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Aims and structure of the thesis 

This thesis proposes an exploration of some methodological and quantitative issues related to 

the assessment of biodiversity and its responses to environmental conditions and agronomic 

management processes in the context of agroecosystems study and management. 

Chapter one introduces the topic of biodiversity assessment in the broader context of the 

scientific and applicative interest of linking biodiversity and ecosystem services. Then, this 

chapter explores the key elements for a methodology supporting the link between structural 

biodiversity to the functional properties of ecological networks. Emphasis is given to 

mathematical framework suitable for representing complex functional networks and their 

dynamics properties.  

Chapter two is devoted to the analysis species’ niche space with emphasis to the responses of 

individual taxa to abiotic environmental variables and to land use. In particular, quantitative 

models are applied to study the link between taxon characteristics and environmental 

determinants at landscape level. The choice of the quantitative approach had to consider and 

integrate two important objectives: the development of interpretative models of the 

phenomenon (allowing to understand the factors underlying the process) and obtaining a high 

predictive capacity of the model. The constraints were given by the peculiarities of the system: 

strongly unbalanced dataset, since only about 10% of the observations (on average) have the 

characteristic of interest, collinearity of the predictor variables and possible high nonlinearity 

of the relationships between taxon characteristic and environmental determinants. The case 

study concerns the estimation of the model of habitat suitability for Popillia japonica. The study 

(in the publication phase) is particularly relevant for the agri-food sector of Northern Italy. P. 

japonica is an invasive species recently introduced in Italy that seriously threat crop production 

and to some typical agri-food productions of Northern Italy (e.g., flower farming). The habitat 

suitability of the Japanese beetle is little known and has never been investigated in the Italian 

environmental conditions. 

The third chapter presents models allowing the analysis of the impact of environmental 

determinants and management strategies on species pattern of presence and co-occurrence at 

farmscape level. Case studies refer to the analysis of biodiversity of arthropods in the vineyard 

agroecosystem. In the first case presented, we investigated how environmental conditions and 

farming systems (organic compared to conventional farming) influence the composition of the 

soil arthropod community in different Italian pedoclimatic contexts, including the major wine-

growing areas of our country. The second case study is particularly relevant given the number 

of samples collected in a fairly limited wine-growing area. The combination of quantitative 

methodologies used made it possible to characterize the edaphic biocenoses in terms of co-

occurrence presence pattern and to assess niches preferences of the microarthropod in terms 

of environmental variables. The peculiarity of the approach used was to apply techniques 

known in the literature for the reduction of the dimensionality of the data and the ranking of 
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observations in hyperspaces in order to characterize the relationship between environmental 

determinants and species pattern of co-occurrence. Furthermore, these methodologies have 

been integrated with data mining techniques in order to increase the interpretability of the 

results. 

The fourth chapter explores quantitative tools to support the network analysis approach to 

biodiversity assessment. The chapter begins with a brief excursus on the conditions that made 

possible the development and development of quantitative tools to support network analysis. 

The fundamental characteristics common to all quantitative models for the network approach 

are then presented. In the second part of the chapter the two fundamental modelling 

categories for the assessment of biodiversity are described: machine learning and models for 

latent variables. For both the categories, the most widespread models offering the best 

prospects for investigating ecological systems are presented. For each model, the essential 

characteristics, advantages and possible limitations in their use and the main research lines in 

which they are currently used are described. 

 

 

Key words: Biodiversity, functional traits, multidimensionality, arthropods, ecosystem services 
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Obiettivi e struttura della tesi 

Questa tesi propone un'esplorazione di alcune questioni metodologiche e quantitative relative 

alla valutazione della biodiversità e delle sue risposte alle condizioni ambientali e ai processi di 

gestione agronomica nel contesto dello studio e della gestione degli agroecosistemi 

Il primo capitolo introduce il tema della valutazione della biodiversità nel contesto più ampio 

dell'interesse scientifico e applicativo della relazione esistente tra biodiversità e servizi 

ecosistemici. In questo capitolo vengono esplorati gli elementi chiave per lo sviluppo e 

l’adozione di metodologie a supporto dell’analisi del legame tra la biodiversità strutturale e le 

proprietà funzionali delle reti ecologiche. In particolare, l’attenzione è posta sulla struttura 

matematica adatta a rappresentare reti funzionali complesse e le loro proprietà dinamiche. 

Il secondo capitolo è dedicato all'analisi dello spazio di nicchia delle specie, focalizzando 

l’attenzione sulle risposte dei singoli taxa alle variabili ambientali abiotiche e all'uso del suolo. 

In particolare, vengono applicati modelli quantitativi per studiare il legame tra le caratteristiche 

del taxon considerato e alcuni determinanti ambientali a livello di paesaggio (landscape). Due 

importanti obiettivi hanno determinato la scelta dell'approccio quantitativo utilizzato 

nell’analisi: lo sviluppo di modelli interpretativi del fenomeno (che permettano di comprendere 

i fattori alla base del processo) e l’esigenza di avere un'elevata capacità predittiva del modello. 

I vincoli sono stati determinati dalle peculiarità del sistema: un dataset fortemente 

‘unbalanced’, poiché mediamente solo il 10% circa delle osservazioni presentava la 

caratteristica di interesse, la collinearità delle variabili predittive e una potenzialmente elevata 

non linearità delle relazioni tra la caratteristica del taxon e le determinati ambientali. Il caso 

studio riguarda la stima del modello di idoneità dell'habitat per Popillia japonica. Lo studio (in 

fase di pubblicazione) è particolarmente rilevante per il settore agroalimentare del Nord Italia. 

P. japonica è una specie invasiva recentemente introdotta in Italia che minaccia gravemente la 

produzione agricola e alcune produzioni agroalimentari tipiche del Nord Italia (es. floricoltura). 

L'idoneità all'habitat del coleottero giapponese è poco conosciuta e non è mai stata indagata 

nelle condizioni ambientali italiane. 

Nel terzo capitolo vengono presentati alcuni modelli che consentono l'analisi dell'impatto dei 

determinanti ambientali e delle strategie di gestione sui pattern di presenza e co-occorrenza 

delle specie a livello di paesaggio agricolo. I casi studio si riferiscono all'analisi della biodiversità 

degli artropodi nell'agroecosistema del vigneto. Nel primo caso presentato, abbiamo indagato 

come le condizioni ambientali ed i sistemi di allevamento (biologico rispetto all'agricoltura 

convenzionale) influenzano la composizione della comunità degli artropodi del suolo in diversi 

contesti pedoclimatici italiani, comprese le principali aree vitivinicole del nostro Paese. Il 

secondo caso studio è particolarmente rilevante dato il numero di campioni raccolti in un'area 

viticola abbastanza limitata. La combinazione delle metodologie quantitative utilizzate ha 

permesso di caratterizzare le biocenosi edafiche in termini di pattern di presenza di co-

occorrenza e di valutare le preferenze di nicchia dei microartropodi in termini di variabili 
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ambientali. La particolarità dell'approccio utilizzato è stata quella di applicare tecniche note in 

letteratura per la riduzione della dimensionalità dei dati e la classificazione delle osservazioni 

in iperspazi al fine di caratterizzare la relazione tra determinanti ambientali e pattern di co-

occorrenza di specie. Inoltre, queste metodologie sono state integrate con tecniche di data 

mining al fine di aumentare l'interpretabilità dei risultati. 

Il quarto capitolo esplora gli strumenti quantitativi per supportare l'approccio dell'analisi di rete 

alla valutazione della biodiversità. Il capitolo inizia con un breve excursus sulle condizioni che 

hanno reso possibile lo sviluppo e lo sviluppo di strumenti quantitativi a supporto dell'analisi di 

rete. Vengono quindi presentate le caratteristiche fondamentali comuni a tutti i modelli 

quantitativi per l'approccio di rete. Nella seconda parte del capitolo vengono descritte le due 

categorie di modellazione fondamentali per la valutazione della biodiversità: machine learning 

e modelli per variabili latenti. Per entrambe le categorie vengono presentati i modelli più diffusi 

che offrono le migliori prospettive di indagine sui sistemi ecologici. Per ogni modello vengono 

descritte le caratteristiche essenziali, i vantaggi e le possibili limitazioni al loro utilizzo e le 

principali linee di ricerca in cui vengono attualmente utilizzati. 

 

Key words: Biodiversità, tratti funzionali, multidimensionalità, artropodi, servizi ecosistemici. 
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1. Introduction 

 

Biodiversity is ‘the variability among living organisms from all sources 

including, inter alia, terrestrial, marine and other aquatic ecosystems and the 

ecological complexes of which they are part; this includes diversity within 

species, between species and of ecosystems’ (United Nations, 1992). 

 

In 2005, the United Nations promulgated the results of the Millennium Ecosystem Assessment 

(MA) project. The MA had the objective of analysing, with robust multidisciplinary scientific 

bases, the evolution of the planet's ecosystems mainly due to human activities, the related 

impacts on well-being conditions and identifying intervention strategies for sustainable 

development. Ecosystem services, according to the definition given by the MA project (2005), 

are the multiple benefits provided by ecosystems to mankind. The explicit reference to utility 

for the human community is an important defining aspect that allows to distinguish between 

‘environmental function’, generically referred to a function provided by the environment 

(OECD, 2005), and ecosystem service (ES), that need to have a close relationship with human 

well-being.(Boyd & Banzhaf, 2007).  

ESs are attributes at the ecosystem or community level; however the functions from which the 

services are generated are often linked to habitat types, food webs, guilds (functional groups), 

species, or individuals that collectively produce them (Kremen, 2005). Although the ecosystem 

is the level of biological organization generally considered optimal for the study of 

environmental problems, including those of habitat alterations and the decrease in 

biodiversity, biomes or ecoregions have also been used for this purpose (Odum & Barrett, 

2005). 

According to the interpretation proposed by the MA, biodiversity is clearly a fundamental 

constituent element of life on Earth and ecosystems. Therefore, biodiversity, as a fundamental 

actor in the provision of ES, is the key for ES analysis, understanding and, subsequently, 

management.  

Since food production is an ES, the protection and enhancement of biodiversity represent one 

of the pillars of a scientific approach to sustainability in agriculture. Knowledge of the structure 

of biodiversity, its functional traits and the interaction between functional aspects and 

ecosystem processes must become the foundation for the definition and implementation of 

sustainable agronomic strategies. These strategies operate to guarantee the regulation and 

regeneration of ESs while preserving natural capital. Therefore, to conceive and implement a 

transformation of agricultural systems in the direction of sustainability, alongside the strategies 

that minimize the impacts on environmental matrices (water, air and soil) and the demand for 
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resources, it is necessary to develop scientific paradigms and agronomic and zootechnical 

practices that minimize impacts on biodiversity. 

1.1. International regulations, directives and guidelines on biodiversity 

management and protection 

Starting from the reflections proposed by MA project, the key role played by biodiversity in the 

sustainable development strategies has been increasingly recognized by the actions and 

directives promulgated at the international level. 

In 2011, FAO proposed the innovative paradigm of sustainable intensification. This paradigm, 

which originates from conservative agriculture, aims to increase agricultural production to 

meet the increase in nutritional needs linked to the increase in the world population, while 

keeping the impacts below the natural recovery threshold. Over the last decade this paradigm 

has been refined and, at the beginning of 2020, FAO issued the Strategy on Mainstreaming 

Biodiversity across Agricultural Sectors' which aims to promote sustainable agricultural 

practices and protect, enhance, preserve and restore biodiversity. 

Another fundamental step was made by the assembly of the United Nations which, in 2015, 

promulgated the 17 Sustainable Development Goals (SDGs). Among these, Goal 2 – Zero hunger 

defines the guidelines for solving, on a global level, the problem of food safety and the 

sustainability of primary production, Goal 14 – Life below water aimed to promote the 

protection of marine and coastal ecosystems and Goal 15 – Life on land specifically aimed at 

safeguarding life on Earth which outlines a clear path to halt soil degradation and biodiversity 

loss by 2030. 

Also at the European level there has been a path towards the construction of an increasingly 

clear legislative framework for protecting biodiversity, starting from the Water Framework 

Directive (Directive 2000/60/EC), the Birds and Habitats Directives (European Commission, 

2014); the Environmental Liability Directive (Directive 2004/35/CE), and the Framework for 

achieving sustainable use of pesticides (Directive 2009/128/EC). 

In 2020, the European Union promulgated the "Biodiversity Strategy for 2030" to strengthen 

the protection of ecosystems and to restore them to achieve “good environmental status”. It 

stresses the need for an ecosystem-based approach to the management of human activities. 

Biodiversity is recognised as crucial for safeguarding global food security, underpinning healthy 

and nutritious diets, and improving agricultural productivity. Furthermore, with the "From farm 

to fork strategy" (Winkler et al., 2016), European union stated the key role of biodiversity to 

support and promote healthier and more sustainable food systems guaranteeing fair economic 

compensations along the entire food chain. 

1.2.  From structural to functional biodiversity 

The growing attention placed on the role of biodiversity in the genesis and regulation of ESs 

has led the scientific world to focus its efforts on the analysis of biodiversity. Research based 

on traditional and on innovative molecular methods is generating a considerable amount of 
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data on the richness and diversity of species in natural environments as well as in 

agroecosystems. In the face of this considerable accumulation of data, some important 

methodological questions on how to approach biodiversity assessment are still open. In 

particular, it is emerging the need to define scientific-based methodological framework for 

interpreting, at various levels of complexity, the responses of individual taxa and biotic 

communities to abiotic environmental variables, to the management practices of ecosystems, 

broadly defined, and to the type, intensity and frequency of perturbations.  

An even more complex scientific challenge is to relate the structural aspects of biodiversity (i.e., 

aspects referred to biocoenoses composition) to the functional aspects of biodiversity. Indeed, 

this issue involves understanding the role that the different taxa and the interactions among 

them have in the genesis and regulation of ecosystem processes and in the provisioning of the 

services by ecosystems. 

The investigation of the link between the structure of ecological communities (i.e., species 

present in the ecosystem and their abundance) and the ecological processes they promote and 

regulates requires a systemic approach and adequate modelling tools that can support the level 

of complexity of the analysis. From a systemic perspective, biotic communities are considered 

as networks whose nodes (components of biodiversity, such as specific taxon or functional 

groups) are characterized by attributes (such as, presence/absence, abundance, degree of 

activation of specific functional traits) and by specific interaction patterns with other nodes.  

The basic idea of systemic approaches is that ecosystem processes, as emergent properties of 

the interacting components in an ecological community, are generated and regulated by the 

functioning of these networks. The study of the responses of these networks to different 

management schemes or perturbations should consider the adaptive properties of the 

communities and the way in which they manifest resistance and resilience responses to 

perturbations. 

In relation to the study objectives, a systemic approach to biodiversity must adequately 

consider three fundamental methodological options, briefly introduced and discussed in the 

following sections. 

1.2.1. Choice of the proper spatial-temporal scale for the analysis 

Decisions on the of spatial and temporal scales (both in terms of extension and resolution) are 

preliminary to any further methodological consideration for systemic analysis. The extension 

of the study should be chosen taking into account the most appropriate area and time period 

for the investigated processes and the biological mechanisms involved (Altermatt et al., 2020).  

The spatial scale for biodiversity assessment in agroecosystems has a large range of variation. 

Dimensions of 10−1 meters or lower is the appropriate scale to investigate processes with high 

spatial resolution, such as analyses on microbial biodiversity in the rhizosphere. A larger 

extension, to 101 − 102  meters, is needed for investigations involving single environmental 

units or sets of neighbouring environmental units involved, for example, in the movements of 

arthropods of interest to understand the interactions between host plants, parasites and 
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natural control agents (Dal Cortivo et al., 2020; Hanaka et al., 2019; Machado et al., 2019). 

Greater extensions, in the order of 102 − 103meters, are considered in relation to the need to 

understand the effects on biodiversity of habitat composition and agronomic practices at the 

farmscape level (Bàrberi et al., 2010; Smukler et al., 2010; Wezel et al., 2014). Extensions of the 

order of 103 − 104 meters are typically used for the analysis at the landscape level, the 

hypotheses is that landscape management processes influence the dynamics of meta-

population and meta-community and therefore, in a multifunctional perspective, the 

ecosystem services of large areas (Bukvareva, 2018; Martin et al., 2019; Reddy et al., 2020). 

1.2.2. Bottom-up and top-down approaches to traits-ecosystem services 

analysis 

Several authors underlined the need for a trait-based approach for a proper understanding of 

the functional dynamics related to the genesis and regulation of ecosystem services (Aguirre-

Gutiérrez et al., 2016; Faucon et al., 2017; Goodness et al., 2016; Wong et al., 2019). The 

justification and strength of this approach relies on the fact that it constitutes a fully 

mechanistic approach to functional ecology and it is in agreement with the cascade model 

explaining the genesis of ecosystem services proposed by Haines-Young and Potschin (2010).  

The complexity that a fully mechanistic approach (hence bottom-up approach) generates is 

evident in all attempts to interpret the interactions between ecological traits and services in 

terms of clusters traits (D’Andrea et al., 2019; Hanisch et al., 2020; Hevia et al., 2017; Pomerleau 

et al., 2015). Each cluster is undoubtedly only a simplifying abstraction of the networks of causal 

relationships that connect, according to a bottom-up logic, properties of ecological units 

(individual, population or species) and services (Water Research Commission et al., 2014). 

Possible limitation of trait-based approach in ecology are not restricted to the simplification 

introduces by the trait-services clusters approach. Another and probably even more important 

drawback of bottom-up approach is related to the considerable complexity of the analysis of 

traits even at the level of the single species or population (since the intra-specific variability in 

traits expression should also be considered) (Degen et al., 2018; Hamilton et al., 2020; Leroux 

& Loreau, 2015; Wong et al., 2019). 

The complexity of bottom-up or reductionist approaches is one of the main reason justifying 

that most of the studies on the relationship between biodiversity and ESs is not strictly causal 

but more properly referable as correlative (Degen et al., 2018; Krause et al., 2014; Schmitz et 

al., 2015). These correlative approaches (hence top-down approaches) try to interpret 

ecosystem functionality in terms of relationships that ecosystem functionality has with the 

ecosystem structure. According to this perspective, the structure of ecosystems (usually it is 

represented by components of biodiversity) is considered as a proxy of functional properties of 

biodiversity itself and it is correlated with functional properties manifested by ecosystems. 

