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SUMMARY

UncontrolledactivationofRhosignalingbyRhoGEFs,
in particular AKAP13 (Lbc) and its close homologs,
is implicated in a number of human tumors with
poor prognosis and resistance to therapy. Structure
predictions and alanine scanning mutagenesis of
Lbc identified a circumscribed hot region for RhoA
recognition andactivation. Virtual screening targeting
that region led to the discovery of an inhibitor of
Lbc-RhoA interaction inside cells. By interacting
with the DH domain, the compound inhibits the cata-
lytic activity of Lbc, halts cellular responses to acti-
vation of oncogenic Lbc pathways, and reverses a
number of prostate cancer cell phenotypes such
as proliferation, migration, and invasiveness. This
study provides insights into the structural determi-
nants of Lbc-RhoA recognition. This is a successful
example of structure-based discovery of a small
protein-protein interaction inhibitor able to halt onco-
genic Rho signaling in cancer cells with therapeutic
implications.

INTRODUCTION

A main family of the Ras superfamily of small GTPases com-

prises Rho (Ras homolog) proteins (Jaffe and Hall, 2005; Coli-

celli, 2004). They function as bimolecular switches by adopting

different conformational states in response to binding GDP or

GTP. Rho activity is promoted by guanine nucleotide-exchange

factors (GEFs), which catalyze the exchange of GDP for GTP

in vivo.

Most of the RhoGEFs, which comprise 74 distinct members in

humans, share a catalytic domain homologous to that of the Dbl

oncoprotein (DH domain) (Jaiswal et al., 2013). In most Dbl family

GEFs, the DH domain is positioned immediately N-terminal to a

pleckstrin homology (PH) domain (Figures 1 and S1) (Rossman

et al., 2005).
Cell Chemical Biolo
Rho GTPases and RhoGEFs play important roles in many

aspects of cancer development and tumor progression (Karls-

son et al., 2009; Cook et al., 2013; Wirtenberger et al., 2006;

Feher et al., 2012). In this respect, the oncogenic function of

the RhoGEF A-Kinase Anchoring Protein-Lbc (AKAP-Lbc [or

AKAP13], hereinafter referred to as Lbc) was discovered a num-

ber of years ago (Toksoz andWilliams, 1994). Since then, several

lines of evidence have shed new light on the potential role of Lbc

in the process of tumor development (Lewis et al., 2005; Sterpetti

et al., 2006; Wirtenberger et al., 2006; Raponi et al., 2007;

Bonuccelli et al., 2009; Hu et al., 2010; Rolland et al., 2010; Feher

et al., 2012). Incidentally, Lbc and its close homologs, Leukemia-

associated RhoGEF (LARG), p115-RhoGEF (p115), p190-

RhoGEF (p190), and PDZ-RhoGEF (PRG), activate RhoA,

RhoB, and RhoC but not Rac and Cdc42 (Arthur et al., 2002; Div-

iani et al., 2001; Jaiswal et al., 2011; Zheng et al., 1995; Jaiswal

et al., 2013). Lbc, LARG, p115, and PRG are directly regulated by

activated Ga12/13 proteins (i.e., only Ga12 in the case of Lbc) and

are suggested to play a role in oncogenic transformations

induced by G protein-coupled receptors (Diviani et al., 2001;Fu-

kuhara et al., 1999, 2000; Hart et al., 1998; Aittaleb et al., 2009).

Despite its centrality in cancer, the Rho-RhoGEF system has

been targeted by a limited number of studies aimed at discov-

ering therapeutic agents (Gao et al., 2004; Bouquier et al.,

2009a, 2009b; Vives et al., 2011; Shang et al., 2012; Friesland

et al., 2013; Shang et al., 2013; Cardama et al., 2014; Evelyn

et al., 2014; Brown et al., 2014).

Themain goal of this studywas to suppress the oncogenic sig-

nals of Lbc by means of small molecules that could impair the

ability of the RhoGEF to bind and activate RhoA (i.e., protein-pro-

tein interaction [PPI] inhibitors). When the docking experiments

were originally performed, no crystallographic structure was

available for the DH-PH tandem domain of Lbc. Therefore, a

structural model of the Lbc-RhoA complex was predicted based

upon the significant sequence similarity with the LARG-RhoA

system.

The combination of structural analysis and in vitro alanine

scanning mutagenesis, as well as assays for detecting PPI and

functionality, identified a circumscribed likely region for RhoA

recognition and activation by Lbc. That region was targeted by

virtual screening of compound libraries.
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Figure 1. Representations of the Structural

Models of Lbc

(A) Cartoons of the predicted structure of Lbc

are shown. The DH domain of Lbc is character-

ized by six a helices organized in an up-down

bundle architecture, whereas the PH domain

holds a roll architecture made of seven antiparallel

b strands (Figures 1A and S1). The spheres

centered on the Ca carbons in the DH domain

indicate the amino acids that have been targeted

by in vitro alanine scanning mutagenesis. Spheres

are colored according to the functional conse-

quence of mutation. In detail, magenta and or-

ange colors indicate the amino acids whose

alanine replacement results, respectively, in dra-

matic and moderate impairment in RhoA interac-

tion as well as in dramatic impairment in GEF

activity. Those Lbc amino acids that are not

essential for RhoA recognition and activation are

green; those amino acids that are not essential for

interaction with RhoA but relevant for the GEF

activity of Lbc are yellow. The PH domain is

aquamarine.

(B) The molecular surface of the structural

model of Lbc is shown by employing the same

view and color coding as in (A). Only those

amino acids essential for Lbc-RhoA recognition

and/or activation, i.e., functionally relevant, are

colored.

(C) The molecular surface of the DH domain of

Lbc is shown, starting from the beginning of a1

(i.e., K1990) and ending to a6 (E2203); to put

focus on the target region, the a2/a3 loop has

been hidden. Only the functionally relevant amino

acids inferred from alanine scanning muta-

genesis are highlighted, colored according to their

polarity. Blue, red, yellow, and light green stand

for cationic, anionic, polar, and hydrophobic,

respectively. The predicted docking mode of

compound A13 is shown. A13 is represented as

sticks colored by atom type.

(D) The same graphical representation as in (C) is

shown but concerning the predicted docking

mode between the A13 lead and the crystal structure of unbound Lbc (PDB: 4D0O). Such docking mode has been obtained by using the same setup as that used

for virtual screening, hence setting the flexibility of the K2152 side chain.

