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Abstract We deal with a class of 2-D stationary nonlinear Schrödinger equations (NLS)
involving potentials V and weights Q decaying to zero at infinity as (1+|x |α)−1, α ∈ (0, 2),
and (1 + |x |β)−1, β ∈ (2,+∞), respectively, and nonlinearities with exponential growth
of the form exp γ0s2 for some γ0 > 0. Working in weighted Sobolev spaces, we prove the
existence of a bound state solution, i.e. a solution belonging to H1(R2). Our approach is based
on a weighted Trudinger–Moser-type inequality and the classical mountain pass theorem.
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1 Introduction

This paper concerns the existence of solutions of stationary nonlinear Schrödinger equations
of the form

− �u + V (x)u = Q(x) f (u) in R
2 (NLS)

in the case when the potential V and the weight Q decay to zero at infinity as (1 + |x |α)−1

with α ∈ (0, 2) and (1 + |x |β)−1 with β ∈ (2,+∞), respectively, and the nonlinear term
f = f (s) has exponential growth.
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Equation (NLS) is a particular case of the followingmore general class of two-dimensional
problems

− �u + V (x)u = g(x, u) in R
2, (1.1)

where V = V (x) is positive and g = g(x, s) has exponential growth at infinity with respect
to the variable s, i.e.

lim|s|→+∞
|g(x, s)|
eγ s2

=
{
0 if γ > γ0,

+∞ if γ < γ0,

for some γ0 ≥ 0.
We mention that, for bounded domains � ⊂ R

2 and nonlinear terms g = g(x, s) with
exponential growth at infinity, a lot of work has been devoted to the study of corresponding
elliptic equations of the form {−�u = g(x, u) in �,

u = 0 on ∂�.

We limit ourselves to refer the reader to the following papers [2,3,17,19–22,38].

1.1 Potentials bounded away from zero

In the last decades, considerable attention has been paid to the study of equations of the
form (1.1), under various assumptions on the potential V . However, to our knowledge, it is
everywhere assumed (with the only exception of [5,27]) that V is bounded away from zero
by a positive constant, that is

(V0) there exists V0 > 0 such that V (x) ≥ V0 for any x ∈ R
2

Assuming, in addition to (V0),

1

V
∈ L1(R2) (1.2)

or

lim|x |→+∞ V (x) = +∞ (1.3)

results concerning the existence of solutions for problem (1.1) can be found in [4,6,24,25,
30,40,41]. While, in the case when the potential V is constant

V (x) = V0 x ∈ R
2

the results available in the literature are [7,16,26,28,29,37].
It is important to point out that (V0) ensures that the natural space for a variational study

of (1.1) is a complete subspace E of the classical Sobolev space H1(R2), more precisely

E :=
{
u ∈ H1(R2)

∣∣∣ ∫
R
2
V (x)u2 dx < +∞

}
and E = H1(R2) if the potential V is constant. Besides this property of the function space
setting, there is a main difference between the above-mentioned classes of problems distin-
guished by the behavior of the potential at infinity: When the potential V is large at infinity
[i.e. (1.2) or (1.3) holds], one gains compact embeddings of the subspace E of H1(R2) in
L p-spaces, while when V is constant, one has to deal with the loss of compact embeddings
in L p(R2) given by the unboundedness of the domain R

2.

123



Stationary nonlinear Schrödinger equations in R2 with… 365

1.2 Vanishing potentials

The new aspect of the present paper is that we will consider a class of positive potentials
vanishing at infinity, i.e.,

lim|x |→+∞ V (x) = 0.

Starting from the work by Ambrosetti et al. [8], various types of stationary nonlinear
Schrödinger equations involving decaying potentials at infinity have been studied in the
higher-dimensional case N ≥ 3, and we refer the reader to [9–11,13–15,31,32,39] and the
references therein, even if these references are far to be exhaustive.

In particular, the analysis developed in [9,13–15,31,39] covers also the two-dimensional
case but for nonlinearities with polynomial growth at infinity (more precisely, g(x, s) =
Q(x)s p) or asymptotically linear growth. Moreover, with the only exception of [31,39],
these results for the 2-D case concern the study of semiclassical states of (3.1). If we replace
the operator −� by − ε2 � in (1.1), then a semiclassical state uε is a solution with ε << 1
and the authors of [9,13–15] constructed semiclassical states concentrating on some set S
(i.e. tending uniformly to zero as ε ↓ 0, outside of a neighborhood of S) by means of the
Lyapunov–Schmidt reduction method or penalization schemes.

As already mentioned, the only results available in the literature for 2-D stationary nonlin-
ear Schrödinger equations with vanishing potentials and exponential growth nonlinearities
are [5,27], see Remark 2.2.

2 Main result

Inspired by Ambrosetti et al. [8], we will study the existence of solutions of (NLS) under the
following growth conditions on the potential V and the weight Q:

(V ) V ∈ C(R2), there exist α, a, A > 0 such that

a

1 + |x |α ≤ V (x) ≤ A

and V (x) ∼ |x |−α as |x | → +∞;
(Q) Q ∈ C(R2), there exist β, b > 0 such that

0 < Q(x) ≤ b

1 + |x |β
and Q(x) ∼ |x |−β as |x | → +∞.

In particular, we restrict our attention to the case when α and β satisfy

α ∈ (0, 2) and β ∈ (2,+∞). (2.1)

This choice will be motivated in Sect. 3, more precisely see Theorem 3.1 and Remark 3.4,
and it is strictly related with the variational structure of (NLS). In fact, we aim to develop a
variational approach to study the existence of solutions of (NLS) via the classical mountain
pass theorem. To this aim, we will frame the variational study of (NLS) in the weighted
space

H1
V (R2) :=

{
u ∈ L1

loc(R
2)

∣∣∣ |∇u| ∈ L2(R2) and
∫
R
2
V (x)u2 dx < +∞

}
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that will be discussed in some details in Sect. 3. When (V ) and (Q) hold with α ∈ (0, 2) and
β ∈ [2,+∞), it turns out that functions belonging to H1

V (R2) satisfy the following weighted
exponential integrability condition with weight Q∫

R
2
Q(x)(eγ u2 − 1) dx < +∞ for any u ∈ H1

V (R2), γ > 0,

and, in Sect. 4, we will obtain the corresponding uniform inequality of Trudinger–Moser
type. This motivates the choice of nonlinear terms f = f (s) with exponential growth at
infinity of the form eγ0s2 for some γ0 > 0, i.e. there exists γ0 > 0 such that

lim|s|→+∞
| f (s)|
eγ s2

=
{
0 if γ > γ0,

+∞ if γ < γ0.
( f0)

We point out that, due to the presence of a potential V and a weight Q satisfying (V ) and
(Q), this is the maximal growth which can be treated variationally in the space H1

V (R2) (see
Theorem 4.1).

We also assume that f : R → R is a continuous function satisfying f (0) = 0 and

• there exists μ > 2 such that

0 < μF(s) := μ

∫ s

0
f (t) dt ≤ s f (s) for any s ∈ R \{0}, ( f1)

• there exist s0, M0 > 0 such that

0 < F(s) ≤ M0| f (s)| for any |s| ≥ s0. ( f2)

To guarantee that the mountain pass level is inside the region of compactness of Palais–Smale
sequences, we assume an additional growth condition on the nonlinearity f . In particular, we
will consider two different type of growth conditions. The first one prescribes an asymptotic
behavior at infinity, more precisely

lim inf|s|→+∞
s f (s)

eγ0s2
= β0 > M, ( f3)

where

M = M(V, Q) := inf
r>0

4e
1
2 r2 Vmax,r

γ0r2 Qmin,r
, Vmax,r := max|x |≤r

V (x) > 0 and

Qmin,r := min|x |≤r
Q(x) > 0.

We recall that this condition was introduced in [2] and then refined in [21].

Remark 2.1 It is easy to see that if

V (x) = a

1 + |x |α and Q(x) = b

1 + |x |β
with α ∈ (0, 2) and β ∈ (2,+∞) then M > 0. A typical example of nonlinear term
satisfying ( f0)–( f3) is

fλ(s) := λs(eγ0s2 − 1) s ∈ R (2.2)

with λ > 0 and γ0 > 0.
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The second growth condition that we will take into account was introduced in [16] and
prescribes the growth of f near the origin:

there exists p > 2 such that F(s) ≥ λ

p
|s|p for any s ∈ R, ( f ′

3)

where

λ >
( γ0

4π

p − 2

p

) p−2
2

S p/2
p,V,Q

and

Sp,V,Q := inf
u∈H1

V (R2)\{0}

∫
R
2 [ |∇u|2 + V (x)u2 ] dx(∫
R
2 Q(x)|u|p dx

)2/p .