Structural properties and attributes of biodiversity are often investigated to explain the quality 

and efficiency of provisioning of specific ES. For example, aspects of the landscape or farmscape 

structure and organization are used as proxies to explain landscape or farmscape functional 

properties such as biological control or pollination. The simplification introduced is quite 
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evident, however the top-down approaches still have the advantages of offering a preliminary 

picture of how structural aspects affect the functional ones and, even if with some limitations, 

it can provide useful indications on how to design and manage the agricultural landscape and 

farmscape (Hendrickx et al., 2007; Nkurunziza et al., 2020; Therond et al., 2017)[REF]. 

1.2.3. Types of modelling approaches 

To improve feasibility and quality of systemic analysis in biodiversity assessment, two main 

requirements should be considered. First, the complexity of the biocenoses, in terms of species 

and the relationships that link them in functional networks, requires an appropriate level of 

simplification. Second, adequate quantitative tools should be chosen to study networks of 

considerable size (number of nodes) and complexity in the pattern of connections.  

The complexity of functional networks poses serious limitations to the traditional approaches 

in mathematical ecology focussed on the mathematical representation of the growth dynamics 

of populations and the interactions between them. The traditional approaches to mathematical 

ecology constraint the analyses to networks with a limited number of nodes and relatively 

simplified connection patterns (Ulanowicz, 2004). Hence the need to explore new analytical 

tools to make the analysis of networks of interacting species more effective from both the 

scientific and the applicative perspective. 

Network analysis models have been proposed as the most powerful modelling approach to 

investigate species - trait - function relationships underpinning the provision of ESs (Farage et 

al., 2020). Thanks to the network approach, it is possible to study the large-scale statistical 

properties of the whole network, the properties of individual species and interactions, and how 

they jointly contribute to the structure, function, and stability of ecosystems.  

A key characteristic of network approach is that species interactions are determined by traits, 

i.e. species can interact each other only if they have matching traits (e.g. the right body size for 

the right size of mouth, live at the same depth in the water column). The degree of trait 

matching is also a component determining the strength of the interactions between species. 

Trait matching is easy to detect and to model if a single trait determines the interaction 

between two species (a classical example reported is the passiflora species and their very long 

flower tubes that exclude most flower visitors and may have coevolved with bill length in the 

sword-billed hummingbird Ensifera ensifera). Typically, however, the situation is more complex 

because multiple traits and combinations determine interactions. When interactions are 

defined by multiple traits, these traits define a ‘niche-space’ (Dormann et al., 2017) and require 

additional attention in terms of network and model definition. 
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2. Habitat suitability 

Habitat Suitability (HS) models investigate the relationship between the presence of a species, 

both in qualitative (presence/absence) and quantitative (population abundance or density) 

terms, and the characteristics of the habitat in which it lives (Guisan et al., 2017; Guisan & 

Zimmermann, 2000; Morrison et al., 2006). HS indicator (or index of suitability) expresses the 

potential presence and abundance of the species in terms of the suitability of the environment, 

identifying suitable habitat at different spatial scales (Edenius & Mikusiński, 2006).  

Suitability distributions represent a significant step towards the use of landscape analysis in 

biodiversity management: the successful management of species highly depends on the 

knowledge of where they occur and why they are there . Habitat suitability models allow to 

know which factors can be manipulated to favour or hinder the presence of the species in a 

territory to enhance the genesis and regulation of ecosystem services (Elith & Leathwick, 2009; 

Jarvie & Svenning, 2018). HS models do not allow to determine where, in a given area, a species 

is actually present or, in the case of new entry of alien species, where and when it will spread, 

but where the species can find favourable environmental conditions to establish 

(presence/absence model) or the potential level of the species population (abundance models) 

in a given area. 

The results of a HS model can be summarized in a map of habitat suitability. These maps show 

which level each area meet the ecological needs of the species according to the explanatory 

variables considered. Depending on the HS indicator, the maps can indicate the probability of 

the presence or the potential density of the species (Antúnez et al., 2018; Bede-Fazekas et al., 

2014).  

The three component of a HS model are i) variables describing species presence/abundance, ii) 

explanatory variables (e.g. weather, land use, land cover, pedological characteristics of the soil, 

altitude), and iii) the classification function.  

The explanatory parameters that can be included in the model are many and obviously vary 

according to the species. They concern all those morphological, vegetational, 

climatic/meteorological, trophic, anthropic factors determining, or influencing, the availability 

of food and shelters, the possibility of reproducing, the interaction with other species, or the 

human disturbance.  

The classification function expresses the relationship that links the indices of suitability to 

explanatory variables. It can assume different degrees of complexity: from a simple logical 

relation to a complex function. With the aim of generating knowledge that can be used in 

network analysis, we focus on quantitative approaches to HS and we consider only univariate 

o multivariate statistical/mathematical models (Guisan et al., 2017; Hatziiordanou et al., 2019; 

Miller, 2010). 
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2.1. Quantitative approach to habitat suitability models  

Mapping species distribution has already been addressed in the past. In fact, since the 19th 

century or earlier, numerous field surveys have been developed to investigate the distribution 

of both animal and plant species. However, the worldwide distributions of many species are 

still unknown. The causes are manifold. First of all, in most field inventories ecological theory is 

rarely explicitly considered (M. Austin, 2007). Surveys that do not provide an understanding of 

the mechanisms underlying the distributions, but a simple description of results of these 

mechanisms (i.e. the species presence or abundance) may become non-informative outside the 

geographical area and the season where they were performed or if change in environmental 

factors occur (e.g. changes in land use). Furthermore, often studies failed to test for unimodal 

or skewed responses species responses to environmental variables (M. P. Austin, 2013; M. P. 

Austin & Smith, 1989) and a discussion of relationships is lacking (M. Austin, 2007). 

In the last two decades, the recent advances in quantitative modelling have provided tools 

capable of covering some gaps highlighted by previous studies, in particular for comprehensive 

mapping of species habitat (Franklin, 2010; Guisan et al., 2017; Ovaskainen & Abrego, 2020; 

Pecchi et al., 2019). These models go beyond the classic approach of describing the suitability 

of a habitat through the definition of homogeneous and standardized areas compliant with the 

sites under investigation in the field. The objective of the quantitative approaches is the 

understanding of the factors that determine the suitability level of the habitat. This knowledge 

therefore makes it possible to infer the acquired information to different contexts, e.g., 

habitats not directly observed, or to develop scenario analyses testing the effects of one or 

more environmental perturbations on the suitability of a habitat.  

The drawback of quantitative approaches can be represented by data collection system, that is 

generally rather long and expensive to guarantee the flexibility of the model and the high 

informative potential of the results (in terms of inference). Furthermore, these data require a 

complex and demanding process of analysis for the development and interpretation of the 

model. 

2.1.1. Data required for the development of an HSI 

Two types of data are necessary to develop HS models: 

• data referred to the presence and/or the abundance of the species in a given area;  

• data describing the environmental variables in that area. 

First of all, it is essential that all data be spatially explicit or referred to well-defined 

geographical entities (e.g. areas or points). 

Species presence and/or abundance can be obtained through direct observations of the 

animals or estimated through indirect indices of the presence of the species (e.g. traces, 

excrements, nests) (Cavender-Bares et al., 2020). The choice to collect information on presence 

or abundance clearly influences the type of result that can be obtained. The abundance allows 

to obtain decidedly more informative results, but it requires a greater effort in the collection of 
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the data. Absence/presence data and presence-only data should be differently treated. In the 

first case, where the species is absent it is plausible to think that the environmental 

considerations are not favourable. When only presence data are collected, it is not possible to 

infer that outside the points where the species was identified, the area has unfavourable 

conditions for the species (Dettmers & Bart, 1999). 

Data on environmental variables can be collected simultaneously with data on species 

presence, extrapolated from available knowledge (e.g. thematic maps, satellite images) or 

estimated by modelling tools (e.g. soil temperature from air temperature data). Data 

extrapolated from maps or open data repository are generally cheaper than those collected in 

field and they allow to calculate environmental variables otherwise difficult to measure (e.g. 

ecosystem diversity indices, distances from edges, land use distribution) in very large areas. 

The choice of environmental variables to be considered strongly depend on the species under 

study. Selection of explanatory variables is a trade-off between the need to consider all the 

aspects that are potentially of interest and the cost (in terms of time and economic effort) of 

collecting this information. Furthermore, constraints of the effective availability of information 

(e.g. types, temporal and spatial resolution and extension of open data or thematic maps) must 

be taken into consideration. Finally, in terms of network analysis, it is not always better to 

collect many variables, which can create what is called ‘background noise’. That is, they can 

cause confusion regarding the identification of a relationship between the dynamics of the 

presence of the species and some environmental variables. 

Reliability of the results greatly depends on the degree of precision of these data. The main 

sources of errors are may relate to the spatial (georeferencing) and temporal information (the 

date of detection), the estimate of the number of individuals and also the characteristics of 

each individual animal (sex, age, activity that the animal is carrying out) (Cavender-Bares et al., 

2020). 

2.1.2. Estimation of the classification function 

We can distinguish the quantitative approaches to habitat suitability models in two macro 

categories: explanatory models and predictive models.  

In the category of predictive models we include all the techniques which, while having the aim 

of maximizing the ability to correctly classify sites in terms of species presence/abundance, do 

not disregard the need to understand and make evident the causal or association mechanisms 

that can explain the habitat suitability. In these models, therefore, the process generating the 

suitability index is made explicit, so that it is possible to interpret the coefficients of the model 

in terms of importance and weight of the factors considered on the estimate of the probability 

of presence or the level of abundance of a species. 

In the HS literature, the most used explanatory models are: 

• Analysis of univariate variance (ANOVA) or multivariate (MANOVA): it is generally used 

to select, among the many environmental variables available, those that explain the 

variability of the indicator is better and, therefore, will be subjected to subsequent more 
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in-depth analyzes (Brennan et al. 1994; Dueser & Shugart 1978; Meriggi et al. 1992a; 

Meriggi et al. 1992b; Milne et al. 1989; Smith 1977 );  

• Multiple regression: used when a continuous variable is considered as an indicator, 

generally density (Lindenmayer et al. 1997; Meriggi et al. 1992a); 

• Logistic regression: used when we want to consider as an indicator not the density of 

the species but its presence / absence (Buckland et al. 1996; Lindenmayer et al. 1997). 

Logistic regression can also be used to discriminate, among those available, the 

variables that best explain the presence of the species in a territory (Smith & Connors 

1994). This method was not widely used until a few years ago for computational 

problems, now it is more and more widespread;  

• Poisson regression: used when the independent variable is an integer (for example: 

number of individuals) (Lindenmayer et al. 1997);  

• Generalized Linear Models: it is a generalization of linear regression that allows to 

consider also non-linear effects and continuous or categorical dependent variables with 

normal distribution or belonging to the exponential family (gamma, Possion, binomial, 

etc.) (Guisan et al., 2002, 2017)(Lindenmayer et al. 1997) ; 

• Discriminant analysis: used when the presence / absence of the species or density 

classes is to be considered as an indicator, or in the case of a categorical dependent 

variable and continuous independent variables (Meriggi et al. 1992a);  

• Bayesian method: based on the Bayes formula of conditional probability. A 

characteristic of this method is that the conditional probabilities, as well as being 

experimentally determined, can be estimated a priori by an expert and then updated 

on the basis of the new acquired data. This method can be used to analyse both 

continuous and categorical independent variables (Aspinall & Veitch 1993; Holl 1982; 

Milne et al. 1989; Morrison et al. 1992);  

• Principal component analysis (PCA): used to synthesize the most significant 

environmental variables for the characterization of the habitat then relying on other 

analyses (typically the discriminant analysis) for the study of the species-habitat 

relationship. The application of PCA in studying the relationship between a species and 

the habitat in which it lives is particularly interesting when highly correlated 

environmental variables are present (Buckland et al. 1996; Collins 1983);  

• Canonical correspondence analysis: able to analyse the relationship between several 

environmental variables and several species (Hill 1991). Each of these statistical 

techniques has its own strengths and weaknesses and hardly alone provides good 

predictive models. However, the cascade use of some of these analyses can provide 

satisfactory results. In literature there are many different combinations of the 

methodologies described above used in studies of the relationship between a species 

and its habitat; 
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• Structural equation models: these models are widely described in chapter 4 (section 

4.2.1). 

 

In the category of predictive models, we include models in which the main goal is to maximize 

the accuracy and precision of the estimate obtained, without explicating the estimation 

process. The accuracy of a model indicates the ability to obtain unbiased estimates, i.e., as close 

as possible to the real value of the parameter. Precision measures the degree of agreement 

between measurements (refers to the variability of estimates). The "black box" models belong 

to predictive models. In a black-box model, the process of estimating the probability of 

presence or the level of abundance is hidden and unintelligible. The models developed 

according to ensemble learning approach fall into this category. A detailed explanation of these 

models is presented in chapter 4 (section 4.3). 

Many studies compared HS approaches and model accuracies, without reaching a conclusive 

result. The choice heavily depends on the objective of the study and the types of data available. 

Furthermore, there is a lack of knowledge with respect to transferability of HS model results 

across disjunctive geographic (Duque-Lazo et al., 2016; Heikkinen et al., 2012; Latif et al., 2016; 

Manzoor et al., 2018; Wenger & Olden, 2012). 

2.1.3. Utility and limitations of MVA  

Habitat suitability maps can be effectively used in the management of agroecosystems, of 

natural environmental as well as in urban and regional planning to identify areas of 

environmental importance that need to be protected, requalified and adequately managed. HS 

models also find application in the preliminary study for the reintroduction of locally extinct 

species, in the environmental impact assessment, in the assessment of biodiversity loss or to 

assess impact of climate change on ecosystem services provisioning. (Brambilla et al., 2010).  

HS models should fail to differentiate between suitable and unsuitable areas for the species 

when i) the explanatory variables selected are insufficient to describe species preferences, ii) 

explanatory variables are detected at a spatial-temporal resolution inadequate to describe 

species preferences, ii) habitat preferences differ across population stages and the survey is 

not sufficiently diversified to take them into account (Johnson, 2005; Pecchi et al., 2019; Wiens 

& Rotenberry, 1981).  

2.2. Case study: Habitat suitability of Popillia japonica 

The Japanese beetle (Popillia japonica Newman) is a highly polyphagous invasive species 

originated from north-eastern Asia. Since its first detection in the US in 1916, the species was 

able to invade vast areas of North America and some areas in southern Canada. In the 1970s, 

the Japanese beetle (JB) was introduced in the Azores and since 2014, the species has 

established in mainland Europe (Italy). Since 2017, few occurrences of the species were 

reported in Switzerland. In Italy P. japonica is currently distributed along the Ticino Valley on 

the border between Lombardy and Piedmont Regions and, since its first detection, the infested 
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area has increased over time. The species is considered a quarantine insect pest and thus the 

Italian National and the two Regional Phytosanitary Services are implementing a set of 

measures aimed at monitoring and implementing the phytosanitary measures for containing 

the spread of the Japanese beetle.  

In the literature, knowledge on habitat suitability for P. japonica is limited, although the first 

studies date back to the middle of the last century (Hawley & Dobbins, 1945). Influence of 

temperature on the development of immature stages and the impact of soil moisture and 

texture on survival and development of eggs and first instar have been studied by Régnière et 

al. (1981a, 1981b) through laboratory tests. Dalthorp et al. (2000) describe the grub patch 

dynamics  of the JB on a central New York golf course describing size, shape, and diffuseness of 

patches according to a spatial covariance approach. Szendrei and Isaacs investigated the 

influence of ground covers on abundance and behaviour of the JB (2005, 2006). Zhu et al. (2017) 

considered 1048 sampling points (45 in Japan and 1003 in North America), Kistner-Thomas et 

al. (2019) adopted a CLIMEX approach (Sutherst & Maywald, 1985) to estimate HS based on 

the analysis of 1028 occurrence sites (40 in Asia, 6 in Europe, 981 in North America and 1 in 

Central America).  

In 2018, the Lombardy Region has funded the GESPO Project 1 , which aims at developing 

rational (cost-efficient) and sustainable (low impacts) solutions for the integrated management 

of P. japonica. One of the objectives of GESPO project is the development of quantitative tools 

aimed at supporting the definition and the implementation of management strategies against 

the species.  

The habitat suitability model investigates the presence of the larval stage of P. japonica taking 

into account land-use variables, soil characteristics (e.g., soil organic carbon, soil texture etc.) 

and weather variables (i.e. air and soil temperature).  The model parameters have been 

estimated considering the rich and accurate dataset on P. japonica distribution and abundance 

collected by the Lombardy Regional Phytosanitary Service from 2017 to 2018. Data on larvae 

are collected by soil coring.  

2.2.1. Data collection 

Following the first reports the Japanese beetle (JB) in Lombardy (Italy), from 2015 the Lombard 

regional phytosanitary service has activated a monitoring and control plan, envisaging actions 

both with respect to adult and larval stages.  

In this study we use data referred to three seasons of the larvae monitoring plan: 2016/17, 

2017/18, 2018/19. For the first two seasons (2016/17 and 2017/18) samplings were planned in 

spring, investigating the presence of larvae at the end of the larval stage (hereinafter they will 

be defined as late larvae). The third season, 2018/19, sampling was conducted in autumn, 

investigating the presence of the larvae at the beginning of the larval stage, hereinafter called 

early larvae.  

 
1 The Project GESPO is funded by Direzione Generale Agricoltura - Regione Lombardia (D.d.s. 28 marzo 2018 - 

n. 4403D.g.r. n. X/7353 14 novembre 2017, project number E86C18002720002). 
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Only for the purposes of this study, Bellinzago Novarese was hypothesized to be a possible 

entry point for the pest in Italy as it is the centroid of the first municipalities where the presence 

of the P. japonica was initially detected. The observation area is eastern Lombardy a circular 

area with a radius of 32 kilometres and centre in Bellinzago Novarese (Novara, Italy).  

