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Per Anam. . . il senzanome

Caminante, son tus huellas
el camino y nada más;

Caminante, no hay camino,
se hace camino al andar.

—antonio machado
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A B S T R A C T

Snarks and Hamiltonicity: two prominent areas of research in graph
theory. As the title of the thesis suggests, here we study how perfect
matchings behave together, more precisely, their union and intersec-
tion, in each of these two settings.

Snarks, which for us represent Class II bridgeless cubic graphs, are
crucial when considering conjectures about bridgeless cubic graphs,
and, if such statements are true for snarks, then they would be true
for all bridgeless cubic graphs. One such conjecture which is known
for its simple statement, but still indomitable after half a century, is
the Berge–Fulkerson Conjecture which states that every bridgeless
cubic graph G admits six perfect matchings such that every edge in
G is contained in exactly two of these six perfect matchings. In this
thesis we study two other related and well-known conjectures about
bridgeless cubic graphs, both consequences of the Berge–Fulkerson
Conjecture which are still very much open: the Fan–Raspaud Conjec-
ture (Fan and Raspaud, 1994) and the S4-Conjecture (Mazzuoccolo,
2013), dealing with the intersection of three perfect matchings, and
the complement of the union of two perfect matchings, respectively.
We give an equivalent formulation of the Fan–Raspaud Conjecture
which at first glance seems stronger, and show that the S4-Conjecture
is true for bridgeless cubic graphs having oddness at most 4. We
also show that the S4-Conjecture can be stated in terms of a variant
of Petersen-colourings, and discuss it in relation to bridgeless cubic
multigraphs and certain cubic multigraphs having bridges.

Given the obstacles encountered when dealing with such problems,
many have considered trying to bridge the gap between Class I and
Class II bridgeless cubic graphs by looking at invariants that measure
how far Class II bridgeless cubic graphs are from being Class I. This
is done in an attempt to further refine the class of snarks, and thus,
enlarging the set of cubic graphs for which such conjectures can be
verified. In this spirit we consider a parameter which gives the least
number of perfect matchings (not necessarily distinct) needed to be
added to a bridgeless cubic graph such that the resulting multigraph
is Class I. We show that the Petersen graph is, in some sense, the
only obstruction for a bridgeless cubic graph to have a finite value
for the parameter studied. We also relate this parameter to already
well-studied concepts: the excessive index, and the length of a shortest
cycle cover of a bridgeless cubic graph. In particular, we show that an
infinite family of non-trivial snarks, a generalisation of treelike snarks,
have a shortest cycle cover with length strictly greater than 4/3 their
size. This is done in the first part of the thesis.
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In the second part, we study a concept about Hamiltonicity first
considered in the 1970s by Las Vergnas and Häggkvist, which was
generalised and recently brought to the limelight again by Fink (2007).
In this part we look at Hamiltonian circuits in graphs having an
even order, which is a necessary condition for a graph to admit a
perfect matching. In such graphs, a Hamiltonian circuit can be seen
as the union of two perfect matchings. If every perfect matching of
a graph G extends to a Hamiltonian circuit, we say that G has the
Perfect-Matching-Hamiltonian property (for short the PMH-property).
A somewhat stronger property than the PMH-property is the follow-
ing: a graph G has the Pairing-Hamiltonian property if every pairing
of G (that is, a perfect matching of the complete graph having the
same vertex set as G) can be extended to a Hamiltonian circuit of the
underlying complete graph using only edges from G, that is, by using
a perfect matching of G.

A characterisation of all the cubic graphs having the PH-property
was done by Alahmadi et al. (2015), and the same authors attempt to
answer a most natural question, that of characterising all 4-regular
graphs having the same property. They do this by posing the following
problem: for which values of p and q does the Cartesian product
Cp�Cq of two circuits on p and q vertices have the PH-property?
We show that this only happens when both p and q are equal to
four, namely for C4�C4, the 4-dimensional hypercube. We continue
this study of quartic graphs in relation to the above properties by
proposing a class of quartic graphs on two parameters, accordion
graphs, a class which we believe is a rich one in this sense. A complete
characterisation of which accordion graphs are circulant is also given.

Hamiltonicity was also heavily studied with respect to line graphs
by Kotzig (1964), Harary and Nash-Williams (1965), and Thomassen
(1986), amongst others, and along the same lines, we give sufficient
conditions for a graph in order to guarantee the PMH-property in
its line graph. We do this for subcubic graphs, complete graphs, and
arbitrary traceable graphs. Moreover, we also give a complete char-
acterisation of which line graphs of complete bipartite graphs admit,
not only the PMH-property, but the PH-property.
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A B S T R A C T ( I TA L I A N V E R S I O N )

Titolo: Sulle ineccepibili relazioni tra i matching perfetti

Snarks e Hamiltonicità sono due rilevanti aree di ricerca nella Teoria
dei Grafi. Come suggerisce il titolo, in questa tesi studieremo come
interagiscono tra loro i matching perfetti di un grafo, in particolare ci
occuperemo di studiare la loro unione e intersezione nei due ambiti
sopra indicati.

Gli snarks, grafi cubici privi di ponti e di Classe II, sono oggetti
cruciali quando si considerano congetture su grafi cubici senza ponti,
perchè, tipicamente, se una congettura viene verificata per gli snarks
allora è valida in generale. Una di queste congetture, nota per il
suo enunciato particolarmente semplice ma completamente aperta
dopo oltre mezzo secolo, è la Congettura di Berge–Fulkerson. Nella
prima parte di questa tesi studieremo altre due ben note congetture
entrambe conseguenze della congettura di Berge–Fulkerson e che
sono anche esse ancora aperte: la Congettura di Fan–Raspaud (Fan
& Raspaud 1994) e la Congettura S4 (Mazzuoccolo 2013). La prima
riguarda il comportamento dell’intersezione di tre matching perfetti
e l’altra il complemento dell’unione di due matching perfetti. Diamo
una formulazione equivalente della Congettura di Fan–Raspaud che
in letteratura appariva essere una versione più forte, e mostriamo che
la Congettura S4 è vera per grafi cubici senza ponti di oddness al più
4.

A causa degli ostacoli che si incontrano nello studiare tali tipi di
problemi, sono stati fatti molti tentativi di colmare il gap tra grafi cubici
di Classe I e di Classe II introducendo invarianti che misurino quanto
un grafo di Classe II è lontano dall’essere di Classe I. In questo spirito,
proponiamo di considerare il minimo numero di matching perfetti
(non necessariamente distinti) che è necessario aggiungere a un grafo
cubico senza ponti per ottenere un multigrafo di Classe I. Dimostriamo
che il grafo di Petersen è sostanzialmente l’unica ostruzione per questo
problema, nel senso che non ammette un numero finito di matching
perfetti con la proprietà richiesta. Inoltre, colleghiamo lo studio di
questo problema ad altri ben noti: l’excessive index e la lunghezza
della più corta copertura in cicli.

Nella seconda parte della tesi, studiamo un problema legato
all’Hamiltonicità di un grafo, già introdotto negli anni settanta da
Las Vergnas e Häggkvist, e poi generalizzato più di recente da Fink
(2007). Ci riferiamo a grafi Hamiltoniani con un numero pari di vertici
(condizione necessaria per avere un matching perfetto): in tali grafi,
un ciclo Hamiltoniano lo si può vedere come unione di due matching
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perfetti. Diremo che G ha la Perfect-Matching-Hamiltonian property
(in breve la PMH-property) se ogni suo matching perfetto si può es-
tendere a un ciclo Hamiltoniano. Una proprietà ancora più forte è la
seguente: un grafo G ha la Pairing-Hamiltonian property (in breve
la PH-property) se ogni pairing di G (cioè un matching perfetto del
grafo completo definito sugli stessi vertici di G) può essere esteso
a un ciclo Hamiltoniano del grafo completo soggiacente usando un
matching perfetto di G. Una caratterizzazione dei grafi cubici con la
PH-property è stata fornita da Alahmadi e al. (2015). Gli stessi autori
hanno solo parzialmente tentato una caratterizzazione anche dei grafi
4-regolari con la stessa proprietà. Noi risolviamo uno dei problemi
da loro proposti e mostriamo una famiglia di grafi 4-regolari, che
chiameremo accordion, che riteniamo interessante in quest’ambito.

Le proprietà di Hamiltonicità sono state ampiamente studiate an-
che per i line-graphs da, tra gli altri, Kotzig (1964), Harary & Nash-
Williams (1965) e Thomassen (1986). In questa linea di ricerca diamo
condizioni sufficienti per un grafo che garantiscano la PMH-property
per il suo line-graph. Otteniamo tali risultati per grafi di grado al più
3, grafi completi e grafi arbitrarily traceable. Infine otteniamo una
caratterizzazione completa dei line graphs dei grafi bipartiti completi
che ammettono la PH-property.
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P R E FA C E

Matchings. . . in real life you would consider yourself very lucky to
experience one, let alone a perfect matching! Graph theory can model
such real-life experiences quite well. Take Hall’s marriage theorem,
for example. It is maybe due to their rarity (or is it just because
it is simply true?) that some of us have created the perfect is boring
mantra; something which will not be delved into deeper in what
follows. However, perfect matchings in graph theory are very much
interesting—to say the least—so much so that they have occupied my
mind and a big part of my life during the last three years.

Figure 0.1: Somewhere in Koper, Slovenia, on the 3
rd of Febraury, 2017
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1
M O T I VAT I O N A N D B A C K G R O U N D

This introductory chapter serves a number of purposes. We first in-
troduce the notion of perfect matchings in graphs and the different
aspects of our work regarding their behaviour. As the title suggests,
this will be the recurring theme in this thesis, which is divided in two
parts—representing the two different scenarios within which our work
takes place:

(i) perfect matchings in bridgeless cubic graphs (more precisely,
snarks) in Part i, and

(ii) perfect matchings and Hamiltonicity in Part ii.

As we shall see later on, this will involve dealing with the union
and intersection of perfect matchings. Moreover, a general historical
background and major results in the respective areas are given. Then,
Section 1.4 will be dedicated to gather all the definitions and notation
used throughout the whole thesis in one place—this is done in a way
that definitions and notation not used in both the two main parts
of the thesis, are put in a respective subsection such that it will be
easier for the reader to filter through Section 1.4. The reader who is
conversant in graph theoretical terms can skip this section, or consult
it when needed, if such a need arises.

1.1 introductory remarks

What is a perfect matching of a graph G? A perfect matching is a pairing
of the vertices of G such that each pair of vertices in the pairing is
an edge in G. In other words, a perfect matching of G is a set of
independent edges of G which covers the vertex set of G. Clearly, an
obvious necessary condition for G to admit a pairing of the vertices is
that |V(G)|, the order of G, is even. In what follows, we shall tacitly
assume that G is of even order, unless otherwise stated.

One of the early classical results on perfect matchings dates back to
1891 and was made by Julius Petersen.

Theorem 1.1.1 (Petersen, 1891 [78]). Every bridgeless cubic graph admits
a perfect matching.

Not only do bridgeless cubic graphs admit a perfect matching,
but in 2011, one of the most prominent conjectures about perfect
matchings in bridgeless cubic graphs was completely solved by Louis
Esperet et al. in [24]. The conjecture, proposed by László Lovász and
Michael David Plummer in the 1970s, stated that the number of perfect

1



1.2 cubic graphs 2

matchings in a bridgeless cubic graph grows exponentially with its
order (see [61]). The authors in [24] in fact show that every bridgeless
cubic graph has at least 2|V(G)|/3656 perfect matchings.

Many interesting problems in graph theory are in fact about the
intersection and union of perfect matchings in cubic graphs as we shall
see in Section 1.2 and later on in Part i. However, before continuing
about this let us mention one other classical result about perfect
matchings in general graphs, not necessarily bridgeless and cubic.
The following theorem by William Thomas Tutte, from 1947, gives
a necessary and sufficient condition for the existence of a perfect
matching in a graph.

Theorem 1.1.2 (Tutte, 1947 [98]). A graph G admits a perfect matching if
and only if the number of odd components in G− S is at most |S|, for every
S ⊆ V(G).

bc

bc bc

b
b b

b b
bb b

b
b

bb
b

Figure 1.1: Removing the 3 red vertices leaves 4 odd components

1.2 cubic graphs

As already mentioned above, Part i is dedicated to perfect matchings
in cubic graphs. One of the most elegant statements in this area
is the following conjecture from 1971, which although simple and
uncomplicated, remains still unsolved after all these years.

Conjecture 1.2.1 (Fulkerson, 1971 [32]). Every bridgeless cubic graph G
admits six perfect matchings such that each edge in G is contained in exactly
two of these six perfect matchings.

In other words, a bridgeless cubic graph G admits six perfect match-
ings (with duplicates allowed) whose union gives the edge set of G
twice. Although initially stated by Delbert Ray Fulkerson, the con-
jecture of Fulkerson is also attributed to Claude Berge and has been
widely referred to as the Berge–Fulkerson conjecture. In hindsight,
such a name was more than appropriate as Fulkerson’s conjecture was
actually shown to be equivalent to the following seemingly weaker
conjecture made by Berge.

Conjecture 1.2.2 (Berge, unpublished). Every bridgeless cubic graph G
admits five perfect matchings such that every edge in G is contained in at
least one of these five perfect matchings.



1.2 cubic graphs 3

Let G be a bridgeless cubic graph. Let us call a set of six perfect
matchings of G (not necessarily distinct) having the properties men-
tioned in the first conjecture a Fulkerson cover, and a set of five perfect
matchings of G (not necessarily distinct) having the properties men-
tioned in the second conjecture a Berge cover. It is clear that the first
conjecture implies the second: removing one of the perfect matchings
from a Fulkerson cover of G, a Berge cover is obtained. The reverse
implication, that is, if Berge’s conjecture is true for all bridgeless cubic
graphs, then, Fulkerson’s conjecture is also true for all bridgeless cu-
bic graphs, was proved by Giuseppe Mazzuoccolo in 2010 (see [71]).
Having said this, we remark that given a Berge cover of a bridgeless
cubic graph, it is still not generally known how to obtain a Fulkerson
cover of the same graph, if such a cover exists. Consequently, for sim-
plicity, we shall refer simultaneously to both these conjectures as the
Berge–Fulkerson Conjecture, with Fulkerson’s version generally referred
to as the classical Berge–Fulkerson Conjecture if one wants to distin-
guish between the two.

A bridgeless cubic graph which needs no introduction and which
admits a Fulkerson cover is the well-known Petersen graph depicted
in Figure 1.2. This graph crops up in various instances throughout
this thesis and it is so important that there is a whole book dedicated
to it (see [45]). However, one of the reasons why it distinguishes itself
so much from other bridgeless cubic graphs (and most probably from
any other graph) is because of the Petersen Colouring Conjecture by
Francois Jaeger, from 1988.

b
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b b

b
b

b b

b b

Figure 1.2: The Petersen graph

Conjecture 1.2.3 (Petersen Colouring Conjecture—Jaeger, 1988 [49]).
Every bridgeless cubic graph admits a Petersen colouring.

Proving Jaeger’s Conjecture would mean a lot of things: it would
prove the Berge–Fulkerson Conjecture, for instance, but not only. It
would also confirm the Cycle Double Cover Conjecture [105] which is
a conjecture stated for general graphs and not only for cubic graphs.
It is due to these huge consequences that the Petersen Colouring
Conjecture is, arguably, one of the most trying and arduous conjectures
in graph theory.

A possibly weaker conjecture than the Berge–Fulkerson Conjecture,
proposed by Genghua Fan and André Raspaud in 1994 (see [26]),
states that every bridgeless cubic graph has three perfect matchings
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whose intersection is empty (see Conjecture 3.1.1). In Chapter 3 we
answer a question recently proposed by Vahan Mkrtchyan and Gagik
N. Vardanyan in [75], by proving that a seemingly stronger version of
the Fan–Raspaud Conjecture is actually equivalent to the classical for-
mulation (Theorem 3.2.3). We also study a possibly weaker conjecture
originally proposed by Mazzuoccolo [69], which states that in every
bridgeless cubic graph there exist two perfect matchings such that the
complement of their union is a bipartite graph (see Conjecture 3.1.3).
We show that this conjecture (referred to as the S4-Conjecture) can be
equivalently stated using a variant of Petersen-colourings (Proposition
3.3.1) and we prove it for graphs having oddness at most 4 (Theorem
3.4.4). Even though all the above conjectures are a consequence of
one single conjecture, Jaeger’s Conjecture, they each expose differ-
ent shades and particularities of the behaviour of perfect matchings
in bridgeless cubic graphs: the union of six or five perfect match-
ings, the intersection of three (or two, as seen in Conjecture 3.1.2)
perfect matchings, and the complement of the union of two perfect
matchings—behaviours which are interesting in their own right, but
whose significance is accentuated by their interconnections and their
relation to Conjecture 1.2.3.

Although all mentioned conjectures are about simple cubic graphs
without bridges, in Chapter 3 we also extend our study of the union
of two perfect matchings to bridgeless cubic multigraphs and to par-
ticular cubic graphs having bridges (see Section 3.5.1 and Section
3.5.2).

Despite the challenging nature of the above conjectures, it is not
very hard to show the existence of certain cubic graphs admitting, say,
a Fulkerson cover. In fact, there are an infinite number of cubic graphs
which trivially satisfy the properties mentioned in the conjectures
stated in Section 1.2—these are the 3-edge-colourable cubic graphs
known as Class I cubic graphs. In fact, the three colours of a proper
edge-colouring of these graphs correspond to three perfect matchings,
and by taking twice each of these perfect matchings one can easily
form a Fulkerson cover, for example. In this case, a Berge cover is also
easily obtained, but one might say that there are "a lot" of repeated
perfect matchings in these covers. And rightly so! Indeed, the most
compelling part of the above problems is analysing them in relation
to Class II cubic graphs (see snarks), and in this spirit, a lot of research
has been done in order to study invariants or parameters that measure
how far Class II cubic graphs are from being 3-edge-colourable, that
is, from being Class I. As a result, Class II graphs are often called
uncolourable, and the mentioned invariants are often referred to as
measures of edge-uncolourability (see [30]).

Two such parameters are the excessive index of a graph and the
oddness of a graph. The oddness of a graph is studied in Chapter
3 whilst dealing with the S4-Conjecture mentioned above and other
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related problems. The excessive index of a bridgeless cubic graph,
introduced by Arrigo Bonisoli and the late David Cariolaro in [13], is
the minimum number of perfect matchings needed to cover its edge
set, which should be at most five by the Berge–Fulkerson Conjecture.
In Chapter 4 we deal with the fact that the family of potential coun-
terexamples to many interesting conjectures can be narrowed even
further to the family S≥5 of bridgeless cubic graphs whose edge set
cannot be covered with four perfect matchings. The Cycle Double
Cover Conjecture, the Shortest Cycle Cover Conjecture [3] and the
Fan–Raspaud Conjecture are examples of statements for which S≥5 is
crucial.

In Chapter 4, we also study parameters which have the potential to
further refine S≥5 and thus enlarge the set of cubic graphs for which
the mentioned conjectures can be verified. We show that S≥5 can be
naturally decomposed into subsets with increasing complexity, thereby
producing a natural scale for proving these conjectures. More precisely,
we consider the following parameters and questions: given a bridgeless
cubic graph, (i) how many perfect matchings need to be added (see
Section 4.2), (ii) how many copies of the same perfect matching need
to be added (see Sections 4.3 and 4.4), and (iii) how many 2-factors
need to be added so that the resulting regular multigraph is Class I
(see Section 4.5)? We present new results for these parameters and we
also establish some strong relations between these problems and some
long-standing conjectures.

1.3 hamiltonicity

Another well-known aspect of graph theory which surely needs no
introduction is Hamiltonicity. This concept had its beginnings in the
mid-1850s thanks to the Icosian Game by Sir William Rowan Hamilton
whose aim was to find (what we now refer to as) a Hamiltonian circuit
of the graph of the dodecahedron (see Figure 1.3), which has twenty (in
Greek icos) vertices and twelve (in Greek dodec) faces.
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Figure 1.3: The graph of the dodecahedron
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This was the year 1856. However, a year before, Reverend Thomas
Penyngton Kirkman had already studied "Hamiltonian" circuits on
general polyhedra, and despite preceding Hamilton, these connected
2-regular spanning subgraphs were thereafter known as Hamiltonian
circuits.

One of the first momentous statements about Hamiltonian circuits
came in 1880 by Peter Guthrie Tait who made the following conjecture,
which if true would have implied the Four Colour Theorem, at the
time still a conjecture as well (see [5, 6] and [82]).

Conjecture 1.3.1 (Tait, 1880). Every 3-connected planar cubic graph is
Hamiltonian.

This was eventually disproved by Tutte more than 60 years later in
[97] by exhibiting what is known as the Tutte graph. In addition, Tutte
[95] also showed that every 4-connected planar graph is Hamiltonian.

When talking about Hamiltonicity in graphs, one naturally comes
to the conclusion that a graph having vertices with large degree is
more likely to be Hamiltonian. However, it would take quite a long
time for a general theorem about Hamiltonian graphs to appear. In
1952, Gabriel Andrew Dirac [21] proved that any graph G on more
than three vertices in which every vertex has degree at least |V(G)|/2

is Hamiltonian. Eight years later, Oystein Ore proved a more general
theorem which gives Dirac’s Theorem as a consequence.

Theorem 1.3.2 (Ore, 1960 [77]). Let G be a graph of order at least three. If
deg(u) + deg(v) ≥ |V(G)| for each pair u, v of non-adjacent vertices of G,
then G is Hamiltonian.

It was a decade later that our main area of interest was studied for
the first time, combining the study of perfect matchings with that of
Hamiltonicity. But before continuing, one might rightfully ask: what
do perfect matchings have to do with Hamiltonian circuits? Let G be
a graph of even order and let M1 and M2 be perfect matchings of
G. The subgraph of G induced by the edges in M1 and M2, denoted
by G[M1 ∪ M2], is made up of circuits (the edges in M14M2) and
isolated edges (the edges in M1 ∩M2). Moreover, if M1 ∩M2 is empty,
then G[M1 ∪M2] is a 2-factor of G, and if this 2-factor has exactly one
component, then G[M1 ∪M2] is a Hamiltonian circuit of G. Thus, a
Hamiltonian circuit of a graph G of even order can be seen as the
disjoint union of two perfect matchings of G.

In this sense, we study the following property. Let G be a graph ad-
mitting a perfect matching. We shall say that G has the
Perfect-Matching-Hamiltonian property, for short the PMH-property,
if every perfect matching of G belongs to a Hamiltonian circuit of G.
This means that for every perfect matching M of G, there exists an-
other perfect matching N of G such that M ∪ N forms a Hamiltonian
circuit of G. As far as we know, the first result with regards to the
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above mentioned property was in 1972. Michel Las Vergnas, in his
doctoral thesis, proved the following Ore-type condition.

Theorem 1.3.3 (Las Vergnas, 1972 [58]). Let G be a bipartite graph, with
partite sets U and V, such that |U| = |V| = |V(G)|

2 ≥ 2. If for each pair
of non-adjacent vertices u ∈ U and v ∈ V we have deg(u) + deg(v) ≥
|V(G)|

2 + 2, then G has the PMH-property.

The lowerbound |V(G)|
2 + 2 is best possible, as Figure 1.4 shows.
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Figure 1.4: A bipartite graph G is not necessarily PMH if deg(u) + deg(v) ≥
|V(G)|

2 + 1 for every pair of non-adjacent vertices

Some years later, Roland Häggkvist proved another theorem having
a similar flavour.

Theorem 1.3.4 (Häggkvist, 1979 [37]). Let G be a graph, such that the
order of G is even and at least four. If for each pair of non-adjacent vertices
u and v we have deg(u) + deg(v) ≥ |V(G)| + 1, then G has the PMH-
property.

However, graphs having the "PMH-property" were not initially
known in these terms. Not having access to Las Vergnas’ doctoral
thesis, we refer to [37]. In fact, in the introduction of his paper, Häg-
gkvist wrote that his aim was to study questions of the following
type: “Suppose that we are given a graph G and a set F of independent
paths in G. What conditions should be imposed on G and F in order for F to
be contained in a Hamiltonian circuit or path in G?”

If G would eventually admit a Hamiltonian circuit or path con-
taining F, he wrote that the graph is said to be F-Hamiltonian or
F-semihamiltonian, respectively. In his paper, he also referred to a graph
G being F-Hamiltonian or F-semihamiltonian for every perfect match-
ing F of G, as a HAC-graph (short for Hamiltonian alternating circuit
graph) or a HAP-graph (short for Hamiltonian alternating path graph),
respectively. For completeness’ sake, we remark that in [37], Häggkvist
used the word cycle instead of circuit, and for instance, HAC was short
for Hamiltonian alternating cycle. The difference between the usage of
cycles and circuits is explained in Subsection 1.4.1.

We also remark that Häggkvist considered mostly the case when
F is a perfect matching, and, in this case, the theorems were not
stated in terms of HAC-graphs (or HAP-graphs), but in terms of F
being a perfect matching and G eventually being F-Hamiltonian (or
F-semihamiltonian), after satisfying some set of conditions.

Before continuing, we would like to remark on the choice of the
word "pairing" when defining perfect matchings earlier on. In what
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follows, the word "pairing" shall represent a sort of "generalised"
perfect matching, and we let a pairing of a graph G to be a pairing of
the vertices of G regardless of whether the two vertices in each pair
are edges in G or not. Hence, a pairing of a graph G can also be seen
as a perfect matching of the complete graph on the same vertex set
of G. As far as we know, the word pairing was first used as defined
above in 2015, by the authors in [2].

The same authors say that a graph G (of even order) has the
Pairing-Hamiltonian property (for short the PH-property) if for every
pairing M of G there exists a perfect matching N of G such that
M ∪ N is a Hamiltonian circuit H of KG. In this sense, in order to find
something which can easily contrast with "the PH-property" and also
respects the definition of F-Hamiltonian (when F is a perfect match-
ing), the authors of [III] suggest using the PMH-property, which shall
be used hereafter instead of F-Hamiltonian and HAC. For simplicity
and continuity, we shall refer to a graph having the PMH-property as
a PMH-graph or just PMH.

In [37], a stronger conjecture than Theorem 1.3.4 was stated, and
this was eventually proven by Kenneth A. Berman. The statement of
the theorem is the following.

Theorem 1.3.5 (Berman, 1983 [7]). Let G be a graph of order at least three.
If deg(u) + deg(v) ≥ |V(G)|+ 1 for every pair of non-adjacent vertices u
and v, then every set of independent edges of G lies in a circuit.

In 2008, Denise Amar, Evelyne Flandrin and Grzegorz Gancarzewicz
gave a degree sum condition for three independent vertices under
which every matching of a graph lies in a Hamiltonian circuit (see
[4]). More literature about matchings being extended to Hamiltonian
circuits can be found in [48, 83, 102, 104].

In particular, in 1993, Frank Ruskey and Carla Savage [83] asked
whether every matching in the n-dimensional hypercubeQn, for n ≥ 2,
extends to a Hamiltonian circuit of Qn. This was in fact shown to be
true for n = 2, 3, 4 (see [29]) and for n = 5 (see [101]). Moreover,
Jiří Fink [29] also showed that Qn has the PH-property. This clearly
implies that Qn is a PMH-graph, and thus answering a conjecture
made by Germain Kreweras in 1996 (see [57]). More recently, Fink also
proved a weaker conjecture than that of Ruskey and Savage: he proved
that every matching of Qn can be extended to a 2-factor. This was
shown in [28], and was initially considered by Jennifer Vandenbussche
and Douglas Brent West in [99].

More results about the PH-property can be found in [2], the pa-
per where the term Pairing-Hamiltonian property was first used. In
particular, the authors show that the only cubic graphs having the
PH-property are the complete graph K4, the complete bipartite graph
K3,3, and the 3-dimensional cube Q3 (depicted in Figure 1.5).

They also study the PH-property in the Cartesian product of a
complete graph and a circuit (see Theorem 6.1.3), and the Cartesian
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Figure 1.5: The only cubic graphs having the PH-property

product of a path and the hypercube. Other extensions of the PH-
property for hypercubes are also studied.

Having a complete characterisation of which cubic graphs have
the PH-property, a natural pursuit would be to characterise 4-regular
graphs having the same property, as also suggested by the authors in
[2]. Although Seongmin Ok and Thomas Perrett privately communi-
cated to the authors of [2] the existence of an infinite family of quartic
graphs (discussed in more detail in Chapter 8) having the PH-property,
it was suggested to tackle this characterisation problem by looking at
the Cartesian product of two circuits Cp�Cq (Open Problem 3 in [2]).
In particular, the authors ask for which values of p and q does Cp�Cq

have the PH-property.
This problem is solved in Chapter 7 where we show that Cp�Cq has

the PH-property only when both p and q are equal to 4. In fact, the
graph C4�C4 is isomorphic to the 4-dimensional hypercube Q4, which
was already proved to have the PH-property in [29] together with all
other n-dimensional hypercubes. More precisely, we show that except
for Q4, Cp�Cq is not PMH (see Theorem 7.2.2).

Later on, in Chapter 8, we propose a class of quartic graphs on
two parameters n and k which we shall call the class of accordion
graphs A[n, k], and we show that the quartic graphs having the PH-
property mentioned by Adel Alahmadi et al. in [2] and discovered
by Ok and Perrett, are in fact members of the class of accordion
graphs (see Section 8.3.2). We also study the PMH-property in this
class of accordion graphs, and although a complete characterisation
of which accordion graphs admitting the above properties is still
elusive, we think that this is a rich class of graphs which can contain
many possible candidates admitting the PH-property or just the PMH-
property. Finally, we also give a complete characterisation of which
accordion graphs are circulant (see Section 8.5).

However, quartic graphs are not only interesting because of the
above characterisation problem to determine which quartic graphs
admit the PH-property or the PMH-property. As suggested above by
the theorems of Ore, Häggkvist and Las Vergnas, the more edges a
graph has, the greater the chances are for it to be Hamiltonian or PMH.
Let us just remark that up till now, we do not know of a sufficient
Ore-type condition for a graph to have the PH-property. In this sense,
we think that studying graphs having small degree with respect to the
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properties mentioned above is a challenging and quite an intriguing
endeavour.

For a smooth transition from cubic to quartic graphs, in Chapter 5

we study the PMH-property of the line graph of a cubic graph, which is
itself quartic. Hamiltonicity of a line graph L(G) is another extensively
studied property: in 1964, Anton Kotzig [55] proved that the existence
of a Hamiltonian circuit in a cubic graph is both a necessary and
sufficient condition for a partition of L(G) in two Hamiltonian circuits.
Furthermore, a necessary and sufficient condition for Hamiltonicity
in L(G) (for G not necessarily cubic) was proved in 1965 by Frank
Harary and Crispin St. John Alvah Nash-Williams [42], whilst in 1986

Carsten Thomassen [93] conjectured that every 4-connected line graph
is Hamiltonian. As one can see, the class of line graphs of connected
graphs is a compelling class of graphs for which a great deal is known
regarding Hamiltonicity—but not only. Indeed, it is also well-known
that if G is connected and has an even number of edges, then its line
graph admits a perfect matching (see Section 5.2 for more details).

In this spirit, in Chapter 5 we establish some sufficient conditions
for a graph G in order to guarantee that its line graph L(G) has the
PMH-property. In particular, we prove that this happens when G is (i)
a Hamiltonian graph with maximum degree at most 3 (see Section 5.2),
(ii) a complete graph (see Section 5.3.1), or (iii) an arbitrarily traceable
graph (see Section 5.3.2).

The techniques used in Chapter 5 to prove that the line graph of
a complete graph is PMH can be used to show that the line graph
of a balanced complete bipartite graph with at least 100 vertices is
PMH. However, by using different techniques we give a complete
characterisation of which line graphs of complete bipartite graphs
(not necessarily balanced) have, not only the PMH-property, but the
PH-property. This is done in Chapter 6 in which we link this problem
to a mathematical chess problem, since the line graph of a complete
bipartite graph is isomorphic to the rook graph, that is, the Cartesian
product of two complete graphs. We remark that the style of writing
in this chapter is given in a more informal way, as the topic dealt with
here can be easily understood by a wider audience. We thus took this
opportunity so that the thesis contains at least one chapter which is
more accessible to mathematics students and other interested people
who are not very much familiar with graph theory. Finally, in Chapter
9 we study the PMH-property with respect to cubic graphs and we
suggest a possible problem to be tackled, relating the PMH-property
(and similar properties) to 3-edge-colourings of Class I cubic graphs
(see Problem 9.1.2).
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1.4 definitions and notation

In this section, as already stated above, we give most of the definitions
and notation needed for the thesis. Having said this, we shall leave
out some specific definitions which are given later on when needed.
This section is divided into three subsections: general definitions and
notation needed throughout the whole thesis (see Subsection 1.4.1),
and particular definitions and notation needed for Part i and Part ii
(see Subsections 1.4.2 and 1.4.3, respectively).

1.4.1 General definitions and notation

In what follows, we use the letter G to denote a graph, unless otherwise
stated. The vertex set and edge set of a graph G are denoted by V(G)

and E(G), respectively. Unless otherwise stated, all graphs considered
are connected and simple, that is, without loops and parallel edges.
Graphs that may contain parallel edges are referred to as multigraphs.
The number of edges incident to a vertex u is said to be the degree of u,
denoted by deg(u). A vertex of degree 1 is called an end-vertex. Regular
graphs in which all the vertices are of degree 3, and 4, are referred to
as cubic and quartic graphs, respectively. On the other hand, graphs in
which all the vertices have degree at most 3 are called subcubic.

A matching of a graph G is a subset of E(G) such that any two of its
edges do not share a common vertex. For any positive integer k ≥ 0, a
k-factor of G is a spanning subgraph of G (not necessarily connected)
in which the degree of every vertex is k. In particular, a perfect matching
is the edge-set of a 1-factor, that is, a matching which covers all the
vertices.

The complete graph on n vertices is denoted by Kn, and a clique
in a graph G is a complete subgraph of G. Consequently, we may
sometimes refer to Kn as an n-clique. The complete bipartite graph with
partite sets of order m1 and m2 is denoted by Km1,m2 , and is said to be
balanced if m1 = m2.