See also Table S1, Figures 1 and S5.
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We succeeded in discovering a small PPI inhibitor that was

able to halt oncogenic Rho signaling pathways in cancer cells

with therapeutic implications.

RESULTS

A Circumscribed Region of Lbc Holds the Determinants
for RhoA Recognition and Activation
In the predicted Lbc-RhoA complex, almost the totality of

the Lbc surface buried by RhoA (i.e., 94.3%) belongs to the

DH domain and involves a1, a3, a4/a5 loop, a5, and a6. The

interface between Lbc and RhoA highlights the electrostatic

complementarity between the two proteins mostly mediated

by the following salt bridges: K2116Lbc-D76RhoA, R2135Lbc-

E40RhoA, R2136Lbc-D45RhoA, R2136Lbc-E54RhoA, E2145Lbc-

R5RhoA, K2152Lbc-D59RhoA, and E2200Lbc-R68RhoA. The hydro-

phobic core at the Lbc-RhoA interface is contributed in part

by L2144, L2145, and L2156 from Lbc; L2144 and L2145 partic-
1136 Cell Chemical Biology 23, 1135–1146, September 22, 2016
ipate in the binding pocket of W58, an amino acid located in the

inter-switch of RhoA that we have found to be essential for Lbc-

RhoA interaction (Figure S2). This binding pocket is known as the

W58 cage, with Q2148 also contributing to this feature here.

Collectively, our structural model suggested that the main ac-

tors in Lbc-RhoA recognition are limited regions of the two pro-

teins, i.e., the a4/a5 loop and the N-terminal half of a5, from Lbc,

and switch I (swI) and inter-switch from RhoA. Structure predic-

tions of the complex were supported by in vitro alanine scanning

mutagenesis targeting 33 amino acids from a1, a3, a4/a5 loop,

a5, and a6, which represent 86% of the DH surface buried by

RhoA (Table S1). In vitro experiments were performed by using

the isolated GEF module of Lbc, which displays constitutive

RhoGEF activity (Baisamy et al., 2005; Diviani et al., 2001, 2004).

To initially assess the impact of the different mutations on the

ability of Lbc to bind RhoA, pull-down experiments were per-

formed by incubating extracts of HEK293 cells overexpressing

wild-type or mutated Flag-tagged Lbc constructs with purified



Figure 2. Compounds A13 and A21 Inhibit

Lbc-RhoA Interaction

HEK293 cells expressing Flag-tagged Lbc were

serum starved for 24 hr and lysed. Cell extracts

were incubated with glutathione Sepharose beads

coupled to GST-tagged RhoA in the presence of

1% DMSO (control) or 100 mM of 30 compounds

identified by virtual screening and shown in Table

S2. The relative levels of Flag-Lbc associated with

GST-RhoA were detected by western blot and

quantified by densitometry. Results are themean ±

SE of three to eight independent experiments.

*p < 0.05 compared with the amount of Flag-Lbc

bound to GST-RhoA under control conditions.

See also Table S2.
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GST-tagged RhoA. Mutations of K2112, E2141, L2145, and

T2151 reduced the interaction between Lbc and RhoA by about

30%–50% (Figures S3C–S3F; colored orange in Figures 1 and

S1), whereas mutations of R2135, R2136, L2144, Q2148,

K2152, and L2156 reduced the ability of Lbc to bind RhoA up

to 90% (Figures S3E and S3F; colored magenta in Figures 1

and S1). In contrast, binding was mildly or not affected by muta-

tions within aN1, a1, a3, and a6 (Figures S3A, S3B, S3G, and

S3H; colored green in Figures 1 and S1). Indeed, no binding

was observed between the different Flag-tagged Lbc constructs

and GST alone (data not shown).

The impact of Lbc mutations on the GEF activity inside cells

was determined by the Rhotekin capture assay. As shown previ-

ously (Diviani et al., 2001, 2004), overexpression of Flag-Lbc pro-

moted a significant increase in RhoA-GTP formation compared

with mock transfected cells (Figures S4A, S4C, S4E, and S4F,

upper panel, lane 2). In line with mutational effects on Lbc-

RhoA interaction presented above, alanine substitutions for

K2112 R2135, R2136, E2141, L2144, L2145, Q2148, T2151,

K2152, and L2156 significantly inhibited the ability of Lbc to pro-

mote RhoA activation inside cells (Figures S4C–S4F). Surpris-

ingly, mutations of H2009 and R2149 (colored yellow in Figures

1 and S1), despite their minor impact on Lbc-RhoA interaction

(Figures S3A, S3E, S3B, and S3F), strongly affected Lbc-medi-

ated RhoA activation (Figures S4A, S4E, S4B, and S4F). This

suggests that these residues might selectively participate in

the guanine nucleotide-exchange reaction leading to RhoA

activation.

Collectively, the combination of structural analysis of the pre-

dicted Lbc-RhoA complex, in vitro alanine scanning mutagen-

esis, and assays for detecting PPI and functionality identified a

limited region of Lbc as responsible for recognizing and/or acti-

vating RhoA (Figure 1B).

Structure-Based Discovery of PPI Inhibitors
Targeting Lbc
Consistent with structure predictions and determinations, the 12

amino acids relevant for RhoA recognition and/or activation by

Lbc circumscribe a region representing 38% of the DH surface

buried by RhoA (Figure 1).

This region of Lbc, comprising the N-terminal halves of a1 and

a5 and the a4/a5 loop, was targeted by virtual screening aimed

at finding small molecules able to compete with RhoA in interact-

ing with Lbc. The electrostatic features of the target region of

Lbc, i.e., enriched in cationic amino acids, were exploited to
restrict the compound library to only anionic species. This

allowed us to reduce by almost 17-fold the over 15 million com-

pounds downloaded from the Zinc database (http://zinc.

docking.org). Minimization of the structural redundancy of the

850,000 screened compounds, paired with filtering according

to docking score and number of ligand contacts with the hot

region, ultimately served to further reduce the number of consid-

ered compounds by over 1,100-fold. This process led to selec-

tion of 30 compounds for in vitro testing (Table S2). Those

compounds are structurally dissimilar from each other with the

exception of compounds A07 andA10, selected for their docking

score, as well as A13 and A29, which share only a common

fragment.