The monitoring plan for JB larvae provides for coring in stable meadows and arable crops. 

Coring points were randomly sampled in stable meadows and arable land, according to a 

regular hexagonal grid of Lombardy. The coring was performed with a special core drill (15 cm 

diameter x 20 cm depth). The number of larvae present in the sample was counted at each core 

coring point. For the purposes of the HS model, for each sampling point only the 

presence/absence of JB larvae is considered. 

2.2.2. Explanatory variables 

Each coring point was characterized by a set of variables related to the biological cycle (late 

larvae or early larvae), land use, soil geopedological characteristics, meteorology, and 

infestation dynamics (Gengping Zhu et al., 2017). 

Land use was defined through the DUSAF 6 (Use of Agricultural and Forest Soils) classification 

system  (Regione Lombardia, 2018). 

The geopedological characteristics of the soil have been extracted from the map of soils 

Lombardy 1: 250,000 (Regione Lombardia, 2013). In the suitability habitat model, we included 

the average organic carbon content on the first meter of soil, classified in low [<1%], medium 

[1%-2%] and high percentage content [>2 %], the useful depth (cm), the texture of the first 

meter of soil, the particle size of the first meter of soil, and the average of pH of the first meter 

of soil.  

To evaluate the influence of meteorological factors on the presence of JB larvae, both air and 

soil related variables were considered. The details on the variables included in the model are 

reported in Table 1. According to the sampling period (autumn or spring, which corresponds to 

early or late larvae), the periods in which the meteorological variables are evaluated are 

different. Information of reference period are included in Table 1. 

As proxy of the infestation dynamics, we considered two variables. The distance from the point 

assumed as the entry point of the species (for the sole purposes of the article, Bellinzago 

Novarese was hypothesized as entry point) and the number of years from which the area where 

the sampling takes place was classified as occupied by the Japanese beetle. 
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Table 1 – Meteorological variables tested in the Habitat suitability model 

Acronym Description 
Autumn 

(early larvae) 
Spring 

(late larvae) 
Unit of measure 

Rain Cumulative rain May-October May-October mm 

Relative 
humidity 

Average relative humidity May-October May-October Number 
(proportion) 

Average air 
temperature 

Average air temperature at 2 
meters  

May-October May-October Celsius degree 

Average soil 
water 

Average soil water  
[depth 0-10 cm] 

June-October June-May Number 
(proportion) 

Length of soil 
dry stress 

Number of hours of soil 
water < 0.15 

June-October June-May Number 

Average soil 
temperature 

Average soil temperature  
[depth 0-10 cm] 

June-October September-May Celsius degree 

Minimum soil 
temperature 

Average of minimum soil 
temperature 

June-October September-May Celsius degree 

Maximum soil 
temperature 

Average of maximum soil 
temperature 

June-October September-May Celsius degree 

Soil Cold 
Degree Days 

Soil degree days lower than 
10°C 

June-October September-May Celsius 
degree*day-1 

Soil Warm 
Degree Days 

Soil degree days between 
15°C and 28°C 

June-October September-May Celsius 
degree*day-1 

Length soil 
cold stress 

Number of hours of soil 
temperature < 10°C  

June-October September-May Number  

Length soil hot 
stress 

Number of hours of soil 
temperature > 28°C  

June-October September-May Number  

2.2.3. Statistical models 

The aim of the project is to understand the factors that can influence the presence of larvae od 

P. japonica in the soil. For this reason, we choose a statistical model that would allow the results 

interpretation from a mechanistic perspective, instead of models, perhaps more performing in 

terms of estimation accuracy, but which do not allow assessments on the specific effect of the 

factors considered, 'black boxes' models. 

We performed a logistic regression model using a full stepwise approach, i.e. explanatory 

variables are included or excluded into the model according to their statistical significance 

measured by Akaike information criteria (Atkinson, 1980; Harrell, 2015). To validate the results 

of the logistic regression model, we performed a K-fold cross-validation procedure (cv.glm 

function of ‘boot’ R package version 1.3-20). This procedure computes the prediction error for 

generalized linear models. Dataset is divided randomly into K groups; a generalized linear 

model is fitted on the dataset omitting the k-th group (training set) that is used as test set. 

Prediction are made by fitting the model with the test set. The overall cost function sums up all 

the prediction errors made on the K test sets. 

The results of the logistic regression model will be the starting point to investigate possible 

nonlinear relationships between explanatory and dependent variables through a generalized 

additive model (GAM) (Hastie & Tibshirani, 1990; Heikkinen et al., 2007). This nonparametric 
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regression technique allow to fit both linear and complex additive response curves. GAM were 

developed with gam function of mgcv R package, using data on presence-absence of JB larvae 

as response variable and a logit link function (family binomial). The results of the GAM will be 

used for the joint exploration of two dimensions of habitat suitability (e.g., pH and soil 

temperature). 

To evaluate the performance of the logistic model, we used accuracy, sensitivity, specificity, 

and balanced accuracy. These metrics are regularly used to assess habitat modelling 

performance in ecology (Allouche et al., 2006; Duque-Lazo et al., 2016; Freeman & Moisen, 

2008; García et al., 2009; Giannini et al., 2013; Miller, 2010). To evaluate the estimation results, 

we used a confusion matrix showing true positive (samples observed as positive and correctly 

classified), false positive (samples observed as negative and wrongly classified), false negative 

(samples observed as positive and wrongly classified), and true negative (samples observed as 

negative and correctly classified) (Table 2).  

Table 2 - Confusion matrix for the evaluation of our presence–absence model 

 Observed value 

Presence Absence 

P
re

d
ic

te
d

 

va
lu

e Presence 
True positive (a) 

Correctly predicted 

False positive (b) 

wrongly predicted 

Absence 
False negative (c) 

wrongly predicted 

True negative (d) 

Correctly predicted 

Accuracy [eq. Accuracy = 
𝑎+𝑑

𝑛
 [1] measures the percentage of correctly predicted 

observations on the total sample size. Sensitivity Sensitivity = 
𝑎

𝑎+𝑐
 [2] represents the 

percentage of observations correctly classified on the total of observations in which the species 

was present. Specificity [eq. Specificity = 
𝑑

𝑏+𝑐
 [3] represents the percentage of 

observations correctly classified on the total of observations in which the species was absent. 

Balanced accuracy [eq. Balanced accuracy = (Sensitivity + Specificity) / 2  [4] normalizes overall 

accuracy of the model and it is especially useful when the classes are imbalanced. 

 Accuracy = 
𝑎+𝑑

𝑛
 [1] 

  Sensitivity = 
𝑎

𝑎+𝑐
 [2] 

  Specificity = 
𝑑

𝑏+𝑐
 [3] 

 Balanced accuracy = (Sensitivity + Specificity) / 2  [4] 

To compute the classification matrix, it is customary to set the classification cut-off equal to 

0.5, i.e., every observation with a predicted probability from the model equal to or greater than 

0.5 is classified as positive. In our study data matrix is sparse, i.e., the percentage of sites where 

P. japonica larvae were found is much lower than the percentage of sites where P. japonica 
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larvae were not found. Considering the unbalanced dataset, we choose the classification cut-

off for the confusion matrix based on the ROC (Receiver Operating Characteristic) curve 

(estimated with roc function of ‘pROC’ R package) and the best trade-off between specificity 

and sensitivity (Freeman & Moisen, 2008; Weiss & Provost, 2001). The best cut-off is chosen as 

trade-off between specificity and sensitivity.  

The goodness of fit of the GAM is evaluated with QQ-plot (quantile-quantile plot) of residuals. 

The Q-Q Plot allows to graphically compare the cumulative distribution of the observed variable 

with the cumulative distribution of the normal. If the observed variable has a normal 

distribution, the points of this joint distribution gather on the diagonal from bottom to top and 

from left to right (Wilk & Gnanadesikan, 1968). 

2.2.4. Results 

In the three coring seasons included in the study, 8904 sites were sampled. Table 3 shows, per 

sampling season, the total number of sites, the number of positive samples, where at least one 

larva of the Japanese beetle was found, and the number of negative samples, where JB larvae 

were absent. 

Each sampling site was characterized by the variables presented in Section 2.2.2. Table 5 

summarizes the distributions of the explanatory variables in terms of mean and standard 

deviation (for quantitative variables) or frequency distribution (for categorical variables), 

according to presence or absence of larvae of P. japonica. The correlation matrix (graphically 

reported in Table 5) shows clusters of variables that present a very high correlation (greater 

than 85%). For the estimation of the logistic regression model, only one variable was considered 

for each correlation cluster. For this reason, average of minimum soil temperature, average of 

maximum soil temperature, length of soil cold stress, and length of soil hot stress were 

excluded. 

From the descriptive analysis of the variables (Figure 1), it emerges that levels of organic carbon 

and pH are influenced by the texture and particle size (respectively) of the soil. for this reason, 

the corresponding interaction factors are also included in the regression model. 

 

Table 3 – Number of coring sites included in the study, by season and presence/absence of P. 
japonica larvae 

Season Sampling 
period 

Total sites Positive sites 
(presence of JB larvae) 

Negative sites 
(absence of JB larvae) 

2016/17 Spring 5728   485   (8.47 %) 5243 (91.53 %) 

2017/18 Spring 2760   397 (14.38 %) 2363 (85.62 %) 

2018/19 Autumn 420   270 (64.29 %)   150 (35.71 %) 

Total 8908 1152 (12.93 %) 7756 (87.07 %) 
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Table 4 - List of explanatory variables calculated for each sampling site and used as predictors 
of the presence of P. japonica larvae 

Category Explanatory variables [Range] 
Frequency 
distribution (%) 

Mean (± SD) 

Land use Arable crops stable  
Meadows 
Others 

64.13 % 
30.13 % 
  5.74 % 

 

Geopedological 
characteristics 

Organic carbon content  
Low (<1 %) 
Medium (1%-2%)  

High (>2%) 

 
60.00 % 
29.84 % 
10.16 % 

 

Useful depth (cm) [20 - 201] 93.65 (±52.74) 

Texture  
Sandy loam 
Loamy sand 
Silt loam 
Loam 
Sand 

 
69.19 % 
20.87 % 
4.65 % 
4.43 % 
0.86 % 

 

Particle size 
Coarse-loamy 
Loamy-skeletal 
Sandy 
Sandy-skeletal 
Others 

 
50.65 % 
22.59 % 
10.96 % 
10.78 % 
  5.02 % 

 

pH  [4.9 - 7.3]   6.16 (±0.59) 

Meteorological 
factors 

Rain [22.06 – 547.0]   322.66 (±147.59) 

Air Relative humidity [0.42 – 0.62]   0.52 (±0.04) 

Average air temperature [20.01 – 24.62]  22.28 (±0.86) 

Average soil water [0.26 - 0.95]    0.37 (±0.07) 

Length of soil dry stress [2.0 – 2391.5]   293.59 (±383.31) 

Average soil temperature [0.79 – 23.41]   11.9 (±2.55) 

Minimum soil temperature [0.60 – 19.56]   8.92 (±2.14) 

Maximum soil temperature [1.01 – 28.42] 15.73 (±3.14) 

Soil cold degree days [58.6 – 2648.9] 765.96 (±254.30) 

Soil warm degree days [23.9 – 1365.5]  646.11 (±191.78) 

Length of soil cold stress [151.4 – 6302.0]   3043.6 (±704.51) 

Length of soil hot stress [5.45 – 1024.8]   310.67 (±162.74) 

Invasion dynamics Distance from first entry [2402 – 31978] 17111.4 (±6116.7) 

Years of occupation [0 – 3]   1.34 (±0.66) 
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Table 5 – Correlation matrix of quantitative explanatory variables 

 
 

 

Figure 1 – Distribution of pH and organic carbon in the whole dataset (a ,d) according particle 
size classification (b, e) or according texture classification (c, f)  

Particle size : CL – coarse loamy, S – sandy, LS – loamy skeletal, SS – sandy skeletal;  
Texture: L – loam, CL – clay loam, SiL – silt loam, SaL – sandy loam, S – sand – LS – loamy sand 
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Logistic regression model for habitat suitability of P. japonica larvae  

Based on the stepwise procedure, ten explanatory variables and four interaction terms have 

been selected as significative in the logistic model. Results of the final logistic model are 

reported in computed based on this cut-off: 72.6 % of the observations are correctly classified 

(accuracy), 70.1 % of the positive sites are correctly classified (sensitivity), and 89.3 % of the 

negative sites are correctly classified (specificity). Balanced accuracy is equal to 0.80. According 

to the evaluation metrics reported, model shows a good fitting to the observed data. 

Table 6.  

Positive sites (where the larvae of JB were found) are 12.93 % of the total of sites considered 

in the analysis, therefore the dataset is strongly unbalanced. To select the optimal classification 

cut-off, we computed the ROC curve (represented in Figure 2). The best trade-off between 

sensitivity and specificity (highlighted with a red star in Figure 2) is obtained with a cut-off equal 

to 0.09. Confusion matrix ( 

Explanatory variables Coefficient 
estimated 

Standard 
error 

𝑷𝒓(> |𝒛|) 

Intercept   6.221 2.408   0.010 

Sampling period = autumn   2.693 0.247 <0.001 

Texture=LS - 1.937 0.279 <0.001 

Soil organic carbon - medium   0.836 0.132 <0.001 

Soil organic carbon - high - 0.632 0.216   0.003 

pH - 0.437 0.095 <0.001 

    pH : Particle size=S - 0.145 0.025 <0.001 

    pH : Particle size=CL - 0.162 0.015 <0.001 

Distance - 0.0001 0.00001 <0.001 

Years of infestation   0.882 0.112 <0.001 

Cumulative rain - 0.003 0.001 <0.001 

Average air temperature - 0.399 0.105 <0.001 

Length of soil dry stress   0.001 0.0002 <0.001 

Soil cold degree days   0.002 0.0006 <0.001 

Soil warm degree days   0.004 0.001 <0.001 

Table 7) and the evaluation metrics are computed based on this cut-off: 72.6 % of the 

observations are correctly classified (accuracy), 70.1 % of the positive sites are correctly 

classified (sensitivity), and 89.3 % of the negative sites are correctly classified (specificity). 

Balanced accuracy is equal to 0.80. According to the evaluation metrics reported, model shows 

a good fitting to the observed data. 

Table 6 – Logistic regression model for presence/absence of P. japonica larvae in coring 

Explanatory variables Coefficient 
estimated 

Standard 
error 

𝑷𝒓(> |𝒛|) 

Intercept   6.221 2.408   0.010 

Sampling period = autumn   2.693 0.247 <0.001 

Texture=LS - 1.937 0.279 <0.001 

Soil organic carbon - medium   0.836 0.132 <0.001 
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Soil organic carbon - high - 0.632 0.216   0.003 

pH - 0.437 0.095 <0.001 

    pH : Particle size=S - 0.145 0.025 <0.001 

    pH : Particle size=CL - 0.162 0.015 <0.001 

Distance - 0.0001 0.00001 <0.001 

Years of infestation   0.882 0.112 <0.001 

Cumulative rain - 0.003 0.001 <0.001 

Average air temperature - 0.399 0.105 <0.001 

Length of soil dry stress   0.001 0.0002 <0.001 

Soil cold degree days   0.002 0.0006 <0.001 

Soil warm degree days   0.004 0.001 <0.001 

Table 7 – Confusion matrix of the logistic regression model 

 Observed value 

Presence Absence Total 

P
re

d
ic

te
d

 

va
lu

e 

Presence 1029 2317 3346 

Absence 123 5439 5562 

Total 1152 7756 8908 

 

 

Figure 2 – ROC curve of the logistic model for habitat suitability of P. japonica larvae. The red 
star represents the best trade-off between sensitivity and specificity 
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Results of logistic regression models should be interpreted in terms of odds [eq. 𝑂𝑑𝑑𝑠 =
𝑃(𝑌=1)

𝑃(𝑌=0)
=

𝑃(𝑌=1)

1−𝑃(𝑌=1)
     [5], i.e. the ratio of the probability of success over the probability of 

failure. In logistic regression model, the linear relationship between the dichotomous outcome 

variable 𝑌 (in this case larval presence) and the k explanatory variables 𝑋𝑖 is based on a logit 

transformation of the outcome variable [eq. 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1)) = log
𝑃(𝑌=1)

𝑃(𝑌=0)
= 𝛽0 + 𝛽1𝑋1 +

⋯ + 𝛽𝑘𝑋𝑘    [6]. For this reason, the exponentiated regression coefficient can be interpreted 

as the increase/decrease of odds as one-unit increase on the corresponding explanatory 

variable, being fixed the values of the other explanatory variables. 

  𝑂𝑑𝑑𝑠 =
𝑃(𝑌=1)

𝑃(𝑌=0)
=

𝑃(𝑌=1)

1−𝑃(𝑌=1)
     [5] 

  𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1)) = log
𝑃(𝑌=1)

𝑃(𝑌=0)
= 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑘𝑋𝑘    [6] 

Generalized additive model for habitat suitability of P. japonica larvae  

The explanatory variables of the logistic regression model are used as inputs to the GAM model, 

interaction terms were not included. GAM confirmed the statistical significance for all 

explanatory variables, although for organic carbon only the high category results as significant, 

and detected six non-linearity: pH, cumulative rain, average air temperature, length of soil dry 

stress, soil cold degree days and distance. Detailed results are presented in Table 8. The 

coefficients of the GAM linear terms can be interpreted as usual in the linear regression model. 

For the variables that are included in the model through nonlinear link functions (smooth 

terms), the effective degrees of freedom (EDF) provide an indication of the complexity of the 

smooth function. If EDF is equal to 1, the link function is linear. When EDF is equal to 2, the link 

function is a quadratic curve, and so on. The estimated smooth functions are presented in 

Figure 4. The statistical significance of the exploratory variables, both linear and nonlinear link, 

is indicated with asterisks in the p-values column. 

The qq-plot of the model (Figure 3) shows a good fit of the model to the data. 