Note that Sp,V,Q > 0 for any p ≥ 2, see Theorem 3.1. An example of nonlinear term
satisfying ( f0)–( f2) and ( f ′

3) is given by the function fλ defined by (2.2) provided λ > 0 is
sufficiently large. As pointed out in [41, Proposition 2.9], there exist continuous functions
such that ( f0)–( f2) and ( f ′

3) are satisfied but ( f3) is not satisfied.
Our main result is the following

Theorem 2.1 Assume (V ) and (Q) hold with α and β in the range (2.1). Let f : R → R be
a continuous function satisfying f (0) = 0, ( f0), ( f1) and ( f2). If in addition either ( f3) or
( f ′

3) holds then equation (NLS) admits a nontrivial mountain pass solution u0 ∈ H1
V (R2).

Remark 2.2 We recall that Fei and Yin [27] studied concentration properties of semiclassical
states of (NLS) in the case when f (u) := |u|p−2ueγ0u2 with p > 2 and γ0 > 0, i.e.

− ε2 �u + V (x)u = Q(x)|u|p−2ueγ0u2 in R
2, (2.3)

under more general assumptions on V and Q. More precisely, it is just required that

• V (x) ≥ a

1 + |x |2 and Q(x) ≤ b(1 + |x |β) with a, b and β > 0

• or V (x) ≥ a

1 + |x |α and Q(x) ≤ beβ|x |(2−α)/2
with a, b, β > 0 and α ∈ (0, 2)

provided there exists a smooth bounded domain � ⊂ R
2 such that

max
x∈�

V (x)

Q(x)
<

4π

γ0

p
2 −1

S
− p

2
p , where Sp := inf

u∈H1(R2)\{0}

∫
R
2 [ |∇u|2 + u2 ] dx(∫

R
2 |u|p dx

)2/p ,

and the ground energy functional associated to the limit problem has local minimum points.
In this framework, the authors of [27] constructed semiclassical statesuε of (2.3) belonging

to H1(R2) and concentrating around some point x0 ∈ � by means of a penalization method.
However, it should be pointed out that the existence result in [27] only works for ε < 1
sufficiently small. In the present work, we consider the case ε = 1 and, in fact, we can deal
with any fixed ε > 0.

More recently, Albuquerque et al. [5] considered the existence of radial solutions of (NLS)
when the nonlinear term f has exponential growth at infinity (i.e. f satifies ( f0)) and, V and
Q are unbounded or decaying radial potentials. Besides the restriction to the radial case,
the growth conditions on V and Q in [5] are less restrictive than (V ) and (Q) with α and
β in the range (2.1), but a rigorous interpretation of the function space setting considered in
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[5] is needed (see for instance Remark 3.1). With the help of a weighted Trudinger–Moser
inequality for radial functions, the authors in [5] obtained the existence of a positive radial
solution in H1(R2) with exponential decay outside of a neighborhood of the origin.

Note that here, we do not require V and Q to be radial and, the vanishing behavior of V
seems to prevent a reduction of the problem to the radial case.

Of particular interest are solutions of (NLS) which have finite L2-norm, i.e. bound state
solutions. The mountain pass solution u0 ∈ H1

V (R2) obtained in Theorem 2.1 is a weak
solution of (NLS) in the sense that∫

R
2
( ∇u0 · ∇v + V (x)u0v ) dx −

∫
R
2
Q(x) f (u0)v dx = 0 for any v ∈ H1

V (R2)

(2.4)

and we will show that u0 ∈ L2(R2), hence u0 ∈ H1(R2). In fact, we will prove that any
weak solution in the sense expressed by (2.4) is a bound state solution of (NLS).

Proposition 2.2 Assume (V ) and (Q) hold with α and β in the range (2.1). Let f : R → R

be a continuous function satisfying f (0) = 0, ( f0), ( f1) and ( f2). If (NLS) admits a weak
solution u0 ∈ H1

V (R2) (i.e. u0 satisfies (2.4)) then u0 ∈ L2(R2) and hence u0 ∈ H1(R2).

2.1 Open question

Assume V , Q and f satisfy the assumptions of Theorem 2.1. The arguments of the proofs of
Theorem 2.1 and Proposition 2.2 can be easily adapted to obtain, for any ε > 0, the existence
of a nontrivial mountain pass solution uε ∈ H1

V (R2) of the problem

− ε2 �uε + V (x)uε = Q(x) f (uε) in R
2,

and uε ∈ H1(R2). To study the concentration behavior of such solutions {uε}ε>0 when
ε ↓ 0, some sharp pointwise decay estimates and appropriate bounds of the energy are
needed, uniformly with respect to ε > 0. This problem is still unsolved.

2.2 Notations

Let w : R → [0,+∞) be a weight function, we denote by L p
w(R2) with p ∈ [1,+∞]

the corresponding weighted L p-space, i.e. L p
w(R2) is the space consisting of all measurable

functions u : R
2 → R with∫

R
2
w(x)|u|p dx < +∞ when p ∈ [1,+∞)

and

inf{ C ≥ 0 | w(x)|u(x)| ≤ C a.e. in R
2 } < +∞ when p = +∞.

We also denote by B(x, R) ⊂ R
2 the closed ball of radius R > 0 centered at x ∈ R

2 and, to
simplify notations, we set

BR := B(0, R) and Bc
R := R

2 \BR .
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3 The functional space setting

In order to develop a variational approach to study the existence of solutions of (NLS), a
key step is to identify a suitable function space setting. Since we are interested in vanishing
potentials at infinity, this basic step turns out to be a priori not obvious. The difficulty is due
to the peculiar features of the two-dimensional case and can be seen comparing our situation
with the higher-dimensional case N ≥ 3. In fact, let us consider a nonlinear Schrödinger
equation of the form

− �u + V (x)u = g(x, u) in R
N , N ≥ 2, (3.1)

where g : R
N × R → R is a suitable nonlinear term and V is continuous, positive and

vanishing at infinity, i.e.

V ∈ C(RN ), V > 0 in R
N and V (x) → 0 as |x | → +∞. (3.2)

Since we deal with a potential V which decays to zero at infinity, the variational theory in
H1(RN ) cannot be used. Moreover, under the above conditions (3.2) on V , the space{

u ∈ H1(RN )

∣∣∣∣
∫
R
N
V (x)u2 dx < +∞

}

endowed with the norm

‖u‖2 := ‖∇u‖22 +
∫
R
N
V (x)u2 dx

is not complete in general. In the higher-dimensional case N ≥ 3, this leads to frame the
variational study of problem (3.1) in the space

H1
V (RN ) := D1,2(RN ) ∩ L2

V (RN ), N ≥ 3,

which is a Banach space with respect to the norm ‖ · ‖.
Remark 3.1 The situation in the two-dimensional case is more delicate, due to the fact that
the completionD1,2(R2) of the space of smooth compactly supported functions with respect
to the Dirichlet norm ‖∇ · ‖2 is not directly comparable with the space L2

V (R2) and it does
not make sense to consider the intersection

D1,2(R2) ∩ L2
V (R2),

unless a rigorous interpretation is specified.

In analogy with the higher-dimensional case, when N = 2, the natural framework for a
variational approach of problem (3.1) is given by the space

H1
V (R2) := {

u ∈ L2
V (R2)

∣∣ |∇u| ∈ L2(R2)
}
.

Actually, H1
V (R2) endowed with the norm

‖u‖2 := ‖∇u‖22 +
∫
R
2
V (x)u2 dx (3.3)

is a Banach space. In fact, as a consequence of (3.2), we have

H1
V (R2) ↪→ H1

loc(R
2)
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and this continuous embedding, together with the definition of Cauchy sequences and Fatou
Lemma, enables to show that (H1

V (R2), ‖ ·‖) is complete. Note also that the norm ‖ ·‖ comes
from the inner product

< u, v >:=
∫
R
2

[∇u · ∇v + V (x)uv
]
dx . (3.4)

Remark 3.2 If V ∈ L1(R2) then any constant function u ≡ c in R
2, with c ∈ R, belongs to

H1
V (R2). However, under the assumption (V ) and since α ∈ (0, 2), our potential V /∈ L1(R2)

and in this case the only constant function that belongs to H1
V (R2) is the trivial one, i.e. u ≡ 0

in R
2.

In conclusion, we frame the variational study of (NLS) in the Hilbert space H1
V (R2) with

inner product < ·, · > and norm ‖ · ‖ given respectively by (3.4) and (3.3).

Remark 3.3 In view of (V ), the potential V is positive and uniformly bounded on R
2, there-

fore we have

H1(R2) ↪→ H1
V (R2).

Moreover, the space C∞
0 (R2) of smooth compactly supported functions is dense in (H1

V (R2),

‖ · ‖). This can be proved by standard arguments and using, for instance, the property

lim|x |→+∞ |x |2V (x) > 0

which follows directly from (V ) and the range of α given by (2.1).