GST pull-down experiments using cell lysates determined

the ability of those compounds to inhibit the interaction between

Lbc and RhoA. Two compounds, A13 and A21, resulted in an

inhibition higher than 90% and equal to 43%, respectively, of

the binding of Lbc to GST-RhoA (Figure 2). As for A13, the full

PPI inhibitor, according to the predicted docking mode, both

the benzoate and pyrazole moieties interact with the K2152

hotspot (see the Markush structure in Table 1). The phenyl sub-

stituent on the furane ring docks into a cavity formed by T2005,

L2137, and L2145; the latter, which participates in the W58

cage, interacts with the trifluoro-methyl group (R5 substituent

in Table 1, and Figure 1).

The crystallographic structures of free (PDB: 4D0O) and

RhoA-bound (PDB: 4D0N) Lbc released when our study was

completed (Abdul Azeez et al., 2014), provided further validation

to our structure predictions (see Supplemental Information and

Figures S5A–S5C).

To gain insights into the interaction mode of A13, we docked

the compound into the crystal structure of free Lbc using a setup

identical to that used for virtual screening. The predicted docking

pose is slightly shifted compared with the one in the Lbc model

due, at least in part, to a slight change in the cavity that accom-

modates the trifluoro-methyl-substituted phenyl ring and to a

different conformation of K2152 (Figures 1C and 1D). The two

docking modes share the salt bridge between the carboxylate

of the ligand and the hotspot K2152 as well as the interaction be-

tween the trifluoro-methyl-group of the ligand and the hotspot

L2145. In the new docking mode, these two portions of the

ligand make additional interactions with the hotspots R2149

and L2146, respectively. Remarkably, the trifluoro-methyl

group of the ligand docks into theW58 cage, an important recog-

nition site for the G protein (Figures 1C and 1D). Changing
Cell Chemical Biology 23, 1135–1146, September 22, 2016 1137

http://zinc.docking.org
http://zinc.docking.org


Table 1. Effects of the A13 Analogs on Lbc-RhoA Interaction

ID R1 R2 R3 R4 R5 R6 % Lbca IC50Lbc
b

A13 H COO- CH3 H CF3 H 6.02 ± 0.67 3.6 ± 1.3

A31 H COO- CH3 NO2 H OCH3 64.37 ± 27.34

A32 H COO- CF3 40.78 ± 15.65

A33 H COO- CF3 H H COO- 20.95 ± 3.71 15.4 ± 1.7

A34 H COO- CH3 NO2 H CH3 62.70 ± 13.65

A35 H COO- CH3 H H SO2NH2 44.88 ± 8.62

A36 H COO- CH3 H H COOCH(CH3)2 33.28 ± 6.25

A37 H COO- CH3 H H Cl 50.71 ± 18.61

A38 H COO- CH3 H COOC2H5 Cl 19.09 ± 3.74 20.1 ± 1.9

A39 H COO- CF3 H NO2 H 46.17 ± 9.66

A40 H COO- CF3 H COOCH3 H 24.59 ± 12.91 8.2 ± 1.4

A41 H COO- CH3 CH3 Cl H 61.15 ± 9.96

A42 H COO- CH3 Br H H 43.13 ± 13.80

A43 H COO- CH3 F H H 16.33 ± 4.10 9.2 ± 1.6

A44 H SO2NH2 CH3 H COO- H 51.11 ± 11.47

A45 COO- H CH3 H CF3 H 12.26 ± 2.40 10.9 ± 1.9

A46 COO- H CH3 H COOCH3 H 19.36 ± 4.15 29.0 ± 4.3

A47 COO- H CH3 H COO- H 47.98 ± 8.50

A48 COO- H CF3 H COO- H 39.83 ± 10.80

A49 CF3 H CH3 H COO- H 113.07 ± 6.07

A50 H H CH3 H H COO- 72.18 ± 7.19

See also Table S3 and Figure S11.
a% of Lbc-RhoA binding in the presence of the compound; results are the mean ± SE of three to four independent experiments.
bIC50 (mM) relative to the ability to inhibit the interaction between RhoA and Lbc; results are the mean ± SE of three independent experiments.
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computational conditions, i.e., by assigning an alternative ro-

tamer to R2136 and introducing the additional flexibility of

R2135, did not change the best docking pose, while slightly

improving the score. Incidentally, docking in a rigid-side chain

mode also does not change the best docking pose, while

lowering the docking score.

To further validate the predicted docking mode into the crys-

tal structure, A13 was also docked onto the 75,000 frames

constituting a 0.75 ms molecular dynamics (MD) trajectory of un-

bound Lbc in explicit solvent (see Supplemental Information).

Docking solutions tend to group into six major clusters, one of

which resembles the predicted docking mode. MD relaxation

(10 ns) of the best scored (the orientation of A13 in that complex

is shown in Figure S5D, colored magenta) and the center com-
1138 Cell Chemical Biology 23, 1135–1146, September 22, 2016
plexes from each of the six clusters shows that the predicted

docking mode is more stable than the others (see Supplemental

Information). To further validate such docking mode, the last

frame of the relaxed trajectory from the best scored solution

was subjected to 60 ns of adaptive temperature MD (Zhang

and Ma, 2010). Cluster analysis on the 1,637 frames corre-

sponding to a temperature range 300–305 K over the last

40 ns served to identify the most populated cluster whose cen-

ter is shown in Figure S5D. The average A13 root-mean-square

deviation (RMSD) between the frames of the whole trajectory

and the input structure of MD relaxation was 2.18 ± 0.70 Å.

Such RMSD was computed following the superimposition of

all heavy atoms of A13 and the 1,993–2,168 atom range of

LbcDH.



Figure 3. Compound A13 Inhibits Lbc-Medi-

ated RhoA Activation through Direct Inter-

action with the DH Domain

(A and C) HEK293 cells expressing Flag-Lbc (A) or

Flag-LbcDH (C) were serum starved for 24 hr and

lysed. Cell extracts were incubated with gluta-

thione Sepharose beads coupled to GST-tagged

RhoA in the presence of DMSO or increasing

concentrations of A13. The relative levels of Flag-

Lbc or Flag-DH associated with GST-RhoA (upper

panels) and expressed in cell extracts (middle

panels) were detected by western blot using anti-

Flag monoclonal antibodies. A control protein

staining indicating the amounts of GST-RhoA

used in the pull-down assay is shown (lower

panels).

(B and D) Quantitative analysis of Flag-Lbc or

Flag-LbcDH associated with the GST-RhoA was

obtained by densitometry. Results are the

means ± SE of three independent experiments.

