to the input
dataset and integrated dataset respectively. The words in B,C,D,E,F are common to both
the sources and: (1) those of B have the same frequency distribution; (2) those of C and D
have frequency distribution equal to C in the integration and frequency distribution equal to
C+D in the input dataset; (3) those of E and F have frequency distribution equal to E in
the input dataset and frequency distribution equal to E +F in the integration. According
to this figure, the representativeness scores are proportional to rD→I ∝ 1− (A+ D

C+D), and
rI→D ∝ 1− ( F

E+F ).

Representativens as a support to verification

The representativeness score can be used to verify an entity integration process. In particular,
the input representativeness score is able to measure the totality of the integrated dataset; the
output representativeness score measures the minimality of the integrated dataset.

Let I be obtained by the integration of D1 and D2. The input representativeness of I with
respect to the input datasets D1 and D2 is obtained by averaging their input representativeness
scores (i.e. rD1→I and rD2→I). This aggregated score provides a measure of the totality of the
integration process, since the more I represents the sources D1 and D2, the more the entities
of D1 and D2 are also in I. On the other side, the output representativeness of D1 and D2

with respect to I, obtained by averaging rI→D1 and rI→D2 , is a measure of the minimality of
the integration process. Indeed, if D1 and D2 have high output representativeness, it follows
that I contains a few duplicated entities.
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Representativeness as a support to validation

An integration process can be validated by plotting the representativeness scores in a two-
dimensional Cartesian plane. The x-axis reports the input representativeness rD→I , i.e.
the totality, and shows the values obtained by the datasets with respect to the integration;
vice-versa, the y-axis reports the output representativeness rI→D, i.e. the minimality, and
shows the behavior of the integration with respect to the input sources. Values closest
to the point (1,1) represent the best performance. The distance from (1, 1) is named as
representativeness distance and it can provide a measure of the validation of an integration
approach. Indeed, the more we depart from (1, 1), the more the correspondences between
entities in the input and integrated datasets decreases. Note that only in ideal scenarios, where
the entities are represented in the input datasets with the same property values, the combined
representativeness score of a verified and validated integrated dataset is (1, 1). Often, data
representing the same entities are not the same, due to updates, mismatches and mistakes.
This affects the word frequency distributions of the corresponding datasets which will have
small differences and make representativeness values departing from (1,1).

Example 2 Figure 2.4 shows the values of the representativeness scores obtained for the IP,
IC, and IM integrated datasets, described in Section 2.3.1. As expected, IP is the best inte-
grated dataset, being the closest to the point (1,1). Note that IC is the integration that better
represents the input datasets since it has the highest values for the input representativeness.
It is the concatenation of the input datasets, so the resulting input representativeness value is
1, since the input word frequency distribution is completely included in the integrated dataset.
Nevertheless, IC obtains the worst value of output representativeness, thus meaning that it
contains duplicated entries. IM shows the highest results for the output representativeness.
IM has been built minimizing duplicated items (all entries in the input datasets have been
merged). The worst values obtained for the input representativeness score means that the
integrated dataset does not completely represent the input datasets. This is due to the wrong
entity-merges that have been introduced. Note that this analysis is consistent with the one
performed in Section 2.3.1, where the error analysis tables, which are built using the ground
truth, show entities erroneously merged in IM and entities which are erroneously duplicated
in IC. Finally, note that input and output representativeness have to be jointly evaluated and
the values assumed by the ground truth (IP in the example) do not constitute an upper bound
for the values that input and output representativeness can assume. In Figure 2.4, IM and
IC are both located in the yellow area, which includes the elements with representativeness
value greater than the one of the ground truth for at least one dimension. Nevertheless,
even if IM has a higher value of output representativeness, the quality of IM (as the distance
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Scenario
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D1→ IC 1 0.626
D2→ IC 1 0.538
D1→ IM 0.712 0.953
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D2→ IP 0.917 0.849
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Fig. 2.4 Input and output representativeness for the sources of the motivating example.

from (1,1) shows) is worst than the one of IP due to the lower input representativeness. The
same happens for the quality of IC, which is worst than the one of IP due to the lower output
representativeness.

2.3.3 Experimental evaluation

This section provides a quantitative (in Sections 2.3.3 to 2.3.3) and qualitative (in Sec-
tions 2.3.3 and 2.3.3) evaluation of the effectiveness of the measures proposed in the previous
section. Finally, in Section 2.3.3, assesses their efficiency.

Experimental setup

For the experiments, 12 publicly available use cases (see Table 2.4) from the benchmark of the
Magellan tool3 are used. They are the main reference to evaluate entity matching approaches,
and consist of two datasets describing entities and the ground truth which contains pairs of
entities, one for each dataset, labelled as matching and non matching items. According to the
literature [48], the entities refer to the same real-world entity when the matching elements
form a clique. The third and fourth columns in Table 2.4 show the cardinalities of the input
and integrated datasets.

The table also shows for each use case the ratio of shared entities (i.e., entities in the
integrated dataset which are generated by merging more input entities) and unique entities
(i.e., entities which come from one of the input sources only). The distribution of these

3https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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Use Case Name Input Datasets Integrated Dataset Shared Entities (%) Unique Entities (%)
U1 Textual Abt-Buy |D1|= 949−|D2|= 920 |I|= 1174 58.5 41.5
U2 Structured Amazon-Google |D1|= 1171−|D2|= 1843 |I|= 2232 32.7 67.3
U3 Structured Beer |D1|= 237−|D2|= 233 |I|= 412 14.1 85.9
U4 Structured Fodors-Zagats |D1|= 89−|D2|= 238 |I|= 422 24.9 75.1
U5 Dirty iTunes-Amazon |D1|= 272−|D2|= 278 |I|= 450 20.9 79.1
U6 Structured iTunes-Amazon |D1|= 251−|D2|= 255 |I|= 410 22.2 77.8
U7 Dirty DBLP-ACM |D1|= 2419−|D2|= 2238 |I|= 2511 85.5 14.5
U8 Structured DBLP-ACM |D1|= 2406−|D2|= 2220 |I|= 2507 84.5 15.5
U9 Dirty DBLP-GoogleScholar |D1|= 2491−|D2|= 9877 |I|= 7959 29.0 71.0
U10 Structured DBLP-GoogleScholar |D1|= 2488−|D2|= 9286 |I|= 7865 29.0 71.0
U11 Dirty Walmart-Amazon |D1|= 1578−|D2|= 4297 |I|= 5080 14.0 86.0
U12 Structured Walmart-Amazon |D1|= 1524−|D2|= 4014 |I|= 4784 14.0 86.0

Table 2.4 The use cases considered.
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Fig. 2.5 Verification and validation of the representativeness measures.

kinds of entities in the ground truth is typically unbalanced: only in U1 shared and unique
entities have a similar distribution. In most of the use cases, the amount of unique entities
largely overcomes the shared ones (all use cases expect U7 and U8). As will be clear in the
following, this may have an impact on the performance.

All the experiments have been run on commodity hardware: a server with 4 virtual cores,
16GB of RAM, 256GB of local (SSD) storage and that runs Ubuntu version 20.04.

Verification and validation of an integration processes

This experiment evaluates the extent to which representativeness supports the verification
and validation of an integration process: input representativeness for the totality, output
representativeness for the minimality, and representativeness distance for the validation. In
all the cases, the datasets of the different use cases have been deteriorated in a controlled
way in order to check that the measures vary as expected to reflect these deteriorations.

The first plot on the left of Figure 2.5 shows how the input representativeness scores vary
when the integrated dataset does not include every entity of the input sources, i.e. it shows
the totality of the integrated dataset. For each use case, a number of integrated datasets have
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(a) Input representativeness score
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(b) Output representativeness.
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(c) Representativeness distance.

Fig. 2.6 Ratio of representativeness scores falling within one standard deviation (blue bar),
two standard deviations (orange bar), and three standard deviations (green bar).

been created from the ground truth, by selecting an increasing percentage of ground truth
entities, as specified in the x-axis. The input representativeness score computed with these
reduced datasets is shown on the y-axis. As expected, the score increases with the number of
entities included in the integrated dataset.

In a similar way, the second plot in the middle of Figure 2.5 shows on the x-axis the
percentage of duplicated entities that have been introduced in the integrated dataset and, on
the y-axis, the corresponding output representativeness score. As expected, the higher the
number of duplicates, the lower the value of the output representativeness.

Finally, the third plot on the right of Figure 2.5 evaluates how well the representativeness
distance measures the validation of an integration approach. The datasets have been modified
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by removing and by duplicating the same percentage of entities; therefore, for example, a
value of 10% on the x-axis means that 5% of the entities are duplicated and 5% are removed;
the y-axis shows the corresponding value of the representativeness distance. As expected,
the distance grows with the increase of duplicated and missing entities, providing an overall
validation of the process. Note that the slope of the curves is less sharp than the previous
ones. This is due to the joint contribution of the input and output representativeness in the
definition of this measure. Indeed, an entity duplication generates both a reduction of the
minimality and an increase of the totality.

Take-away: the input and output representativeness are effective implementations of the
totality and minimality properties respectively, while the representativeness distance is a
valuable validation measure for an integration process.

Quality of the representativeness scores

Robustness to randomness in the data. This experiment assesses to what extent randomness
affects the proposed representativeness scores. To this end, for each representativeness score,
the three experiments reported in the previous Section 2.3.3 have been repeated 100 times
by randomly and uniformly sampling with replacement the data. In this way, it is possible
to compute mean and standard deviations for each score and verify how often a given score
falls in the expected range. Indeed, the more a score falls in the expected range using random
and equivalent samples of the same data, the more robust is its predictions, and the less we
would change our conclusions due to the observed sample.

Figure 2.6 shows the results of this experiment for each representativeness score and use
case. Three ranges are considered: one standard deviation in blue; two standard deviations in
orange; and, three standard deviations in green. Each bar in the stacked histograms indicates
which ratio of the 100 scores falls in the blue, orange, or green interval. For example, in
Figure 2.6a for use case U1 and a deterioration of 50% of the samples, i.e. 50% of the entities
have been removed in this case, about 70% of the input representation scores fall in the one
standard deviation range (blue bar); an additional 20% in the two standard deviations range
(orange bar on top of the blue one); and, just a 10% (or less) in the three standard deviations
range (tiny green bar on top of the orange one).

In the case of the input representativeness in Figure 2.6a the scores fall in the one standard
deviation range in 50% to 75% of the cases, indicating a quite stable measure; almost all the
other cases fall in the two standard deviations range, and just few of them in the three standard
deviations range. A similar behaviour can also be observed for the output representativeness
in Figure 2.6b and for the representativeness distance in Figure 2.6c.
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Fig. 2.7 RMSE between the mean representatives scores and the ideal score based on the
ground truth.

Accuracy of the predicted score. This experiment evaluates the accuracy of the representa-
tiveness measures as the size of the considered datasets varies. This experiment provides a
complementary assessment compared to previous experiments that focused on the variability
of results. Samples of increasing size have been selected from the ground truth (equal to
10%, 20%, ...., 100%) and this sampling process 100 times has been repeated for each target
size. For each type of representativeness score, Figure 2.7 shows the Root Mean Square
Error (RMSE) between the score computed using the entire ground truth and the mean score
computed over the samples related to a target sample dimension. The representativeness
metrics do not show significant variations: only for use cases containing small datasets there
are higher variations, although never greater than 0.1. This demonstrates their robustness
even when significant changes in the size of the involved datasets are applied.

Robustness to randomness in the merging approach. This experiment analyzes how much
the behaviour of the proposed measures depends on the actual merging strategy adopted to
produce the integration. With the exception of small variations in the scores, the expectation
is that the different data fusion techniques will have similar behaviours, otherwise, it could
not be possible to reliably compare alternative integration processes.

To this end, the experiment of Section 2.3.3 has been repeated, but this time two different
alternatives for merging are considered. Figure 2.8a shows the results for the first approach
which randomly selects which entities to merge. Figure 2.8b shows the results for the second
approach which randomly selects the values of the merged attributes. In both figures, it is
possible to observe a trend which is consistent with all the previous experiments.

Take-away: the proposed representativeness scores are quite robust to different types of
deterioration and randomness in the data, have a good predictive accuracy, and they are not
biased by the considered data fusion techniques.
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(a) Random Records.

0.1 0.4 0.7 1.0
representation rate

0.0

0.2

0.4

0.6

0.8

1.0

in
pu

t r
ep

r.

0.1 0.4 0.7 1.0
duplication rate

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
 re

pr
.

0.1 0.4 0.7 1.0
changed entities rate

0.0

0.2

0.4

0.6

0.8

1.0

re
pr

. d
ist

an
ce

U1
U7

U2
U8

U3
U9

U4
U10

U5
U11

U6
U12

(b) Random Values

Fig. 2.8 Verification and validation of the representativeness measures against random
merging strategies.

Alternative techniques for measuring input representativeness

In Section 2.3.2 a specific way of computing representativeness based on word frequency
distributions computed on the whole dataset has been proposed. These distributions can be
inaccurate for describing entity similarities, computed at the tuple level. In this section, the
following alternatives are considered for computing the input representativeness score: the
jaccard-based similarity as a baseline, for its simplicity; the bleu-score as a reliable unsuper-
vised measure for evaluating the quality of machine-translated text; finally, embeddings are
largely used in NLP tasks to capture both syntactic and semantic similarity.

Jaccard-based representativeness. In this approach, the datasets are first tokenized and
the Jaccard similarity is calculated between each pair of entities from two different datasets.
We average the best Jaccard score for each entity to obtain a measure of representativeness
for the entire dataset.

Bleu score-based [117] representativeness. In this approach, the same procedure of the
the previous case is performed but applying the bleu score instead of the Jaccard similarity.
This metric is traditionally used in the evaluation of machine translation systems and provides
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a similarity score between the translation ŷ generated by the system and a series of exact
translations Y . Its formulation is given in equation 2.3. In a simplistic way, it compares
the n-grams (from unigrams up to 4-grams) of the translation with respect to those of the
reference translations and gives an indication of the precision of ŷ to represent Y . With
respect to a normal precision, this formula (second line of the equation) uses as numerator
a count of the n-gram Countclip which is clipped by its maximum frequency of occurrence
within the reference translations Y . The average of these modified precisions for each n-gram
(with n = 1, ...,4) is then calculated and a multiplicative factor BP (brevity penalty) is added
to penalize short translations.

We adapt this metric to our scenario by considering the input entities as possible machine-
generated translations and integrated entities as sets of correct reference translations. The
presence of only one correct translation similar to the input data will allow to conclude that
this entity is well represented in the integration result.

bleu_score(ŷ,Y ) = BP∗ exp(
1
4 ∑

n=1,...,4
pn(ŷ,Y ))

pn(ŷ,Y ) =
∑

n-gram ∈ ŷ
Countclip(n-gram)

∑
n-gram ∈ ŷ

Count(n-gram)

(2.3)

Embedding-based representativeness. Three different techniques are applied
(word2vec [95], fasttext [21], and glove [120]) for computing the embeddings of the to-
kenized entries of input and integrated entities. Pre-trained embeddings are considered
and entity embeddings are computed by averaging the embeddings associated with their
constituent tokens. Then, the similarity between input and integrated entities has been mea-
sured through the cosine similarity. For each input entity, the maximum value computed is
considered and their mean provides the representativeness score for the entire dataset.

Alternatives for the representativeness distance. The same experiment as described in Sec-
tion 2.3.3 has been performed for each of the alternative implementations of the repre-
sentativeness distance. Figure 2.9 shows the difference of the representativeness distance
computed with each alternative with respect to the ground truth. As expected, for all the
alternatives, the difference from the ground truth increases as the deterioration of the datasets
increases. Nevertheless, the measure defined in Equation 2.1 assumes the highest values in
the majority of the scenarios, indicating that it better recognizes the errors in the integrated
dataset.

Take-away: our measure outperforms alternative representativeness metrics based on
syntactic and semantic similarities.
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Fig. 2.9 Comparison among the measures introduced for computing the representativeness
distance

Alternatives for input and output representativeness.
This experiment compares alternative measures for the input and output representativeness

on the basis of how they react to possible errors in the integration process but also breaking
this down by the kind of entities involved in the error, namely the unique and shared entities
described in Table 2.4. In particular, two types of errors are considered: items in the input
dataset which are merged even if they represent different entities and items referring to the
same real-world entities which are not merged. Note that this experiment may resemble the
one of Section 2.3.3 but here it operates directly on the input datasets and on the different
categories of entities.

Below the "merge errors" are analyzed, and those entities in the input datasets which
are not to be merged with other entities in the integration process are defined as unique
entities. When unique entities are erroneously merged with other entities, the dimension of
the integrated dataset decreases as well as its totality, since there are input entities which are
not represented in the integrated dataset, i.e. the wrongly merged ones. As a consequence,
this kind of error will affect the input representativeness. To evaluate the impact of these
errors, different amounts of errors have been introduced in the ground truth of the use case
datasets, and the difference of the input representativeness score measured with respect to the
ground truth has been computed. The results of the experiments are shown in Figure 2.10a,
where for each use case, a selected percentage of wrong merged entities (ranging from
0 to 100%) have been introduced. The input representativeness (independently from the
approach used for its computation) decreases when the error increases in all use cases and
with all the approaches. Nevertheless, it is possible to observe that the measure introduced in
Equation 2.1 is able to better represent these mistakes, by showing larger variations. The
other approaches perform worst: the measure based on Jaccard shows less marked variations,
and the embedding-based measures do not show sensible variations in the values. Note that
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(a) Variation of the input representativeness in presence of entities wrongly merged.
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
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1 41.48 67.29 85.92 75.12 79.11 77.8 14.54 15.48 70.98 70.87 86.04 85.91

(b) Percentage of unique entities removed from the integrated dataset for each experiment

Fig. 2.10 Impact of wrongly merged entities on the input representativeness

Figure 2.10a shows the results on the overall dataset, not only on the portion of the dataset
composed of unique entities. Moreover, the unbalanced distribution of unique entities (see
Table 2.4) can introduce different amounts of wrong merges in the use cases. Table 2.10b
shows the “real” impact of the perturbations introduced in the ground truth, by showing the
percentage of missing unique entities for each experiment. Note that the variation in use
cases U7 and U8 are less marked since the reduced number of wrong entities introduced. The
plots describing U3, U11, and U12 are those with the largest variations, and this is consistent
with the perturbed integrated entities.

A similar analysis has been conducted for the second issue, i.e. duplicated entities. In
this case, errors in the shared entities, i.e. those entities obtained from merging multiple
input entities, result on items in the integrated dataset which are not merged and this will
affect the output representativeness. As before, a controlled deterioration of the ground
truth is considered, where 20%, 40%, ...100% of errors is applied to the shared entities.
Figure 2.11a shows the difference of the output representativeness score with respect to the
ground truth: the more the decrease, the more errors in shared entities are detected. Note
that, as before, Table 2.11b is needed to support the analysis. It shows the percentage of
new entities introduced with the perturbation: U7 and U8 show the largest amount of entity
introduced. This is consistent with the results in the figure that show the largest variation.
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U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
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(b) Percentage of duplicated entities introduced in the integrated dataset for each experiment.

Fig. 2.11 Impact of errors on shared entities on the input representativeness

Joint effect of duplication and merging errors. This experiment analyzes variations of both
the input and output representativeness scores resulting from the increase of wrong merged
entities and wrong duplicated entities in the datasets. Figures 2.12 and 2.13 show the results
of the experiments. Green arrows show the variations on the primary component (input
representativeness in the first case and output representativeness in the second one). Red
arrows show the secondary component. The longer the arrow, the higher the variation in
the score. The scores range from -1 to 1. They represent the difference between the value
assumed by the representativeness measured in the experiment and the one in the ground
truth.

In Figure 2.12, green arrows are associated with the input representativeness, red to the
output representativeness. The perturbations of the datasets are generated by introducing
wrong merged entities. As already shown in Figure 2.10, the input representativeness
decreases with the increase of the errors. This is shown by the green arrows which become
longer and tend to -1 in correspondence of the largest perturbations. It is possible to note
that the red arrows have an opposite behavior: they increase when the wrong merged entities
increase. This is due to the fact that increasing the number of wrong merged entities increases
the minimality of the integrated dataset.
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Fig. 2.12 Representativeness variations at different unique entity error rates.
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Fig. 2.13 Representativeness variations at different sharing entity error rates.

Figure 2.13 shows the results of the experiments with datasets where duplicated entities
have been introduced. In this case, the green arrows show the output representativeness,
which is the measure subject to the largest variations. As in Figure 2.11, in correspondence
of the largest perturbations, the values assumed by the output representativeness are closer
to -1. In this situation, even if less marked, it is possible to observe an increase of the
input representativeness. This is due to the fact that an increase of duplicated entities in the
integrated dataset increases also its ability to represent the input sources.

Take-away: examining the variations of input and output representativeness it is possible
to understand the nature of the error affecting the integration task. A significant reduction of
the input representativeness indicates that the ER model incorrectly merges non-matching
entities (i.e. false positive items). On the other hand, an increase in false negative errors (i.e.
matching entities incorrectly recognized as different entities) produces mainly a reduction of
the output representativeness.

Controlled data integration scenarios

In this experiment a qualitatively assessment of the behavior of the representativeness scores
in three controlled integration scenarios is analyzed. The results for U10 (the largest use
case) are analyzed in detail, while the results for the other use cases are only reported.
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Creating the datasets. For each use case four datasets have been generated, D1, D2, D3

and D4. D1 has a cardinality double than D2 which has the same cardinality as D3. D2

contains a subset of the entities of D1 and, when integrated with D1, can be used to simulate
the integration of datasets describing the same entities. D3 contains entities that are not
in D1 and can be used, when integrated with D1, to create an integration scenario that
involves datasets containing different entities. D4 concatenates D2 and D3 and provides
a mixed integration scenario when compared with D1. Regarding the use case U10, the
cardinality of D1 is 2,000 entities (i.e. |D1| = 2000), thus the cardinality of D2 and D3 is
1,000 entities. The cardinality of the vocabularies associated with the datasets is |V1| =
5,802, |V2|= 3,905, |V3|= 3,632, |V4|= 5,939.

Scenario 1: Datasets describing the same entities. In this scenario only the D1 and
D2, which describe same entities, are considered. Since D1 is a superset of D2, it can be
considered as a possible integration, called IM = D1 in Figure 2.14a. IC is the integration
obtained by a concatenation of the tuples in D1 and D2. In this case, the ground-truth is
available and it is thus possible to compute the error rate, which is 0 for IM, and 0.333
for IC. The input representativeness shows that the concatenation IC is the best integration
scenario, since it does not generate any loss of information. This is clear in Figure 2.14a,
where IC assumes the maximum value of input representativeness on the x-axis. Nevertheless,
concatenation introduces data duplication (D1 is a superset of D2) and this is the reason
why in Figure IC has an output representativeness value on the y-axis lower than IM. The
plot clearly shows that IM is a better integration than IC, as expected by analyzing the data
sources.