Table 8 – GAM results for the nonlinear prediction of habitat suitability for P. japonica larvae 

Linear link function  Nonlinear link function 
Explanatory variables Coefficient 

estimates 

p-value  Explanatory variables EDF p-value 

Intercept - 6.934 <0.001  pH 6.710   0.004  

Sampling period = autumn   1.394   0.002  Distance 5.601 <0.001  

Texture=LS   0.956 <0.001   Cumulative Rain 8.011 <0.001  

Soil organic carbon - high   0.815   0.077  Average air temperature 6.668 <0.001  

Years of occupation   0.687 <0.001   Length of soil dry stress 5.503 <0.001  

Soil warm degree days   0.004 <0.001  Soil cold degree days 4.308 <0.001  

EDF = Effective degrees of freedom 
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Figure 3 – QQ-plot of residuals of GAM 

Results of the GAM have been used to estimate the probability of the presence of the P. 

japonica larvae according the values assumed by couples of explanatory variables, being fixed 

the values of others explanatory variables. The analysis of all possible two-dimensional niches 

according to an ecological perspective led to the identification of two interesting niches, 

defined by ‘length of the soil dry stress’ in relation with ‘soil warm degree days’ (Figure 5 a,b) 

and ‘soil cold degree days’ (Figure 5 c,d). The probability of presence of JB larvae in the 

multivariate model according to the joint distribution of the two explanatory variables is 

represented in the 2-dimension plot by a colour scale, while in the 3-dimesion plot is 

represented by the blue plane. 

 

Figure 4 – Smooth function of the GAM model. Plot shows the individual effects of nonlinear 
terms, where only the default layers are added. 
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Figure 5 - Probability of the presence of the Japanese beetle (JB) larvae in the soil, based on the 
values assumed by ‘length of the soil dry stress’ and ‘soil warm degree days’ (A and 
B) or by ‘length of the soil dry stress’ and ‘soil cold degree days’ (C and D). The left 
plots (A and C) are the 2D representation of the niches, the probability of the 
occurrence of the species is represented by a colour scale (blue represents low 
suitability areas and red are the favourable areas). In the 3-dimesion plots (B and D), 
the blue planes represent the probability of the species presence in the multivariate 
model according to the joint distribution of the two explanatory variables represented 
on the x-axis and y-axis., being fixed the values of others explanatory variables.  

2.2.5. Discussion  

The results of the logistics model confirm the few results available in literature on the 

distribution of P. japonica and, in particular, they extend knowledge to the larval stage ad to 

pedo-climatic condition in Italy, neglected in currently published studies (Allsopp et al., 1992; 

Kistner-Thomas, 2019; Régnière et al., 1981a, 1981b; Shanovich et al., 2019). 

The sampling period (spring or autumn) is considered a very important factor for predicting the 

presence of P. japonica larvae. In particular, the estimated regression coefficient, equal to 2.69, 

indicates that the odds (i.e. defined as the probability that the event will occur divided by 

the probability that the event will not occur) of coring carried out in the autumn is over 14 times 

the odds of coring carried out in the spring. This result, consistent with what observed in Table 
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3, suggests that there may be a survival issue of whole larval clusters during the winter period. 

This aspect requires further in-depth studies. 

According to logistic regression model, P. japonica shows a preference for less acidic soils. This 

preference is influenced by the particle size of the soils, in particular for coarse loamy and sandy 

soils. Focusing on texture, loamy sand soils are unfavourable environment for the JB, in 

agreement with previous scientific evidences (Allsopp et al., 1992; Hawley & Dobbins, 1945). 

The probability of finding P. japonica larvae in sites with a loam sandy texture is considerably 

lower than that calculated in soils with other types of textures, all other explanatory variables 

being equal.  

The coefficients related to soil organic carbon showed that the JB prefers soils with reduced 

organic carbon content, consistently with Dalthorp et al. (2000). The logistic model shows that 

the probability of finding P. japonica larvae in soils with an organic carbon content between 1 

and 2% is double that of those with a lower organic carbon content, while in soils with an 

organic carbon content greater than 2% the probability of finding the JB larvae is 0.5 times that 

of soils with low organic carbon content. 

The probability of finding clusters of larvae is closely linked to the distance from the site of first 

entry and the number of years since the species occupied the sampling area. Both these results 

agree with expectations based on a diffusion process. In fact, in the sites of more recent 

occupation, the diffusion process is still in progress, therefore is strongly influenced by the 

dynamics of population growth. 

In agreement with Kistner-Thomas (2019), the larvae of the JB showed high sensitivity to soil 

water content, evidenced by the negative effect of cumulative rain (that is a proxy of the water 

input of the soil) and the positive effect of the duration of soil dry stress. 

The negative effect of the average air temperature (logistic regression coefficient = - 0.231) 

could be interpreted in terms of a temperature-mediated effect on the fertility of adults of the 

Japanese beetle (Régnière et al., 1981a). 

The availability of degree days in the comfort range of 15-28°C accumulated in the soil is instead 

a factor that positively affects the probability of the presence of larvae. This could be explained 

in terms of the survival of larval clusters of P. japonica under more favourable thermal 

conditions but it could also be the product of the effect of temperature on the whole of the 

components of the life cycle of the Japanese beetle, in particular the survival and development 

rate of all stages of the insect (Kistner-Thomas, 2019; Régnière et al., 1981a; Shanovich et al., 

2019). 

The results of the GAM analysis are used to investigate the ecological niches determined by the 

interaction of two variables and in terms of the interaction of pairs of variables explaining in 

terms of suitability for P. japonica larvae. In particular, the nonlinearity included in the GAM 

allows to identify optimal ranges of explanatory variables. The results of the model combined 

with an ecological interpretation of bi-dimensional niche spaces, led to the identification of a 

very interesting relationship. In fact, Figure 5 shows that there is a comfort zone for JB larvae, 

defined by a duration of the soil water stress period between 800 and 1800 hours and soil cold 
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degree days greater than 1000. In this area the probability of the presence of P. japonica larvae 

is high, outside the zone identified by these intervals, the probability drastically decreases. 

2.2.6. Concluding remarks on habitat suitability models 

Quantitative models used in this study have provided important information for understanding 

the habitat suitability of larvae of P. japonica. The descriptive analysis of the dataset was 

essential in defining the subset of variables to be used in the model. The collinearity between 

explanatory variables has been analysed to guarantee the robustness of the models considered. 

Furthermore, the presence of possible interactions between the explanatory variables to be 

included in the classification model were evaluated, for example the relationship between 

texture, particle size, pH and organic carbon. 

The two-phase modelling approach used to investigate the relationship between explanatory 

variables and presence of larvae of the Japanese beetle revealed to be very useful. The logistic 

regression model allowed a deep investigation of the effect of each explanatory variable, in 

terms of direction (favourable or unfavourable) and of the intensity of the relationship with the 

probability of presence of larvae in the coring site. This knowledge has been integrated with 

the results of the GAM, allowing the identification two-dimensional suitability niches. 
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3. Soil biodiversity assessment  

Disclaimer: the text of this chapter is a reworking (Section 3.1) or a faithful quotation (Sections 3.2 and 

3.3) of two published papers to which I contributed significantly for the conceptualization, the 

quantitative methodology and the interpretation of the results: 

• Ghiglieno, I., Simonetto, A., Donna, P., Tonni, M., Valenti, L., Bedussi, F., & Gilioli, G. (2019). Soil 

Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy, 

9(10), 593. https://doi.org/10.3390/agronomy9100593  (introduction and section 3.2) 

• Ghiglieno, I., Simonetto, A., Orlando, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2020). 

Response of the Arthropod Community to Soil Characteristics and Management in the 

Franciacorta Viticultural Area (Lombardy, Italy). Agronomy, 10(5), 740. 

https://doi.org/10.3390/agronomy10050740 (introduction and section 3.3) 

 

Soil is a fundamental natural resource that forms the basis of terrestrial ecosystems and 

provides essential services to humanity. The provision of nutrients for plant growth, the 

recycling of these nutrients, the regulation of the climate are among the fundamental services 

that the soil provides. An healthy soil is necessary to maintain the correct level of provisioning 

of these ecosystem services and is therefore fundamental to guarantee sustainable production 

in the agricultural sector (FAO, 2015). The health and fertility of soils are seriously threatened 

by various stressors of natural and anthropogenic origin, e.g., effects of erosion and loss of 

organic carbon stored in the soil become increasingly evident. It therefore becomes urgent to 

develop strategies for sustainable use of agricultural land, in association with the management 

of issues related to agricultural production that impact on the soil. 

3.1. Soil biodiversity 

Soil has been described as the most complex and diverse ecosystem in the world (Decaëns et 

al., 2006; Kopittke et al., 2019; Wolters, 2001). It represents an important pool of biodiversity, 

the European Commission (2010) estimates that about a quarter of living species on our planet 

live in the soil. The importance of soil biodiversity is mainly linked to the key role that soil biota 

plays in regulating ecosystem processes (Costantini et al., 2015; Geisen et al., 2019; Karlen et 

al., 1997; Powlson et al., 2011).  

Soil biological diversity is one of the most sensitive component of agroecosystem biodiversity 

to environmental stress and farming practices (Juan-Ovejero et al., 2019; Marasas et al., 2001; 

Ruf et al., 2003; Wallwork, 1972). The influence of abiotic and biotic variables and their 

interactions  varies according to the climate, type of soil and agricultural practices (Migliorini 

et al., 2004; Xu et al., 2012). Despite the increasing number of studies on soil biodiversity, many 

https://doi.org/10.3390/agronomy9100593
https://doi.org/10.3390/agronomy10050740
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structural and functional aspects of this biodiversity remain largely unexplored (Büchs et al., 

2003; Cameron et al., 2018; van Straalen, 1998).  

Soil moisture and soil temperature have emerged as important factors determining arthropod 

distribution, although the extent of the impact highly vary between taxa (Choi et al., 2002, 

2006; Clapperton et al., 2002; Frampton et al., 2001; Ikemoto, 2003, 2005; J.-L. Liu et al., 2017; 

O’Lear & Blair, 1999; Tsiafouli et al., 2005). Generally, soil moisture has a positive effect on the 

abundance of soil arthropod communities (Frampton et al., 2001; Rapoport & Tschapek, 1967). 

The optimal temperature ranges between 5 °C and 10 °C for soil arthropod species active in 

winter, while it ranges between 10 °C and 18 °C for species active in summer (Eisenbeis & 

Wichard, 1987).  

Soil chemical and physical characteristics have been identified as important drivers in soil 

arthropod distribution and abundance (André et al., 1994; Andrés et al., 2016; Bagyaraj et al., 

2016; Culliney, 2013; Holmstrup et al., 2007; Lavelle et al., 1995; Migliorini et al., 2004; Petersen 

& Luxton, 1982; Ruf et al., 2003; van Straalen, 1998; van Straalen & Verhoef, 1997; Wu et al., 

2014). Soil texture (Andrés et al., 2016), soil organic matter content (Potapov et al., 2017; Shakir 

& Ahmed, 2015), pH (Lavelle et al., 1995; van Straalen, 1998; van Straalen & Verhoef, 1997) and 

heavy metal contamination (Holmstrup et al., 2007; Migliorini et al., 2004) have been shown to 

have a great influence on soil biota. In particular, soil pH and soil organic matter represent the 

most significant drivers of arthropods role in soil organic matter degradation (Bagyaraj et al., 

2016; Culliney, 2013). Soil arthropods contribute, in fact, to nutrient cycling as secondary 

decomposers, conditioning litter through comminution and passage through the gut, for 

further breakdown by the microflora and stimulating microbial mineralisation of nutrients 

through grazing activity (Bagyaraj et al., 2016; Culliney, 2013). 

To investigate soil biological quality, Parisi et al. (2001) proposed the index ‘Qualità Biologica 

del Suolo’ (Soil Biological Quality) or QBS. We focused on the version of the index based on 

microarthropods: QBS-ar Index. The QBS-ar methodology is based on the principle that the 

importance of a soil arthropod taxon as indicator of soil quality is directly proportional to the 

sensitivity of the taxon to variability and perturbation of soil conditions. QBS-ar applies the 

criterion of “biological forms” to edaphic microarthropods: different species are grouped 

according to their morphological characteristics. The Eco-Morphologic Index (EMI) is then 

associated to each taxon based on the level of adaptation to environmental conditions of the 

taxon. QBS-ar Index does not provide any information about the abundance of taxa (Yan et al., 

2012). Currently, QBS-ar Index is widely used in the agricultural sector (Mazzoncini et al., 2010; 

C. Menta et al., 2014; Cristina Menta, Conti, Pinto, et al., 2018; Tabaglio et al., 2009) and it has 

also been applied to different contexts, such as forests, urban and degraded ecosystems (Blasi 

et al., 2013; Galli et al., 2014; Hartley et al., 2008; Madej et al., 2011; C. Menta et al., 2014; 

Santorufo et al., 2012).  

In the following sections of this chapter, attention will be focused on the vineyard agro-

ecosystem. Several studies have been carried out on soil microbial diversity, earthworm, 

nematode and microarthropod communities as soil quality bioindicators in vineyard (Costantini 

et al., 2015; Fusaro et al., 2018; Priori et al., 2015; Zarraonaindia et al., 2015). A positive effect 
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of organic management, age of planting and meteorological conditions on soil arthropod 

abundance and distribution have been demonstrated (Caprio et al., 2015; Gagnarli et al., 2015), 

however, the results greatly varied according to the taxon investigated (Puig-Montserrat et al., 

2017; Seniczak et al., 2018). Furthermore, the effect on soil arthropod biodiversity of length of 

the period of organic management has been little investigated (Costantini et al., 2015). Further 

research is therefore needed to assess the medium and long-term effects of organic agriculture 

on soil biodiversity (Döring et al., 2019). 

In Section 3.2, we investigated the relationship between biological soil quality (represented by 

the QBS-ar index), environmental conditions and farming strategy (organic or conventional) in 

70 soil samples surveyed in different Italian wine contexts is reported (Ghiglieno, Simonetto, et 

al., 2019). The study is based on a Decision Support Systems (DSSs) developed for wine sector 

biodiversity management assessment (BIOPASS®).  

In Section3.3, the study carried out to investigate soil arthropod taxa responses in vineyards in 

Franciacorta (Lombardy, Italy) is presented (Ghiglieno et al., 2020).  

3.2. Soil Biological Quality Assessment to Improve Decision Support in the 

Wine Sector 

Decision support systems (DSSs) are useful tools to assess biodiversity in agroecosystems. The 

importance of DSSs in agriculture is widely recognised (Cancela et al., 2019; Matthews et al., 

2008)]. For the wine sector a large number of DSSs have been developed in the last few years, 

although these are mostly dedicated to pest and disease management (Caffarra et al., 2012; 

Calonnec et al., 2008; Kuflik et al., 2009; Pérez-Expósito et al., 2017), or to vinification 

management (Merwe et al., 2011; Rinaldi et al., 2006; The Wine Institute & Kennedy/Jenks 

Consultants, 2008). Despite their importance, DSSs are poorly considered as easy and 

affordable tools for assessing biodiversity in the field of wine, meeting the needs of the 

agricultural sector, as underlined by Doran and Zeiss (Doran & Zeiss, 2000). 

In this study we carried out in-depth analysis of edaphic biodiversity to provide useful 

information for the design and interpretation of soil biodiversity assessment, to improve the 

DSS. We investigated how environmental conditions (meteorological and pedological) and 

farming systems (organic compared to conventional farming) influence the composition of the 

soil arthropod community. With this aim a total of 70 QBS-ar indices were obtained in 2014, 

2015 and 2016 from different organic and conventional Italian winemaking contexts. 

Experimental sites have been chosen among wine farming where the DSS were tested. 

Chemical soil analyses were carried out in each sampling point, to identify the possible 

relationship between the pedological and biological characteristics of the soils. Data from 

different meteorological stations close to the sampling points were collected. 

3.2.1. The DSS to assess the sustainability of the wine production chain 

In this study we referred to the BIOPASS® DSS (Agronomisata; Ghiglieno, Donna, et al., 2019), 

developed to assess the sustainability of the wine production chain. The DSS defines a system 



Ph.D. thesis Simonetto Anna   -   Quantitative models for biodiversity analysis in agroecosystems 

 

 
Soil biodiversity assessment   28 
  

in which three main compartments are described: soil, vines and wine, as shown in Figure 6. 

Specific input and output are identified for each compartment, as well as external drivers 

influencing the overall system. The input concerned management of the compartment and it 

was divided into two groups: i) chemical, physical, mechanical, and human related inputs; ii) 

actions (e.g., agronomical practices). As regards the output, we considered i) production 

outputs, such as agronomical characteristics, chemical characteristics of grapes and wine, ii) 

sensory properties, and iii) chemical-biological outputs, if considered to have an impact on the 

specific environmental context. 

 

Figure 6 - Diagram of the wine production chain. Input and actions (blue boxes), and production 
output (black boxes) are shown for each component, in addition to chemical and 
biological output (orange boxes). 

The DSS is made up of five modules for comprehensive evaluation of the wine company system: 

• Module 1 addresses the evaluation of structural biodiversity of the farm considered, 

using indices proposed by ISPRA, an Italian public research institute for environmental 

studies and protection (Caporali, 2009); 

• Module 2 assesses the sustainability of the company. It evaluates how the production 

processes fulfil the requirements of good practice for wine company sustainability. The 

evaluation system is based on application of Section 8 of the GEAvite® protocol, as 

defined in Valenti et al. (Valenti et al., 2013). 

• Module 3 evaluates structural and chemical soil quality. Visual soil assessment is based 

on the protocol proposed by FAO (FAO, 2008), and chemical soil analysis considers the 

most commonly measured chemical components (e.g., organic matter content, 
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available phosphorous, potassium and magnesium, for further details see the Materials 

and Methods section). 

• Module 4 considers soil penetration capacity, which is assessed with static 

penetrometric measurements (Eslami et al., 2020; Eslami & Fellenius, 2004). 

• Module 5 addresses soil biodiversity, evaluating three major components of soil biota: 

earthworm presence and demographic structure, mycorrhizae presence, and soil 

arthropod biodiversity, through application of the QBS-ar index (V. Parisi, 2001). This 

paper focus on the latter component of module 5 with the aim of better understanding 

the environmental and agronomic influences on the QBS-ar index and then obtaining 

indication for improving the use of the DSS. 