(E) HEK293 cells transfected with empty pFlag

vector or plasmid encoding Flag-tagged Lbc

were serum starved for 24 hr in the presence of

increasing concentrations of A13. GTP-bound

RhoA was affinity purified from cell extracts

using glutathione Sepharose beads coupled

to GST-RBD. The bound RhoA was detected

with a monoclonal anti-RhoA antibody (upper

panel). The relative amounts of total RhoA and

Flag-Lbc proteins in the cell lysates were as-

sessed using monoclonal antibodies against

RhoA (middle panel) and Flag (lower panel),

respectively.

(F) Quantitative analysis of the GTP-RhoA asso-

ciated with RBD beads was obtained by densi-

tometry. Values were normalized to the RhoA and

Flag-Lbc content of cell extracts. Results are

expressed as means ± SE of three independent

experiments.

(G) Microscale thermophoresis analysis of the

interaction between A13cis and DH-GFP. Purified

DH-GFP (25 nM) was incubated with increasing concentrations of A13 (1 nM–20 mM). The fraction of bound DH-GFP is plotted as a function of [A13cis]. Results

are the means ± SE of three independent experiments.

See also Figures S6–S10.

Please cite this article as: Diviani et al., Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling, Cell Chemical Biology (2016),
http://dx.doi.org/10.1016/j.chembiol.2016.07.015
Collectively, the convergence of a number of docking and MD

simulations corroborates the predicted interaction mode of the

PPI inhibitor.

A13 Inhibits Lbc-RhoA Interaction and the GEF Activity
of Lbc by Binding to the DH Domain
The effectiveness of A13 in inhibiting the interaction between the

DH domain of Lbc (LbcDH) and RhoA as well as the ability of Lbc

to activate RhoA in intact cells was evaluated over a concentra-

tion range from 1 pM to 300 mM, using GST pull-down and

Rhotekin capture assays, respectively (Figures 3A–3E).

Binding of RhoA to Lbc and LbcDHwas inhibited at 2.2 mMand

1.7 mM half maximal inhibitory concentration (IC50), respectively

(Figures 3A–3D), whereas Lbc-induced RhoA-GTP formation

was inhibited at 1.5 mM IC50 (Figures 3E and 3F). These results

indicate that A13 can cross the plasma membrane barrier to effi-

ciently inhibit Lbc inside cells.

The binding constant of A13 to Lbc was measured as well by

microscale thermophoresis, which allows sensitive and quantita-

tive analysis of the interaction between small molecules and
proteins. Cell lysates expressing GFP or GFP-tagged Lbc were

incubated with concentrations of A13 ranging from 1 nM to

20 mM. The analysis indicated that A13 binds Lbc-GFP with a

dissociation constant (Kd) of 1.6 mM (Figure S6A), which is in

line with the IC50 values (Figure 3B). No binding was detected be-

tween A13 andGFP (Figure S6A). The tested compound is a 50%

mixture of cis and trans isomers concerning the relative positions

of themethyl group and the olefinic proton (i.e., the cis conformer

corresponds to the Markush structures in Table 1). An ad hoc

synthesized mixture enriched in the cis isomer (i.e., A13cis, cis:

trans 75:25) bound Lbc-GFP with a Kd of 0.9 mM (Figure S6B),

thus suggesting that the cis isomer might display higher affinity

for Lbc than the trans isomer. This result is consistent with A13

holding a cis configuration in all predicted docking poses (Fig-

ures 1C, 1D, and S5D).

Direct interaction between A13cis and the DH domain of

Lbc was demonstrated by microscale thermophoresis experi-

ments, which showed that A13cis bound the purified GFP-

tagged LbcDH domain (LbcDH-GFP) with a Kd of 5.5 mM

(Figure 3G).
Cell Chemical Biology 23, 1135–1146, September 22, 2016 1139
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Measurement of the in vitro affinity of A13cis was also carried

out by other biophysical techniques. Several methods were

probed to circumvent the problem associated with the solution

state of A13cis. The buffer conditions were improved by solubi-

lizing the compound in DMSO (up to 10%) and supplementing

the solution with detergent. The specificity of the binding was

confirmed by surface plasmon resonance (SPR) detection ex-

periments that showed that A13cis bound Lbc with a Kd of

6.3 mM (Figure S7A), whereas no significant binding could be

detected for the PH domain (Kd >50 mM, Figure S7B, Supple-

mental Experimental Procedures).

Consistent with Kd determinations by bothmicroscale thermo-

phoresis and SPR, A13cis exerts inhibition of the guanine nucle-

otide-exchange reaction catalyzed by LbcDH (Figures S8A and

S8B, and Supplemental Experimental Procedures).

Collectively, we found that A13 inhibits LbcDH-RhoA interac-

tion in a dose-dependent manner in vitro, and the Lbc-induced

RhoA activation in intact cells.

The A13 Lead Acts as a PPI Inhibitor also for LARG
and PRG, p114, p190, and GEFH1 but Not p115, p63,
and Net1
The selectivity of A13 in inhibiting the interaction between RhoA

and RhoGEFs of the Lbc subfamily was assessed by using GST

pull-down assays. Extracts of HEK293 cells overexpressing

Flag-tagged Lbc, LARG, PRG, and p115 were incubated with

purified GST-tagged RhoA in the absence or presence of

100 mMof A13. In addition to inhibiting the RhoA-Lbc interaction,

the compound could also inhibit the interaction of RhoA with

LARG and PRG at 4.2 mM and 11.4 mM IC50, respectively (Fig-

ure S9). In contrast, A13 did not affect the binding between

RhoA and p115 (Figure S9). To further investigate the selectivity

of A13 toward RhoGEFs, we assessed the ability of the com-

pound to inhibit RhoA activation induced by LARG, p114,

p190, GEFH1, PRG, p115, p63, and Net-1. We found that A13 in-

hibits LARG-, p190-, p114-, GEFH1-, and PRG-mediated RhoA

activation at 1.9 mM, 4.6 mM, 5.8 mM, 8.8 mM, and 14.6 mM

IC50, respectively, without affecting the activity of p115, p63,

and Net-1 (Figure S10). These data indicate that A13 is effective

only on Lbc and its closest homologs LARG-, p190-, p114-,

GEFH1-, and PRG, which is indicative of some selectivity.

Insights from Structure-Activity Relationship Analysis
In an attempt to infer structure-activity relationships (SAR), we

also determined the ability of 20 commercially available close

analogs of A13 to inhibit the Lbc-RhoA interaction in vitro (Table 1

and Figure S11).