Scenario 2: Datasets describing different entities. In this second scenario only the datasets
D1 and D3, which describe different entities, are considered. As in the previous scenario, D1

is used also as a possible integration result (IM in Figure 2.14b). IC is the integration obtained
by the concatenation of D1 and D3, which does not contain duplicates in this case. In this
scenario, IC should be the best integration since all entities are included in this source. This is
confirmed by the error rate, 0.5 for IM and 0 for IC. This is also clear by the representativeness
scores, comparing the coordinates of IC and IM in the Figure. IC has coordinates (1, 0.79).
This means the maximum input representativeness value. IM has coordinates (0.73,0.9). The
output value is due to the low representativeness value for D3 in IM (0.46). Note that even
if IM does not contain the entities described in D3 the representativeness is not zero since
there is still a low number of words in D3 which are contained in IM anyway. The high level
measured from the integration perspective is because IM completely includes D1 which has
twice the cardinality of D3.
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Fig. 2.14 The scenarios used in the experiments

Scenario 3: Datasets describing common entities. The last scenario considers D1 and D4

which contain a half common and a half different entities. IP in Figure 2.14c is generated by
concatenating D1 and D3. This is a perfect integration since it includes all entities described
by the D1 and D4 datasets. IM, as in the previous scenarios, is D1 only which, in this case,
does not describe half of the entities in D4. Finally, IC is obtained by the concatenation of D1

and D4. This integration suffers from redundancy, generated by the duplicated entities of D1

contained in D4 and included twice in IC. The error rates of these integrations are 0.5 for IM

and IC, and no error rate for IP. Figure 2.14c shows the representativeness scores and correctly
reflects the datasets included in the integration, by showing the input representativeness
values on the x-axis of IP and IM close, but not equal to 1, thus meaning that there is some
loss of information in the integration. In IC, the input representativeness values are equal to
1, since the datasets are completely represented, but the integration suffers from redundancy
as shown by the lowest output representativeness value on the y-axis.

Extended evaluation. Table 2.5 summarizes the results of the experiments performed on the
other datasets in the benchmark. The first column shows the names of the use cases and the
cardinalities of the entities and vocabularies. The second column reports the scenarios, and
the other columns outline the measures obtained by considering the IM, IC, and IP integrations.
The bold values are the best ones for each dataset in each scenario, i.e. the closest to the point
(1,1). According to the previous discussion, the expectation is that IM is the best integration
in Scenario 1, IC in Scenario 2, and IP in Scenario 3. The measure performs correctly in
almost all evaluations. Wrong best integrations reported in U1, U7 and U8 have all distance
very close to the best one. Their mistakes are due to the sparse vocabularies (and the low
cardinalities in the second dataset).

Take-away: the representativeness scores offer a fine-grained explanation on why an
integration strategy can be preferred to another one.
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Use case params Sc. IM IC IP

U1 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=4776, |V2|=1431, |V3|=2258, |V4|=3092)

1 (0.83, 0.83) (1.0, 0.71)
2 (0.80, 0.89) (1.0, 0.73)
3 (0.7, 0.92) (1.0, 0.73) (0.93, 0.77)

U2 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=1664, |V2|=1139, |V3|=986, |V4|=1699)

1 (0.91, 0.89) (1.0, 0.66)
2 (0.75, 0.91) (1.0, 0.76)
3 (0.78, 0.95) (1.0, 0.68) (0.92, 0.85)

U3 (|D1|=50, |D2|=25, |D3|=25, |D4|=50,
|V1|=208, |V2|=120, |V3|=136, |V4|=235)

1 (0.9, 0.94) (1.0, 0.70)
2 (0.62, 0.97) (1.0, 0.89)
3 (0.70, 0.97) (1.0, 0.76) (0.92, 0.92)

U4 (|D1|=100, |D2|=50, |D3|=50, |D4|=100,
|V1|=375, |V2|=192, |V3|=192, |V4|=347)

1 (0.98, 0.95) (1.0, 0.65)
2 (0.65, 0.96) (1.0, 0.88)
3 (0.78, 0.98) (1.0, 0.72) (0.98, 0.92)

U5 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=697, |V2|=433, |V3|=462, |V4|=736)

1 (0.92, 0.87) (1.0, 0.65)
2 (0.72, 0.93) (1.0, 0.79)
3 (0.75, 0.94) (1.0, 0.70) (0.95, 0.85)

U6 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=503, |V2|=293, |V3|=335, |V4|=529)

1 (0.95, 0.89) (1.0, 0.61)
2 (0.71, 0.93) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.67) (0.98, 0.85)

U7 (|D1|=2100, |D2|=1050, |D3|=365, |D4|=1415,
|V1|=7359, |V2|=4854, |V3|=1790, |V4|=5460)

1 (0.96, 0.87) (1.0, 0.59)
2 (0.87, 0.79) (1.0, 0.7)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U8 (|D1|=2100, |D2|=1050, |D3|=388, |D4|=1438,
|V1|=7396, |V2|=4858, |V3|=1863, |V4|=5509)

1 (0.98, 0.87) (1.0, 0.59)
2 (0.87, 0.80) (1.0, 0.70)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U9 (|D1|=2300, |D2|=1150, |D3|=1150, |D4|=2300,
|V1|=5993, |V2|=4119, |V3|=3979, |V4|=6364)

1 (0.92, 0.89) (1.0, 0.67)
2 (0.72, 0.91) (1.0, 0.8)
3 (0.76, 0.95) (1.0, 0.71) (0.93, 0.86)

U11 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=2875, |V2|=2096, |V3|=1694, |V4|=3195)

1 (0.86, 0.91) (1.0, 0.71)
2 (0.72, 0.93) (1.0, 0.80)
3 (0.73, 0.96) (1.0, 0.73) (0.88, 0.89)

U12 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=2152, |V2|=1713, |V3|=1231, |V4|=2453)

1 (0.88, 0.91) (1.0, 0.69)
2 (0.74, 0.96) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.88, 0.88)

Table 2.5 The evaluation of the scenarios in other datasets
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Fig. 2.15 Input and output representativeness variation on three multi-source integration
scenarios.

Multi-source integration scenario

This experiment shows the behavior of the input and output representativeness in a multi-
source integration scenario. Cora contains 112 clusters each one describing references to the
same real-world publication. It is possible to create multiple sources from Cora by inserting
the elements referring to the same publications in different datasets. It is possible to obtain 64
data sources, the largest including 112 entities and the smallest 1 entity. In this experiment the
largest 10 datasets are considered, where, by construction and assuming to order the datasets
by decreasing size, the entities of the first dataset are a superset of the entities included in the
remaining datasets, i.e. the entities of the last dataset are included in all other datasets, while
there are entities in the first dataset which are not included in any other dataset.

The goal of this experiment is to evaluate the diversified impact (in terms of input and
output representativeness) that each source produces in the integration task. To carry out this
type of analysis, 10 integration scenarios were created where in turn each data source was
considered as the result of the integration task, and the other as the input datasets. The idea
is to show that referring to the i-th integration scenario: (hp a) the dataset with the highest
input representativeness is the i-th dataset, since it corresponds to the integration result; (hp
b) the first i−1 datasets are a superset of the integration result, so they show a lower value
for the input representativeness (i.e., their data is not completely covered by the integrated
dataset). This simulates an integration scenario where there are entities – those belonging
to the first i−1 sources – that have been mistakenly merged with other entities; (hp c) the
output representativeness of the data sources is not affected by the choice of the integrated
dataset since no duplication factor is applied to the data.

Figure 2.15 shows, for sake of simplicity, only the experiments where the fifth and the
last datasets were considered as integration result. Each line represents a dataset. Blue values
show the input representativeness, red values the output representativeness.
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In the first scenario, where D5 is taken as the result of the integration process, datasets
D1-D4 show an input representativeness value lower than D5 (hp b) which has the maximum
value (hp a). The input representativeness value of datasets D5-D10 is still high since they
hold data which is already in the integratd dataset. The output representativeness remains
almost constant, i.e. it always assumes values higher than 0.8 which represents a high level
of representativeness (hp c). Therefore the results show that there are entities in datasets
D1-D4 which are incorrectly merged with other entities. This is consistent with the input
datasets: there are entities in datasets D1-D4 which are not described in D5.

In the second scenario, where the smallest dataset is considered as the result of the
integration process, a similar behavior as before can be observed, but this time all data
sources (except D10, the result of the integration) are affected by a reduction in their input
representativeness scores (hp b and hp a). No changes in the output representativeness scores
are recorded (hp c).

Take-away: the developed approach is able to detect the provenance of certain error
conditions. This facilitates the process of analyzing an integration result and supports the
convergence of the integration development cycle.

Efficiency

This section analyzes the time required for computing the input and output representativeness
scores, as defined in Equations 2.1 and 2.2, as well as the alternative input representativeness
measures described in Section 2.3.3.

The time needed for computing the representativeness measures has been evaluated on
integration processes involving datasets with increasing dimensionality (1K, 10K, 50K, 100K,
500K and 1M). These datasets have been obtained by applying sampling with replacement
to the data contained in the use case U10 (the largest one). The experiment was repeated
5 times and Figure 4.3 shows the average times. Note that, if the time needed for loading
pre-trained embeddings is not considered, all embedding-based approaches show the same
performance. This is due to the same algorithm adopted to map the datasets in the vector
space of the embeddings and to calculate their similarity using the cosine similarity function.
The Figure also shows that there are measures that are not able to complete the task in all
configurations due to memory and time limitations (a threshold of 48 hours on the execution
time has been considered).

The proposed approach shows the best performance in all configurations: it takes less
than 2 minutes to compute the representativeness of the largest dataset. The vectorized
implementation of the cosine similarity makes the embedding-based approaches fast, but for
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Fig. 2.16 Computing representativeness: efficiency

running on datasets larger than 100K entities it requires more memory than the one available
in the considered system. The approach based on Jaccard similarity has a poor performance
since it cannot be vectorized for performing the representativeness score. For this reason,
the execution time grows quadratically with the size of the datasets. This is motivated by
the pairwise comparison adopted to calculate the best similarity score between each input
dataset entity and each entity of the integrated dataset.

Take-away: the developed approach is efficient in evaluating high dimensional data
integration scenarios.

2.3.4 Conclusion and Future work

This section introduced the representativeness score, an unsupervised measure to evaluate
the quality of an integration process by analyzing the word frequency distributions of the
datasets involved. This measure is of extreme importance in real business scenarios, where
the domain experts are needed to manually inspect the datasets to assess the results of an
integration process. A deep experimental evaluation has showed that the representativeness
is able to provide a means for verifying and validating an integration process.

The approach is conceived for textual datasets. Future work will deal with numeric
datasets. A possible idea is to exploit functional dependencies (FD), i.e. when the values
in one set of columns functionally determine the value of another column [2]. Tools, like
Metanome [116], can easily retrieve the FDs existing in a dataset. The presented model
based on word frequencies can be easily extended to a model based on FD frequencies.





Chapter 3

Re-purposing relational technology for
advanced data analytics

Relational Data Base Management Systems (RDBMSs) have proved, over the last 4+ decades,
to be a reliable and efficient tool for managing business data. Governance, security, access
control, version management, data provenance tracking and performance are some of the
reasons for their success.

In parallel with the consolidation of data management technologies, many efforts have
also been made in the area of enterprise data analytics, i.e. the set of statistical practices,
linear algebra (LA) operations and Machine Learning (ML) techniques used to extract
knowledge and insight from data. In this context, particular attention has been directed toward
their efficient execution in distributed environments, and as a result of this, many systems
supporting large-scale LA/ML computations over-structured data have been implemented.

However, these two disciplines have followed parallel and rarely intersecting lines of
development. Testimony of this fact is the use of independent systems for their implementa-
tion: database management systems on one side and dedicated analytics systems on the other
side. In more detail, the management of these practices in business environment relies on
multi-tier architectures, where the databases, located in the lowest tier, are typically used for
data retrieval and accountability operations and feed dedicated analytics systems, on top of
them, to generate insights or new knowledge from the data [148].

The adoption of such a business workflow produces high management and maintenance
costs, which mainly derive from the execution of time and resource-consuming tasks for the
transfer, updating and protection of the data exchanged between the systems involved in the
process [118]. This therefore motivates the need for a unified system that 1) allows users to
specify linear algebra and machine learning computations, 2) scales out as data increases, and
3) supports a series of features for secure and reliable governance of the entire pipeline [86].
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In this chapter, in particular, a specific solution to this problem is analyzed, which consists
in extending the relational technology in order to host data analytics functions. Several studies
have already shown that by increasing the support of parallel / distributed database systems
for recursive and iterative processing (adopted by gradient-descent-based approaches) and
for the optimization of very large computation plans, it is possible to partially adapt these
systems also for solving machine learning and data analytics tasks [132, 67, 86, 118].

Significant advantages could derive from their use, such as the removal of expensive
ETL cycles and the enabling of transparent scalable distributed computations integrated with
recovery, traceability and debuggability features.

At the same time, numerous challenges affect this problem, such as 1) understanding the
most advantageous level of detail where to integrate analytics functionalities within a DBMS
and 2) adapting the relational execution model, which relies on tuple-based operations, with
the iterative, operator-centric and two-phase-based (i.e., train and test) ML workflows.

The remainder of this chapter analyzes this issue in detail, focusing in particular on 1)
the main motivations behind this research area (Section 3.1), 2) on the analysis of the current
systems available (Section 3.2), and 3) the presentation of a specific solution for performing
in-DBMS ML pipeline inference tasks (Section 3.3).

This latter work is under review, but a demo and a technical report are available in [26]
and [110] respectively.

3.1 Laying the foundations for the data management and
data analytics integration

This section provides an analysis of the main issues affecting the current management of LA
/ ML analytics, laying the foundations for the use of relational technology at the rescue of
these criticalities.

The success of Machine Learning is motivated by the fact that it enables the realization
of tasks with a complex statistical nature that would not be directly expressible through
traditional programming. The broadening adoption of machine learning in the enterprise,
however, has placed new constraints on its use. The successful use of this technology in
the industrial field is in fact bound to its conversion from an art and science discipline to a
more mature technology, identified in [4] with the term Enterprise Grade Machine Learning
(EGML), and subject to the same safety, scrutiny, reliability and performance requirements
that for years have been applied to previous technologies [70]. As a continuation of this
view, [4] argues that an ML model should be conceived as a "data-derived software artifact",
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and it should be managed in a dual perspective: on the one hand through standard software
engineering techniques (models-as-software perspective), on the other hand through advanced
data management practices (models-as-data perspective).

Although numerous frameworks, such as Spark [165, 92], have been introduced to enable
the execution of efficient large-scale ML tasks via high-level interfaces, few efforts have
been made to integrate these functionalities within full-fledged data management ecosystems.
The reason for this is that there are numerous issues affecting this problem, which can be
grouped into two main categories: 1) the inherent limitations of ML technology, and 2) the
current use of ML differs significantly from other software artifacts.

3.1.1 ML intrinsic limits

Partially extending the categorization introduced in [136], the five main reasons for "technical
debt" in ML technology, i.e. the features that increase its management costs, are: 1) system
complexity, 2) data dependencies, 3) reliance on design anti-patterns, 4) complex monitoring
and testing and 5) adoption of a two-step workflow.

System Complexity. The first reason for the high operating cost of an ML system is its
inherent complexity, which derives from 3 main factors, identified in [136] as entanglement,
hidden feedback loops and undeclared consumers. The term entanglement refers to the
fact that the behavior of these systems can vary substantially even with limited and isolated
changes to their inputs or configuration parameters. The second factor for their complexity is
related to the knowledge acquisition mechanism adopted by them, which is part of a feedback
loop that cannot be encoded in a predefined scheme and where hidden feedback may arise
and produce unexpected behaviors in these systems. Finally, the absence of access control
policies in the interaction between the multiple components of these systems can create
unwanted producer-consumer communications (i.e., undeclared consumers) with consequent
variations in the operating dynamics.

Data Dependencies. The management of ML systems is critical also due to different forms
of data dependencies [136]. Maintaining an ML system in fact means 1) managing (implicit
or explicit) unstable data dependencies over time, 2) checking dependencies deriving from
underutilized features which continue to affect the behavior of the model, 3) dynamically
monitor the evolution of these dependencies over time and 4) designing effectively the
development of new models without applying cascade corrections to previously developed
models that rely on shared data knowledge.

Reliance on design anti-patterns. Systems that incorporate ML functionalities are typically
based on the joint work of different components, each of which implementing a specific ana-
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lytics feature. The result of this organization is the existence of an ecosystem of independent
general-purpose libraries or packages that communicate with each other only through "glue
code", that is a software layer that enables the communication of these components based on
the definition of standard API, the adoption of shared formats for exchanged data, and the
unification of hyperparameter notations. Evidently this system management model, which
does not refer to any well-known design pattern, significantly increases its maintenance cost
and makes its configuration critical.

Complex monitoring and testing. Another critical aspect in managing ML systems concerns
the constant monitoring and testing of their performance. As evidenced by the experiences
shared by the main Big High-Tech companies, this process is typically structured in two
steps [18]: an offline "health check" of the models, with the aim of verifying their ability
to effectively solve the task for which they were designed, and their constant and periodic
online monitoring to manage the occurrence of deviant or unexpected behaviors. In both of
these phases, an assessment carried out exclusively using accuracy or label-based metrics
proved to be ineffective and unreliable. In the offline phase this is motivated by the fact that
it is difficult to obtain a correlation between model performance and business gains. This is
caused by several reasons, including the value performance saturation, according to which
the business profit produced by an ML model does not increase even with improvements in
its performance, and phenomena such as uncanny valley effect and proxy over-optimization,
according to which the too optimized functioning of an ML model can induce repulsion and
disorientation in the users in appreciating its effectiveness [18]. Many issues deriving from
the use of label-based evaluation metrics can also be found in the production phase. Some
of them are the incomplete and delayed feedbacks cases, for which the verification of the
correctness of the prediction generated by a model is masked or delayed when a target event
occurs. With regard to the first scenario, consider the fact that a user can express interest in a
product even without proceeding with its purchase (i.e., the label is not set to 1), while in the
second scenario the confirmation of the correct prediction of a model can be delayed until
the receipt of a review [18].

Two-step process. The typical ML workflow is organized in two distinct phases: on the
one hand a training process is applied to identify the most effective transformations and
models to solve the problem under examination, on the other hand the trained pipeline is
used in the production phase to satisfy many inference requests. The joint management
of these two phases is a complex task as they require significantly different requirements:
the training phase involves the realization of long and repeated computations based on
specialized hardware, while the inference phase is subject to low latency and high scalability
constraints [35].
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3.1.2 Unusual ML use

In addition to the intrinsic limitations of this technology, a further factor that complicates its
management concerns its unusual use, which distinguishes it from other software artifacts.
Today, in fact, as analyzed in [7], a trained ML model is mainly conceived as a building
block to be embedded within a target application in order to provide it with inference
functionalities. This execution model first of all differs from current engineering practices,
according to which data science and software engineering functions are delegated to different
processes or even companies. Secondly, the requirement that an ML model is deeply
embedded within multiple application contexts, requires compliance with various runtime
settings with related constraints, such as a reduced dependence on external libraries, the
ability to manage data that doesn’t fit in RAM, to scale according to the available hardware
resources and to be portable on different platforms.

Comparing these limitations to the success of DBMS in the reliable and efficient manage-
ment of corporate data even on a large scale, a question arises: can relational technology be
used to limit these problems?

The advantages deriving from the use of this mature technology are innumerable. First of
all, a centralized management of analytics within the DBMS would eliminate the high costs
of extracting and transmitting data to separate and dedicated analytics systems. Secondly, it
would benefit from the long-term experience of DBMS in the management and cost-based
optimization of large-scale computations through a declarative interface (based on SQL)
capable of masking unnecessary implementation details. [86, 67]. Furthermore, focusing on
the management of ML workflows, the use of DBMS would allow to trace and scrutinize all
the phases of their development cycle, promoting greater interpretability and debuggability.
Even in the production phase, when an ML model is subjected to periodic updates, the use of
a transactional logic would make it possible to guarantee its consistency and the tracking
of its evolution over time, with consequent benefits in terms of reliability and security. [4].
Finally, the use of a well-known tool would prevent practitioners from learning another type
of data processing system.

Despite these benefits, achieving this goal is a rather challenging and complex task. The
main reason for this concerns the adaptation of the relational execution model with LA / ML
computations. The operation of the DBMS is based on the use of operators, which adopt a
tuple-oriented data updating paradigm and which are applied in succession in correspondence
of diversified elaborations. A cost-based optimizer will then be responsible for identifying
the optimal order of execution. On the contrary, LA / ML workflows rely on an operator
/ model-centric logic through which heavy vector computations iterate and transform data
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several times [8]. Moreover, ML operators typically act on single-table data, unlike relational
technologies which, due to the prior application of a denormalization process, store data in the
form of multiple tables. This leads analysts to perform primary key-foreign key joins before
learning on the integrated data layer, and therefore only the implementation of sophisticated
join techniques, to reduce the cost of this data preparation step, would make the execution
of ML analytics within a relational context advantageous [76]. Finally, in more general
terms, it is necessary to identify the most advantageous form of integration between relational
technology and data analytics functions. Numerous solutions are available, such as the use of
user-defined functions (UDF), the creation of new SQL operators, the more intensified use
of recursive computations already supported by some DBMS and the introduction of a new
data modeling layer, however, each of them generates diversified impacts on the portability,
maintainability and performance of the system [118]. A more detailed analysis of them is
provided in the next section.

3.2 The state of the art on the data management and data
analytics integration

This section provides an overview of systems that integrate data management capabilities
with data analytics from a perspective more oriented towards the progress made by the
database community.

The evolution of these systems has followed two parallel lines of development: on the one
hand the relational databases have been used as platforms to host new LA features (DB-to-LA
perspective), on the other hand subsequent and higher level extensions have incorporated the
main low-level LA primitives (LA-to-DB perspective). A recent comparison of the systems
belonging to both categories is provided in [148]. Only recently, the focus has shifted towards
a more generic integration of the two disciplines. In the specific field of ML, for example,
numerous efforts are being made towards a centralized and unified management, through
DBMS, of the entire ML pipeline, including the critical production phase.