3.2.2. Study Sites 

Soil data were collected in ten viticultural areas in Italy. A total of 70 soil samples were collected 

from 70 different vineyards (without replicates) over three years in 2014, 2015 and 2016. 

Sampling were performed in May (17%), June (74%), July (6%), and August (3%). All samples 

were analysed for QBS-ar and chemical characteristics of soil. Vineyards were in 10 different 

Italian wine growing areas. In Figure 7 locations and number of samples collected in each wine-

growing area are presented. 

The soil farming practices were defined by each wine company, however there were criteria 

allowing their classification into two categories: organic farming, if they are compliant to 

European Regulation on Organic Farming (reg (CE) n° 834/2007; reg (CE) n° 889/2008 and 

subsequent modifications and integrations), and conventional farming (for all other cases 

without any specific environmental certification). In total, 56 samples were from organic 

vineyards and 14 from conventional vineyards. Organic vineyards were divided into different 

groups, based on how long ago they had converted to organic production from conventional 

farming: 3 years or less, between 4 and 9 years, and 10 years or more. 
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Figure 7 - Map of locations of different wine growing areas where samples has been collected. 
For Franciacorta DOCG a deeper level of detail is shown in relation to the high number 
of vineyards investigated. 

3.2.3. Explanatory Variables 

To investigate the influence of temperature and rainfall on the QBS-ar the following variables 

were calculated for each soil sample, considering a period of 30 days before sampling: 

• Tmax_l: number of days in which the daily maximum temperature was below 20 °C; 

• Tmax_m: number of days in which the daily maximum temperature was between 20 °C 

and 30 °C; 

• Tmax_h: number of days in which the daily maximum temperature was above 30 °C; 

• Prec_t: total cumulative precipitation (mm); 

• Prec_l: low precipitation period, if cumulative rainfall was 13.50 mm or below; 

• Prec_m: medium precipitation period, if cumulative rainfall was between 13.50 mm and 

186.51 mm; 

• Prec_h: high precipitation period, if cumulative rainfall was 186.51 mm or above. 

Region Viticultural area 
Total 

samples 

Lombardy 

Franciacorta DOCG 38 

Oltrepò Pavese 

DOC/DOCG 

8 

Friuli Venezia 

Giulia 
Friuli Grave DOC 

2 

Piedmont Ovada DOC 1 

Emilia 

Romagna 

Modena DOC 1 

ColliPiacentini DOC 4 

Tuscany Montecucco DOC 4 

Marche 
Esino DOC 2 

Macerata Province DOC 8 

Sicily Agrigento Province DOC 2 
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The thresholds used to define the levels of precipitation (low, medium or high) were calculated 

based on the range defined by the mean  1.5*standard deviation of total cumulative 

precipitation. Values of total cumulative precipitation inside this range were classified as 

“Prec_m”, values lower than the lower bound of the range where classified as “Prec_l”, while 

values greater than the upper bound of the range were classified as “Prec_h”. Data were gather 

from 13 different meteorological stations (see Table 9). The soil sampling dates have been 

defined in order to avoid or minimize the possibility of overlapping the 30-day observation 

period of the meteorological variables for sites that refer to the same weather station. 

Table 9 -Location of meteorological stations. 

Location Region 
Latitude 
(Geographical 
Coordinates) 

Longitude 
(Geographical 
Coordinates) 

Altitude-
m a.s.l 

Ancona Marche 43.617 13.517 103 

Udine/Campoformido 
Friuli Venezia 
Giulia 

46.033 13.183 94 

Cuneo Levaldigi 
Piedmont 

44.533 7.617 386 
Novi Ligure 44.767 8.783 187 

Piacenza 
Emilia Romagna 

44.913 9.723 139 
Modena 44.65 10.95 33 

Arezzo Tuscany 43.467 11.85 249 

Sciacca 
Sicily 

37.517 13.083 125 
Gela 37.083 14.217 33 

Monticelli 

Lombardy 

45.622 10.091 230 
Corte Franca 45.633 10.021 220 
Erbusco 45.592 9.972 215 
Rodengo Saiano 45.596 10.124 160 

Meteorological data were obtained from the meteorological service of the Brescia province for 

the Lombardy region and from the American NOAA Global Surface Summary of the Day (GSOD) 

dataset for all the other regions. 

Characterisation of the soil chemistry involved consideration of: soil texture (sand, clay and 

loam content expressed in g/kg of soil), pH, cation exchange capacity (CSC expressed in 

cmoli(+)/kg of soil), total and active limestone (expressed in g CaCO3/kg of soil), organic matter 

content (expressed in g/kg of soil), available phosphorus (mg P2O5/kg of soil), available 

potassium (mg K2O/kg of soil) and magnesium (mg MgO/kg of soil). 

Samples were taken at a depth of 0–20 cm (excluding the first cm of turfgrass) and mixed 

uniformly. The collected soil samples were air-dried, homogenized and passed through a 2 mm 

sieve for chemical analysis. Chemical analysis was performed by the Chemical Laboratory of the 

Fondazione Edmund Mach (San Michele all’Adige, Trento, Italy) according to the Italian 

regulation (DM 13/09/1999). 
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Soil biological Quality Evaluation (QBS-ar) 

For this survey, a cubic sample of soil (with a side length of 12 cm) was collected at each site, 

at the same depth described for chemical soil analyses. The sample was placed in a Berlese–

Tullgren funnel and under a 100 W incandescent bulb, the soil was warmed until complete 

dehydration. Small invertebrates tend to migrate away from the light and take refuge in the 

damp part of the soil sample (the bottom), then abandoning the soil and dropping into the 

cavity of the tunnel, from where they slip into a preserving solution. 

Division into biological forms was carried out in relation to the characteristics of adaptation to 

the soil, which makes it possible to associate each systematic group with a numerical value 

defined as the “Ecomorphological Index” (EMI): the higher the EMI value, the higher the 

number of morphological characteristics linked to adaptation to the soil. The EMI value ranges 

from 1 to 20 (V. Parisi, 2001). 

For some systematic groups there is a uniform level of adaptation to edaphic life for various 

species; in this case assignment of a single EMI value is envisaged. Vice versa, for species with 

different adaptation to soil, increasing EMI values are assigned according to increased 

adaptation (e.g. no wings, no eyes, etc.). If several biological forms are recognised in a group 

and therefore different EMI values are attributed, only the highest EMI value is considered for 

calculation of the QBS-ar, which represents the maximum degree of adaptation to life in the 

soil shown by the group under examination. Calculation of the QBS-ar index value is obtained 

from the sum of the EMI values attributed to each systematic group. QBS values can vary from 

a minimum of 0 to a maximum of 349. 

3.2.4. Statistical Analysis 

To analyse the linear relationships between the selected explanatory variables (regressors) and 

the QBS-ar, a multiple linear regression model (MLR) with a stepwise approach (Venables & 

Ripley, 2002) was applied. We adopted a bidirectional stepwise method, i.e., an automatic 

procedure to select the best set of explanatory variables in a large set of potential regressors 

that could explain the variance of the dependent variable. At each iteration of the algorithm, 

the decision to insert or to delete a regressor was based on minimisation of the Akaike 

Information Criteria (AIC) (Akaike, 1974). The full model to be tested with a stepwise regression 

model considered the following variables as regressors: type of farming (organic or 

conventional), years of organic farming, pH, soil texture, total limestone, active limestone, soil 

organic matter, available phosphorus, available potassium, available magnesium, Tmax_l, 

Tmax_m, Tmax_h, Prec_t, Prec_l, Prec_m and Prec_h. The final model adopted was made up 

of the subset of regressors resulting statistically significant, based on the stepwise procedure. 

Statistical analysis was performed using R software (version 3.5.3), MASS package (Venables & 

Ripley, 2002). 
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3.2.5. Results 

The analysed dataset is made up of 70 observations. Surveys were performed from May 2014 

to June 2016. The descriptive statistics for explained variables included in the full model are 

shown in Table 10. 

Table 10 - Descriptive statistics for quantitative variables in the dataset. 

 Unit of 
Measure 

Mean ± SD* Median (Q25–Q75) Min Max 

QBS-ar  92.29 ± 40.32 84.00 (59.25–127.75) 28.00 193.00 

Years of organic farming  4.11 ± 5.02 2 (1.00–7.00) 0.00 20.00 

pH  7.33 ± 0.89 7.75 (6.63–8.00) 5.30 8.40 

Active limestone (g CaCO3/kg) 31.70 ± 41.96 12.50 (0.00–57.00) 0.00 130.00 

Soil organic matter  (g/kg) 21.66 ± 9.31 21.00 (15.00–27.75) 5.00 42.00 

Assimilable phosphorus (mg P2O5/kg) 34.40 ± 23.99 27.00 (17.00–47.50) 5.00 94.00 

Exchangeable 
potassium 

(mg K2O/kg) 191.10 ± 118.11 156.00 (114.20–219.50) 60 747.00 

Exchangeable 
magnesium 

(mg MgO/kg) 362.50 ± 310.82 259.50 (159.00–433.50) 72 1585.00 

Tmax_l  3.00 ± 2.63 2.00 (1.00–6.00) 0.00 8.00 

Tmax_m  24.51 ± 3.17 24.00 (22.25–27.00) 16.00 30.00 

Tmax_h  2.49 ± 3.46 1 (0–4) 0.00 14.00 

Prec_t  100.01 ± 57.67 79.50 (51.00–153.10) 0.00 190.60 

*SD: standard deviation, Q25: first quantile of distribution, Q75: third quantile of distribution. 

The distribution of all soil parameters showed high variability, due to the extensive 

heterogeneity characterising the study sites. Considering the reference period (30 days before 

each soil sampling), the mean number of days in which the daily maximum temperature was 

between 20 and 30°C was 24.51 ± 3.17 per site. Total precipitation ranged between 0 and 190.6 

mm in the reference period. Only 1 observation recorded cumulative rainfall of less than 13.50 

mm (Prec_l), in 59 sites cumulative rainfall was between 13.5 and 186.51 mm (Prec_m) and 10 

observations recorded cumulative rainfall of over 186.51 mm (Prec_h). 

The mean QBS-ar value in the dataset was 92.29 ± 40.32 (QBS-ar values ranging between 28 

and 193). The different arthropod biological groups identified, and their EMI values are shown 

in Table 11. The distribution of groups identified ranges between 3 and 14 (the mean value is 

7). 

The results of the bidirectional stepwise linear regression model are shown in Table 12. All the 

estimated coefficients are statistically significant (p-value < 0.1), except the estimated 

coefficient of Tmax_l, though this regressor was selected by the stepwise procedure. The 

adjusted R-squared value was 0.1945. 
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Table 11 - Groups identified in all the analysed samples. The EMI scores has been attributed 
following values proposed by Parisi et al. (2001). 

Group 
EMI 

Value 
EMI Attribution 

Acari 20 Default value 

Araneae 
1 Forms >5 mm EMI 1 

5 Small forms scarcely pigmented EMI 5 

Chilopoda 
10 Forms >5 mm, well-developed legs EMI 10 

20 Other forms EMI 20 

Coleoptera 

1 Clearly epigeous forms EMI 1 
5 Clearly epigeous forms (EMI1), dimensions smaller than 2 mm (additional points 4) 

10 

Clearly epigeous forms (EMI1), dimensions smaller than 2 mm (additional points 4) 
and the occurrence of two of the following conditions: 

• thin integument, often testaceous (tan-brown) colour (additional points 5) 

• hind wings highly reduced or absent (additional points 5) 

• microphtalmy or anophtalmy (additional points 5) 

20 

Clearly epigeous forms (EMI1), dimensions smaller than 2 mm (additional points 
4), thin integument, often testaceous (tan-brown) colour (additional points 5), 
hind wings highly reduced or absent (additional points 5), microphtalmy or 
anophtalmy (additional points 5). 

Collembola 

1 
Clearly epigeous forms: middle to large size, complex pigmentation present, long, 
well-developed appendages, well developed visual apparatus (eye spot and eyes) 

4 
Small size—though not necessarily—forms, usually limited to litter, with modest 
pigmentation, average 
length of appendages, developed visual apparatus 

8 
Hemi-edaphic forms with reduced number of ommatidia, scarcely developed 
appendages, often short or absent furca, pigmentation present 

 

10 
Eu-edaphic forms with no pigmentation, reduction or absence of ommatidia, furca 
present—but reduced 

20 
Clearly eu-edaphic forms: no pigmentation, absent furca, short appendages, 
presence of typical structures such as pseudo-oculi, developed postantennal 
organs (character not necessarily present), apomorphic sensorial structures 

Diplopoda 20 Forms <5 mm EMI 20 

Diplura 20 Default value 

Diptera (larvae) 10 Default value  

Hemiptera 1 Mostly epigeous (above-ground) or root feeding forms  

Hymenoptera 
1 Default value without Formicidae 

5 Formicidae 

Isopoda 10 Default value  

Opiliones 10 Default value  

Palpigradi 20 Default value  

Pauropoda 20 Default value  

Protura 20 Default value  

Pseudoscorpione
s 

20 Default value  

Psocotteri 1 Default value  

Symphyla 20 Default value  

Thysanoptera 1 Default value  

Other 
holometaboulos 
insects (larvae) 

10 Default value  

Other 
holometaboulos 
insects (adults) 

1 Default value  
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Table 12 - Results of the bidirectional stepwise linear regression model. 

Coefficient. Estimate Standard Error p-value 

Intercept 64.82 20.36 0.0023 

Organic farming 40.21 13.08 0.0031 

Tmax_l -3.21 2.26 0.1614 

Tmax_h -4.89 1.57 0.0028 

Prec-t 0.23 0.13 0.0777 

Prec-h -40.78 21.87 0.0668 

As shown in Table 12, the model applied identified a positive relationship between QBS-ar and 

organic farming systems. In Figure 8, we have plotted the distribution of QBS-ar according to 

farming systems. The QBS-ar median value is higher for organic farming than for conventional 

farming, although its distribution is characterised by greater variability compared to 

conventional systems. 

The stepwise procedure did not select the number of years of organic farming as significant in 

describing the variability of QBS-ar. 

 

Figure 8 - Boxplot of QBS-ar distribution according to farming system. 

The statistically significant relationships between QBS-ar and meteorological variables 

identified by the stepwise regression model can be summarised as follows: 

• High daily maximum temperatures (Temp_h) were negatively related to the QBS-ar 

value, i.e., the number of days when the maximum daily temperature exceeded 30°C in 

the30 days before sample collection increased the QBS-ar value; 

• Total cumulative precipitation (Prec_t) was positive related to QBS-ar, i.e., an increase 

in total precipitation increased the estimated QBS-ar value. 

The model also shows that high precipitation (Prec_h) was negatively related to QBS-ar, i.e., 

each mm of rainfall accumulated in the 30 days preceding the soil sampling decreased the 

estimated QBS-ar value by 40.78 points. The relationships highlighted in these two areas are 

represented graphically in Figure 9. 
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Figure 9 - QBS-ar value distribution in relation to total cumulative precipitation values. 

The stepwise procedure selected low daily maximum temperatures (lower than 20°C) as a 

significant regressor explaining QBS-ar variance, but estimation of the regression coefficient of 

the bidirectional stepwise linear regression model was not statistically significant. 

The model applied did not identify any significant relationship between QBS-ar and pedological 

variables. This may be related to the fact that the nexus between soil characteristics and QBS-

ar was not linear, or mean that some dynamics explaining this nexus were captured by 

meteorological and management variables. 

3.2.6. Discussion and conclusions 

The mean QBS-ar index value in our dataset was 92.2940.32, in agreement with previous 

studies observing a mean QBS-ar value of 91 for agricultural land (Cristina Menta, Conti, & 

Pinto, 2018). As regards the range of values in the index, in the literature a range of between 

40 and 204 has been identified, depending on the year of sampling and the age of vineyards 

(Costantini et al., 2015), while other authors have recorded a range of between 98 and 203 

depending on farming systems (Gagnarli et al., 2015). In our dataset, the QBS-ar values ranged 

from 28 to 193. 

The results of the linear regression model showed a positive relationship between QBS-ar and 

organic farming, which is supported by previous studies identifying the same behaviour in 

different contexts (Hansen et al., 2001; Vittorio Parisi et al., 2005). 

Important relationships between meteorological conditions in the 30-day period before soil 

sampling and the QBS-ar index were observed. A positive linear relationship with cumulative 

precipitation and a negative relationship with high temperature (≥ 30 °C) and high precipitation 

(>186.51 mm) were highlighted. 
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The effect of precipitation on the QBS-ar index is however known, as Parisi et al. (Vittorio Parisi 

et al., 2005) suggests collecting QBS-ar samples when soil moisture ranges between 40% and 

80% of field capacity. Other studies reported a positive effect of rainfall on microarthropod 

abundance (Costantini et al., 2015) always in relation to soil moisture conditions. Moreover, 

the seasonal variability of soil fauna has already been observed by other authors (Galli et al., 

2014; Cristina Menta et al., 2011; Neave & Fox, 1998; Tabaglio et al., 2009), although Neave 

and Fox (1998) related this behaviour to mechanical and physical soil modifications rather than 

meteorological effects. Effect of temperature have been less investigated even if Costantini et 

al. (2015) highlight a positive relationship between biological diversity and temperature. 

Microarthropods are very sensitive to the variations of edaphic microhabitat in which they are 

living (soil pores). Thermal variations and water content of this microhabitat are then factors 

that generate avoiding behaviours because this creates stress in the transpiration and leads to 

anoxic conditions due to the saturation of soil pores. In the same way, in presence of limited 

water contents of the soil, a stress due to water loss occurs. Vertical migrations take then place 

in the direction of higher depth where variations are more mitigated. This behaviour may be 

related to the ability of soil organisms to migrate along the soil profile, to avoid stress 

conditions, and then not being found in the analysed soil sample (Clark et al., 2007; Stillman, 

2003). This suggests that the sampling design must considering the depth of the different 

samplings collection. This is also aimed to verify the hypothesis of “vertical migration” as 

adaptive mechanism to stress conditions. Besides the migratory behaviour, variations in the 

abundance of microarthropods may also be attributed to the mortality increase, that stress 

conditions can generate (Villani et al., 1999). 