Almost all the selected compounds except for A31, A34, and

A41 (sharing a bulky R4 substituent) as well as compounds

A49 and A50 (lacking the R1 or R2 carboxylate, respectively)

inhibit Lbc-RhoA binding by R45% (Table 1 and Figure S11).

Among them, six compounds, i.e., A33, A38, A40, A43,

A45, and A46, inhibit Lbc-RhoA binding by R75% at IC con-

centrations in the low micromolar range (Table 1 and Fig-

ure S11). Remarkably, the six active compounds, similar to

A13, can inhibit RhoA binding to LARG and PRG but not to

p115 (Table S3).

SAR analysis clearly emphasizes the importance of the

carboxylate group at R1 or, better, at R2 for the PPI inhibitory ac-
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tivity. As for R3, SAR analysis is not informative because

commercially available analogs worth testing hold only –CF3
or –CH3 as R3. Bulky R4 substituents do not appear to be toler-

ated, while lipophilic or weakly polar R5 substitutions are

preferred to polar or charged groups. Incidentally, a close analog

of the inactive compound A34, differing from A34 in the presence

of a –CH3 in para to the –NO2 group, has been found to inhibit

p300/CBP histone acetyltransferase (Bowers et al., 2010). As

for the R6 substituent, the main information that emerges from

SAR analysis is that when R4 and R5 are unsubstituted, a nega-

tively charged group favors PPI inhibition more than neutral and

lipophilic substituents.

Collectively, SAR analysis strengthens the supposition that a

carboxylate group in the right position is essential for significant

PPI inhibition, while certain substituents in specific positions

disfavor such inhibition.

A13 Shoots down Cellular Responses Induced by the
Lbc-RhoA Pathway and Significantly Reduces the
Malignant Properties of Prostate Cancer Cells
Preliminary SAR analysis strengthens the case for A13 as a

lead compound. We therefore tested a number of cellular re-

sponses to A13 treatment. To examine the inhibitory action

of such compound on the cellular responses promoted by

the Lbc-RhoA pathway, we first measured the effect of A13

treatment on the ability of Lbc to induce the formation of

actin stress fibers in NIH3T3 fibroblasts. As previously shown

(Diviani et al., 2001), Rho-selective GEFs promote formation of

actin stress fibers in fibroblasts (Figure 4A). Interestingly, A13

treatment completely abolishes these effects, proving that it

can efficiently inhibit the ability of Lbc to induce reorganization

of the actin cytoskeleton. This effect is likely to be the conse-

quence of direct GEF inhibition since A13 does not interfere

with actin stress fiber formation induced by the overexpres-

sion of the constitutively active RhoA Q63L mutant (Figure

4B). Likewise, A13 inhibits stress fiber formation induced by

selected Lbc homologs including LARG, p190, p114 without

affecting cytoskeletal reorganization induced by p115, p63,

and Net1 (Figure 4A).

Since Lbc induces cell transformation by activating RhoA,

we further determined if A13 was able to inhibit Lbc-induced

transformation of NIH-3T3 fibroblasts. Indeed, A13 treatment

of Flag-tagged Lbc-overexpressing cells reduced their foci-

forming potential by 70% (Figures 4C and 4D).

It is well recognized that overactivation of RhoA signaling plays

a prominent role in the pathogenesis of prostate cancer (Schmidt

et al., 2012). Recent studies performed on the highly invasive

PC-3 prostate cancer cells have shown that RhoA activation

contributes to the enhanced migratory and invasive properties

of this cell line (Zhang et al., 2013; Hodge et al., 2003). Interest-

ingly, PC-3 cells express AKAP13, LARG, and PRG, which have

been proposed to mediate signals associated with prostate can-

cer cell proliferation, migration, and invasion (Lewis et al., 2005;

Wang et al., 2004).

Based on these observations, we initially assessed, by the

Rhotekin RBD or PAK1-CRIB pull-down assays, if A13 could

affect the activity of RhoA, RhoB, RhoC, Rac1, and Cdc42 in

PC-3 prostate cancer cells (Figure 5). Our results indicate that in-

cubation of PC-3 prostate cancer cells with 10 mMof A13 inhibits



Figure 4. Inhibition of the Ability of Lbc to

Induce Stress Fiber Formation and Cell

Transformation in NIH-3T3 Fibroblasts us-

ing Compound A13

(A and B) NIH-3T3 fibroblasts were transfected

with the cDNAs encoding Flag-tagged DH-PH

tandem domains of various RhoGEFs (A) or V5-

RhoA Q63L (B). Transfected cells were serum

starved for 24 hr in the absence or presence of

10 mM (A) or 100 mM (B) of A13 and subsequently

fixed and permeabilized. The expression of the

different Flag-tagged DH-PH constructs and V5-

RhoA Q63L was assessed by incubating cells

with mouse anti-Flag and anti-V5 antibodies,

respectively, followed by fluorescein-isothiocya-

nate-conjugated donkey anti-mouse secondary

antibodies. Actin was detected using Texas red

phalloidin.

(C) The results of the focus formation assay of

NIH3T3 cells stably transfected with the empty

pFlag vector (control) or with the cDNA encoding

Flag-Lbc and subsequently treated in the absence

or presence of 10 mM A13. Focus formation was

evaluated after 21 days of culture.

(D) Quantitation of three independent focus for-

mation assays is shown. Cell transformation

induced by Flag-Lbc was set to 100%. Error bars

represent SEs. *p < 0.05 compared with the

number of foci measured in cells expressing

Flag-Lbc.
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RhoA by 60% (Figures 5A and 5B) and RhoC by 37% (Figures 5E

and 5F), without affecting RhoB (Figures 5C and 5D), Rac1 (Fig-

ures 5G and 5H), and Cdc42 (Figures 5I and 5J).

We next assessed the impact of A13 on the proliferative,

migratory, and invasive properties of PC-3 prostate cancer cells.

Interestingly, we could show that 10 mM of A13 can inhibit cell

proliferation by 43% (Figures 6A and 6B), wound healing by

45% (Figures 6C and 6D), random migration by 57% (Figures

6E–6H), and invasiveness by 52% (Figures 6I and 6J).

In control experiments, we could show that the LARG inhibitor

Y16 does not affect PC-3 cell proliferation (Figures S12A and

S12B), migration (Figures S12C and S12D) and invasion (Figures

S12E and S12F). These findings suggest that LARG does not

contribute to the oncogenic behavior of PC-3 cells and that the

effect of A13 on PC-3 cancer cell properties is not due to the in-

hibition of LARG.