3.2.1 DB-to-LA perspective

The first forms of integration of RDBMS with data analytics functionality were introduced
in the early 2000s, where a paradigm shift occurred in the use of DBs: from simple tools
for data retrieval and accounting, to tools for the realization of predictive analytics based on
statistical computations [104]. A conceptualization of this phenomenon is provided in [31],
which underlines how data scientists require a Magnetic, Agile and Deep (MAD Skills) use
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of DBs. These properties refer to the fact that data scientists 1) are magnetically attracted
to the data, regardless of their diversified formats and / or information qualities and their
prior preparation before ingestion into the DB (Magentic property), 2) apply iterative and
progressive changes to the data (Agile property) and 3) analyze them through advanced and
deep statistical techniques (Deep property). This new way of using DBs has prompted major
vendors of DB technologies to equip their products with new operators. However, their
integration was rather cumbersome and time-consuming, due to the diversified requirements
(e.g. data access pattern, RAM consumption, etc.) that each (new) operator required, and for
which a specific solver had to be designed [46]. These problems have therefore motivated
the creation of more lasting and native forms of integration, and promoted a constant interest
of the industrial sphere and the academic community towards this topic. Testimony of this
fact is the realization, starting from 2010, of a great variety of systems capable of satisfying
these requirements. A detailed analysis of them is proposed below.

By analyzing the solutions proposed in the literature, and partially modifying the classifi-
cation provided in [118], 3 main forms of integration of relational technologies with analytics
functionality have been recognized. They are distinguished according to the depth / level of
integration and are:

• Level 1: integration realized through User-Defined Functions (UDFs)

• Level 2: extension of relational engines through new operators or modification of
existing operators, as well as intensive use of recursive queries

• Level 3: re-definition of data models and application of low-level modifications to the
physical layer of the DBMS

All the previous categories provide a solution to the expensive ETL process discussed in
the previous section (with associated management costs), however, depending on the level of
detail of integration, a series of critical issues afflict these solutions.

Level 1: UDF-based integration

The lighter forms of integration are those that perform data analytics within DBMSs using
user-defined functions (UDFs). These are snippet codes written in a high-level language (eg.
C ++ and Python) that allow interaction with databases using more sophisticated imperative
logics than the dedicated imperative languages that DBMS already natively supports (eg
Transact-SQL). While such solutions can be implemented quite easily, their main problem
is performance [148]. On the one hand, in fact, they provide a high modularity in the
realization of statistical computations incorporated in general-purpose building blocks and



46 Re-purposing relational technology for advanced data analytics

take advantage of the greater user-friendliness of high-level languages, on the other hand they
leave to the programmer the choice of the sequentiality of the operations to be performed in
the DB. In other words, the DBs treat these functional blocks as black-boxes, for which no
optimization can be applied by the relational engine [70, 124]. This problem is known as
"impedance mismatch" and a partial solution to it is only provided in [124], which translates
UDF into relational algebra expressions to be embedded in SQL queries and consequently
optimizable by the relational engine.

MADlib [62]. The main exponent of this category is MADlib, which represents one of the
first solutions ever created to integrate analytics functionality into DBMSs. It provides
a direct implementation of MAD Skills [31], enunciated a few years earlier by the same
creators of this system. This library operates on top of several DBMS (for now it only
supports PostgreSQL and Greenplum) and provides analytical algorithms as user-defined
functions written in C ++ and Python that are called from SQL queries and heavily uses data
parallel query execution if provided by the underlying database system.

SAP HANA Predictive Analytics Library (PAL) [88]. This library represents a specific solu-
tion for the integration of LA functionalities applied exclusively to the SAP HANA main-
memory database system. Like MADlib it takes advantage of UDFs written in C++, but it
provides a more advanced form of integration, through which intermediate results can be
stored inside relational tables and then exploited in subsequent computations.

Froid [124]. Froid converts UDFs (written in imperative language) into relational algebra
expressions directly executable and optimizable by any DBMS. This allows improving the
performance of UDF-based systems, which cannot be directly optimized by the relational
engine.

Level 2: Relational engine extension

A deeper integration of DBMS with analytics functionality is the extension of recursive
constructs, already available in some DBMS, to implement iterative statistical computations.
A further integration step, on the other hand, concerns the creation of new operators who can
better model such elaborations. A large variety of systems belonging to this category have
been developed. In a first period, the proposed solutions tended to solve specific computations,
such as the optimization of convex problems based on the gradient descent techniques, the
implementation of generalized linear models and the adaptation of DB technologies to
distributed patterns typical of scalable data analytics. In a second step, approaches oriented
towards a unified management of generic statistical computations, through high-level (and
possibly declarative) interfaces have been proposed.



3.2 The state of the art on the data management and data analytics integration 47

Bismark [46]. Bismark was developed in 2012 with the aim of creating a unified architecture
for in-RDBMS analytics, providing a solution to the costly and time-consuming creation
of dedicated solvers for the in-DBMS execution of specific statistical processing. More
specifically, it provides a unified interface for performing convex optimizations based on
gradient descent methods.

In-DBMS Generalized Linear Models [76]. System designed after Bismark (2015), which
enables the execution of machine learning computations based on generalized linear models
(and solved by gradient descent techniques) in an RDBMS setting. The main motivation
behind this work is the need to effectively perform a series of joins to overcome the typical
denormalization of DBMS information and therefore provide a unified view of the data on
which to perform statistical processing.

LA on SimSQL [86] The main motivation behind this work is the evidence that distributed
RDBMS represent the ideal starting platform for the realization of a scalable linear algebra
system, discouraging any impulse towards the creation of new systems from scratch. This
system extends SimSQL, a parallel / distributed DBMS, through: 1) the definition of new
data types and 2) the introduction of new operators to manage vectorized computations.

SQL-Opeator-Centric Approach on Hyper [118]. The solution proposed in this paper ex-
ploits a multi-layered technique for integrating data analytics features into main-memory
DBMS (such as Hyper) to satisfy variable analytics workloads. Two main additions are
proposed: the first is based on the SQL language extension with a new iteration construct,
the second exploits user-defined lambda expressions, i.e. anonymous SQL functions that can
be specified inside SQL queries, to containerize ML operator computations (e.g. Kmeans,
PageRank, etc).

SQML [147]. Although limited to the execution of generalized linear models, this system
implements ML computations within DBMS through pure SQL (no ad-hoc extensions are
applied and no UDF / UDA are exploited), favoring a more general applicability in any
relational platform. This system therefore represents a general-purpose in-database machine
learning system implemented entirely with pure SQL, whose main goal is the creation of a
cloud-based database-as-a-service solution. In more detail, it integrates sophisticated model
partitioning techniques across multiple cluster nodes to ensure scalability. A preliminary
testing of its performance on Google cloud infrastructure has shown that it is able to provide
better performance than Bismark.

LevelHeaded [3]. The main focus of this work is the development of efficient join algorithms
(with related cost-based optimizers) to implement LA computations in SQL queries. The
intuition behind this work is in fact the observation that the simple SQL translation of LA
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operations via the pairwise join algorithms in standard RDBMSs (like simSQL) is orders of
magnitude slower than using a LA package.

In-DBMS Gradient Descent [132] The focus of this work is to integrate a standard DBMS
with gradient descent-based computations, which are the basis of many ML algorithms.
To achieve this both a new data type and a new operator for the implementation of this
optimization method have been developed.

MLearn & ML2SQL [131]. Starting from the observation that there is no unified solution for
tensor and gradient descent based computations accessible through an integrated declarative
interface, the goal of these papers is to fill this space. Following this direction, two main
products have been created: MLearn and ML2SQL. The first is a multi-platform declarative
language for writing ML-based computations. The second is an SQL compiler of this
language, which integrated with a specific gradient descent optimizer and an algebra based
on tensors, allows the execution of ML elaborations within RDBMS.

In-DBMS Declarative Recursive Computation [67]. This work argues that by applying min-
imal changes to a parallel RDBMS, such as greater support for recursive constructs and
its optimization for very large compute plans, it is possible to make it compatible for dis-
tributed learning computations. The paper also underlines how DBMS 1) would enable
model parallelism, a parallelization technique of ML computations that does not exclusively
rely on the partitioning of data between different distributed computational units, for which
it is required that the data fit the respective RAM, and 2) would make the management of
computer clusters more transparent due to their declarative interface.

Level 3: Physical DBMS extension

The most advanced and lowest level adaptation of traditional relational technologies to
support linear algebra is the definition of a new data abstraction layer based on vectors and
tensors. The main solutions developed following this philosophy are the arrays DBMSs,
whose main exponent is SciDB. Even more specific solutions optimize the most modern
hardware capabilities, such as FPGAs, to define a more advanced physical layer to support
complex LA / ML computations. An example of these systems is DoppioDB.

SciDB [143]. SciDB is the result of a current of thought that believes that traditional DBMSs
are not compatible with numerical computation and therefore must undergo a complete re-
definition. The main concept behind this DBMS is the array. This logical unit can be shared
at low level between multiple physical nodes and enables the implementation of various
vector computations. At a high level, this DBMS uses a SQL-like declarative language, in
order to guarantee the logical and physical independence of the system.
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DoppioDB [8]. This system is an extension of MonetDB (a popular columnar DBMS) that
incorporates FPGA-based machine learning operators. The main motivation behind this work
is the underuse of DBMS, which could be solved by exploiting more optimized hardware,
such as FPGA technologies.

3.2.2 LA-to-DB perspective

Simultaneously with the expansion of relational technologies, statistical and machine learning
analytics have also spread significantly.

Some of them can be expressed using LA operations that are iterative vectorized computa-
tions, which are available to analysts in the form of multiple packages / libraries / frameworks.
The basis of these tools is represented by BLAS 1, a set of specifications that defines a set
of low-level routines for performing common linear algebra operations. Many numerical
software applications use BLAS-compatible libraries to do linear algebra computations, such
as LAPACK2, MATLAB3, NumPy4 and R5.

Similarly, ML computations can be implemented through a varied ecosystem of libraries
such as Scikit-Learn6, ML.NET7, H2O8, as well as frameworks more oriented to the resolu-
tion of Deep Learning tasks such as Keras9, TensorFlow10, PyTorch11, etc.

Although these tools are widely used in industry, several factors prevent their use in large
and distributed scenarios. The reason for this lies in their inability to manage computations
on large datasets that do not fit into a single-node RAM. To satisfy this need, a new type of
system, the scalable LA system, has been developed. They allow users to scale LA-based
algorithms to distributed memory-based or disk-based data without needing to manually
handle data distribution and communication and by exploiting high-level APIs. They also
support storage/retrieval of data to/from disk, buffering/caching of data, and automatic
logical/physical optimizations of computations (automatic rewriting of queries, pipelining,
etc.). Examples of these systems are Apache Spark [165, 92], SystemML [20], Apache
Mahout Samsara [130], KeystoneML [145] and many others. Although these systems have

1http://www.netlib.org/blas/
2http://www.netlib.org/lapack/
3https://it.mathworks.com/products/matlab.html
4https://numpy.org/
5https://www.r-project.org/
6https://scikit-learn.org/stable/
7https://dot.net/ml
8https://www.h2o.ai/
9https://keras.io/

10https://www.tensorflow.org/
11https://pytorch.org/
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been designed for different purposes than DBMSs, both technologies are converging towards
the creation of unified systems for the joint integration of data management features and
data analytics capabilities. As evidence of this, consider for example that Spark, through the
integration of relational-style DataFrames and DataSets interfaces [13] in the implementation
of ML computations, is increasingly assuming the connotations of a parallel RDBMSs [67].

In line with this development direction and anticipating the evolution of some of these
technologies, [86] argued that:

Our results also suggest that if scalable linear algebra is to be added to a modern
dataflow platform such as Spark, they should be added on top of the system’s
more structured (relational) data abstractions, rather than being constructed
directly on top of the system’s raw dataflow operators.

3.2.3 ML is not only training

The previous sections examined the generic ability of a DBMS to incorporate data analytics
functionality. However, when referring specifically to ML analytics, there are several aspects
of its workflow to consider. First of all, as already pointed out, it consists of a training
phase and an inference phase, which rely on very diversified functionalities. In addition, an
appropriate governance process must be employed to monitor its effectiveness, performance
and other aspects for its maintenance over time. The evaluation of the integration of ML
functions within the DBMS must therefore consider all these constituent components [4]. In
line with this consideration, [121] argues that:

However, developing reliable, robust, and understandable ML models requires
much more than a good training algorithm. Specifically, it is necessary to build
the model using high-quality training data. Moreover, this training data needs to
be translated into a set of features that can expose the underlying signal to the
training algorithm. And finally, the data fed to the model at serving time must be
similar in distribution (and in features) to the training data, otherwise the model’s
accuracy will decrease. Ensuring that each of these steps is done in a consistent
manner becomes even more challenging in a setting where new training data
arrives continuously and accordingly triggers the training and deployment of
updated models.

This recently motivated the community to start to focus on the ML problems beyond just
training. Examples are input data validation and cleaning [121, 23], model deployment [11]
and technical depth remediation [22].
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Following this perspective, several systems and libraries have been developed. One of
the pioneering works in this field was Clipper [35], a general-purpose low-latency prediction
serving system whose goal is to provide an efficient and unified interface for the realization of
ML inference tasks through multiple DataFlow frameworks (like Spark, TensorFlow, Scikit-
Learn). Other similar systems are Rafiki [155], Velox [34] and TensorFlow Serving [16]
(although the latter is specifically designed to extend TensorFlow). A more sophisticated
evolution of such systems is represented by PRETZEL [79], a prediction serving system for
ML pipelines introducing a novel white box architecture enabling both end-to-end and multi-
model optimizations. Unlike previous jobs, this system accesses the individual components of
the pipeline to be served (which is considered a whitebox) in order to optimize its execution
at serving time. Another system focused on accomplishing ML pipeline inference tasks is
Raven [70], a framework under development that analyzes the problem from a completely
new perspective compared to previous works. Its main focus is in fact to embed this ML
pipeline inference capability directly into the DBMS by co-optimizing predictive pipelines
and SQL queries.

A further step towards the full end-to-end management of the ML workflow is offered
by Mldp [5] that provides a flexible data model for managing different kinds of data, an
environment where to perform experiments that guarantees re-producibility and it is integrated
with the most important ML frameworks.

3.3 DBMS as ML Prediction Serving System

This section, pursuing the direction provided by the most recent works in the integration
of relational technology and Machine Learning, analyzes the in-DBMS prediction serving
of end-to-end ML pipelines (i.e., pipelines composed of featurizers and ML models). It
represents a rather unexplored topic in the literature, and this is somehow surprising:

1. in practice, ML models are seldomly deployed alone, whereas data featurizers are
often required to transform data into the format that is understandable by ML models
(e.g., in [123] pipelines can have up to hundreds of operators);

2. models are often trained once and served many times (e.g., rendering of web pages
based on users’ profile, batch prediction of asset prices based on historical data), and
this pattern appears quite amenable for in-DBMS execution;

3. applications where prediction serving will likely be used (e.g., websites, smart BI
dashboards) are often backed by a DBMS;



52 Re-purposing relational technology for advanced data analytics

4. the top used operators in open source and practical data science over tabular data are
not compute-heavy neural networks, but rather memory-intensive operations (such
as one-hot encoding or tree ensemble methods [123]) which should benefit from
in-DBMS execution;

5. when data already resides in a database, execution of in-DBMS predictions is a natural
choice, whereas a different solution will require to pull the data out of the database.
This not only is a path not always practicable, for instance, if for security reasons data
cannot be moved outside the database, but it also causes performance cost.

These observations are further corroborated by the fact that commercial databases are
starting to surface functionalities for expressing model predictions directly from SQL state-
ments [94, 56, 10, 33]. Pushing the execution of predictions directly into the DBMS by
translating ML pipelines end-to-end into SQL is therefore the natural next step.

To prove whether DBMSs are a good fit for ML inference, in this section is presented
MASQ, a library whereby trained ML pipelines are translated into standard SQL. MASQ ac-
cepts as input pipelines trained in Scikit-Learn (Sklearn) [119] or ML.NET [7], and it supports
a dozen among featurizers and models, purposely selected among the frequently used opera-
tors in open source projects and in the industry domain [123].

Unlike all the works described in Section 3.2, which mostly focus on (1) the training
aspect of ML, and (2) on optimizing specific workloads relying heavily on linear algebra, the
focus behind the creation of MASQ is to understand whether off the shelf DBMSs are a good
fit for serving ML predictive pipelines.

Tidypredict [1] is the closest work to MASQ, although it works only in R, and for a
small set of models (linear regression, generalized linear model, random forest, and decision
tree). Another similar work is Raven [70], which co-optimizes predictive pipelines and SQL
queries. Among the optimizations, Raven is able to generate SQL queries from single ML
operators. MASQ instead end-to-end translates predictive pipelines, so it’s the database
optimizer’s job to figure out how to best execute predictive pipelines and SQL queries.

To prove the effectiveness of MASQ only traditional ML pipelines are considered and a
comparison of the DBMS execution performance against popular, single node, ML libraries,
such as Sklearn [119] and ML.NET [7], is performed. Other alternative libraries include
H2O [60], Weka [64], and Spark’s MLlib [91] (for scale-out training). All these libraries
provide a comprehensive set of ML models and algorithms, but they do not focus neither on
“Enterprise-grade" features, nor on data management (in practice the assumption is that data
resides on flat CSV files).

In the rest of this section this library is evaluated over 10 representative pipelines, spanning
(1) binary classification, regression, and multiclass classification tasks; (2) a diverse set of
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models (linear models, tree-ensembles) and featurizers (one-hot encoding, normalizers, etc.);
and (3) over 7 different datasets: from large scale (tens of millions of records), to small
ones with only few hundreds instances. The goal of these experiments is to 1) evaluate the
inference performance of Sklearn and ML.NET pipelines against their SQL implementation
(generated by MASQ) executed over MySQL and SQL Server, and 2) asses the performance
of the library when using both different input / output modalities (flat CSV file or database),
inference settings (batch of different sizes), and optimization and implementation strategies
(e.g., w/ and w/o indexes, operator fusion, etc.). On the basis of the literature analysis
carried out the Section 3.2, this experimentation represents the first attempt oriented to the
empirical evaluation that ML pipelines can be run end-to-end in plain SQL, and that this can
be achieved even for high-dimensional ML models and featurizers going beyond DBMSs
limits.

3.3.1 Background: ML Workflow

Figure 3.1 depicts a typical ML workflow. Starting with some input data, a data preparation
step is used for sanity checks, data validation, data cleaning (e.g., completion of missing
values through imputers [133]), feature generation [135] and selection. Data preparation
is commonly performed through a set of data featurizers. The featurized data, output of
the data preparation step, is then passed to the training step, where a learning algorithm is
used to fit a ML model through an iterative process. Once the model is trained, it can be
represented as a prediction function transforming input features into a prediction score (e.g., 1
or 0 for binary classification). Finally, the trained ML model along with the data preparation
operators constitute the ML predictive pipeline which is then deployed for serving prediction
queries [121]. Wrapping data preparation and trained ML models into a unique artifact is
common practice in ML systems [7] in order to avoid prediction skew [167]. At serving time,
the new input data is pre-processed and featurized (using the same operators, and ideally
code, as during training) and fed into the prediction function of the trained ML model for
rendering the final score.12

The focus of this work is to study whether the prediction serving process can be pushed
down and directly executed on DBMSs. The training process is kept as in the typical ML
workflow and is not the focus of this work. Rather, once a model is trained, MASQ is used
to generate SQL queries that perform the same data preparation and prediction logic as the
original predictive pipeline. Standard SQL is purposely considered such that it is possible

12Note that this is an oversimplification of actual ML workflows, and it does not cover for example hyper-
parameter tuning, model selection, or cases in which ML models are used as featurizers. It is however a fair
summary of common use-cases.
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Fig. 3.1 A typical ML workflow. Rectangles are used to identify data artifacts (e.g., input
data, or trained models); ellipses determine computations (e.g., data preparation and serving).

to (1) target different DBMSs; and (2) allow the optimizer to properly generate efficient
end-to-end plans. Finally, the focus of this work is on models learned over relational data.
Therefore, only pipelines composed of “traditional” ML operators are considered (i.e., no
deep neural networks). Traditional methods are the state-of-the-art over structured data [36],
and it is still the more widely-used type of ML [123]. Nevertheless, some tests related to the
performance of shallow neural networks will be presented in Section 3.3.3.

3.3.2 The MASQ Library

Fig. 3.2 MASQ applied to a ML predictive pipeline.

The MASQ library is built off two main components (Figure 3.2). The Compiler is
responsible for the transformation of the predictive pipelines into SQL queries; the Executor
instead connects and run the queries on the DBMS holding the data.
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The Compiler

The Compiler job can be divided into three phases: during parsing the fitted parameters are
extracted from the trained featurizers and models; parsed pipelines are then analyzed and
optimized ; finally, a conversion phase generates the SQL implementations.

Parsing. Predictive pipelines are actually Direct Acyclic Graphs (DAGs) of operators,
where each operator can be a data featurizer or a model. In the parsing phase, input predictive
pipelines are parsed one operator at a time, and each operator is wrapped by a container
object maintaining input/output relationship, as well as an operator signature and an extractor
function used for extracting the fitted parameters. Operator signatures are initialized with
the object types (e.g., the result of the type function applied over a Python operator object)
and used for picking the correct extractor (and conversion) function for the given operator
instance. MASQ compiler is extensible: extractor functions are registered at startup time
into a hash table mapping operator signatures to the related extractor function. In its
current implementation, MASQ provides wrappers for the Sklearn and ML.NET libraries,
and extractors for linear and tree models, as well as a handful of featurizers (standard scaler,
one-hot encoder, and label encoder). At the end of the parsing phase, the input pipeline is
“logically” represented in MASQ as a DAG of containers storing all the information required
for the successive analysis and conversion phase.

Example 1 (Parsing a Sklearn pipeline) Let us suppose that a user provides a Sklearn
pipeline composed of a scaler [134] followed by a linear regression model. Furthermore,
let us suppose that, once trained, the pipeline is applied over the numeric columns of the
TaxiTable dataset represented in Table 3.1, which collects information on taxi trips and can be
used to predict their fares using regression techniques. Figure 3.3 depicts the trained pipeline
with an excerpt of its parameters (top) and the result of parsing (bottom). During parsing
MASQ generates (1) a container wrapping each operator, and containing the extractor
function; and (2) wires the containers into a DAG following the input/output dependencies in
the pipeline (in this specific example, the container DAG is a simple sequence).