A walk of length k (for some non-negative integer k) in a graph G is
a sequence v1, . . . , vk+1 of vertices of G with corresponding edge set
{vivi+1 : i ∈ [k]} (if k > 0). If v1 = vk+1, the walk is said to be closed
and is denoted by (v1, . . . , vk+1 = v1). A path on t vertices, denoted
by Pt, is a walk of length t − 1 in which all the vertices and edges
are distinct. We also refer to Pt as a t-path. A circuit of length k ≥ 3,
denoted by Ck, is a closed walk of length k in which all the vertices
are distinct, except for the first and last. For simplicity, we denote a
circuit of length k by (v1, . . . , vk), instead of (v1, . . . , vk+1 = v1). We
remark that in literature, Ck is most commonly referred to as the "cycle
graph" instead of the "circuit graph". However, as we shall see later
on, the word "cycle" shall be used for another definition, and so, to
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avoid confusion, we use the word "circuit" to denote Cn. The girth of a
graph is the length of a shortest circuit contained in the graph.

Let U ⊆ V(G). The graph on U whose edge set consists of those
edges of G having both end-vertices in U is denoted by G[U], and is
referred to as the induced subgraph of G on U. Now, let W ⊆ V(G)

such that U ∩W = ∅. The set consisting of all the edges having exactly
one end-vertex in U and one end-vertex in W is denoted by [U, W].
When W is equal to V(G)−U, the set [U, W] is denoted by ∂GU, or
equivalently ∂GW, and when it is obvious to which graph G we are
referring we just write ∂U. When U consists of only one vertex, say u,
we write ∂u, instead of ∂{u}, for simplicity.

Subgraphs can also be induced by sets of edges, and for M ⊆ E(G),
the edge-induced subgraph G[M] is the subgraph of G obtained by first
deleting from G the edges in E(G)−M and then deleting the resulting
isolated vertices.

For X ⊆ E(G), the graph G − X denotes the graph obtained by
deleting all the edges of X from G, but leaving the vertices and the
remaining edges intact. Similarly, for W ⊆ V(G), the graph G −W
denotes the graph obtained by deleting from G all the vertices in W
and all the edges incident to u, for every u ∈W. For simplicity, when
X = {e} and W = {u}, we denote G − X and G −W by G − e and
G− u, respectively, instead of G− {e} and G− {u}.

An edge-cut, or simply a cut, in a graph G is any set X ⊆ E(G)

such that G − X, denoted by X, has more components than G, and
no proper subset of X has this property, that is, for any X′ ⊂ X, X′

does not have more components than G. A graph G is said to be
k-edge-connected if the cardinality of the smallest edge-cut of G is at
least k. We refer to 2-edge-connected graphs as bridgeless. A cut X is
said to be odd if there exists a subset W of V(G) having odd cardinality
such that X = ∂W.

We also make use of the following standard operations on cubic
graphs known as Y-reduction (shrinking a triangle to a vertex), and of
its inverse, Y-extension (expanding a vertex to a triangle), illustrated
in Figure 1.6.

b b

b
b

Y -reduction

Y -extension

Figure 1.6: Y-operations

Finally we remark that for any integer n ≥ 1, the set {1, . . . , n}, shall
be denoted by [n].
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1.4.2 Definitions and notation used for Part i

Let G be a bridgeless cubic graph. The least number of odd circuits
in a 2-factor of G amongst all 2-factors of G, is called the oddness of
G and is denoted by ω(G). The oddness is clearly even since a cubic
graph has an even number of vertices. When M is a perfect matching
of G, M is a 2-factor of G. In this case, following the terminology used
for instance in [30], if M has ω(G) odd circuits, then M is said to be a
minimal perfect matching.

A graph is cyclically separable if it admits an edge-cut whose removal
separates two circuits. Clearly, a graph G is cyclically separable if
and only if it admits two disjoint circuits, and, in this case, G is said
to be cyclically k-edge-connected if no set of fewer than k edges sepa-
rates two circuits of G. The largest integer k for which G is cyclically
k-edge-connected is the cyclic connectivity of G.

Let G be a bridgeless cubic graph having a 2-edge-cut X. A
2-edge-reduction on X is the graph operation on G which creates two
new smaller bridgeless cubic graphs by joining the degree two vertices
in each component of G− X by an edge. Moreover, for a bridgeless
cubic graph G having a 3-edge-cut X, a 3-edge-reduction on X is the
graph operation on G which creates two new bridgeless cubic graphs
by introducing a new vertex to each of the components of G− X and
joining it to the degree two vertices in the respective component.

In the opposite direction, we define the following standard operation
on graphs. Let G1 and G2 be two bridgeless cubic graphs, and let e1 and
e2 be two edges such that e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2).
A 2-cut-connection on e1 and e2 is a graph operation that consists
of constructing the new graph (G1 − e1) ∪ (G2 − e2) ∪ {u1u2, v1v2}.
Clearly, the graph obtained is also bridgeless and cubic. Moreover,
let w1 ∈ V(G1) and w2 ∈ V(G2) such that the vertices adjacent to w1

are x1, y1, z1, and those adjacent to w2 are x2, y2, z2. A 3-cut-connection
(sometimes also known as the star product, see for instance [33]) on w1

and w2 is a graph operation that consists of constructing the new graph
(G1 −w1) ∪ (G2 − w2) ∪ {x1x2, y1y2, z1z2}. It is clear that the resulting
graph is also bridgeless and cubic. The 3-edge-cut {x1x2, y1y2, z1z2} is
referred to as the principal 3-edge-cut (see for instance [31]).

Unlike 3-edge-reductions, a different labelling of the vertices in G1

and G2 can result in a completely different graph when applying a
3-cut-connection on w1 and w2. In what follows, it is not important
how the adjacencies in the principal 3-edge-cut look like, and we just
say that the resulting graph was obtained by a 3-cut-connection on w1

and w2, occasionally denoted by G1(w1) ∗ G2(w2). A similar argument
can be applied to 2-edge-reductions.

A cycle is an even subgraph of the graph, that is, a subgraph with
the degree of all its vertices being even. Observe that when a graph is
cubic, any cycle of the graph is a collection of vertex-disjoint circuits.
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A k-cycle cover is a cycle cover consisting of at most k cycles. A cycle
cover C of a graph G is said to be a cycle double cover if every edge
of G is contained in exactly two cycles of C. The (total) length of a
cycle cover C is the sum of the lengths of all the circuits making up
the cycles in C.

An edge-colouring of a graph G is a function that assigns a colour to
each edge of G. If edges having a common end-vertex are assigned dis-
tinct colours, then the edge-colouring is called a proper edge-colouring.
Moreover, if a proper edge-colouring uses k colours we say that graph
G is k-edge-colourable. The minimum positive integer k such that G is
k-edge-colourable is said to be the chromatic index of the graph G and
denoted by χ′(G).

Let S be a finite set of colours containing at least two distinct colours
a and b. In an edge-colouring of E(G), if e is an edge assigned colour
a, the (a, b)-Kempe chain of G containing e is the maximal connected
subset of E(G) which contains e and whose edges are all coloured
either a or b.

A classical result by Vadim Georgievich Vizing [100] naturally di-
vides cubic graphs in two classes according to the value of the chro-
matic index with respect to the maximum degree ∆. A simple graph
G has χ′(G) either equal to ∆(G) or to ∆(G) + 1, and is said to be a
Class I or Class II graph, respectively. In case of a multigraph G, we
say that G is Class I if χ′(G) = ∆(G), and Class II, otherwise.

The bridgeless cubic graphs having chromatic index 4 are referred
to as snarks, and we denote the set of all snarks by S . We remark that
in literature one may find a stronger and more refined definition of
snarks, which refers only to those graphs in S which are cyclically
4-edge-connected and with girth at least 5. In this thesis we shall use
the broader definition of snarks and refer to the more specifically
defined snarks as non-trivial snarks.

A dangling edge is an edge having exactly one end-vertex. The sub-
graph of G with vertex set U resulting by considering G[U] together
with the dangling edges arising from ∂U (and having end-vertices
in U), is said to be a k-pole, where k = |∂U|. A dangling edge with
end-vertex x is said to be joined to a vertex y, if the dangling edge is
deleted and x and y are made adjacent. In a similar way, two dangling
edges are joined if they are both deleted and their end-vertices are
made adjacent.

1.4.2.1 Other definitions and notation used for Part i

Finally, we give some non-graph-theoretical definitions and standard
results needed for Chapter 2. Let x1, . . . , xk be k vectors in Rn. A
convex combination of x1, . . . , xk is a vector equal to ∑k

i=1 αixi, where
the coefficients αi are non-negative and real-valued, and ∑k

i=1 αi = 1.
The convex hull of a set X ⊆ Rn is the set of all convex combinations of
vectors in X. A polytope is the convex hull of a finite number of vectors
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in Rn, and a vector x of a polytope P is said to be a polytope vertex if
it cannot be expressed as a convex combination of elements belonging
to P − {x}. We remark that a polytope P can be represented as
{x ∈ Rn : Ax ≤ b}, for some appropriate matrices A and b, whereby
Ax ≤ b we mean that the result obtained after performing the matrix
multiplication of the ith row of the matrix A to the vector x is less than
the ith entry of b. In this sense, it is widely known that if A and b are
rational, or in other words have rational entries, then every polytope
vertex of P is rational. Furthermore, it is also well-known that if v is a
polytope vertex of the polytope P ⊂ Rn, with the latter represented
as {x ∈ Rn : Ax ≤ b}, then there are n rows of A such that the result
obtained after performing the matrix multiplication of such rows to
the vector v is exactly equal to the corresponding entry in b. In other
words, there are n constraints valid for P which are tight at v.

1.4.3 Definitions and notation used for Part ii

A circuit passing through all vertices of a graph G is a Hamiltonian
circuit and if such a circuit exists then G is said to be Hamiltonian.
Similarly, a Hamiltonian path is a path passing through all the vertices
of a graph.

A tour of G is a closed walk having no repeated edges, and an Euler
tour is one that traverses all the edges of G. In the latter case, the graph
is said to be Eulerian. A dominating tour of G is a tour in which every
edge of G is incident with at least one vertex of the tour. In particular,
a dominating tour which is 2-regular is referred to as a dominating
circuit. In general, if a walk does not pass through some vertex v, we
say that v is untouched or uncovered.

The line graph L(G) of a graph G is the graph whose vertices corre-
spond to the edges of G, and two vertices of L(G) are adjacent if the
corresponding edges in G are incident to a common vertex.

For any graph G, KG denotes the complete graph on the same vertex
set V(G) of G. Let G be of even order. A perfect matching of KG is
said to be a pairing of G. Given a pairing M of G, we say that M can
be extended to a Hamiltonian circuit H of KG if we can find another
perfect matching N of G such that M ∪ N = E(H), where E(H) is the
set of edges of H. By using this terminology, the authors of [2] say that
G has the Pairing-Hamiltonian property (or, for short, the PH-property),
if every pairing M of G can be extended to a Hamiltonian circuit
H of KG, where E(H)−M ⊆ E(G). For simplicity, we shall also say
that a graph G is PH if it has the PH-property. As mentioned before,
on a similar flavour, the authors of [III] define the Perfect-Matching-
Hamiltonian property (or, for short, the PMH-property) for a graph G
admitting a perfect matching, if every perfect matching of G can be
extended to a Hamiltonian circuit of KG, which in this case, would also
be a Hamiltonian circuit of G itself. We remark that we only consider
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graphs admitting a perfect matching in order to avoid trivial cases.
Henceforth, if a graph has the Perfect-Matching-Hamiltonian property,
we say that it is a PMH-graph or simply that it is PMH. It can be easily
seen that if a graph does not have the PMH-property, then it surely
would not have the PH-property, although the converse is not true. In
the sequel we shall also be referring to the following observation.

Remark 1.4.1. If a graph G contains a spanning subgraph which has
the PH-property, then the graph G itself has the PH-property.

The Cartesian product G�H of two graphs G and H is a graph whose
vertex set is the Cartesian product V(G)×V(H) of V(G) and V(H).
Two vertices (ui, vj) and (uk, vl) are adjacent precisely if ui = uk and
vjvl ∈ E(H) or uiuk ∈ E(G) and vj = vl . Thus, V(G�H) is equal to

{(ur, vs) : ur ∈ V(G) and vs ∈ V(H)},

and E(G�H) is equal to

{(ui, vj)(uk, vl) : ui = uk, vjvl ∈ E(H) or uiuk ∈ E(G), vj = vl}.

We refer the reader to [12] for further definitions and notation not
explicitly stated in the above subsections.



Part I

P E R F E C T M AT C H I N G S I N S N A R K S

“It’s a Snark!” was the sound that first came to their ears,
And seemed almost too good to be true.

Then followed a torrent of laughter and cheers:
Then the ominous words “It’s a Boo–”

Then, silence. Some fancied they heard in the air
A weary and wandering sigh

That sounded like “–jum!” but the others declare
It was only a breeze that went by.

They hunted till darkness came on, but they found
Not a button, or feather, or mark,

By which they could tell that they stood on the ground
Where the Baker had met with the Snark.

In the midst of the word he was trying to say,
In the midst of his laughter and glee,

He had softly and suddenly vanished away—
For the Snark was a Boojum, you see.

—lewis carroll, The Hunting of the Snark [15]

Figure 1.7: Illustration by Henry Holiday [15]



2
T H E P E R F E C T M AT C H I N G P O LY T O P E

In some parts of Chapters 3 and 4 the notion of the perfect matching
polytope and related ideas are used or cited. In this sense we believe
that a short introductory chapter dedicated to this idea would be
appropriate.

For a matching M of G, let χM be the corresponding characteristic
vector (with dimension |E(G)|), such that for any e ∈ E(G)

χM(e) =

1 if e ∈ M,

0 otherwise.

The matching polytope M(G) of G is the convex hull of {χM :
M a matching of G}. Similarly, the perfect matching polytope P(G) of G
is the convex hull of {χM : M a perfect matching of G}. In 1965, Jack
Robert Edmonds [22] managed to describe the matching polytope and
the perfect matching polytope of a graph in terms of linear inequalities.
The two statements are the following.

Theorem 2.0.1 (Edmonds, 1965 [22]). The matching polytope of a graph
G is the set of all vectors w ∈ R|E(G)| that satisfy:

(1a) w(e) ≥ 0, for each e ∈ E(G),

(1b) w(∂v) ≤ 1, for each v ∈ V(G), and

(1c) w(E(G[U])) ≤
⌊ 1

2 |U|
⌋
, for each U ⊆ V(G) of odd cardinality.

Theorem 2.0.2 (Edmonds, 1965 [22]). The perfect matching polytope of a
graph G is the set of all vectors w ∈ R|E(G)| that satisfy:

(2a) w(e) ≥ 0, for each e ∈ E(G),

(2b) w(∂v) = 1, for each v ∈ V(G), and

(2c) w(∂U) ≥ 1, for each U ⊆ V(G) of odd cardinality.

We note that for any E′ ⊆ E(G), w(E′) = ∑e∈E′ w(e), where w(e) is
the value of w at the entry corresponding to the edge e.

Here we only give a proof of Theorem 2.0.2 as we shall not be
making use of the matching polytope in what follows. The proof we
give is based on a short direct proof given by Alexander Schrijver [87].

18
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Proof of Theorem 2.0.2. Let W(G) be the set of all vectors w ∈ R|E(G)|

satisfying inequalities (2a), (2b) and (2c) in the statement of Theo-
rem 2.0.2. We first remark that it can be easily seen that W(G) is a
polytope. Next, suppose the theorem is not true and let G be a min-
imal counterexample with respect to |V(G)|+ |E(G)|. Every perfect
matching of G satisfies the three inequalities mentioned above and
so P(G) ⊆ W(G). Therefore, by our assumption,W(G) 6⊆ P(G). We
remark that G is connected and of even order, otherwise we would
have thatW(G) = ∅ = P(G), a contradiction.

Let w be a polytope vertex of W(G) not belonging to P(G). We
claim that for every edge e ∈ E(G), 0 < w(e) < 1, for if there exists
an edge e = uv such that w(e) = 0 or w(e) = 1, the graphs G − e
or G − {u, v} would contradict the minimality of |V(G)| + |E(G)|,
respectively. Consequently, the minimum degree of G is at least 2,
implying that |E(G)| ≥ |V(G)|. Moreover, if G is a circuit, it can be
easily seen thatW(G) = P(G), and so |E(G)| > |V(G)|.

Since w is a polytope vertex, it must satisfy |E(G)| linearly indepen-
dent inequalities from (2a), (2b) and (2c), with equality. Furthermore,
since 0 < w(e) < 1 for every edge e ∈ E(G), and since there are
|V(G)| inequalities of type (2b), w satisfies at least |E(G)| − |V(G)|
inequalities of type (2c) with equality. Therefore, there exists a set
U1 ⊆ V(G) of odd cardinality such that 3 ≤ |U1| ≤ |V(G)| − 3 and
w(∂U1) = 1. Let U2 = V(G)−U1 and, for each i ∈ [2], let Gi be the
graph obtained from G after contracting Ui into a single vertex ui.
We remark that G1 and G2 may contain parallel edges, and that the
corresponding edges in ∂U1 and ∂u1 are referred to by the same name
and treated as the same edge, for simplicity. The same applies for ∂U2

and ∂u2.
For each i ∈ [2], let the vector wi in R|E(Gi)| be the restriction of

w to the edges in Gi. Since w(∂GU1) = w(∂GU2) = 1, we claim that
wi ∈ W(Gi). Inequalities (2a) and (2b) are easily satisfied. So let X
be a subset of V(Gi) of odd cardinality. If ui 6∈ X, then the inequality
of type (2c) clearly holds for wi. So assume ui ∈ X and let Y = (X−
{ui}) ∪Ui. Since Y is of odd cardinality and w ∈ W(G), w(∂GY) ≥
1. Consequently, wi(∂Gi X) ≥ 1 since w(∂GY) is equal to wi(∂Gi X),
proving our claim.

Thus, for each i ∈ [2], the vector wi belongs to P(Gi) due to the
minimality of G, and so can be expressed as a convex combination of
characteristic vectors of perfect matchings of Gi. Moreover, since w is
rational (see Subsection 1.4.2), wi is rational as well, and so there exist
K perfect matchings Mi,1, . . . , Mi,K of Gi (not necessarily distinct) such
that wi =

1
K ∑K

j=1 χMi,j .
Now, for every edge e ∈ ∂GUi, or equivalently ∂Gi ui, we have

w1(e) = w(e) = w2(e), and so the number of indices j ∈ {1, . . . , K}
for which e belongs to M1,j (or equivalently M2,j) is K · w(e). Hence,
without loss of generality, we can assume that for each j ∈ {1, . . . , K},



2.1 fractional perfect matchings 20

M1,j ∩M2,j ∩ ∂GU1 6= ∅. As a consequence, for each j ∈ {1, . . . , K} we
can define Mj = M1,j ∪M2,j, which is a perfect matching of G, and
as a result, w = 1

K ∑K
j=1 χMj . However this means that w ∈ P(G), a

contradiction. �

We remark that when considering a bipartite graph G, the perfect
matching polytope of G is equal to those vectors in R|E(G)| obeying
only the statements (2a) and (2b) from Theorem 2.0.2. In this case, the
matching polytope of G is equal to P(G) together with those vectors w
from R|E(G)| having w(e) ≥ 0 for every edge e ∈ E(G), and w(∂v) < 1
for every vertex v ∈ V(G).

2.1 fractional perfect matchings

In Chapter 3 we shall use the notion of fractional perfect matchings.
Having the above mentioned ideas in place, it is now very easy to
define what a fractional perfect matching is. The set of all fractional
perfect matchings of a graph G is equal to the perfect matching poly-
tope P(G), and so a fractional perfect matching is a vector in P(G). Two
recent papers about fractional perfect matchings in bridgeless cubic
graphs are [53] and [68], where in particular, the authors of the former
paper study the maximum possible size of the union of a given num-
ber of perfect matchings in a bridgeless cubic graph. More precisely
they show that by using fractional perfect matchings, any bridgeless
cubic graph of size m, admits two perfect matchings that cover at least
3m/5 edges, and three perfect matchings that cover at least 27m/35 edges.
Without going into too much detail, we remark that since any two
perfect matchings of the Petersen graph intersect in exactly one edge,
and any three perfect matchings of the same graph do not intersect,
the value arising from the union of two perfect matchings is best
possible, whilst the other value for three perfect matchings is very
close to being so.

Finally, we suggest [85] for more general information about frac-
tional notions in graph theory.



3
A N E Q U I VA L E N T F O R M U L AT I O N O F T H E
FA N – R A S PAU D C O N J E C T U R E A N D R E L AT E D
P R O B L E M S

This chapter is based on a joint work with Giuseppe Mazzuoccolo [I].

3.1 introduction

One of the aims of this chapter is to study the behaviour of perfect
matchings in cubic graphs, more specifically the union of two perfect
matchings (see Section 3.3 and Section 3.4). We relate this to well-
known conjectures, in particular: the Berge–Fulkerson Conjecture and
the Fan–Raspaud Conjecture.

The Berge–Fulkerson Conjecture [32] (see also Conjectures 1.2.1 and
1.2.2) states that every bridgeless cubic graph G admits six perfect
matchings M1, . . . , M6 such that any edge of G belongs to exactly two
of them.

⇒
Berge–Fulkerson

Conjecture ⇒
Fan–Raspaud

Conjecture ⇒Conjecture 3.1.2
Prop 3.1.4

Conjecture 3.1.3

Figure 3.1: Conjectures mentioned and how they are related

Here, we also state other (possibly weaker) conjectures implied by
the above conjecture.

Conjecture 3.1.1 (Fan–Raspaud Conjecture, 1994 [26]). Every bridge-
less cubic graph admits three perfect matchings M1, M2, M3 such that
M1 ∩M2 ∩M3 = ∅.

In the sequel we will refer to three perfect matchings satisfying
Conjecture 3.1.1 as an FR-triple. We can see that Conjecture 3.1.1 is
immediately implied by the Berge–Fulkerson Conjecture, since we
can take any three perfect matchings out of the six which satisfy
Berge–Fulkerson Conjecture. A still weaker statement implied by the
Fan–Raspaud Conjecture is the following.

Conjecture 3.1.2 (Máčajová and Škoviera, 2005 [63]). For each bridgeless
cubic graph G, there exist two perfect matchings M1 and M2 such that
M1 ∩M2 contains no odd-cut of G.

We claim that any two perfect matchings out of the three in an
FR-triple have no odd-cut in their intersection, in other words that
Conjecture 3.1.1 implies Conjecture 3.1.2. For, suppose not. Then,
without loss of generality, suppose that M2 ∩M3 contains an odd-cut

21
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X. Hence, since every perfect matching has to intersect an odd-cut
at least once, |M1 ∩ (M2 ∩ M3)| ≥ |M1 ∩ X| ≥ 1, a contradiction,
since we assumed that M1 ∩M2 ∩M3 = ∅. In relation to the above,
Mazzuoccolo proposed the following conjecture.

Conjecture 3.1.3 (S4-Conjecture [69]). For any bridgeless cubic graph G,
there exist two perfect matchings such that the deletion of their union leaves
a bipartite subgraph of G.

For reasons which shall be obvious in Section 3.3 we let such a pair of
perfect matchings be called an S4-pair of G and refer to Conjecture 3.1.3
as the S4-Conjecture. We proceed by first showing that this conjecture
is implied by Conjecture 3.1.2, and so, by what we have said so far, is a
consequence of the Berge–Fulkerson Conjecture. In particular, we can
see the S4-Conjecture as Conjecture 3.1.2 restricted to odd-cuts ∂V(C),
where C is an odd circuit of G.

Proposition 3.1.4. Conjecture 3.1.2 implies the S4-Conjecture.

Proof. Let M1 and M2 be two perfect matchings such that their inter-
section does not contain any odd-cut. Consider M1 ∪M2, and suppose
that it contains an odd circuit C. Then all the edges of ∂V(C) belong to
M1 ∩M2. If ∂V(C) has exactly two components, then ∂V(C) is an odd-
cut belonging to M1∩M2, a contradiction. Therefore, ∂V(C) must have
more than two components, say k, denoted by C1, C2, . . . , Ck, where the
first component C1 is the circuit C. Let [C1, Cj] denote the set of edges
between C1 and Cj, for j ∈ {2, . . . , k}. Since ∑k

j=2 |[C1, Cj]| = |∂V(C)|
is odd, there exists at least one j′ for some j′ ∈ {2, . . . , k}, such that
|[C1, Cj′ ]| is odd. However, [C1, Cj′ ] is an odd-cut which belongs to
M1 ∩M2, a contradiction.

3.2 statements equivalent to the fan–raspaud conjec-
ture

Let M1, . . . , Mt be a list of perfect matchings of G, and let a ∈ E(G). We
denote the number of times a occurs in this list by νG[a : M1, . . . , Mt].
When it is obvious to which list of perfect matchings or which graph
we are referring, we simply denote this as ν(a) and refer to ν(a) as
the frequency of a. We shall sometimes need to refer to the frequency
of an ordered list of edges, say (a, b, c). This is done by saying that the
frequency of (a, b, c) is (i, j, k), for some integers i, j, k. Mkrtchyan et
al. [75] showed that the Fan–Raspaud Conjecture, that is, Conjecture
3.1.1, is equivalent to the following.

Conjecture 3.2.1. [75] For each bridgeless cubic graph G, any edge a ∈
E(G) and any i ∈ {0, 1, 2}, there exist three perfect matchings M1, M2, M3

such that M1 ∩M2 ∩M3 = ∅ and νG[a : M1, M2, M3] = i.

In other words they show that if a graph has an FR-triple then, for
every i in {0, 1, 2}, there exists an FR-triple in which the frequency
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of a pre-chosen edge is exactly i. In the same paper, Mkrtchyan et al.
state the following seemingly stronger version of the Fan–Raspaud
Conjecture.

Conjecture 3.2.2. [75] Let G be a bridgeless cubic graph, w a vertex of G
and i, j, k three integers in {0, 1, 2} such that i + j + k = 3. Then, G has an
FR-triple in which the edges incident to w in a given order have frequencies
(i, j, k).

This means that we can prescribe the frequencies to the three edges
incident to a given vertex. At the end of [75], the authors remark that
it would be interesting to show whether Conjecture 3.2.2 is equivalent
to the Fan–Raspaud Conjecture. Here, we prove that this is actually
the case.

Theorem 3.2.3. Conjecture 3.2.2 is equivalent to the Fan–Raspaud Conjec-
ture.

Proof. Since the Fan–Raspaud Conjecture is equivalent to Conjecture
3.2.1, it suffices to show the equivalence of Conjectures 3.2.1 and 3.2.2.
The latter clearly implies the former, so assume Conjecture 3.2.1 is
true and let a, b, c be the edges incident to w such that the frequencies
(i, j, k) are to be assigned to (a, b, c). It is sufficient to show that there
exist two FR-triples in which the frequencies of (a, b, c) are (2, 1, 0) in
one FR-triple (Case 1 below) and (1, 1, 1) in the other FR-triple (Case
2 below).

u4

u1 u2

u3

G1 G2

u3

a1

b1
c1

a2

c2
b2

u4

Figure 3.2: The graphs K4 and K∗4 in Case 1

Case 1. Let u1, u2, u3, u4 be the vertices of the complete graph K4 as in
Figure 3.2. Consider two copies of G, and let the vertex w in the ith copy
of G be denoted by wi, for each i ∈ [2]. We apply a 3-cut-connection
on ui and wi, for each i ∈ [2]. With reference to this resulting graph,
denoted by K∗4 , we refer to the copy of the graph G−w at u1 as G1, and
to the corresponding edges a, b, c as a1, b1, c1, respectively. The graph
G2 and the edges a2, b2, c2 are defined in a similar way, such that b1 and
b2 are adjacent, and also c1 and c2, as Figure 3.2 shows. Note also that
a1 and a2 coincide in K∗4 . By our assumption, there exists an FR-triple
M1, M2, M3 of K∗4 in which the edge u3u4 has frequency 2. Without loss
of generality, let u3u4 ∈ M1 ∩M2. Then, a1 (and so a2) must belong
to M1 ∩M2. Clearly, a1 (and so a2) cannot belong to M3, and so the
principal 3-edge-cuts with respect to G1 and G2 do not belong to M3.
If b1 ∈ M3, then we are done, as then M1, M2, M3 restricted to G1,
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together with a and b having the same frequencies as a1 and b1, induce
an FR-triple of G such that the frequencies of (a, b, c) are (2, 1, 0). So
suppose c1 ∈ M3. Then, b2 ∈ M3, and so by a similar argument applied
to G2 and the corresponding edges, M1, M2, M3 induce an FR-triple in
G such that the frequencies of (a, b, c) are (2, 1, 0).

e

G1

G2 G3

G4

a1

b1

c3

a4

c2

c1

a2 a3

u2

u4

e

u1

u3

b3b2

b4

c4

Figure 3.3: The graphs P and P∗ in Case 2

Case 2. Let P be the Petersen graph and {u1, u2, u3, u4} be a maximum
independent set of vertices in P as in Figure 3.3. Consider four copies
of G. Let the vertex w in the ith copy of G be denoted by wi, for each
i ∈ [4]. Let P∗ be the graph obtained by applying a 3-cut-connection
on each ui and wi, as shown in Figure 3.3. Similar to Case 1 we refer
to the copy of G− w at ui as Gi and to the corresponding edges a, b, c
as ai, bi, ci, respectively. Since we are assuming that Conjecture 3.2.1
is true, we can consider an FR-triple M1, M2, M3 of P∗ in which the
edge e incident to both a1 and a4 has frequency 2. Without loss of
generality, let the two perfect matchings containing e be M1 and M2.
The edges a1, c2, c3, a4 are not contained in M1 and neither M2, since
they are all incident to e, and so no principal 3-edge-cut leaving Gi
belongs to M1 or M2. Then, M1 and M2 induce perfect matchings of P
(clearly distinct), and since there are exactly two perfect matchings of
P containing e, we can assume that M1 contains {e, b1, a2, a3, b4}, and
M2 contains {e, c1, b2, b3, c4}.

If the third perfect matching M3 induces a perfect matching of the
Petersen graph, then the induced perfect matching cannot be one of
the perfect matchings induced by M1 and M2 in P. Hence, since every
two distinct perfect matchings of P intersect in exactly one edge of
P, there exists at least one Gi such that the frequencies of (ai, bi, ci)

are (1, 1, 1) and so, M1, M2, M3 restricted to Gi, together with a, b, c
having the same frequencies as ai, bi, ci, induce an FR-triple in G with
the needed property.

Therefore, suppose M3 contains the principal 3-edge-cut of one of
the Gis, say G1 by symmetry of P∗. Thus, a1, b1, c1 belong to M3. The
perfect matching M3 can intersect the principal 3-edge-cut at G2 either
in b2 or c2 (not both). If c2 ∈ M3, we are done by the same reasoning
above but now applied to G2 and the corresponding edges. So suppose
b2 ∈ M2 ∩ M3. Then, clearly c4 ∈ M3, and M3 can only intersect
the principal 3-edge-cut at G3 in c3, implying that the frequencies
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of (a3, b3, c3) are (1, 1, 1) in P∗ and that M1, M2, M3 restricted to G3,
together with a, b, c having the same frequencies as a3, b3, c3, induce
an FR-triple in G with the needed property.

In [75] it is also shown that a minimal counterexample to Conjecture
3.2.2 is cyclically 4-edge-connected. It remains unknown whether
a smallest counterexample to the original formulation of the Fan–
Raspaud Conjecture has the same property. Indeed, we only prove
that the two assertions are equivalent, but we cannot say whether a
possible counterexample to Conjecture 3.2.2 is itself a counterexample
to the original formulation.

3.3 statements equivalent to the s4-conjecture

As already stated in Chapter 1 all conjectures presented in Section
3.1 are implied by Conjecture 1.2.3, that is, the Petersen Colouring
Conjecture by Jaeger. In order to understand more what it states, we
need the following definitions. Let G and H be two cubic graphs. An
H-colouring of G is a proper edge-colouring f of G with edges of H,
such that for each vertex u ∈ V(G), there exists a vertex v ∈ V(H) with
f (∂Gu) = ∂Hv. If G admits an H-colouring, then we write H ≺ G. The
importance of H-colourings is mainly due to Jaeger’s Conjecture which
states that for each bridgeless cubic graph G, one has P ≺ G (where P
is again the Petersen graph). Although beyond the scope of this thesis,
we remark that this conjecture has an equivalent formulation due to a
result by Jaeger [50] shown in 1985, where he showed that for any cubic
graph G, P ≺ G if and only if G admits a normal 5-edge-colouring.
For recent results on Petersen-colourings, normal edge-colourings and
necessary definitions, see for instance [8, 9, 27, 39, 72, 73, 74, 79, 84].

In this chapter we consider S4-colourings of bridgeless cubic graphs,
where S4 is the multigraph shown in Figure 3.4. Since S4 is not cubic,
we remark that in an S4-colouring of a bridgeless cubic graph G, the
above definition of H-colourings applies, but for all vertices u ∈ V(G),
∂Gu is not mapped to ∂S4 z, where z is the vertex of degree 1 in S4 (see
Figure 3.4).

g3 g0g4
z

g1

g2

Figure 3.4: The multigraph S4

The following proposition shows why we choose to refer to a pair
of perfect matchings whose deletion leaves a bipartite subgraph as an
S4-pair.

Proposition 3.3.1. Let G be a bridgeless cubic graph, then S4 ≺ G if and
only if G has an S4-pair.
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Proof. Along the entire proof we denote the edges of S4 by using the
same labelling as in Figure 3.4. Let M1 and M2 be an S4-pair of G. The
graph induced by M1 ∪M2, denoted by G[M1 ∪M2], is made up of
even circuits and isolated edges, whilst the bipartite graph M1 ∪M2

is made up of even circuits and paths. We obtain an S4-colouring of G
as follows:

• the isolated edges in M1 ∪M2 are given colour g0;

• the edges of the even circuits in M1 ∪ M2 are properly edge-
coloured with g3 and g4; and

• the edges of the paths and even circuits in M1 ∪M2 are properly
edge-coloured with g1 and g2.

One can clearly see that this gives an S4-colouring of G. Conversely,
assume that S4 ≺ G. We are required to show that there exists an
S4-pair of G. Let M1 be the set of edges of G coloured g3 and g0,
and let M2 be the set of edges of G coloured g4 and g0. If e and f
are edges of G coloured g3 (or g4) and g0, respectively, then e and
f cannot be adjacent, otherwise we contradict the S4-colouring of G.
Thus, M1 and M2 are matchings. Next, we show that they are in fact
perfect matchings. This follows since for every vertex v of G, f (∂Gv)
is equal to {g1, g3, g4}, or {g2, g3, g4}, or {g0, g1, g2}. Thus, M1 ∪M2

is the graph induced by the edges coloured g1 and g2, which clearly
cannot induce an odd circuit.