Importantly, RNAi-mediated knockdown of Lbc in PC-3 cells

reduces wound healing by approximately 30%, suggesting that

Lbc contributes to the migratory behavior of prostate cancer

cells (Figure S13). The fact that the inhibition observed following

Lbc silencing (�30%) is slightly weaker compared with that
Cell Chemical Biology
induced by A13 (�45%) could be due to

the fact that the knockdown of Lbc is

not complete (30% of residual Lbc

expression) or that A13 inhibits additional

Lbc homologs in PC-3 cells (i.e., p114,

p190, GEFH1, or PRG).

Collectively, tests on actin stress fiber

and foci formation reveal that A13 in-

hibits the oncogenic properties of Lbc
because of its PPI inhibitory action toward the Lbc-RhoA sys-

tem. More importantly, A13 is able to significantly reduce the

tumorigenic potential of prostate cancer cells likely due to its

PPI inhibitory action toward the complex between RhoA (and

RhoC although to a significantly lesser extent) and Lbc. Close

homologs of Lbc such as p190, p114, GEFH1, and PRG, but

not LARG, may also contribute to the effects of A13 on PC-3

cells.

DISCUSSION

Overexpression and genetic variants of the Lbc oncogene (Tok-

soz and Williams, 1994) have been involved in a number of

human tumors (Bonuccelli et al., 2009; Hu et al., 2010; Lewis

et al., 2005; Sterpetti et al., 2006; Wirtenberger et al., 2006)

and have been shown to correlate with poor cancer prognosis

and increased resistance to cancer therapy (Raponi et al.,

2007; Rolland et al., 2010). The oncogenic action of Lbc is shared

with the close homologous members of the Lbc subfamily, e.g.,

LARG, PRG, p115, p114, p190, and GEFH1 (Cook et al., 2013;

Gu et al., 2006; Hart et al., 1996; Huang et al., 2011; Wang
23, 1135–1146, September 22, 2016 1141



Figure 5. A13 Inhibits Rho Signaling in PC-3 Cells

(A, C, E, G, and I) PC-3 cells were incubated for 24 hr with or without 10 mMA13 or A2. The final DMSO concentration was kept at 1%DMSO.GTP-boundRhoA (A),

RhoB (C), RhoC (E), Rac1 (G), and Cdc42 (I) were affinity purified from cell extracts using glutathione Sepharose beads coupled to GST-RBD or GST-CRIB and

detected using specific antibodies (upper panels). The relative amounts of total RhoA (A), RhoB (C), RhoC (E), Rac1 (G), and Cdc42 (I) in the cell lysates were

assessed by western blot using the indicated antibodies (lower panels).

(B, D, F, H, and J) Quantitative analysis of GTPase activationwas obtained by densitometry. The amounts of GTP-boundGTPases were normalized to theGTPase

content of cell lysates: RhoA-GTP (B), RhoB-GTP (D), RhoC-GTP (F), Rac1-GTP (H), and Cdc42-GTP (J). Results are expressed as means ± SE of 3–6 exper-

iments. *p < 0.05 compared with GTP-bound GTPases levels measured in control cells (DMSO).
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et al., 2004). It is worth noting that these close homologous

RhoGEFs tend to form supramolecular complexes containing

different GEF species potentially able to coordinate and process

multiple pro-oncogenic signals in cancer cells (Chikumi et al.,

2004). Consistently, a number of findings indicate that cancer

cell migration and invasion are regulated by more than a single

RhoGEF (Huang et al., 2011; Wang et al., 2004). This suggests

that strategies aimed at inhibiting the pro-oncogenic effects of

aberrant Rho signaling in cancer cells should rely on the simulta-

neous inhibition of multiple Lbc subfamily RhoGEFs.

In this study, prediction of the structural complex between Lbc

and RhoA was instrumental in driving in vitro experiments to

identify the critical surface of Lbc responsible for mediating

RhoA recognition and activation. Indeed, we found a circum-

scribed hot region representing almost 38% of the DH surface

buried by RhoA and essentially contributed by the a4/a5 loop

and a5, which recognize the swI and inter-switch of the G pro-

tein. That region, rich in cationic amino acids, was targeted by

virtual screening of small anionic compounds, leading to the dis-

covery of two compounds, A13 and A21, which could inhibit the

interaction between Lbc and RhoA in cell lysates by more than

90% and by 43%, respectively.
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The biochemical characterization was pursued only for the

most active compound, which, in a mixture enriched in cis iso-

mer, bound LbcDH with 5.5 mM Kd. The predicted docking

mode suggests that the PPI inhibitory action of A13 is due to a

competition with RhoA for an LbcDH site comprising K2152

and R2149 hotspots, the W58 cage, and the cavity delimited

by the fourth to sixth turns of a1 and the a4/a5 loop. By binding

to LbcDH, A13 inhibits the guanine exchange reaction catalyzed

by Lbc.

The compound proved able to cross the plasma membrane

and inhibit both RhoA recognition and activation by Lbc inside

cells in a dose-dependent manner. The demonstrated inhibition

of actin stress fiber and foci formation in fibroblasts further

strengthened the ability of A13 to block the Lbc-RhoA pathway.

Evidence collected over the past few years suggests that

RhoA and its closely related isoforms, RhoB and RhoC, play a

crucial role in the pathogenesis of prostate cancer (Muller

et al., 2002; Somlyo et al., 2000; Zhang et al., 2013; Ward

et al., 2011; Hodge et al., 2003; Senapati et al., 2010). Impor-

tantly, PC-3 prostate cancer cells express several Rho-specific

GEFs, including Lbc, LARG, PRG, and p115, which have been

shown to promote activation of Rho subfamily members (Lewis



Figure 6. A13 Inhibits Proliferation, Migra-

tion, and Invasion of Prostate Cancer Cells

(A) PC-3 cells were incubated for 24 hr with 10%

FBS and 10 mM BrdU in the absence or presence

of 10 mM A13 or A2. Cells were then fixed, per-

meabilized, and incubated with DAPI to detect

nuclei, and with rat anti-BrdU antibodies as well as

Alexa Fluor 488-conjugated anti-rat secondary

antibodies to detect proliferating cells. Scale bar,

400 mm.

(B) The percentage of BrdU-positive cells was

determined on a total of 2,300–3,000 cells per

condition. *p < 0.05 compared with the percentage

of BrdU-positive cells measured under control

conditions.