Similarly to the higher-dimensional case N ≥ 3, the vanishing behavior of the potential
V (i.e. V (x) → 0 as |x | → +∞) implies that

H1
V (R2) �↪→L p(R2) for any p ∈ [1,+∞]. (3.5)

As a consequence, this rules out exponential integrability and hence any kind of Trudinger–
Moser-type inequality on H1

V (R2), unless one introduces some suitable weight in the target
space. This remark justifies the choice a nonlinear term of the form

g(x, u) := Q(x) f (u)

in equation (NLS). In fact, for a variational study of (NLS) in the function space H1
V (R2),

some suitable integrability condition on the nonlinearity is needed: the validity of (3.5) leads
to introduce a weight Q(x) and look for appropriate assumptions on Q(x) in such a way that

H1
V (R2) �↪→L p

Q(R2) (3.6)

at least for some p ≥ 1. In particular, the vanishing behavior of Q given by assumption (Q)

guarantees that the embeddings

L p
Q(R2) ↪→ L p(R2) for any p ∈ [1,+∞) (3.7)

do not hold. Note that, in view of (3.5), the validity of (3.7) would be against the embedding
(3.6).

The embedding (3.6) is a particular case of embeddings of weighted spaces discussed in
[34], where the following result is proved.
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Theorem 3.1 ([34], Example 20.6) Suppose that (V ) and (Q) hold with α ∈ (0, 2] and
β ∈ [2,+∞). Then

H1
V (R2) ↪→ L p

Q(R2) for any p ∈ [2,+∞) (3.8)

and there exists Cp > 0 such that∫
R
2
Q(x)|u|p dx ≤ Cp‖u‖p for any u ∈ H1

V (R2).

Moreover, if β �= 2 then the above embeddings are compact.

Note that if V (x) ∼ (1 + |x |α)−1 with α ∈ (0, 2] and Q(x) ∼ (1 + |x |β)−1 then the
growth restriction β ∈ [2,+∞) on the weight Q is a necessary condition for the embedding
(3.8), as proved in [34].

Remark 3.4 If (V ) and (Q) hold with α ∈ (0, 2] and β = 2 then the embeddings (3.8)
are continuous but not compact. For this reason, we can say that the case β = 2 should
correspond to the critical case. Since we confine our attention to the study of problem (NLS)
when (V ) and (Q) hold with α and β satisfying (2.1), in particular β �= 2 and in this respect
problem (NLS) can be seen as subcritical. Note also that assuming (2.1), we also require that
α �= 2: this is just a technical restriction due to the method of proof that we use to obtain the
corresponding weighted Trudinger–Moser inequality (see Sect. 4).

In view of Theorem 3.1 and Remark 3.4, in what follows, we will assume that (V ) and
(Q) hold with α and β satisfying (2.1). In this framework, since

H1
0 (B1) ↪→ H1(R2) ↪→ H1

V (R2), (3.9)

we infer that

H1
V (R2) �↪→L∞

Q (R2).

In fact, it is well known that there exists u ∈ H1
0 (B1) such that u /∈ L∞(B1). Therefore,

u ∈ H1
V (R2) but u /∈ L∞

Q (R2) and, it is natural to look for a weighted Trudinger–Moser

inequality on H1
V (R2). Due to the embedding (3.9) and the uniform boundedness of the

weight Q, it turns out to be reasonable to consider an exponential growth function φ of the
form

φ(t) := eγ t2 − 1, γ > 0.

4 A subcritical Trudinger–Moser-type inequality in weighted spaces

In this Section we will prove the following weighted Trudinger–Moser inequality on the
space (H1

V (R2), ‖ · ‖)
Theorem 4.1 Suppose that (V ) and (Q) hold with α ∈ (0, 2) and β ∈ [2,+∞). For any
γ > 0 and any u ∈ H1

V (R2), we have∫
R
2
Q(x)

(
eγ u2 − 1

)
dx < +∞. (4.1)
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372 J. M. do Ó et al.

Moreover, if we consider the supremum

Sγ = Sγ (V, Q) := sup
u∈H1

V (R2), ‖u‖≤1

∫
R
2
Q(x)

(
eγ u2 − 1

)
dx, γ > 0,

then, for any γ ∈ (0, 4π), there exists a constant C = C(γ, V, Q) > 0 such that

Sγ ≤ C (4.2)

and

Sγ = +∞ for any γ > 4π. (4.3)

Note that the inequality that we obtain is subcritical, in the sense that the range of the
exponent is the open interval (0, 4π). This is essentially due to the technical difficulties
arising from the decay of the potential V at infinity. In fact, the vanishing behavior of V
seems to prevent a reduction of the problem to radial case. For instance, it is not possible
to apply classical symmetrization methods and this forces to look for a rearrangement-free
argument.

Even if our proof does not cover the critical case γ = 4π , the subcritical inequality
expressed by Theorem 4.1 will enable us to obtain the existence of a nontrivial solution for
the nonlinear Schrödinger equation (NLS).

To prove (4.2), we will combine the ideas of Kufner and Opic [34] with the argument by
Yang and Zhu [42]. More precisely, we will obtain the desired uniform estimate by means
of a suitable covering lemma and the classical Trudinger–Moser inequality on balls, i.e.

Theorem 4.2 ([33]) Let � ⊂ R
2 be a bounded domain. There exists a constant C > 0 such

that

sup
u∈H1

0 (�), ‖∇u‖2≤1

∫
�

eαu2 dx

{
≤ C |�| if 0 < α ≤ 4π,

= +∞ if α > 4π.
(4.4)

In particular, inspired by Yang et al. [42], we will mainly make use of the following local
estimate that can be derived directly from (4.4) with the aid of the scaling ũ := u/‖∇u‖2
Lemma 4.3 ([42], Lemma 2.1) There exists a constant C > 0 such that for any y ∈ R

2,
R > 0 and any u ∈ H1

0 (B(y, R)) with ‖∇u‖2 ≤ 1, we have∫
B(y,R)

(e4πu
2 − 1) dx ≤ CR2

∫
B(y,R)

|∇u|2 dx . (4.5)

In view of the fact that V and Q are bounded away from zero by positive constants on
compact subsets of R

2, the sharpness (4.3) is a direct consequence of the sharpness of the
following Trudinger–Moser inequality due to Ruf [36] (see also [4] and [18, Remark 6.1]; in
addition, we refer to [1] for a scale invariant form of the result in [36]).

Theorem 4.4 ([36]) Let � ⊆ R
2 be a domain (possibly unbounded) and let τ > 0. For any

γ ∈ [0, 4π] there exists a constant Cτ > 0 such that

Rγ (τ,�) := sup
u∈H1

0 (�), ‖∇u‖22+τ‖u‖22≤1

∫
�

(eγ u2 − 1) dx ≤ Cτ

and the above inequality is sharp, i.e.

Rγ (τ,�) = +∞ for any γ > 4π.
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First, we set

Ṽ := max
x∈B1

V (x) and Q̃ := min
x∈B1

Q(x).

Since V and Q are continuous and positive, we have that Ṽ , Q̃ > 0. Therefore recalling
(3.9), we may estimate

Sγ ≥ sup
u∈H1

0 (B1), ‖u‖≤1

∫
R
2
Q(x)

(
eγ u2 − 1

)
dx ≥ Q̃ sup

u∈H1
0 (B1), ‖u‖≤1

∫
B1

(eγ u2 − 1) dx .

Inasmuch as

‖u‖2 = ‖∇u‖22 +
∫
B1

V (x)u2 dx ≤ ‖∇u‖22 + Ṽ ‖u‖22 for any u ∈ H1
0 (B1),

we get

Sγ ≥ Q̃ sup
u∈H1

0 (B1), ‖∇u‖22+Ṽ ‖u‖22≤1

∫
B1

(eγ u2 − 1) dx = Rγ (Ṽ , B1).

Hence, for γ > 4π , we have

Sγ ≥ Rγ (Ṽ , B1) = +∞.

Next, we will derive (4.1) from (4.2) whose proof will be carried out in essentially two
steps. In what follows, γ ∈ (0, 4π) is fixed and we set

γ = 4π(1 − ε)

for a suitable ε ∈ (0, 1).

4.1 Uniform estimate on a large ball

Let u ∈ H1
V (R2) be such that ‖u‖ ≤ 1 and let us estimate∫

BR

Q(x)
(
eγ u2 − 1

)
dx

for some R > 0 to be chosen during the proof independently of u. First, note that using (Q)

we have∫
BR

Q(x)
(
eγ u2 − 1

)
dx ≤ b

∫
BR

(eγ u2 − 1) dx = b
∫
BR

(e4π(1−ε)u2 − 1) dx .

Next, we follow the argument in [42] and we introduce a cutoff function ϕ ∈ C∞
0 (B2R) such

that

0 ≤ ϕ ≤ 1 in B2R, ϕ ≡ 1 in BR and |∇ϕ| ≤ C

R
in B2R

for some universal constant C > 0. Then ϕu ∈ H1
0 (B2R) and by Young’s inequality∫

B2R
|∇(ϕu)|2 dx ≤ (1 + ε)

∫
B2R

ϕ2|∇u|2 dx +
(
1 + 1

ε

) ∫
B2R

|∇ϕ|2u2 dx

≤ (1 + ε)

∫
B2R

|∇u|2 dx +
(
1 + 1

ε

) C2

R2

∫
B2R

u2 dx .