Hence, by the previous proof, Conjecture 3.1.3 can be stated in terms
of S4-colourings, which clearly shows why we choose to refer to it as
the S4-Conjecture. In analogy to what we did for FR-triples, here we
prove that for S4-pairs we can prescribe the frequency of an edge and
the frequencies of the edges leaving a vertex (the proof of the latter
implies also that we can prescribe the frequencies of the edges of each
3-cut). Consider the following conjecture, analogous to Conjecture
3.2.1.

Conjecture 3.3.2. For any bridgeless cubic graph G, any edge a ∈ E(G)

and any i ∈ {0, 1, 2}, there exists an S4-pair, say M1 and M2, such that
νG[a : M1, M2] = i.

In Theorem 3.3.3 we show that the latter conjecture is actually
equivalent to the S4-Conjecture. The proof given in [75] to show the
equivalence of the Fan–Raspaud Conjecture and Conjecture 3.2.1 is
very similar to the proof we give here for the analogous case for the
S4-Conjecture, however we need a slightly more complicated tool in
our context.

Theorem 3.3.3. Conjecture 3.3.2 is equivalent to the S4-Conjecture.
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Proof. Clearly, Conjecture 3.3.2 implies the S4-Conjecture so it suffices
to show the converse. Assume the S4-Conjecture to be true and let
f1, f2, f3 be three consecutive edges of K4 inducing a path. Consider
two copies of G. Let the edge a in the ith copy of G be denoted by
ai, for each i ∈ [2]. Let K′4 be the graph obtained by applying a 2-cut-
connection on fi and ai for each i ∈ [2]. We refer to the copy of the
graph G− a on fi as Gi.

G1

G2

Figure 3.5: An edge in P transformed into the corresponding structure in H

Let {e1, . . . , e15} be the edges of the Petersen graph and let T1, . . . , T15

be fifteen copies of K′4. For every i ∈ [15], apply a 2-cut-connection on
ei and the edge f3 of Ti. Consequently, every edge ei of the Petersen
graph is transformed into the structure Ei as in Figure 3.5, and we
refer to G1 and G2 on Ei as Gi

1 and Gi
2, respectively. Let H be the

resulting graph. By our assumption, there exists an S4-pair of H, say
M1 and M2, which induces a pair of two distinct perfect matchings
in P, say N1 and N2, respectively. There exists an edge of P, say ej, for
some j ∈ [15], such that νP[ej : N1, N2] = 1, since every two distinct
perfect matchings of P have exactly one edge of P in common. Hence,
the restriction of M1 and M2 to the edge set of Gj

1, together with the
edge a having the same frequency as ej, gives rise to an S4-pair of G
in which the frequency of a is 1.

Moreover, there exists an edge of P, say ek, for some k ∈ [15], such
that νP[ek : N1, N2] = 2. Restricting M1 and M2 to the edge set of Gk

1,
together with the edge a having the same frequency as ek, gives rise to
an S4-pair of G, in which the frequency of a is 2. Also, the restriction
of M1 and M2 to the edge set of Gk

2 gives rise to an S4-pair of G (Gk
2

together with a), in which the frequency of a is 0, because if not, then
there exists an odd circuit in G, say of length α, passing through a
and having all its edges with frequency 0. However, this would mean
that there is an odd circuit of length α + 4 on Ek in M1 ∪M2 (in H), a
contradiction.

As in Section 3.2, we state an analogous conjecture to Conjecture
3.2.2, but for S4-pairs.

Conjecture 3.3.4. Let G be a bridgeless cubic graph, w a vertex of G and
i, j, k three integers in {0, 1, 2} such that i + j + k = 2. Then, G has an
S4-pair in which the edges incident to w in a given order have frequencies
(i, j, k).
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The following theorem shows that this conjecture is actually equiv-
alent to Conjecture 3.3.2, and so to the S4-Conjecture by Theorem
3.3.3.

Theorem 3.3.5. Conjecture 3.3.4 is equivalent to the S4-Conjecture.

Proof. Since the S4-Conjecture is equivalent to Conjecture 3.3.2, it
suffices to show the equivalence of Conjectures 3.3.2 and 3.3.4. Clearly,
Conjecture 3.3.4 implies Conjecture 3.3.2 and so we only need to
show the converse. Let a, b, c be the edges incident to w such that the
frequencies (i, j, k) are to be assigned to (a, b, c). We only need to prove
the case when (i, j, k) is equal to (1, 1, 0), as all other cases follow from
Conjecture 3.3.2.

aw

d

cw

bw

G−w

Figure 3.6: The graph G(w) ∗ P(v)

Consider the graph G(w) ∗ P(v), where P is the Petersen graph and
v is any vertex of P. We refer to the edges corresponding to a, b, c in
G(w) ∗ P(v), as aw, bw, cw. Let d be an edge originally belonging to P
and adjacent to cw in G(w) ∗ P(v). Since we are assuming Conjecture
3.3.2 to be true, there exists an S4-pair in G(w) ∗ P(v) in which d has
frequency 2. If the frequencies of (aw, bw, cw) are (1, 1, 0), then we are
done, because the S4-pair for G(w) ∗ P(v) restricted to the edges in
G− w, together with a and b having the same frequencies as aw and
bw, give an S4-pair for G with the desired property. We claim that this
must be the case. For, suppose not. Then, without loss of generality,
the frequencies of (aw, bw, cw) are (2, 0, 0). This implies that all the
edges of G(w) ∗ P(v) originally in P have either frequency 0 or 2,
since the two perfect matchings in the S4-pair induce the same perfect
matching in P. However, this implies that M1 ∪M2 is not bipartite, a
contradiction.

As in [75], a minimal counterexample to Conjecture 3.3.4 (but not
necessarily to the S4-Conjecture) is cyclically 4-edge-connected. We
omit the proof of this result as it is very similar to the proof of Theorem
2 in [75].
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3.4 further results on the s4-conjecture

Little progress has been made on the Fan–Raspaud Conjecture so
far. Bridgeless cubic graphs which trivially satisfy this conjecture are
those which can be edge-covered by four perfect matchings. In this
case, every three perfect matchings from a cover of this type form an
FR-triple since every edge has frequency one or two with respect to
this cover. Therefore, a possible counterexample to the Fan–Raspaud
Conjecture should be searched for in the class of bridgeless cubic
graphs whose edge-set cannot be covered by four perfect matchings,
see for instance [25]. In 2009, Máčajová and Škoviera [66] shed some
light on the Fan–Raspaud Conjecture by proving it for bridgeless
cubic graphs having oddness 2. One of the aims of this chapter is
to show that even if the S4-Conjecture is still open, some results are
easier to extend than the corresponding ones for the Fan–Raspaud
Conjecture. Clearly, the result by Máčajová and Škoviera in [66] implies
the following result.

Theorem 3.4.1. Let G be a bridgeless cubic graph of oddness 2. Then, G
has an S4-pair.

We first give a proof of Theorem 3.4.1 in the same spirit of that used
in [66], however much shorter since we are proving a weaker result.

Proof 1 of Theorem 3.4.1. Let M1 be a minimal perfect matching of G,
and let C1 and C2 be the two odd circuits in M1. Colour the even
circuits in M1 using two colours, say 1 and 2. For each i ∈ [2], let Ei be
the set of edges belonging to the even circuits in M1 and having colour
i. In G, there must exist a path Q whose edges alternate in M1 and
E1 and whose end-vertices belong to C1 and C2, respectively, since C1

and C2 are odd circuits. Note that since the edges of C1 and C2 are not
edges in M1 ∪ E1, every other vertex on Q which is not an end-vertex
does not belong to C1 and C2.

For each i ∈ [2], let vi be the end-vertex of Q belonging to Ci,
and let MCi be the unique perfect matching of Ci − vi. Let M2 =

(M1 ∩ E(Q)) ∪ (E1 − E(Q)) ∪ MC1 ∪ MC2 . Clearly, M2 is a perfect
matching of G which intersects C1 and C2, and so M1 ∪M2 is bi-
partite. �

We now give a second alternative proof of the same theorem using
fractional perfect matchings, a very convenient tool which we shall use
for graphs having larger oddness. The following lemma is presented
in [53] and is a consequence of Edmonds’ characterisation of perfect
matching polytopes in [22].

Lemma 3.4.2. If w is a fractional perfect matching in a graph G, and
c ∈ R|E(G)|, then G has a perfect matching N such that c · χN ≥ c · w,
where · denotes the inner product. Moreover, there exists a perfect matching
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satisfying the above inequality and which contains exactly one edge of each
odd-cut X with w(X) = 1.

Remark 3.4.3. If we let w(e) = 1/3 for all e ∈ E(G), for some graph G,
then we know that w is a fractional perfect matching of G. Also, since
the weight of every 3-cut is one, by Lemma 3.4.2 there exists a perfect
matching of G containing exactly one edge of each 3-cut of G.

Proof 2 of Theorem 3.4.1. Let M1 be a minimal perfect matching of G,
and let C1 and C2 be the two odd circuits in M1. For each i ∈ [2], let
ei

1 and ei
2 be two adjacent edges belonging to Ci. We define the vector

c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪2

i=1{ei
1, ei

2},
0 otherwise.

Also, as in Remark 3.4.3, we know that if we let w(e) = 1/3 for all
e ∈ E(G), then w is a fractional perfect matching of G. Hence, by
Lemma 3.4.2, there exists a perfect matching M2 such that c · χM2 ≥
c · w, which implies that

|(∪2
i=1{ei

1, ei
2}) ∩M2| ≥ 1/3× 2× 2 = 4/3 > 1.

Therefore, for each i ∈ [2], there exists exactly one j ∈ [2] such that
ei

j ∈ M2. Hence, M2 intersects C1 and C2 and so M1 ∪M2 is bipartite. �

Using the same idea as in Proof 2 of Theorem 3.4.1, we also prove
that the S4-Conjecture is true for graphs having oddness 4.

Theorem 3.4.4. Let G be a bridgeless cubic graph of oddness 4. Then, G
has an S4-pair.

Proof. Let M1 be a minimal perfect matching of G, and let C1, C2, C3, C4

be the four odd circuits in M1. By Remark 3.4.3, there exists a perfect
matching N of G such that if G has any 3-cuts, then N intersects every
3-cut of G in one edge. Moreover, for every i ∈ [4], there exists at
least a pair of adjacent edges ei

1 and ei
2 belonging to E(Ci) ∩ E(N). We

define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪4

i=1{ei
1, ei

2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

The vector w is clearly a fractional perfect matching of G because, in
particular, N intersects every 3-cut in one edge and so w(X) ≥ 1 for
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each odd-cut X of G. Hence, by Lemma 3.4.2, there exists a perfect
matching M2 such that c · χM2 ≥ c · w, which implies that

|(∪4
i=1{ei

1, ei
2}) ∩M2| ≥ 2/5× 2× 4 = 16/5 > 3.

Therefore, for each i ∈ [4], there exists exactly one j ∈ [2] such that ei
j ∈

M2. Hence, M2 intersects C1, C2, C3, C4 and so M1 ∪M2 is bipartite.

As the above proofs show us, extending results with respect to the
S4-Conjecture is easier than in the case of the Fan–Raspaud Conjecture
and this is why we believe that a proof of the S4-Conjecture could be
a first feasible step towards a solution of the Fan–Raspaud Conjecture.
For graphs having oddness at least 6 we are not able to prove the
existence of an S4-pair and we wonder how many perfect matchings
we need such that the complement of their union is bipartite. In the
next proposition we use the technique used in Theorem 3.4.4 and show
that given a bridgeless cubic graph G, if ω(G) ≤ 5k−1 − 1 for some
positive integer k, then there exist k perfect matchings such that the
complement of their union is bipartite. Note that for k = 2 we obtain
ω(G) ≤ 4.

Proposition 3.4.5. Let G be a bridgeless cubic graph and let C be a collec-
tion of disjoint odd circuits in G such that |C| ≤ 5k−1 − 1 for some positive
integer k. Then, there exist k− 1 perfect matchings of G, say M1, . . . , Mk−1,
such that for every C ∈ C, there exists j ∈ [k− 1] for which E(C) ∩Mj 6=
∅. Moreover, if ω(G) ≤ 5k−1− 1, then there exist k perfect matchings such
that the complement of their union is bipartite.

Proof. We proceed by induction on k. For k = 1, the assertion trivially
holds since C is the empty set. Assume the result is true for some
k ≥ 1 and consider k + 1. Let C1, C2, . . . , Ct, with t ≤ 5k− 1, be the odd
circuits of G in C. Let N be a perfect matching of G which intersects
every 3-cut of G once. For every i ∈ [t], there exists at least a pair of
adjacent edges ei

1 and ei
2 belonging to E(Ci) ∩ E(N). We define the

vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪t

i=1{ei
1, ei

2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

As in the proof of Theorem 3.4.4, w is a fractional perfect matching of
G and by Lemma 3.4.2 there exists a perfect matching Mk such that
c · χMk ≥ c · w. This implies that

|(∪t
i=1{ei

1, ei
2}) ∩Mk| ≥ 2× 2/5× t.
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Let C ′ be the subset of C which contains the odd circuits of C with
no edge of Mk. Then, |C ′| ≤ |C| − 4

5 t = t− 4
5 t = t

5 ≤ 5k−1 − 1
5 , and

so |C ′| ≤ 5k−1 − 1. By induction, there exist k− 1 perfect matchings
of G, say M1, . . . , Mk−1, having the required property with respect to
C ′. Therefore, M1, . . . , Mk intersect all odd circuits in C. The second
part of the statement easily follows by considering as C the set of odd
circuits in the complement of a minimal perfect matching M of G,
since the union of M with the k− 1 perfect matchings which intersect
all the odd circuits in C has a bipartite complement.

Remark 3.4.6. We note that with every step made in the proof of
Proposition 3.4.5, one could update the weight w of the edges using the
methods presented in [53, 68] which gives a slightly better upperbound
for ω(G). For reasons of simplicity and brevity, we prefer the present
weaker version of Proposition 3.4.5.

3.5 extension of the s4-conjecture to larger classes of

cubic graphs

3.5.1 Multigraphs

In this section we discuss natural extensions of some previous conjec-
tures to bridgeless cubic multigraphs. We note that bridgeless cubic
multigraphs cannot contain any loops. We make use of the following
standard operation on parallel edges, referred to as smoothing. Let G′

be a bridgeless cubic multigraph. Let u and v be two vertices in G′

such that there are exactly two parallel edges between them.

x u v y

Figure 3.7: Vertices x, u, v, y in G′

Let x and y be the vertices adjacent to u and v, respectively (see
Figure 3.7). We say that we smooth uv if we delete the vertices u and v
from G′ and add an edge between x and y (even if x and y are already
adjacent in G′). One can easily see that the resulting multigraph, say
G, after smoothing uv is again bridgeless and cubic.

In what follows, we say that a perfect matching M of G and a perfect
matching M′ of G′ are corresponding perfect matchings if the following
holds:

M =

M′ ∪ {xy} − {xu, vy} if xu ∈ M′,

M′ − {uv} otherwise.

The following theorem can be easily proved by using smoothing
operations.
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Theorem 3.5.1. The S4-Conjecture is true if and only if every bridgeless
cubic multigraph has an S4-pair.

Now we show that Conjecture 3.3.4 can also be extended to multi-
graphs.

Theorem 3.5.2. Let i, j, k be three integers in {0, 1, 2} such that i + j +
k = 2 and let w be a vertex in a bridgeless cubic multigraph G′. Then, the
S4-Conjecture is true if and only if G′ has an S4-pair in which the edges
incident to w in a given order have frequencies (i, j, k).

Proof. It suffices to assume that the S4-Conjecture is true and only
show the forward direction, by Theorem 3.5.1. Let G′ be a minimal
counterexample and suppose it has some parallel edges. If G′ is the
unique bridgeless cubic multigraph on two vertices, denoted by C2,3,
then the result clearly follows. So assume G′ 6= C2,3. Let a, b, c be the
edges incident to w such that the frequencies (i, j, k) are to be assigned
to (a, b, c). We proceed by considering two cases: when w has two
parallel edges incident to it (Figure 3.8) and otherwise (Figure 3.9).

x w v y

a
c

b

Figure 3.8: Case 1 from the proof of Theorem 3.5.2

Case 1. Let G be the resulting multigraph after smoothing wv. By
minimality of G′, G has an S4-pair (say M1 and M2) in which ν(xy) =
k. It is easy to see that a pair of corresponding perfect matchings in G′

give νG′(c) = νG′(vy) = k and can be chosen in such a way such that
νG′(a) = i and νG′(b) = j, a contradiction to our initial assumption.
Therefore, we must have Case 2.

a c

b

w

Figure 3.9: Case 2 from the proof of Theorem 3.5.2

Case 2. Let G be the resulting multigraph after smoothing some paral-
lel edge in G′ and let aw, bw, cw be the corresponding edges incident
to w in G after smoothing is done. In G, there exists an S4-pair such
that the frequencies of (aw, bw, cw) are equal to (i, j, k). Clearly, the
corresponding perfect matchings in G′ form an S4-pair in which the
frequencies of (a, b, c) are (i, j, k), a contradiction, proving Theorem
3.5.2.

Using the same ideas as in Theorem 3.5.1 and Theorem 3.5.2 one
can also state analogous results for the Fan-Raspaud Conjecture in
terms of multigraphs.
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3.5.2 Graphs having bridges

Since every perfect matching must intersect every bridge of a cu-
bic graph, the Fan–Raspaud Conjecture cannot be extended to cubic
graphs containing bridges. The situation is quite different for the
S4-Conjecture as Theorem 3.5.3 shows. By Errera’s Theorem [23] we
know that if all the bridges of a connected cubic graph lie on a single
path, then the graph has a perfect matching. We use this idea to show
that there can be graphs with bridges that can have an S4-pair.

Theorem 3.5.3. Let G be a connected cubic graph having k bridges, all of
which lie on a single path, for some positive integer k. If the S4-Conjecture
is true, then G admits an S4-pair.

v3

xk+1

yk+1

x1

y1

u1
uk

vk+1Bk+1v2 B2B1 u2
e1 e2 ek

Figure 3.10: G with k bridges lying all on the same path

Proof. Let B1, B2, . . . , Bk+1 be the 2-connected components of G and
let e1, . . . , ek be the bridges of G such that ei = uivi+1 for each i ∈ [k],
where ui ∈ V(Bi) and vi+1 ∈ V(Bi+1). Let x1 and y1 be the two vertices
adjacent to u1 in B1, and let xk+1 and yk+1 be the two vertices adjacent
to vk+1 in Bk+1. Let B′1 = (B1 − u1) ∪ {x1y1} and B′k+1 = (Bk+1 −
vk+1) ∪ {xk+1yk+1}. Also, let B′i = Bi ∪ viui for every i ∈ {2, . . . , k}.
Clearly, B′1, . . . , B′k+1 are bridgeless cubic multigraphs. Since we are
assuming that the S4-Conjecture holds, by Theorem 3.5.1, for every
i ∈ [k + 1], B′i has an S4-pair, say Mi

1 and Mi
2. Using Theorem 3.5.2,

we choose the S4-pair in:

• B′1, such that the two edges originally incident to x1 (not x1u1)
both have frequency 1;

• B′i , for each i ∈ {2, . . . , k}, such that νB′i
(viui) = 2; and

• B′k+1, such that the two edges originally incident to xk+1 (not
xk+1vk+1) both have frequency 1.

Let M1 = (∪k+1
i=1 Mi

1) ∪ (∪k
j=1{ej}) − (∪k

l=2{vlul}), and let M2 =

(∪k+1
i=1 Mi

2) ∪ (∪k
j=1{ej}) − (∪k

l=2{vlul}). Then, M1 and M2 are an S4-
pair of G.

Finally, we remark that there exist cubic graphs which admit a per-
fect matching however do not have an S4-pair. For example, since the
edges uivi in Figure 3.11 are bridges, they must be in every perfect
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matching. Consequently, every pair of perfect matchings do not inter-
sect the edges of the odd circuit T. This shows that it is not possible
to extend the S4-Conjecture to the entire class of cubic graphs.

G2

G1

G3

T

v1

v3v2

u3u2

u1

Figure 3.11: A cubic graph with bridges having no S4-pair

3.6 final remarks and open problems

Many problems about the topics presented above remain unsolved:
apart from asking if we can solve the Fan–Raspaud Conjecture and
the S4-Conjecture completely, or at least partially for higher oddness,
we do not know which are those graphs containing bridges which
admit an S4-pair and we do not know either if the S4-Conjecture is
equivalent to Conjecture 3.1.2. Here we would like to add some other
specific open problems.

For a positive integer k, we define ωk to be the largest integer such
that any graph with oddness at most ωk, admits k perfect matchings
with a bipartite complement. Clearly, for k = 1, we have ω1 = 0,
since the existence of a perfect matching of G with a bipartite com-
plement is equivalent to the 3-edge-colourability of G. Moreover, the
S4-Conjecture is equivalent to ωk = ∞, for k ≥ 2, but a complete result
to this is still elusive. Proposition 3.4.5 (see also Remark 3.4.6) gives
a lowerbound for ωk and it would be interesting if this lowerbound
can be significantly improved. We believe that the following problem,
weaker than the S4-Conjecture, is another possible step forward.

Problem 3.6.1. Prove the existence of a constant k such that every
bridgeless cubic graph admits k perfect matchings whose union has a
bipartite complement.

It is also known that not every perfect matching can be extended
to an FR-triple and neither to a Fulkerson cover. In fact, consider the
Petersen graph P and apply a Y-extension to each of its vertices. Let
the resulting graph on 30 vertices be P′, and let M be the set of edges
in P′ corresponding to E(P). The set M is a perfect matching of P′,
and it is not difficult to see that it cannot be extended to an FR-triple
or to a Fulkerson cover. With regards to S4-pairs, we do not see a way
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how to produce a similar argument. In fact, as can be seen in Figure
3.12, M (shown in blue) can be extended to an S4-pair of P′ (with the
edges of the second perfect matching in red).
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Figure 3.12: An S4-pair of P′

We therefore suggest the following problem.

Problem 3.6.2. Establish whether any perfect matching of a bridgeless
cubic graph can be extended to an S4-pair.

It can be shown that if Problem 3.6.2 is true, then it is equivalent to
saying that given any collection of disjoint odd circuits in a bridgeless
cubic graph, then there exists a perfect matching which intersects all
the odd circuits in this collection.

One implication is clearly obvious. Thus, assume that every perfect
matching of any bridgeless cubic graph can be extended to an S4-pair,
and consider a collection of disjoint odd circuits in a bridgeless cubic
graph G. Apply a Y-extension to every vertex not covered by the
circuits in the collection and let the resulting bridgeless cubic graph
be G′. The initial odd circuits and all the new Y-extended triangles
give a 2-factor F of G′, with complementary perfect matching, say
M. By our assumption, there exists a perfect matching N such that
M ∪ N is bipartite, implying that N intersects all the odd circuits in F,
including all the new Y-extended triangles. Let NY be the set of edges
belonging simultaneously to N and the new Y-extended triangles.
One can immediately see that N − NY is a perfect matching of G
intersecting all the odd circuits in the initial collection of odd circuits
in G, proving the equivalence of the two statements.

Finally, together with Edita Máčajová, we also studied the problem
of trying to extend S4-pairs to an FR-triple. As already stated and
seen in Section 3.4, it is somewhat easier working with S4-pairs than
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with FR-triples, and it would be a profitable pursuit if we manage to
tackle problems such as the Fan-Raspaud Conjecture, but work in a
relatively easier environment. Due to the example given in Figure 3.12,
we already know that not every S4-pair can be extended to an FR-triple.
However, the two perfect matchings considered in the S4-pair from
Figure 3.12 contain an odd-cut in their intersection. Thus, we thought
that starting from a pair of perfect matchings (of a bridgeless cubic
graph) having no odd-cuts in their intersection (see Conjecture 3.1.2),
instead of just an S4-pair, could be a possible way forward. However,
this turned out to be a futile pursuit as the graph G in Figure 3.13

shows.
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Figure 3.13: M1 and M2 cannot be extended to an FR-triple

In fact, let the green and red edges be the edges of our initial S4-
pair M1 and M2, with the additional property that M1 ∩M2 does not
contain any odd-cut. If we want to find a perfect matching M3, such
that M1 ∩M2 ∩M3 = ∅, that is, an FR-triple which extends the initial
S4-pair, then M3 should be contained in G − (M1 ∩ M2). However,
one can see that if we delete the vertices on the left hand side from
G− (M1 ∩M2), what remains is a collection of six odd components.
Consequently, there exists a set of vertices S ∈ V(G − (M1 ∩ M2)),
such that the number of odd components in G − (M1 ∩ M2)− S is
strictly greater than |S|, and so, by Tutte’s Theorem (see Theorem
1.1.2), G− (M1 ∩M2) does not admit a perfect matching.
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Although the graph in Figure 3.13 is a legitimate counterexample
to what we were searching for, we have to say that the graph is a
Class I graph and, as already mentioned before, it satisfies all the
above related conjectures quite easily. It would be interesting and
more insightful to have a Class II counterexample.

We would like to finish this chapter by providing the theory behind
the construction of the above counterexample. An S4-pair M1 and M2

of a bridgeless cubic graph G can be extended to an FR-triple of G if
and only if G− (M1 ∩M2) admits a perfect matching. By using this
straightforward observation together with Tutte’s Theorem (Theorem
1.1.2), we manage to isolate the reason which impedes an S4-pair from
being extended to an FR-triple. This is shown in the following result.

Proposition 3.6.3. Let G be a bridgeless cubic graph admitting an S4-pair
M1 and M2, such that M1∩M2 contains no odd-cuts. Let H be a component
of G− (M1 ∩M2). The graph G admits a perfect matching M3 with M1 ∩
M2 ∩ M3 = ∅ if and only if for every S ⊆ V(H), the number of odd
components o(H − S) in H − S is not equal to |S|+ 2.

Proof. Without loss of generality, assume that G− (M1 ∩M2) is con-
nected, that is, H = G − (M1 ∩ M2). One direction is clear, and so
assume that o(H − S) 6= |S|+ 2, for every S ⊆ V(H). We proceed by
using induction on |S|. We first remark that o(H − S) ≡ |S| since H
is of even order. We also note that every odd component in H − S is
connected to at least 2 vertices in S (since H is bridgeless), and every
vertex in S is connected to at most 3 odd components in H − S, and
so o(H − S) ≤ 3

2 |S|. Consequently, one can easily see that o(H) = 0,
and o(H − S) ≤ |S| when |S| = 1 or 2. Thus, assume |S| > 2. If
there exists a vertex u ∈ S which is not connected to any odd com-
ponents in H − S, then o(H − (S− {u})) = o(H − S) + 1, and so, by
induction, o(H − S) + 1 = o(H − (S− {u})) ≤ |S| − 1, implying that
o(H− S) ≤ |S|, as required. On the other hand, if there exists a vertex
u ∈ S which is connected to one or two odd components in H − S,
then we are also done, because then o(H− (S−{u})) = o(H− S)− 1,
and by induction, o(H− S)− 1 = o(H− (S−{u})) ≤ |S| − 1, proving
our result. Therefore, assume that every vertex in S is connected to
three different odd components in H − S. Consequently, there are no
even components in H − S because otherwise there would be a vertex
in S which is connected to them, since H is connected. Let v ∈ S. Then,
o(H − (S− {v})) = o(H − S)− 3 and so by the induction hypothe-
sis, o(H − S)− 3 ≤ |S| − 1, implying that o(H − S) ≤ |S|+ 2. Since
o(H − S) ≡ |S|, we either have o(H − S) ≤ |S| or o(H − S) = |S|+ 2.
By our assumption, o(H − S) 6= |S| + 2. Result follows by Tutte’s
Theorem.

In this sense, we think that the following class of subcubic graphs
might be a possible way forward to address the Fan–Raspaud Conjec-
ture.
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Definition 3.6.4. Let G be the class of (connected) cubic Class I multi-
graphs admitting an even 2-factor, that is, a 2-factor made up of circuits
of even length only. Let H be a graph obtained from a multigraph
G ∈ G with an even 2-factor C, by performing a series of subdivisions
on edges not belonging to the circuits in C, such that the number of
degree 2 vertices in the resulting graph is even. Let H be the class of
all such graphs H, over all possible multigraphs in G.
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Figure 3.14: The corresponding graphs of the Petersen graph P, in G and H

The graph G− (M1 ∩M2), for a bridgeless cubic graph G with an S4-
pair M1 and M2 clearly belongs to the class H defined above. It would
be intriguing to see which graphs in H admit a subset of vertices S,
such that when removed the resulting number of odd components is
equal to |S|+ 2. An illustration of how a multigraph in G (with its
even 2-factor shown in bold) and the corresponding graph in H look
like is given in Figure 3.14.
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S O M E S N A R K S A R E W O R S E T H A N O T H E R S

This chapter is based on a joint work with Edita Máčajová, Giuseppe Maz-
zuoccolo and Vahan Mkrtchyan [II].

4.1 introduction

It is well-known that many long standing conjectures and open prob-
lems in graph theory can be reduced to the class of cubic graphs. That
is, if one can prove such a conjecture for all cubic graphs then the
general statement for arbitrary graphs will immediately follow. The
Cycle Double Cover Conjecture [105] falls into this category. Some
other well-known conjectures are formulated directly for cubic graphs
such as the Petersen Colouring Conjecture (Conjecture 1.2.3) and the
Berge–Fulkerson Conjecture (Conjecture 1.2.1).

In all mentioned conjectures, only a very small subset of all cu-
bic graphs is critical for proving them. A classical result by Vizing
[100] naturally divides bridgeless cubic graphs in two classes: 3-edge-
colourable cubic graphs (Class I) and snarks (which are Class II bridge-
less cubic graphs). In addition, the class of snarks relevant for some
old and new problems can be further restricted to a specific subset
of S , which we denote by S≥5 (see definition below). More precisely,
S≥5 is shown to be critical for several, seemingly unrelated, problems.
In order to define the class S≥5, we need the following parameter.

Definition 4.1.1. The perfect matching index of a graph G, denoted by
χ′e(G), is the minimum number of perfect matchings of G whose union
covers the whole set E(G). If such a number does not exist, χ′e(G) is
defined to be infinity. This parameter is also known in literature as the
excessive index of a graph (see [13]).

Since bridges in cubic graphs belong to every perfect matching, the
perfect matching index of a cubic graph having a bridge is infinite.
Consequently, in what follows, we only consider bridgeless cubic
graphs. Trivially, the chromatic index χ′(G) of a cubic graph G is 3 if
and only if its perfect matching index is 3, and so, the two parameters
coincide for Class I cubic graphs. The same cannot be said for Class II
bridgeless cubic graphs. Indeed, there exist examples of such graphs
having perfect matching index 4 and others having perfect matching
index 5, such as the well-known Petersen graph. In what follows, we
denote the set of snarks having perfect matching index equal to 4 by

40
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S4 and the set of snarks having perfect matching index at least 5 by
S≥5. Consequently, the following holds:

S = S4 ∪ S≥5.

The above situation is summarised in Table 4.1. Clearly, the Berge–
Fulkerson Conjecture implies that all bridgeless cubic graphs have
perfect matching index at most 5 (see also Section 1.2). If this conjecture
is shown to be true, it would imply that all snarks in S≥5 have perfect
matching index exactly equal to 5.

Cubic graph G χ′(G) χ′e(G)

CLASS I 3 3

CLASS II (S) 4
4 (S4)

≥ 5 (S≥5)

Table 4.1: The relation between χ′(G) and χ′e(G)

The reason why the class S≥5 deserves particular attention not only
in relation to the Berge–Fulkerson Conjecture but also with respect to
other problems, is already very present in literature. Moreover, from
amongst more than sixty million non-trivial snarks of order at most
36 (see [14]), only two belong to S≥5, and both of them have perfect
matching index equal to 5. This suggests that the subset of snarks that
is substantial for many open problems is negligible compared to its
complement. On the other hand, infinite classes of non-trivial snarks
belonging to S≥5 are constructed in [1, 25, 65].

One of the most relevant results that shows the importance of the
class S≥5 was proven independently by Steffen [91], and by Xinmin
Hou et al. [46], and states that each snark in S4 admits a cycle double
cover. Thus, if a cubic graph is a counterexample to the Cycle Double
Cover Conjecture, then it must belong to S≥5.

The Fan–Raspaud Conjecture (Conjecture 3.1.1) is obviously true
for 3-edge-colourable cubic graphs and graphs from S4, making the
family S≥5 critical once again.

Let us mention a last example: the problem of finding a shortest
cycle cover of a bridgeless graph (not necessarily cubic).

Definition 4.1.2. Let G be a bridgeless graph. The minimum total
length over all possible cycle covers of G is denoted by scc(G), and a
cycle cover having length scc(G) is called a shortest cycle cover.

The Shortest Cycle Cover Conjecture by Noga Alon and Michael
Tarsi [3] asserts that scc(G) ≤ 7/5 · |E(G)|. In [91], it is shown that if a
graph G belongs to S4, then scc(G) = 4/3 · |E(G)|, thus leaving, once
again, the conjecture open only for graphs from S≥5.
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All previous examples give a strong motivation to the study of
the class S≥5. Having said this, a very recent result by Máčajová
and Škoviera [64] shattered every hope that this class is also critical
when dealing with the 5-flow Conjecture. A couple of years ago,
it was pointed out by Abreu et al. in [1], and later on by Miguel
Angel Fiol et al. in [30], that all known examples of snarks with
perfect matching index equal to 5 also have circular flow number 5
(see [35] for a definition). In other words, it seemed that all snarks
having the largest possible perfect matching index according to the
Berge–Fulkerson Conjecture, also had the largest possible circular flow
number according to the 5-Flow conjecture. Recently, however, it was
showed in [64] that there exists a family of cyclically 4-edge-connected
cubic graphs of girth at least 5 (non-trivial snarks) belonging to S≥5

and with circular flow number strictly less than 5, with the result
heavily depending on the results obtained by the same two authors in
[65]. We remark that there exists a large number of non-trivial snarks
having circular flow number 5 and perfect matching index 4, as shown
by Jan Goedgebeur et al. in [36] (see also [62]).