(C) Wounded PC-3 cells monolayers were cultured

for 36 hr in RPMI1640 supplemented with 10%

FBS in the absence or presence of 10 mM A13 or

A2. Recolonization of the wounded area was

imaged every 12 hr. Scale bar, 1,000 mm.

(D) Quantitation of the wound-healing process.

**p < 0.01, ***p < 0.001 compared with the

wounded areameasured under control conditions.

(E–H) PC-3 cells were grown in RPMI1640 sup-

plemented with 10% FBS and incubated in the

absence or presence of 10 mMA13 or A2. Random

migration was imaged using time-lapse micro-

scopy for a period of 10 hr. Migration trajectories

(E–G) and velocities (mm/min) (H) were determined

on a total of 160 cells per condition. (H) *p <0.05

compared with the migration velocity measured

under control conditions.

(I) PC-3 cells (2.5 3 104) were seeded on Matrigel-

coated transwell membranes with 8 mm pores and

cultured for 36 hr in RPMI1640 supplemented with

10%FBS in the absence or presence of 10 mMA13

or A2. Membranes were fixed, and cells migrated

on the underside of the membrane were visualized

using 2% crystal violet. Representative fields for

each condition are shown.

(J) The percentage of invading cells was deter-

mined on three transwell membranes per condi-

tion. *p < 0.05 compared with the percentage of

invading cells measured under control conditions.
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et al., 2005; Wang et al., 2004). In line with these findings, our

functional studies now demonstrate that A13 can reduce RhoA

and, to a significantly lesser extent, RhoC, but not RhoB activa-

tion in PC-3 prostate cancer cells.

The findings that A13 inhibits Lbc and its closest homologs

LARG, PRG, p190, p114, and GEFH1 without influencing the ac-

tivity of p115, p63, Net-1 suggests that it exerts a preferential PPI

inhibitory action toward a subgroup of Lbc-subfamily GEFs.

Moreover, the fact that A13 does not affect Rac1 or Cdc42 acti-

vation suggests that the compound does not inhibit the activity

of Rac or Cdc42 activating GEFs expressed in PC-3 cells. Impor-

tantly, the compound efficiently reverses a number of PC-3 pros-

tate cancer cell phenotypes including proliferation, migration,

and invasiveness. The finding that A13 is significantly less effec-

tive following partial silencing of Lbc in PC-3 cells suggests that

the antitumoral properties of A13 on those cells are indeedmedi-

ated by Lbc.

The first virtual screening study targeting a RhoGEF led to the

discovery of an inhibitor of the LARG-RhoA interaction, Y16,
which was not active on Lbc and displayed antitumoral activity

(Shang et al., 2013). Remarkably, our findings that Y16 is not

active against PC-3 cells together with the results of Lbc

silencing and of the other experiments done in this study indicate

that the antitumoral effects of A13 on those cells indeed involve

Lbc and probably some other Lbc subfamily RhoGEF but not

LARG and p115.

We filed a patent on A13 as an inhibitor of the Lbc-RhoA

interaction with therapeutic potential in cancer (patent no.

MI2013A001410 deposited on August 26, 2013, and published

as WO2015/028929A1). A patent published in 2014 (EP 2 682

118 A1) reports on psoralen derivatives for the treatment of heart

failure and heart hypertrophy via inhibition of the Lbc-RhoA inter-

action. This compound, 3-(4-methoxyphenyl)-5,6-dimethyl-furo

[3,2-g]chromen-7-one, is structurally unrelated and less active

(i.e., IC50 = 25.9 mM) than the A13 compound reported here.

Importantly, the discovery of the psoralen compound did not

arise from structure-based virtual screening, which makes its

optimization more difficult. The first structure-based discovery
Cell Chemical Biology 23, 1135–1146, September 22, 2016 1143



Please cite this article as: Diviani et al., Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling, Cell Chemical Biology (2016),
http://dx.doi.org/10.1016/j.chembiol.2016.07.015
of the Lbc-RhoA interaction inhibitor presented here offers a

step forward toward lead optimization aimed at improving

solubility, affinity, and specificity.

SIGNIFICANCE

The study provides significant insights into the structural

determinants of Lbc-RhoA recognition, a process with cen-

tral implications in cancer biology. Indeed, we found that a

circumscribed positively charged region of the RhoGEF

can be targeted by small anionic molecules to impede

RhoA binding and, consequently, the activation of onco-

genic Rho signaling pathways in cancer cells.

The study also contributes to expand the yet too small

chemical space spanned by small PPI inhibitors, which are

difficult to discover. Meeting the challenge relied on a

computational strategy based strictly on the predicted

structural features of the target protein both in setting the

compound library and the virtual screening input as well

as in filtering the hit compounds from the screening. Such

a rational approach succeeded in finding a chemical

scaffold able to halt the oncogenic properties of Lbc by in-

hibiting Lbc-RhoA interaction inside cells. Remarkably, the

lead compound, A13, also holds anti-tumorigenic potential,

being able to reverse a number of prostate cancer cell

phenotypes.

The PPI inhibitory action of such compound is likely due

to a competition with RhoA for an LbcDH binding site

comprising the K2152 and R2149 hotspots, the W58 cage,

and the cavity delimited by the fourth to sixth turns of a1

and the a4/a5 loop. The compound acts as a PPI inhibitor

also for other RhoGEFs such as LARG, PRG, p190, p114,

and GEFH1 but not p115, p63, and Net-1, indicative of

some selectivity. The antitumoral properties of A13 on

PC-3 prostate cancer cells are mediated by Lbc and prob-

ably some other close homologs but not LARG and p115.

Ultimately, our results strengthen the evidence that tar-

geting Lbc subfamily RhoGEFsmight emerge as a promising

strategy for new therapeutic approaches aimed at inhibiting

tumor progression and metastasis.

EXPERIMENTAL PROCEDURES

In Silico Experiments: Comparative Modeling

The structural model of the DH-PH tandem domain of Lbc in complex with

RhoA was built by comparative modeling (by means of MODELLER; Sali and

Blundell, 1993), using the crystal structure of the LARG-RhoA complex as a

template (PDB: 1X86) (Kristelly et al., 2004). Further details on comparative

modeling can be found in the Supplemental Information.