123



374 J. M. do Ó et al.

In view of (V )

V (x) ≥ a

1 + |x |α ≥ a

1 + (2R)α
,

and hence∫
B2R

|∇(ϕu)|2 dx ≤ (1 + ε)

∫
B2R

|∇u|2 dx +
(
1 + 1

ε

) C2

a

1 + (2R)α

R2

∫
B2R

V (x)u2 dx .

Since by assumption α ∈ (0, 2), we can choose R > 0 sufficiently large so that

(
1 + 1

ε

) C2

a

1 + (2R)α

R2 ≤ 1 + ε for any R ≥ R.

We remark that the choice of R is independent of u, R = R(ε, a, α), and by construction∫
B2R

|∇(ϕu)|2 dx ≤ (1 + ε)‖u‖2 ≤ 1 + ε.

Therefore, if we define

v := √
1 − ε ϕu ∈ H1

0 (B2R)

we have that ‖∇v‖22 ≤ 1−ε2 ≤ 1, and by applying the classical Trudinger–Moser inequality
(4.4), we can conclude∫

BR

(
e4π(1−ε)u2 − 1

)
dx =

∫
BR

(e4π(1−ε)(ϕu)2 − 1) dx ≤
∫
B2R

e4πv2 dx ≤ CR2.

What we proved so far shows the existence of R = R(ε, a, α) > 0 such that for any
R ≥ R we have∫

BR

Q(x)
(
eγ u2 − 1

)
dx ≤ CR2 for any u ∈ H1

V (R2) with ‖u‖ ≤ 1 . (4.6)

4.2 Uniform estimate in the exterior of a large ball

Let ñ >> 1 to be chosen later during the proof. For any fixed n ≥ ñ, we consider the exterior
Bc
n of the ball Bn and we introduce the covering of Bc

n consisting of all annuli A
σ
n with σ > n

defined by

Aσ
n := {

x ∈ Bc
n

∣∣ |x | < σ
} = {

x ∈ R
2

∣∣ n < |x | < σ
}
.

For any σ > ñ, in view of the Besicovitch covering lemma (see for instance [23]), there exist
a sequence of points {xk}k ∈ Aσ

ñ and a universal constant θ > 0 such that

• Aσ
ñ ⊆ ⋃

k U 1/2
k , where U 1/2

k := B
(
xk,

1
2

|xk |
3

)
;

• ∑
k χUk (x) ≤ θ for any x ∈ R

2, where χUk is the characteristic function of Uk :=
B

(
xk,

|xk |
3

)
.

Actually, the classical version of the Besicovitch covering lemma states that∑
k

χ
U1/2
k

(y) ≤ η for any y ∈ R
2 (4.7)
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for some universal constant η > 0, andU 1/2
k ⊂ Uk . However, it is possible to show that (4.7)

implies ∑
k

χUk (y) ≤ θ for any y ∈ R
2 (4.8)

where θ = θ(η) > 0. To prove that (4.8) holds, we recall the statement of Besicovitch
covering lemma.

Let E be a subset of R
N . A collection F of nontrivial closed balls in R

N is a Besicovitch
covering for E if each x ∈ E is the center of a nontrivial ball belonging to F .

Lemma 4.5 ([12]) Let E be a bounded subset ofRN and letF be a Besicovitch covering for
E. There exist a countable collection {xk}k of points in E and a corresponding collection of
balls {Bk}k in F , where Bk := B(xk, ρk), with E ⊂ ⋃

k Bk. Moreover, there exists a positive
integer cN (depending only on the dimension N and independent of E and the covering F)
such that the balls {Bk}k can be organized into at most cN subcollections B j := {Bjk }k ,
j = 1, 2, . . . , cN in such a way that the balls {Bjk }k of each subcollection B j are disjoint.

Proof of (4.8) We recall that, by Lemma 4.5, Aσ
ñ ⊆ ⋃

k U 1/2
k and there exists a positive

integer η such that the balls {U 1/2
k }k can be organized into at most η subcollections B j :=

{U 1/2
jk

}k , j = 1, 2, . . . , η where the balls {U 1/2
jk

}k of each subcollection B j are disjoint. Then∑
k

χ
U1/2
k

(y) ≤ η for any y ∈ R
2 .

Next, we show that ∑
k

χUk (y) ≤ 196η for any y ∈ R
2 .

Assume that y ∈ Ujk for some j ∈ { 1, 2, . . . , η } and k ≥ 1. Then 2
3 |x jk | < |y| < 4

3 |x jk |
and it follows that

U 1/2
jk

⊂ B(0,
7

4
|y|).

Note that the ball B(0, 7
4 |y|) contains at most 196 disjoint balls B(x, 1

2
|x |
3 )with 3

4 |y| < |x | <
3
2 |y|. Thus, for any j = 1, 2, . . . , η,∑

k

χUjk
(y) ≤ 196

and

∑
k

χUk (y) =
η∑
j=1

∑
k

χUjk
(y) ≤ 196η.

The proof is completed. ��
Let u ∈ H1

V (R2) be such that ‖u‖ ≤ 1 and let us estimate the weighted exponential
integral of u on Aσ

3n with n ≥ ñ and σ > n. To do this, following [34], we introduce the set
of indices

Kn,σ := {k ∈ N

∣∣U 1/2
k ∩ Bc

3n �= ∅}.
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From the definition of Kn,σ and recalling that

Aσ
3n ⊂ Aσ

ñ ⊆
⋃
k

U 1/2
k ,

we deduce that

Aσ
3n ⊆

⋃
k∈Kn,σ

U 1/2
k

and hence ∫
Aσ
3n

Q(x)
(
eγ u2 − 1

)
dx ≤

∑
k∈Kn,σ

∫
U1/2
k

Q(x)
(
eγ u2 − 1

)
dx .

Next, we estimate the single terms of the series on the right hand side. In this respect, the
choice of the balls U 1/2

k and Uk will play a crucial role to overcome the difficulties arising
from the vanishing behavior of the potential V and the weight Q.

Remark 4.1 We have

2

3
|xk | ≤ |y| ≤ 4

3
|xk | for any y ∈ Uk .

Consequently, in view of the assumptions (V ) and (Q), we get

V (y) ≥ a

1 + |y|α ≥ a

1 + Cα|xk |α for any y ∈ Uk (4.9)

where Cα := (4/3)α , and

Q(y) ≤ b

1 + |y|β ≤ b

1 + Cβ |xk |β for any y ∈ Uk (4.10)

where Cβ := (2/3)β .
Moreover, it is easy to prove that if Uk ∩ Bc

3n �= ∅ then Uk ⊂ Bc
n and this entails⋃

k∈Kn,σ

U 1/2
k ⊆

⋃
k∈Kn,σ

Uk ⊆ Bc
n ⊆ Bc

ñ . (4.11)

Properties (4.9) and (4.10) together with (4.11) will be useful in the proof to obtain some
suitable uniform estimates.

Let us fix k ∈ Kn,σ . In view of (4.10),∫
U1/2
k

Q(x)
(
eγ u2 − 1

)
dx ≤ b

1 + Cβ |xk |β
∫
U1/2
k

(eγ u2 − 1) dx

and ∫
U1/2
k

(eγ u2 − 1) dx =
∫
U1/2
k

(e4π(1−ε)u2 − 1) dx .

Following [42], the idea is to estimate the integral on the right hand side by means of the
local Trudinger–Moser inequality (4.5) on Uk . To this aim, we consider the cutoff function
ϕk ∈ C∞

0 (Uk) satisfying

0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U 1/2
k and |∇ϕ| ≤ C

|xk | in Uk
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for some universal constant C > 0. Then ϕku ∈ H1
0 (Uk) and we may estimate∫

Uk

|∇(ϕku)|2 dx ≤ (1 + ε)

∫
Uk

|∇u|2 dx +
(
1 + 1

ε

) C2

|xk |2
∫
Uk

u2 dx

≤ (1 + ε)

∫
Uk

|∇u|2 dx +
(
1 + 1

ε

) C2

a

1 + Cα|xk |α
|xk |2

∫
Uk

V (x)u2 dx

where we also used (4.9). Recalling that k ∈ Kn,σ , in view of (4.11), we have that xk ∈ Bc
ñ .

Since α ∈ (0, 2), we can choose ñ = ñ(ε, a, α) sufficiently large so that

(
1 + 1

ε

) C2

a

1 + Cα|xk |α
|xk |2 ≤ 1 + ε for any k ∈ Kn,σ , n ≥ ñ.

In this way, we get∫
Uk

|∇(ϕku)|2 dx ≤ (1 + ε)

∫
Uk

(|∇u|2 + V (x)u2) dx ≤ (1 + ε). (4.12)

If we let

vk := √
1 − ε ϕku ∈ H1

0 (Uk)

then ‖∇vk‖22 ≤ 1 − ε2 ≤ 1 and we can apply Lemma 4.3 to vk obtaining∫
U1/2
k

(e4π(1−ε)u2 − 1) dx =
∫
U1/2
k

(e4π(1−ε)(ϕku)2 − 1) dx ≤
∫
Uk

(e4πv2k − 1) dx

≤ C |xk |2
∫
Uk

|∇vk |2 dx .