The relationship between meteorological conditions and QBS-ar identified in this paper helps 

to go beyond the seasonality effect. The identification of a clear link between QBS-ar and the 

level of precipitation and temperature makes it possible to improve the accuracy of the 

analysis, highlighting differences within the same season, or between the different years of 

observations. 

The results described give useful indications for wine sector operators, providing them with 

some fundamental rules regarding arthropod dynamics in vineyard soil. In relation to the large 

number of observations considered and the variability of the geographical context observed, 

the DSS applied to wine sector biodiversity can be improved with indicators increasing 

knowledge about the timing of sampling and viticulture farming management assessment. 

Further research is needed to increase understanding of the meteorological relationship 

observed and the relationship between vineyard management and the biological quality of soil. 

3.3. Response of the Arthropod Community to Soil Characteristics and 

Management in the Franciacorta Viticultural Area (Lombardy, Italy) 

This study analysed diversity and co-occurrence patterns of different taxa of soil arthropods in 

relation to abiotic factors, such as soil temperature, soil moisture and soil chemical properties. 

Moreover, the influence of vineyard management (conventional vs. organic) and the time of 

conversion from conventional to organic on arthropod biodiversity was investigated. 
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This study was carried out in a major Italian winemaking area: Franciacorta (Lombardy, Italy). 

Franciacorta is the most famous Italian wine region to produce sparkling wine using the 

champenoise method and is located in the Lombardy Region

 

. The zone covers a total area of 2615 ha (as of 2018) and hosts 117 wineries (as of 2019). This 

research collected a total of 100 soil samples from 100 different vineyards over the period 

2014–2018. Eighty-five per cent of samples were collected in spring (May or June) and 15% of 

samples in autumn (September, October or November). All the samples were characterised by 

presence of arthropods and the chemical characteristics of soil. 

In Figure 10, the location of each sampling site is shown. 

 

Figure 10 - Map of the Franciacorta DOCG winegrowing area. The locations of vineyards where 
samples were collected are indicated with red dots. 

Vineyard management systems were classified in two main groups: conventionally managed 

vineyards without any specific environmental certification (conventional) and organic 

vineyards managed in compliance with the European Regulation on organic farming (reg EC n. 

2018/848 and subsequent amendments and additions) (organic). For organic vineyards, we 

refer to the presence of this certification that implies compliance with the provisions of the law. 
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In addition to this, we have verified a minimal set of conditions occurred in each farm 

monitored in organic farming. These actions refer to: no use of synthetic chemicals for plant 

protection and for fertilizing the vineyard; the integration of organic matter into the soil 

through the supply of organic matrices; the total absence of use of herbicides and the 

management of the sub-row through mechanical intervention; the preservation of the 

herbaceous covering on the ground; and the minimum tillage adoption. Organic vineyards were 

then further divided into three subgroups, based on how long ago they had been converted 

from conventional to organic farming: 3 years or less (organic ≤ 3), between 4 and 9 years (4 ≤ 

organic ≤ 9), and 10 years or more (organic ≥ 10). 

3.3.1. Explanatory Variables 

Soil moisture (SM) and soil temperature (ST) data for the Franciacorta area from 2014 to 2018 

were obtained from the National Centers for Environmental Predictions (Commerce, 2015). 

These data were then re-analysed using the Weather Research and Forecasting (WRF) 

simulations (Powers et al., 2017). The WRF model (version 4.02) was applied to a high spatial 

resolution grid (each cell of the grid representing a 2 × 2 km area) to generate hourly data. In 

particular, the Noah scheme (Ek et al., 2003) has been used as land surface model (LSM) scheme 

(i.e., Noah, Noah-MP, and CLM4) to assess detailed multi-layer soil moisture and soil 

temperature. We focused on a depth of 0–15 cm below land surface. Each vineyard was 

associated with the nearest grid node to allow extraction of the specific soil temperature and 

moisture values. 

To assess the influence of environmental variables on the presence of soil arthropods, SM and 

ST were evaluated for each vineyard in a 30-days reference period prior to the sampling date. 

Two thermal thresholds ( STlow  and STup)  were considered to define two intervals of 

temperature. These intervals characterise organisms that prefer lower temperature features 

(taxa occurring more frequently in the interval [STlow, STup]) or higher temperature features 

(taxa occurring more frequently when soil temperature is higher than STup ). The lower 

threshold (STlow) was set at 10 °C and the upper threshold (STup) was set at 20 °C (Eisenbeis & 

Wichard, 1987). Soil temperatures lower than 10 °C were not included since they can be 

considered to be below the lower development threshold for most taxa. Considering STlow and 

STup, two variables related to soil temperature were calculated for the reference period (720 

h): 

TL =
1

24
∑(STi − STlow)

720

i=1

,          STlow ≤ STi < STup 

TH =
1

24
∑(STi − STup)

720

i=1

,          STi ≥ STup     

where STi is the hourly soil temperature. TL is the daily cumulative soil temperature degrees 

exceeding 10 °C when STi  is between 10 °C and 20 °C; TH is the daily cumulative soil 

temperature degrees exceeding 20 °C when STi is greater than 20 °C. 
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A soil moisture threshold (SM) was defined to discriminate between organisms that prefer drier 

conditions, i.e., taxa occurring more frequently when soil moisture ranges in the interval 

[0, SM], or wetter conditions, i.e., taxa that more frequently occur when soil moisture is in the 

range [SM,1]. SM was set equal 0.35 (corresponding to 35%), which represents a reference 

value that can be associated, in different ecological contexts, to a status that satisfies the 

requirements in terms of humidity of soil arthropods (Tsiafouli et al., 2005; Vikram Reddy & 

Venkataiah, 1990). Two variables associated with soil moisture were calculated for the 

reference period (720 h): 

MD =
1

24
∑|SMi − SM|

720

i=1

,          0 ≤ SMi ≤ SM 

MH =
1

24
∑(SMi − SM)

720

i=1

,          SMi > SM   

where SMi  is the hourly soil moisture. MD is the daily sum of absolute deviations in soil 

moisture values from the threshold value when SMi  is lower than 0.35; MH is the daily 

cumulative soil moisture exceeding 0.35, when SMi is higher than 0.35. 

Chemical analysis of soils was performed according to the Italian regulation (DM 13/09/1999). 

Soil samples were taken at a depth of 0–15 cm and mixed homogeneously. Leaf litter was 

excluded, as it is not part of the soil itself. The collected soil samples were air-dried, 

homogenized, and passed through a 2 mm sieve for chemical analysis. 

Characterisation of the soil chemistry involved measuring soil texture (TXT), pH, active 

limestone (expressed in g CaCO3/kg of soil) (AL), organic matter content (expressed in g/kg of 

soil) (SOM), available phosphorus (mg P2O5/kg of soil) (P), available potassium (mg K2O/kg of 

soil) (K), available magnesium (mg MgO/kg of soil) (Mg) and copper content (mg/kg) (Cu). Soil 

texture was classified following the USDA soil texture triangle classification(Soil Science Division 

Staff, 2017). 

A cubic sample of soil (with a dimension of about 30 cm3) was collected at the same depth 

described for chemical soil analysis, at each vineyard. Arthropods were extracted by placing the 

soil sample in a Berlese–Tüllgren funnel under a 60 W incandescence bulb, leading soil 

arthropods to migrate towards the damp part of the soil sample (away from the light). The soil 

arthropods fell through the cavity, into a preserving solution (2/3 alcohol and 1/3 glycerol). 

Determination of biological forms was carried out according to the QBS-ar method as proposed 

by (Cristina Menta, Conti, Pinto, et al., 2018), and the definition of the taxonomic entities and 

the biological stages is in agreement with the one reported in the same paper. 

3.3.2. Statistical Analysis 

To measure soil arthropods biodiversity a taxa co-occurrence approach was used. For each 

vineyard, a taxa presence profile was defined, i.e., a vector indicating the presence or absence 

of the taxa in each vineyard. The presence profile did not consider population abundance. 

Based on the presence profiles, vineyards and taxa were described in a J dimensional space (J 
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is the number of taxa considered), allowing taxa to be ordered by their vineyard presence 

profiles. Two taxa are close to each other if they share a similar pattern of co-occurrence in the 

vineyards, they are far from each other if one is present in the vineyards where the other is 

absent and vice versa. 

To allow easy visualisation and interpretation of dissimilarity in soil biodiversity and taxa co-

occurrence, it is useful to represent these profiles in a two-dimensional space, called an 

ordination plane. Non-metric multidimensional scaling (NMDS) can be used to summarise 

information and reduce the dimensionality of profiles (Kenkel & Orloci, 1986). By applying 

NMDS, vineyards and taxa can be ordered by the dissimilarity of the presence profiles. Bray–

Curtis dissimilarity (Clarke, 1993), used extensively in the ecological field, was adopted. NMDS 

analysis was performed using the metaMDS function of the vegan package in R (Oksanen et al., 

2019). Loss of information due to a reduction in dimensionality is assessed by the stress value, 

which refers to the disagreement between 2-D representation and original positions of taxa in 

multidimensional space. 

To test which environmental drivers (Cu, pH, AL, SOM, P, K, Mg, TL, TH, MD and MH) are 

significantly correlated to the first two axes of the NMDS ordination plane, we applied the 

envfit function of the vegan R package (Oksanen et al., 2019). Each variable was correlated 

independently and plotted on the plane as a vector. The direction of the vector represents the 

gradient direction of the environmental driver, while the length of the vector is proportional to 

the correlation of the ordination system and the environmental driver. 

Taxa were grouped into clusters as homogeneous as possible in terms of co-occurrence 

patterns, based on taxa ordination results (Clarke, 1993). To perform hierarchical cluster 

analysis, the hclust function of R software (R Core Team, 2019) was applied. 

To assess the impact of vineyard management on the biodiversity of soil biota, decision tree 

analysis was performed. The number of taxa present in each soil sample was considered as a 

measurement of edaphic biodiversity, and three categories of soil biodiversity were defined: 

‘low’ when the number of taxa was lower or equal to 4, ‘medium’ when the number of taxa in 

the soil sample was between 5 and 8, and ‘high’ when the number of taxa was greater than 8. 

A classification decision tree allowed to split the soil samples into homogeneous groups 

according to edaphic biodiversity based on the different vineyard management classes. 

Recursive partitioning and regression tree (RPART) analysis were performed by applying the 

rpart package of R software (Therneau & Atkinson, 2018). The fitting of the model was 

investigated using the accuracy index that corresponds to the percentage of cases correctly 

classified. 

3.3.3. Results 

The descriptive statistics for environmental variables included in the full model are shown in 

Table 13. Seven types of soil texture were considered: clay, clay loam, silty clay loam, sandy 

clay loam, loam, silt loam and sandy loam. 
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Vineyard management was categorised into four classes: conventional management (7% of the 

sample), vineyards converted to organic farming in the last three years (45% of the sample), 

vineyards converted between 4 and 9 years ago (31% of the sample), and vineyards converted 

at least 10 years ago (17% of the sample). 

A total of 19 taxa were identified in the soil samples. In case of Diptera and Coleoptera, the 

biological stage of larvae was also detected Table 14. Collembola, Acari and Hymenoptera 

recorded the highest frequency of presence in the soil samples analysed. Collembola and Acari 

were reported in 89 of the 100 vineyards, Hymenoptera in 80 vineyards. The lowest frequency 

of occurrence was recorded for Psocoptera, Thysanoptera and Isopoda (8/100, 7/100, 6/100 

respectively). 

 

Table 13 - Descriptive statistics of continuous variables (soil characteristics and environmental 
drivers) included in the analysis. 

  Unit of Measure Mean ± Standard Deviation Median (Q25-Q75) Min Max 

pH   7.10 ± 0.87 7.30 (6.35–7.9) 5.30 8.20 

SOM  (g/kg) 21.94 ± 9.08 23.00 (15.00–25.00) 5.00 42.00 

Cu (mg/kg) 58.68 ± 32.81 55.40 (36.9–72.2) 4.20 170.00 

P (mg P2O5/kg) 54.47 ± 40.20 51.00 (26.00–64.00) 9.00 222.00 

K (mg K2O/kg) 148.52 ± 67.53  145.00 (94.00–178.00) 60.00 354.00 

Mg (mg MgO/kg) 165.75 ± 75.37 138.00 (117.00–210.00) 66.00 383.00 

TL  °C 68.76 ± 44.90 69.75 (33,67–104.39) 0.00 161.46 

TH °C 106.05 ± 59.06 121.76 (55.73–153.38) 14.20 241.77 

MD  Pure number 10.39 ± 26.03 5.16 (1.51–7.88) 0.00 135.53 

MH  Pure number 0.11 ± 0.20 0.00 (0.00–0.156) 0.00 0.63 
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Table 14 - Distribution of taxa according to stages considered in the analysis and presence 
(i.e., number of soil samples in which the taxon has been identified). 

Taxa Larvae N° of Presences Other Stages * N° of Presences 

Acari   x 89 

Myriapoda—Diplopoda   x 12 

Myriapoda—Chilopoda   x 17 

Myriapoda—Symphyla   x 56 

Myriapoda—Pauropoda   x 32 

Hymenoptera   x 80 

Thysanoptera   x 7 

Pseudoscorpionida   x 11 

Psocoptera   x 8 

Coleoptera   x 31 

Coleoptera larvae x 39   

Collembola   x 89 

Diptera   x 31 

Diptera larvae x 32   

Protura   x 25 

Diplura   x 27 

Hemiptera   x 12 

Isopoda   x 6 

Other_holometabolous 2   x 20 

* Other stages include all forms that produce active participation in soil cycles (e.g., pupae are excluded). In the 

case of the ‘Other_holometabolous’ taxon, the pupal stage is also included. Two Other_holometabolous taxa 

include Mecoptera, Neuroptera and Raphidioptera orders in agreement with QBS-ar method (Cristina Menta, 

Conti, Pinto, et al., 2018). 

Co-Occurrence Pattern Identification 

Taxa dispersion in the non-metric multidimensional scaling plane is shown in Figure 11. Taxa 

were ordered according to their co-occurrence profiles. Neighbouring taxa in the plane were 

characterised by the presence in the same vineyards (e.g., Collembola and Coleoptera larvae, 

Psocoptera and Pseudoscorpionida); the more distant are two taxa, greater is the difference in 

terms of their presence in the vineyards (e.g., Diptera and Psocoptera, Acari and Pauropoda). 

The stress value estimated for the model was equal to 0.2, indicating the model has good ability 

to predict data in the reduced space. 

The results of analysis of the correlation between environmental drivers and the NMDS plane 

are shown in Table 15. 
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Figure 11 - Results of non-metric multidimensional (NMDS) analysis: dispersion of taxa (red 
points) according to their co-occurrence profiles (NMDS1 and NMDS2 are the two 
axes of the ordination plane). Blue arrows refer to the correlation of environmental 
drivers and soil characteristics with NMDS ordination pattern (solid line  p-value 
< 0.5, dashed line p-value < 0.1, dotted line  p-value < 0.15). The five 
clusters of taxa according their presence pattern are highlighted with the green 
circles. 

P-values of the correlation coefficients were used to discriminate the intensity of the 

relationship between environmental drivers and the taxa ordering system (Table 3): strong 

correlation for SOM, TL, TH and MH (p-value < 0.05); medium intensity correlation for pH (p-

value < 0.1); low intensity correlation for MD (p-value < 0.15). The other environmental drivers 

were not significantly correlated with the first two axes of the NMDS system. 
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Table 15 - Correlation analysis of environmental drivers and soil characteristics with NMDS 
ordination pattern. 

Variable Squared Correlation Coefficient p-Value 5 of Correlation Coefficient 

Cu 0.05 0.17  
pH 0.06 0.09 ** 
AL 0.02 0.48  
SOM  0.08 0.05 *** 
P 0.02 0.43  
K 0.01 0.66  
Mg 0.01 0.64  
TL  0.08 0.04 *** 
TH  0.15 0.01 *** 
MD  0.05 0.15 * 
MH  0.12 0.01 *** 
TXT 0.04 0.83  

*p-value < 0.15, ** p-value < 0.1, *** p-value < 0.05. 

The results obtained from NMDS and cluster analysis (Figure 11) allowed the taxa to be divided 

into five groups according to their co-occurrence pattern. The five clusters shown in the cluster 

dendrogram correspond to the clusters identified by the green circles in the NMDS plane 

(Figure 12). 

 

Figure 12 - Dendrogram of hierarchical cluster analysis of taxa based on NMDS results. The five 
clusters are highlighted in green. 

Group A included the largest number of taxa and specifically the Pseudoscorpionida, 

Psocoptera, Protura, Diplura Chilopoda, Symphyla and Pauropoda. Group B was made up of 
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Diptera, Hemiptera and Isopoda taxa, while the larval form of Diptera was located in group D, 

together with Coleoptera, both as larvae and other biologic forms, and Collembola. The Acari, 

Hymenoptera, Thysanoptera and Diplopoda taxa made up group C. Group E is only represented 

by the taxa defined as ‘Other_holometabolous’. 

Vineyard Management 

The results of the classification tree showed that variable vineyard management could be useful 

for discriminating different categories of soil biodiversity. In particular, the analysis of the tree 

shown in Figure 13 showed that conventionally managed vineyards were associated with a low 

level of biodiversity, vineyards that had adopted organic management for a maximum of three 

years were associated with a medium level of biodiversity, and vineyards that had adopted 

organic management for at least four years were associated with a high level of biodiversity. 

The accuracy index showed a good fit of the model as 57% of cases was correctly classified. 

 

Figure 13 - Classification decision tree of soil samples to predict soil biodiversity according to 
vineyard management. The predicted level of soil biodiversity (low, medium, high) is 
reported in the squared box, together with the percentage of soil samples included in 
that node. The paths from the initial box (with 100% of cases) to the final boxes 
represent the classification rules. 