In this chapter, we study parameters which have a potential to
further refine S≥5 and thus enlarge the set of cubic graphs for which
the Cycle Double Cover Conjecture, the Fan–Raspaud Conjecture
and other related problems can be proven. As a by-product, we also
consider a parameter which identifies graphs in S4 that are, in a sense
(explained later), closer to being 3-edge-colourable. Now we describe
these parameters in more detail.

N1 N2

G+N1+N2 G+2N1

Figure 4.1: Perfect matchings N1 and N2 in G and the graphs G + N1 + N2
and G + 2N1

Let G be any graph, and let N ⊆ E(G). We denote by G + N the
multigraph obtained from G after adding a parallel edge to every edge
in N. In general, let N1, N2, . . . , Nt ⊆ E(G). We denote by G + N1 +

· · ·+ Nt, or equivalently by G + ∑t
i=1 Ni, the multigraph obtained by

adding to every edge of G a number of parallel edges equal to the
number of times the original edge appears in N1, . . . , Nt. In the special
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case when we add t times the same set of edges N, the resulting
multigraph is denoted by G + tN (examples are given in Figure 4.1).
Since in this chapter multigraphs shall be encountered more frequently
than in other ones, graphs in this chapter are allowed to contain
parallel edges, for simplicity.

The study of the following problem was firstly proposed to some
of the authors by Gunnar Brinkmann and Eckhard Steffen during the
workshop KOLKOM 2017 in Paderborn.

Problem 4.1.3 (Brinkmann and Steffen, 2017). Given a bridgeless cubic
graph G, when does there exist k perfect matchings M1, ..., Mk of G,
for some integer k ≥ 0 , such that the graph G + M1 + ... + Mk is
(k + 3)-edge-colourable or, equivalently, is Class I?

In the sequel, a (k + 3)-edge-colouring of the multigraph G + M1 +

. . . + Mk is sometimes considered as the proper edge-colouring of G
in which every edge e is assigned ν(e) + 1 colours, where ν(e) is the
number of times e appears in the list M1, . . . , Mk. Moreover, if G +

M1 + . . . + Mk is (k + 3)-edge-colourable, with the perfect matchings
F1, . . . , Fk+3 as its colours, we write G + M1 + . . . + Mk = F1 + . . . +
Fk+3.

For a graph G, we define the following parameter related to this
problem.

Definition 4.1.4. Denote by l(G) the minimum number of perfect
matchings needed to be added to G such that the resulting graph is
Class I. If such a number does not exist, then we set l(G) = +∞.

Obviously, for a cubic graph G, l(G) = 0 if and only if G is 3-edge-
colourable. Observe also that the Berge Conjecture (Conjecture 1.2.2)
is true for cubic graphs G with l(G) ≤ 2. A slight variation of the
previous definition shall also be of interest later on in the chapter.

Definition 4.1.5. Let G be a graph admitting a perfect matching M.
Denote by lM(G) the minimum number of copies of M which need
to be added to G such that the resulting graph is Class I. If such a
number does not exist for M, we set lM(G) = +∞.

Lewis Carroll has already been a great source of graph theoretical
jargon, especially when dealing with snarks: with words like “boojum”
[34, 96] and “bandersnatch” [90] used to represent snarks or graphs
having some particular property. Below, we study what we believe
is another “unmistakable” characteristic of snarks so much so to de-
serve another Carrollian word which captures this bizarre behaviour.
Consequently, we say that a bridgeless cubic graph G is frumious† if
lM(G) = +∞ for all perfect matchings M of G, and we conjecture that
frumious snarks are exactly the snarks in S≥5.

† Coined by Lewis Carroll and was first used in his poem Jabberwocky. It is the blend of
fuming and furious.
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In the following sections we give some results on the three param-
eters just defined: l(G), lM(G) and scc(G), and show that the class
S≥5 seems to be critical in the study of all of them. More precisely,
in Section 4.2 we determine which bridgeless cubic graphs G admit
a finite value for l(G), and conclude that in some sense the Petersen
graph is the only obstruction for this parameter to be finite. We also
show that this parameter can be arbitrarily large (see Corollary 4.2.9).
In Theorem 4.3.3 we show that there exist snarks in S4 which are closer
to being Class I than other snarks in S4: we show that lM(G) = 1 for
any flower snark G and for any perfect matching M of G, except the
Tietze graph. We remark that this was independently shown in [67].
In Section 4.4 we show that given a bridgeless cubic graph G, scc(G)

is equal to 4/3 · |E(G)| if and only if there exists a perfect matching
M of G for which lM(G) is finite. In particular, extending a result in
[25], we prove that the graphs in an infinite family of snarks in S5 (a
generalisation of treelike snarks) admit a shortest cycle cover whose
length is strictly greater than 4/3 their size.

4.2 the parameter l (G)

We recall that for a graph G, l(G) denotes the minimum number of
perfect matchings needed to be added to G in order to obtain a Class
I graph. This section has two aims: to derive a sufficient condition
for a bridgeless cubic graph G for which l(G) is finite (see Lemma
4.2.6) and, in such a case, to show that l(G) can be arbitrarily large
(see Proposition 4.2.8 and Corollary 4.2.9). Along the entire section,
let G be a bridgeless cubic graph. As already mentioned, l(G) = 0 if
and only if G is 3-edge-colourable. Another easy observation is the
following.

Proposition 4.2.1. For every bridgeless cubic graph G, l(G) = 1 if and
only if χ′e(G) = 4.

Proof. If l(G) = 1, then G admits a perfect matching, say M, such that
G + M = F1 + F2 + F3 + F4, where each Fi is a perfect matching of
G. Clearly, E(G) = ∪4

i=1Fi, implying that χ′e(G) ≤ 4. Since G is not
itself Class I, χ′e(G) = 4. Conversely, assume χ′e(G) = 4. Consequently,
E(G) = ∪4

i=1Mi, for some perfect matchings Mi of G. Each edge of
G belongs to exactly one or two of these four perfect matchings. The
edges belonging to exactly two of these perfect matchings induce a
perfect matching which we denote by M. Since G + M = M1 + M2 +

M3 + M4, we have l(G) = 1.

By the above, we have l(G) > 1 if and only if χ′e(G) ≥ 5. In what
follows, we analyse the behaviour of l(G) in the class S≥5. We start
with the smallest bridgeless cubic graph having perfect matching
index equal to 5: the Petersen graph P. In some sense, we prove that
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the Petersen graph is the unique obstruction for a graph G to have a
finite value for l(G).

We start with a simple characterisation of graphs that meet the
conditions of the original problem proposed, in which the notion of
the perfect matching lattice is used. A graph G is matching covered if
any edge of G lies in a perfect matching of G. The perfect matching
lattice Lat(G) of a matching covered graph G is defined as the set of all
|E(G)|-dimensional integral vectors over Z that can be represented as
a sum or difference of characteristic vectors of some perfect matchings
of G. In other words, for a vector w ∈ Z|E(G)|, we have w ∈ Lat(G)

if and only if G admits perfect matchings J1, ..., Js and N1, ..., Nt, such
that

~w = χJ1 + ... + χJs − χN1 − ...− χNt .

Let~1 be the |E(G)|-dimensional vector whose coordinates are all 1.

Proposition 4.2.2. For a bridgeless cubic graph G, l(G) < +∞ if and only
if~1 ∈ Lat(G).

Proof. Assume that l(G) = k. Hence G + M1 + . . . + Mk is Class I, for
some k perfect matchings M1, . . . , Mk of G. Consequently, G admits
k + 3 perfect matchings F1, ..., Fk+3 which partition the edge set of
G + M1 + ... + Mk. One can easily see that

~1 = χF1 + ... + χFk+3 − χM1 − ...− χMk ,

as required. Conversely, assume that

~1 = χJ1 + ... + χJs − χN1 − ...− χNt ,

for some perfect matchings J1, ..., Js and N1, ..., Nt of G and some in-
tegers s, t ≥ 0. Since G is cubic, s must be equal to t + 3. It is not
hard to see that the perfect matchings J1, ..., Js partition the edge set of
G + N1 + ... + Nt. Hence l(G) ≤ t.

The above proposition allows us to construct an example of a bridge-
less cubic graph G for which l(G) = +∞. As one can expect, this is
the Petersen graph, and the proof follows from [60] (see also [16, 17]).

Proposition 4.2.3. If P is the Petersen graph, then~1 /∈ Lat(P).

4.2.1 Graphs with l(G) infinite

Next we characterise bridgeless cubic graphs G for which l(G) =

+∞, according to their edge-connectivity. We can assume that G is
connected, for if G is comprised of components G1, ..., Gt, for some
integer t > 1, then ~1 ∈ Lat(G) if and only if ~1 ∈ Lat(Gi), for all
i = 1, ..., t. First we consider graphs having 2-edge-cuts.
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Lemma 4.2.4. Let G be a bridgeless cubic graph having a 2-edge-cut X.
Let G1 and G2 be the two bridgeless cubic graphs obtained by applying a
2-edge-reduction on X. Then, ~1 ∈ Lat(G) if and only if ~1 ∈ Lat(G1) and
~1 ∈ Lat(G2).

Proof. Let X = {e1, e2} and let the new edges in G1 and G2 be denoted
by f1 and f2, respectively. First assume that~1 ∈ Lat(G). Any perfect
matching M of G contains either both or none of the edges of X. In
the former case, M gives rise to a perfect matching of Gi by simply
adding fi to M ∩ E(Gi), for i = 1, 2. Otherwise, M ∩ E(Gi) is a perfect
matching of Gi. By using this idea and considering the new perfect
matchings of G1 and G2 obtained from the list of perfect matchings
of G whose sum and difference of their characteristic vectors give
~1 ∈ Z|E(G)|, one can easily show that~1 ∈ Lat(G1) and~1 ∈ Lat(G2), as
required.

Conversely, assume that ~1 ∈ Lat(G1) and ~1 ∈ Lat(G2). Then, G1

admits two sets of perfect matchings J1 = {J(1)1 , ..., J(1)s+3} and N1 =

{N(1)
1 , ..., N(1)

s } such that,~1 ∈ Z|E(G1)| can be represented as ∑J∈J1
χJ −

∑N∈N1
χN , for some integer s ≥ 0. Similarly, G2 admits two sets of

perfect matchings J2 = {J(2)1 , ..., J(2)t+3} and N2 = {N(2)
1 , ..., N(2)

t } such
that, ~1 ∈ Z|E(G2)| can be represented as ∑J∈J2

χJ − ∑N∈N2
χN , for

some integer t ≥ 0. The number of perfect matchings in J1 ∪ N1

which contain f1 is odd, and is denoted by 2s′ + 1, for some integer
s′ ≥ 0. Moreover, the number of perfect matchings containing f1 in
J1 is one more than the number of such perfect matchings in N1. The
same applies for G2, and, in this case, we denote the total number of
perfect matchings in J2 ∪ N2 which contain f2 by 2t′ + 1, for some
integer t′ ≥ 0.

We can further assume that 2s′ + 1 = 2t′ + 1, for, suppose that
s′ < t′, without loss of generality. By taking any perfect matching F of
G1 containing f1 (the existence is guaranteed by [86]), it is easy to see
that

∑
J∈J1

χJ +
t′−s′

∑
i=1

χF − ∑
N∈N1

χN −
t′−s′

∑
i=1

χF =~1 ∈ Z|E(G1)|.

Consequently, a new list of perfect matchings of G1 whose character-
istic vectors give ~1 ∈ Z|E(G1)| is obtained. Moreover, exactly 2t′ + 1
perfect matchings from this list contain the edge f1, as required, and
so we can assume that s′ = t′. By a similar reasoning we can assume
that s = t.

Without loss of generality, let the first s′ + 1 perfect matchings in J1

(and J2), and the first s′ perfect matchings in N1 (and N2) contain f1

(and f2). Let J = {J1, . . . , Js+3}, where

Ji =

(J(1)i − { f1}) ∪ (J(2)i − { f2}) ∪ {e1, e2} if i = 1, . . . , s′ + 1,

J(1)i ∪ J(2)i otherwise.
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Similarly, let N = {N1, . . . , Ns}, where

Ni =

(N(1)
i − { f1}) ∪ (N(2)

i − { f2}) ∪ {e1, e2} if i = 1, . . . , s′,

N(1)
i ∪ N(2)

i otherwise.

One can see that J and N are two sets consisting of perfect matchings
of G, such that ∑J∈J χJ −∑N∈N χN =~1 ∈ ZE(G), as required.

The proved statement implies that l(G) = +∞ if and only if l(G1) =

+∞ or l(G2) = +∞. Thus, in trying to characterise the bridgeless cubic
graphs G with l(G) = +∞, one can focus on 3-edge-connected graphs
having 3-edge-cuts. Following [60], we say that an edge-cut in G is
tight if any perfect matching of G intersects it in exactly one edge (not
necessarily the same).

Lemma 4.2.5. Let G be a 3-edge-connected cubic graph and let X be a non-
trivial tight 3-edge-cut in G. Consider the two bridgeless cubic graphs G1

and G2 obtained by applying a 3-edge-reduction to X. Then,~1 ∈ Lat(G) if
and only if~1 ∈ Lat(G1) and~1 ∈ Lat(G2).

This statement can be derived from the results of [60]. Moreover,
its proof follows a similar argument to the one used in the proof of
Lemma 4.2.4. For these reasons we omit the proof here.

Before we proceed to prove the next result regarding 3-edge-
connected cubic graphs which do not contain non-trivial tight 3-edge-
cuts we give the definition of a brick. A brick is a 3-connected graph
such that for any two distinct vertices u and v of G, G− {u, v} admits
a perfect matching. It is easy to see that no brick can be bipartite.

Lemma 4.2.6. Let G be a 3-edge-connected cubic graph without non-trivial
tight 3-edge-cuts. Then, ~1 ∈ Lat(G) if and only if G is not the Petersen
graph.

Proof. If G is the Petersen graph, then by Proposition 4.2.3,~1 /∈ Lat(G).
So assume that G is not the Petersen graph. Since G is cubic, by [54]
we have that all tight edge-cuts of G are 3-edge-cuts. Thus, by our
assumptions, G contains no tight edge-cuts. Hence, by [60], G is either
bipartite or a brick. Now, if G is bipartite, then it is 3-edge-colourable
and so~1 ∈ Lat(G). Hence, we can assume that G is a brick. The main
result of [60] implies that the only cubic brick for which~1 /∈ Lat(G) is
the Petersen graph, proving our result.

Corollary 4.2.7. Let G be a cyclically 4-edge-connected cubic graph differ-
ent from the Petersen graph. Then, l(G) is finite.

4.2.2 Construction of cubic graphs with l(G) finite but arbitrarily large

We have already seen that l(G) ≤ 1 if and only if χ′e(G) ≤ 4. The
results obtained above suggest an algorithm to check whether l(G) =
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+∞ for a given bridgeless cubic graph G. The next question that we
would like to address is to see whether there exist graphs in S≥5 with
1 < l(G) < ∞. In Corollary 4.2.9, we show that there exist bridgeless
cubic graphs G with l(G) finite but arbitrarily large.

Let G be a bipartite graph with bipartition U and W. Let u ∈ U. We
say that G is coverable with respect to u if for every w ∈W there exists
a parity subgraph of G in which the vertices u and w are of degree
3 and all the other vertices are of degree 1. We remark that a parity
subgraph of G is a spanning subgraph of G with the degrees of all the
vertices having the same parity in both the subgraph and in G.

Let G be a bipartite cubic graph of order 2n having bipartition U
and W. Assume W = {w1, w2, . . . , wn} and let u ∈ U. Let v be a vertex
of the Petersen graph P, and let P1, . . . , Pn be n copies of the Petersen
graph, with the vertex corresponding to v in each copy denoted by
v1, . . . , vn, respectively. Apply a 3-cut-connection on vi and wi, for each
i ∈ [n] and apply a Y-extension to u. The resulting graph is called an
extension of G with respect to u.

Proposition 4.2.8. Let G be a bipartite cubic graph of order 2n and let H
be an extension of G with respect to u, for some u ∈ V(G). If G is coverable
with respect to u, then l(H) = n.

Proof. We claim that l(H) ≥ n. Suppose that l(H) = k < n, for
contradiction. Then, H admits k perfect matchings M1, ..., Mk, such
that H + M1 + ... + Mk is Class I. Since G is bipartite, if a perfect
matching M of H intersects all the three edges of ∂(Pi − vi) in H, for
some i ∈ [n], then, |M ∩ ∂(Pj − vj)| = 1, for all j ∈ {1, . . . , i − 1, i +
1, . . . , n}. In this case, M must also intersect the three edges incident
to the triangle in H. Since k ≤ n− 1, there exists some s ∈ [n] such
that ∂(Ps − vs) is not contained in any perfect matching in M1, ..., Mk.
Thus, these perfect matchings intersect exactly one edge from the
3-edge-cut ∂(Ps − vs). Hence, M1, . . . , Mk induce k perfect matchings
of the Petersen graph (Ps), say M′1, . . . , M′k. Let F1, . . . , Fk+3 be the
k + 3 colours of H + M1 + . . . + Mk. By a simple counting argument,
|Fi ∩ ∂(Ps − vs)| = 1, for each i ∈ [k + 3]. Therefore, the Fis induce
k + 3 perfect matchings of the Petersen graph (Ps), say F′1, . . . , F′k+3.
However, this implies that Ps + M′1 + . . . + M′k = F′1 + . . . + F′k+3, a
contradiction to Proposition 4.2.3.

b

b b

b b

b

b b

b

b

b b

b b

b

b b

b

Figure 4.2: The way Ni and Ji intersect Pi
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Now, we show that l(H) is actually equal to n. For each i ∈ [n], let Ni
be a perfect matching of H containing ∂(Pi− vi) and intersecting Pi− vi
as depicted on the left of Figure 4.2. Since G is coverable with respect
to u, such a perfect matching exists. We claim that H + N1 + . . . + Nn

is Class I. For each i ∈ [n], let Ji be the perfect matching of H equal to
Ni, apart from the way it intersects the edges in Pi − vi. One can see
the differences in Figure 4.2.
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b

Figure 4.3: P′i in H + ∑n
i=1(Ni − Ji)

Consider the graph H + ∑n
i=1(Ni − Ji). This has the same structure

as H, however, every Pi − vi is now transformed into P′i , as shown
in Figure 4.3. Since a bipartite graph is Class I and the 3-pole P′i
can be 3-edge-coloured in such a way that its three dangling edges
each have a different colour, a 3-edge-colouring of G can be easily
extended to a 3-edge-colouring of H + ∑n

i=1 Ni − Ji. Let these three
colours (also perfect matchings of H) be denoted by Jn+1, Jn+2, Jn+3.
Consequently, H + N1 + . . . + Nn = J1 + . . . + Jn+3, implying that
l(H) = n, as required.

We remark that the above result holds also for bipartite cubic graphs
G admitting parallel edges. Moreover, by using Proposition 4.2.8 we
have the following consequence.

Corollary 4.2.9. For each positive integer n there exists a cubic graph H
with l(H) = n.

Proof. Every snark having perfect matching index 4 is an example
for n = 1. Moreover, we directly checked that the value of l for the
(treelike) snark on 34 vertices, also known as windmill (see [1, 25]), is 2.
For n > 2, it can be observed that if G is the circular ladder graph on
2n vertices (if n is even), or the Möbius ladder graph on 2n vertices (if
n is odd), then for any vertex u ∈ V(G), G is coverable with respect to
u. Thus, the result follows from Proposition 4.2.8.

Finally, the following natural question arises.

Problem 4.2.10. Does there exist a cyclically 4-edge-connected cubic
graph with arbitrarily large l?

We recall that l is always finite in the class of cyclically 4-edge-
connected cubic graphs excluding the Petersen graph, as the latter is
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the only cyclically 4-edge-connected cubic graph for which l is infinite
by Corollary 4.2.7.

4.3 the parameter l M (G)

Proposition 4.2.1 states that if G belongs to S4, then it admits a perfect
matching which when added to G the resulting graph is Class I. What
happens if G belongs to S≥5? For sure, for any perfect matching M of
G, G + M is not Class I. However, what can we say about G + tM, for
t being a positive integer strictly greater than 1?

We recall that the parameter lM(G), for a given bridgeless cubic
graph G and a given perfect matching M of G, is defined as the
minimum t, if such an integer exists, for which G + tM is Class I.
Clearly, lM(G) ≥ l(G) for every perfect matching M of G, and thus, if
l(G) = +∞, then lM(G) = +∞ for every perfect matching M of G. We
remark that, very recently, Brinkmann (private communication) found
a graph G with l(G) = 1 and lM(G) = 2, for some perfect matching
M of G, disproving a hypothesis we had that there does not exist any
pair (G, M) with 1 < lM(G) < +∞.

Trivially, G is Class I if and only if lM(G) = 0 for every perfect
matching M of G. Moreover, G ∈ S4 if and only if l(G) = 1. The class
S4 can be considered as the class of bridgeless cubic graphs closest to
the class of 3-edge-colourable cubic graphs. Previous considerations
suggest that there could be graphs inside S4 which are closer to
being 3-edge-colourable than others: these are Class II bridgeless cubic
graphs G for which G + M is Class I for any one of their perfect
matchings M, that is, lM(G) = 1 for every M. We cannot give a
complete characterisation of the graphs which have this property.
However, we are able to show that an infinite family of snarks, with
perfect matching index 4 (shown in [31]), have this distinctive property.

4.3.1 Examples of cubic graphs G such that lM(G) = 1 for every M

Definition 4.3.1. The 6-pole on four vertices shown in Figure 4.4 is
called a Single-Flower 6-pole, for short an SF 6-pole, whilst its vertical
edge is referred to as a spoke.
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Figure 4.4: The SF 6-pole Fi

Let n ≥ 3 be an odd integer, and let F1, F2, . . . , Fn be n SF 6-poles.
Let li

1, li
2, li

3 and ri
1, ri

2, ri
3 be the left and right dangling edges of Fi,

respectively, as shown in Figure 4.4. The graph obtained by joining
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the dangling edges ri
j and li+1

j , for every i ∈ [n] and for every j ∈ [3],
is called a flower snark and is denoted by Fn (see [47]). We remark
that all operations in the upper indexing set are taken modulo n,
with complete residue system {1, . . . , n}. The new edge obtained
after joining two dangling edges, say ri

j and li+1
j , shall be referred

to interchangeably by the same two names. To simplify the way we
depict flower snarks, we look at Fn as a 6-pole with the left and right
dangling edges being l1

1 , l1
2 , l1

3 , and rn
1 , rn

2 , rn
3 , respectively.

The 6-pole obtained by joining the right dangling edges of an SF
6-pole with the left dangling edges of another SF 6-pole in the same
way as in the construction of flower snarks is called a Double-Flower
6-pole, for short a DF 6-pole (see Figure 4.5).
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Figure 4.5: DF 6-poles in Fn with two consecutive spokes belonging to a
perfect matching

Definition 4.3.2. Let X be a DF 6-pole in Fn, with left and right
dangling edges li

1, li
2, li

3 and ri+1
1 , ri+1

2 , ri+1
3 , respectively, for some i ∈ [n],

and let M be a perfect matching of Fn. The DF 6-pole X is said to be
good with respect M, if there exists j ∈ [3] such that ∂X ∩M = {li

j, ri+1
j }.

In the sequel, we prove that given a perfect matching M of Fn,
Fn + M is Class I, except when n = 3 and M intersects exactly one
spoke of F3. The latter case arises because the graph F3 is the Petersen
graph P with one vertex Y-extended to a triangle (F3 is also known
as the Tietze graph), and if F3 + M is Class I for such a perfect
matching M, then this would imply that l(P) = 1, a contradiction (see
Proposition 4.2.2 and Proposition 4.2.3).

Easy direct checks show that the following remarks hold.

R.1 Let M be a perfect matching of F3 intersecting all three of its
spokes. Then, F3 + M is Class I.

R.2 Let M be a perfect matching of F5 intersecting exactly one spoke,
say the spoke of F3. Then, M contains one of the two matchings
depicted in Figure 4.6. One can clearly see that, in any case, the
colouring depicted Figure 4.6 can always be extended to a 4-edge-
colouring of F5 + M using the colours a, b, c, d.

R.3 As n is odd, any perfect matching of Fn intersects exactly one left
(similarly right) dangling edge of some SF 6-pole Fi, for i ∈ [n].

Note that R.3 follows because every perfect matching of Fn cannot
intersect all the three left (similarly right) dangling edges of Fi.
Moreover, if a perfect matching intersects exactly two left dangling
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Figure 4.6: M intersecting exactly one spoke in F5

edges of Fi, then the right dangling edges of this 6-pole are not
intersected by the perfect matching, and vice-versa. Since n is odd,
this is impossible to occur.

R.4 If the two spokes of a DF 6-pole are contained in a perfect match-
ing, then it is a good DF 6-pole with respect to that perfect match-
ing (see Figure 4.5).

R.5 If a perfect matching M of Fn intersects the first and third out
of three consecutive spokes, then, the second spoke must be
contained in M, as well. Consequently, if a perfect matching of
F5 intersects exactly three spokes, then they must be consecutive.
Moreover, in this case, the two SF 6-poles of F5 whose spokes are
not contained in the perfect matching form a good DF 6-pole.

R.6 As n is odd, if the spokes of three consecutive SF 6-poles, say
F1, F2, F3, do not belong to a perfect matching, then either F1 and
F2, or, F2 and F3 form a good DF 6-pole with respect to that perfect
matching.

Indeed, note that either l1
1 and r2

1, or, l2
1 and r3

1 belong to the perfect
matching, and so R.6 follows by R.3.
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Figure 4.7: Inductive step in the proof of Theorem 4.3.3
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In the next proof we make use of the following procedure: we delete
a good DF 6-pole X with respect to a perfect matching M of Fn (shown
as the dotted part in Figure 4.7) and join the remaining dangling edges
accordingly together as in Figure 4.7. In this way we obtain a copy of
the flower snark Fn−2.

In the sequel, with a slight abuse of terminology, we refer to the
three edges obtained after joining the above dangling edges as the
new edges of Fn−2. Moreover, since X is good, M naturally induces a
perfect matching of Fn−2. We denote by MX such a perfect matching
in the copy of Fn−2, obtained by removing X from Fn. Note that MX

contains exactly one of the three new edges.

Theorem 4.3.3. Let n ≥ 5 be an odd integer and let M be a perfect matching
of Fn. Then, Fn + M is Class I.

Proof. The crucial steps of the proof of this theorem lie in the following
two claims.

Claim I. Let n ≥ 5 be an odd integer and let X be a good DF 6-pole
with respect to a perfect matching M of Fn. If Fn−2 + MX is Class I,
then Fn + M is Class I.
Proof of Claim I. Let MX be the perfect matching induced by M in
Fn−2. By assumption, Fn−2 + MX admits a 4-edge-colouring with
the colours denoted by a, b, c, d. Without loss of generality, we can
assume that the unique edge of Fn−2 + MX parallel to a new edge of
Fn−2 has colour d in the given 4-edge-colouring. Since every colour
class corresponds to a perfect matching of Fn−2, it follows by R.3
that each of the colours a, b, c intersects exactly one of the three new
edges of Fn−2. A 4-edge-colouring of Fn + M is constructed in the
following way: if an edge does not have an end-vertex in X, then it is
assigned the same colour of its corresponding edge in Fn−2 + MX; all
edges of Fn with an end-vertex in X are assigned the colours a, b, c as
illustrated in Figure 4.8; and finally, all edges of M with an end-vertex
in X are assigned the colour d. This gives rise to a 4-edge-colouring of
Fn + M. �
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Figure 4.8: Extending the colour classes of Fn−2 to Fn

Claim II. Let n ≥ 3 be an odd integer and let M be a perfect matching
of Fn. The graph Fn admits a good DF 6-pole with respect to M.
Proof of Claim II. Suppose that there is no good DF 6-pole with respect
to M, for contradiction. From R.4 it follows that M cannot contain two
consecutive spokes. At the same time, since n is odd, R.5 and R.6 imply
that every sequence of consecutive spokes not in M has length exactly
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two. Hence, for every three consecutive spokes, one of them belongs
to M and the other two do not. Consider three consecutive SF 6-poles
in Fn, and without loss of generality assume that M intersects only
the first spoke. Since there is no good DF 6-pole with respect to M, a
direct easy check shows that M can intersect these three consecutive
SF 6-poles only in two possible ways, as shown in Figure 4.9.
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Figure 4.9: How M can intersect three consecutive SF 6-poles

The two ways M can intersect three consecutive SF 6-poles must al-
ternate in Fn. Hence, n is three times an even number, a contradiction,
since n is assumed to be odd. �

Now we are in a position to complete the proof of the theorem. We
prove the result by induction on n. Consider first F5. As the spokes
form an odd edge-cut, M intersects an odd number of them. By R.2
we can assume that M intersects at least three consecutive spokes of
F5, say the spokes of F1, F2, F3. Consequently, by R.4 or R.5, F4 and F5

form a good DF 6-pole with respect to M. Let this DF 6-pole be X. We
have that MX intersects all the three spokes of F3. By R.1, F3 + MX is
Class I and the base case n = 5 follows by Claim I.

Now, assume the result holds up to n ≥ 5, that is, Fn + M is Class I
for every perfect matching M of Fn. Consider Fn+2 and let M be one
of its perfect matchings. By Claim II, Fn+2 admits a good DF 6-pole X
with respect to M. By induction, Fn + MX is Class I and the assertion
follows by Claim I.

The flower snark F5 has cyclic connectivity 5, and for every odd
n ≥ 7, Fn has cyclic connectivity 6. Because of Theorem 4.3.3, one
may think that for every perfect matching M of a cyclically 5-edge-
connected cubic graph G with perfect matching index four, G + M is
Class I. However, this is not true. By Theorem 1.1 in [38], there exists
an infinite family of cyclically 5-edge-connected cubic graphs G having
perfect matching index 4, which do not satisfy this assertion. This is
true because these graphs admit a 2-factor which is not contained in
any one of their cycle double covers. For, let G be such a graph, and
let N be the complement of such a 2-factor C. Suppose that G + N
is Class I, for contradiction. Then, G + N = ∑4

i=1 Ji for some perfect
matchings Ji of G. Hence, {N4J1, . . . , N4J4, C} is a cycle double cover
of G containing C. This contradicts our choice of G.
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4.4 a relation between lM(G) and scc(G)

The main conjecture in the area of short cycle covers of bridgeless
graphs is the so-called 7/5-Conjecture (or the Shortest Cycle Cover
Conjecture). It states that for any bridgeless graph G (not necessarily
cubic), we have scc(G) ≤ 7/5 · |E(G)|. This conjecture is one of the
many consequences of the Petersen Colouring Conjecture [81]. On the
other hand, it implies the Cycle Double Cover Conjecture, see [51]. In
[52] it is shown that any bridgeless cubic graph G has a cycle cover of
length at most 34/21 · |E(G)|, and any bridgeless graph G of minimum
degree 3 has a cycle cover of length at most 44/27 · |E(G)|.

The following conjecture can be found as Conjecture 8.11.5 in [105].

Conjecture 4.4.1. Every bridgeless graph has a shortest 4-cycle cover.

Here, we propose the following conjecture and we show that it is
implied by Conjecture 4.4.1.

Conjecture 4.4.2. For every bridgeless cubic graph G, χ′e(G) ≤ 4 if and
only if G, scc(G) = 4/3 · |E(G)|.

Proposition 4.4.3. Conjecture 4.4.1 implies Conjecture 4.4.2.

Proof. If χ′e(G) ≤ 4, then by [91], scc(G) = 4/3 · |E(G)|. So assume
scc(G) = 4/3 · |E(G)|, and let C = {C1, . . . , Ck} be a cycle cover of G
with length 4/3 · |E(G)|. Since we are assuming Conjecture 4.4.1 to
be true, we can assume k ≤ 4. Since G is cubic and the length of C
is 4/3 · |E(G)|, every edge of G is either covered once or twice in C
and the edges covered twice form a perfect matching of G, say M.
Let Fi = E(Ci)4M, for every i = 1, . . . , k. Since C is a cycle cover, the
perfect matchings F1, . . . , Fk cover the edge set of G, implying that
χ′e(G) ≤ 4, as required.

A relation between scc(G) and lM(G) is clearly established by the
following theorem.

Theorem 4.4.4. For every bridgeless cubic graph G, scc(G) > 4/3 · |E(G)|
if and only if G is frumious, otherwise scc(G) = 4/3 · |E(G)|.

Proof. Assume that G is not frumious, that is, G + tM is Class I
for a perfect matching M of G and for some non-negative integer
t. Let F1, . . . , Ft+3 be the colour classes of a (t + 3)-edge-colouring
of G + tM. For every i = 1, . . . , t + 3, let Ci = G[M4Fi], and let
C = {C1, . . . , Ct+3}. The latter is a cycle cover of G. Moreover, if e ∈ M,
then e is covered exactly twice by the cycles in C. Otherwise, if e 6∈ M,
then e is covered exactly once by some cycle in C. Since for any cubic
graph G and any cycle cover C of G, C has length 4/3 · |E(G)| if and
only if the set of edges covered twice by C is a perfect matching of
G, the result follows. Conversely, let C = {C1, . . . , Ct+3} be a shortest
cycle cover of G of length 4/3 · |E(G)|, for some integer t. Let M be



4.4 a relation between lM(G) and scc(G) 56

the set of edges covered exactly twice by C, and let Fi be equal to
M4E(Ci). By an argument similar to the first implication, one can see
that G + tM = F1 + . . . + Ft+3.

Hence, the main consequence of Conjecture 4.4.2 is that bridgeless
cubic graphs having perfect matching index at least 5 would have a
shortest cycle cover strictly greater than 4/3 their size. The problem
seems to be very hard to solve. However, in the next section, we show
that an infinite family of snarks G with perfect matching index 5 have
a shortest cycle cover strictly greater than 4/3 · |E(G)|.

4.4.1 Treelike Snarks

We recall that a bridgeless cubic graph G is frumious if lM(G) = +∞
for all perfect matchings M of G. As already remarked, the Petersen
graph is such a graph and above we conjectured (see Conjecture 4.4.2)
that a bridgeless cubic graph is frumious if and only if its perfect
matching index is at least 5. In order to support such a conjecture we
consider an infinite family of snarks, called treelike snarks, having
perfect matching index 5 and prove that they are frumious snarks. The
family of treelike snarks was first introduced in [1], but here we also
refer to the more general definition of treelike snarks given in [65] and
prove our main result (Theorem 4.4.6) in this general setting.