Analysis and Optimization. In this phase, the DAG of containers generated in the parsing
phase is traversed in topological order in two passes. During the first traversal pass, for each
operator MASQ extracts the operator’s parameters by calling the referenced extractor function
stored in the container. Extracted parameters are stored within the container. MASQ supports
different to-SQL converters based on the operator characteristics. By default MASQ uses a
mix of SELECT and CASE statements for converting ML operators into SQL, but sometimes
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Pipeline(...,	steps=[
				('scaler',	StandardScaler(with_mean=True,	...)),

				('lr',	LinearRegression(normalize=False,	...))])
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C
on
ta
in
er

LinearRegressionType

lr extractor Extractor
Function

Operator
Signature

Parsing
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Fig. 3.3 Parsing of the pipeline of Example 1. The pipeline (top) is parsed on a container
DAG (bottom). Each container stores a reference to the operator, its signature and extractor.

Pc Tts Td Pt Vi Label
t1 1 1271 3.8 CRD CMT 17.5
t2 1 720 2.34 CRD VTS 10.5
t3 1 0 11.06 CSH VTS 120
t4 1 3 0 NOC CMT 52
t5 5 1560 19.97 UNK VTS 52
Table 3.1 The TaxiTable used in the examples.

the number of features or structure of the operators is restricted by DBMSs’ limits. In the
latter case, in the first traversal pass, MASQ injects a triplet-representation operator (TRO).
This operator is used to inform the compiler to transform the data from the default into a
triplet format during the conversion phase, and to successively use the related triplet-based
conversion function for each subsequent operator. During the second pass, MASQ tries to
apply operator fusion optimizations. Operator fusion substitutes pairs of operators in the
DAG with a merged operator where the signature is a concatenation of the signatures and
containing the union of the original parameters.

Example 2 (Analysis of the Sklearn pipeline) During analysis, the extractor functions of
the parsed pipeline of Example 1 are triggered. Specifically, the parameters extracted
from the scaler and linear model are shown in Tables 3.4a and 3.4b, respectively. In the
StandardScaler case, the extractor pulls the mean and the standard deviation values for
each column by calling mean_ and scale_ from the operator object, respectively. The ex-
tractor for the LinearRegression retrieves the weights and the bias by calling respectively
operator.coef_ and .intercept_.

The discussion on triplet-based conversion is postponed, while next is presented the
simplest case when no optimizations nor triplet-representation are triggered.

Conversion. During this last phase, the DAG of containers is again traversed in topological
order and a conversion-to-SQL function triggered based on each operator signature. Each
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Pc Tts Td
mean 1.8 710.8 7.434
std 1.6 638.9 7.28

(a) Scaling

Findex Weight
1 -20.33
2 -31.36
3 48.72

bias 50.4

(b) Regression

Fig. 3.4 Parameters extracted from the pipeline of Example 1.

conversion function receives as input the parameters (extracted during analysis, and stored
directly into the container) and generates a string containing the SQL implementation. The
SQL implementations of all operators are then merged into a unique query following the
input/output dependencies expressed in the container DAG.

As for the extractors, MASQ stores a map of operator signatures / conversion functions.
MASQ currently implements converters for the following operators (where each of them has
a default and triplet-format version): standard scaler, one-hot encoder, label encoder, gradient
boosting classifier / regressor (w/ and w/o tweedie loss), random forest, decision tree, linear
regression with some variants (i.e., Poisson and SDCA), logistic regression classifier, PCA,
and linear SVM classifier. In the default case, the above operators can be implemented using
the following simple strategies.

Conversions via SELECT statements. The conversion into SQL is straightforward when the
ML prediction function consists only of algebraic operations between the extracted parame-
ters and the input features. Examples of methods implemented via SELECT statements are
normalizers/scalers and linear models (by unrolling the linear algebra operations into the
SELECT clause).

Example 3 (Pipeline conversion) The conversion of the pipeline of Examples 1 and 2 leads
to the queries in Figure 3.5, where the two SELECT clauses implement the scaler and the
regressor, respectively. Note that the two queries, at conversion time, will be merged into a
unique query.

Conversions via CASE statements. SQL CASE statements can be used to implement rule-
based learners such as decision trees, or data featurizers such as one-hot encoding (OHE). In
the former case, each rule from the model is translated into a SQL CASE statement; rules are
then nested, according to the model, by nesting the correspondent CASE statements.

For the latter, the CASE statements is used to encode input categorical values into a
sequence of columns, one for each distinct value. For each input, only the column of that
particular categorical value will store 1, all the other columns will be 0.
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SELECT	((Pc	-	1.8)	/	1.6)	AS	Pc,
	((Tts	-	710.8)	/	638.9)	AS	Tts,
	((Td	-	7.434)	/	7.28)	AS	Td
FROM	TaxiTable

SELECT	(-20.33*Pc	-	31.3*Tts	+	48.72*Td	+	50.4)	
		AS	Score	
FROM	NormalizedTable

Fig. 3.5 Scaling and linear model in SQL.

Example 4 (OHE) Let us suppose to apply a one-hot encoder to the columns Pt and Vi of
the data represented in Table 3.1. The result of this transformation is a new set of columns,
one for each unique categorical value of the Pt and Vi columns. As we can see in the query of
Figure 3.6, each column name is generated by concatenating the original categorical input
name with each distinct value. Each column will store 1 only if the value is of the proper
category.

SELECT
	CASE	WHEN	Pt	=	'CRD'	THEN	1	ELSE	0	END	AS	Pt_CRD,
	CASE	WHEN	Pt	=	'CSH'	THEN	1	ELSE	0	END	AS	Pt_CSH,
	CASE	WHEN	Pt	=	'NOC'	THEN	1	ELSE	0	END	AS	Pt_NOC,
	CASE	WHEN	Pt	=	'UNK'	THEN	1	ELSE	0	END	AS	Pt_UNK,
	CASE	WHEN	Vi	=	'CMT'	THEN	1	ELSE	0	END	AS	Vi_CMT,
	CASE	WHEN	Vi	=	'VTS'	THEN	1	ELSE	0	END	AS	Vi_VTS
FROM	TaxiTable

Fig. 3.6 One-hot Encoding in SQL.

Combining SELECT and CASE statements. Some model requires the combination of SELECT

and CASE statements. This is, for example, the case for tree-ensembles models. Tree-
ensemble methods construct a sequence of decision trees and adopt different strategies to
select the outputting class (e.g., the mode class in classification tasks, the means of the
resulting values in regression tasks). In the SQL implementation for this kind of methods the
CASE-based queries of the decision trees are nested in a query that collects the results and
computes the final output via a SELECT clause.

Escaping DBMSs’ Limits. DBMSs are not designed for ML, and it is fairly easy to reach
database limits with ML pipelines of reasonable complexity. During the analysis phase,
MASQ detects when a certain limit is reached, and it automatically selects, at conversion
time, the proper operator implementation. In the following a couple of problems, and related
solutions, encountered while implementing MASQ are discussed.
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SELECT	Id,	'Pt'	AS	Name,
	Pt	AS	Val	FROM	TaxiTable

UNION	ALL

SELECT	Id,	'Vi'	AS	Name,
	Vi	AS	Val	FROM	TaxiTable

SELECT	Id,
	CASE	WHEN	Name	=	'Pt'	THEN	1,
		WHEN	Name	=	'Vi'	THEN	1	END	AS	Fval,
	CASE
		WHEN	Name	=	'Pt'	AND	Val	=	'CRD'	THEN	1
				...
		WHEN	Name	=	'Vi'	AND	Val	=	'CMT'	THEN	5
		WHEN	Name	=	'Vi'	AND	Val	=	'VTS'	THEN	6
	END	AS	Findex	
FROM	TripletTable1 2

1

2

OHETableTaxiTable TripletTable

Fig. 3.7 SQL workflow for the one-hot encoding sparse implementation.

Limit on the number of columns. SQL Server wide (sparse) tables support 30k columns;
1024 in regular tables [137]. MySQL supports a maximum of 4096 columns per table [101].
Conversely, ML datasets and pipelines can easily reach several millions of features. Therefore,
high dimensional data need to be stored using a different format.

MASQ solution. To overcome the above problem, a triplet-based representation
is used, where each record is stored in the form (identifier, attribute_name,
attribute_value). As already discussed, MASQ injects TRO into the plan during analysis.
As an example, next the compilation process for a pipeline that contains an OHE operator
generating a large number of features is considered.

Example 5 (Pipeline with TRO and OHE) Let us assume again to transform the columns
Pt and Vi of Table 3.1 using OHE. This time, however, the total number of distinct values for
these categorical columns is greater than the maximum number of columns supported by the
database 13. In this case, the compiler will inject a TRO operator before OHE. The following
converter is then instructed to use the triplet-based conversion function for OHE, which
uses a sparse implementation. Specifically, the converter in this case generates pairs in the
form (1, index_value) instead of materializing the full dense vector like in Example 4.
Figure 3.7 provides the SQL workflow implementing the pipeline.

The SQL statement in the left-hand side of the Figure (➊) implements the TRO operator.
This creates a TripletTable where the first column is the identifier of the rows in the dataset,
while the second and third columns store the attribute name and its values, respectively. In
the SQL query on the right-hand side (➋), the first CASE statement (①) is used to select the
attribute(s) to encode and sets 1 as the value for those attributes. The second CASE statement
(②) provides the index of non-zero values. Note that indexes are sequential, even across
categorical columns (the index for the Vi column starts at 5 instead of 1). This is because
one-hot encoded columns are implicitly concatenated into a unique feature vector.

Limits on SELECT and CASE clauses. High dimensional datasets introduce problems not
only regarding the data representation, but also on how we implement operators in SQL. In

13This check is, for example, implemented for Sklearn as a condition on the total number of elements of the
parameter extracted from operator.categories_.
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SELECT Id,
(Fval * Weight) AS RScore 
FROM OHETable AS O
INNER JOIN WeightsTable AS W
 ON O.Findex = W.Findex)

SELECT Id, CASE
   WHEN Name = 'Pt' THEN 1 END AS Fval,
 CASE
  WHEN Name = 'Pt' AND Val = 'CRD' THEN 1
  WHEN Name = 'Pt' AND Val = 'CSH' THEN 2
  WHEN Name = 'Pt' AND Val = 'NOC' THEN 3
 END AS Findex FROM TripletTable

SELECT Id, CASE   WHEN Name = 'Pt' THEN 1,
  WHEN Name = 'Vi' THEN 1 END AS Fval,
 CASE
  WHEN Name = 'Pt' AND Val = 'UNK' THEN 4
  WHEN Name = 'Vi' AND Val = 'CMT' THEN 5
  WHEN Name = 'Vi' AND Val = 'VTS' THEN 6
 END AS Findex FROM TripletTable

SELECT Id, SUM(RScore)
 + bias
FROM PartialScoreTable
GROUP BY Id

1 2 3

OHETable WeightsTable PartialScoreTable

TripletTable

Fig. 3.8 Pipeline with OHE followed by a linear regression executed in MASQ with TRO
and partitioning.

fact limits exist on the number of columns allowed in SELECT statements (e.g., 4096 for
SQL Server), or the total number of conditions in CASE clauses (few thousands for SQL
Server [138]).

MASQ solution. These two issues are addressed by injecting TROs, and partitioning large
SELECT and CASE statements. Two pipelines made of an OHE plus a linear regression
(Example 6) and a tree-ensemble (Example 7) are used to showcase how this strategy works.

Example 6 (OHE and linear regression) Figure 3.8 depicts how MASQ translates this
pipeline. The workflow directly starts from the TripletTable of Example 5, where a large
number of features is generated after the application of OHE. Additionally, let us suppose
that also the number of CASE statements in the OHE is too large, and therefore the query
for the encoding needs to be partitioned (➊). Each partition is executed independently and
generates a distinct OHETable. The OHETables are then joined (➋) with the WeightsTable
containing the linear regression’s parameters (e.g., Table 3.4b). Over the output of the join,
each feature value is then multiplied with the respective regression weight, and generate
the partial sums which will then be aggregated by a final query (➌). Note that, differently
than the unrolled version, the triplet representation prevents the overcoming of the limit of
columns in the SELECT statements.

Example 7 (OHE and tree-ensemble model) The implementation of tree-ensemble models
after OHE basically follows the same workflow as Example 6, with two important differences.
First, while WeightsTable can be partitioned following the OHETable partitioning, for tree-
ensembles each tree could potentially touch all input features. To solve this, tree-ensembles
are partitioned into batches (up to the number allowed by DBMS constraints), and run each
batch over the union of the OHETables. Secondly, CASE statements cannot be directly used
to implement trees on data in triplet-based representation. This is because each original (not
triplet) row is split into several triplet rows, and CASE statements, to work, should now be
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(a) Snapshot of a tree-
ensemble.

SELECT Id, MAX(CondTree0) AS Tree0
FROM ( SELECT O.Id,
    CASE WHEN Tree0 = 2 THEN 69.6
      WHEN Tree0 = 1 THEN CASE WHEN Findex = 2 THEN
          CASE WHEN Fval <= 0.5 THEN 3 ELSE 4 END END
    END AS CondTree0
  FROM LEVEL0 JOIN OHETable AS O ON (LEVEL0.Id=O.Id)
 ) AS TLEVEL
GROUP BY Id

SELECT Id, MAX(CondTree0) AS Tree0
FROM (
  SELECT O.Id,
    CASE WHEN Findex = 1 THEN
      CASE WHEN Fval <= 0.5 THEN 1 ELSE 2 END
    END AS CondTree0
  FROM OHETable AS O
) AS TLEVEL
GROUP BY Id

(b) How MASQ compiles the first 2 levels of Tree0.

Fig. 3.9 How tree-ensembles over triplet are translated in MASQ.

able to select multiple rows simultaneously. To overcome this limitation, MASQ implements a
technique whereby all the trees in the batch are traversed together, level by level, in a breath
first search manner [146]. For each level, the triplets that match the conditions on the trees
are selected, and the condition is used to select the next CASE statement in the next level. In
Figure 3.9(a) a tree-ensemble model with 3 trees is reported and a detailed representation of
the first 2 levels of Tree0 are shown, where the decision nodes use OHE features Pt_CRD
and Pt_CSH. Figure 3.9(b) contains the queries for the first 2 levels of Tree0. The query
for Level 0 (i.e., the root) of Tree0 contains two nested CASE statements: one for selecting
the proper feature (i.e., feature Pt_CRD has Findex = 1, Pt_CSH as Findex = 2), and one
for evaluating the condition of the feature. The result of the condition contains the index
of the node which will then be used in the successive level. The final GROUP BY and MAX

operations are used to return a unique not null record. In the Level 1 query the results of the
Level 0 are used and three nested CASE statements are exploited: in the outermost statement
there is one condition for each node, while for each node are considered, again, two case
statements, one for selecting the proper feature, and one for evaluating the condition. The
others levels follow a similar approach. With this technique it is possible to evaluate, for
each level, batches of trees concurrently. The SQL query of Figure 3.9(b), for each level, will
then actually contain different CASE statements for each tree. A padding logic to deal with
trees with different number of levels is finally applied.

The Executor

The Executor provides the functionalities necessary for the execution of the SQL queries
generated by the Compiler in a relational database. The Executor makes use of a set
of connectors (currently MASQ supports MySQL and SQL Server via Python and C#
connectors). Finally, a small driver program manages the executions.
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Datasets #Rows #Columns Task
Iris 150 4 categorical Multi-class

Heart Disease 303 13 numeric Binary
Bike Sharing 17,379 12 numeric Regression

Taxi Fare 200,000
3 numeric

3 categorical Regression

Credit Card 284,897 30 numeric Binary

Criteo 4,000,000
13 numeric

26 categorical Binary

Flight Delay 21,604,865
23 numeric

3 categorical Binary

Table 3.2 Datasets used in the experiments

3.3.3 Experimental evaluation

The experimental evaluation aims to provide an answer to the following question: are
databases a good fit for inference of ML pipelines? In order to answer this question, 10
representative ML pipelines are implemented on two ML frameworks, namely Sklearn and
ML.NET, and their execution performance is compared against MASQ-generated queries
run on 2 DBMSs: MySQL and SQL Server. The tests will evaluate both the final accuracy
(with the expectation of matching the same accuracy of the ML frameworks), and the pure
throughput performance. Finally, the experiments will explore how SQL pipelines perform
(1) without any optimization; (2) with database-specific optimizations, e.g., data indexing;
(3) with “logical” optimizations such as operator fusion between OHE and GBDT; and (4)
with different implementation variants based on DBMS limits. Finally, some negative results
on text featurization and neural network models are reported.

Datasets. The majority of the experiments are conducted over the 7 datasets described in
Table 3.2. On these datasets a wide range of tasks is executed: from binary and multi-class
classification, to regression. Iris is the smallest one with 150 records, each described by 4
numeric columns. Criteo is the dataset with the largest number of features (39 columns). At
inference time the input columns are transformed with OHE into around 2.5 million features.
Flight Delay is the biggest dataset: it contains more than 21 million records and 26 initial
columns which, during execution, they get expanded into approximately 700 features.

ML Pipelines. Table 3.3 shows the pipelines used in the evaluation. 8 pipelines have
been taken from ML.NET samples [97]; 2 of them (Criteo and Flight Delay) are pipelines
commonly used to evaluate the scalability of ML frameworks [7]. Each pipeline was first
implemented in ML.NET and then in Sklearn (note that for P3 the XGBoost [28] library is
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Pipeline Dataset Featurizer Model Framework

P1 Iris
MapValueToKey SDCAMaximumEntropy ML.NET

LabelEncoder LogisticRegression Sklearn

SELECT Statement SELECT Statement MASQ

P2 Heart Disease N/D
FastTreeClassifier ML.NET

GradientBoostingClassifier Sklearn

CASE and SELECT Statements MASQ

P3

Bike Sharing N/D

LBFGSPoissonRegression ML.NET

SGDRegression Sklearn

SELECT Statement MASQ

P4
SDCARegression ML.NET

SDCARegression Sklearn

SELECT Statement MASQ

P5
FastTreeRegression ML.NET

GradientBoostingRegression Sklearn

CASE and SELECT Statements MASQ

P6
FastTreeTweedie ML.NET

XGBoost w/ Tweedie loss Sklearn

CASE and SELECT Statements MASQ

P7 Taxi Fare
OneHotEncoding, NormalizeMeanVariance SDCARegression ML.NET

OneHotEncoding, StandardScaler SDCARegression Sklearn

CASE and SELECT Statements SELECT Statement MASQ

P8 Credit Card
DropColumns, NormalizeMeanVariance FastTreeClassifier ML.NET

DropFeatures, StandardScaler GradientBoostingClassifier Sklearn

SELECT Statement CASE and SELECT Statements MASQ

P9 Criteo
OneHotEncoding FastTreeClassifier ML.NET

OneHotEncoding GradientBoostingClassifier Sklearn

TRO + Partitioned Statements CASE and SELECT Statements MASQ

P10 Flight Delay
OneHotEncoding FastTreeRegression ML.NET

OneHotEncoding GradientBoostingRegression Sklearn

TRO + Partitioned Statements CASE and SELECT Statements MASQ

Table 3.3 ML pipelines used in the experimental evaluation.

used in order to match the Tweedie loss on ML.NET); finally both the implementations are
converted into SQL queries with MASQ. For each pipeline, Table 3.3 contains the Featurizers
(when used) and the final Model. For each pipeline, the featurizers and models adopted are
listed by Framework, and for MASQ is reported the technique used from Section 3.3.2, i.e.,
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whether SELECT statements, CASE statements, both SELECT and CASE statements, TROs, or
partitioned statements are adopted.

Setup. The experiments are executed on an Azure Standard D32 v3 machine with 32 virtual
cores, 128GB of RAM and 256GB of local (SSD) storage. The machine runs Ubuntu
version 18.04, Sklearn version 0.21.2, and ML.NET version 1.2. MASQ was evaluated on two
RDBMSs: MySQL version 5.7.29 and SQL Server 2017 version 14.0.3223. All experiments
have been performed 5 times, and the average results reported. For MASQ experiments
the average query time as reported on the database catalog is considered; for Sklearn and
ML.NET the time of the running process is measured. For GBDT models the default number
of trees (100) is used.

Accuracy

The first step for evaluating whether DBMSs can be used as prediction serving systems
is to check that the prediction outcomes match with the original ones generated by the
ML frameworks. In Table 3.4 the errors between the outcomes generated by the baseline
frameworks (Sklearn and ML.NET) and MASQare reported. They are computed as the
mean of the absolute differences between the returned values (score of the predicted class)
for regression (classification) tasks. As we can see from the table, using SQL queries for
inference introduces negligible errors (e.g., between 1e−05 and 1e−06 in the general case;
1.49e−02 in the worst case). The worst case is due to the Compiler which uses ML.NET

tree-aggregation logic, while XGBoost apparently uses a specific aggregation function for
Tweedie.

Pipeline MASQ vs ML.NET MASQ vs Sklearn

P1 5.99e−08 1.97e−06

P2 2.47e−06 2.44e−06

P3 3.74e−05 2.49e−06

P4 2.38e−05 2.50e−06

P5 1.65e−05 2.52e−06

P6 2.69e−05 1.49e−02

P7 1.03e−05 2.50e−06

P8 5.17e−06 3.81e−06

P9 2.07e−06 2.13e−06

P10 7.46e−06 1.83e−06

Table 3.4 Error (mean of the absolute difference) on the predictions generated by MASQ
versus ML.NET and Sklearn.
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Fig. 3.10 Throughput for Sklearn, ML.NET (on CSV, MySQL and SQL Server) and MASQ
(on MySQL and SQL Server).

Throughput

The goal of this experiment is to compare the performance of each framework and on
each pipeline in serving predictions over the full datasets. For Sklearn and ML.NET the
performance when the data reside both over flat CSV files and in the databases are also tested.
In the latter case, data has to be moved out of the database before the predictive pipeline can
be executed. Since the data in the pipelines have different sizes, the average throughput in
terms of rows evaluated per second (RPS) is calculated. Figure 3.10 shows the results.

Discussion. There are several insights from this experiment: (1) except for P10 (Flight Delay)
Sklearn on CSV has the higher throughput; (2) as expected, the throughput decreases for the
ML frameworks when the data needs to be moved out the database, although it decreases
considerably (around 10×) for Sklearn, less for ML.NET—this is probably due to the quality
of connectors; (3) in general there is no clear winner between MySQL and SQL Server
connectors for ML.NET, whereas for Sklearn, the SQL Server connector performs much
worst than the MySQL one; (4) MASQ throughput is comparable to the database version of
the ML frameworks for pipelines with linear models (P1, P3, P4, P7), while it is much slower
when tree-ensemble models are used (P5, P6, P8); (5) MySQL and SQL Server implements
different optimization strategies whereby the same query generated by MASQ can result in
different performance. The 4th point is somehow surprising and invalidates the common
knowledge that databases are not so performant over linear algebra. Conversely, tree-models
performance varies based on the implementation and dataset. This aspect will be further
explored in the following sections.