3.3.4. Discussion and conclusions 

The results obtained in this study allowed to identify the co-occurrence pattern for 19 taxa of 

soil arthropods based on a 5-year investigation carried out in the Franciacorta viticultural area 

(Lombardy, Italy). The NMDS showed significant relationships between investigated soil 

arthropod taxa and soil moisture (MD and MH), soil temperature (TL, TH), soil organic matter 

(SOM) and pH. The decision tree showed an increased taxa diversity in relation to organic 

vineyard management and to the increase of time period of conversion from conventional to 

organic management. 

In line with the expectations, Collembola and Acari were the most frequent of the 19 taxa 

identified, confirming that they are the most present groups of arthropods in soil (André et al., 

1994). The high level of presence of Hymenoptera recorded in our analysis is in agreement with 
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other studies carried out in different agricultural contexts and reporting a significant presence 

of this taxon, mostly represented by Formicidae, in vineyard soils (Pérez Bote & Romero, 2012). 

Based on taxa co-occurrence patterns, identified through NMDS analysis, five groups were 

found. Moreover, NMDS analysis made it possible to explore the relationship between soil 

abiotic variables and the aggregation of arthropod taxa in groups. In particular, the results 

obtained from our study pointed out that presence patterns characterising group A showed 

only one significant correlation (p-value < 0.15) with low soil moisture (MD). This result is 

compatible with the hypothesis that the taxa included in group A were relatively less dependent 

on high humidity values. The taxa in group B and the Coleoptera and Diptera larvae taxa (group 

D) were associated with higher pH (p-value < 0.1) and higher soil temperatures (TH) (p-value < 

0.05), in line with the possible thermophilic habit of some representatives of these taxa 

(Eisenbeis & Wichard, 1987, 1987; Guodong Zhu et al., 2018). The relationship with a higher pH 

level is more evident for the Isopoda and this is in agreement with van Straalen (van Straalen, 

1998), who underlined weakly alkaliphilous or sub-neutral behaviour for some species of 

Isopoda. The detected ubiquitous presence of Collembola (group D) could be partially explained 

by the significant variability of responses to soil temperature, moisture, and chemical 

properties of the different species of this taxon. In particular, the effect of soil moisture on 

Collembola has been documented by different authors (Choi et al., 2006; Sjursen & Holmstrup, 

2004), while species-specific responses have been reported (Tsiafouli et al., 2005). 

Furthermore, Heiniger et al. (Heiniger et al., 2015) highlight that the role of microclimate for 

Collembola could be less important for their distribution than the role of trophic resources and 

competition. The presence of taxa in groups C and E is mostly determined by soil organic matter 

(SOM), soil moisture value higher than threshold level of 0.35 (MH) and lower temperature (TL) 

(p-values < 0.05). The relationship with SOM can be related to the involvement of these taxa in 

the soil food webs that starts from decomposition of dead organic matter generated by the 

activity of bacteria and fungi (Petersen & Luxton, 1982). Diplopoda (Millipedes) are involved in 

SOM degradation, as their feeding activity is focused on dead organic matter (Bagyaraj et al., 

2016; Bertrand & Lumaret, 1992). A significant influence of soil nitrogen on species richness 

and biodiversity has been observed for this taxon (Stašiov et al., 2012), while Hymenoptera are 

involved in the decomposition of organic substances (Bagyaraj et al., 2016). In relation to the 

positive response of group C to soil moisture increase, some authors have underlined that soil 

water availability is an important factor controlling presence of mites (Acari) (Badejo, 1990). 

Other authors have showed that Oribatid mites (Acari: Oribatida) are positively influenced by 

soil temperature (J.-L. Liu et al., 2017) and that their distribution is dependent on soil moisture 

(Bagyaraj et al., 2016). The relationship observed between group E and soil moisture can be 

related for Mecoptera (included in Other holometabolous taxon) with data reported for pre-

imaginal stages of this order which develop in the soil and showed preference for high soil 

moisture (Byers & Thornhill, 1983). 

The co-occurrence pattern of the taxa identified in our study is in line with similar pattern 

reported in the literature. Taxa co-occurrence in group B agrees with the results in (Varga, 2003) 

that confirmed Diptera and Isopoda co-existence in some specific habitats. Acari and 

Hymenoptera (group C) have also been grouped together by other authors (Shakir & Ahmed, 
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2015). The composition of groups A and C suggests that the co-occurrence pattern can also be 

influenced by biotic relationships among taxa. According to Eisenbeis and Wichard (Eisenbeis 

& Wichard, 1987) (p. 192), the trophic niche of Diplura includes Symphyla, while Weygoldt 

(Weygoldt, 1969) noted that Pseudoscorpionida feed on different orders of small soil 

arthropods, including Psocoptera. All these associations support the taxa co-occurrence in 

group A. Similarly, Coleoptera contain taxa (e.g., Carabid beetle) that have been described as 

predators of Collembola. This association is in line with the co-occurrence of these two taxa in 

group D. 

The results obtained analysing the role of vineyard management on soil arthropods diversity 

allows to identify an increase of taxa diversity in relation to organic vineyard management. This 

is consistent with previous studies, which reported a general increase of arthropod biodiversity 

(Caprio et al., 2015) and arthropod abundance (Gagnarli et al., 2015) associated to organic 

vineyard management. This effect was evident even before a 3-year period after conversion. 

The effect on arthropod biodiversity markedly increases with the length of the period since 

organic farming adoption. 

The results obtained in this study provide additional knowledge supporting the interpretation 

of diversity and co-occurrence patterns in soil Arthropoda in vineyard. The importance of 

abiotic variables together with the interpretation of the possible role of biotic relationship 

among taxa have been explored in the specific geographic context of the Franciacorta 

viticultural area. Furthermore, our study confirmed the effect of organic vineyard management 

in increasing arthropod taxa diversity and, most importantly, it showed the critical role of the 

time of conversion from conventional to organic farming in increasing arthropod biodiversity. 

Further experiments are needed to extend these results to other viticultural contexts. 
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4.  Network analysis in biodiversity assessment 

In the first chapter the need to consider ecosystems as a network of interconnected and 

interdependent functional elements was introduced. Currently, the relationships between 

species, traits and ecosystem functions are still too poorly understood, particularly in complex 

biocenoses, either due to a high number of species in the same community or multiple 

ecosystem services generated by the same community. Overcoming this lack of knowledge is 

essential to provide informed and scientifically based support to decision makers. This is critical 

given the accelerating decline in global biodiversity (IPBES, 2019) because species - trait - 

function relationships underpin the provision of ecosystem services (Duncan et al., 2015). 

Quantitative network analysis appears to be the most promising approach to investigate how 

the structures of ecosystem networks are related to the functional traits of the species. Thanks 

to the network approach, it is possible to study the large-scale statistical properties of the 

whole network, the properties of individual species and interactions, and how they jointly 

contribute to the structure, function and stability of ecosystems.  

4.1. Modelling approaches 

The biodiversity assessment is based on web of networks, each network is characterized by 

nodes and link/interactions. Nodes corresponds to the entities under investigation, e.g. 

individuals of the same species, different species characterized by having the same traits or 

sharing a niche, species at different levels of the trophic web, or the traits to be investigated. 

The interaction processes represented by the links between the nodes greatly differ according 

to the aim of the analysis. Network analysis allows to investigate negative - negative 

interactions (such as competition), negative - positive interactions (such as nutrition) and 

positive - positive interactions (such as pollination and seed dispersal). The level of complexity 

of the network can vary according to the degree of complexity of the represented system. 

Simpler networks can investigate the distribution of a species (hence the species-environment 

relationship), more complex relationships can be prey- plants-pollinators, hosts-parasitoids, 

soil arthropod communities - nutrient cycle. Even complex relationships can be managed with 

the network approach, for example pest species - natural enemies - ecological structures 

(Dehling et al., 2014; Eklöf et al., 2013; Ohlmann et al., 2019; Stang et al., 2009). For instance, 

non-trophic edges between coexisting species have been investigated using network 

approaches, as well as the dynamic and the functional structure of trophic chains (Legras et al., 

2019). 
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4.1.1. Main features of quantitative models for network analysis 

In this section, we briefly present the basic features that a model for the assessment of 

biodiversity according to a network approach must satisfy (Di Biase et al., 2018; Dietze et al., 

2018; Evans, 2012). 

The analysis of the traits of the species and of the functions requires the ability to manage very 

different types of data. We can have continuous quantitative variables (eg height, weight, CO2 

emissions) or discrete (eg number of eggs, number of pollinated flowers), ordinal categorical 

variables (eg low, medium, high) or nominal (eg color of leaves, variety of a species), and 

boolean or dichotomous variables (eg true / false, present / absent, male / female). The 

measurement scales used in the model and the link functions must know how to combine 

evaluations made with one or more of these types. 

Models must adequately deal with objects at different levels of aggregation. ecosystems can 

be considered as web of networks, based on the level of investigation considered we focus on 

one or more of these networks, but the information could have been collected at different 

resolution levels, e.g. there may be characteristics measured at the level of individual, species, 

cluster of traits and / or ecosystem. A good model for the assessment of sustainability must be 

able to disaggregate information when the level of analysis is at the level of a single individual 

or, on the contrary, generate summary information when the data is collected at the individual 

level and the analysis is carried out at the community or cluster level. 

The processing of large amounts of data is a key feature for a networked model. a problem that 

is often encountered is the management of a matrix in which the number of variables is greater 

than the number of observations (fat matrix). In order to correctly manage this information, 

the models often have a phase of selection of the variables of interest based on the estimation 

objective. Another problem, not always correctly managed by the models, are the sparse 

matrices (i.e. number of non-null elements is significantly lower than the total number of 

elements in the matrix). It is a case that occurs frequently when the object of the analysis is a 

trait or a function that is possessed by a limited number of individuals / species in the 

biocenosis. Models that know how to handle this data correctly are called zero-inflated models. 

The exploration of the existing relationships between traits-functions and ecosystem services 

requires the adoption of an adaptive approach, as the model is not fully specified. Adaptive 

management is defined as ‘systematic acquisition and application of reliable information to 

improve management over time’ (Wilhere, 2002). In essence, the model must allow for 

adjusting its behaviour in response to meaningful changes in the operational context. Adaptive 

approach to manage uncertainty and to improve long-run investigation of the system  

A final essential feature of the models for network analysis is the modularity of the model, 

based on an incremental approach to the knowledge of the system. Once the system has been 

designed, it may be that not all its components (nodes and / or interactions) can be known at 

the same time in the same way. There may be components that, for various reasons, must be 

hypothesized, that is, to which estimates not directly generated by data are associated. If it is 

possible to support the estimation of that component through data and new information, the 
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model must allow it, without changing the architecture of the whole network. Furthermore, 

there may be nodes that at the time of the estimate are considered as unique entities, but 

which in a second moment need to be "exploded" as knowledge has been acquired that is 

capable of treating the entity itself as a network. The module approach allows to develop a 

general analysis of the relationships between modules and to deepen each module based on 

the information and data available. 

4.1.2. The times are ripe  

The complexity underlying the biodiversity assessment according to network approach was the 

primary cause that in the past slowed the development of quantitative models for this purpose. 

Quantitative ecology, which has ancient roots, has developed over time simplified approaches 

in terms of relations considered, such as dynamic approaches to trophic network analysis 

through the extension of Lotka-volterra equations. In recent decades, particularly in the new 

millennium, the conditions for an important development of quantitative tools from a network 

analysis point of view have been created. Factors that contributed to proliferation of models to 

achieve precise and unbiased ecological prediction are: great increase in the availability of 

ecological data, increased understanding of ecological systems, increase in computing power 

analysis, diffusion of a quantitative culture in many natural sciences courses. 

The increase in data availability has several origins. The diffusion of remote sensing tools 

allowed the collection of big masses of data, in (almost) real time, at very low costs. 

International funding programs for ecological research have led to the development of large 

projects for data collection and processing. This factor was instrumental towards the definition 

of international data collection standards. In fact, a systemic approach requires that the data 

populating the models be as homogenous in the information collection and data processing 

systems as possible. Finally, there has been a wide diffusion of citizen science systems. This 

allows an extremely widespread survey of the data in the territory. The quality of this tool in 

generating reliable data is clearly closely related to the ability to adequately involve citizens in 

the acquisition and transmission of information. The spread of digital tools (especially 

smartphones) is considerably facilitating the acquisition of domesticity by individuals with 

computerized data collection systems and allows them to increase their engagement as there 

is the perception of greater direct involvement in projects and in the results achieved. (Ershadi 

et al., 2014; Jordan et al., 2015; Kennedy et al., 2014; Moura et al., 2018; Peters et al., 2014); 

The increased ability to interface the growing amounts of data with our understanding of 

ecological systems is another important factor for the development of innovative network 

models. Information gained on ecosystem functioning through traditional systems has created 

critical mass of knowledge that allows researchers to address network relationships. To 

understand the functioning of systems with multiple relationships it is in fact necessary to have 

acquired sufficient information on the basic structures (Evans, 2012; Williams & Jackson, 2007). 

Technological innovations led to an exponential increase in the computing capacity of 

computers, enabling the processing of billions of information per second. This growth was 

accompanied by a significant reduction in the cost of highly performing infrastructure for 
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scientific computing. The combination of these factors has allowed a widespread diffusion of 

highly performing tools for the elaboration of data.  

Finally, the last but precious factor for the development and dissemination of innovative tools 

for network analysis is the professionals training in the natural science studies. Many degree 

courses have introduced quantitative teachings, offering to the students the tools to 

understand and manage even complex models. The increasing introduction of quantitative 

models into the ecological scientific literature has given further impetus to the quantitative 

literacy of researchers in this field. 

4.1.3. Classification of modelling approaches 

Over the past two decades, quantitative models for network analysis have proliferated given 

the favourable conditions that have arisen in terms of the availability of technological and 

information infrastructure. The investigated system determines the characteristics of the 

model that must investigate it, the approaches of network analysis have diversified to be able 

to offer an adequate solution to the many problems existing in the evaluation of biodiversity.  

An important distinction between different models for biodiversity assessment is the research 

question that informs the study. There are two broad categories of research questions: the 

need to obtain a description as clear and accurate as possible of the dynamics of the system, 

the optimization of predictive capacity. Among the models that have mostly focused attention 

on the explicit description of the relationships between the components of the system we find 

the models with latent variables. When the main focus is on the accuracy and precision of the 

estimates, models belonging to the machine learning family are certainly the favoured solution. 

This class of models is based on algorithms specifically designed to minimize the estimation 

error, thus allowing those who use them to have a high degree of confidence on the results 

obtained.  

Latent variable models powerful multivariate analysis allowing to describe how ecological 

interactions change over space and time and how they are shaped by environmental 

conditions. This approach allows to investigate the system at different levels of spatial 

resolution(e.g. locally, regionally) and across different species aggregation levels (e.g. from 

species to trophic groups) to get a better understanding of network structure. Latent variable 

models, among which the most well-known and widespread exponents are certainly the 

models with structural equations (SEMs), allow to directly test the hypothesis of the researcher, 

i.e. models based on deductive-scientific stance, prior knowledge or related theory. In fact, it is 

possible to build the network structure (nodes and iterations) and check whether the data 

validate this structure or not (Shipley, 2016). Also this class of models is useful to test and clarify 

differences between correlation and causation relationships (Grace, 2006). The possibility of 

defining causal links in latent variable models, however, requires that researchers are able to 

adequately identify or motivate theoretical foundations undermine the causal relationship in 

the hypotheses (Shipley, 2016). A possible critical issue of this class of models is the variable 

selection phase and the model identification. It is quite difficult to find a completely correct 

model, where each latent variable has an assigned scale and at least two observable indicators. 
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According to estimation methods, in many latent variable models maximum likelihood 

estimation is set as default. This assumed that indicators are continuous, normally distributed 

and with few missing data. In addition, many models require a large sample size (typically 

greater than 100 observations, some authors estimate over 200) 

Machine learning techniques are highly conserved over spatial scales and across different 

species. They are based on algorithms that well manage different types of data . Machine 

learning models guarantee high global efficiency of information transfer. They show high 

performance in clustering (associated with robustness to random error).  Machine learning is 

useful to quantify spatial connectivity, to monitor the behaviour of hundreds, or even 

thousands of individuals concurrently for long time (from days to months) (Hussey et al., 2015; 

Jacoby & Freeman, 2016; Ropert-Coudert & Wilson, 2005; Rutz & Hays, 2009). Some family of 

models belonging to machine learning could allow to test, at least indirectly, ecological 

hypotheses. The algorithms underlying these models are very efficient in estimating species 

distributions, although they generally do not provide clues to the mechanisms that explain 

these distributions (Ferrier & Guisan, 2006; Park & Chon, 2007). Furthermore they are very 

performing in the case of non-linear relationships. Machine learning models usually don't 

require specific assumptions concerning the distributional characteristics of the independent 

variables (i.e., nonparametric). A possible obstacle to the spread of machine learning models is 

the need for users to own strong computational skills. The optimization phase of the network 

structure is developed in an iterative way and for complex systems it can be extremely time 

consuming. Furthermore, the parameterization of the network can be strongly influenced by 

the definition of the initial conditions of the system, thus requiring a long calibration phase(Cao 

et al., 2019; Görgens et al., 2015; Olden et al., 2008).  

4.2. Latent variable models 

Network approach can be applied to measure abstract concept, such as ecosystem resistance 

and resilience or provisioning of ecosystem service. While direct measurements for these 

abstract concepts (hence latent variables) may not exist, statistical methods can derive these 

values from other related variables. The latent variable is not included in the data, it is derived 

from the other variables and could indicate a model’s cause or effect (Grace, 2006; Hoyle & 

Isherwood, 2013). We then use observable variables, usually two or more, to approximate the 

construct of interest. The transition from observed to latent variables is never a trivial process 

and requires special attention, considering the fact that observable indicators are only 

approximations of latent constructs. Characteristic of latent variable models is local 

independence, i.e. the manifest variables have nothing in common after controlling for the 

latent variable. 