In order to present such a class of snarks we need some preliminary
definitions.

Definition 4.4.5. Let A be an arbitrary 4-pole. Partition its four dan-
gling edges in ordered pairs, say (l1, l2), referred to as the first and
second left dangling edges, and (r1, r2), referred to as the first and
second right dangling edges. Let the end-vertices of the four dangling
edges l1, l2, r1, r2 be u1, u2, v1, v2, respectively. The 4-pole A is said to be
frumious with respect to such a partition if the graph obtained by re-
moving the four dangling edges and adding two new vertices u and
v such that u is adjacent to v, u1, u2, and v is adjacent to u, v1, v2, is
a frumious snark. We refer to the latter graph as the frumious snark
obtained from the 4-pole A.

Note that a 4-pole could be frumious with respect to a given parti-
tion whilst it is not with respect to another one. On the other hand,
a change in the order of the left dangling edges or the right dan-
gling edges of a frumious 4-pole produces another (possibly different)
frumious 4-pole. However, although this last change may produce
a different frumious 4-pole, the two frumious snarks obtained from
the two 4-poles are the same. An example of a frumious 4-pole is
the one obtained by removing two adjacent vertices of the Petersen
graph, say u and v, with the left dangling edges corresponding to the
edges originally incident to u and not v, and the right dangling edges
corresponding to the edges originally incident to v and not u. In this
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case, the order of the dangling edges in each set of the partition is not
relevant due to the symmetry of the Petersen graph.

A Halin graph is a plane graph consisting of a planar representation
of a tree without degree 2 vertices, and a circuit on the set of its leaves
(see [41]).

Let H be a cubic Halin graph consisting of the tree T and the circuit
K. A treelike snark G is any cubic graph that can be obtained by the
following procedure:

• for every vertex of degree 1 (a leaf) x of T, we add two new
vertices, say x1 and x2, and the edges xx1 and xx2; and

• for every edge xy of K, with x being the predecessor of y with
respect to the clockwise orientation of K, the edge xy is replaced
with a frumious 4-pole, and the first and second left dangling
edges of this 4-pole are joined to x1 and x2, respectively, whilst
the first and second right dangling edges are joined to y1 and y2,
respectively.

Let G be a treelike snark as defined above, and let the tree and the
circuit defining G be T and K, respectively. Let A be a frumious 4-pole
of G replacing an edge of K. We say that A is of Type ij with respect to
a perfect matching M of G if M intersects the left and right dangling
edges of A exactly i and j times, respectively, for some i, j ∈ {0, 1, 2}
with i + j even. We denote this by Type(AM) = ij.

In what follows we refer to the first and second left dangling edges
of the 4-pole A as −A and −A, respectively. The first and the second
right dangling edges are similarly denoted by A− and A−, respectively
(see Figure 4.10).
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Figure 4.10: Consecutive leaves and 4-poles

Two leaves x and y of T are called consecutive if they are adjacent
in the circuit K, and we say that the frumious 4-pole of G replacing
the edge xy of K is in between the two leaves x and y. Moreover, two
consecutive leaves are said to be near if they have distance two in T,
that is, they have a common neighbour in T (see Figure 4.11). We
remark that T always has two near leaves. Similarly, two 4-poles A
and B are called consecutive if there exist three consecutive leaves x, y, z
(that is, x and y are consecutive and y and z are consecutive) such that
A is in between x and y, and B is in between y and z (see Figure 4.10).
Again, we say that the leaf y is in between the 4-poles A and B.
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Theorem 4.4.6. Every treelike snark is frumious.

Proof. Let G be a treelike snark. We need to prove that lM(G) = +∞
for every perfect matching M of G. Suppose, for contradiction, that
G is a counterexample having the tree T defining G of minimum
order. This means that G + tM is Class I, for some perfect matching
M of G and some positive integer t. Let the t + 3 colours of G + tM
be the perfect matchings F1, . . . , Ft+3. It is already proved in [25] that
scc(G) > 4/3 · |E(G)| if T has exactly one vertex of degree 3, and so,
lM(G) = +∞ by Theorem 4.4.4. Therefore, we can assume that T has
at least two vertices having degree 3.

Claim I. If a 4-pole of G is of Type 00 with respect to M, then
there must exist exactly one perfect matching from the list of colours
F1, . . . , Ft+3 which intersects both the left (similarly right) dangling
edges.
Proof of Claim I. Since the 4-pole of G is of Type 00 with respect to M,
every dangling edge is contained in exactly one of the colours from the
above list. Moreover, since the 4-pole is frumious, exactly one of these
colours must intersect both left dangling edges and exactly one of
these colours must intersect both right dangling edges (such a colour
could be the same for the left and right dangling edges), otherwise
one could construct a (t + 3)-edge-colouring of the frumious snark
obtained from the 4-pole (see Definition 4.4.5), a contradiction. In this
case, all the other colours from the list (t + 1 or t + 2 of them) do not
intersect the four dangling edges. �

Claim II. If a 4-pole of G is of Type 11 with respect to M, then, there
must be t perfect matchings from the list of colours F1, . . . , Ft+3, such
that each of them intersects exactly one left dangling edge and exactly
one right dangling edge simultaneously. Moreover, there must also
exist exactly one perfect matching from the same list which intersects
both the left (similarly right) dangling edges of the 4-pole.
Proof of Claim II. Since the 4-pole is frumious, at least one colour, say
Fi, must intersect both the left (right) dangling edges of the 4-pole,
by the same argument used in the proof of Claim I, and once again,
such colour could be the same for the left and right dangling edges.
Since one of the left (right) dangling edges does not belong to M
and belongs to Fi, every other colour cannot intersect this left (right)
dangling edge. Hence, every perfect matching from the list of colours
F1, . . . , Ft+3 different from Fi intersects the other left (right) dangling
edge at most once. More precisely, t of the colours different from Fi in-
tersect the left and right dangling edges belonging to M exactly once. �

Claim III. G cannot contain two consecutive 4-poles which are respec-
tively of Type 00 and Type 11 with respect to M.
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Proof of Claim III. If two consecutive 4-poles of G are respectively of
Type 00 and 11 with respect to M, then, the edge of T, say e, incident
to the leaf in between these two 4-poles does not belong to M. On the
other hand, by Claim I, there exists a colour Fi which contains both the
right (left) dangling edges of the 4-pole of Type 00, and so it contains
the edge e, as well. By Claim II, there exists a colour Fj which contains
both the left (right) dangling edges of the 4-pole of Type 11, and so
it contains the edge e too. We note that j 6= i, otherwise, Fi contains
two pairs of incident edges. Consequently, the edge e belongs to two
different colours and so it must belong to M, a contradiction. �

Claim IV. If the unique edge of T incident to a leaf x is not in M, then
x is in between a 4-pole of Type 11 and a 4-pole of Type 02 or, by
symmetry, a 4-pole of Type 20 and a 4-pole of Type 11, with respect to
M.
Proof of Claim IV. If the unique edge of T incident to a leaf x is not in
M, then one of the other two edges incident to x belongs to M. Hence,
x is in between two 4-poles, one of Type 11 and the other one either
of Type 00 or of Type 02 (by symmetry Type 20), with respect to M.
The first possibility is already excluded by Claim III. �

Claim V. If two consecutive leaves are incident to edges in M not
belonging to T, then the 4-pole in between them is of Type 11 with
respect to M.
Proof of Claim V. Let x and y be the two consecutive leaves and let
A, B, C be the three consecutive 4-poles such that x is in between A
and B, and y is in between B and C. By Claim IV, either A is of Type
20 and B of Type 11, or A is of Type 11 and B of Type 02, with respect
to M. The latter case is excluded by considering the pair B and C of
consecutive 4-poles and Claim IV again. �

Claim VI. G cannot have three consecutive leaves which are incident
to edges in M not belonging to T.
Proof of Claim VI. Assume there exist such three consecutive leaves, say
x, y, z. By Claim V, the two 4-poles in between x and y, and in between
y and z are both of Type 11 with respect to M. This implies that the
edge of T incident to y is in M, a contradiction. �

Next, consider two near leaves of T, say x and y, as in Figure 4.11.
Let e and f be the two edges of T incident to x and y, respectively.
Moreover, let g be the edge of T adjacent to e and f . The perfect
matching M can intersect e, f , g in two different ways.

Case 1. The edge g does not belong to M and exactly one of e and f
belongs to M, say e without loss of generality.
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Case 2. The edge g belongs to M.
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Figure 4.11: Near leaves x and y in Case 1 and Case 2 from the proof of
Theorem 4.4.6

Consider the three consecutive 4-poles A, B, C such that x is in
between A and B, and y is in between B and C, as in Figure 4.12. The
list of proven claims gives some strong restrictions and information
on the possible types of these 4-poles with respect to M. We briefly
discuss them according to Type (BM), ending with a summary in
Table 4.2.

• Type (BM) cannot be equal to 22 or 02, since f /∈ M both in Case
1 and Case 2.

• If Type (BM) = 00, then Type (CM) = 11 since f /∈ M, a contra-
diction by Claim III.

• If Type (BM) = 11, then Type (CM) = 02 since f /∈ M and by
Claim III. Moreover, if e ∈ M, then Type (AM) = 11 (Case 1b)),
otherwise, if g ∈ M, then Type (AM) = 20 (Case 2)).

• If Type (BM) = 20, then Type (CM) = 11 since f /∈ M, and Type
(AM) can be either 00 (Case 1a)) or 20 (Case 1c)).

Case Type(AM) Type(BM) Type(CM)

1a) 00 20 11
1b) 11 11 02
1c) 20 20 11
2) 20 11 02

Table 4.2: The types of the three consecutive 4-poles A, B, C

We prove a further last claim.

Claim VII. Let D and D′ be two consecutive 4-poles of G which
are respectively of Type 20 and 11 (or by symmetry 11 and 02) with
respect to M. There cannot exist a colour Fj such that Type(DFj) =

Type(D′Fj
) = 11, and there cannot exist a colour Fl such that

Type(DFl ) = 02 or 22 (or by symmetry 20 or 22).
Proof of Claim VII. Consider two consecutive 4-poles D and D′ which
are respectively of Type 20 and 11 (or 11 and 02) with respect to M.
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Clearly, the edge h belonging to T and incident to the leaf in between
them is not in M. Since we are assuming that G + tM is Class I, by
Claim II there must exist a colour, say Fi, such that Type(D′Fi

), or
from now on simply Type(D′i), is equal to 20 or 22. Clearly, h ∈ Fi.
This means that there cannot exist a colour Fj such that Type(Dj) =

Type(D′j) = 11, as otherwise, h would be covered more than it should
be. For the same reasons, there cannot exist a colour Fl such that
Type(Dl) = 02 or 22 (by symmetry 20 or 22). �

Now, we use all previous claims to show that in all the four remain-
ing cases we obtain a contradiction.

Case 1a). Type(AM) = 00, Type(BM) = 20, Type(CM) = 11.
Since A is frumious, by Claim I there exists a colour from F1, . . . , Ft+3,
say F1, such that Type(A1) = α2, where α is either equal to 0 or 2. As
the edges e and f are adjacent, the 4-poles B and C must be intersected
by F1 as in Table 4.3. In order to cover the right dangling edges of B,
there must also exist two colours, say F2 and F3, such that Type(B2) =

Type(B3) = 11, since by Claim VII, Type(Bi) cannot be equal to 02, for
any i ∈ [t + 3]. Hence, by Claim VII, F2 and F3 intersect the 4-poles
A, B, C as shown in Table 4.3, where β, γ, δ, ε ∈ {0, 2}. In any case, this
means that the edge g of T is covered twice by F2 and F3 in ∪t+3

i=1 Fi, a
contradiction, since g 6∈ M.

i Type(Ai) Type(Bi) Type(Ci)

1 α2 00 11
2 β0 11 0δ

3 γ0 11 0ε

Table 4.3: Case 1a)

Case 1b). Type(AM) = 11, Type(BM) = 11, Type(CM) = 02.
There must be a colour from F1, . . . , Ft+3, here denoted by a, intersect-
ing both the right dangling edges of A. In what follows, if Z is a set
of colours, we denote by Z the set of all colours not in Z. Without
loss of generality, assume A− ∈ M. Let b and c be the colours of the
two edges of G adjacent to A−. Thus, the colours of A− are {b, c}, for
simplicity denoted by bc. Without loss of generality, let the colour of
−B be c. This implies that c also intersects −B, since by Claim II there
must be one colour which intersects both the left dangling edges of B,
and consequently the colours of −B are ad, for some d ∈ abc. Moreover,
the edge e has colours bd, as can be seen in Figure 4.12.

Once again, by Claim II, there is a colour which intersects both
the right dangling edges of B. Clearly, this cannot belong to bd, for
otherwise, f would be coloured by a colour already used for e. Since
b intersects exactly one left dangling edge of B, the right dangling
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Figure 4.12: Case 1b)

edges of B must be intersected by d. Without loss of generality, we
can assume that B− ∈ M, and so by the above reasoning, the set
of colours of B− is ac (see Figure 4.12). At this point, we have two
possible cases of how we can colour −C and −C: we either have −C
and −C intersected by a and c, respectively, or the other way round,
as can be seen in the two figures in Figure 4.13.
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Figure 4.13: The possible colours of −C and −C in Case 1b)

Next, we reduce G to a smaller treelike snark following the pro-
cedure presented in Figure 4.14. Since T has at least two vertices of
degree 3, the resulting graph G′ is indeed a treelike snark. Let T′ be
the tree defining G′.
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Figure 4.14: Constructing a smaller treelike snark in Case 1b)

Let M′ be the perfect matching of G′ induced by M. Without loss
of generality, assume that the colours of −C and −C in G are a and
c, respectively, and assign to the edges of G′ (which correspond to
edges of G) the same colours they had originally. We note that this
procedure does not colour all the edges of G′. In fact, the two edges
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not belonging to T′ which are incident to the leaf between the two
4-poles A and C in G′, do not correspond to any edges of G, and so
they are left uncoloured. Moreover, the edges of G′ are not properly
coloured, as depicted in Figure 4.15.
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Figure 4.15: Applying a Kempe chain argument in Case 1b)

We claim that the (a, b)-Kempe chain in the 4-pole A starting at A−
must end at A−. For, suppose it does not contain the latter dangling
edge. Let MA be the perfect matching induced by M in the 4-pole
A. Switching the colours a and b along this chain result in a (t + 3)-
edge-colouring of the pole A + tMA in which no colour intersects the
two right dangling edges of A simultaneously, contradicting Claim II.
Consequently, the (a, b)-Kempe chain in G′ starting from A− must end
at A−. By switching the colours a and b along this chain and extending
the colouring to a (t + 3)-edge-colouring of G′ + tM′ as in Figure 4.15,
we obtain a contradiction due to the minimality of T.

Case 1c). Type(AM) = 20, Type(BM) = 20, Type(CM) = 11.
This case is solved in a similar way as in Case 1b), and so this case
cannot occur as well. Figure 4.16 shows the four different ways how a
(t + 3)-edge-colouring of G + tM looks like in this part of G.
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Figure 4.16: Case 1c)

Case 2. Type(AM) = 20, Type(BM) = 11, Type(CM) = 02.
Since all other cases are not possible, all pairs of near leaves of G are in
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between three 4-poles of these types (with respect to M). We show that
in such a case, there exist three consecutive leaves all incident to edges
in M not belonging to T, a contradiction by Claim VI. In fact, if T has
only two vertices of degree 3, then it has exactly two pairs of near
leaves, with all the four edges incident to the leaves not belonging to
M. Thus, we have three consecutive leaves with the required property,
contradicting Claim VI.

Therefore, T must have more than two vertices of degree 3. Remove
all pairs of near leaves from T, and let the resulting tree, which still
has all vertices of degree 1 and 3, be T′. In general, if x is a leaf of T′

which was not a leaf in T, then the edge in T′ incident to x belongs
to M. Consider a pair of near leaves of T′. At least one of them was
not a leaf in T, as otherwise the pair would have been deleted in the
process of obtaining T′. If these two near leaves were not originally
leaves in T, then the edges in T′ incident to both of them belong to M,
a contradiction. Hence, one leaf of the pair must also be a leaf in T,
whilst the other leaf of the pair was a common neighbour to a pair of
removed near leaves of T. Consequently, G contains three consecutive
leaves such that the edges of T incident to them do not belong to M,
contradicting Claim VI once again. Hence, lM(G) = +∞ for every
perfect matching M of G.

We complete this section with the following corollary which simply
follows by Theorem 4.4.6 and Theorem 4.4.4.

Corollary 4.4.7. For every treelike snark G, scc(G) > 4/3 · |E(G)|.

4.5 final remarks and open problems

In the following table, we summarise all the parameters discussed
along the chapter and we recall one of the main conjectures proposed
above. In particular, the table highlights the special role of the class
S≥5 with regards to all the considered problems.

χ′(G) χ′e(G) scc(G) l(G) lM(G)

3 3 4/3 · |E(G)| 0 (∀M) 0

4
4 4/3 · |E(G)| 1 (∃M) 1

≥ 5 > 4/3 · |E(G)| > 1 (∀M) = +∞

( Conj.4.4.2 ) ( Conj.4.4.2 )

Let us remark that the problem of establishing the existence of a
perfect matching M for which lM(G) is finite is equivalent to estab-
lishing the existence of a 2-factor (indeed the complement of M in G)
which can be extendend to a cycle double cover of G. This problem
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was already considered for some classes of snarks (see for instance
[38]). We remark that Conjecture 4.4.2 can be equivalently stated in
such terms as follows.

Conjecture 4.5.1. For every bridgeless cubic graph G, χ′e(G) > 4 if and
only if every cycle double cover of G does not contain a 2-factor of G.

In Section 4.4 we showed that the conjecture holds for a large family
of snarks having perfect matching index 5. A first natural step in an
attempt to understand better Conjecture 4.4.2 is trying to solve the
following problem.

Problem 4.5.2. Characterise the class of bridgeless cubic graphs G for
which there exists a perfect matching M, such that G + 2M is Class I.

Clearly, if Conjecture 4.4.2 holds we would have a complete answer
to the previous problem, and the graphs G answering Problem 4.5.2
would be those bridgeless cubic graphs having perfect matching index
at most 4.

Finally, as one can notice, along the chapter we mainly focus our
attention on 1-factors of G. A very similar problem for 2-factors of a
snark G was communicated personally to us by Eckhard Steffen.

Problem 4.5.3 (Steffen, personal communication). Let G be a bridge-
less cubic graph. What is the smallest number of 2-factors that need
to be added to G, such that the resulting graph is Class I?

The classical Berge–Fulkerson Conjecture is equivalent to saying
that the answer for Problem 4.5.3 is at most 1, with the answer being
0 if G is already a Class I graph. Here, we would like to propose a
possible approach for the study of this problem.

For a bridgeless cubic graph G, let sp2(G) be the set of all non-
negative integers t such that G contains t 2-factors whose addition
to G results into a Class I graph, and let sp(G) be the set of all
non-negative integers t such that tG is Class I, where tG represents
G + (t− 1)E(G). These two parameters are related in the following
way.

Proposition 4.5.4. For any bridgeless cubic graph G and any integer t ≥ 0,
t ∈ sp2(G) if and only if (t + 1) ∈ sp(G).

Proof. Assume that t ∈ sp2(G). Then, there are t 2-factors F1, ..., Ft of
G such that G + E(F1) + ... + E(Ft) is Class I, that is, (2t + 3)-edge-
colourable. Hence, there are 2t + 3 perfect matchings J1, ..., J2t+3 that
partition the edge set of the graph G + E(F1) + ... + E(Ft), and conse-
quently

~1 = χJ1 + ... + χJ2t+3 − χE(F1) − ...− χE(Ft).
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Let Fi be the perfect matching E(G)− E(Fi), for every i ∈ [t]. By noting
that for every i,~1 = χFi + χE(Fi), we have

~1 = χJ1 + ... + χJ2t+3 − (~1− χF1)− ...− (~1− χFt),

which implies that

(t + 1)~1 = χJ1 + ... + χJ2t+3 + χF1 + ... + χFt .

The latter means (t + 1)G is Class I, that is, (3t + 3)-edge-colourable.
The converse can be similarly proved using the same arguments.



Part II

P E R F E C T M AT C H I N G S A N D H A M I LT O N I C I T Y

We now move on to study the behaviour of the union
of two perfect matchings and whether such a union con-
stitutes a Hamiltonian circuit or not. More precisely, we
shall study whether a given perfect matching (or pair-
ing) of a graph can always be extended to a Hamiltonian
circuit by another perfect matching. If this holds for all
perfect matchings (pairings) of a graph, we shall say that
the latter has the PMH-property (or the PH-property, in
case of pairings). We recall that PMH and PH stand for
Perfect-Matching-Hamiltonian and Pairing-Hamiltonian,
respectively.

Along the way I have made great friends and worked with a
number of creative and interesting people. I have been saved
from boredom, dourness, and self-absorption. One cannot ask
for more.

—karen uhlenbeck



5
E X T E N D I N G P E R F E C T M AT C H I N G S T O
H A M I LT O N I A N C I R C U I T S I N L I N E G R A P H S

This chapter is based on a joint work with Marién Abreu, John Baptist Gauci,
Domenico Labbate and Giuseppe Mazzuoccolo [III].

5.1 introduction

In this chapter, we deal with the line graph of a graph G and search
for sufficient conditions on G which result in L(G) being PMH. We
prove that L(G) is PMH in all of the following cases:

• G is Hamiltonian with maximum degree ∆(G) at most 3 (Theo-
rem 5.2.3);

• G is a complete graph (Theorem 5.3.2); and

• G is arbitrarily traceable from some vertex (Theorem 5.3.3).

Analogous results with regards to the line graph of complete bipartite
graphs shall be discussed in Chapter 6.

Further related results and open problems regarding graphs which
are hypohamiltonian, Eulerian or with large maximum degree are
discussed along this chapter. We also remark that unless otherwise
stated, in this chapter we let G be a graph of order n and denote its
set of vertices by {v1, v2, . . . , vn}.

5.2 line graphs of graphs with small maximum degree

For some edge e ∈ E(G), we refer to the corresponding vertex in
L(G) as e, for simplicity, unless otherwise stated. A clique partition
of a graph G is a collection of cliques of G in which each edge of
G occurs exactly once. For any v ∈ V(G), let Qv be the set of all
the edges incident to v. Clearly, Qv induces a clique in L(G) and
Q = {Qv : v ∈ V(G) with degree at least 2} is a clique partition of
L(G). We say that Q is the canonical clique partition of L(G). In the
sequel, we shall refer to Qvi simply as Qi and in order to avoid trivial
cases, from now on we always assume that G is a connected graph of
order larger than 2. In what follows, we shall also say that a clique
Q′ ∈ Q is intersected by a set of edges N of L(G), and by this we
mean that E(Q′) ∩ N 6= ∅.

For a graph F, an F-decomposition of G is a collection of subgraphs
of G whose edges form a partition of E(G) such that each subgraph in
the collection is isomorphic to F. In general, it is not hard to show that

68
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every connected graph G with |E(G)| even has a P3-decomposition.
This is equivalent to saying that L(G) has a perfect matching (see also
Corollary 3 in [92]): indeed there is a natural bijection between the
paths in a P3-decomposition of G and the edges of the corresponding
perfect matching M of L(G), with the two edges in a P3 corresponding
to the two end-vertices of the respective edge in M. Since we are
interested in line graphs which are PMH, a necessary condition is that
L(G) is Hamiltonian. Harary and Nash-Williams in [42] showed that
L(G) is Hamiltonian if and only if G admits a dominating tour. In
particular, this implies that if G is Hamiltonian or Eulerian, then, L(G)

is also Hamiltonian, but the converse is not necessarily true (see also
[18, 42, 89]).

The following technical lemma is the main tool we use to prove
Theorem 5.2.3 as well as a series of related results contained in this
section. It describes a necessary and sufficient condition to extend a
given perfect matching to a Hamiltonian circuit in subcubic graphs.

Lemma 5.2.1. Let G be a connected graph such that ∆(G) ≤ 3. A perfect
matching M of L(G) can be extended to a Hamiltonian circuit if and only
if there exists a dominating circuit D of G such that the vertices in G un-
touched by D correspond to a subset of cliques in Q not intersected by M,
where Q is the canonical clique partition of L(G).

Proof. Let M be a perfect matching of L(G) which can be extended
to a Hamiltonian circuit HL of L(G). For some orientation of HL, let
Q1, Q2, . . . , Qs be the order in which E(HL) intersects at least one edge
of the cliques in Q, where s ∈ [n]. Since ∆(G) ≤ 3, Q consists of 2-
cliques and 3-cliques, implying that the sequence Q1, Q2, . . . , Qs does
not have repetitions. We claim that D = (v1, v2, . . . , vs) is a dominat-
ing circuit of G. Clearly, D is a circuit, since consecutive cliques in
the sequence Q1, Q2, . . . , Qs imply the existence of an edge between
the corresponding two vertices in D. We then consider two cases. If
every clique in Q is intersected by E(HL), then (v1, v2, . . . , vs) is a
Hamiltonian circuit, since s = n. Therefore, consider the case when Q
contains a clique, say Q, not intersected by E(HL). The edges of the
other cliques in Q which are incident to a vertex in Q must be inter-
sected by E(HL), as otherwise the latter is not a Hamiltonian circuit of
L(G). Let these cliques be denoted by Qj1 , . . . , Qjk , for k = 2 or 3 and
j1, . . . , jk ∈ [s]. Let the corresponding vertices of Q and Qj1 , . . . , Qjk , in
G, be v and vj1 , . . . , vjk , respectively. Also, since v 6= vt for all vt in D,
and M is a perfect matching of L(G), the vertices vj1 , . . . , vjk are in the
circuit D (not necessarily adjacent amongst themselves) and so the
edges in G having v as an end-vertex have at least one end-vertex in D.
Thus, since v was arbitrary, D is dominating. Moreover, every vertex
in G untouched by D corresponds to a clique in Q not intersected by
E(HL), which is a subset of the cliques in Q not intersected by M.

Conversely, let M be a perfect matching of L(G) and let D =

(v1, v2, . . . , vs) be a dominating circuit in G, for some s ≤ n, such
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that the untouched vertices correspond to a subset of the cliques in
Q not intersected by M. Note that there exists a one-to-one mapping
between the untouched vertices in G and the unintersected cliques
in Q, which is not necessarily onto. We traverse the cliques in Q as
follows. Let Q be a clique in Q, with corresponding vertex v ∈ V(G).
We consider three cases.

Case 1. E(Q) ∩M 6= ∅.
By our assumption, v = vi for some i ∈ [s], and we traverse Q (= Qi)
using the unique path joining V(Qi−1) ∩V(Qi) and V(Qi) ∩V(Qi+1)

which contains E(Q) ∩M.

Case 2. E(Q) ∩M = ∅ and v ∈ D.
In this case, v = vj for some j ∈ [s], and we traverse Q (= Qj) us-
ing the edge with end-vertices V(Qj−1)∩V(Qj) and V(Qj)∩V(Qj+1).

Case 3. E(Q) ∩M = ∅ and v 6∈ D.
Since M is a perfect matching, all the cliques in Q sharing a vertex
with Q (which must be triangles in this case) are intersected by M.
These 3-cliques are traversed as in Case 1, and in this way the edges
of Q are not intersected.

We traverse all the cliques in Q in the above way and let the result-
ing sequence of edges be HL. We claim that HL induces a Hamiltonian
circuit of L(G) containing M. By Case 1, HL contains M and so every
vertex of L(G) is covered by HL. Also, the sequence of cliques inter-
sected by E(HL), that is, Q1, Q2, . . . , Qs, corresponds to the sequence
of vertices in D, and so, since D is connected and 2-regular, HL is a
connected circuit, proving our claim.

Remark 5.2.2. Note that Lemma 5.2.1 is not true in general for ∆(G) >

3. An easy example is shown in Figure 5.1: indeed, an arbitrary perfect
matching of L(G) can be extended to a Hamiltonian circuit, that is,
L(G) is PMH, but there is no dominating circuit in G.
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Figure 5.1: A graph with maximum degree 4 and no dominating circuit
whose line graph is PMH

By using Lemma 5.2.1, we can furnish a first sufficient condition on
G assuring that its line graph is PMH.

Theorem 5.2.3. Let G be a Hamiltonian graph such that ∆(G) ≤ 3. Then,
L(G) is PMH.
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Proof. Let H be a Hamiltonian circuit of G. Given any perfect matching
M of L(G), since the set of vertices untouched by H in G is empty, it
is trivially a subset of the cliques in Q not intersected by M. Conse-
quently, by Lemma 5.2.1, M can be extended to a Hamiltonian circuit
of L(G). Since M was arbitrary, G is PMH.

In particular, Theorem 5.2.3 applies for all Hamiltonian cubic graphs.
However, in the cubic case we can say more. As already stated before,
Kotzig [55] proved that the existence of a Hamiltonian circuit in a
cubic graph is both a necessary and sufficient condition for a partition
of L(G) in two Hamiltonian circuits. We show the following.

Corollary 5.2.4. Let G be a Hamiltonian cubic graph and M a perfect
matching of L(G). Then, L(G) can be partitioned in two Hamiltonian cir-
cuits, one of which contains M.

Proof. If we extend M to a Hamiltonian circuit of L(G) using the
method described in Lemma 5.2.1, we obtain a Hamiltonian circuit H1

whose edge set intersects each triangle in Q, since G is Hamiltonian.
Moreover, since E(H1) intersects Q ∈ Q in one or two edges, the
edges of L(G)− E(H1) intersect Q in two edges or one, respectively.
Therefore, the edges in L(G)− E(H1) induce a Hamiltonian circuit H2

of L(G) whose edges intersect the triangles in Q in the same order as
the edges in H1.

When considering Theorem 5.2.3, one could wonder if the two
conditions on the maximum degree and the Hamiltonicity of G could
be improved in some way. First of all, we remark that our result is
best possible in terms of the maximum degree of G: indeed, if G is a
Hamiltonian graph such that ∆(G) = 4, then, L(G) is not necessarily
PMH. For instance, consider the Hamiltonian graph in Figure 5.2
having maximum degree 4, and let M be the perfect matching of L(G)

shown in the figure.
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Figure 5.2: A Hamiltonian graph with maximum degree 4 whose line graph
is not PMH

Suppose M can be extended to a Hamiltonian circuit. Then, it should
include all edges incident to its vertices of degree 2, and so it should
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contain the paths u1, u2, . . . , u4 and u5, u6, . . . , u10. However, these two
paths cannot be extended to a Hamiltonian circuit of L(G) containing
M, contradicting our assumption.

On the other hand, Hamiltonicity of G in Theorem 5.2.3 is not a
necessary condition, since there exist non-Hamiltonian cubic graphs
whose line graph is PMH. In particular, in Proposition 5.2.5 we prove
that hypohamiltonian cubic graphs are examples of such graphs. Let
us recall that a graph G is hypohamiltonian if G is not Hamiltonian, but
for every v ∈ V(G), G− v has a Hamiltonian circuit.

Proposition 5.2.5. Let G be a hypohamiltonian graph such that ∆(G) ≤ 3.
Then, L(G) is PMH.

Proof. Let M be a perfect matching of L(G). Since |Q| = |V(G)| is
strictly larger than |M| = |V(L(G))|

2 ≤ 3/2·|V(G)|
2 , there surely exists

some clique Q ∈ Q which is not intersected by M. Let v be the
corresponding vertex in G. Since G is hypohamiltonian, there exists
a dominating circuit in G which passes through all the vertices of
G except v, and so by Lemma 5.2.1, L(G) is PMH, since M was
arbitrary.

Finally, another possible improvement of Theorem 5.2.3 could be
a weaker assumption on the length of the longest circuit of G: the
circumference of G, denoted by circ(G). However, in Proposition 5.2.8
we exhibit cubic graphs having circumference just one less than the
order of G whose line graphs are not PMH.

For the proof of Proposition 5.2.8, we also need to show that each
edge of L(G), where G is cubic and Hamiltonian, belongs to a perfect
matching. This kind of property is extensively studied in many papers
and a graph G is said to be 1-extendable if every edge in G belongs to a
perfect matching of G. Theorem 2.1 in [80] states that every claw-free
3-connected graph is 1-extendable. By recalling that every line graph
is a claw-free graph, we have, in particular, that L(G) is 1-extendable
if G is cubic and 3-edge-connected. The generalisation to an arbitrary
Hamiltonian cubic graph G is not hard to achieve by using such a
result, but here we prefer to present a direct short proof which is valid
for any bridgeless cubic graph and which makes use of the following
tool from the proof of Proposition 2 in [70].

Remark 5.2.6. [70] Let G1 be a cubic graph of even size and M a
perfect matching of L(G1), with canonical clique partition Q. The
graph G2 obtained by removing all the edges in M from L(G1) and
then applying Y-reductions to all the triangles in Q not intersected by
M, is isomorphic to G1.

Remark 5.2.6 follows by considering the natural bijection φ between
V(G1) and Q, and the function ψM between Q and V(G2), where
ψM(Q), for Q ∈ Q, is defined as follows. If E(Q) ∩ M = ∅, Q is
mapped to the vertex in G2 obtained after applying a Y-reduction
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to Q. Otherwise, if E(Q) ∩M 6= ∅, Q is mapped to the vertex in G2

corresponding to the vertex in Q unmatched by E(Q) ∩M. It is not
hard to prove that ψM ◦ φ is an isomorphism between G1 and G2.

Lemma 5.2.7. Let G be a bridgeless cubic graph of even size. Then, every
edge of L(G) belongs to a perfect matching.

Proof. Let e ∈ E(L(G)) and let M be a perfect matching of L(G). As-
sume e /∈ M, otherwise the statement holds. The graph L(G) − M
is cubic, and by Remark 5.2.6 can be obtained by applying suitable
Y-extensions to G. Since G is bridgeless, and the resulting graph after
applying Y-extensions to a bridgeless graph is again bridgeless, we
have that L(G)− M is bridgeless as well. Moreover, in [86], Schön-
berger proved that every bridgeless cubic graph is 1-extendable: hence,
there exists a perfect matching of L(G)−M which contains e. Such a
perfect matching is trivially also a perfect matching of L(G) containing
e.

The following proposition shows that the Hamiltonicity condition in
Theorem 5.2.3 cannot be relaxed to any other condition regarding the
length of the longest circuit in G. Indeed, starting from an appropriate
cubic graph and performing suitable Y-extensions, we obtain a graph
of circumference one less than its order whose line graph is not PMH.