Finally, from (4.12), we deduce∫
U1/2
k

(e4π(1−ε)u2 − 1) dx ≤ C |xk |2(1 − ε)

∫
Uk

|∇(ϕku)|2 dx

≤ C |xk |2(1 − ε2)

∫
Uk

(|∇u|2 + V (x)u2) dx .

Combining the above estimates, we get∫
Aσ
3n

Q(x)
(
eγ u2 −1

)
dx ≤ bC(1 − ε2)

∑
k∈Kn,σ

|xk |2
1 + Cβ |xk |β

∫
Uk

(|∇u|2 + V (x)u2) dx

≤ bC(1 − ε2)
∑

k∈Kn,σ

|xk |2
1+Cβ |xk |β

∫
Bc
n

(|∇u|2+V (x)u2)χUk (x) dx

where the last inequality follows from (4.11). Using again (4.11), we have

|xk |2
1 + Cβ |xk |β ≤ Bn := sup

x∈Bc
n

|x |2
1 + Cβ |x |β for any k ∈ Kn,σ .

Hence∫
Aσ
3n

Q(x)
(
eγ u2 − 1

)
dx ≤ bC(1 − ε2)Bn

∑
k∈Kn,σ

∫
Bc
n

(|∇u|2 + V (x)u2)χUk (x) dx
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and, in view of the Besicovitch covering lemma,∫
Aσ
3n

Q(x)
(
eγ u2 − 1

)
dx ≤ bC(1 − ε2)θBn

∫
Bc
n

(|∇u|2 + V (x)u2) dx .

Letting σ → +∞, we can conclude the existence of ñ = ñ(ε, a, α) >> 1 such that for any
n ≥ ñ we have∫

Bc
3n

Q(x)
(
eγ u2 − 1

)
dx ≤ bCθBn

∫
Bc
n

(|∇u|2 + V (x)u2) dx . (4.13)

Note that

lim
n→+∞Bn = lim

n→+∞
n2

1 + Cβnβ
=

{
0 if β > 2

1/(1 + C2) if β = 2

therefore, in particular, we have also the following estimate that can be seen as an analogue
of [8, Proposition 11] for the two-dimensional case

Proposition 4.6 Suppose that (V ) and (Q) hold with α and β satisfying (2.1), i.e. α ∈ (0, 2)
and β ∈ (2,+∞), and let 0 < γ < 4π . Then for any η > 0 there exists ñ = ñ(γ, a, α) > 1
such that for any n ≥ ñ∫
Bc
3n

Q(x)
(
eγ u2 −1

)
dx ≤ η

∫
Bc
n

(|∇u|2+V (x)u2) dx for any u ∈ H1
V (R2) with ‖u‖ ≤ 1.

The above Proposition will be useful to prove the existence of a bound state solution of
(NLS), see Sect. 6.

4.3 Proof of Theorem 4.1 completed

To conclude the proof of (4.2), it is sufficient to combine (4.6) with (4.13).
Now, we show that (4.1) holds. This follows from (4.2) and the density of C∞

0 (R2) in
H1
V (R2) (see Remark 3.3). In fact, let γ > 0 and u ∈ H1

V (R2). Then by density, there exists
u0 ∈ C∞

0 (R2) such that

‖u − u0‖ ≤
√

1

γ

and, we may estimate

u2 = (u − u0 + u0)
2 ≤ 2(u − u0)

2 + 2u20.

Let R > 0 be such that supp u0 ⊆ BR . Recalling the elementary inequality

ab − 1 ≤ 1

2
(a2 − 1) + 1

2
(b2 − 1) for any a, b ≥ 0

we get∫
R
2
Q(x)(eγ u2 − 1) dx ≤

∫
R
2
Q(x)(e2γ (u−u0)2e2γ u

2
0 − 1) dx

≤ 1

2

∫
R
2
Q(x)(e4γ (u−u0)2 − 1) dx + 1

2

∫
BR

Q(x)(e4γ u
2
0 − 1) dx

≤ 1

2
S4 + b

2
|BR | e4γ ‖u0‖2∞ < +∞,

which completes the proof of Theorem 4.1.
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5 Existence result

This section is devoted to the proof of Theorem 2.1 which is based on the classical mountain
pass theorem.

First, we introduce the functional setting for a variational approach to problem (NLS).
Since the nonlinear term f satisfies f (0) = 0, ( f0) and ( f1), for fixed γ > γ0, q ≥ 1 and
for any σ > 0 we have

| f (s)| ≤ σ |s| + C(γ, q, σ )|s|q−1(eγ s2 − 1) for any s ∈ R . (5.1)

Hence, the Ambrosetti–Rabinowitz condition ( f1) yields

|F(s)| ≤ σ |s|2 + C(γ, q, σ )|s|q(eγ s2 − 1) for any s ∈ R . (5.2)

Given u ∈ H1
V (R2), we can use (5.2) with γ > γ0, q ≥ 2 and σ > 0 to obtain the following

estimate∫
R
2
Q(x)F(u) dx ≤ σ

∫
R
2
Q(x)u2 dx + C(γ, q, σ )

∫
R
2
Q(x)uq(eγ u2 − 1) dx

≤ σ

∫
R
2
Q(x)u2 dx

+ C(γ, q, σ )
(∫

R
2
Q(x)uqp dx

) 1
p

(∫
R
2
Q(x)(eγ p′u2 − 1) dx

) 1
p′

(5.3)

where we also applied Hölder’s inequality with p > 1 and 1
p + 1

p′ = 1. Since α and β satisfy
(2.1), we have the continuous embeddings (3.8) and also the Trudinger–Moser estimate (4.1)
and this enables us to conclude that∫

R
2
Q(x)F(u) dx < +∞ for any u ∈ H1

V (R2). (5.4)

Therefore, if we introduce the functional

I (u) := 1

2
‖u‖2 −

∫
R
2
Q(x)F(u) dx

from (5.4) it follows that I is well defined on (H1
V (R2), ‖ · ‖). Moreover, I is of class C1

with

I ′[u](v) :=< u, v > −
∫
R
2
Q(x) f (u)v dx for any u, v ∈ H1

V (R2).

In particular, any critical point u0 of I is a weak solution of (NLS).

Lemma 5.1 The functional I has a mountain pass geometry on (H1
V (R2), ‖ · ‖). More pre-

cisely

(i) there exist τ > 0 and � > 0 such that I (u) ≥ τ provided ‖u‖ = �;
(ii) there exists e∗ ∈ H1

V (R2) with ‖e∗‖ > � such that I (e∗) < 0.

Proof Let γ > γ0 q > 2 and p > 1 with 1
p + 1

p′ = 1. It is easy to see that (5.3) implies that
for any σ > 0∫

R
2
Q(x)F(u) dx ≤ C1σ‖u‖2 + C2(γ, q, σ )‖u‖q for any u ∈ H1

V (R2) with ‖u‖ = �
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where � > 0 satisfies

γ p′�2 < 4π.

In fact, due to the choice of α and β in the range (2.1), it suffices to use the continuous
embeddings given by Theorem 3.1 and the Trudinger–Moser inequality (4.2).

Therefore, if u ∈ H1
V (R2) and ‖u‖ = � then

I (u) ≥
( 1

2
− C1σ

)
‖u‖2 − C2(γ, q, σ )‖u‖q =

( 1

2
− C1σ

)
�2 − C2(γ, q, σ )�q

and, choosing σ > 0 sufficiently small,

I (u) ≥ C̃1�
2 − C2(γ, q, σ )�q .

Since q > 2, for � > 0 small enough, there exists τ > 0 such that

I (u) ≥ τ for any u ∈ H1
V (R2) with ‖u‖ = �.

To prove (i i), first note that, from ( f1),

F(s) ≥ A|s|μ − B for any s ∈ R

for some A, B > 0. If u ∈ C∞
0 (R2) with supp u ⊆ BR , for some R > 0, then for any t > 0

I (tu) = 1

2
t2‖u‖2 −

∫
BR

Q(x)F(tu) dx

≤ 1

2
t2‖u‖2 − Atμ

∫
R
2
Q(x)|u|μ dx + B

∫
BR

Q(x) dx

and, since μ > 2, I (tu) → −∞ as t → +∞. ��

In view of the mountain pass geometry of I on (H1
V (R2), ‖ · ‖), we can consider the

mountain pass level

c := inf
γ∈�

sup
t∈[0,1]

I (γ (t)) ≥ τ > 0

where

� := { γ ∈ C([0, 1], H1
V (R2)) | γ (0) = 0 and I ( γ (1) ) < 0 }.