4.2.1. Structural equation model (SEM) 

Structural equation modelling (SEM) is a family of mathematical models, computer algorithms, 

and statistical methods that fit networks of constructs to data. SEM combines two tools within 

a single framework: confirmatory factor analysis and path analysis. The CFA (confirmatory 
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factor analysis) aims to build a model suitable for studying the relationships between the 

observed variables and the latent variables. Path analysis, on the other hand, aims to explain 

the random relationships between constructs. It allow to find the causal relationship among 

variables by creating a path diagram. SEM merges these two objectives in an unified 

quantitative approach, allowing to test for the nature and magnitude of direct and indirect 

effects of multiple interacting factors 

SEM results are represented by i) a set of parameters that quantify the relationships specified 

in the model, ii) one or more indices that measure the goodness of the fit of the hypothesized 

model to the observed data, that is the correspondence (adequacy) of the model with respect 

to the data collected (e.g. chi-square, CFI, RMSEA), and iii) a variance / covariance matrix 

estimated through the model parameters. 

Correlations among the traits of organisms or groups of organisms in order to evaluate complex 

causal relationships can be analysed by SEM approach. In ecological studies, SEM widespread, 

thanks to its flexibility (Fan et al., 2016). Furthermore, SEMs developed with reflexive 

approaches have a favourable property. If the structure of the measurement model is correctly 

defined, it is possible to modify one or more indicator variables without disturbing or 

invalidating the validity of the defined network. This can be useful in the case of application of 

a model in different agroecosystems. 

A full SEM is composed by two sub-models: the structural model representing the relationships 

between latent variables, and the measurement model linking indicators with their latent 

variables.  

SEM are useful tool for the biodiversity assessment of ecosystems. In particular the separation 

between the structural model and the measurement model has proved particularly effective in 

modelling the interactions between traits and other ecosystem components. Sonnier et al. 

(2010) clearly states how SEM can be applied to quantify  interactions between 10 functional 

traits (e.g. plant lifespan, leaf dry matter content, allocation to structure ) and environmental 

variables (such as litter, mineralizable nitrogen and humidity). 

SEM can be used to detect assembly rules along different spatial scales or to investigate the 

impact of ecological and climatic variables on population regulation (Figure 14). For instance, 

Legras et al. (2019) applied a SEM to assess the assembly rules structuring stream invertebrate 

communities before and after a severe drought in southeast Arizona. Regulatory role of abiotic 

factors and biological interactions on lake phytoplankton dynamics and water clarity during the 

summer stratification period has been investigated by SEM (Arhonditsis et al., 2006). Ecological 

structures can be assed also based on time-series data (Almaraz, 2005). 

Furthermore SEM can be applied to assess resilience properties of ecosystem (Grace, 2006; 

Grace et al., 2010). By way of example, these models have been effectively used to estimate 

the influence of some environmental factors and the age of plants on the regeneration rate of 

a forest. 
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Figure 14 – SEM investigating the biodiversity in coastal grassland, according to abiotic stress, 
disturbance, community biomass and plant diversity (Grace et al., 2010). Blue shadow 
box is the structural model, green shadow boxes are the measurement models(one 
for each latent variable) 

4.2.2. Partial Least Squares Path Modelling (PLS-PM) 

Partial Least Squares Path Modelling (PLS-PM) approach allows the investigation of complex 

cause-effect relationships existing between attributes, measured by sets of indicators 

(Tenenhaus et al., 2005; Vinzi et al., 2010). The attributes are estimated as a linear combination 

(a weighted sum) of their indicators. Each composite indicator is obtained in such a way as to 

be the most representative of its underlying indicators and the most correlated with the other 

composite indicators to which it is linked. The PLS-PM is an iterative algorithm that allows to 

estimate the relationships existing between the different blocks of variables through a system 

of linear equations. PLS-PM is a component-based method, i.e. it is based on the search for 

latent components.  

PLS-SEM is the preferred method when the theoretical basis of the research is not yet well 

developed, particularly when there is little or no prior knowledge on the causal relationship 

under investigation. It is a particularly useful model for the exploration phase rather than the 

confirmation phase (in which the SEMs are more efficient). For this reason, it is recommended 

that users in the initial phase of research apply PLS-PM to generate the necessary evidence for 

causal relationship and variable selections. This will allow users to continue collecting long-term 

data by updating their assumptions (Monecke & Leisch, 2012). 

PLS-SEM, which is based on a different algorithm from SEM, requires neither a large sample 

size nor a specific hypothesis on the distribution of the data, or even missing data. Unlike SEM, 

PLS-PM is never under-identified (it follows the basic rules of a regression model) and does not 

require any hypothesis on the shape of the distribution of the manifest variables, nor on that 

of the latent variables. The iterative algorithm directly provides an estimate of the latent 
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variables (latent variable scores). The convergence of the PLS-PM is empirically ensured but 

there is no mathematical proof (except in the case of only two blocks of manifest variables). 

Furthermore, in the PLS-PM it is not possible to identify a single function to be optimized; 

however, specific cases of the PLS-PM optimize specific criteria (Hair et al., 2012; Jr. Hair et al., 

2009, 2016).  

The flexibility in the definition of causal links in PLS-PM allows to test which relationships (and 

consequently which drivers) are significant with respect to the target variable. For this reason 

it is a tool suitable to investigate the causes of biodiversity loss in ecosystems. Sanches 

Fernandes et al. (2018) applies PLS-PM to understand the main drivers of biodiversity loss in 

rural and urban watersheds in Portugal . 

PLS-PM can be used to explore the relationships between management practices and species 

traits. Serrano et al. (2014) performed a PLS-PM analysis to explore whether farm type, swine 

management and pathogens directly or indirectly influenced post-weaning mortality (Figure 

15). In the context of farmer strategies, the impact of ecological intensification and 

conventional management practices on maize yield, N losses, N2O emissions, greenhouse gas 

(GHG) emissions, and nitrogen (N) cycling microbial populations associated with nitrification 

and denitrification in fluvo-aquic soil and black soil have been investigated by a PLS-PM 

approach (Ullah et al., 2020). Honvault et al. (2020) investigated the role of multiple 

belowground morphological and physiological traits on plant P acquisition strategies (Figure 

16). 

 

Figure 15 – PLS-PM describing causes of post-weaning mortality. Ellipses represent the latent 
variables, the rectangles the indicators (measurable variables) used to estimate the 
latent variables. The arrows between the ellipses are the interactions studied in the 
model (Serrano et al., 2014). 
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Figure 16 – PLS-PM for the predicting phosphorus uptake, based on root morphology and 
aboveground traits (Honvault et al., 2020). 

4.3. Machine learning 

Basically, Machine Learning (ML) algorithms use mathematical-computational methods to 

learn information directly from data, without mathematical models and predetermined 

equations. Machine Learning algorithms improve their performance in an adaptive way as the 

"examples" to learn from increase. In this context, the concept of learning (experience) consists 

in improving the performance of the software after carrying out a task or completing an action 

(even incorrect, starting from the assumption that the principle "failing to learn") (Samuel, 

1959). ML is a family of computational algorithms aimed at the identification of structure in 

complex, often nonlinear, data. ML models emphasize the accurate prediction based on such 

data (Breiman, 2001; Fielding, 1999; Goodfellow et al., 2016; Olden et al., 2008).  

Four types of learning methodologies can be used:  

• Supervised learning is based on pairs of data containing the original data and the 

expected result. The task of the algorithm is to find the rule (function or model) with 

which to create a relationship between the two data so that, when a previously 

unknown example occurs, it can obtain the correct result. The Supervised learning is 

mainly used for classification problems. and range from testing biogeographical, 

ecological, and evolutionary hypotheses to modelling species distributions for 

conservation and management planning. 

• Unsupervised learning does not use previously classified and labelled data, so it is not 

known a priori to which categories the data belong. The algorithm (machine) is then 

asked to extract a rule that groups the cases according to characteristics it can derive 

only from the data itself. One of the main applications is clustering, that is the grouping 

of data into homogeneous groups called clusters. For this reason, this type of model 

could be useful to define, for example, cluster traits. 

• Reinforcement learning is a machine learning technique that aims to create systems 

capable of learning and adapting to changes in the environment in which they are 

immersed through the distribution of a ‘reward’ called reinforcement, given by 

performance evaluation. Its application in the ecological field is not currently 

widespread 
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• Semi-supervised learning is a hybrid model where the computer is provided with an 

incomplete set of data for training / learning; some of these inputs are equipped with 

the respective output examples (as in supervised learning), while others lack them (as 

in unsupervised learning). The basic objective is always the same: to identify rules and 

functions for solving problems, as well as models and data structures useful for 

achieving certain objectives. 

4.3.1. Artificial Neural network (ANN) 

Artificial neural networks (ANN) are mathematical models inspired by biological neural 

networks (hence the name) and are used to solve engineering problems of Artificial 

Intelligence. ANN are models made up of interconnections of information deriving from 

artificial neurons and computational processes based on the cognitive science model called 

"connectionism".  

A neural network actually looks like an adaptive system capable of modifying its structure 

(nodes and interconnections) based on both external data and internal information that 

connect and pass through the neural network during the learning phase and reasoning. 

ANN are non-linear structures of statistical data organized as modelling tools: they receive 

external signals on a layer of nodes (which represents the processing unit, the processor); each 

of these "input nodes" is connected to various internal nodes of the network which, typically, 

are organized at several levels so that each single node can process the signals received by 

transmitting the result of its processing to subsequent levels (therefore information more 

advanced, detailed). 

In general, neural networks are made up of three layers, which, however, can involve thousands 

of neurons and tens of thousands of connections (Figure 17): 

1) the input layer has the task of receiving and processing the input signals, adapting them to 

the demands of the neurons of the network; 

2) the hidden layer is in charge of the actual processing process (and can also be structured 

with multiple columns-levels of neurons); 

3) the output layer collects the results of the processing of the hidden layer and adapted them 

to the requests of the next level-block of the neural network. 

In order for this process to be efficient, it is necessary to "train" the neural networks, that is to 

make them learn how to behave when an engineering problem has to be solved, such as the 

recognition of a human being from the analysis of images (through for example facial 

recognition technology). 
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Figure 17 – Basic scheme of an artificial neural network 

ANNs provide a much more flexible way of modelling ecological data with respect to latent 

variable models. To improve data fit, the complexity of the model can be varied modifying the 

internal architecture of the network by changing the transfer function, the number of neurons, 

hidden layers or output neurons. It is this flexibility that has probably led to the increased 

popularity of neural networks in ecology.The major drawback of neural networks is the fact 

that their computation process cannot be fully analyzed. By this we mean that they are able to 

supply correct or sufficiently correct outputs, but they do not allow to examine the single 

processing stages that determine them (black box). This allows for very accurate predictions, 

but not being able to describe by which process they are generated. 

The high flexibility of ANN allows the modelling of multiple ecological response variables, as in 

the case of multiple species analyses (Özesmi & Özesmi, 1999) or of entire communities (Olden 

et al., 2006). Görgen et al. (2015) evaluate the performance of three machine learning tools for 

predicting stand volume of fast-growing forest plantations, based on statistical vegetation 

metrics extracted from an Airborne Laser Scanning (ALS) survey. Larsen et al. (2012) applied 

neural networks to predict microbial community structure as a function of environmental 

parameters and microbial interactions. 

ANN have been effectively used to model species distributions because it can the model 

abundance in the environmental feature space that present very irregular shape. Pattern of 

species distribution can be difficult to capture with classical models in these cases (Botella et 

al., 2018; Li, 2020; Rew et al., 2020). Heikkinen et al. (2007) ANN to predict the distribution of 

the threatened clouded apollo butterfly (Parnassius mnemosyne) in south-west Finland. 

ANN have also been used for taxonomic classifications (Figure 18). The high precision and 

accuracy that characterizes the algorithm in identifying groups makes it an ideal tool for this 

purpose (Khawaldeh et al., 2017). 

In the field of research on the impact of climate change on biodiversity and the provision of 

ecosystem services, ANN have been widely used as they allow for the processing of big data in 

a relatively short time. Furthermore, since it is not necessary to define causal links, they can 

find patterns of behaviour that would hardly be identified by researchers (Abdullahi & Elkiran, 

2017; Juan et al., 2017, pag.; Z. Liu et al., 2010). This aspect, which is certainly an advantage of 
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the ANNs, also represents an important limitation. In fact, since there is no possibility of 

intervening on the causal links identified by the network, the interpretation of the results is 

very complex, the more complex the data matrix is. Furthermore, the network could identify 

relationships that are meaningless from a biological / ecological point of view. 

 

Figure 18 - Convoluted neural network model used to analyse DNA sequences to classify living 
organisms (Khawaldeh et al., 2017) 

4.3.2. Support Vector machine (SVM) 

Support Vector machines are of recent introduction in the field of ecology, in particular for the 

recognition of patterns in complex data structures and in classification problems in remote 

sensing. Formally, a support vector machine constructs a hyperplane or set of hyperplanes in a 

multi-dimensional or infinite-dimensional space, which can be used for classification, 

regression, and other purposes such as anomaly detection. Intuitively, a good separation can 

be obtained when the hyperplane has a great distance from the closest point (of the training 

set) of each of the classes; in general, the greater the margin between these points, the smaller 

the generalization error made by the classifier. 

A SVM model is a representation of data as points in space, mapped in such a way that the data 

belonging to the two different categories are clearly separated by as large a space as possible 

(Figure 19). The new examples are then mapped in the same space and the prediction of the 

category to which they belong is made on the basis of the side in which it falls. In addition to 

linear classification, it is possible to make use of SVMs to effectively perform non-linear 

classification using the kernel method, implicitly mapping their inputs into a multi-dimensional 

characteristics space. 
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Figure 19 – Graphical display of hyperplane defined applying support vector machine algorithm 
(Cao et al., 2019) 

SVMs has been widely used in species identification (Londhe & Kanade, 2015), species mapping 

(Abeysinghe et al., 2019; Shiferaw et al., 2019) and disease distribution (Rumpf et al., 2010). An 

important feature of this class of models is the ability to manage high-dimensional data with a 

corresponding lack of knowledge of the underlying distribution (as well as possibly a relatively 

small sample size). In fact, SVMs have no distributive assumptions, other than the fact that data 

is independent and identically distributed. 

In the context of functional biodiversity assessment, SVMs could be useful quantitative tool for 

identifying clusters of traits. Being able to process large amounts of data, they allow to identify 

affinities between species in terms of sharing traits or ecological niches. They are black box 

models, so they do not explain the processes through which results are obtained. The clusters 

obtained must therefore be characterized in a second step based on their common 

characteristics (Cervantes et al., 2020; Drake et al., 2006; Hu et al., 2012; Priya et al., 2012). 

 

4.3.3. Bayesian network (BN) 

A Bayesian network (BN) is a probabilistic graph model that represents a set of stochastic 

variables with their conditional dependencies through the use of a direct acyclic graph (Pearl, 

1988). In statistics, the Bayesian network is used to more easily identify the absolute and 

conditional dependence relationships between variables, in order to reduce the number of 

combinations of the variables to be analysed. From the graphic point of view, the Bayesian 

network is an acyclic oriented graph (without cycles) in which each node indicates a certain 

system variable while the oriented edges represent the possible dependence relationships 

(parent → child) between the variables. The directed arc (arrow) is equivalent to saying that 

the parent node directly affects the child node (dependent variable). Nodes that are not 

connected represent variables that are conditionally independent of each other. Each node is 

associated with a probability function which takes as input a particular set of values for the 

variables of the parent node and returns the probability of the variable represented by the 

node.  
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The acyclic oriented graph is also known by the acronym DAG (Direct Acyclic Graph). The set of 

arcs and nodes is called the network topology. An example of a Bayesian network is the 

reported in Figure 20. Each node has a conditional probability distribution that lists the effects 

on the node in question, based on the various states that its parent nodes can assume. 

 

Figure 20 – Example of a Bayesian network, of marginal and conditional probability distributions 

Bayesian networks allow inference on unobserved variables. BN can be used to update 

knowledge of the state of a subset of variables when other variables (the test variables) are 

observed. Furthermore, using machine learning techniques, it is possible to automatic learn the 

structure of the graph and the parameters of the local distributions of a BN starting from the 

data. 

Bayesian networks have several advantages over traditional methods (such as topological 

approaches and dynamic models): species can have different probability of establishment or 

development 'a priori', disturbances can affect several species simultaneously, and the risk of 

extinction of predators increases with the loss of resources. 

Bayesian networks can be used to model complex networks of ecological interactions. BN could 

represent the probabilistic relationship existing between ecosystem traits and services. Given 

the traits, the network can be used to calculate the level of delivery of one or more services. 

Liber et al. (2020) developed a BN approach to investigate plant traits, in particular they studied 

the importance of biological and agri-environmental parameters in the ability of plants to 

bioaccumulate chlordecone (Figure 21). 

Models based on Bayesian statistics combine probabilities of observing species with their 

probabilities of occurrence conditional to the value (or class of values) of each environmental 

predictor (Montesinos-Navarro et al., 2018; Sander et al., 2017). Furthermore, BN copes well 

with sparse matrices which are a frequent problem when it comes to modelling aspects related 

to rare species (Maldonado et al., 2016; Thompson et al., 2019). Cirtwill et al. (2019) 

investigated interspecific interactions as well as the uncertainty around each interaction by BN, 
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combining data on observed co-occurrences with prior knowledge. Influence on fauna 

distributions in fire‐affected landscape have been studied through a BN approach (Figure 22) 

by Hradsky et al. (2017). 

BN are widespread in the genomic field. Santos et al. (Santos et al., 2020) used BN to phenotype 

a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines. 

In vegetation mapping, BN allow to define a posteriori probabilities for each vegetation unit 

and the unit with the highest probability is predicted at every candidate site (Dlamini, 2011). 

 

Figure 21 - Bayesian network evaluating factors linked with the accumulation of chlordecone in 
the plant in Guadeloupe (Liber et al., 2020) 

 

Figure 22 - Factors that influence fauna distributions in fire‐affected landscapes (Hradsky et al., 
2017) 
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4.4. Conclusion  

The application of network approaches to biodiversity assessment is to the dawn, but is proving 

extremely promising. The renewed interest on the part of the scientific world and international 

bodies and organizations for biodiversity are the best omen to give new life to research in the 

direction of a more precise and scientifically based approach to sustainability and to the 

biological and ecological mechanisms that guarantee the genesis and regulation of ecosystem 

services it. 
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