Proposition 5.2.8. Let G be a hypohamiltonian cubic graph of odd size.
Let G′ be a graph obtained by performing a Y-extension to all vertices of G
except one. Then, circ(G′) = |V(G′)| − 1 and L(G′) is not PMH.

Proof. Let v be the vertex of G to which we do not apply a Y-extension,
and let the resulting graph be G′, with the vertex of G′ corresponding
to v denoted by v′. Since G is hypohamiltonian, G admits a circuit C of
length |V(G)| − 1 which passes through all the vertices of G except v.
Consequently, G′ admits a circuit C′ which passes through all the ver-
tices of G′ except v′ and whose edges intersect the Y-extended triangles
in the same order that C passes through all the corresponding vertices
in G, resulting in the three vertices of each Y-extended triangle being
consecutive in C′. Since G′ is not Hamiltonian, circ(G′) = |V(G′)| − 1.
We proceed by supposing that L(G′) is PMH, for contradiction. De-
note by Qv′ the triangle in the canonical clique partition of L(G′)
which corresponds to the vertex v′. By construction of G′, we have
|E(G′)| = |E(G)|+ 3(|V(G)| − 1). Since both |V(G)| − 1 and |E(G)|
are odd, |E(G′)| is even, that is, L(G′) has even order. Moreover, since
G is hypohamiltonian, G is bridgeless. Consequently, G′ is bridgeless
as well, since it is obtained by applying Y-extensions to G, and so,
by Lemma 5.2.7, there exists a perfect matching M of L(G′) which
intersects a chosen edge of Qv′ . Lemma 5.2.1 assures that there exists
a dominating circuit D in G′ such that the set of its uncovered vertices
does not contain v′. Furthermore, the edge set of every dominating
circuit of G′, in particular E(D), intersects at least one edge of all the
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Y-extended triangles. Consequently, the dominating circuit D induces
a circuit in G which passes through v and also through every other
vertex of G, making G Hamiltonian, a contradiction.

As already remarked, the graph in Figure 5.2 is Hamiltonian, but
not every perfect matching in its line graph can be extended to a
Hamiltonian circuit. Such an example is not regular, and we are not
able to find a regular one. A most natural question to ask is whether
the Hamiltonicity and regularity of a graph are together sufficient
conditions to guarantee the PMH-property of its line graph. Thus, we
suggest the following problem.

Problem 5.2.9. Let G be an r-regular Hamiltonian graph of even size,
for r ≥ 4. Does L(G) have the PMH-property?

To conclude this section, let us note that not all 4-regular (and so
not all Eulerian) graphs of even size have a PMH line graph. A non-
Hamiltonian example is given in Figure 5.3. It is not hard to check
that every perfect matching of L(G) which contains the edges e1e2 and
e3e4 cannot be extended to a Hamiltonian circuit of L(G).
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Figure 5.3: A non-Hamiltonian 4-regular graph whose line graph does not
have the PMH-property

Since the graphs in Figure 5.2 and Figure 5.3 are both not simulta-
neously Eulerian and Hamiltonian, we pose a further problem.

Problem 5.2.10. Let G be a graph of even size which is both Eulerian
and Hamiltonian. Does L(G) have the PMH-property?

5.3 other classes of graphs whose line graphs are pmh

The complete graph Kn, for even n, and the complete bipartite graph
Km,m, for m ≥ 2, are clearly PMH. To stay in line with the contents
of this chapter, we now see whether their line graphs are also PMH.
To this purpose, given an edge-colouring (not necessarily proper) of
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a Hamiltonian graph, a Hamiltonian circuit in which no two consec-
utive edges have the same colour is referred to as a properly coloured
Hamiltonian circuit.

5.3.1 Complete graphs

First of all, we note that the line graph of a complete graph Kn has
a perfect matching if and only if the number of edges in Kn is even.
Hence, in the sequel we consider only complete graphs with n ≡ 0, 1
mod 4.

We denote the vertices of Kn by {vi : i ∈ [n]} and the edges of Kn

by {ei,j = vivj : i 6= j}. Moreover, V(L(Kn)) is denoted by {vi,j : i 6= j}
where the vertex vi,j corresponds to the edge ei,j of Kn. Finally, we
denote the edges of L(Kn) by {e i

j,k = vi,jvi,k : i 6= j 6= k 6= i}. Note
that the upper index in the notation e i

j,k immediately indicates that
the considered edge belongs to the clique Qi in the canonical clique
partition of L(Kn), whilst the order of lower indices is irrelevant.

The proof of our main theorem in this section, Theorem 5.3.2, makes
use of a special case of a result by David E. Daykin [20] from 1976

which asserts the existence of a properly coloured Hamiltonian circuit
if the edges of Kn are coloured according to the following constraints.

Theorem 5.3.1. [20] If the edges of the complete graph Kn, for n ≥ 6, are
coloured in such a way that no three edges of the same colour are incident to
any given vertex, then there exists a properly coloured Hamiltonian circuit.

In the following proof, the process of traversing one path after
another is called concatenation of paths. If two paths P1 and P2 have
end-vertices x, y, and y, z, respectively, we write P1P2 to denote the
path starting at x and ending at z obtained by traversing P1 and then
P2.

Theorem 5.3.2. For n ≡ 0, 1 mod 4, L(Kn) is PMH.

Proof. Since K4 is Hamiltonian and cubic, by Theorem 5.2.3, the result
holds for n = 4. Therefore, we can assume n > 4.

Let M be a perfect matching of L(Kn). We colour the 1
4 n(n − 1)

edges of M with 1
4 n(n − 1) different colours. For all e i

j,k ∈ M, we
colour the edges ei,j and ei,k in Kn with the same colour given to the
edge e i

j,k in L(Kn). This gives a P3-decomposition of Kn in which each
P3 is monochromatic and the colours of all the 3-paths are pairwise
distinct.

If n = 5, the total number of Hamiltonian circuits in K5 is 4!
2 = 12.

Each of the five monochromatic 3-paths in K5 is on exactly two distinct
Hamiltonian circuits. Therefore, the number of Hamiltonian circuits
containing a monochromatic P3 is at most 10, hence K5 contains at least
two (complementary) properly coloured Hamiltonian circuits. Without
loss of generality, let one of them be H, say H = (v1, v2, . . . , v5).
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For n ≥ 8, by Theorem 5.3.1, there exists a properly coloured
Hamiltonian circuit H in Kn and again, without loss of generality, we
can assume H = (v1, v2, . . . , vn).

Now, for all n ≥ 5 and n ≡ 0, 1 mod 4, we use the properly
coloured Hamiltonian circuit H in Kn to obtain a Hamiltonian cir-
cuit HL in L(Kn) containing the perfect matching M. We construct the
Hamiltonian circuit HL in such a way that it enters and exits each
clique in the canonical clique partition Q of L(Kn) exactly once. More
precisely, we construct a suitable path Pi in each clique Qi and we
obtain HL as a concatenation of such paths following the order de-
termined by H. Consider the (n− 1)-clique Qi and its two vertices
vi−1,i and vi,i+1. The corresponding edges ei−1,i and ei,i+1, in Kn, are
not of the same colour since they are consecutive in H, and so the
edge ei

i−1,i+1 6∈ M. We assign a linear order <i to the set of edges
M ∩ E(Qi), with (M ∩ E(Qi),<i) = µi, such that:

(i) if M ∩ E(Qi) contains an edge incident to vi−1,i, such an edge is
the first edge of µi; and

(ii) if M ∩ E(Qi) contains an edge incident to vi,i+1, such an edge is
the last edge of µi.

Note that <i exists since ei
i−1,i+1 6∈ M. Next, we construct an M-

alternating path in Qi, which we denote by Pi, starting at vi−1,i and
ending at vi,i+1 as follows: Pi alternates between an edge of µi and an
edge which is simultaneously adjacent to two consecutive edges in µi,
except possibly the first and/or last edge in Pi. Note that the choice of
edges not belonging to M ∩ E(Qi) as given above is always possible
since Qi is a clique. Consequently, M ∩ E(Qi) ⊂ E(Pi).

Now we define HL to be P1P2 . . . Pn. Note that HL is a circuit since
the paths Pi are all internally and pairwise disjoint, and the beginning
of P1 coincides with the end of Pn. Moreover, HL is Hamiltonian
because M ⊂ E(HL), and so each vertex of the line graph belongs to
HL.

5.3.2 Arbitrarily traceable graphs

A graph G is said to be arbitrarily traceable (or equivalently randomly
Eulerian) from a vertex v ∈ V(G) if every walk starting from v and not
containing any repeated edges can be completed to an Eulerian tour.
This notion was firstly introduced by Ore in [76], who proved that an
Eulerian graph G is arbitrarily traceable from v if and only if every
circuit in G touches v. Here we show that every perfect matching M
of the line graph of an arbitrarily traceable graph can be extended to
a Hamiltonian circuit.

Note that the technique used in this proof is in some way dif-
ferent from what was used in the case of complete graphs in Sec-
tion 5.3.1. Again, a perfect matching M of L(G) corresponds to a
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P3-decomposition of G, but this time we construct an Euler tour of the
original graph (instead of a Hamiltonian circuit) such that two edges
in the same 3-path are consecutive in the Euler tour (as opposed to
what was done in Section 5.3.1 where we forbade two edges in the
same 3-path to be consecutive in the Hamiltonian circuit considered
in Kn).

Theorem 5.3.3. Let G be a graph of even size. If G is arbitrarily traceable
from some vertex, then its line graph is PMH.

Proof. Let M be a perfect matching of L(G). Consider the
P3-decomposition of G induced by M. Since G is arbitrarily trace-
able from some vertex, there exists an Euler tour in which every pair
of edges in the same 3-path are consecutive. The sequence of edges in
this Euler tour corresponds to a sequence of vertices in L(G) which
gives a Hamiltonian circuit H of L(G), and since the two edges of
each 3-path in the P3-decomposition are consecutive in the Euler tour,
H contains all the edges of M, as required.

5.4 final remarks

Along the chapter, we have proposed several sufficient conditions of
different types for a graph in order to guarantee the PMH-property in
its line graph. The wide variety of such conditions, ranging between
sparse and dense graphs, do not allow us to easily identify non-trivial
necessary conditions to this problem. This could be seemingly hard,
but we still consider it an intriguing problem to be addressed in the
future.



6
S AV E D B Y T H E R O O K

This chapter is based on a joint work with Marién Abreu and John Baptist
Gauci [IV].

In 1976, Chen and Daykin considered an analogous version of Theorem
5.3.1 for the complete bipartite graph Km,m (see [19]). A particular
instance of this (Theorem 1′ in [19]) can be stated as follows.

Theorem 6.0.1. [19] Consider an edge-colouring of the complete bipartite
graph Km,m such that no vertex is incident to more than k edges of the same
colour. If m ≥ 25k, then there exists a properly coloured Hamiltonian circuit.

By considering the case k = 2 in the previous theorem, that is,
m ≥ 50, and by using an argument very similar to the one used
for complete graphs in Section 5.3.1, one could obtain that L(Km,m)

is PMH for every even m ≥ 50. However, in this chapter, a more
complete result is given and extended by using a different and more
technical approach. More precisely we prove that L(Km1,m2) does not
have the PH-property if and only if m1 = 2 and m2 is odd, where m1

is an even integer and m2 ≥ 1.

6.1 introduction

In the very early versions of chess, the rook (from the Persian and
Indian words rukh and ratha, respectively) represented the chariot,
and it is said that it is only when the game got to Europe did the
word rukh got confused with the Italian word rocca, which means
fortress. The rook chess piece is allowed to move in a horizontal and
vertical manner only—no diagonal moves are permissible—and the
rook graph represents all the possible moves of a rook on a chessboard.
The vertices and the edges of the rook graph correspond to the cells
of the chessboard, and the legal moves of the rook from one cell to the
other, respectively.
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Figure 6.1: The 4× 4 rook graph isomorphic to K4�K4
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All the legal moves of a rook on a m1 ×m2 chessboard give rise to a
m1×m2 rook graph which is isomorphic to the Cartesian product of the
complete graphs Km1 and Km2 , denoted by Km1�Km2 . Such correlation
was already considered, for example, in [59]. We also remark that
the m1 × m2 rook graph is also isomorphic to the line graph of the
complete bipartite graph Km1,m2 . In what follows we consider the
following problem.

Problem 6.1.1. Let G be a m1 × m2 chessboard and let M be a set
containing pairs of distinct cells of G such that each cell of G belongs
to exactly one pair in M. Determine the values of m1 and m2 for which
it is possible to construct a closed tour H visiting all the cells of the
chessboard G exactly once, such that:

(i) consecutive cells in H are either a pair of cells in M, or two cells
in G which can be joined by a legal rook move; and

(ii) H contains all pairs of cells in M.

In other words, given any possible choice of a set M as defined
above, is a rook good enough to let one visit, exactly once, all the cells
on a chessboard and finish at the starting cell, in such a way that each
pair of cells in M is allowed to and must be used once? We remark
that M can contain pairs of cells which are not joined by a legal rook
move.

As many other mathematical chess problems (for a detailed exposi-
tion, we suggest the reader to [88]), the above problem can be restated
in graph theoretical terms, as follows.

Problem 6.1.2 (restated). Let G be the m1 ×m2 rook graph, or equiv-
alently Km1�Km2 . Determine for which values of m1 and m2 does G
have the PH-property.

Clearly, in order for Km1�Km2 to admit a pairing, at least one of m1

and m2 must be even, and without loss of generality, in the sequel we
shall tacitly assume that m1 is even.

In what follows we shall consider Hamiltonian circuits of KG (for
some graph G of even order) composed of a pairing of G and a perfect
matching of G. In order to distinguish between pairings of G, which
may possibly contain edges not in G, and perfect matchings of G, we
shall depict pairing edges as green, bold and dashed, and edges of a
perfect matching of G as black and bold.

To emphasise that pairings can contain edges in G, we shall depict
such edges with a black thin line underneath the green, bold and
dashed edge described above. This can be clearly seen in Figure 6.2.

Finally, we also state the following theorem from [2] that shall be
used in the next section to prove our main result.

Theorem 6.1.3. [2] The Cartesian product of a complete graph Km (m even
and m ≥ 6) and a path Pq (q ≥ 1) has the PH-property.
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Figure 6.2: A pairing in C6 which cannot be extended to a Hamiltonian circuit

6.2 main result

In this section we give a complete solution to our problem, summarised
in the following theorem.

Theorem 6.2.1. Let m1 be an even integer and let m2 ≥ 1. The m1 × m2

rook graph does not have the PH-property if and only if m1 = 2 and m2 is
odd.

Proof. When m2 = 1, Km1�K1 is Km1 and the result clearly follows.
Consequently, we shall assume that m2 > 1. By Remark 1.4.1 and
Theorem 6.1.3, Km1�Km2 is PH when m1 ≥ 6, since Km1�Km2 contains
Km1�Pm2 as a spanning subgraph.

So consider the cases when m1 = 2 or 4. If m1 = 2, Km1�Km2 is PH
if and only if m2 is even. In fact, if m2 is odd, the pairing consisting of
the m2-edge-cut between the two copies of Km2 cannot be extended to
a Hamiltonian circuit, as can be seen in Figure 6.3.
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Figure 6.3: A pairing in K2�K3 which cannot be extended to a Hamiltonian
circuit

If m2 is even, the result follows once again by Theorem 6.1.3 when
m2 ≥ 6. If m2 = 2, the result easily follows, and when m2 = 4, K2�K4

is PH because the 3-dimensional cube Q3 is a subgraph of K2�K4

and has the PH-property by Fink’s result in [29] (also referred to
previously).

What remains to be considered is the case when m1 = 4 and m2 ≥ 3.
The graph K4�K4 contains C4�C4, the 4-dimensional hypercube Q4,
which is PH ([29]), and for m2 ≥ 6 and m2 even, the result follows
once again by Theorem 6.1.3. Therefore, what remains to be shown
is the case when m2 ≥ 3 and m2 is odd, which is settled in Lemma
6.2.2.

Lemma 6.2.2. For every odd m ≥ 3, the 4× m rook graph has the PH-
property.

Proof. Let the 4×m rook graph K4�Km be denoted by G. We let the
vertex set of G be {ai, bi, ci, di : i ∈ [m]}, such that for each i, the
vertices ai, bi, ci, di induce a complete graph on four vertices, denoted
by Ki

4, and the vertices represented by the same letter induce a Km. Let
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M be a pairing of G. We consider two cases.

Case 1. M does not induce a perfect matching in each Ki
4.

Case 2. M induces a perfect matching in each Ki
4.

We start by considering Case 1, and without loss of generality
assume that |M∩ E(K1

4)| < 2. If we delete from G all the edges having
exactly one end-vertex in K1

4, we obtain two components G1 and G2

isomorphic to K1
4 and K4�Km−1, respectively. Since G1 is of even order

and M ∩ E(G1) is not a perfect matching of this graph, G1 has an even
number (two or four) of vertices which are unmatched by M ∩ E(G1).

We pair these unmatched vertices such that M ∩ E(G1) is extended
to a perfect matching M1 of G1. By a similar reasoning, M ∩ E(G2)

does not induce a pairing of G2 and the number of vertices in G2

which are unmatched by M ∩ E(G2) is again two or four. Without loss
of generality, let a1, b1 be two vertices in G1 unmatched by M ∩ E(G1)

such that a1b1 ∈ M1, and let x, y be the two vertices in G2 such that a1x
and b1y are both edges in the pairing M of G. We extend M ∩ E(G2)

to a pairing M2 of G2 by adding the edge xy to M ∩ E(G2), and we
repeat this procedure until all vertices in G2 are matched. Since m− 1
is even, G2 has the PH-property and so M2 can be extended to a
Hamiltonian circuit H2 of KG2 . We extend H2 to a Hamiltonian circuit
of G containing M as follows. If c1d1 ∈ M ∩ E(G1), we replace the
edge xy in H2 by the edges xa1, a1d1, d1c1, c1b1, b1y, as in Figure 6.4.

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b

bbb

b

b

b

b

Figure 6.4: An illustration of the inductive step in Case 1 when m2 = 3

Otherwise, c1d1 ∈ M1− (M∩ E(G1)), and so there exist two vertices
u, v in G2 such that c1u and d1v belong to belong to the initial pairing
M, and uv belongs to M2. In this case, we replace the edges xy and
uv in H2 by the edges xa1, a1b1, b1y, and uc1, c1d1, d1v, respectively. In
either case, H2 is extended to a Hamiltonian circuit of G containing
the pairing M, as required.

Next, we move on to Case 2, that is, when M induces a perfect
matching in each Ki

4. This case is true by Proposition 1 in [2], however,
here we adopt a constructive and more detailed approach. There are
three different ways how M can intersect the edges of Ki

4, namely,
M ∩ E(Ki

4) can either be equal to {aibi, cidi}, {aici, bidi}, or {aidi, bici}.
The number of 4-cliques intersected by M in {aibi, cidi} is denoted by
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νab
cd, and we shall define νac

bd and νad
bc in a similar way. Without loss of

generality, we shall assume that νab
cd ≥ νac

bd ≥ νad
bc . We shall also assume

that the first νab
cd 4-cliques in {Ki

4 : i ∈ [m]} are the ones intersected
by M in {aibi, cidi}, and, if νad

bc 6= 0, the last νad
bc 4-cliques are the ones

intersected by M in {aidi, bici}. This can be seen in Figure 6.5, in which
"unnecessary" curved edges of G are not drawn so as to render the
figure more clear.
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Figure 6.5: G when νab
cd = 2, νac

bd = 2 and νad
bc = 1

When νab
cd = 1, we have that νac

bd = νad
bc = 1, and in this case it is

easy to see that M can be extended to a Hamiltonian circuit of KG, for
example, (a1, b1, c1, d1, d3, a3, c3, b3, b2, d2, c2, a2). We remark that this is
the only time when all the 4-cliques are intersected differently by M.
Therefore, assume νab

cd ≥ 2. First, let νab
cd = 2. If νad

bc = 0, then, νac
bd = 1

and it is easy to see that M can be extended to a Hamiltonian circuit of
KG, for example, (a1, b1, b2, a2, a3, c3, b3, d3, d2, c2, c1, d1). The only other
possibility is to have νac

bd = 2 and νad
bc = 1, and once again M can be

extended to a Hamiltonian circuit of KG, as Figure 6.5 shows.
Thus, we can assume that νab

cd ≥ 3. Let r = νab
cd + νac

bd and let r′

be the largest even integer less than or equal to r. Moreover, let G1

be the subgraph of G induced by the vertices {bi, ci : i ∈ [m]} (iso-
morphic to K2�Km) and let M1 = {b1b2, . . . , br′−1br′ , c1c2, . . . , cr′−1cr′ ,
br′+1cr′+1, . . . , bmcm}. Clearly, M1 is a pairing of G1 which contains
M ∩ E(G1), and can be extended to a Hamiltonian circuit H1 of KG1 as
follows: (b1, b2, . . . , br′ , br′+1, cr′+1, cr′+2, br′+2, . . . , bmcm, cr′ , cr′−1, . . . , c1).
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Figure 6.6: G1 and G2 when νab
cd = 4, r = r′ = 8, and m = 11 in Case 2

This is depicted in Figure 6.6. We note that if r′ = m− 1, we do not
consider the index r′ + 2 in the last sequence of vertices forming H1.
Deleting the edges belonging to M1 −M from H1 gives a collection
of r disjoint paths P = {Pi : i ∈ [r]}. We note that the union of all
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the end-vertices of the paths in P give {bi, ci : i ∈ [r]}. If we look at
the example given in Figure 6.6, the only path in P on more than two
vertices is the path b8, b9, c9, c10, b10, b11, c11, c8.

Next, let G2 be the subgraph of G induced by the vertices {ai, di :
i ∈ [m]}, which is isomorphic to K2�Km as G1. For every i ∈ [r], we
let ui and vi be the two end-vertices of the path Pi, and we let xi
and yi be the two vertices in G2 such that uixi and viyi both belong
to M. We remark that {ai, di : i ∈ [r]} = {xi, yi : i ∈ [r]}. Let M2 =

{x1y1, . . . , xryr} ∪ (M ∩ E(G2)). If r = m, then M ∩ E(G2) is empty,
otherwise it consists of {ar+1dr+1, . . . , amdm}. If νab

cd is even (as in Figure
6.6), M2 contains

{a1d1, a2a3, . . . , aνab
cd−2aνab

cd−1, aνab
cd

dνab
cd+1, d2d3, . . . , dνab

cd−2dνab
cd−1, dνab

cd
aνab

cd+1}.

Otherwise, M2 contains {a1d1, a2a3, . . . , aνab
cd−1aνab

cd
, d2d3, . . . , dνab

cd−1dνab
cd
}.

Moreover, if r is even, then ardr ∈ M2. In either case, M2 can be
extended to a Hamiltonian circuit H2 of KG2 , as can be seen in Figure
6.6, which shows the case when νab

cd and r are both even. We remark
that the green, bold and dashed edges in the figure are the ones in
M1 and M2. If for each i ∈ [r], we replace the edges xiyi in H2 by xiui,
the path Pi, and viyi (as in Figure 6.7), a Hamiltonian circuit of KG
containing M is obtained, proving our theorem.

b

b

b

b b

b b

bb

bb4b1

b

b

b b

b b

b

bb8 b11

b

b

b

b b

b b

bb

b

b

b

b b

b b

b

b

c1 c4 c8 c11

b

a11

d11

a8

d8d4

a4a1

d1

b

b

b

b

b

b

b

b

Figure 6.7: Extending H1 and H2 from Figure 6.6 to a Hamiltonian circuit of
KG containing M

6.3 complete bipartite graphs

As already mentioned, the m1 ×m2 rook graph can also be seen as the
line graph of the complete bipartite graph Km1,m2 . In this last section
we show that, unsurprisingly, the complete bipartite graph having
equal partite sets (otherwise it does not admit a perfect matching) is
PH, as well.

Theorem 6.3.1. For every m ≥ 2, the complete bipartite graph Km,m has
the PH-property.

Proof. Let {u1, . . . , um} and {w1, . . . , wm} be the partite sets of Km,m.
We proceed by induction on m. When m = 2, result holds since
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K2,2 ' K2�K2. So assume m > 2 and let M be a pairing of Km,m. If
M = {uiwi : i ∈ [m]}, then M easily extends to a Hamiltonian circuit
of the underlying complete graph on 2m vertices. Thus, assume there
exists j ∈ [m] such that ujwj 6∈ M. Without loss of generality, let j
be equal to m. Then, M contains the edges xum and ywm, for some
x and y belonging to the set Z = {ui, wi : i ∈ [m− 1]}. We note that
Z induces the complete bipartite graph Km−1,m−1 with partite sets
{u1, . . . , um−1} and {w1, . . . , wm−1}, which we denote by G′. The set
of edges M′ = M ∪ {xy} − {xum, ywm} is a pairing of G′, and so, by
induction on m, M′ can be extended to a Hamiltonian circuit H′ of
KG′ . This Hamiltonian circuit can be extended to a Hamiltonian circuit
H of the underlying complete graph of Km,m by replacing the edge xy
in H′, by the edges xum, umwm, wmy. The resulting Hamiltonian circuit
H clearly contains M, proving our theorem.

Although the statement and proof of Theorem 6.3.1 are quite easy,
they may lead to another intriguing problem. From Theorem 6.2.1 we
know that the rook is not good enough to solve our problem on a
2×m2 chessboard when m2 is odd. However, the above result shows
that if the rook was somehow allowed to do only vertical and diagonal
moves (instead of vertical and horizontal moves only), then it would
always be possible to perform a closed tour on a 2×m2 chessboard
in such a way that each pair of cells in M is allowed to and must be
used once, no matter the choice of M.

We shall call this new hybrid chess piece the bishop-on-a-rook, and,
as already stated, it is only allowed to move in a vertical and diag-
onal manner—no horizontal moves are permissible. As in the case
of the rook, all the legal moves of a bishop-on-a-rook on a m1 ×m2

chessboard give rise to a m1 ×m2 bishop-on-a-rook graph, with m1 cor-
responding to the vertical axis.

As before, for the m1 × m2 bishop-on-a-rook graph to be PH, at
least one of m1 or m2 must be even. Moreover, we remark that when
m2 ≤ m1, the m1 ×m2 bishop-on-a-rook graph contains Km1�Km2 as
a subgraph. Finally, we also observe that the m1 × m2 bishop-on-a-
rook graph is isomorphic to the co-normal product of Km1 and Km2 ,
where the latter is the empty graph on m2 vertices. The co-normal
product G ∗ H of two graphs G and H is a graph whose vertex set
is the Cartesian product V(G)× V(H) of V(G) and V(H), and two
vertices (ui, vj) and (uk, vl) are adjacent precisely if uiuk ∈ E(G) or
vjvl ∈ E(H). Thus,

V(G ∗ H) = {(ur, vs) : ur ∈ V(G) and vs ∈ V(H)}, and

E(G ∗ H) = {(ui, vj)(uk, vl) : uiuk ∈ E(G) or vjvl ∈ E(H)}.

We wonder for which values m1 and m2 is the m1 ×m2 bishop-on-a-
rook graph PH.
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O N A P R O B L E M B Y A L A H M A D I E T A L .

This chapter is based on a joint work with John Baptist Gauci [V].

7.1 introduction

After characterising all the cubic graphs having the PH-property,
Alahmadi et al. [2] attempt to characterise all 4-regular graphs having
the same property by posing the following problem (Open Problem 3

in [2]): for which values of p and q does the Cartesian product Cp�Cq

of two circuits on p and q vertices have the PH-property? Here, we give
a complete answer and show that this only happens when both p and
q are equal to four, namely for C4�C4, the 4-dimensional hypercube.
For all other values of p and q, we show that Cp�Cq does not even
admit the PMH-property.

7.2 main result

In this chapter we restrict our attention to the Cartesian product of a
circuit graph and a path graph and to that of two circuit graphs, noting
that the latter is also referred to in literature as a torus grid graph.
In the sequel we tacitly assume that operations (including addition
and subtraction) in the indices of the vertices of a circuit Cn are taken
modulo n, with complete residue system {1, . . . , n}. We first prove the
following result.

Lemma 7.2.1. The graph Cp�Pq is not PMH, for every p, q ≥ 3.

Proof. Label the vertices of Cp and Pq consecutively as u1, u2, . . . , up,
and v1, v2, . . . , vq, respectively, such that v1 and vq are the two end-
vertices of Pq. For simplicity, we refer to the vertex (ur, vs) as ωr,s. If p is
odd (and so q is even, otherwise Cp�Pq does not have a perfect match-
ing), then there exists a perfect matching of Cp�Pq containing an odd-
cut, say {ω1,q−1ω1,q, . . . , ωp,q−1ωp,q}. Clearly, this perfect matching can-
not be extended to a Hamiltonian circuit. Thus, we can assume that p
is even. Let M be a perfect matching of Cp�Pq containing ωi,q−1ωi+1,q−1

and ωi−1,qωi,q, for every odd i ∈ [p]. For contradiction, suppose that
N is a perfect matching of Cp�Pq such that M ∪ N is a Hamiltonian
circuit. Then, for every odd i ∈ [p], N contains either ωi,qωi+1,q, or
the two edges ωi,q−1ωi,q and ωi+1,q−1ωi+1,q. Therefore, M ∪ N contains
a circuit with vertices belonging to {ω1,q−1, . . . , ωp,q−1, ω1,q, . . . , ωp,q}.
Since q > 2, M ∪ N is not a Hamiltonian circuit, a contradiction.
Consequently, Cp�Pq is not PMH.

85
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Now, we prove our main result.

Theorem 7.2.2. Let p, q ≥ 3. The graph Cp�Cq is PMH only when p = 4
and q = 4.

Proof. The 4-dimensional hypercubeQ4 = C4�C4 has the PH-property
by Fink’s result in [29]. Moreover, the authors in [2] showed that
C4�Cq is not PMH when q 6= 4. Thus, in what follows we shall
assume that p is even and at least 6 and that q is not equal to 4. Let
the consecutive vertices of Cp and Cq be labelled u1, u2, . . . , up, and
v1, v2, . . . , vq, respectively, and as before, we refer to the vertex (ur, vs)

as ωr,s.
We first consider the case when q = 3. For simplicity, let the ver-

tices ωi,1, ωi,2, ωi,3 be referred to as ai, bi, ci, for each i ∈ [p], and
let M be a perfect of Cp�C3 containing the following nine edges:
a1a2, b1b2, c1c2, a3c3, b3b4, a4a5, c4c5, b5b6, a6c6, as shown in Figure 7.1.
Since p is even, such a perfect matching M clearly exists.
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Figure 7.1: Edges belonging to the perfect matching M in Cp�C3

We claim that M cannot be extended to a Hamiltonian circuit. For,
suppose not, and let N be a perfect matching of Cp�C3 such that M ∪
N is a Hamiltonian circuit. Each of the two sets X1 = {a3a4, c3c4} and
X2 = {a5a6, c5c6} is a 2-edge-cut of the cubic graph Cp�C3 −M, and
so |Xi ∩ N| is even for each i ∈ [2]. Moreover, the edge b4b5 is a bridge
of the graph Cp�C3 −M, and consequently, M ∪ N contains a circuit
of length 4, 6 or 8 with vertices belonging to {a3, a4, a5, a6, c3, c4, c5, c6},
a contradiction. Therefore, q ≥ 5.

Similar to above, for each i ∈ [p], let the vertices ωi,1, ωi,2, . . . , ωi,6

be referred to as ai, bi, . . . , fi as in Figure 7.2, with fi being equal to
ai if q = 5. For each i ∈ [p], let Li = bici and Ri = diei, with the
sets of edges {Li : i ∈ [p]} and {Ri : i ∈ [p]} denoted by L and R,
respectively. Let M be a perfect matching of Cp�Cq containing the
following edges:

(i) aiai+1 and fi fi+1, for every even i ∈ [p],
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(ii) bibi+1 and eiei+1, for every odd i ∈ [p], and

(iii) cidi, for every i ∈ [p].
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Figure 7.2: Edges belonging to the perfect matching M in Cp�Cq when q ≥ 5

Once again, since p is even, such a perfect matching M exists. For
contradiction, suppose that N is a perfect matching of Cp�Cq such
that M ∪ N is a Hamiltonian circuit H of Cp�Cq. The set of edges
L (and similarly R) is an even cut of order p in the cubic graph
Cp�Cq − M. Consequently, both |L ∩ N| and |R ∩ N| are even. We
claim that both sets L and R must be intersected by N. For, suppose
that R∩ N is empty, without loss of generality. In this case, M ∪ N
forms a Hamiltonian circuit of Cp�Cq −R, which is isomorphic to
Cp�Pq. By a similar reasoning to that used in the proof of Lemma
7.2.1, this leads to a contradiction, and so M cannot be extended to a
Hamiltonian circuit. Therefore, both L ∩ N and R∩ N are non-empty.

Next, we claim that a maximal sequence of consecutive edges be-
longing to L− N (or R− N) is of even length, whereby "consecutive
edges" we mean that the indices of these edges are taken modulo
p, with complete residue system {1, . . . , p}. For, suppose there exists
such a sequence made up of an odd number of edges. Without loss of
generality, let Ls and Ls+2t be the first and last edges of this sequence,
for some s ∈ [p] and 0 ≤ t < p/2. Thus, Ls−1 and Ls+2t+1 are in N.
In order for N to cover all the vertices of the graph it must induce
a perfect matching of the path cs, cs+1, . . . , cs+2t, which has an odd
number of vertices. This is not possible, and so our claim holds. Con-
sequently, there exists Lγ ∈ N, for some odd γ ∈ [p]. We pair the
edge Lγ with the edge Lγ′ , where γ′ is the least integer greater than γ

(taken modulo p) such that Lγ′ ∈ N. More formally,

γ′ =

{
min{j ∈ {γ + 1, . . . , p} : Lj ∈ N} if such a minimum exists,

min{j ∈ {1, . . . , γ− 1} : Lj ∈ N} otherwise.
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By the last claim we note that γ′ is even and that the next integer
β > γ′ (taken modulo p), if any, for which Lβ is in N must be odd.
Repeating this procedure on all the edges in L ∩ N we get a partition
of L ∩ N into pairs of edges {Lγ, Lγ′} where γ is odd and γ′ is even.
The edges in R∩ N are partitioned into pairs in a similar way.