5.1 Estimate of the mountain pass level

As a consequence of ( f3) or ( f ′
3), using standard arguments, we will obtain the following

upper bound for the mountain pass level

c <
2π

γ0
. (5.5)

We start assuming that the nonlinear term f satisfies the growth condition at infinity ( f3),
i.e.

lim inf|s|→+∞
s f (s)

eγ0s2
= β0 > M, ( f3)
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where

M = M(V, Q) := inf
r>0

4e
1
2 r2 Vmax,r

γ0r2 Qmin,r
,

Vmax,r := max|x |≤r
V (x) > 0 and Qmin,r := min|x |≤r

Q(x) > 0.

In this case, for fixed r > 0, we consider Moser’s sequence of functions (see [33])

w̃n(x) := 1√
2π

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
log n if |x | ≤ r

n ,

log r
|x |√

log n
if r

n ≤ |x | ≤ r,

0 if |x | ≥ r.

It is well known that w̃n ∈ H1
0 (Br ) ⊂ H1

V (R2) and one can easily prove (see for instance
[30, Equation (3.5)] or [40, Lemma 3.2]) that

1 ≤ ‖w̃n‖2 ≤ 1 + dn(r)

log n
Vmax,r (5.6)

where

dn(r) := r2

4
+ on(1) and on(1) → 0 as n → +∞.

Let

wn := w̃n

‖w̃n‖ ∈ H1
0 (Br ) ⊂ H1

V (R2)

so that ‖wn‖ = 1 and, in view of (5.6), when |x | ≤ r
n we have

w2
n(x) = 1

2π
log n

( 1

‖w̃n‖2 ± 1
)

≥ 1

2π

(
log n − dn(r) Vmax,r

‖w̃n‖2
)

≥ 1

2π

(
log n − dn(r) Vmax,r

)
. (5.7)

Note that, from ( f3), we deduce the existence of r > 0 such that

β0 >
4e

1
2 r2 Vmax,r

γ0r2 Qmin,r
(5.8)

and, with this choice of r > 0, we will prove the following

Lemma 5.2 There exists n ∈ N such that

max
t≥0

I (twn) <
2π

γ0
.

Proof The arguments of the proof are standard (see for instance [30, Lemma 3.6] or [40,
Lemma 3.3]) but for the convenience of the reader we will sketch the main steps.

We argue by contradiction assuming that for any n ∈ N

max
t≥0

I (twn) ≥ 2π

γ0
.
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Let tn > 0 be such that

I (tnwn) = max
t≥0

I (twn)

then

t2n ≥ 2I (tnwn) ≥ 4π

γ0
(5.9)

and, since

d

dt
I (twn)

∣∣∣∣
t=tn

= 0,

we have also

t2n =
∫
R
2
Q(x) f (tnwn)tnwn dx . (5.10)

Note that, as a consequence of ( f3), for any ε > 0 there exists Rε > 0 such that

s f (s) ≥ (β0 − ε)eγ0s2 for any |s| ≥ Rε. (5.11)

Let xn ∈ Br/n be the minimum point of the weight Q on Br/n , i.e.

Q(xn) = min|x |≤r/n
Q(x),

then

lim
n→+∞ Q(xn) = Q(0) > 0.

Therefore, using (5.10) and recalling (5.7), we get

t2n ≥ (β0 − ε)

∫
Br/n

Q(x)eγ0(tnwn)
2
dx ≥ (β0 − ε)Q(xn)

( r
n

)2
e

γ0
2π t2n [ log n−dn(r)Vmax,r ]

and, from this inequality, we deduce not only that the sequence {tn}n is bounded but, in view
of (5.9),

lim
n→+∞ t2n = 4π

γ0
.

To reach a contradiction, we try to obtain an estimate of β0 from above. From (5.10) and
(5.11), it follows that

t2n ≥
∫
Br

Q(x) f (tnwn)tnwn dx ≥ Qmin,r

∫
Br

f (tnwn)tnwn dx

≥ Qmin,r

[
(β0 − ε)

∫
Br

eγ0(tnwn)
2
dx +

∫
{tnwn<Rε}

f (tnwn)tnwn dx

− (β0 − ε)

∫
{tnwn<Rε}

eγ0(tnwn)
2
dx

]
.

Since wn → 0 a.e. in R
2, we can apply the Lebesgue dominated convergence theorem

obtaining

lim
n→+∞

∫
{tnwn<Rε}

f (tnwn)tnwn dx = 0 and lim
n→+∞

∫
{tnwn<Rε}

eγ0(tnwn)
2
dx = πr2.
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Moreover, (5.9) yields∫
Br

eγ0(tnwn)
2
dx ≥

∫
Br/n

+
∫
Br \Brn

e4πw2
n dx .

On one hand, using (5.7), we get∫
Br/n

e4πw2
n dx ≥ πr2 e−2dn(r) Vmax,r .

On the other hand, using the definition of wn and the change of variable s = re−‖w̃n‖√log n t ,∫
Br \Brn

e4πw2
n dx

= 2π
∫ r

r/n
e
2 log2 r/s

‖w̃n‖2 log n s ds = 2πr2‖w̃n‖
√
log n

∫ √
log n

‖w̃n‖

0
e2( t

2−‖w̃n‖√log n t ) dt

≥ 2πr2‖w̃n‖
√
log n

∫ √
log n

‖w̃n‖

0
e−2‖w̃n‖√log n t dt = πr2

(
1 − e−2 log n).

In conclusion,

4π

γ0
= lim

n→+∞ t2n ≥ (β0 − ε) Qmin,r πr2e− 1
2 r2 Vmax,r

and, from the arbitrary choice of ε > 0, we deduce that

β0 ≤ 4e
1
2 r2 Vmax,r

γ0r2 Qmin,r

which contradicts (5.8). ��
Next we consider the case when the nonlinear term f satisfies the growth condition ( f ′

3),
i.e.

there exists p > 2 such that F(s) ≥ λ

p
|s|p for any s ∈ R, ( f ′

3)

where

λ >
( γ0

4π

p − 2

p

) p−2
2

S p/2
p,V,Q

and

Sp,V,Q := inf
u∈H1

V (R2)\{0}
‖u‖2(∫

R
2 Q(x)|u|p dx

)2/p .

In view of Theorem 3.1, the embedding H1
V (R2) ↪→ L p

Q(R2) is compact and hence, there

exists u ∈ H1
V (R2) such that

‖u‖2 = Sp,V,Q and
∫
R
2
Q(x)|u|p dx = 1.

Therefore, we may estimate

c ≤ max
t≥0

I (tu) = max
t≥0

{
1

2
t2Sp,V,Q −

∫
R
2
Q(x)F(tu) dx

}
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and, using ( f ′
3), we get

c ≤ max
t≥0

{ 1

2
t2Sp,V,Q − 1

p
λt p

}
= p − 2

2p

S p/(p−2)
p,V,Q

λ2/(p−2)
<

2π

γ0
.

5.2 Palais–Smale sequences

Applying the mountain pass theorem without the Palais–Smale compactness condition, we
get the existence of a Palais–Smale sequence {un}n ⊂ H1

V (R2) at the level c (for short
(PS)c-sequence), i.e.

I (un) → c and I ′[un] → 0 , as n → +∞. (5.12)

Lemma 5.3 Any (PS)c-sequence {un}n for I is bounded in (H1
V (R2), ‖ · ‖) and satisfies

sup
n

∫
R
2
Q(x) f (un)un dx < +∞. (5.13)

Proof Since {un}n is a (PS)c-sequence for I , we have
I (un) → c as n → +∞ (5.14)

and ∣∣∣ < un, v > −
∫
R
2
Q(x) f (un)v dx

∣∣∣ ≤ εn‖v‖ for any v ∈ H1
V (R2) (5.15)

where εn ↓ 0 as n → +∞.
From (5.14), we deduce that {I (un)}n ⊂ R is bounded and hence, there exists a constant

C > 0 such that

1

2
‖un‖2 ≤ C +

∫
R
2
Q(x)F(un) dx for any n ≥ 1.

In view of the Ambrosetti–Rabinowitz condition ( f1),∫
R
2
Q(x)F(un) dx ≤ 1

μ

∫
R
2
Q(x) f (un)un dx

and, using (5.15) with v = un ,∫
R
2
Q(x) f (un)un dx ≤ ‖un‖2 + εn‖un‖. (5.16)

Therefore

1

2
‖un‖2 ≤ C + 1

μ
‖un‖2 + εn

μ
‖un‖

and, since μ > 2,

0 ≤
(1
2

− 1

μ

)
‖un‖2 ≤ C + εn

μ
‖un‖

from which we deduce that {un}n must be bounded in (H1
V (R2), ‖ · ‖).

Finally, the boundedness of {un}n in (H1
V (R2), ‖ ·‖) together with (5.16) gives (5.13). ��
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Without loss of generality, we may assume that

un ⇀ u0 in H1
V (R2). (5.17)

Moreover, in view of (5.13), we may apply [21, Lemma 2.1] obtaining

Q(x) f (un) → Q(x) f (u0) in L1
loc(R

2).