Scalability

This section studies how the throughput of the frameworks changes as the amount of data
processed by each system is scaled. This scenario is implemented by splitting each dataset
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(b) Scalability trend for SQL Server

Fig. 3.11 Scalability of the different frameworks, over MySQL and SQL Server by changing
the batch size.

into batches of various sizes, and the overall throughput is plotted. Batches of 1, 10, 100, 1K,
and 10K rows are tested, plus the full dataset in one batch. The full dataset is used also in
the cases where the batch size is greater than the total length. Figure 3.11 shows the results
for MySQL (a) and SQL Server (b). For Sklearn and ML.NET the versions where the data
resides in the database are considered.

Discussion. As we can see, all the pipeline present similar trends: as the batch size increases,
the throughput increases as well, up to a saturation point (either the dataset size or the
resources are saturated). As in Figure 3.10 we can see that Sklearn on SQL Server has
worst performance than MySQL. Regarding MASQ: for pipelines P1, P3, P4, and P7, with
linear models, MASQ shows the best performance in most of the settings. Conversely, for
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Fig. 3.12 Latency for Sklearn, ML.NET and MASQ on MySQL for a single record.

tree-based models we can see that in the majority of the settings (P2, P5, P6, P9) MASQ
performance are either the best or in between Sklearn and ML.NET. For the remaining
pipelines (P8, P10) MASQ trend is generally worst than the baseline frameworks, although
in aggregate not by much. Tests performed on SQL Server provided similar results except
for P6 and P8, where stricter limits on the number of nesting CASE statements forced MASQ
to generate more simplified queries.

Latency

This experiment analyzes the latency performance for executing online (single record)
predictions. Figure 3.12 shows the results computed over MySQL, where for ML.NET and
Sklearn is also considered the time to pull the records out of the database.

Discussion. The latency numbers confirm that MASQ performs better (up to 3×) than the
baseline frameworks for linear models (P1, P3, P4, P7) while tree-based models (P2, P5, P6,
P8, P9, P10) can be up to almost 2× slower (P5, P6, P8). Even for the same dataset, we can
notice the latency of tree ensemble models is worse than the linear ones (i.e., P4, P5). Next
the trade-offs between linear and tree ensemble models will be studied more in detail by
breaking down the performance for each single pipeline component.

Performance Breakdown

In this section the performance over few selected queries and for the large datasets is drill
down. Firstly, the contribution of each pipeline operator on the final runtime for queries P7,
P8, P9 and P10 is evaluated. Successively, the time spent between data loading, data write,
and computation for all the above pipelines is analyzed.
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Fig. 3.13 Operator breakdown for P7 (Taxi Fare) and P8 (Credit Card).
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Fig. 3.14 Operator breakdown for P9 (Criteo) and P10 (Flight Delay). For P9, a GBDT model
is also compared with a SDCA.
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Fig. 3.15 Breakdown of the latency for MASQ ML.NET (ML.) and Sklearn (SK.) and for
pipelines P7, P8, P9 and P10. The time spent is divided into four buckets: load, computation,
write and other (which summarizes all the time spent in operations not related to the previous
three components).
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Operator Breakdown The runtime for each operator as percentage over the total runtime
is plotted by batch size (where batch of 1 is online). For MASQ are reported the numbers
over MySQL (similar results hold for SQL Server), and it is compared against Sklearn and
ML.NET over CSV for P7 and P8 in Figure 3.13. In Figure 3.14 are instead reported the
results for MASQ for P9 and P10, where for P9 two variants are considered: one with a tree
model (GBDT, as described in Table 3.3) and one with a linear model (SDCA). Recall that
Criteo is the largest dataset with 2.5M features (after OHE). By running these two variants it
is possible to study, in the worst-case scenario, the tradeoffs between linear and tree ensemble
models for MASQ.

Discussion. Starting with P7, it is possible to notice that: (1) data featurizers take the
majority of the time; and (2) as the batch size increases, the time spent on normalization
decreases. This second point is even more market on P8 where for Sklearn and ML.NET

normalization surprisingly takes more than 50% for batches of 1, while it takes less than 10%
when the entire dataset is scored at once. This behaviour can be explained by considering
the benefits of vectorization which increases with the batch size. In P8, MASQ spends the
majority of the time (>90%) on the evaluation of the GBDT model.

Concerning the evaluation of P9 and P10 in Figure 3.14, it is possible to note that: (1)
the time required to complete the OHE operator is proportional, as expected, to the number
of features generated rather than on the number of rows processed (i.e., the percentage of
time spent on OHE is greater in P9 than in P10: the first generated 2.5M features over 4M
rows, the second 700 over 21M rows); (2) as the batch size increases, the time spent on
executing the GBDT model increases, up to reaching 80% in P10 for a batch size of 10K.
The experiment performed on P9 with SDCA, instead, confirms that the time required to
execute the linear model is irrelevant wrt the time for executing the featurizer or the GBDT.

Latency Breakdown This section analyzes the latency (single record) performance for the
pipelines used in the previous section. The breakdown is performed by dividing the latency
into four components: data load, computation, write and other. In other is aggregated all
the time spent in miscellaneous operations that cannot be classified otherwise: examples are
acquiring table locks, data structures disposal, etc. The results taken from MASQ running on
MySQL are reported and compared against Sklearn and ML.NET latency times obtained by
running them both over CSV files and over records loaded from MySQL.

Discussion. The breakdown in Figure 3.15 shows that the computation time is almost null
for all pipelines executed with MASQ, while the majority of time is spent on data loading.
For ML.NET and Sklearn the computation time is instead quite large, in particular in P9
where the OHE creates around 2 million features. Interestingly, the difference between data
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Fig. 3.16 Performance comparison with indexing (MySQL).

loading for the CSV and the DB is minimal for ML.NET while it is quite large for Sklearn.
Again, the quality of the database connectors may have affected it.

Optimizations

This section explores two different types of optimizations: database-specific optimizations
such as adding indexes, and “logical optimizations” at the operator level such as operator
fusion.

Using Indexes. This experiment evaluates whether the performance over the DBMSs can
be improved by applying indexes. Three settings are analyzed: in the first setting, referred to
as No Index, a clustered index on the primary key is added. In the second setting, IndexID,
a non-clustered index is considered on the column identifier (ID). Finally, in the setting
IndexALL to each column is applied a non-clustered index. The indexes have been added both
to the input dataset, and to temporary tables when used (e.g., in P7, P9 and P10). Figure 3.16
contains the results for this experiment for MySQL. SQL Server results are similar.

Discussion. The results show that only for pipelines P3 there is a small benefit from indexing.
This indeed is an unexpected behavior. No improvements for the pipelines where indexes are
built also on temporary tables (P7, P9 and P10) are obtained. Note that in this latter case, the
cost of building the index is counted into the final queries running time. In this experiment
also a column store layout in SQL Server has been explored. Similarly to indexing, this
technique does not introduce any significant improvement and sometimes even degrades
performance. With small batches (i.e. 1 to 10k) the performance degraded of up to 3×.
This is due to the overhead of reconstructing the per-row format of records. An increase in



3.3 DBMS as ML Prediction Serving System 71

1 10 100 1k 10k ALL
Batch size

10 2

100

102

104

RP
S

P9

1 10 100 1k 10k ALL
Batch size

P10

Sklearn
ML.NET

MASQ (OHE and GBM disjoint)
MASQ (OHE and GBM merged)

(a) MySQL

1 10 100 1k 10k ALL
Batch size

10 2

100

102

104

RP
S

P9

1 10 100 1k 10k ALL
Batch size

P10

(b) SQL Server

Fig. 3.17 Operator fusion (GBDT + OHE) for P9 and P10.

performance was recorded only in P8 with large batches (i.e. greater than 100k) and with
a tree ensemble depth greater than 6. This is motivated by the fact that deep trees require
repeated access to the features and this pattern is able to better exploit the columnar format.

Operator Fusion. In this experiment an optimization for pipelines P9 and P10 is analyzed,
where the SQL queries implementing the tree-ensemble models are fused with the OHE fea-
turizer. Specifically, the CASE statements evaluating the tree conditions on attributes targeted
by the OHE featurizer are rewritten to compute both the featurization and the prediction in
the same statement. Figure 3.17 shows the RPS for the optimized implementation on MySQL
compared to the baseline where no optimization is used.

Discussion. The results show that when operator fusion is not used MASQ performance
decrease substantially for P9 and P10. With operator fusion MASQ does more computations
per single row (i.e., for each row the encoding is computed multiple times, one for every time
the row is used by a tree), but since the number of features is large and not all of them used,
the total number of encodings is less. A similar optimization was also applied to P8 where
normalization was fused with GBDT. This last experiment introduced a 4× slowdown. This
is because all features are used by the GBDT model. This result suggests that a cost-based
optimizer is likely required for selecting the best compilation strategy when optimizations
are enabled. Regarding latency, operator fusion improves P9 by 5×, and P10 by 2×.
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Study of Operators Implementation

In this section few possible variants of the operator implementations discussed in Section 3.3.2
are studied, as well as how model characteristics affect the query performance.
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Fig. 3.18 Comparison of different tree implementation methods (MySQL).

Tree ensembles Implementation. Pipelines P2, P5, P6, P8, P9, and P10 make use of
tree-ensemble algorithms whereby a certain number of trees (100 in our experiments) are
executed, and their predictions combined. In this experiment, two different implementations
for this operation are tested. In the first implementation, the queries representing each tree
are a subquery of an outer query computing the final score over the partial results (this is
the approach described in Example 4). The results obtained with this implementation are
represented in Figure 3.18 as “1 query”. In the second implementation, different set of trees
(1, 5, 10, 25 and 50) are batched in multiple queries (respectively 100, 20, 10, 4, 2) which
store the partial predictions into an intermediate table. A final query then computes the output
by aggregating the results from the temporary table. In this experiment, pipelines P8, P9, and
P10 are tested over different batch sizes size. Figure 3.18 plots the results for MySQL only.

Discussion. The experiment shows that no approach is clearly overcoming the other in all
use cases. If we look at the largest datasets (P9 and P10), we see that the implementation
with 100 queries obtains the worst results (for P10 over the entire dataset the system even
crashed because of the size of the intermediate results). For these pipelines the best results
are achieved with a single query. Interestingly, the same setting does not produce the best
results in P8. This is due to the larger number of conditions evaluated by the trees of P8. The
total number of conditions are 85,176 in P8, 18,166 in P9 and 11,837 in P10.
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OHE followed by linear models When a OHE featurizer is followed by a linear model,
a temporary table is built for storing the results of the featurization (the OHETable in
Figure 3.8), and its content joined with the model parameters table (see Section 3.3.2 for
details). In this experiment a possible alternative plan implementing the operation as a
multi-way join is evaluated. Pipeline P9 with SDCA has been executed on the MySQL
DBMS, and the OHETable has been partitioned in 300 tables. 14 Figure 3.19 plots the results
of the experiment.

Discussion. As we can see the multi-way join implementation performs better over large
batch sizes, whereas when the data to process is smaller, the single intermediate table
implementation performs better. This is likely because for small bath sizes, less inserts to the
intermediate table are executed concurrently.
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Fig. 3.19 Comparison of single intermediate data and multi-way join strategy for OHE +
linear models.

Tree ensembles with variable number of leaves

In this experiment the performance of the tree ensemble implementations are studied when
the number of leaves (i.e., the height) of the trees is increased. Figure 3.20a and 3.20b report
the performance on MySQL of different P8 tree ensembles implementations obtained by
varying the number of leaves.

Discussion. Figure 3.20a shows how performance varies, per batch size, as the number of
leaves is increased. As we can see, the difference in performance is stable across the different
batch sizes, and it is due to the fact that evaluating taller trees (with more leaves) requires the
evaluation of more conditions. Looking at batch size of one, from Figure 3.20b it is possible
to conclude that P8 latency is from 3× to 6× slower on MASQ compared to the baseline
systems. Interestingly, Sklearn and ML.NET performance slightly increase with the increase

14This is the minimum number of tables required in order to meet SQL Server limits on case statements
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Fig. 3.20 Comparison of tree ensembles performance with variable number of leaves on P8.

of the number of leaves, while MASQ gets up 2× slower. This is likely due to the overhead
of unrolling tree ensemble evaluation as a sequence of CASE statements.

Negative Results

In this set of experiments the performance of SQL implementations of textual data featuriza-
tions and neural network models is analyzed. They represent common building-blocks in
ML pipelines, but they introduce computations that are hard to supported in databases with
reasonable performance.

Managing textual data To study whether MASQ can support textual data, a pipeline over
the Sentiment dataset [98] is considered. This dataset contains 40k records, with 7 numerical
and 1 textual feature each. The ML pipeline is composed of a data featurizer (FeaturizeText
in ML.NET, TfidFeaturizer in Sklearn) over the textual column, and a logistic regression
model. After the application of the text featurizer, the number of features becomes around
210K. The text featurizer has been implemented in SQL using temporary tables and CASE

statements, while the logistic regression is implemented as a simple SELECT statement. The
left hand-side plot in Figure 3.21 shows the results against MySQL. Sklern and ML.NET are
run over the data stored in the database. Similar results have been obtained for SQL Server.

Discussion. The experiment shows that MASQ performance is several order of magnitude
off compared to the baseline frameworks. This is due to: (1) the large number of features
generated; (2) the implementation of the text featurizer which mixes CASE statements and
temporary table transformations; and (3) the heavy use of the string intrinsics functions
provided by the database. This results suggests that probably text featurizers are better
supported in databases with UDFs.
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Fig. 3.21 Negative results: (left hand-side) Sentiment Analysis over textual features; and
(right hand-side) a MLP model applied on Credit Card.

What About Neural Networks? For this experiment, a Multilayer Perceptron (MLP),
composed of 3 hidden layers, each one with 5 nodes, has been implemented in SQL through
SELECT statements. The dataset used for the evaluation is Credit Card, and MASQ is
compared only with Sklearn, as ML.NET currently does not provide native support for MLP
models. The results for MySQL are plotted on the right-hand side of Figure 3.21.

Discussion. As we can see from the results, MASQ performance is comparable to Sklearn
only for small batch sizes, whereas for larger batch sizes Sklearn is able to better use the
hardware than MySQL. This MLP model requires three matrix multiplications, and Sklearn
uses BLAS libraries to efficiently compute them. Note that these results are over a very small
MLP with only 3 layers and 5 neurons per layer. The same experiment applied to a larger
MLP with few hundreds of neurons, has generated, as expected, worst results by several
orders of magnitude.

3.3.4 Lesson Learned

From the implementation and evaluation of MASQ emerged several interesting insights.
For example, linear models are not a bottleneck, while featurizers and tree-based models
can be. Adding indexing is not helpful, while operator fusion sometimes is. Furthermore,
several specific implementations and optimizations have been integrated in MASQ to address
database limits, and these scenarios can be quite common in practice.

Another lesson learned is that although any ML operator can be translated into SQL,
not all operators will have good performance (e.g., text featurization and neural networks).
For their more efficient support, it is therefore more advantageous to rely on a UDF-based
approach.
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Finally, interesting compromises between optimizations and compilation strategies
emerged. Examples are, when to use operator fusion, or when to change the operator
implementation. This suggests that a cost-based optimizer is likely required to achieve the
best performance. This is so more true, when hardware accelerators are also available [102].

3.3.5 Conclusion and Future work

Given the recent interest in commercial databases on providing native ML prediction features
within SQL [10, 94, 56], in this section has been evaluated whether execution of predictive
pipelines can be pushed inside databases. To do so MASQ has been implemented: a library
translating end-to-end ML predictive pipelines into SQL. MASQ currently supports about
a dozed of Sklearn and ML.NET operators. In order to evaluate the performance of the
approach, MASQ has been tested over MySQL and SQL Server, and using 10 representative
ML pipelines and 7 different datasets, and a comparison with Sklern and ML.NET has been
provided. The results show that MASQ performance is comparable to Sklearn and ML.NET

when the data is originally stored in the database. This outcome proves that predictive
pipelines can be served without having to trade-off performance with the “Enterprise-grade”
provided by DBMSs. Finally, several interesting compromises between optimizations and
compilation strategies have been discovered. This suggests that a cost-based optimizer is
likely required to achieve the best performance.

MASQ is currently actively maintained: new operators are being integrated (e.g., feature
selection operators, imputers, K-means, missing linear and tree models). Additionally,
support for accelerated hardware integration and optimizations such as constant folding, dead
code elimination, and operators reordering [79] is being explored.



Chapter 4

Data exploration and explanation

Industry and research communities have always had the prerogative to develop easy-to-use
and interactive mechanisms for data management and analysis. This problem is nowadays
exacerbated to accommodate the many data enthusiasts who might not always be database-
savvy and need to perform data-related activities. A large plethora of approaches facilitates
data management such as data debuggers [38, 72], data explanation systems [127, 159],
exploratory search systems [129], outlier detectors [161], subgroup discovery systems [14,
61, 63] and so on.

In this chapter, an approach for creating data descriptions (descriptions in short), i.e. a
form of explanation that aims at making, from a human perspective, a (large) set of data
more understandable at a glance, is presented. A description is a compact, readable and
insightful structure formed by predicates that apply to the target dataset. Predicates are more
informative than single tuples and, for this reason, are used extensively within explanation
systems [127, 159, 164]. While existing data explanation tools and techniques are used to
gain knowledge on specific tasks such as unexpected behaviors of systems [156, 164], query
answers [78, 127, 159] and predictions [78, 44], data descriptions are generic inasmuch as
they are able to concisely represent any arbitrary set of data tuples. The research described in
this chapter has been published in [113], and a presentation of its Web prototype is available
in [111].

4.1 Motivating example

Consider the Sensor dataset of Figure 4.1a containing sensor measurements, and taken
from [159]. Each measurement is a tuple, detected at a certain Time from a sensor device
identified with a SensorID, which consists of Voltage, Humidity and Temperature mea-
sures. For the sake of brevity, and by following the order of appearance in Figure 4.1a, the
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Time SensorID Voltage Humidity Temp.
t1 11AM 1 2.6 0.4 34
t2 11AM 2 2.6 0.5 35
t3 11AM 3 2.6 0.4 35
t4 12AM 1 2.7 0.3 35
t5 12AM 2 2.7 0.5 35
t6 12AM 3 2.3 0.4 100
t7 1PM 1 2.7 0.3 35
t8 1PM 2 2.7 0.5 35
t9 1PM 3 2.3 0.5 35

(a) The Sensor dataset.
D1 : Ti ∈ {11AM,12AM,1PM}

∧
S ∈ {1,2,3}

∧
V ∈ {2.3,2.6,2.7}

∧
H ∈ {0.3,0.4,0.5}

∧
Te ∈ {34,35,100}

D2 : {11AM≤ Ti≤ 1PM}
∧
{2.3≤ V≤ 2.7}

∧
{0.3≤ H≤ 0.5}

∧
{35≤ Te≤ 100}

∧
{1≤ S≤ 3}

D3 : {11AM≤ Ti≤ 1PM}
∧
{0.3≤ H≤ 0.5}

∧
{1≤ S≤ 3}

D4 :
(
S= 1

∧
H ∈ {0.3,0.4}

) ∨ (
S= 2

∧
H ∈ {0.5}

)∨(
S= 3

∧
H ∈ {0.4,0.5}

)
D5 :

(
H= 0.3

∧
V= 2.7

)∨ (
H= 0.4

∧
Te ∈ {34,35,100}

)∨(
H= 0.5

∧
{2≤ S≤ 3}

)
D6 :

(
H= 0.3

∧
Te= 35

)∨ (
H= 0.4

∧
Te ∈ {34,35,100}

)∨(
H= 0.5

∧
Te= 35

)
D7 :

(
H= 0.4

∧
Te ∈ {34,100}

)∨ (
Te= 35

∧
V ∈ {2.3,2.6,2.7}

)
(b) A subset of possible descriptions for Sensor.

Fig. 4.1 Data and descriptions of the Sensor running example.

attributes are identified with the short labels Ti, S, V, H and Te. Assume now a user who
needs support for starting the data analysis on Sensor. A description is a suitable support for
such type of user.

Example 1 A naive description D0 of Sensor consists of the set of tuples themselves.
Each tuple in D0 is a set of attribute-value pairs. For instance, a description for t1 is
{Ti = 11AM,S = 1,V = 2.6,H = 0.4,Te = 34}, whereby D0 includes such description
and all the analogously formed descriptions for the remaining tuples t2, . . . , t9.

D0 is verbose and arguably does not help in understanding the content of Sensor. Desir-
ably, when a user asks for a description, she wants an outline of the dataset that is both easy
to read and understandable despite the loss of information due to summarization.
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Example 2 D1 of Figure 4.1b is a description conjoining a list of predicates, each charac-
terizing an attribute of the dataset with the related set of values. D1 is more concise than D0

since it removes duplicates at the expense of reconstructing the original tuples.

When we have complex schemas and instances, a description like D1 is too long and still
difficult to read. A shorter description is preferable. In this case, the selection of the features
and of the domain values for the predicates is a crucial task.

Example 3 D1 can be compacted by using other forms of predicates. For instance, D2 of
Figure 4.1b increases the readability of continuous attributes by using range predicates.
D2 can be additionally shortened by limiting the set of attributes being employed in the
predicates composing the description. For instance, D3 uses Ti, H and S attributes only.

In other scenarios, users are interested in understanding the values assumed by specified
attributes and how they vary with respect to the rest of the dataset. In this case, the attributes
of interest constitute the pivotal elements of the descriptions.

Example 4 D4 and D5 show examples of descriptions partitioned over pivotal elements. D4

shows the values assumed by the attribute H for each sensor. In D5, the user is interested in
the values registered by the sensors when H changes.

While generating a description per se is relatively easy, the problem of generating
all descriptions is exponential whereby searching for the “best description” becomes a
challenging task.

In this regard, the first challenge is to understand whether a description is relevant to
a user. To solve this challenge a set of dimensions for qualifying different aspects of the
descriptions will be introduced. They correspond to a set of tunable parameters that users
can control to suggest their intent to the system.

Example 5 Assume that a user indicates that she wants descriptions with many attributes.
Among the descriptions in Figure 4.1b the preferable description is D2. In other situations,
a user might be interested in understanding what happens at different levels of Humidity.
D5 and D6 best suit this purpose. If additionally the user wants a low number of distinct
attributes, then D6 should be preferred over D5.