We remark that if we start tracing the Hamiltonian circuit H from cγ

going towards bγ, then H contains a path with edges alternating in N
and M, starting from cγ and ending at cγ′ . More precisely, if γ′ = γ+ 1,
then H contains the path cγ, bγ, bγ′ , cγ′ . Otherwise, if γ′ 6= γ + 1, then,
for every even j ∈ {γ + 1, . . . , γ′ − 2}, N contains either bjbj+1 or the
two edges ajbj and aj+1bj+1. Consequently, the internal vertices on
this path belong to the set {bγ, aγ+1, bγ+1, . . . , aγ′−1, bγ′−1, bγ′}. In each
of these two cases we refer to such a path between cγ and cγ′ as an
LγLγ′-bracket, or just a left-bracket, with Lγ and Lγ′ being the upper and
lower edges of the bracket, respectively.

Having arrived at cγ′ , and noting that cγ′dγ′ ∈ M, H also traverses
this edge to arrive at vertex dγ′ . At this point we can potentially take
one of three directions, depending on whether Rγ′ is in N or not. If
Rγ′ ∈ N, then there exists an RαRγ′-bracket for some odd α ∈ [p],
where α is the greatest integer smaller than γ′ (taken modulo p) such
that Rα ∈ N. As above, this bracket consists of a path with edges
alternating in N and M, starting from dγ′ and ending at dα, such that
the other vertices of this path belong to:

{eγ′ , fγ′−1, eγ′−1, . . . , fα+1, eα+1, eα} if α 6= γ′ − 1,

{eγ′ , eα} if α = γ′ − 1.

Otherwise, if Rγ′ 6∈ N, we either have dγ′−1dγ′ ∈ N or dγ′dγ′+1 ∈ N.
Continuing this process, the Hamiltonian circuit H must eventu-
ally reach the vertex cγ. Thus, H contains only vertices in the set
{ai, bi, ci, di, ei, fi : i ∈ [p]}, giving a contradiction if q ≥ 7. Henceforth,
we can assume that 5 ≤ q ≤ 6. Notwithstanding whether or not Rγ′ is
in N, if q = 6, then there is no instance in the above procedure which
leads to H passing through the vertices aγ and aγ′ , a contradiction.
Hence, we can further assume that q = 5.

We now note that for the vertices in the set {ai, bi, ei : i ∈ [p]} to be
in H, they must belong either to a left-bracket or to a right-bracket.
Thus, if Ri ∈ N is a lower edge of a right-bracket, for some even i ∈ [p],
then, Ri+1 must be an upper edge of another right-bracket (that is,
Ri+1 ∈ N), otherwise, the vertex ei+1 is not contained in any bracket.
This observation, together with the fact that a maximal sequence of
consecutive edges belonging to R− N is of even length, implies that
if Ri 6∈ N, for some even i ∈ [p], then didi+1 ∈ N.

We revert back to the last remaining case, that is, when q = 5. The
only way how the Hamiltonian circuit H can contain the vertices aγ

and aγ′ is when both Rγ and Rγ′ do not belong to N, in which case
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aγ and aγ′ can be reached by some right-bracket (or right-brackets).
Therefore, suppose that Rγ and Rγ′ do not belong to N.

Consequently, tracing H starting from cγ and going in the direction
of bγ, after traversing the LγLγ′-bracket, H must then contain the
path cγ′ , dγ′ , dγ′+1, cγ′+1. First assume that γ′ + 1 6= γ. By the same
reasoning used for the edges in R ∩ N, the lower edge Lγ′ must
be followed by an upper edge, and thus Lγ′+1 ∈ N. We trace the
Hamiltonian circuit through an Lγ′+1Lγ′′-bracket, noting in particular
that for aγ′′ to be in H, Rγ′′ does not belong to N, and hence dγ′′dγ′′+1 ∈
N, since γ′′ is even. Continuing this procedure, H must eventually
reach again the vertex cγ, without having traversed any right-bracket.
The same conclusion can be obtained if γ′ + 1 = γ. In either case, the
vertices aγ and aγ′ , together with several other vertices of Cp�Cq, are
untouched by H, a contradiction. As a result M cannot be extended to
a Hamiltonian circuit, proving our theorem.
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O N A FA M I LY O F Q UA RT I C G R A P H S : A C C O R D I O N S

This chapter is based on a joint work with John Baptist Gauci [VI].

8.1 introduction

As already stated in Chapter 7, a complete characterisation of the cubic
graphs having the PH-property was given in [2], and thus the most
obvious next step would be to characterise 4-regular graphs which
have the PH-property. This endeavour proved to be more elusive, and
thus far a complete characterisation of such quartic graphs remains
unknown. In an attempt to advance in this direction, in Section 8.2,
we define a class of graphs on two parameters, n and k, which we
call the class of accordion graphs A[n, k]. This class presents a natural
generalisation of the well-known antiprism graphs, and of a class
of graphs which is known to have the PH-property, corresponding
to A[n, 1] and A[n, 2], respectively. In this section we discuss some
fundamental properties and characteristics of accordion graphs and,
in particular, we see that accordion graphs can be drawn in a grid-like
manner, which resembles a drawing of the Cartesian product of two
circuits Cn1�Cn2 , for appropriate circuit lengths n1 and n2. In 2015,
Bogdanowicz [11] gave all possible values of n1 and n2 for which the
graph Cn1�Cn2 is circulant, namely when gcd(n1, n2) = 1. Due to the
similarity between the two classes of graphs, in Section 8.5, we give
a complete characterisation of which accordion graphs are circulant
graphs. In Section 8.3 we prove that all antiprism graphs have the
PMH-property but only four of them also have the PH-property. In
the same section, we provide a proof that A[n, 2] has the PH-property,
which result, although known to be communicated to the authors of
[2], has no published proof. These encouraging outcomes motivate our
proposal of the class of accordion graphs as a possible candidate for
graphs having the PMH-property and/or the PH-property. Empirical
evidence suggests that, apart from the above mentioned, there are
(possibly an infinite number of) other accordion graphs which have
the PMH-property, and possibly some of them even have the PH-
property, but a proof for this is currently unavailable. In Section 8.4,
by extending an argument introduced in [V], we show that we can
exclude some graphs A[n, k] from this search for graphs having the
PMH- and/or the PH-property. In fact, we prove that the graphs
A[n, k] for which the greatest common divisor of n and k is at least
5 do not have the PMH-property. The technique used does not seem
to lend itself when coming to show whether the remaining accordion

90
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graphs have, or do not have, the PH-property or the PMH-property.
We thus pose some related questions and open problems in Section
8.6.

8.2 accordion graphs

Definition 8.2.1. Let n and k be integers such that n ≥ 3 and 0 <

k ≤ n/2. The accordion graph A[n, k] is the quartic graph with vertices
{u1, u2, . . . , un, v1, v2, . . . , vn} such that the edge set consists of the
edges

{uiui+1, vivi+1, uivi, uivi+k : i ∈ [n]}.
The edges uiui+1 and vivi+1 are called the outer-circuit edges and the
inner-circuit edges, respectively, or simply the circuit edges, collectively;
and the edges uivi and uivi+k are called the vertical spokes and the
diagonal spokes, respectively, or simply the spokes, collectively. For sim-
plicity, we sometimes refer to the accordion graph A[n, k] as the accor-
dion A[n, k].

We remark that, henceforth, operations (including addition and
subtraction) in the indices of the vertices ui and vi are taken modulo
n, with complete residue system {1, . . . , n}.
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Figure 8.1: The accordion graph A[10, 3]

An observation that will prove to be useful in the sequel revolves
around the greatest common divisor of n and k, denoted by gcd(n, k).

Remark 8.2.2. The graph obtained from A[n, k] after deleting the edges

{utqutq+1, vtqvtq+1 : q = gcd(n, k) and t ∈ {1, . . . , n
q }}
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is isomorphic to the Cartesian product C 2n
q
�Pq. This can be easily

deduced by an appropriate drawing of A[n, k], as shown in Figure 8.2
for the case when k = 5 and gcd(n, k) = 5. Thus, any perfect matching
of C 2n

q
�Pq is also a perfect matching of A[n, k], although the converse

is trivially not true.
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Figure 8.2: Two different drawings of A[n, k] when k = 5 and gcd(n, k) = 5

8.3 the accordion graph A [n , k ] when k ≤ 2

8.3.1 A[n, 1]

As already mentioned above, the accordion graph A[n, 1] is isomorphic
to the widely known antiprism graph An on 2n vertices. Let M be a
perfect matching of An. We note that, if M contains at least one vertical
spoke, then no diagonal spoke can be contained in M, and if any inner-
circuit edges are in M, then the outer-circuit edges having the same
indices must also belong to M. A similar argument can be made if
M contains diagonal spokes. Thus, for every i, j ∈ [n], uivi ∈ M or
{uiui+1, vivi+1} ⊂ M if and only if ujvj+1 6∈ M or {ujuj+1, vj+1vj+2} 6⊂
M. This can be summarised in the following remark.

Remark 8.3.1. Let M be a perfect matching of An. Then, M is either a
perfect matching of An − {uivi : i ∈ [n]} or of An − {uivi+1 : i ∈ [n]}.

Consequently, in what follows, without loss of generality, we only
consider perfect matchings of An containing spokes of the type uivi,
that is, vertical spokes, and if a perfect matching contains the edge
ujuj+1, then it must also contain the edge vjvj+1.

Theorem 8.3.2. The antiprism An is PMH.
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Proof. Let M be a perfect matching of An. Consider first the case when
M = {uivi : i ∈ [n]}. It is easy to see that (v1, u1, v2, u2, . . . , vn−1, un−1,
vn, un) is a Hamiltonian circuit of An containing M. So assume that
M does not consist of only vertical spokes. Without loss of generality,
we can assume that M contains the edges unun+1 and vnvn+1, by
Remark 8.3.1. We proceed by induction on n. The antiprism A3 was
already shown to be PMH in [III], since A3 is the line graph of the
complete graph K4. So assume result is true up to n ≥ 3, and consider
An+1 and a perfect matching M of An+1. Let M′ be M ∪ {unvn} −
{unun+1, vnvn+1}. Then, M′ is a perfect matching of An, and so, by
induction, there exists a Hamiltonian circuit H′ of An which contains
M′. We next show that H′ can be extended to a Hamiltonian circuit H
of An+1 containing M by considering each of the following possible
induced paths in H′ and replacing them as indicated hereunder:

(i) un−1, un, vn, vn−1 is replaced by un−1, un, un+1, vn+1, vn, vn−1 (sim-
ilarly u1, un, vn, v1 is replaced by u1, un+1, un, vn, vn+1, v1);

(ii) un−1, vn, un, u1 is replaced by un−1, vn, vn+1, un, un+1, u1 (similarly
vn−1, vn, un, v1 is replaced by vn−1, vn, vn+1, un, un+1, v1); and

(iii) un−1, un, vn, v1 or un−1, vn, un, v1 are replaced by un−1, vn, vn+1, un,
un+1, v1 (similarly vn−1, vn, un, u1 is replaced by vn−1, vn, vn+1, un,
un+1, u1).

Consequently, An+1 is PMH, proving our theorem.

Theorem 8.3.3. The only antiprisms having the PH-property are A3, A4, A5

and A6.

Proof. The graph A3 is PMH as already explained in Theorem 8.3.2,
so what is left to show is that every pairing M of A3 containing some
edge belonging to E(KA3)− E(A3) (referred to as a non-edge) can be
extended to a Hamiltonian circuit of KA3 . The pairing M can only con-
tain one or three non-edges. When M consists of three non-edges, then
M = {u1v3, u2v1, u3v2}, and this can be extended to a Hamiltonian
circuit of KA3 as follows (u1, v3, u3, v2, u2, v1). Otherwise, assume that
the only non-edge in M is u1v3, without loss of generality. Then, M
is either equal to {u1v3, u2v2, u3v1} or {u1v3, u2u3, v1v2}, which can be
extended to (u1, v3, u3, v1, v2, u2) or (u1, v3, u3, u2, v2, v1), respectively.

By Remark 1.4.1, the graph A4 has the PH-property because it
contains the cubeQ3 as a spanning subgraph, and by the main theorem
in [29], all hypercubes have the PH-property .

An exhaustive computer check was conducted through Wolfram
Mathematica [103] to verify that all pairings of the antiprism graphs A5

and A6 can be extended to a Hamiltonian circuit of the same graphs,
thus proving (by brute-force) that they both have the PH-property (see
Appendix A).
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Figure 8.3: A pairing in An, n ≥ 7, which is not extendable to a Hamiltonian
circuit of KAn

The antiprism A7 does not have the PH-property because the pair-
ing M = {u1v5, u2v2, u3v3, u4v4, u5v6, u6v7, u7v1}, depicted in Figure
8.3, cannot be extended to a Hamiltonian circuit of KA7 . For, sup-
pose not, and let N be a perfect matching of A7 such that M ∪ N
gives a Hamiltonian circuit of KA7 . Then, |N ∩ {u2u3, u2v3, v2v3}|, and
|N ∩ {u3u4, u3v4, v3v4}| must both be equal to 1. Consequently, M∪ N
induces a M-alternating path containing the edges {u2v2, u3v3, u4v4}
such that its end-vertices are x ∈ {u2, v2} and y ∈ {u4, v4}. If xu1 ∈ N,
then N ∩ {u7u1, u1v1, v1v2} is empty, implying that M∪ N induces the
4-circuit (u6, u7, v1, v7), a contradiction. Therefore, N contains the edge
v2v1 implying that x = v2. Consequently, N contains the edge u7u1 as
well. However, this implies that N ∩ {u6u7, u7v7, v7v1} is empty, im-
plying that M ∪ N induces the 4-circuit (u5, u6, v7, v6), a contradiction
once again. Thus, A7 does not have the PH-property.

The pairing M considered above can be easily extended to a pairing
of An, for any n > 7, and by the same argument for A7, we conclude
that An does not have the PH-property for every n ≥ 7.

8.3.2 A[n, 2]

In [2], it is mentioned that Ok and Perrett informed the authors that
they have obtained an infinite class of 4-regular graphs having the
PH-property: such a graph in this family is obtained from a circuit of
length at least three, by replacing each vertex by two isolated vertices
and replacing each edge by the four edges joining the corresponding
pairs of vertices. More formally, the resulting graph starting from a
n-circuit, for n ≥ 3, has vertex set {si, ti : i ∈ [n]} such that, for every
i ∈ [n], si and ti are both adjacent to si+1 (mod n) and ti+1 (mod n). As far
as we know, no proof of this can be found in literature, and in what
follows we give a proof of this result. Before we proceed, we remark
that the function that maps si to ui, and ti to vi+1 (mod n), for every
i ∈ [n], is an isomorphism between the above graph and the accordion
graph A[n, 2].

Theorem 8.3.4. The accordion graph A[n, 2] has the PH-property, for every
n ≥ 3.

Proof. Let A′[n, 2] be the graph depicted in Figure 8.4, obtained from
A[n, 2] after deleting the following set of edges: {u1un, v1vn, un−1v1,
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unv2}. We use induction on n to show that A′[n, 2] has the PH-property,
for every n ≥ 3. The result then follows by Remark 1.4.1, since A′[n, 2]
is a spanning subgraph of A[n, 2].
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Figure 8.4: The graph A′[n, 2]

When n = 3, one can show by a case-by-case analysis (or using an
exhaustive computer search) that the graph A′[3, 2], shown in Figure
8.5, has the PH-property.
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Figure 8.5: The graph A′[3, 2]

So we assume that n > 3 and let M be a pairing of A′[n, 2], hereafter
denoted by G. If M consists of only vertical spokes, that is, M = {uivi :
i ∈ [n]}, then

(i) (v1, u1, v3, u3, . . . , vn−1, un−1, un, vn, un−2, vn−2, . . . , u2, v2), when n
is even, or

(ii) (v1, u1, v3, u3, . . . , vn, un, un−1, vn−1, un−3 . . . , u2, v2), when n is
odd,

is a Hamiltonian circuit of KG containing the pairing M. So assume
that M 6= {uivi : i ∈ [n]}. Consequently, there exists i ∈ [n] such
that uivi 6∈ M. Let α = max{i ∈ [n] : uivi 6∈ M}. We note that by a
parity argument, α > 1. Consider the two subgraphs of G induced
by {u1, v1, . . . , uα−1, vα−1}, denoted by G1, and {uα, vα, . . . , un, vn}, de-
noted by G2. We remark that G1 and G2 are the two components
obtained after deleting from G the set of edges X, where X = {uα−1uα,
vα−1vα, uα−2vα} if α = n, and X = {uα−1uα, vα−1vα, uα−2vα, uα−1vα+1}
otherwise. We also remark that depending on the value of α, we have
that G1 is isomorphic to either K2, C4 or A′[α− 1, 2], and that G2 is
isomorphic to K2, C4 or A′[n− (α− 1), 2]. Without loss of generality,
we assume that |V(G1)| ≥ |V(G2)|, implying that 3 ≤ α ≤ n.

Next, consider the two edges yuα and zvα in M. Since for i > α,
uivi ∈ M, then y and z both belong to {u1, v1, . . . , uα−1, vα−1}. Let
M1 = (M ∩ E(KG1)) ∪ {yz}. One can see that M1 is a pairing of G1,
and so, by induction, M1 is contained in a Hamiltonian circuit H1

of KG1 . Consequently, H1 contains a Hamiltonian path of KG1 with
end-vertices y and z. We denote this path by H′1.
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When α = n, we obtain a Hamiltonian circuit of KG containing M,
by adding the edges yuα, uαvα, vαz to E(H′1). For α ≤ n− 1, we proceed
as follows. Let M2 = (M ∩ E(G2)) ∪ {uαvα}. This is clearly a pairing
of G2, and so, by induction, there exists a Hamiltonian circuit H2 of
KG2 containing M2. Let H′2 be the Hamiltonian path of G2 obtained
by deleting the edge uαvα from E(H2). Consequently, combining H′1
and H′2 together with the edges yuα and zvα, we form a Hamiltonian
circuit of KG containing M, as required.

8.4 the accordion graph A [n , k ] when gcd(n , k) ≥ 5

The method adopted in this section follows a similar line of thought
as that used in [V]. Let q = gcd(n, k) ≥ 5, let p = 2n

gcd(n,k) and let

p′ = p
2 . Consider a grid-like drawing of the accordion graph A[n, k] as

in Remark 8.2.2. For simplicity, we let the vertices v1, u1, v1+k, u1+k, . . . ,
v1+(p′−1)k, u1+(p′−1)k, be referred to as a1, a2, . . . , ap. We define the ver-
tices {bi, ci, di, ei : i ∈ [p]} in a similar way, where, in particular, the
vertices b1, . . . , e1, and b2, . . . , e2, represent v2, . . . , v5, and u2, . . . , u5, re-
spectively. If gcd(n, k) = 6, we refer to v6, u6, v6+k, u6+k, . . . , v6+(p′−1)k,
u6+(p′−1)k, as f1, f2 . . . , fp, and if gcd(n, k) > 6, we simply do not label
all the other vertices since we are only interested in the subgraph of
A[n, k] generated by the vertices {ai, . . . , fi : i ∈ [p]}. This can be seen
better in Figure 8.6.
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Figure 8.6: Edges belonging to S in A[n, k] when gcd(n, k) ≥ 6

For each i ∈ [p], let Li and Ri represent the edges bici and diei,
respectively, whilst L = {Li : i ∈ [p]} and R = {Ri : i ∈ [p]}. Let S
denote the following set of edges:

(i) aiai+1, for every even i ∈ [p],
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(ii) bibi+1 and eiei+1, for every odd i ∈ [p],

(iii) cidi, for every i ∈ [p], and

(iv) in the case when q ≥ 6, fi fi+1, for every even i ∈ [p].

Since p is even, A[n, k] has a perfect matching M that contains S.
In [V], it was shown that Cp�Cq is not PMH except when p = q = 4.

In the case when q ≥ 6, the proof utilises exclusively the set S of
edges described above (and adapted to Cp�Cq) to show that a perfect
matching M containing this set cannot be extended to a Hamiltonian
circuit of Cp�Cq. Since the same set S of edges can also be chosen in a
perfect matching of A[n, k], the proof extends naturally and hence we
have the following result.

Lemma 8.4.1. A[n, k] is not PMH if gcd(n, k) ≥ 6.

We shall now show that A[n, k] is not PMH in the case when
gcd(n, k) = 5. We remark that, in this case, the proof in [V] cannot be
extended to A[n, k] because it makes use of the edges eiai of Cp�Cq,
which are missing in A[n, k]. For the remaining part of this section, we
shall need some results extracted from the proof of the main theorem
in [V], and adapted for accordion graphs. We note that the arguments
in [V] are quite elaborate and lengthy, but when adapted to our case,
they remain essentially the same. Hence our decision not to reproduce
them in detail here but to only give the main points in the following
lemma.

Lemma 8.4.2. [V] Let gcd(n, k) ≥ 5. If there exists a perfect matching M
of A[n, k] containing S and another perfect matching N of A[n, k] such that
M ∪ N is a Hamiltonian circuit H of A[n, k], then the following statements
hold.

(i) |L ∩ N| and |R ∩ N| are both even and non-zero.

(ii) A maximal sequence of consecutive edges belonging to L− N (or R−
N) is of even length (consecutive edges are edges having indices which
are consecutive integers taken modulo p, with complete residue system
{1, . . . , p}).

(iii) The edges of L∩N are partitioned into pairs of edges {Lγ, Lγ′}, where
γ is odd and γ′ is the least integer greater than γ (taken modulo p) such
that Lγ′ ∈ N (and similarly forR∩N). In this case, if we start tracing
the Hamiltonian circuit H from cγ going towards bγ, then H contains
a path with edges alternating in N and M, starting from cγ and ending
at cγ′ , with the internal vertices on this path being {bγ, bγ′}, if γ′ =
γ + 1, or belonging to the set {bγ, aγ+1, bγ+1, . . . , aγ′−1, bγ′−1, bγ′},
if γ′ 6= γ + 1. In each of these two cases we refer to such a path
between cγ and cγ′ as an LγLγ′ -bracket, or just a left-bracket, with Lγ

and Lγ′ being the upper and lower edges of the bracket, respectively.
Right-brackets are defined similarly.
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(iv) If Lγ′ is a lower edge of a left bracket, then Lγ′+1 belongs to N, and so
is an upper edge of a possibly different left bracket (and similarly for
right-brackets).

(v) If Li 6∈ N, for some even i ∈ [p], then cici+1 ∈ N (and similarly for
edges belonging to R− N).

Lemma 8.4.3. A[n, k] is not PMH if gcd(n, k) = 5.
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Figure 8.7: A[n, k] when gcd(n, k) = 5

Proof. Let M be a perfect matching of A[n, k] which contains the set S
of edges as shown in Figure 8.7, and let p = 2n/5 (as defined earlier
on in this section). Suppose that there exists a perfect matching N of
A[n, k] such that M ∪ N is a Hamiltonian circuit H of A[n, k].

Since R∩ N 6= ∅, there exists some odd β ∈ [p] such that Rβ ∈ N.
We note that the vertex eβ is adjacent to a unique aθ , for some odd
θ 6= β. The only way how aθ can be reached by the Hamiltonian
circuit H is if it is reached by a left bracket, and so only if aθbθ ∈ N.
Consequently, Lθ = bθcθ is not in N, implying that cθcθ−1 ∈ N by
Lemma 8.4.2. By a similar reasoning, since H is a Hamiltonian circuit,
dθdθ−1 cannot be contained in N, and so, in particular, Rθ and Rθ−1

are respectively upper and lower edges belonging to N. Repeating the
same procedure over again, first for Rθ and eventually for all edges in
R having an odd index, one can deduce that R∩ N = R. Since L∩ N
is non-empty, there exists some ν such that Lν ∈ N. The vertex aν must
be reached by some right bracket in order to belong to H, however,
this is impossible since R∩ N = R, contradicting the Hamiltonicity
of H.
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By combining Lemma 8.4.1 and Lemma 8.4.3 we obtain the main
result of this section.

Theorem 8.4.4. The accordion graph A[n, k] is not PMH if gcd(n, k) ≥ 5.

8.5 accordions and circulant graphs

For distinct integers a and b, Ci[2n, {a, b}] denotes the quartic circulant
graph on the vertices {xi : i ∈ [2n]}, such that xi is adjacent to the
vertices in the set {xi+a, xi−a, xi+b, xi−b}. We say that the edges arising
from these adjacencies have length a and b, accordingly, and we also re-
mark that operations in the indices of the vertices xi are taken modulo
2n, with complete residue system {1, . . . , 2n}. In [11], the necessary
and sufficient conditions for a circulant graph to be isomorphic to a
Cartesian product of two circuits were given. Motivated by this, we
show that there is a non-empty intersection between the class of accor-
dions A[n, k] and the class of circulant graphs Ci[2n, {a, b}], although
neither one is contained in the other. In particular, we here show that
the only accordion graphs A[n, k] which are not circulant are those
with both n and k even, such that k ≥ 4. Results of a similar flavour
about 4-regular circulant graphs, perfect matchings and Hamiltonicity
can be found in [43].

We shall be using the following two results about circulant graphs
(not necessarily quartic). Let the circulant graph on n′ vertices and
with r different edge lengths be denoted by Ci[n′, {a1, . . . , ar}]. The
first result, implied by a classical result in number theory, says that
Ci[n′, {a1, . . . , ar}] has gcd(n′, a1, . . . , ar) isomorphic connected com-
ponents (see [10]). Consequently, in our case we have that the circu-
lant graph Ci[2n, {a, b}] is connected if and only if gcd(2n, a, b) = 1.
Secondly, let gcd(n′, a1, . . . , ar) = 1. Heuberger [44] showed that
Ci[n′, {a1, . . . , ar}] is bipartite if and only if a1, . . . , ar are odd and
n′ is even. Restated for our purposes we have that Ci[2n, {a, b}] is
bipartite if and only if a and b are both odd.

Remark 8.5.1. When n and k are even, the sets {u1, v2, u3, v4, . . . , un−1,
vn} and {v1, u2, v3, u4, . . . , vn−1, un} are two independent sets of ver-
tices of A[n, k], implying that for these values of n and k, A[n, k] is
bipartite. On the other hand, it is easy to see that when at least one of n
and k is odd, A[n, k] is not bipartite. Consequently, A[n, k] is bipartite
if and only if n and k are both even.

Before proceeding, we recall that operations in the indices of the
vertices of A[n, k] and Ci[2n, {a, b}] are taken modulo n and modulo
2n, respectively.

Lemma 8.5.2. The accordion graph A[n, 2] is circulant for any even integer
n ≥ 4.
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Proof. For every even integer n ≥ 4, we claim that the following
function φ : V(A[n, 2])→ V(Ci[2n, {1, n− 1}]) defined by:

• φ : ui 7→ x1+(n−1)(i−1) (mod 2n), for all i ∈ [n],

• φ : v1 7→ x2+n (mod 2n), and

• φ : vi 7→ x2+(n−1)(i−1) (mod 2n), for 2 ≤ i ≤ n,

is an isomorphism. We first show that the function φ is bijective. Since
n− 1 ≥ 3 is odd and gcd(n, n− 1) = 1, we have that gcd(2n, n− 1) =
1, and so the vertices in {φ(ui) : 1 ≤ i ≤ n} are mutually distinct.
For the same reason, since 2 + n ≡ 1 + (n − 1)(2n − 1) (mod 2n),
the vertex φ(v1) is distinct from any vertex φ(ui). Moreover, since
1 6= n− 1 and the vertices φ(u2), . . . , φ(un) are mutually distinct, the
vertices in {φ(vj) : 2 ≤ j ≤ n} are mutually distinct as well, and are
not equal to some vertex φ(ui). Finally, since gcd(n, n− 1) = 1, we
have that 2 + (n − 1)(i − 1) 6≡ 2 + n (mod 2n), for any 2 ≤ i ≤ n.
Consequently, φ(v1) is distinct from any vertex φ(vj), proving that φ

is, in fact, bijective. We next show that φ is an isomorphism. Since
Ci[2n, {1, n− 1}] has the same number of edges as A[n, 2], it suffices to
show that an edge in A[n, 2] is mapped to an edge in Ci[2n, {1, n− 1}].

We first take an edge uiuj from the outer-circuit of A[n, 2], for some
i ∈ [n] and j ≡ i + 1 (mod n), without loss of generality. Consider
φ(ui)φ(uj). The length of φ(ui)φ(uj) can be calculated using 1 + (n−
1)(j− 1)− (1+ (n− 1)(i− 1)) (mod 2n). This is equal to n− 1, when
j 6= 1, and to −n2 + 2n− 1 ≡ −1 (mod 2n), otherwise. Since in both
cases the length of the edge φ(ui)φ(uj) belongs to {±1,±(n − 1)},
φ(ui)φ(uj) ∈ E(Ci[2n, {1, n− 1}]).

Next, we consider the vertical spoke uivi, for some i ∈ [n]. The
length of the edge φ(ui)φ(vi) is 2 + n− (1 + (n− 1)(i− 1)) ≡ −(n−
1) (mod 2n), when i = 1, and 2 + (n − 1)(i − 1)− (1 + (n − 1)(i −
1)) = 1, otherwise, implying that the length of the edge φ(ui)φ(vi)

belongs to {±1,±(n− 1)} in both cases. Consequently, φ(ui)φ(vi) ∈
E(Ci[2n, {1, n− 1}]).

We now take the diagonal spoke uivj, for some i ∈ [n], and for
j ≡ i + 2 (mod n). The length of the edge φ(ui)φ(vj) is:

• 2+(n− 1)(j− 1)− (1+(n− 1)(i− 1)) = 2n− 1 ≡ −1 (mod 2n),
when 1 ≤ i ≤ n− 2,

• 2 + n − (1 + (n − 1)(i − 1)) = −n2 + 4n − 1 ≡ −1 (mod 2n),
when i = n− 1, and

• 2+ (n− 1)(j− 1)− (1+ (n− 1)(i− 1)) = −n2 + 3n− 1 ≡ n− 1
(mod 2n), when i = n.

In each of these three cases, the length of φ(ui)φ(vj) belongs to
{±1,±(n− 1)}, implying that φ(ui)φ(vj) ∈ E(Ci[2n, {1, n− 1}]).
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Finally, we take an edge vivj from the inner-circuit of A[n, 2], for
some i ∈ [n] and j ≡ i + 1 (mod n), without loss of generality. The
length of the edge φ(vi)φ(vj) is:

• 2 + n− (2 + (n− 1)(i− 1)) = −n2 + 3n− 1 ≡ n− 1 (mod 2n),
when j = 1,

• 2 + (n− 1)(j− 1)− (2 + n) = −1, when j = 2, and

• 2+(n− 1)(j− 1)− (2+(n− 1)(i− 1)) = n− 1, when 3 ≤ j ≤ n.

This implies that the length of the edge φ(vi)φ(vj) belongs to {±1,
±(n− 1)} in both cases, and so φ(vi)φ(vj) ∈ E(Ci[2n, {1, n− 1}]).

There are no more cases to consider, proving our result.

We next show that the only circulant accordions with both n and k
even are the ones having k = 2. By Remark 8.5.1, this means that the
only circulant bipartite accordions are the ones with n even and k = 2.

Lemma 8.5.3. For n and k even, the accordion graph A[n, k] is circulant if
and only if k = 2.

Proof. Let n and k be even. By Lemma 8.5.2, it suffices to show that
accordion graphs admitting k ≥ 4 are not circulant. We can further
assume that n ≥ 8, since the only accordions with n = 4 or 6, and k
even are A[4, 2] and A[6, 2]. Suppose, for contradiction, that for n ≥ 8,
there exists an even integer k ≥ 4 such that A[n, k] is circulant. Then,
by Remark 8.5.1 and Heuberger’s result [44], A[n, k] ' Ci[2n, {a, b}]
for some distinct odd integers a and b. For simplicity, we refer to
A[n, k], or equivalently Ci[2n, {a, b}], by G. By the definition of quartic
circulant graphs we can assume that 1 ≤ a < b ≤ n− 1.

Claim. gcd(2n, a) = gcd(2n, b) = 1.
Proof of Claim. Suppose that gcd(2n, a) 6= 1, for contradiction. Then,
the least common multiple of a and 2n is 2na′, for some a′ < a.
Consequently, there exists an even integer p such that ap = 2na′.
Moreover, since a 6= a′ and a is odd, a

a′ (or equivalently 2n
p ) is odd

and at least 3, and so p < n. By considering the edges in G having
length a, there exists a partition P of the 2n vertices of G into 2n

p

sets, each inducing a p-circuit. This follows since gcd(2n, a) = 2n
p 6= 1.

Furthermore, P has an odd number of components, namely gcd(2n, a),
or equivalently 2n

p .
Since G is a connected quartic graph and 2n

p > 1, two vertices on
a particular p-circuit in P are adjacent in G if and only if there is an
edge of length a between them, in other words, the subgraph induced
by the vertices on a p-circuit in P is the p-circuit itself. Therefore,
the graph contains two adjacent vertices xi and xj belonging to two
different p-circuits from P . Consequently, since i ≡ j± b (mod 2n),
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the vertices of these two p-circuits induce Cp�P2, where P2 is the
path on two vertices. By a similar argument to that used on xi and
xj, we deduce that G contains a spanning subgraph G0 isomorphic to
Cp�P2n

p
.

We now denote the set {u1, u2, . . . , un} of vertices on the outer-
circuit of A[n, k] by U , and the set {v1, v2, . . . , vn} of vertices on the
inner-circuit of A[n, k] by V , and claim that:

(i) given two adjacent vertices from some p-circuit in P , say xi and
xi+a, if xi is a vertex in U , then xi+a is a vertex in V , or vice-versa;
and

(ii) given two adjacent vertices from two different p-circuits in P , say
xi and xi+b, we have that either both belong to U or both belong
to V .

First of all, we note that the vertices inducing a p-circuit from P , cannot
all belong to U , since the latter set of vertices induces a n-circuit, and
p < n. Similarly, the vertices inducing a p-circuit from P , cannot all
belong to V . Secondly, let i ∈ [2n], such that xi is of degree 3 in G0,
and xixi+b ∈ E(G0). Consider the 4-circuit (xi, xi+a, xi+a+b, xi+b). Since
n > 4, these four vertices cannot all belong to U (or V). Also, we cannot
have three of them which belong to U (or V), because otherwise we
would have k = 2, or, k ≡ −2 (mod n), that is, k = n− 2. Since we are
assuming that k ≥ 4, we must have that k = n− 2, but by Definition
8.2.1, k is at most n

2 , and so, n− 2 ≤ n
2 , a contradiction, since n ≥ 8.