Hence,

< u0, ϕ > −
∫
R
2
Q(x) f (u0)ϕ dx = 0 for any ϕ ∈ C∞

0 (R2)

and u0 is a weak solution of (NLS). To prove that u0 �= 0 and complete the proof of Theorem
2.1, we will use the following convergence result

Lemma 5.4 If {un}n is a (PS)c-sequence for I , with un ⇀ u0 in H1
V (R2), then∫

R
2
Q(x)F(un) dx →

∫
R
2
Q(x)F(u0) dx as n → +∞.

Proof This result is essentially a consequence of the compact embedding

H1
V (R2) ↪→↪→ L2

Q(R2) (5.18)

and the generalized Lebesgue dominated convergence theorem (see for instance [35, Chap-
ter 4, Theorem 17]). Recall that (5.18) holds in view of Theorem 3.1 and the assumptions
(V ) and (Q) with α and β satisfying (2.1).

First note that from ( f1) and ( f2), it follows that

0 ≤ lim|s|→+∞
F(s)

s f (s)
≤ lim|s|→+∞

M0

|s| = 0

and for any ε > 0 there exists s = s(ε) > 0 such that

F(s) ≤ εs f (s) for any |s| ≥ s.

Since u0 ∈ H1
V (R2) and recalling the uniform bound (5.13), we have also∫

R
2
Q(x) f (u0)u0 dx ≤ C and

∫
R
2
Q(x) f (un)un dx ≤ C for any n ≥ 1

for some constant C > 0.
Consequently, for fixed ε > 0, we get∫

{ |u0|≥s }
Q(x)F(u0) dx ≤ ε

∫
{ |u0|≥s }

Q(x) f (u0)u0 dx ≤ Cε

and ∫
{ |un |≥s }

Q(x)F(un) dx ≤ ε

∫
{ |un |≥s }

Q(x) f (un)un dx ≤ Cε.

Now, we let

hn(x) := Q(x)χ{ |un |<s }F(un) and h(x) := Q(x)χ{ |u0|<s }F(u0).

Then {hn}n is a sequence of measurable functions and

hn(x) → h(x) for a.e. x ∈ R
2 ,
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as a consequence of the fact that un → u0 a.e. in R
2. Using (5.2) with γ > γ0, q = 2 and

σ > 0, we may estimate for any |s| ≤ s

F(s) ≤ σ s2 + C(γ, σ )s2(eγ s2 − 1) ≤ C(γ, σ, s)s2.

Then, letting

gn(x) := C(γ, σ, s)Q(x)u2n and g(x) := C(γ, σ, s)Q(x)u20 ,

we get

0 ≤ hn(x) ≤ gn(x) x ∈ R
2 .

Note that {gn}n is a sequence of measurable functions, gn(x) → g(x) a.e. in R
2 and, in view

of the compact embedding (5.18),

lim
n→+∞

∫
R
2
gn(x) dx =

∫
R
2
g(x) dx .

Therefore, applying the generalized Lebesgue dominated convergence theorem, we get

lim
n→+∞

∫
R
2
hn(x) dx =

∫
R
2
h(x) dx .

In conclusion, for any fixed ε > 0, we have

Ln :=
∣∣∣ ∫

R
2
Q(x)F(un) dx −

∫
R
2
Q(x)F(u0) dx

∣∣∣ ≤
∫

{ |un |≥s }
Q(x)F(un) dx

+
∫

{ |u0|≥s }
Q(x)F(u0) dx +

∣∣∣ ∫
{ |un |<s }

Q(x)F(un) dx −
∫

{ |u0|<s }
Q(x)F(u0) dx

∣∣∣
≤ 2Cε +

∣∣∣ ∫
R
2
hn(x) dx −

∫
R
2
h(x) dx

∣∣∣
and, passing to the limit as n → +∞,

0 ≤ lim
n→+∞ Ln ≤ 2Cε.

Since ε > 0 is arbitrarily fixed, letting ε ↓ 0, we obtain the desired convergence result. ��
5.3 Nontrivial mountain pass solution

In order to complete the proof of Theorem 2.1, we have simply to show that the weak limit
u0 given by (5.17) is nontrivial, i.e. u0 �= 0. To this aim, we argue by contradiction assuming
that u0 = 0.

Since {un}n is a (PS)c-sequence, (5.12) holds. In particular

lim
n→+∞ ‖un‖2 = lim

n→+∞ 2
( ∫

R
2
Q(x)F(un) dx + c

)
(5.19)

and

lim
n→+∞ ‖un‖2 = lim

n→+∞

∫
R
2
Q(x) f (un)un dx . (5.20)

From the convergence result expressed by Lemma 5.4, we deduce that

lim
n→+∞

∫
R
2
Q(x)F(un) dx = 0.
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This together with (5.19) yields

lim
n→+∞ ‖un‖2 = 2c > 0. (5.21)

In view of (5.5),

c <
2π

γ0

and we deduce the existence of ε > 0 and n ≥ 1 such that

‖un‖2 ≤ 4π

γ0
(1 − ε) for any n ≥ n.

Therefore, we can choose γ > γ0 sufficiently close to γ0 and p > 1 sufficiently close to 1
in such a way that

γ p‖un‖2 < 4π(1 − ε4) for any n ≥ n. (5.22)

With this choice of γ > γ0 and p > 1, we apply (5.1) with q = 2 and Hölder’s inequality
with 1

p + 1
p′ = 1 obtaining

∫
R
2
Q(x) f (un)un dx

≤ C1

∫
R
2
Q(x)u2n dx + C2

∫
R
2
Q(x)u2n(e

γ u2n − 1) dx

≤ C1

∫
R
2
Q(x)u2n dx + C2

(∫
R
2
Q(x)u2p

′
n dx

) 1
p′

(∫
R
2
Q(x)(eγ pu2n − 1) dx

) 1
p
.

Note that 2p′ > 2 and, in view of Theorem 3.1 and the assumptions (V ) and (Q) with α and
β in the range (2.1), we have the compact embeddings

H1
V (R2) ↪→↪→ L2

Q(R2) and H1
V (R2) ↪→↪→ L2p′

Q (R2).

Moreover, from (5.22),

sup
n≥n

∫
R
2
Q(x)(eγ pu2n − 1) dx ≤ S4π(1−ε4)(V, Q)

where S4π(1−ε4)(V, Q) < +∞ is the supremum of the Trudinger–Moser inequality given
by Theorem 4.1.

Therefore

lim
n→+∞

∫
R
2
Q(x) f (un)un dx = 0

and, from (5.20), we get

lim
n→+∞ ‖un‖2 = 0

which contradicts (5.21).
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6 Bound state solutions

This Section is devoted to the proof of Proposition 2.2. In particular, we will prove that if
u0 ∈ H1

V (R2) is a weak solution of (NLS), i.e.

< u0, v > −
∫
R
2
Q(x) f (u0)v dx = 0 for any v ∈ H1

V (R2)

then u0 ∈ L2(R2) and hence u0 ∈ H1(R2).
We will follow almost the same arguments introduced in [8, Lemma 17 and Lemma 18],

see also [31, Section 3].

Lemma 6.1 Suppose that (V ) and (Q) hold with α and β satisfying (2.1), i.e. α ∈ (0, 2)
and β ∈ (2,+∞). Let γ > 0 and u ∈ H1

V (R2). Then for any ε > 0 there exists R =
R(u, γ, a, α) > 1 such that for any R ≥ R∫

Bc
R

Q(x)(eγ u2 − 1) dx ≤ ε γ

∫
Bc
R

(|∇u|2 + V (x)u2) dx .

Proof Let R > 1 and let ψ̃R : R
+ → [0, 1] be a smooth nondecreasing function such that

ψ̃R(r) :=
{
0 if 0 ≤ r ≤ R − Rα/2

1 if r ≥ R

and

|ψ̃ ′
R(r)| ≤ 2

Rα/2 .

In polar coordinates (r, θ) ∈ [0,+∞) × S
1, we define

ũ R(r, θ) :=

⎧⎪⎨
⎪⎩
0 if 0 ≤ r ≤ R − Rα/2,

ψ̃R(r)u(2R − r, θ) if R − Rα/2 ≤ r ≤ R,

u(r, θ) if r ≥ R.

Arguing as in [8, Proposition 11], we can prove the following estimate∫
AR

( |∇ũ R |2 + V (x)ũ2R ) dx ≤ C
∫
Bc
R

( |∇u|2 + V (x)u2 ) dx

where AR is the annulus

AR := { x ∈ R
2 | R − Rα/2 ≤ |x | ≤ R }.

Recalling that ũ R ≡ 0 when |x | ≤ R − Rα/2 and ũ R ≡ u when |x | ≥ R, we get

‖ũ R‖2 =
∫
Bc
R−Rα/2

( |∇ũ R |2 + V (x)ũ2R ) dx ≤ (1 + C)

∫
Bc
R

( |∇u|2 + V (x)u2 ) dx .