Interestingly, some dimensions are somehow in contrast with each other, e.g., a short de-
scription is understandable at the expenses of losing a significant chunk of information. The
proposed approach exploits a relevance function that balances all dimensions to solve this
issue.
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Another challenge is related to the large number of descriptions it is possible to choose
from: for accommodating the considered exploratory use cases, good descriptions must be
rendered at interactive speed. Clearly, a naïve solution that exhaustively evaluates all possible
descriptions compromises the usability of the approach. To solve this second challenge, a
dynamic programming approach with a set of heuristic rules, in concert with a mechanism
for generating and ranking the top-k descriptions, is considered.

4.2 Data Descriptions

This section formalizes data descriptions and introduces the problem of generating the
best descriptions. Let us consider a dataset I composed of tuples over a set of attributes
A = {a1,a2, . . . ,an}, where each attribute ai has associated a domain of atomic values. A
tuple t is in the form t = ⟨v1,v2, . . . ,vn⟩ where each value vi is contained in the respective
domain. Finally, given a set of tuples I, adomI(ai) will denote the active domain of attribute
ai for I. Descriptions use predicates defined as follows.

Definition 1 (Predicate) Given a dataset I over A, a predicate p is an atomic formula over
A in one of the following forms:

• SET PREDICATE p : ai ∈ {v1,v2, . . . ,vm}, where ai ∈ A and each vi ∈ adomI(ai).

• RANGE PREDICATE p : (vl ≤ ai ≤ vu), where ai ∈ A and both vl,vu ∈ adomI(ai).

When a set predicate has only one value, it is considered as atomic and the notation
p : (a = v) will be used, e.g., S= 1 of D4 in Figure 4.1b.

Definition 2 (d-formula) Given a set of tuples I ̸= /0 over A, a d-formula d for I is a
conjunction of predicates over A, such that:

1. an attribute in A occurs in d at most once;

2. each predicate p ∈ d is true in I according to the classic interpretation of atomic
formulas in first order logic;

3. (full coverage) ∀ti ∈ I, d is true for ti.

Descriptions are usually computed over (horizontal) partitions of a dataset I. A partition
is a non-empty set of tuples Pi such that I =

⋃
i Pi and ∀i, j, Pi∩Pj = /0;
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Definition 3 (Description) Let I ̸= /0 be a dataset over A, and organized into ρ partitions,
such that for each partition i ∈ 1, ...,ρ a d-formula di over A exists. A description D for I is
a non-empty disjunctive-normal formula of ρ d-formulas {d1, . . . ,dρ}.

Given an input dataset I, the goal of this approach is to generate the best descriptions
representing I. The quality of a description is supported by a scoring function.

Definition 4 (Scoring function) Given a set of descriptions {D1, . . . ,Dn}, a scoring func-
tion Cost is such that ∀i, Cost(Di) ≥ 0, and for each pair Di,D j, if Cost(Di) ≤ Cost(D j)

then Di is more relevant than D j.

In practice, the function Cost may take into consideration several factors, such as user prefer-
ences, and can be personalized depending on the domain. The list of the user preferences
supported by the approach are listed in Section 4.3 and the implementation of the adopted
scoring function is provided in Section 4.4.3. In the following, it is demonstrated that the
general problem of generating the best description for a dataset I is NP-Hard.

Problem 4.2.1 (Finding the best description) Given a dataset I organized into ρ parti-
tions, and a PTIME-computable scoring function Cost, let D = {D1,D2, ...,Dm} be the set
of all possible descriptions over I. The computation of the most relevant description in D

aims at returning the description Di ∈D such that Cost(Di)≤Cost(D j),∀D j ∈D .

Theorem 1 Problem 4.2.1 is NP-Hard.

Proof. The demonstration is carried out by showing that there exists a polynomial-time
reduction from the Weighted Set Cover (WSC) Problem to Problem 4.2.1. The WSC
Problem, which will be recalled next, is a well-known NP-Hard problem [32].

Problem 4.2.2 (Weighted set cover problem) Given a universe of n elements U =

{e1, . . . ,en}, a set of m non-empty subsets of U , S = {s1, . . . ,sm}, and a PTIME cost
function c : S → R+. The goal is to find the minimum cost subset x⊆S such that:

1. all elements are covered by x (i.e. ∀ei ∈U ,ei ∈
⋃

s j∈x
s j), and

2. the sum of the costs of the elements in x is minimized.

Given an instance (U ,S ,c) of Problem 4.2.2, let us define a mapping reduction r that
creates a dataset I = {t1, t2, . . . , tn} over a set of attributes A = {a1,a2, . . . ,am}:
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• using a bijective function g : U → I that associates each element ei of the universe to
a tuple ti of I;

• using a bijective function f : S → A that associates each s j to an attribute a j;

• each value vi, j for the i-th tuple and j-th attribute is s.t.:

vi, j =

⊤, if g−1(ti) ∈ f−1(a j)

⊥, otherwise.

It follows that each possible description Dk ∈D over I is constructed out of boolean predicates
in the form p : (ai =⊤) or p : (ai =⊥). Additionally, r introduces a scoring function Cost′

that sums over the costs of each predicate pi in a description Dk, i.e., Cost′(Dk) =∑pi∈Dk
Cost-

p(pi), where:

Cost-p(pi : (ai = v)) =

c( f−1(ai)), if v =⊤

∞, otherwise.

Finally, a function h, that transforms a d-formula with boolean predicates computed
over an instance created by r into a candidate solution to Problem 4.2.2, is also introduced:
h(Dk) = {sk : sk = f−1(a j),∀(a j =⊤) ∈ Dk}. It is straightforward to see that with r and h
we have that Cost′(Dk) = c(h(Dk)) ∀Dk ∈D , where D is the set of all possible descriptions
over I.

Now it is possible to solve the Problem 4.2.1 over dataset I considering all the tuples
grouped into the same partition1 (i.e., ρ = 1). The solution is a description D formed by
one d-formula d. By construction all predicates in d are in the form p : (ai = ⊤) and d
(D) is true for each tuple ti ∈ I (full coverage). The next step is to show that if the solution
D has a finite cost, then X = h(D) is the optimal solution for Problem 4.2.2. Otherwise,
there is no solution for Problem 4.2.2. This can be proved by considering the two clauses of
Problem 4.2.2 separately. If a finite solution to Problem 4.2.1 exists, then the first clause is
true since (1) all the predicates in d are positive (i.e. ai =⊤), and (2) ∄ti ∈ I such that D is
false for ti. Consequently, all the tuples have at least one value that is true and it is captured
by the description D. By construction of r, it follows that ∄ei = g−1(ti) such that ei ∈ X .

In order to show the clause of minimality, let us assume, by contradiction, that another
solution X ′ is optimal for the instance (U ,S ,c) of Problem 4.2.2 (i.e. c(X ′) < c(X)).
Therefore, a description D′ over I must exist such that X ′ = h(D′) and Cost′(D′) < Cost′(D).
This is impossible because it is assumed that D is the minimal solution to Problem 4.2.1.
Hence X must be minimal.

1Note that this is a simplification: similar arguments hold for the cases where ρ > 1.
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Since (1) Problem 4.2.2 is NP-Hard, (2) the reduction r is polynomial (i.e., O(|U |×
|S |)), (3) Cost′ is in PTIME, and (4) the transformation h for generating D from X has linear
time-complexity (i.e., O(|S |)), it is possible to conclude that generating the best description
D is also NP-Hard. □

4.3 Generating Descriptions: Principles

Attributes of a dataset carry different degrees of relevance for users interested in gleaning
insights from data. Some attributes have intrinsic value because, for example, they can
identify entities in a domain (e.g., the attribute SensorID in the Sensor dataset). Sometimes,
the relevant attributes are indicated by the users due to their domain knowledge or to a
specific interest. For example, a user may be interested in understanding when a specific
attribute, e.g., the Temperature, assumes certain values in a sensor. For this reason, it is
more convenient to see the dataset Sensor partitioned by SensorID instead of a monolithic
entity. The first driving principle states that it is more explicative to think of a dataset
as the composition of different groups of related tuples. By following this principle, the
implemented approach will have to let the user specify how the dataset has to be partitioned,
and will have to generate a specific d-formula to describe each partition in the dataset. The
set of d-formulas is the final description for the dataset.

Data explanation is conducted for different purposes. In some cases, users want an
accurate and complete, yet readable, representation of the whole dataset. In other cases, a
general profile of the dataset is enough for the user. The description represents, in these
latter cases, an overview that ignores infrequent values. Often, instead, there are users who
are interested in finding outliers. The second driving principle is that multi-faceted goals
of data explanation can be accommodated by relaxing the concept of full coverage in the
descriptions (Definition 2) 2. By allowing users to interactively change the coverage of
the expected descriptions (intended as the percentage of the total number of tuples that are
true for the description) they are now capable of extracting proper insights from data. For
example, let us imagine a user that wants to separately analyze each sensor in the Sensor
dataset. Initially, she sets a high coverage to get a better picture and she gets that Humidity
varies between 0.3 and 0.4 for SensorID 1, it is 0.5 in SensorID 2 and varies between 0.4
and 0.5 for SensorID 3. She then decides to dig deeper by lowering the coverage, and she
finds that sensor 3 has Temperature equal to 100, which is an outlier.

Based on this considerations, it is possible to conclude it is impossible to define a single
and global way to assess how good a description is since the quality is influenced by the

2Note that this relaxation does not invalidate the formalization of Section 4.2.
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subjectivity of the end users, e.g., a prolix description can be suitable for a user but, at
the same time, be poor for another one. The third driving principle is to consider user
preferences for qualifying descriptions. This principle will have to be implemented by: (1)
defining a series of dimensions that characterize the descriptions; (2) let the users indicate
their preferential value for these dimensions; and (3) take into account the user’s preferences
in the scoring and ranking of the final descriptions (Section 4.4.3).

Specifically, three dimensions for characterizing a description D from a user perspective
have been identified: coverage, degree, and diversity.

Definition 5 (Coverage) Given a subset X of the dataset I for which a d-formula is true, the
coverage of a d-formula is the fraction |X ||Iρ | i.e., the percentage of I over the partition ρ for
which the d-formula is true. Given a description D, the coverage of D, i.e. cov(D), is the
mean of the coverage of the d-formulas therein.

Basically, broad dataset descriptions have a high coverage; descriptions of datasets’ pecu-
liarities (e.g., outliers) have low coverage. The proposed approach will use this definition of
coverage to validate descriptions instead of the (more strict) one of Definition 2.

Definition 6 (Degree) Given a description D over a dataset I with A attributes and com-
posed by ρ partitions, let Adi ⊆ A be the set of attributes in a d-formula di of D. The
degree of a description is the average number of attributes in its constituting d-formulas:
deg(D) = 1

ρ ∑di∈D
|Adi |
|A| .

Intuitively, a description with lower degree tends to be much easier to read.

Definition 7 (Diversity) Given a description D, let ||D|| be the overall number of predicates
in D and AD ⊆ A be the set of attributes that appear in the predicates of D at least once. The
diversity is measured as: div(D) = |AD|

||D|| .

The diversity measures how often attributes are shared across d-formulas. While repetitions of
a set of attributes in different partitions increase readability, they could reduce the fine-grained
representation of partitions.

Example 6 With reference to the descriptions reported in Figure 4.1b, deg(D1) = 1,
div(D1) = 1; deg(D3) = 3/5, div(D3) = 1; deg(D6) = 6/15, and div(D6) = 2/6 All these
descriptions have the maximal coverage (cov(D1) = cov(D3) = cov(D6) = 1).

These three dimensions will be considered as the minimal set of parameters that allows
to both (1) extract enough information from users for enabling task-specific explorations;
and (2) allow the system to return high-quality descriptions. This set of dimensions has
been identified through experimental evaluation and by reviewing similar approaches (e.g.,
[68, 78]).
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Parameter Meaning
COV The desired coverage. It is a float value be-

tween 0.0 and 1.0.
DEG The desired degree. It is a float value be-

tween 0.0 and 1.0, where 1.0 stands for high-
degree descriptions.

DIV The desired diversity. It is a float value be-
tween 0.0 and 1.0, where 1.0 stands for high-
diverse descriptions.

Ax In the user-driven mode, the attributes of
interest for the user, and |Ax| the size of the
description.

ρ The expected number of partitions. In the
data-driven mode, this is the number of clus-
ters to be generated.

k The maximum number of descriptions to be
returned.

Table 4.1 Users’ preferences used as input to the framework.

4.4 The Approach

The description generation process is interactive: users can specify their preference parame-
ters (see Table 4.1) repeatedly until the explanation need is fulfilled.

The generation of the descriptions is performed over 3 phases, as shown in Algorithm 1.
In the first phase (line 1) the input dataset is partitioned. Data partitioning is detailed in
Section 4.4.1. The generation of the d-formulas happens during the second phase (line 2) 3.
For each partition, the number of possible d-formulas is exponential over the number of
attributes’ values. Generating all possible d-formulas is, therefore, prohibitively expensive.
As explained in Section 4.4.2, a heuristic procedure that allows to prune d-formulas that
are less relevant for the task at hand will be introduced. In the last phase (line 3), the
actual descriptions are computed by combining d-formulas of different partitions. Intuitively,
the top-k descriptions that minimize the scoring function are obtained by combining the
generated d-formulas.

This problem can be solved with a dynamic programming approach: the proposed
approach, as described in Section 4.4.3, will employ a variant of the Viterbi Algorithm called
LVA [139] (a.k.a. List Viterbi), although any other algorithm in this class can be used. In

3Note that when numerical attributes exists in a dataset, a discretization algorithm is applied during the
second phase to extract categorical features from numerical attributes (e.g., [51]). An inverse process is applied
to the descriptions before returning them to the user. Descriptions with d-formulas based on categorical
attributes generated by discretization, in a post-process phase are transformed by interpolation over range
predicates (Definition 1).
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this specific implementation, LVA takes as input (1) the set of d-formulas generated in the
previous phase (DF in Algorithm 1), (2) the user provided values for degree and coverage,
and (3) the desired value for the parameter k.

Algorithm 1: Generation of Descriptions
Input :The dataset I, Ax, COV, DEG, DIV, k, and ρ .
Output :The top-k descriptions Dk.

1 P←CreatePartitions(I,Ax,ρ);
2 DF ← GetDFormulas(P,A,COV,DEG);
3 Dk←ViterbiTopK(DF,DEG,DIV,k);
4 return Dk;

4.4.1 Building partitions

The first phase of the adopted technique splits the input dataset into partitions. Since partitions
are described separately, it is desirable to create them such that similar tuples are grouped
together. Users interact with the system in two different modes: user-driven and data-driven.
The user-driven mode is useful when the task is to profile data over some feature of interest.
The data-driven mode is instead more suited for cases where a user has little knowledge
of the dataset, and the partitions are created in a fully-automated fashion via a clustering
algorithm. In user-driven mode, the approach creates a partition for every distinct value of
the projection of I over a non-empty set of user provided attributes Ax ⊆ A. In this case, the
procedure applies a SQL’s group-by operator over the pivotal attributes specified by the Ax

parameter.

Example 7 Looking at Figure 4.1b, D4 is a user-driven description in which the user
pinpointed SensorID; D5 is another user-driven description but built around Humidity.
For the latter the partitions are P1 = {t4, t7}, P2 = {t1, t3, t6}, and P3 = {t2, t5, t8, t9}.

In data-driven mode, the partitioning logic ensues from the application of a clustering
algorithm. The approach uses k-means and let the user specify the number of clusters (i.e.
the ρ parameter). However, any clustering algorithm can be used.

Example 8 In Figure 4.1b D7 is a data-driven description composed of partitions: P1 =

{t1, t6} and P2 = {t2, t3, t4, t5, t7, t8, t9}.

4.4.2 Building d-formulas

In the second phase, the approach builds all feasible and relevant d-formulas for each partition.
The number of candidate predicates for each partition depends on the size of the active
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domain of the attributes in the partition. Therefore, the complexity of this phase is O

(
ρ×

∑
k=1... ADp

(ADp
k

))
, where ρ is the number of partitions, ADp is the cardinality of the union

of the active domains of all attributes in partition p. In other words, ADp = |
⋃

a∈A
adomp(a)|

, where A is the set of the attributes, and adomp(a) is the active domain of attribute a in p.
Note that the complexity of this phase is exponential, since ∑

k=1... ADp

(ADp
k

)
= 2ADp .

Given the complexity for generating all possible d-formulas (which makes the generation
of description at reasonable speed unfeasible), a heuristic process that generates the most
relevant candidate d-formulas only is adopted. We consider two heuristics, one for pruning
prolix d-formulas, and one for pruning d-formulas and predicates with undesirable selectivity.
Section 4.5 (e.g., Table 4.7) will show that these heuristics allow the number of generated
d-formulas to be decreased by up to 5 orders of magnitude (e.g., 28 d-formulas versus
1431480 for a coverage of 0.8).

Heuristic 1 - pruning prolix d-formulas A low degree is specified when the user prefers
a small number of predicates and, conversely, high degree is for users who prefer descriptions
with wide d-formulas. Given that a description with too many predicates is somehow hard
to read, the degree intent of the users is pushed into the process of building d-formulas in
order to early-prune d-formulas that do not meet such requirement. This limits the number of
predicates to evaluate and consequently it improves the efficiency of the entire process.

Heuristic 1 is implemented through another parameter, called conciseness (or CONC)
whose value dictates the maximum number of atomic predicates allowed in a d-formula.
More precisely, CONC = eλ ∗ DEG. The exponential function models the perception of the user
according to which small variations in the number of predicates of a low-degree description
have a significant impact on its legibility. In the following experiments, λ = 6 in order
to limit the number of atomic predicates in a d-formula to 400 when DEG is the highest.

Thanks to this heuristic, the complexity of the phase becomes O

(
ρ× ∑

k=1...CONC

(ADp
k

))
<

O

(
ρ× ∑

k=1...ADp

(ADp
k

))
, when CONC < ADp (that is the expected usual scenario).

Heuristic 2 - pruning d-formulas and predicates with undesirable selectivity. The pa-
rameter COV indicates the desired percentage of tuples that make a d-formula true. Heuristic
2 transforms COV into an interval [COVl,COVu] of admissible values of coverage. The
width of the interval is proportional to the COV itself given that COVl = COV−offset(COV),
COVu = COV+offset(COV) and offset(COV) = α ∗ COV2. This supports different use cases,
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e.g. outlier detection with small coverage or broad descriptions with high coverage when no
much details is needed. The approach uses α = 0.14 as it maximizes the quality metrics, as
shown in the experimental evaluation (see Section 4.5).

The adopted approach exploits the above intuition so that it can early prune predicates
(before they compose into d-formulas) if they do not meet the expected coverage. A naiv̈e
way to early identify admissible predicates is to check if their coverage is within the interval
[COVl,COVu]. However, discarding predicates with coverage out of this interval limits the
d-formulas computed to the combinations of those predicates with coverage close to the
COV value only. This appears to be too selective and some data distributions can generate a
low number of d-formulas (or even no d-formula). The interval width is thus enlarged by
using COVp =

COV−offset(COV)
CONC instead of COVl as left bound. This makes the coverage value

depending on the conciseness, so that when CONC is high (wider descriptions are required),
the interval width increases. By reducing the active domains of the attributes in the partitions,
the impact of Heuristic 2 is a reduction of the numerator of the binomial function. The final

complexity becomes O

(
ρ× ∑

k=1...CONC

(AD′p
k

))
, where AD′p is the cardinality of the union of

all active domains after the application of Heuristic 2 and AD′p < ADp.

Algorithm 2: GetDFormulas
Input :A list of partitions P, the dataset attributes A, COV and DEG.
Output :The d-formulas d.

1 d← /0;
2 CONC = eλ ∗DEG;
3 COVl ← COV−offset(COV);
4 COVu← COV+offset(COV);
5 COVp← COVl

CONC ;
6 foreach p ∈ P do
7 Θ← /0;
8 foreach a ∈ A do
9 foreach v ∈ adomP(a) do

10 if |σa=v(p)|
|p| ∈ [COVp,COVu] then

11 Θ←Θ∪{a = v}

12 d← d∪ValidDFormulas(Θ,CONC,COVl ,COVu, p);

13 return d;

Generating d-formulas. Now it is described the routine for generating all possible and
relevant d-formulas. Algorithm 2 takes in input the list of partitions (P), the list of dataset
attributes (A), the coverage (COV) and the degree (DEG). The set d of the d-formulas (line
1) and, as per the adopted heuristics, the conciseness (line 2) and the desirable coverage
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Algorithm 3: ValidDFormulas
Input :A set of predicates Θ, CONC, COVl , COVu, and a partition p.
Output :The d-formulas with coverage between COVl and COVu for partition p.

1 Θ∗←Θ,n← 0;
2 repeat
3 Θ′← /0;
4 foreach θi ∈Θ do
5 Θi← GetDistinctPredicates(θi,Θ);
6 foreach θ j ∈Θi do
7 d← θi⊕θ j;

8 if |σd(p)|
|p| ∈ [COVl ,COVu] then

9 Θ′←Θ′∪d;
10 Θ∗←Θ∗∪d;

11 Θ←Θ′;
12 until |Θ|= 0 or n = CONC;
13 return Θ∗;

intervals (lines 3-5) are initialized. The d-formulas of each partition (i.e. Θ) are computed
separately (lines 6-11), and the “atomic predicates” (i.e. (a = v)) for each distinct value v
of a in the partition p are generated(line 11). Atomic predicates are created only if they
are within the expected coverage (i.e., [COVp,COVu]) as defined by Heuristic 2 (line 10).
Atomic predicates are combined together to generate conjunctions of predicates (line 12).
The resulting d-formulas, for each partition, are then returned as output (line 13).