This means that exactly two vertices from (xi, xi+a, xi+a+b, xi+b) belong
to U , and the other two belong to V . Without loss of generality, assume
that xi belongs to U .

Suppose that xi+b 6∈ U , for contradiction. Then, U must contain
exactly one of xi+a and xi+a+b. Suppose we have xi+a+b ∈ U . Conse-
quently, xi+a and xi+b belong to V , and so since 2n

p ≥ 3, xi+2a+b and
xi+a+2b belong to U , giving rise to a 4-circuit in G0 with three of its
vertices belonging to U , a contradiction. Therefore, we have xi+a ∈ U .
This means that xi+b and xi+a+b both belong to V . Suppose further that
xi+2a ∈ V . Since we cannot have three vertices in a 4-circuit belonging
to V , xi+2a+b ∈ U . However, this once again gives rise to a 4-circuit in
G0 with three of its vertices belonging to U , a contradiction. Therefore,
xi+2a must belong to U . By repeating the same argument we get that
all the vertices in the p-circuit, from P , containing xi belong to U , a
contradiction. Hence, xi+a 6∈ U . Thus, neither one of xi+a and xi+a+b is
in U , contradicting our initial assumption. This implies that xi+b ∈ U ,
and that xi±a and xi+b±a belong to V . This forces all the vertices not
considered so far to satisfy the two conditions in the above claim.

Thus, by Remark 8.2.2, 2n
p = gcd(n, k). This is a contradiction, since

2n
p is odd and the greatest common divisor of two even numbers is

even. Hence, gcd(2n, a) = 1, and by a similar reasoning, gcd(2n, b) = 1
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as well. �

This implies that a does not divide n, b does not divide n, and that
the edges of G can be partitioned in two Hamiltonian circuits induced
by the edges having length a and b, respectively.

In particular, since a does not divide 2n, there exists an edge
of length a with both end-vertices belonging to {ui : i ∈ [n]} ⊂
V(A[n, k]). Without loss of generality, assume that u1u2 has length a,
and consider the 4-circuit C = (u1, u2, v2, v1). Since the edges having
length a (and similarly the edges having length b) induce a Hamil-
tonian circuit, and n > 4, the lengths of the edges in C cannot all
be the same. Hence, the lengths of the edges (u1u2, u2v2, v2v1, v1u1)

of C can be of Type A1 := (a, b, b, b), Type A2 := (a, a, b, a), Type
A3 := (a, a, a, b), Type A4 := (a, b, a, a), Type B1 := (a, a, b, b), Type
B2 := (a, b, b, a), or Type B3 := (a, b, a, b). Some of these types are
depicted in Figure 8.8.
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Figure 8.8: Different lengths of the edges in C

If C is of Type A1, then a ≡ ±3b (mod 2n). This implies that the
two end-vertices of an edge of length a are also end-vertices of a
3-path whose edges are all of length b. Also, the two end-vertices of
a 3-path whose edges are all of length b, must be adjacent. Consider
the edge v2v3. Since v1v2 and u2v2 have length b, the edge v2v3 has
length a, and so it must belong to some 4-circuit with the other
three edges of the circuit having length b. We denote this 4-circuit by
C4(v2v3). First, assume that u2u3 is of length a. If u2v2 ∈ E(C4(v2v3)),
then, C4(v2v3) contains u2v2+k (mod n), and consequently v2+k (mod n)v3,
which is impossible, since k ≥ 4. Therefore, C4(v2v3) contains v1v2,
and so C4(v2v3) = (v3, v2, v1, u1), implying once again that k = 2,
a contradiction. Consequently, u2u3 must be of length b, implying
that C4(v2v3) = (v3, v2, u2, u3). By using the same arguments we can
deduce that the outer- and inner-circuit edges, and the vertical spokes
in G have lengths as shown in Figure 8.9.
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Since k is even, we also have b ≡ ±3a (mod 2n) (see for example the
4-circuit (u1, u2, v2+k (mod n), v1+k (mod n))). This implies that a ≡ ±9a
(mod 2n), that is, 8a ≡ 2n (mod 2n), or 10a ≡ 2n (mod 2n). Since
gcd(2n, a) = 1, the total number of vertices of G must be equal to 8 or
10, a contradiction, since n ≥ 8. By using a very similar argument it
can be shown that C cannot be of Type A2 (see Figure 8.10).
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Figure 8.10: A[n, k] when C is of Type A2

So assume that C is of Type A3. Then, b ≡ ±3a (mod 2n) and, in
particular, the edge u2u3 has length b. Consequently, this edge must
belong to some 4-circuit with the other three edges of the circuit
having length a. We denote this 4-circuit by C4(u2u3). Since u1u2 and
u2v2 are both of length a, we have the following cases:

• if C4(u2u3) = (u3, u2, u1, v1+k), then k = 2, a contradiction;

• if C4(u2u3) = (u3, u2, u1, un), then n = 4, a contradiction; and

• if C4(u2u3) = (u3, u2, v2, v1), then u3 is adjacent to v1. Conse-
quently, we have that k ≡ −2 (mod n), and as before, this im-
plies that n− 2 ≤ n/2, a contradiction, since n ≥ 8.

Thus C cannot be of Type A3, and by using a similar argument, it can
be shown that C cannot be of Type A4 either.

If C is of Type B1 or Type B2, then we have that 2a ≡ ±2b (mod 2n),
and since 1 ≤ a < b ≤ n − 1, we can further assume that 2a ≡
−2b (mod 2n). Consequently, we have that a + b = n, and so by
Lemma 8.5.2, G ' A[n, 2], a contradiction. Therefore, C and all other
possible 4-circuits in G must be of Type B3, which is impossible,
because then the edges having length a would induce two disjoint
n-circuits, contradicting the fact that the edges having length a induce
a Hamiltonian circuit (and thus a 2n-circuit). As a consequence, A[n, k]
is not circulant, contradicting our initial assumption.

Using the above two lemmas we can now prove the main result of
this section.

Theorem 8.5.4. The accordion graph A[n, k] is not circulant if and only if
both n and k are even, such that k ≥ 4.

Proof. By Lemma 8.5.3, it suffices to show that the accordion graph
A[n, k] is circulant if and only if either

(i) k is odd, or
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(ii) k is even and n is odd, or

(iii) k = 2 and n is even.

Case (i). For k odd, we claim that the function φ : V(A[n, k]) →
V(Ci[2n, {2, k}]) defined by φ : ui 7→ x2i and φ : vi 7→ x2i−k (mod 2n),
where i ∈ [n], is an isomorphism. Since 2i− k is odd, for every i ∈ [n],
one can deduce that the function φ is bijective. Also, Ci[2n, {2, k}] has
the same number of edges as A[n, k], and thus it suffices to show that
an edge in A[n, k] is mapped to an edge in Ci[2n, {2, k}].

(a) We first take an edge uiuj from the outer-circuit of A[n, k], for some
i ∈ [n] and j ≡ i + 1 (mod n), without loss of generality. Con-
sider φ(ui)φ(uj). The length of φ(ui)φ(uj) can be calculated using
2(j− i) which is equivalent to 2 (mod 2n). Since this belongs to
{±2,±k}, φ(ui)φ(uj) ∈ E(Ci[2n, {2, k}]).

(b) By a similar reasoning to that used in (a), φ(vi)φ(vj) is an edge in
Ci[2n, {2, k}], for any i ∈ [n] and j ≡ i + 1 (mod n), without loss
of generality.

(c) We now consider the spokes. Let i ∈ [n] and j ≡ i + k (mod n).
The length of φ(ui)φ(vi) can be calculated using 2i− k− 2i, which
is equal to −k. On the other hand, the length of φ(ui)φ(vj) can
be calculated using 2j− k− 2i, which is equal to k. In both cases,
the lengths obtained belong to {±2,±k}, and so φ(ui)φ(vi) and
φ(ui)φ(vj) are edges in Ci[2n, {2, k}].

Case (ii). For k even and n odd, we claim that the function φ :
V(A[n, k]) → V(Ci[2n, {2, n − k}]) defined by φ : ui 7→ x2i and
φ : vi 7→ x2i+n−k (mod 2n), where i ∈ [n], is an isomorphism. As in
Case (i), the function φ is bijective, since n − k is odd. Moreover,
Ci[2n, {2, n − k}] has the same number of edges as A[n, k], and so
it suffices to show that an edge in A[n, k] is mapped to an edge in
Ci[2n, {2, n− k}].

(a) By the same reasoning used in Case (i), φ(ui)φ(uj) and φ(vi)φ(vj)

are edges in Ci[2n, {2, n− k}], for i ∈ [n], and j ≡ i + 1 (mod n),
without loss of generality.

(b) We now consider the spokes. Let i ∈ [n] and j ≡ i + k (mod n).
The length of φ(ui)φ(vi) can be calculated using 2i + n− k− 2i,
which is equal to n− k. On the other hand, the length of φ(ui)φ(vj)

can be calculated using 2j + n − k − 2i, which is equivalent to
−(n − k) (mod 2n). In both cases, the lengths obtained belong
to {±2,±(n− k)}, and so φ(ui)φ(vi) and φ(ui)φ(vj) are edges in
Ci[2n, {2, n− k}].

Case (iii). This was proven in Lemma 8.5.2
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The following result follows immediately from the proof of Theorem
8.5.4.

Corollary 8.5.5. The accordion graph A[n, k] is isomorphic to the circulant
graph

(i) Ci[2n, {2, k}], when k is odd, and

(ii) Ci[2n, {2, n− k}], when n is odd and k is even.

8.6 concluding remarks and open problems

Despite ruling out all accordion graphs A[n, k] having gcd(n, k) ≥ 5, a
complete characterisation of which accordion graphs have the PMH-
or the PH-property is definitely of interest but still inaccessible. In Sec-
tion 8.3, partial results were obtained for the cases when gcd(n, k) ≤ 2.
These are portrayed in Table 8.1 together with other partial results ob-
tained by a computer check conducted through Wolfram Mathematica
[103] (see Appendix A). In particular, we identify which accordions
are PMH and which are not, for 3 ≤ k ≤ 10 and for n ≤ 21. We remark
that some values of n and k are marked as "unknown" due to problems
with computation time and memory.

Additionally, as already remarked before, the main result in [11]
gives more than just all the possible values of n1 and n2, for which
Cn1�Cn2 is circulant. In fact, the main result of the above paper is the
following.

Theorem 8.6.1. [11] The circulant graph Ci[n′, {a1, a2}] is isomorphic to
Cn1�Cn2 if and only if:

(i) n′ = n1n2,

(ii) n1 = gcd(n′, aj) and n2 = gcd(n′, a3−j), where j = 1 or j = 2, and

(iii) gcd(n1, n2) = 1.

In this sense, we think that it would be an interesting endeavour to
give a necessary and sufficient condition for a quartic circulant graph
to be isomorphic to some accordion.
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A[n, k] k

1 2 3 4 5 6 7 8 9 10

n

3
4
5
6
7
8
9
10 ⊥
11 A[n, k] PMH
12 ⊥ ⊥ A[n, k] not PMH
13 ⊥ ? Unknown
14 ⊥ ⊥
15 ⊥ ⊥ ⊥
16 ⊥ ⊥ ⊥
17 ⊥ ⊥ ⊥ ⊥
18 ⊥ ⊥ ⊥ ⊥ ? ⊥
19 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
20 ⊥ ? ⊥ ? ⊥ ? ⊥ ⊥
21 ⊥ ⊥ ⊥ ⊥ ⊥ ? ? ?

Table 8.1: Which accordions are PMH for 3 ≤ n ≤ 21 and 1 ≤ k ≤ 10
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C U B I C P M H - G R A P H S

Unlike the majority of previous chapters this is still a work in its initial
phases, and has not been submitted yet.

In what follows we present some results dealing with the properties
discussed in the previous chapters of Part ii—this time with respect
to cubic graphs. There is already a known and studied class of cubic
graphs which are naturally PMH (as we shall see in Proposition
9.0.3). This is the class of cubic 2-factor Hamiltonian graphs. The term
was coined by Martin Funk et al. in [33], where the authors study
regular Hamiltonian graphs with the property that all their 2-factors
are Hamiltonian, called 2-factor Hamiltonian. In [33], the authors prove
that if a graph G is a bipartite k-regular 2-factor Hamiltonian graph,
then G is either a circuit or k = 3, that is, G is cubic. In particular,
they use the following proposition to construct an infinite family of
bipartite cubic 2-factor Hamiltonian graphs.

Proposition 9.0.1. [33] Let G = G1(v1) ∗ G2(v2) be a bipartite graph
which is obtained by a 3-cut-connection on v1 ∈ V(G1) and v2 ∈ V(G2),
both of degree 3. Then, G is 2-factor Hamiltonian if and only if G1 and G2

are both 2-factor Hamiltonian.

We note that in the above proposition, G1 and G2 are not necessarily
cubic graphs, and only need to admit a vertex of degree 3 each, say v1

and v2, respectively. For simplicity, and with some abuse of terminol-
ogy and notation, in the above proposition we use "3-cut-connection"
and "G1(v1) ∗ G2(v2)", to describe the resulting graph obtained in a
similar way to that described in Subsection 1.4.2. Moreover, we remark
that the hypothesis that G is bipartite in the above proposition is
needed, because although the complete graph K4 is a 2-factor Hamil-
tonian graph, the graph obtained by applying a 3-cut-connection on
two vertices from two copies of K4 is not 2-factor Hamiltonian.

By using Proposition 9.0.1, the authors construct an infinite family
of bipartite cubic 2-factor Hamiltonian graphs by taking repeated 3-
cut-connections of K3,3 and the Heawood graph. They also conjecture
that these are the only such graphs, and this conjecture is still open.

In what follows we try to find ways how we can obtain cubic PMH-
graphs other than the 3 cubic graphs admitting the PH-property, and
cubic 2-factor Hamiltonian graphs. Before continuing, we define what
we call a good vertex.

Definition 9.0.2. Let G be a cubic graph and let v be a vertex of G.
The vertex v is said to be good if for every perfect matching M of G,

108
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there exist Hamiltonian circuits H1 and H2 both extending M, such
that Hi contains ei, for each i ∈ [2], where ∂v−M = {e1, e2}.
Proposition 9.0.3. Let G be a cubic 2-factor Hamiltonian graph. Then:

(i) G is PMH, and

(ii) every vertex of G is good.

Proof. (i) Let M be a perfect matching, and let M be its complementary
2-factor. By our assumption, M is a Hamiltonian circuit, and since G
is of even order, E(M) = N1 ∪ N2 with N1 and N2 perfect matchings.
One can clearly see that for each i ∈ [2], M ∪ Ni is a Hamiltonian
circuit of G.

(ii) Clearly follows from (i).

Despite the clear connection between cubic 2-factor Hamiltonian
and cubic PMH-graphs, an analogous result to Proposition 9.0.1 for
PMH-graphs is not possible, as the following result shows.

Proposition 9.0.4. Let G1 and G2 be two cubic graphs and let u ∈ V(G1)

and v ∈ V(G2).

(i) If G1(u) ∗ G2(v) is PMH, then G1 and G2 are PMH.

(ii) The converse of (i) is not true.

Proof. (i) First assume that G1(u) ∗ G2(v) is PMH and let X = {u1v1,
u2v2, u3v3} be the principal 3-edge-cut of G1(u) ∗G2(v), with u1, u2, u3

and v1, v2, v3, adjacent to u ∈ V(G1) and v ∈ V(G2), respectively. Let
M be a perfect matching of G1, and without loss of generality, assume
that u1u ∈ M. Let M′ be a perfect matching of G1(u) ∗G2(v) containing
u1v1 and M− {u1u}. We remark that such a perfect matching exists
by [86]. Furthermore, since G1(u) ∗G2(v) is PMH, M′ (and every other
perfect matching of this graph) intersects X in exactly one edge. Since
G1(u) ∗ G2(v) is PMH, it admits a Hamiltonian circuit H containing
M − {u1u} and one of u2v2 and u3v3. Assume u2v2 ∈ E(H). This
means that H induces a path in G1 having end-vertices u1 and u2,
passes through all the vertices in V(G1)−{u} and contains M−{u1u}.
This path together with the edges u1u and u2u forms a Hamiltonian
circuit of G1 containing M. By a similar reasoning, one can show that
G2 is also PMH.

(ii) Let G1 and G2 be two copies of C4�C4, that is, the 3-dimensional
cube, and let u ∈ V(G1) and v ∈ V(G2). Both G1 and G2 are PMH (by
[29]), but G1(u) ∗G2(v) is not. In fact, consider the perfect matching of
G1(u) ∗ G2(v) shown in Figure 9.1. One can clearly see that it cannot
be extended to a Hamiltonian circuit.

Corollary 9.0.5. If G is a cubic PMH-graph having a 3-edge-cut, then
G can be obtained by an appropriate 3-cut-connection between two cubic
PMH-graphs G1 and G2.
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Figure 9.1: The bold edges cannot be extended to a Hamiltonian circuit

Analogous results to Proposition 9.0.4 and Corollary 9.0.5 can be
obtained in terms of 2-cut-connections and cubic PMH-graphs having
a 2-edge-cut.

Despite the discouraging statement of Proposition 9.0.4, one can
still obtain cubic PMH-graphs from two smaller cubic PMH-graphs
by using 3-cut-connections and some additional assumptions, as the
following result shows.

Proposition 9.0.6. Let G1 be a cubic PMH-graph admitting a good vertex
u and let G2 be a cubic PMH-graph. If there exists a vertex v ∈ V(G2)

such that every perfect matching of G1(u) ∗ G2(v) intersects the principal
3-edge-cut exactly once, then G1(u) ∗ G2(v) is PMH.

Proof. Let X = {u1v1, u2v2, u3v3} be such a principal 3-edge-cut of
G1(u) ∗ G2(v), and let M be a perfect matching of G1(u) ∗ G2(v). As
before, u1, u2, u3 and v1, v2, v3, are adjacent to u ∈ V(G1) and v ∈
V(G2), respectively. Without loss of generality, assume that M ∩ X =

{u1v1}. Consequently, M induces perfect matchings M1 and M2 in
G1 and G2, such that u1u ∈ M1 ∩ E(G1) and v1v ∈ M2 ∩ E(G2). Since
G2 is PMH, M2 can be extended to a Hamiltonian circuit H2 of G2.
Without loss of generality, we assume that v2v ∈ E(H2). Since u is a
good vertex, M1 can be extended to a Hamiltonian circuit H1 of G1

which intersects u2u. One can easily see that (E(H1)− {u1u, u2u}) ∪
(E(H2)−{v1v, v2v})∪ {u1v1, u2v2} is a Hamiltonian circuit of G1(u) ∗
G2(v) containing M, as required.

Corollary 9.0.7. Let G1 be a cubic PMH-graph admitting a good vertex u
and let G2 be a cubic PMH-graph. If at least one of G1 and G2 is bipartite,
then G1(u) ∗ G2(v) is PMH, for every vertex v of G2.

Proof. Since at least one of G1 and G2 is bipartite, any perfect matching
of G1(u) ∗G2(v) intersects the principal 3-edge-cut in exactly one edge.
Result follows by Proposition 9.0.6.

Finally, we remark that the resulting graph after applying a Y-
extension to a vertex u of a cubic graph G is equivalent to G(u) ∗K4(v),
for any vertex v of K4. By keeping this in mind, one can obtain the
following easy consequence of Proposition 9.0.6.
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Corollary 9.0.8. The graph obtained by applying a Y-extension to a vertex
of a bipartite cubic PMH-graph is again PMH.

Analogously, the graph obtained after applying a Y-extension to a
bipartite cubic 2-factor Hamiltonian graph, is again 2-factor Hamil-
tonian. Although applying a Y-extension (or Y-reduction) is a very
simple graph operation, we still have no complete answer to the fol-
lowing question: when do Y-extensions (Y-reductions) preserve the
PMH-property?

9.0.1 Obtaining cubic PMH-graphs with girth at least 4

Corollary 9.0.8 presents a way of obtaining a new cubic PMH-graph
from a smaller (bipartite) cubic PMH-graph. In this section we devise
a similar method but in such a way that the resulting PMH-graph has
girth at least 4.

b

b

b b

b b

b

b

Figure 9.2: Applying a Y-extension to F0 = K3,3

Let F be the graph obtained by applying a Y-extension to a bipartite
cubic 2-factor Hamiltonian graph F0 (see for example Figure 9.2). An
easy way to obtain cubic PMH-graphs with girth at least 4 is by using
the following proposition.

Proposition 9.0.9. Let G be a bipartite cubic PMH-graph and let v be a
vertex of F lying on its triangle. Then, for any u ∈ V(G), G(u) ∗ F(v) has
girth 4 and is PMH.

Proof. Let u be a vertex of V(G). Since G is bipartite and every vertex
of F is good, G(u) ∗ F(v) is clearly PMH by Corollary 9.0.7. Moreover,
since G and F0 are both bipartite, a circuit of length 3 in G(u) ∗ F(v)
can only occur if the edges of the circuit intersect (twice) the principal
3-edge-cut of G(u) ∗ F(v). This is impossible, proving our result.

Graphs obtained by using Proposition 9.0.9 are not necessarily
2-factor Hamiltonian. In fact, by letting G be equal to Q3, the 3-
dimensional cube, and F0 = K3,3, we note that the resulting graph
depicted in Figure 9.3 is not 2-factor Hamiltonian, since the blue and
black perfect matchings do not form a Hamiltonian circuit.
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Figure 9.3: A non-bipartite cubic PMH-graph having girth 4 which is not
2-factor Hamiltonian

9.1 final remarks

All the methods discussed above on how to generate new cubic PMH-
graphs give graphs which are either 2-edge-connected or 3-edge-
connected. Consequently, we think that it would be very intriguing
to find other cyclically 4-edge-connected cubic PMH-graphs, or, more
interestingly, a general method (if such a method exists) giving a
construction of how to obtain cyclically 4-edge-connected cubic PMH-
graphs from smaller ones.

We finally suggest the following. If a cubic graph G is PMH, then
it would also mean that every perfect matching of G corresponds
to one of the colours of a 3-edge-colouring of the graph. When this
occurs we say that every perfect matching can be extended to a 3-edge-
colouring. However, this is not the only time that this occurs. In fact,
there are cubic graphs which are not PMH, but with every one of their
perfect matchings capable of being extended to a 3-edge-colouring
(see for example Figure 9.4). In fact the following theorem is an easy
observation.
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b b

b

Figure 9.4: The bold edges cannot be extended to a Hamiltonian circuit

Theorem 9.1.1. Let G be a bridgeless cubic graph. Every perfect matching
of G can be extended to a 3-edge-colouring of G if and only if every 2-factor
of G is made up of circuits of even length only.

If a graph G has the PMH-property, then, every one of its 2-factors
is made up of even circuits. In particular, this also applies for cubic
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2-factor Hamiltonian graphs, since these graphs are PMH-graphs (see
Proposition 9.0.3). For, suppose not, and let M be such a 2-factor,
with M = E(G)− E(M). Since G is PMH, there must exist a perfect
matching N in M such that M ∪ N is a Hamiltonian circuit. However,
this is impossible since M contains odd circuits.

If a cubic graph is bipartite, then trivially, each of its perfect match-
ings can be extended to a 3-edge-colouring, since every 2-factor is
clearly made up of even circuits. But what about non-bipartite cubic
graphs? In Table 9.1, we show that the number of non-bipartite cubic
graphs G (having girth at least 4) such that each one of their perfect
matchings can be extended to a 3-edge-colouring, is not insignificant,
and the data suggests that this number increases considerably with
the order of G. The numbers shown in this table were obtained thanks
to a computer check done by Jan Goedgebeur, and the data is sorted
according to the cyclic connectivity of the graphs considered.

Cyclic connectivity

3 4 5 6 TOTAL

N
um

be
r

of
ve

rt
ic

es

8 / 1 / / 1

N
um

ber
of

graphs

10 / / / / 0
12 2 5 2 / 9
14 2 2 2 / 6
16 35 56 4 / 95
18 84 21 9 / 114
20 926 655 15 2 1598
22 2978 331 17 6 3332

Table 9.1: The number of non-bipartite cubic 3-connected graphs with girth
at least 4 having the property that every 2-factor consists of only
even circuits

b b

b b

b b

bb

Figure 9.5: The smallest non-bipartite cubic graph such that every one of its
perfect matchings can be extended to a 3-edge-colouring

As we have seen, a complete characterisation of which cubic graphs
are PMH is still intangible, so considering the Class I cubic graphs
having the property that each one of their perfect matchings can
be extended to a 3-edge-colouring may look presumptuous. As far
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as we know this property and the corresponding characterisation
problem were never considered before, and in this sense we suggest
the following.

Problem 9.1.2. Characterise the Class I cubic graphs for which each
one of their perfect matchings can be extended to a 3-edge-colouring.

Despite being a very natural problem to tackle, so far, very little
is known. Such a characterisation may look daunting, and the above
table suggests that such a problem does not seem trivial, however, we
still very much believe that the mentioned property is worth pursuing.
Finally, we remark that although the PMH-property is an appealing
property in its own right, Problem 9.1.2 continues to justify its study
in relation to cubic graphs.
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Here we give the computer programs used in Chapter 8 to define
accordion graphs (Listing A.1), and to check whether an accordion
graph has the PMH-property (Listing A.2) or the PH-property (Listing
A.3). We remark that in order for the latter two programs to work, one
first needs to define what accordions are, that is, Listing A.1 needs to
be evaluated before. In Listings A.2 and A.3 one just needs to enter
the values of n and k, corresponding to the accordion that is to be
checked. These computer checks were conducted through Wolfram
Mathematica [103].

Listing A.1: Defining accordion graphs in Mathematica

A[n_, k_] := Graph[Tuples[{Range[2], Range[0, n - 1]}],

For[j = 0, j < n, j++,

OuterCircuit[j + 1] = {1, j}

\[UndirectedEdge] {1, Mod[j + 1, n]}];

For[j = 0, j < n, j++,

InnerCircuit[j + 1] = {2, j}

\[UndirectedEdge] {2, Mod[j + 1, n]}];

For[j = 0, j < n, j++,

Spoke1[j + 1] = {1, j}

\[UndirectedEdge] {2, Mod[j, n]}];

For[j = 0, j < n, j++,

Spoke2[j + 1] = {1, j}

\[UndirectedEdge] {2, Mod[j + k, n ]}];

Join[Array[OuterCircuit, n], Array[InnerCircuit, n],

Array[Spoke1, n], Array[Spoke2, n]], VertexLabels -> "Name"];

Listing A.2: Checking the PMH-property for a particular accordion

n =(***INPUT n HERE***);

k =(***INPUT k HERE***);

Print["n=", n];

Print["k=", k];

g = A[n, k];

lg = LineGraph[g];

pmall = EdgeList[g][[#]] & /@

FindIndependentVertexSet[lg,
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Length /@ FindIndependentVertexSet[lg], All];

Print["Number of perfect matchings of A[", n,",", k,"] is ",
Length[pmall]];

GoodPM = {};

BadPM = 0;

For[i = 1, i <= Length[pmall], i++,

If[Divisible[i, 500], Print[i," perfect matchings checked!"]];
If[SubsetQ[GoodPM, {i}] == False,

For[j = 1, j <= Length[pmall], j++,

If[IntersectingQ[Map[Sort, Extract[pmall, i]],

Map[Sort, Extract[pmall, j]]] == False &&

SubsetQ[GoodPM, {i}] == False,

If[Length@

ConnectedComponents@

Graph[Join[Extract[pmall, i], Extract[pmall, j]]] == 1,

AppendTo[GoodPM, i] && AppendTo[GoodPM, j]; Break[],

If[j == Length[pmall] && SubsetQ[GoodPM, {i}] == False,

BadPM = i; i = Length[pmall] + 1 ]],

If[j == Length[pmall] &&

IntersectingQ[Map[Sort, Extract[pmall, i]],

Map[Sort, Extract[pmall, j]]] == True, BadPM = i;

i = Length[pmall] + 1]]]]];

finalGoodPM = DeleteDuplicates[GoodPM];

If[Length[finalGoodPM] == Length[pmall],

Print["The accordion A[", n,",", k,"] is PMH!"],
Print["!!!The accordion A[", n,",", k,"] is NOT PMH!!! The first bad

perfect matching is ", BadPM,"."]]

Listing A.3: Checking the PH-property for a particular accordion

n =(***INPUT n HERE***);

k =(***INPUT k HERE***);

Print["n=", n];

Print["k=", k];

g = A[n, k];

lg = LineGraph[g];

pmall = EdgeList[g][[#]] & /@

FindIndependentVertexSet[lg,

Length /@ FindIndependentVertexSet[lg], All];

Print["Number of perfect matchings of A[", n, ",", k,"] is ",
Length[pmall]];

kn = K[n];

lkn = LineGraph[kn];

pmknall =

EdgeList[kn][[#]] & /@

FindIndependentVertexSet[lkn,

Length /@ FindIndependentVertexSet[lkn], All];

Print["Number of pairings of A[", n,",", k,"] is ", Length[pmknall]];

GoodPM = {};
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BadPM = 0;

For[i = 1, i <= Length[pmknall], i++,

If[Divisible[i, 500], Print[i," pairings checked!"]];
If[SubsetQ[GoodPM, {i}] == False,

For[j = 1, j <= Length[pmall], j++,

If[IntersectingQ[Map[Sort, Extract[pmknall, i]],

Map[Sort, Extract[pmall, j]]] == False &&

SubsetQ[GoodPM, {i}] == False,

If[Length@

ConnectedComponents@

Graph[Join[Extract[pmknall, i], Extract[pmall, j]]] == 1,

AppendTo[GoodPM, i] && AppendTo[GoodPM, j]; Break[],

If[j == Length[pmall] && SubsetQ[GoodPM, {i}] == False,

BadPM = i; i = Length[pmknall] + 1 ]],

If[j == Length[pmall] &&

IntersectingQ[Map[Sort, Extract[pmknall, i]],

Map[Sort, Extract[pmall, j]]] == True, BadPM = i;

i = Length[pmknall] + 1]]]]];

finalGoodPM = DeleteDuplicates[GoodPM];

If[Length[finalGoodPM] == Length[pmknall],

Print["The accordion A[", n,",", k,"] is PMH!"],
Print["!!!The accordion A[", n,",", k,"] is NOT PMH!!! The first bad

perfect matching is ", BadPM,"."]]
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snark, 14

flower – (see flower snark),
50

non-trivial –, 14
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snark), 49
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edge-induced –, 12

induced –, 12

t

tour, 15

dominating, 69

Euler, 15

treelike snark, 49, 56, 57
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uncolourable, 4

edge-uncolourability, 4

w

walk, 11

windmill, 49

y
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extension, 12

reduction, 12
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If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,
And yet don’t look too good, nor talk too wise:

If you can dream—and not make dreams your master;
If you can think—and not make thoughts your aim;
If you can meet with Triumph and Disaster
And treat those two impostors just the same;
If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,
Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn-out tools:

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss;
If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you
Except the Will which says to them: “Hold on!”

If you can talk with crowds and keep your virtue,
Or walk with Kings—nor lose the common touch,
If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And—which is more—you’ll be a Man, my son!

—rudyard kipling
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E C L I P S E

All that you touch
And all that you see

All that you taste
All you feel

And all that you love
And all that you hate

All you distrust
All you save

And all that you give
And all that you deal
And all that you buy
Beg, borrow or steal
And all you create

And all you destroy
And all that you do
And all that you say
And all that you eat

And everyone you meet
And all that you slight
And everyone you fight

And all that is now
And all that is gone

And all that’s to come
And everything under the sun is in tune

But the sun is eclipsed by the moon

—pink floyd, from The Dark Side of the Moon


	Dedication
	Abstract
	Publications
	Acknowledgements
	A note for aspiring PhD student
	Contents
	List of Figures
	List of Tables
	Listings
	Preface
	1 Motivation and background
	1.1 Introductory remarks
	1.2 Cubic graphs
	1.3 Hamiltonicity
	1.4 Definitions and Notation
	1.4.1 General definitions and notation
	1.4.2 Definitions and notation used for Part i
	1.4.3 Definitions and notation used for Part ii


	 Perfect matchings in snarks
	2 The Perfect Matching Polytope
	2.1 Fractional Perfect Matchings

	3 An equivalent formulation of the Fan–Raspaud Conjecture
	3.1 Introduction
	3.2 Statements equivalent to the Fan–Raspaud Conjecture
	3.3 Statements equivalent to the S4-Conjecture
	3.4 Further Results on the S4-Conjecture
	3.5 Extension of the S4-Conjecture to larger classes of cubic graphs
	3.5.1 Multigraphs
	3.5.2 Graphs having bridges

	3.6 Final remarks and open problems

	4 Some snarks are worse than others
	4.1 Introduction
	4.2 The parameter l(G)
	4.2.1 Graphs with l(G) infinite
	4.2.2 Construction of cubic graphs with l(G) finite but arbitrarily large

	4.3 The parameter lM(G)
	4.3.1 Examples of cubic graphs G such that lM(G)=1 for every M

	4.4 A relation between lM(G) and scc(G)
	4.4.1 Treelike Snarks

	4.5 Final remarks and open problems


	 Perfect matchings and Hamiltonicity
	5 Extending perfect matchings to Hamiltonian circuits in L(G)
	5.1 Introduction
	5.2 Line graphs of graphs with small maximum degree
	5.3 Other classes of graphs whose line graphs are PMH
	5.3.1 Complete graphs
	5.3.2 Arbitrarily traceable graphs

	5.4 Final remarks

	6 Saved by the rook
	6.1 Introduction
	6.2 Main result
	6.3 Complete bipartite graphs

	7 On a problem by Alahmadi et al.
	7.1 Introduction
	7.2 Main Result

	8 On a family of quartic graphs: accordions
	8.1 Introduction
	8.2 Accordion graphs
	8.3 The accordion graph A[n,k] when k2
	8.3.1 A[n,1]
	8.3.2 A[n,2]

	8.4 The accordion graph A[n,k] when gcd(n,k)5
	8.5 Accordions and circulant graphs
	8.6 Concluding remarks and open problems

	9 Cubic PMH-graphs
	9.0.1 Obtaining cubic PMH-graphs with girth at least 4
	9.1 Final remarks


	 Appendix
	A Appendix
	Bibliography
	Index