Since u ∈ H1
V (R2), there exists R = R(u, γ ) > 1 such that∫

Bc
R

( |∇u|2 + V (x)u2 ) dx ≤ 1

1 + C

1

γ
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and in particular

‖√γ ũ R‖ ≤ 1 for any R ≥ R.

Therefore, we may estimate∫
Bc
R

Q(x)(eγ u2 − 1) dx =
∫
Bc
R

Q(x)(eγ ũ2R − 1) dx ≤
∫
Bc
R−Rα/2

Q(x)(e(
√

γ ũ R)2 − 1) dsx

≤ η‖√γ ũ R‖2 = η γ ‖ũ R‖2
where η > 0 is arbitrarily fixed and we used Proposition 4.6. This is possible provided

R − R
α/2 ≥ 3ñ where ñ = ñ(γ, a, α) > 1 is given by Proposition 4.6. ��

From now on, u0 ∈ H1
V (R2) will denote a weak solution of (NLS).

Lemma 6.2 There exists R̃ > 0 such that for any n ∈ N satisfying Rn := n2/(2−α) ≥ R̃ we
have ∫

Bc
Rn+1

( |∇u0|2 + V (x)u20 ) dx ≤ 3

4

∫
Bc
Rn

( |∇u0|2 + V (x)u20 ) dx .

Proof Let χn : R
2 → [0, 1] be a piecewise affine function such that

χn(x) :=
{
0 if |x | ≤ Rn,

1 if |x | ≥ Rn+1.

Arguing as in [8, Lemma 17], we can prove that

|∇χn(x)|2 ≤ V (x).

By construction χnu0 ∈ H1
V (R2),∫

Bc
Rn+1

( |∇u0|2 + V (x)u20 ) dx ≤
∫
Bc
Rn

χn( |∇u0|2 + V (x)u20 ) dx

and we can compute

< u0, χnu0 >=
∫
Bc
Rn

χn( |∇u0|2 + V (x)u20 ) dx +
∫
Bc
Rn

u0∇u0 · ∇χn dx .

Moreover, if we use χnu0 ∈ H1
V (R2) as test function, we obtain

< u0, χnu0 > −
∫
R
2
Q(x) f (u0)χnu0 dx = 0.

Therefore, we may estimate∫
Bc
Rn

χn( |∇u0|2 + V (x)u20 ) dx

=
∫
Bc
Rn

Q(x) f (u0)χnu0 dx −
∫
Bc
Rn

u0∇u0 · ∇χn dx

≤
∫
Bc
Rn

Q(x) f (u0)u0 dx + 1

2

( ∫
Bc
Rn

|∇u0|2 dx +
∫
Bc
Rn

|∇χn |2u20 dx
)

≤
∫
Bc
Rn

Q(x) f (u0)u0 dx + 1

2

∫
Bc
Rn

( |∇u0|2 dx + V (x)u20 ) dx .
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To complete the proof, it is sufficient to prove the existence of R̃ > 0 such that for any n ∈ N

with Rn ≥ R̃ ∫
Bc
Rn

Q(x) f (u0)u0 dx ≤ 1

4

∫
Bc
Rn

( |∇u0|2 dx + V (x)u20 ) dx .

To this aim, arguing as in (5.3), for fixed γ > γ0 and σ > 0 we have∫
Bc
Rn

Q(x) f (u0)u0 dx ≤ σ

∫
Bc
Rn

Q(x)u20 dx

+ C(γ, σ )
(∫

Bc
Rn

Q(x)u20 dx
) 1

2
(∫

Bc
Rn

Q(x)(e2γ u
2
0 − 1) dx

) 1
2
.

Let R > 1 be as in Lemma 6.1. If R̃ ≥ R then, for any n ∈ N satisfying Rn ≥ R̃, we may
apply Lemma 6.1 obtaining∫

Bc
Rn

Q(x)(e2γ u
2
0 − 1) dx ≤ Cγ

∫
Bc
Rn

( |∇u0|2 + V (x)u20 ) dx . (6.1)

Moreover, if R̃ > 0 is sufficiently large then, for any n ∈ N satisfying Rn ≥ R̃, we have

sup
x∈Bc

Rn

Q(x)

V (x)
≤ sup

x∈Bc
R̃

Q(x)

V (x)
≤ sup

x∈Bc
R̃

b

a

1 + |x |α
1 + |x |β ≤ b

a

1 + |R̃|α
1 + |R̃|β =: B(R̃)

where we used assumptions (V ) and (Q) with α and β in the range (2.1). Therefore, when
Rn ≥ R̃, ∫

Bc
Rn

Q(x)u20 dx ≤ B(R̃)

∫
Bc
Rn

V (x)u20. (6.2)

Combining (6.1) and (6.2), we obtain∫
Bc
Rn

Q(x) f (u0)u0 dx ≤
[

σ [B(R̃)] 1
2 + C̃(γ, σ )

]
[B(R̃)] 1

2

∫
Bc
Rn

( |∇u0|2 + V (x)u20 ) dx .

Due to the range (2.1) of the parameters α and β, we point out that

lim
R̃→+∞

B(R̃) = lim
R̃→+∞

b

a
R̃α−β = 0

and, since σ > 0 and γ > γ0 are fixed, we can choose R̃ > 0 sufficiently large so that

[
σ [B(R̃)] 1

2 + C̃(γ, σ )
]

[B(R̃)] 1
2 ≤ 1

4
.

��

Lemma 6.3 There exists R̃ > 0 and a constant C > 0 such that for any � > 2R̃∫
Bc

�

( |∇u0|2 + V (x)u20 ) dx ≤ Ce−
∣∣log 3

4

∣∣ �(2−α)/2
.
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Proof Let R̃ and {Rn}n be as in Lemma 6.2 and let � > 2R̃. Then there exist two positive
integers n > ñ such that

Rñ ≤ R̃ ≤ Rñ+1 and Rn−1 ≤ � ≤ Rn

and it is easy to see that

n − ñ ≥ �(2−α)/2 − R̃(2−α)/2 > R̃(2−α)/2(2(2−α)/2 − 1) > 2

provided R̃ > 0 is sufficiently large. Therefore n − ñ ≥ 3, in particular

Rn−2 ≥ Rñ+1 ≥ R̃

and we may estimate, using Lemma 6.2,∫
Bc

�

( |∇u0|2 + V (x)u20 ) dx ≤
∫
Bc
Rn−1

( |∇u0|2 + V (x)u20 ) dx

≤
(3
4

)n−ñ−2
∫
Bc
R̃

( |∇u0|2 + V (x)u20 ) dx

≤
(4
3

)2
e−

∣∣log 3
4

∣∣(�(2−α)/2−R̃(2−α)/2)

∫
Bc
R̃

( |∇u0|2 + V (x)u20 ) dx .

��
In order to conclude that u0 ∈ L2(R2), it is enough to prove that∫

Bc
2

u20 dx < +∞.

First, for fixed r ≥ 2 and |y| ≥ 2r , note that

sup
x∈B(y,r)

1 + |x |α
a|y|α ≤ 1 + (r + |y|)α

a|y|α ≤ 1 + ( 3
2 |y|)α

a|y|α ≤ sup
y∈Bc

4

1 + ( 3
2 |y|)α

a|y|α =: C(α) < +∞.

Hence, in view of (V ), we have∫
B(y,r)

u20 dx ≤
∫
B(y,r)

1 + |x |α
a

V (x)u20 dx ≤ C(α) |y|α
∫
Bc|y|/2

V (x)u20 dx

where we also used the inclusion B(y, r) ⊆ Bc|y|/2. If r > 2R̃ then we may apply Lemma
6.3 and get ∫

B(y,r)
u20 dx ≤ C̃(α) |y|α e−

∣∣log 3
4

∣∣ ( |y|
2

)(2−α)/2

. (6.3)

Next, let m ∈ N and |yi | ≥ 2 with i ∈ {1, . . . ,m} be such that

B5\B2 ⊂
m⋃
i=1

B(yi , 1)

and let yi,k := 2k yi . If K0 is a positive integer such that 2K0 > 2R̃ then, using (6.3) with
r = 2k and y = yi,k ,∫

B(yi,k ,2k )
u20 dx ≤ C̃(α) |yi,k |α e−

∣∣log 3
4

∣∣ ( |yi,k |
2

)(2−α)/2

for any k ≥ K0
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and∫
Bc
2

u20 dx ≤
+∞∑
k=0

∫
2k B5\B2

u20 dx ≤
m∑
i=1

+∞∑
k=0

∫
B(yi,k ,2k )

u20 dx

≤
m∑
i=1

K0−1∑
k=0

∫
B(yi,k ,2k )

u20 dx + C̃(α)

m∑
i=1

+∞∑
k=K0

|yi,k |α e−
∣∣log 3

4

∣∣ ( |yi,k |
2

)(2−α)/2

< +∞

since α ∈ (0, 2). This completes the proof of Proposition 2.2.
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