The ValidDFormulas procedure of Algorithm 3 combines together predicates and re-
turns only those combinations (i.e., d-formulas) that are valid. The combination of the input
predicates Θ is organized in a lattice. The main loop of lines 2-12 dynamically generates
the lattice. In each iteration, one level of the lattice (the n-th) is generated by combining
pairs of the previously created predicates (lines 4-10). One predicate might get combined
with another predicate many times. For this reason, the function GetDistinctPredicates
is used to efficiently selects a combinable predicate only once (line 5). Pairs of predicates
are combined with the operator ⊕ (line 7). The combination is a d-formula that is either:
(1) a new predicate created from the union of two predicates on the same attribute (e.g.,
{a = 4}⊕{a = 5}= {a ∈ {4,5}}); or (2) a conjunction of predicates on different attributes
(e.g., {a ∈ {4,5}}⊕{b ∈ {5,6}}= {a ∈ {4,5} ∧b ∈ {5,6}}). σd(p) are the tuples covered
by the d-formula d in partition p. Only combinations of predicates in the desired interval of
coverage values [COVl,COVu] are considered (line 8) for the next level of the lattice (line 9
and line 11) and in the list of final results Θ∗ (line 10). The generation of the lattice ends
when the threshold, as per Heuristic 1, is reached (n = CONC) or when it is no longer possible
to generate predicates (|Θ|= 0).
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4.4.3 Building top-k descriptions

Selecting the best d-formulas in isolation does not necessarily lead to the best descriptions.
It is needed to search for the optimal set of d-formulas across partitions that all together
minimize the cost. Given the complexity of the problem, a dynamic programming technique
is adopted. It relies on LVA [139], which is a generalization of Viterbi Algorithm [49] for
top-k solutions. The complexity of LVA is O(ρ×k×d2), where ρ is the number of partitions,
k is the number of top elements to retrieve and d is the number of d-formulas. Viterbi
Algorithm and its variants require to model the search space as a trellis. The trellis is built
in the following way. A vertical slice for each partition is firstly created. The nodes in the
slice are the d-formulas found in the previous phase. Nodes of a slice are connected to all the
nodes of the next slice via weighted directed edges. A path represents a list of d-formulas,
with at most one d-formula for partition. The algorithm is used to find the best full path, that
is a path that starts in the first slice and terminates in the last slice of the trellis. Note that, for
the final results, the order of the slices is irrelevant since all nodes of a slice are connected to
all the nodes of the next slice.

Viterbi needs an objective function w to score a path, which intuitively represents the
score of the (intermediate) descriptions we are computing. Given a trellis composed of N
nodes and S slices, the score of a path terminating in a node j of a slice s of the trellis (i.e.,
w j(s)) can be recursively computed. The best description D∗ is the one minimizing the score
of the node in the final slice S: Cost(D∗) = min

1≤i≤N
[wi(S)].

The description D∗ is constructed by backtracking the above computation, which determines
the nodes in the corresponding path. LVA generalizes the approach to compute the top-k
solutions. The function w used to (recursively) score a path is reported below:

w j(s)=

 min
1≤i≤N

[wi(s−1) ∗Li j ∗∆div(i, j)]∗∆deg( j)∗ H( j), if s>1

∆deg( j)∗ H( j), if s=1
(4.1)

L is the adjacency matrix of the trellis, where Li j = 1 if there is an edge between node i and
node j, otherwise Li j =+∞. H( j) is a measure of entropy for evaluating how discriminative
attributes are. It is computed as the normalized Shannon entropy value4 of the attributes used
by the d-formula associated to node j. ∆div and ∆deg score diversity and degree in terms of
adherence to the preferences of the user DIV and DEG, respectively. More specifically, ∆deg

is defined as ∆deg(d) = 1−h(deg(d)), where h is the Normal Distribution function centered
on DEG and with variance equal to 0.2. The variance is chosen experimentally. In this way, a

4The standard definition of normalized Shannon entropy for a probabilistic variable X in a finite domain

{xi} is used, that is H(X) =
−∑

N
i=1 P(xi)∗log2 P(xi)

log2 N .
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Fig. 4.2 The Viterbi Algorithm applied to Sensor.

smaller cost is assigned to descriptions whose degree is close to DEG. Instead, ∆div considers
a pair of d-formulas di and d j, out of which the partial description D′ that includes both of
them is computed. Then, analogously to the degree factor, the diversity factor is defined as
∆div(di,d j) = 1−g(div(D′)), where g is the Normal Distribution function centered on DIV

with variance equal to 0.2.
Basically, the scoring function measures (1) the adherence between the features of the

description and the expectation of the user; and (2) the goodness of the chosen attribute in
describing the partitions.

COV is omitted from Equation 4.1 since Heuristic 2 already makes sure that only descrip-
tions with the desired coverage are computed.

Example 9 Let us consider the dataset Sensor described in Table 4.1a and a user interested
in descriptions explaining the behavior of each sensor (i.e., Ax = {SensorID}). The adopted
partitioning mechanism (see Section 4.4.1) divides the dataset into three partitions, one
for each sensor. Table 4.2 reports some d-formulas (see Section 4.4.2) along with their
∆deg and entropy values that are used by LVA for computing the descriptions. Figure 4.2
shows the application of the Viterbi to the d-formulas in Table 4.2. The trellis is divided
into three vertical slices corresponding, from the left-side, to the partitions for SensorID
= 1, SensorID = 2 and SensorID = 3. Each node represents one of the d-formulas. The
weights assigned to the nodes have been computed according to Equation 4.1. Note that
nodes in the first slice are computed following the formula of the initialization weight; while
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SensorID =1 SensorID =2 SensorID =3
d1 = Te ∈ {35} ∧ H ∈ {0.3} d4 = H ∈ {0.5} d7 = H ∈ {0.4}
∆deg = 0.991 H = 0.92 ∆deg = 0.11 H = 0.1 ∆deg = 0.11 H = 0.95
d2 = Te ∈ {35} d5 = Te ∈ {35} ∧ H ∈

{0.5}
d8 = Te ∈ {35}

∆deg = 0.11 H = 0.92 ∆deg = 0.991 H = 0.1 ∆deg = 0.11 H = 0.92
d3 = Te ∈ {34,35} ∧ H ∈
{0.3,0.4}

d6 = Te ∈ {35} d9 = Te ∈ {35, 100}

∆deg = 0.991 H = 0.92 ∆deg = 0.11 H = 0.1 ∆deg = 0.11 H = 0.95

Table 4.2 A sample of d-formulas generated from Sensor.

COV DEG DIV Description
0.2 0.1 0.1 ({S = 1 ∧ V ∈ {2.6} (33.33%)}) ∨ ({S = 2 ∧ V ∈ {2.6} (33.33%)}) ∨
(LOW) (LOW) (LOW) ({S = 3 ∧ V ∈ {2.6} (33.33%)})
0.2 0.1 0.9 ({S = 1 ∧ H ∈ {0.4} (33.33%)}) ∨ ({S = 2 ∧ V ∈ {2.6} (33.33%)}) ∨
(LOW) (LOW) (HIGH) ({S = 3 ∧ Te ∈ {100} (33.33%)})
0.2 0.9 0.1/0.9 ({S = 1 ∧ Te ∈ {34} ∧ Ti ∈ {11} ∧ V ∈ {2.6} ∧ H ∈ {0.4} (33.33%)})

∨
(LOW) (HIGH) (LOW/ ({S = 2 ∧ Ti ∈ {11} ∧ V ∈ {2.6} (33.33%)}) ∨

HIGH) ({S = 3 ∧ Te ∈ {100} ∧ Ti ∈ {12} (33.33%)})
0.8 0.1 0.1 ({S = 1 ∧ Te ∈ {35} (66.67%)}) ∨ ({S = 2 ∧ Te ∈ {35} (100.0%)}) ∨
(HIGH) (LOW) (LOW) ({S = 3 ∧ Te ∈ {35} (66.67%)})
0.8 0.9 0.1/0.9 ({S = 1 ∧H ∈ {0.3} ∧ Ti ∈ {1, 12} ∧V ∈ {2.7} ∧ Te ∈ {35} (66.67%)})

∨
(HIGH) (HIGH) (LOW/ ({S = 2 ∧ H ∈ {0.5} ∧ Ti ∈ {1, 12} ∧ V ∈ {2.7} ∧ Te ∈{35} (66.67%)})

∨
HIGH) ({S = 3 ∧ H ∈ {0.5,0.4} ∧ Ti ∈ {1} ∧ V ∈ {2.3, 2.6} ∧ Te ∈ {35}

(66.67%)})
0.8 0.1 0.9 ({S = 1 ∧ V ∈ {2.7} (66.67%)}) ∨ ({S = 2 ∧ H ∈ {0.5} (100.0%)}) ∨
(HIGH) (LOW) (HIGH) ({S = 3 ∧ Te ∈ {35.0} (66.67%)})

Table 4.3 Descriptions with different users’ preferences.

for each node in the other slices, only one incoming edge (the one minimizing the weight) is
kept. ∆deg values (shown in Table 4.2) and ∆div values (shown in Figure 4.2 on the edges)
have been computed taking into account the users’ preferences, that is for high coverage,
low degree and low diversity. Once the trellis is completed, the last slice is analyzed and the
top-k nodes minimizing the weight are selected. The highest ranked path is d2→ d6→ d8

with a score of 1.12E−4.

Table 4.3 shows some descriptions generated by varying users’ preferences. The first
three descriptions describe low coverage settings. In the first case, the attribute Voltage

has been used for all the d-formulas since the desired diversity level is low. In the second
case, three different attributes are used for describing the sensors. In the third example, a
description with a high degree is shown. Due to the low number of attributes in the dataset,
the same description is obtained when the user selects low and high diversity. The other
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Name # Entries # Features # Partitions
Scenario 1 – SENSOR 2.3M 9 24 balanced
Scenario 2 – CRIME 76k 9 30 unbalanced
Scenario 3 – MUSHROOM 8k 23 2 balanced
Scenario 4 – SENSORRANDOM 2.3M 9 24 random

Table 4.4 Scenarios.

descriptions have high coverage and different levels of degree and diversity. The actual
coverage of the d-formulas in the corresponding partition is enclosed between parentheses.

4.5 Experimental evaluation

In this section, the proposed approach has been evaluated over efficiency (Section 4.5.1),
objective effectiveness using a list of quantitative measures (Section 4.5.2), and subjective
effectiveness using the judgment of the human-in-the-loop (Section 4.5.3). A demonstration
of the developed Python prototype is available at [112].

Configuration. All the experiments are performed on a machine running Ubuntu 12.04 with
16 processors, 128 GB of RAM and a 1 TB of storage.

Datasets. In the experiments, three datasets (Sensor 5, Crime 6, Mushroom 7) with comple-
mentary characteristics are considered, as reported along with the test scenarios in Table 4.4.

Test Scenarios. The approach is evaluated in four test scenarios to highlight its behaviour in
different use cases. By default, numeric attributes are transformed into categorical via data
binning with 100 equal width bins.
Scenario 1 – SENSOR. This scenario evaluates the explanation for a large dataset (i.e. Sensor)
with a small number of (numeric) features partitioned on a large number of equal-sized
classes. The dataset has 24 equal-sized partitions.
Scenario 2 – CRIME. This scenario has the goal of evaluating the explanations in a dataset
(Crime) with few features (both numeric and categorical) partitioned on a large number of
unbalanced classes (average size of 2458, standard deviation is 4225).
Scenario 3 – MUSHROOM. This scenario aims at evaluating the ability of the developed
approach to cope with a large number of features. The Mushroom dataset is partitioned in
two equal-sized classes representing edible and poisonous mushrooms.
Scenario 4 – SENSORRANDOM. This scenario evaluates the robustness of the approach in a

5http://db.csail.mit.edu/labdata/labdata.html
6https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
7http://archive.ics.uci.edu/ml/datasets/Mushroom

http://db.csail.mit.edu/labdata/labdata.html
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://archive.ics.uci.edu/ml/datasets/Mushroom
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SENSOR CRIME MUSHROOM
SENSOR

RANDOM

Max Gini Index 0.86 0.86 0.63 0.83
Min Gini Index 0.75 0 0.62 0.80
Avg Gini Index 0.79 0.65 0.63 0.82
Std Deviation
of Gini Index 0.025 0.159 0.001 0.005

Table 4.5 Scenario heterogeneity.

Coverage CRIME MUSHROOM SENSOR SENSOR
(α = 0.14) α/2 3/4×α α B10 B100 B1000 RANDOM

0.1 ± 0.0014 854 0 1 1 27958 29681 29899 29912
0.2 ± 0.0056 3500 2 4 5 939 982 3880 1569
0.3 ± 0.0126 446 7 10 12 50 52 194 24
0.4 ± 0.0224 45 12 15 20 45 94 34 70
0.5 ± 0.035 87 6 6 15 31 56 28 46

0.6 ± 0.0504 31 9 14 26 10 66 18 72
0.7 ± 0.0686 54 9 18 32 4 74 35 52
0.8 ± 0.0896 59 15 21 78 42 96 17 120
0.9 ± 0.1134 309 15 83 1439 359 90 72 72

Table 4.6 Number of d-formulas w.r.t. coverage.

data-driven mode with a bad partitioning. A synthetic attribute Category has been added to
the Sensor dataset and used to generate 24 random partitions.

To understand whether the approach is robust in presence of data with high dispersion,
the Gini Index is computed on each attribute of the datasets with respect to the class used in
the partitioning (1 is max dispersion and 0 no dispersion). Table 4.5 reports some statistics
of the Gini Indexes across the attributes. It shows that SENSORRANDOM has the most
skewed distribution (due to the random partitioning), while MUSHROOM and CRIME are
more homogeneous.

4.5.1 Efficiency

In this section, the efficiency of generating d-formulas and combining them into descriptions
is evaluated.

First of all, the number of generated d-formulas with respect to the input coverage
is reported in Table 4.6. All experiments are executed with a default of α = 0.14 and
with DEG = 0.25, which limits d-formulas to maximum 5 predicates. In MUSHROOM

the sensitivity on different α-settings (half and three fourths of the default value) is also
tested. The number of generated d-formulas is higher when the coverage is low for SENSOR,
SENSORRANDOM and CRIME, and with high coverage for MUSHROOM. This is due to the
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Fig. 4.3 Runtime performance.

Cov No Heur. Heur. 1
c=2 c=5 c=10 c=25 c=50 c=100 c=250 c=400

0.2 14570 6944 14497 14570 14570 14570 14570 14570 14570
0.4 115762 18710 107087 115757 115762 115762 115762 115762 115762
0.6 664226 39385 499940 664205 664208 664219 664219 664226 664226
0.8 1431480 51451 856218 1431460 1431480 1431480 1431480 1431480 1431480

Cov Heur. 2 Heur. 1+2
c=2 c=5 c=10 c=25 c=50 c=100 c=250 c=400

0.2 52 2 5 11 26 42 51 52 52
0.4 258 8 20 37 124 167 249 256 258
0.6 636 6 26 59 138 368 489 624 630
0.8 10091 28 78 188 702 2021 4635 9759 10007

Table 4.7 Impact of heuristics on the number d-formulas.

fact that the frequency distribution of Crime and Sensor datasets’ attributes follow the Zipf’s
rule: the majority of values appear only a few times. This results in many low-coverage
descriptions. In the Mushroom dataset, there are many attributes with few values that repeat
many times. Therefore, most of d-formulas are generated with these values at high coverage.
The results of the MUSHROOM scenario also show that the parameter α does not affect the
efficiency much. On SENSOR, the number of bins does not influence the number of generated
d-formulas much.

Figure 4.3 shows the time required to generate d-formulas and to compute the final
descriptions at different coverage settings. The final execution time is the sum of the two
components. In general it is possible to notice that descriptions are produced at interactive
time (few seconds) in most of the cases. The harder cases to process are with low coverage
because the system has to sift throw several thousands of descriptions. It is also possible to
note that the time for computing the descriptions is quadratic with the number of d-formulas,
thus confirming the theoretical complexity of LVA.
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Fig. 4.4 Efficiency of heuristics (MUSHROOM scenario).

The efficiency of the heuristics, taken in isolation or together, compared against the
exhaustive case (i.e., No Heuristic) is in Figure 4.4 (for MUSHROOM scenario). For Heuristic
1, different degree values are considered and the conciseness (from 2 to 400) derived from
the degree variations from 0.25 to 1 is reported.

As we can see, the approach requires up to 30k seconds, whereas the combined use of
the heuristics makes the approach usable in interactive applications.

The runtime performances are supported by the number of generated d-formulas in
Table 4.7. The separate application of the heuristics is able to reduce the number of d-
formulas up to 3 orders of magnitude, while the combined application reduces the number of
d-formulas up to 5 orders of magnitude.

4.5.2 Quantitative evaluation of effectiveness

This experiment aims to evaluate the effectiveness of the proposed approach using quality
metrics along three perspectives: (1) structural quality, i.e., characteristics of the descriptions
independently of the use case; (2) purity, i.e., “how discriminative is a description?”; and (3)
expressiveness, i.e., “how many details are captured by a description?”.

Structural metrics. Two metrics, namely overlapping and precision, are used to evaluate
the structural quality. Overlapping measures the percentage of tuples in the dataset for which
more than one d-formula hold.

Generic descriptions have high percentage of overlap, whereas peculiar descriptions have
small overlapping. The overlapping measure is overlap(D) = 2

ρ∗(ρ−1) ∗∑di,d j∈D
i≤ j

|I(di)∩I(d j)|
|I|

where I(di) represents the set of tuples of the dataset I that are true for di.
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Orthogonally, the higher the number of values used in d-formula predicates, the higher
the probability that a d-formula describes combinations of values that are not existing in the
actual data. For instance, the d-formula (a ∈ {α,β ,γ}∧b ∈ {1,2}) describes three possible
values for a and two for b. This is six combinations in total: (a = α∧b = 1), (a = α∧b = 2),
etc. The precision checks how many combinations correspond to tuples that actually exist in
the dataset. For instance, let us suppose that no tuple is true for (a ∈ {α}∧b ∈ {1}). The
precision highlights that one out of six unfolded formulas is extra.

The precision is defined as prec(D) = 1
ρ
∗∑d∈D

∑u∈C×(d) eval(u,σd(I))
|C×(d)| where: C×(d) returns

all the combinations by computing the cartesian product between the values of the atomic
predicates in d; and eval(u,σd(I)) is a boolean function that returns true if u holds in the
data partition σd(I) in which d holds, and false otherwise.

Purity metric. A description is "pure" when its predicates are discriminative. The purity
measures the dispersion of the values of the attributes across the d-formulas and gets better
(i.e., it tends to 1) when the most appropriate attributes to describe a set of tuples is selected.
The purity of a description is the complement of the weighted average of the entropy of its

d-formulas. More formally: purity(D) = 1−
[

1
ρ
∗∑d∈D

(
1
|Ad | ∗∑a∈Ad

Ha(d)
)
∗ |I(d)||I|

]
with

Ha(d) being the Shannon entropy of the values of attribute a in the set of tuples described by
the d-formula d.

Expressiveness metrics. The expressiveness of descriptions is evaluated with the average
number of predicates per d-formula and with the number of distinct attributes per description.
The average number of predicates provides a measure of the complexity of d-formulas: in
fact, d-formulas composed of many attributes are clearly hard to read. This difficulty can be
mitigated by using the same attributes across d-formulas. In fact, a low number of distinct
attributes per description is preferable in terms of expressiveness.

Benchmark Experiments

For each scenario, multiple combinations for the coverage, degree and diversity parameters
are considered. For each combination, the top-25 descriptions are computed. In this way, a
wide range of possible users’ inputs are simulated. The result is the computation of 3025
descriptions per coverage level, which are evaluated according to the aforementioned metrics.
Table 4.8 shows the average values (and the standard deviations between parentheses when
not zero) of the descriptions of each combination, grouped by coverage.

Analyzing the results, it is possible to observe that when the coverage increases, the purity
increases as well. This is due to Heuristic 2 that avoids the combination of predicates with
different coverage levels. A d-formula with low coverage is instead composed of predicates
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(c) MUSHROOM : low
COV - # distinct attr.
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(d) MUSHROOM : low
COV - # attr.
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(e) SENSOR : low COV -
# distinct attr.
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(f) SENSOR : low COV -
# attr.
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(g) CRIME: high COV - #
distinct attr.
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(h) CRIME: high COV - #
attr.
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(i) MUSHROOM : high
COV - # distinct attr.

 0
 0.2

 0.4
 0.6

 0.8
 1

Degree
 0 0.2 0.4 0.6 0.8 1

Diversity

 2
 3
 4
 5
 6
 7
 8

# 
at

tr

(j) MUSHROOM : high
COV - # attr.
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(k) SENSOR : high COV

- # distinct attr.
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(l) SENSOR : high COV -
# attr.

Fig. 4.5 Impact of the DEG and DIV parameters on CRIME’s, MUSHROOM’s and SENSOR’s
descriptions.



4.5 Experimental evaluation 99

scenario cov purity precision overlap # pred
d-formula

# distinct
attr

CRIME
(30 part.)

0.10 0.21 (0.01) 1.00 0.01 (0.01) 1.00 3.333 (0.47)
0.30 0.32 (0.09) 1.00 0.03 (0.01) 1.00 5.000
0.50 0.38 (0.08) 1.00 0.05 (0.01) 1.09 (0.08) 4.000
0.70 0.39 (0.04) 1.00 0.06 (0.02) 1.07 (0.07) 3.803 (0.79)
0.90 0.59 (0.24) 1.00 0.26 (0.07) 1.91 (0.70) 4.384 (1.62)

MUSHROOM
(2 part.)

0.10 0.03 1.00 0.01 (0.01) 1.00 1.833 (0.37)
0.30 0.16 (0.17) 1.00 0.06 (0.05) 1.00 1.822 (0.38)
0.50 0.17 (0.19) 1.00 0.24 (0.08) 1.00 1.844 (0.36)
0.70 0.42 (0.26) 0.94 (0.07) 0.34 (0.17) 1.40 (0.40) 2.299 (0.87)
0.90 0.28 (0.27) 0.53 (0.35) 0.57 (0.20) 6.23 (3.06) 6.990 (3.12)

SENSOR
(24 part.)

0.10 0.10 (0.04) 1.00 0.04 (0.01) 1.00 4.000
0.30 0.26 (0.02) 1.00 0.09 (0.01) 1.00 3.000
0.50 0.29 (0.04) 1.00 0.22 (0.01) 1.00 2.444 (0.50)
0.70 0.37 1.00 0.44 (0.06) 1.07 (0.07) 2.333 (0.47)
0.90 0.58 (0.17) 0.98 (0.02) 0.72 (0.03) 1.78 (0.62) 2.679 (0.47)

SENSORRANDOM
(24 part.)

0.10 0.01 1.00 0.04 (0.01) 1.00 1.00
0.30 0.02 1.00 0.31 (0.01) 1.00 1.00
0.50 0.19 1.00 0.47 (0.01) 1.00 1.00
0.70 0.24 1.00 0.63 (0.02) 1.00 1.836 (0.37)
0.90 0.38 (0.21) 1.00 0.83 (0.03) 1.00 2.360 (0.58)

Table 4.8 Effectiveness of the different scenarios.

with rather infrequent values, thus resulting in low purity. Furthermore, we can notice that the
number of distinct attributes per description is typically low. This means that the descriptions
are usually easy to read and are composed of d-formulas that can be compared with each
other (because attributes are largely shared). The number of predicates, overlap, and precision
also show a common trend. The overlap typically increases with the number of predicates
while the precision decreases. The motivation is that with more predicates we increase the
possibility to describe combinations of values that do not exist in the dataset. The partitions
in the SENSORRANDOM scenario have been randomly generated, and contain data that is
poorly related. This results in descriptions with high overlap and low purity with related
to the SENSOR scenario where the data was partitioned over hour. Indeed this latter result
shows that the approach is quite robust against random or “bad” partitioning.