In Silico Experiments: Virtual Screening

Virtual screening was carried out by means of AutoDock Vina 1.1.1 (Trott and

Olson, 2010). The docked library comprised an ensemble of 850,000 nega-

tively charged compounds from the Drug-like, Lead-like, NCI-ncid, NCI-

ncip, and NCI-ncidiv subsets in the Zinc database (http://zinc.docking.org/).

A grid 27 Å 3 25.5 Å 3 14.25 Å was set to circumscribe the target region.

The flexibility of the RhoGEF was restricted to the side chain of the K2152

hot spot.

The same computational conditions were used in very recent docking sim-

ulations of the A13 lead into the crystal structure of unbound Lbc (PDB: 4D0O)

complemented with the missed side chains. Furthermore, AutoDock Vina
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in full-rigid protein mode was carried out on the 75,000 frames of a 0.75 ms

MD trajectory of solvated Lbc achieved by means of GROMACS v4.6.3

(Hess et al., 2008). The 75,000 docking poses were subjected to cluster

analysis by means of the GROMOS method and a 2.0 Å Ca-RMSD cutoff.

The stability of the best scored and the center complexes in six major clusters

was probed by 12 independent MD relaxations, one of which was followed by

60 ns of adaptive temperature MD (Zhang and Ma, 2010). All these MD simu-

lations on the A13-Lbc complex were carried out by NAMD (Phillips et al.,

2005).

Details on docking analysis and MD simulations can be found in the Supple-

mental Information.

In Vitro Experiments

Descriptions of the expression constructs, expression and purification of re-

combinant proteins in bacteria, cell culture and transfections, GST pull-

down, Rhotekin Rho-binding domain and PAK1 Cdc42/Rac1-binding domain

pull-down, SDS-PAGE andwestern blotting, actin stress fiber formation assay,

foci formation assay, microscale thermophoresis, SPR, nucleotide-exchange

activity, small interfering RNAs, and statistical analysis are provided in the

Supplemental Information.

Cell Proliferation Assay

PC-3 cells (1.5 3 105) were seeded on 35 mm coverslips and cultured in

RPMI1640 supplemented with 10% fetal bovine serum (FBS). After 24 hr, cells

were incubated for an additional 24 hr with 10% FBS and 10 mM bromodeox-

yuridine (BrdU) in the absence or presence of 10 mM A13, A2, or Y16 (Shang

et al., 2013). The concentration of DMSO in themediumwas 0.1% for all exper-

imental conditions. Cells were then washed twice with PBS, fixed for 10 min in

PBS/2% paraformaldehyde, and permeabilized for 20 min with 0.25% (w/v)

Triton X-100 in PBS. Coverslips were incubated for 10 min with ice-cold

1 N HCl, for 20 min with 2 N HCl at room temperature, and for an additional

20 min with 2 N HCl at 37�C. HCl was then neutralized by two 10 min washes

with 0.1 M borate (pH 7.5). Coverslips were blocked for 1 hr in buffer A (10 mM

Tris-HCl [pH 7.5], 155mMNaCl, 2mMEGTA, 2mMMgCl2) supplementedwith

1% BSA. The incorporation of BrdU was assessed by incubating cells for 2 hr

with a 1:200 dilution of the rat anti-BrdU antibody (Sigma) followed by incuba-

tion for 1 hr with a 1:250 dilution of Alexa Fluor 488-conjugated anti-rat sec-

ondary antibodies (Molecular Probes) and 10 min incubation with DAPI

(1 mg/mL). Immunofluorescent staining was visualized using an Advanced

Microscopy Group EVOS fluorescence microscope.

Cell Migration: Wound Assays

PC-3 cells (5 3 105) were cultured in 12-well dishes in the presence of

RPMI1640 supplemented with 10% FBS. After 24 hr, confluent cell mono-

layers were wounded with a 1,000 mL tip, washed once with PBS, and cultured

for an additional 36 hr in RPMI1640 supplemented with 10% FBS in the

absence or presence of 10 mM A13, A2, or Y16. The concentration of DMSO

in the medium was 0.1% for all experimental conditions. For RNAi experi-

ments, PC-3 cells were transfected with 25 pmol of control or AKAP-Lbc-spe-

cific short hairpin RNAs (shRNAs). Forty-eight hours after transfection, cell

monolayers were wounded and cultured for an additional 36 hr in RPMI1640

supplemented with 10% FBS.

Recolonization of the wounded area was imaged every 12 hr with an

Advanced Microscopy Group EVOS microscope. The area devoid of cells

was measured using ImageJ software.

Cell Migration: Time-Lapse Microscopy Assays

PC-3 cells (3 3 105) were seeded in 12-well dishes in the presence of

RPMI1640 containing 10% FBS. After 24 hr, cells were treated in the

absence or presence of 10 mM A13 or A2, and random migration was imaged

using a time-lapse microscope over a period of 10 hr. The concentration of

DMSO in the medium was 0.1% for all experimental conditions. For RNAi

experiments, PC-3 cells were transfected with 15 pmol of control or

AKAP-Lbc-specific shRNAs. Forty-eight hours after transfection, cell mono-

layers were imaged as indicated above. Images were taken every 10 min.

Migration trajectories and velocities (mm/min) were determined on a total of

160 cells per condition using the Gradientech Tracking Tool software

(Gradientech).

http://zinc.docking.org/
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Cell Invasion Assays

Invasion assays were performed using a modified Boyden chamber tech-

nique that measures the ability of PC-3 cells to migrate across a matrix

barrier in the presence of 10% serum. We used 24-well tissue culture plates

with inserts containing an 8 mm pore size polycarbonate membrane coated

with Matrigel basement membrane matrix (BD Biosciences). PC-3 cells

were quiesced in RPMI1640 containing 0.5% FBS for 24 hr. Cells were

then trypsinized, resuspended in RPMI1640 containing 0.5% FBS, and

counted. A total of 2.5 3 104 cells were loaded into the upper chamber.

The lower chamber was filled with RPMI1640 supplemented with 10%

FCS. A13 (10 mM), A2 (10 mM), Y16 (10 mM), or DMSO was added both in

the upper and lower chambers. The concentration of DMSO in the medium

was 0.1% for all experimental conditions. After a 36 hr incubation period,

the cell suspension was aspirated, and the membranes were fixed in 70%

ethanol at �20�C for 20 min. Cells that had attached but not migrated

were removed, the membranes were rinsed in water, and migrated cells on

the underside of the membrane were visualized with staining in 2% crystal

violet. Cells were counted on three independent transwell membranes using

a light microscope.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

13 figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chembiol.2016.07.015.
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