Comparison with Other Approaches

The developed approach is compared against Decision Trees (DTC), Decision Sets (DS) [78]
and rules generated through Subgroup Discovery Techniques (SD).

DTC. For each scenario, a tree is trained over the full dataset against the partitioning attribute.
The rules obtained are translated into d-formulas of a single description. The DTC provided
by the Scikit-learn platform is used with different parameters to find a configuration mini-
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rules/
part. degree diversity cov purity prec. overlap # pred

d-formula
# distinct

attr
CRIME 161.97 0.77 0.25 99.95% 0.26 1.00 0.00 23.05 6.00

MUSHROOM 6.5 0.20 0.93 100% 0.19 1.00 0.00 5.00 9.00
SENSOR 2635.13 0.70 0.25 48.84% 0.13 1.00 0.00 20.32 6.00

SENSORRANDOM 3934.04 0.78 0.23 12.10% 0.13 1.00 0.00 24.71 6.00

Table 4.9 Comparison with Decision Trees. Coverage in this case is the final accuracy of the
generated model.

mizing the number of rules, and using the entropy H (the same used by LVA) as optimization
metric for the tree.

By analyzing the results reported in Table 4.9, it is possible to note that a decision tree
is not a flexible choice since any customization, similar to the use of degree, diversity, and
coverage parameters, is not applicable. Moreover, with a DTC it is not possible to constraint
the generation of a single d-formula per partition. Only for MUSHROOM, the number of
rules is reasonably limited. In other scenarios, DTCs generate thousand of rules, thus making
impossible for a human to get insights from them. Note that when the partitions of the dataset
are randomly generated, the number of rules explodes, and the coverage of the result is very
low.

DS. Decision sets are set of independent if-then rules. Because each rule can be applied
independently, decision sets are considered as simple, concise, and easily interpretable [78].
The authors propose a classification algorithm based on decision sets, which are obtained
from the rules that maximize accuracy and interpretability among all the rules generated by
the A-PRIORI algorithm [6].

In the experiment, the DS implementation provided by the authors themselves 8 is
evaluated on the MUSHROOM scenario since the datasets used in their paper are not publicly
available. Setting a support threshold to 0.8, the A-PRIORI algorithm returned 46 rules. The
optimization process took more than 85 hours to return the best 14 rules, which have been
then transformed into a single description for the dataset. Coverage, degree, and diversity
of that description are in Table 4.10. Note that by reducing the support, more candidate
rules to be analyzed by the optimization process are obtained. Nevertheless, the existing
implementation does not converge when more rules are evaluated (the computation has been
timeout after 300 hours). For the same reason experiments about other scenarios are not
reported. Moreover, the optimization algorithm uses sampling techniques and therefore
is not deterministic in time and results. Then, the developed system has been forced to
generate a description with similar characteristics. The second line of Table 4.10 shows

8https://github.com/lvhimabindu/interpretable_decision_sets



4.5 Experimental evaluation 101

that the description of the proposed approach is simpler and more interpretable than the one
generated with DS since it has only two rules (one rule per partition), and has lower overlap
while keeping a similar purity level. The rest of Table 4.10 shows that the best description is
obtained with high degree and low diversity.

SD. Subgroup discovery is a data mining technique that builds interesting rules with respect
to a target variable. The “interestingness” is evaluated according to some statistical measure
of the data distribution (see related work in Section 4.6). Therefore, SD techniques can
be directly used for generating descriptions of a dataset. The Python pysubgroup [80]
library has been run on the MUSHROOM dataset. This library provides an implementation
of the main approaches proposed in the SD literature, including BSD [81], BeamSearch
[30], and a Deep First Search algorithm. Table 4.10 shows the results obtained with the
application of the BSD algorithm, but, similar values (and in most cases the same values)
are obtained with the other approaches. The algorithm has been tested with different depth
values (i.e., the number of attributes that can jointly form a rule) and two “unusualness quality
measures” typically adopted in these approaches for ranking the rules (i.e., the weighted
relative accuracy – WRAcc , and the added value – AV [14]). The experiments show that
changes in the algorithm depth do not provide any significant variation in the results. The
WRAcc quality measure typically generates broad descriptions (the ones with coverage close
to 1) and AV tends to return narrow and outlier descriptions (the ones with coverage close to
0). Note that Table 4.10 reports a coverage value for the rules ranked with the AV quality
measure equal to 0.63 when depth is 1 and equal to 0.05 when depth is 5. The coverage values
computed when depth is set to 2, 3 and 4 is 0.31, 0.08 and 0.04, respectively. Moreover,
the SD approaches generate effective rules, with similar or better values for the dimensions
under evaluation (purity, precision and overlap). Nevertheless, SD does not introduce any
mechanism for customizing coverage, degree and diversity, which is one of the improvements
of the proposed approach and a helpful support for the data exploration.

Degree/Diversity Impact on Descriptions

Finally, the evaluate of the effect of user-selected DEG and DIV on the generated descriptions
is analyzed. In particular, multiple combinations of degree and diversity levels (DEG and
DIV varying from 0.0 to 1.0 with an offset equal to 0.1) are executed and the total number of
attributes and distinct attributes of the top-1 computed description is evaluated. Figure 4.5
shows the results of this evaluation. For each scenario, only one plot for low and high
coverage levels is reported; the other settings show a similar trend. We see that the user’s
preferences drive the generation of descriptions with the desired features. When the DEG
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# rules degree diversity cov purity precision overlap # pred
d-formula

# distinct
attr

Decision sets [78] 14 0.1 0.9 1 0.77 1.00 0.88 2.43 5.00

Our approach 2

0.1 0.9 1 0.75 1.00 0.77 2.00 4.00
0.1 0.1 1 0.77 1.00 0.77 2.50 4.00
0.9 0.1 1 0.38 1.00 0.61 3.50 5.00
0.9 0.9 1 0.51 1.00 0.61 2.50 5.00
0.8 0.6 0.05 0.49 1.00 0.001 1.00 2.00

SD (depth 1, WRAcc) 2 0.2 1 0.96 0.93 1.00 0.32 1.00 2.00
SD (depth 5, WRAcc) 2 0.2 1 0.96 0.93 1.00 0.32 1.50 3.00
SD (depth 10, WRAcc) 2 0.2 1 0.96 0.93 1.00 0.32 1.50 3.00
SD (depth 20, WRAcc) 2 0.2 1 0.96 0.93 1.00 0.32 1.50 3.00
SD (depth 1, AV) 2 0.2 1 0.63 0.71 1.00 0.16 1.00 2.00
SD (depth 5, AV) 2 0.8 0.63 0.05 0.84 1.00 0.001 4.00 5.00
SD (depth 10, AV) 2 0.8 0.57 0.05 0.84 1.00 0.001 3.50 4.00
SD (depth 20, AV) 2 0.8 0.57 0.05 0.84 1.00 0.001 3.50 4.00

Table 4.10 Comparison with Decision Sets over MUSHROOM.

increases, the number of attributes increases too. Low levels of DIV correspond to a low
number of distinct attributes.

4.5.3 Qualitative evaluation of effectiveness

Section 4.5.2 performed a quantitative evaluation of the effectiveness of the proposed ap-
proach and compared it with Decision Trees, Decision Sets and rules generated through
Subgroup Discovery Techniques. The experiments showed that, compared to proposed ap-
proach, they adopted strategies impeding the generation of outputs composed of one rule per
partition and rules with user-specified levels of degree and diversity, i.e., the cornerstones of
the presented solution. This Section qualitatively analyzes the effectiveness of the introduced
approach with the aim of evaluating if tuning the values of degree and variety the user is able
to generate interesting and useful descriptions. For this reason, the questionnaire shown in
Figure 4.6 has been submitted to 21 PhD students of computer science. The questionnaire has
12 questions about 8 descriptions for the MUSHROOM dataset (4 in a low coverage setting
and 4 with high coverage). In the first part of the questionnaire, 6 questions ask the users
to select between two descriptions, the one they would have selected for solving a specific
explanation task (i.e. a task that would have required either a broad description or an outlier
detection). The descriptions proposed are conceived to force the users to select between a
high and a low diversity description or between a high and a low degree description. This
evaluation showed that the proposed measures are important to generate useful descriptions.
Users generally prefer low diversity descriptions (61.90%). Only 19.05% of the population
prefer high diversity, while the remaining 19.05% expressed no preference. The preferences
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The Mushroom Data Set 
This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each                        
species is identified as definitely edible, and  poisonous. The dataset is composed of 8124 instances. It is available at https://archive.ics.uci.edu/ml/datasets/mushroom 

   POISONOUS EDIBLE 

D1 

 
 

({class = poisonous AND cap-color ∈ {'cinnamon'}}) ({class = edible  AND cap-color ∈ {'purple'} }) } 

D2 ({class = poisonous AND ring-number ∈ {'none'} })  ({class = edible AND ring-type ∈ {'flaring'} }) } 

D3 ({class = poisonous AND cap-color ∈ {''cinnamon' '} AND ring-number 
∈ {'none '} AND population ∈ {'clustered'} AND odor  ∈ {'musty'} AND 
ring-type ∈ {'none'}})  

({class = edible AND cap-color∈ {'purple '} AND spore-print-color ∈ {'chocolate'} 
AND ring-type ∈ {'flaring'}}) 

D4 ({class = poisonous AND cap-color ∈ {''cinnamon'} AND ring-number 
∈ {'none '} AND population ∈ {'clustered'} AND odor  ∈ {'musty'}})  

({class = edible AND spore-print-color ∈ {'chocolate'} AND ring-type ∈ {'flaring'} 
}) 

D5 

 

{class = p AND spore-print-color ∈ {'chocolate', 'white'} })  ({class = e AND spore-print-color ∈ {'brown', 'black'} )}) 

D6 ({class = poisonous AND bruises ∈ {'no'} })  ({class = edible AND odor  ∈ {'none'} }) 

D7 ({class = poisonous  AND spore-print-color ∈ {'chocolate', 'white'} AND 
ring-number ∈ {'one'}})  OR  

({class = edible  AND spore-print-color ∈ {'brown', 'black'} AND cap-surface ∈ 
{'scaly', 'smooth', 'fibrous'} AND ring-number ∈ {'one'}}) } 

D8 ({class = poisonous AND ring-number ∈ {'one '} AND bruises ∈ {'no'} 
})  OR  

({class = edible AND spore-print-color ∈ {'brown', 'black'} AND cap-surface ∈ 
{'scaly', ''smooth', 'fibrous'} AND bruises ∈ {'no', 'yes'} AND ring-number ∈ {'one'} 
}) 

 

Let us suppose that you want to know some anomalies about the dataset.  
1. Do you prefer D1 or D5?  
2. Do you prefer D1 or D2?  
3. Do you prefer D1 or D3?  
4. Is there any real difference between the knowledge of the dataset 

content you obtain from  D3 and D4? YES / NO 
 Let us suppose that you want  to have a broad, generic description about 

the dataset.  
1. Do you prefer D5 or D6?  
2. Do you prefer D5 or D7?  

Would you eat  
1. a mushroom with a cap-color purple? YES / NO 
2. a mushroom with a cap-color cinnamon? YES / NO 
3. a mushroom with 1 ring? YES / NO 
4. a mushroom with 1 ring and no bruises? YES / NO 

Is it true that  
1. an edible mushroom has no odor? YES / NO 
2. an edible mushroom has spore-print-color brown or black? YES / 

NO 

Fig. 4.6 Questionnaire administered to the users.
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on the degree questions are less marked: 42.86% of the users prefer high degree descrip-
tions, 23.80% low degree, and 33.34% have no preference. With the other 6 questions, it
is evaluated how easy it is to gain insights via descriptions. The other 6 questions wanted
to evaluate if the descriptions are able to provide users with insight of the dataset. Some
questions about facts that can be inferred from data (i.e., “would you eat a mushroom with a
purple cap-color?”) have been then asked. Users answered correctly in 68.25% of the cases.
Finally, the students rated their experience with our system with an average of 4.1/5.

Finally, the Fleiss’ kappa is computed to assess the reliability of agreement between users.
The result is 0.607, which is a significant agreement.

4.6 Related Work

In this chapter the application of a subgroup discovery technique for performing data expla-
nation and exploration on structured datasets has been considered. Subgroup discovery is a
descriptive data mining field that aims at identifying interesting groups of individuals, where
“interestingness is defined as distributional unusualness with respect to a certain property of
interest” [14, 158]. Explanation systems help users in gaining knowledge on the behavior of
systems, experiments or query answers [90], and “black box” complex models [59]. Expla-
nations typically assume the form of association rules [6], decision lists [73] and decision
sets [78]. The proposed approach performs data explanation since it creates partitions from a
dataset and builds rules that provide users with an explanation of their content. Data explo-
ration is about efficiently extracting knowledge from data even if we do not know exactly
what we are looking for [66]. It is typically based on descriptive statistical techniques and
adopts visual exploration interface [150] for supporting users in the interactively discovery
of data source contents. The introduced approach allows users to interactively customize the
ways the partitions and rules are built (in terms of number, coverage, degree, and diversity)
thus supporting different modalities for describing and visualizing the data, which is a data
exploration task.

Subgroup Discovery Systems. Subgroup discovery was a very active data mining field in
the early 2000s. A large number of subgroup discovery approaches have been proposed
[14, 61] and experimented in real domains (such as the medical domain [50]). The approaches
typically divide the task into three steps: the generation of the candidate rules, the adoption of
a pruning scheme for selecting the significant ones, and the application of quality measures
(see [126] for a list) to evaluates the results obtained. To classify the algorithms in the
literature, [63] distinguishes between extensions of classification algorithms, extension of
association algorithms [71] and evolutionary fuzzy systems. The main improvement to this
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field promoted by the proposed approach concerns the definition of an objective function that
scores patterns emerging from the dataset (e.g., the statistical distribution of the data values)
with the specific analytic user needs (e.g., to obtain interpretable/readable rules, and/or rules
that provide a precise description of the dataset, or of some anomalies only, ...). The function
is optimized and a globally near-optimal model is found. Moreover, the approach has been
designed for supporting users in interactively analyze a dataset, by allowing them tuning and
testing the algorithm parameters and gathering different insight into the same dataset.

Outlier Explanation Systems. Explanation techniques have typically been applied to data
sources for explaining outliers. Traditional data lineage techniques present several limitations
when applied to this field because users want to know which subsets of the lineage have
a “bad” influence on the outlier result. Meliou et al. [89] pioneer this research area by
studying causality, as opposed to correlation, identifying tuples, seen as potential causes,
that are responsible for answers and non-answers to queries. They introduce the degree
of responsibility of the tuples. The process of deleting candidate solutions and verifying
if those solutions affected the outliers is called intervention and it is iteratively repeated
in order to find the most influential groups of tuples, i.e., explanations [89, 127, 128, 159].
Scorpion [159] explains a (possibly outlier) query result by individuating responsible tuples
in terms of influence on that result. Roy et al. mix intervention with causality to overcome the
limitations of Scorpion in generating explanations [128]. To overcome the high complexity,
online explanations have been proposed [127].

Data Explanation Systems. More general explanation techniques beyond outliers have
been recently proposed. The Smart drill-down operator interactively computes the k most
interesting rules (for a scoring function) that describe a portion of the dataset [68] with
respect to attributes selected by the users. These drill-down rules are close to the descriptions
presented in this chapter since both describe the content of a dataset. Unlike the proposed
approach, this strategy focuses only on broad (i.e., high coverage) descriptions, and does
not allow users identifying information with low coverage. Moreover, the drill down rules
are automatically formulated after the selection of the target attributes without any possible
user-customization. The presented approach allows users not only to select the attributes
of interest, but also to customize the diversity and the degree of the rules. Techniques for
explaining predictions of classifiers have been proposed [78, 125]. The work of Lakkaraju et
al. [78] on using decision sets (i.e., rules) is comparable to the one considered in this chapter.
The approach generates rules that explain the reason why a data instance belongs to a specific
class. Rules are created by maximizing an objective function, where 7 quality measures are
linear combined. Two measures concern the interpretability, by favouring decision sets with
a smaller number of rules (the number of partitions in our approach) and fewer predicates.
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Two measures favor the creation of decision sets with rules that do not overlap, one measure
guarantees the existence of a rule for each class, and the remaining two rules guarantees
the accuracy by measuring precision and recall of the rules. The descriptions are built by
using similar measures, but are more flexible since implemented through a user-in-the-loop
approach to select coverage and other quality features for the generated rules. Moreover the
existing implementation does not scale on large dataset as evaluated in the experiments in
Section 4.5.

Data Profiling and Summarization. Data profiling is the activity of determining metadata
(such as statistics about the data or dependencies among columns) about a given dataset [2].
Conversely, the approach presented in this chapter generates metadata (descriptions) about
horizontal partitions of the source. A type of data profilers is data summarization systems
that aim at creating lossy compressed representation of database. These works however
mostly focus on selecting the most important database tables [162] or compressing database
schemas [163]. The goal of the presented approach, however, is to provide a tool allowing
users to easily explore large datasets in order to fulfill their information need [112]. In data
and knowledge-bases, summaries are typically used also for output presentation [54, 45],
query or data access optimization through e.g., histograms [69, 99], ontology creation and
exploration [149]. A recent and extensive study of semantic graph summarization techniques
is also available in [27].

Data Exploration Systems. The discussed approach can support data exploration, since it
allows users to interactively extract knowledge from data. [66] provides a survey whereby
existing research is clustered in three groups according to their focus (user interactions,
middleware and database layer). Nevertheless, the aim of data exploration systems in general
differs from the one presented in this chapter, because their aim is of guiding the users
toward an answer to their specific information needs [85]. In this field, approaches that allow
exploratory and visual interaction with the database through choosing relevant tuples and
attributes [129, 25] have been proposed. They have to consider the minimization of the costs
of grouping and selection to guarantee interactivity with the systems [129]. In a similar
way, there is a branch of research that extend these visual approaches to more analytical
data manipulation scenarios [25]. Among these approaches: INDIANA [53] is a system
supporting users in the exploration of transactional databases in an interactive way. This
approach uses statistics for identifying the features that are relevant according to the users’
exploration process. The description-based approach let the user discover what a database
contains, based on features emerged from the dataset. QueRIE [43] suggests interesting
exploratory SQL queries to the users by implementing a collaborative filtering approach.
Finally, more recent research addresses issues related to the exploration of data and schema
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changes. [19] introduce the notion of the change-cube data model and a set of primitives to
support change exploration.

4.7 Conclusion

In this chapter, the problem of generating data descriptions, a compact and insightful sets of
predicates allowing data enthusiasts to inspect datasets at a glance, has been introduced.

A set of heuristics to drive the generation of data descriptions in a computationally
efficient manner while returning high-quality results has been proposed, and an extensive
experimental evaluation over real-world datasets, has confirmed the goodness of the proposed
approach both in a quantitative and qualitative perspective.





Chapter 5

Conclusion

In this thesis, three topics of great interest to both the academic community and the industrial
world have been analyzed: 1) data integration, 2) in-RDBMS execution of Machine Learning
capabilities and 3) data exploration and explanation. For each of them, the state of the art
was analyzed and an approach was proposed for the resolution of its specific challenge.

In the field of data integration, the problem of evaluating data integration processes
was analyzed in detail. It still requires an expensive and time-consuming involvement of
domain experts, and an approach for its unsupervised evaluation was presented to provide a
solution to this problem. The proposed approach relies on a series of "representativeness"
metrics, which are based on the analysis of the word frequency distributions of the involved
datasets, and have proved effective in solving this task. This is an important achievement
as it allows to dramatically reduce the involvement of expensive domain experts and to
accelerate the execution of an end-to-end and effective data integration pipeline. The main
limitation of this approach is the adoption of a global and syntactic representativeness
measure. This can generate locally inaccurate representativeness scores which are unable to
detect semantic similarities. A possible solution to this problem is to integrate this approach
with modern techniques of word/sentence embeddings, which would map the dataset entities
in an embedding space where local relations of semantics and syntactic similarities are
preserved.

A second topic addressed in this thesis was the integration of ML capabilities within
RDBMS. In this context, the use of relational databases as a tool for serving ML pipelines
was analyzed in detail. This activity is nowadays performed in two steps, where the data
is first extracted from the database and then uploaded to a dedicated analytics system to
apply the inference process. This produces obvious problems in terms of performance
and safety. To solve this problem, MASQ (Machine Learning As Query) was presented,
a library aiming at translating end-to-end ML pipelines into SQL queries to be used for
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solving ML inference tasks directly within the databases where the data reside. An extensive
experimental evaluation has shown that this approach provides comparable performance with
well-known ML frameworks (e.g. Sklearn and ML.NET). This outcome proves that predictive
pipelines can be served without having to trade-off performance with the “Enterprise-grade”
provided by DBMSs. Although this study highlighted how a pure SQL-based approach
can be sufficient to solve traditional machine learning pipelines, several limitations were
encountered in solving deep learning techniques and text-based ML models. In such scenarios
a user-defined functions (UDFs) approach would be preferable. A possible future work is also
to test the MASQ-generated SQL queries in parallel computing platforms (such as Apache
Spark), in order to analyze the impact of its integration also in such frameworks.

Finally, the problem of data exploration and explanation was analyzed, which increasingly
requires the adoption of easy-to-use (even for non-expert users) and interactive tools for
identifying and explaining relevant information in large repositories. In response to this need,
an approach has been proposed for the interactive generation of task-oriented, compact and
informative (data) descriptions of a dataset. An extensive experimental evaluation has shown
that the proposed solution is effective in solving this task both quantitatively and qualitatively.
An interesting future work is to extend this approach over specific scenarios beyond data
exploration, such as query result explanation.

Other research topics not described in this thesis were also addressed during the Ph.D.,
such as the application of keyword search engines on top of relational databases based on a
distributed implementation of the full disjunction operator [106], the alignment of Wikipedia
data over time [144], the application of Automated Machine Learning (AutoML) techniques
to EM models [108] and the interpretation of black-box EM models [15]. Finally, several
publications in the field of data integration have been produced [58, 109, 57] as a result of
participation in the European project Re-Search Alps 1, whose objective was to integrate
multiple heterogeneous data sources concerning organizations in a single homogeneous
version.

1http://researchalps.eu

http://researchalps.eu
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